Epigenetic Age Acceleration Assessed with Human White-Matter Images.
Hodgson, Karen; Carless, Melanie A; Kulkarni, Hemant; Curran, Joanne E; Sprooten, Emma; Knowles, Emma E; Mathias, Samuel; Göring, Harald H H; Yao, Nailin; Olvera, Rene L; Fox, Peter T; Almasy, Laura; Duggirala, Ravi; Blangero, John; Glahn, David C
2017-05-03
The accurate estimation of age using methylation data has proved a useful and heritable biomarker, with acceleration in epigenetic age predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are also heritable and highly sensitive to both normal and pathological aging processes across adulthood. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity in humans. Our goal was to investigate processes that underlie interindividual variability in age-related changes in the brain. Using blood taken from a Mexican-American extended pedigree sample ( n = 628; age = 23.28-93.11 years), epigenetic age was estimated using the method developed by Horvath (2013). For n = 376 individuals, diffusion tensor imaging scans were also available. The interrelationship between epigenetic age acceleration and global white matter integrity was investigated with variance decomposition methods. To test for neuroanatomical specificity, 16 specific tracts were additionally considered. We observed negative phenotypic correlations between epigenetic age acceleration and global white matter tract integrity (ρ pheno = -0.119, p = 0.028), with evidence of shared genetic (ρ gene = -0.463, p = 0.013) but not environmental influences. Negative phenotypic and genetic correlations with age acceleration were also seen for a number of specific white matter tracts, along with additional negative phenotypic correlations between granulocyte abundance and white matter integrity. These findings (i.e., increased acceleration in epigenetic age in peripheral blood correlates with reduced white matter integrity in the brain and shares common genetic influences) provide a window into the neurobiology of aging processes within the brain and a potential biomarker of normal and pathological brain aging. SIGNIFICANCE STATEMENT Epigenetic measures can be used to predict age with a high degree of accuracy and so capture acceleration in biological age, relative to chronological age. The white matter tracts within the brain are also highly sensitive to aging processes. We show that increased biological aging (measured using epigenetic data from blood samples) is correlated with reduced integrity of white matter tracts within the human brain (measured using diffusion tensor imaging) with data from a large sample of Mexican-American families. Given the family design of the sample, we are also able to demonstrate that epigenetic aging and white matter tract integrity also share common genetic influences. Therefore, epigenetic age may be a potential, and accessible, biomarker of brain aging. Copyright © 2017 the authors 0270-6474/17/374735-09$15.00/0.
Chronic pancreatitis: Do serum biomarkers provide an association with an inflammageing phenotype?
Rasch, Sebastian; Valantiene, Irena; Mickevicius, Artautas; Beer, Sebastian; Rosendahl, Jonas; Charnley, Richard M; Robinson, Stuart M
2016-01-01
Chronic pancreatitis is an inflammatory disorder of the pancreas that is associated with accelerated mortality for patients suffering from this disease. The association between chronic inflammation and accelerated biological ageing has been well described and is often referred to as "inflammageing". In this review we seek to determine how systemic inflammation in chronic pancreatitis may contribute to an accelerated ageing phenotype. A systematic literature search with a predefined search protocol was performed on Medline, Embase and Cochrane libraries according to the PRISMA guidelines. The initial search identified 499 studies. After title, abstract and full text screen of the search results, 20 were included for further evaluation. In the 20 remaining articles 41 inflammatory mediators were identified - mainly involved in chronic inflammation, fibrosis and particularly cardinal features of inflammageing such as sarcopenia and osteoporosis. Chronic pancreatitis is associated with elevated levels of inflammatory mediators many of which are associated with an accelerated ageing phenotype and may explain some of the clinical sequelae of this disease. Copyright © 2016 IAP and EPC. All rights reserved.
Redefining Aging in HIV Infection Using Phenotypes.
Stoff, David M; Goodkin, Karl; Jeste, Dilip; Marquine, Maria
2017-10-01
This article critically reviews the utility of "phenotypes" as behavioral descriptors in aging/HIV research that inform biological underpinnings and treatment development. We adopt a phenotypic redefinition of aging conceptualized within a broader context of HIV infection and of aging. Phenotypes are defined as dimensions of behavior, closely related to fundamental mechanisms, and, thus, may be more informative than chronological age. Primary emphasis in this review is given to comorbid aging and cognitive aging, though other phenotypes (i.e., disability, frailty, accelerated aging, successful aging) are also discussed in relation to comorbid aging and cognitive aging. The main findings that emerged from this review are as follows: (1) the phenotypes, comorbid aging and cognitive aging, are distinct from each other, yet overlapping; (2) associative relationships are the rule in HIV for comorbid and cognitive aging phenotypes; and (3) HIV behavioral interventions for both comorbid aging and cognitive aging have been limited. Three paths for research progress are identified for phenotype-defined aging/HIV research (i.e., clinical and behavioral specification, biological mechanisms, intervention targets), and some important research questions are suggested within each of these research paths.
Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI
2017-11-01
Integration Theory of intelligence (Jung and Haier, Behave Brain Sci, 2007...predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are heritable and highly sensitive to both normal and...pathological aging processes. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity
Fernandez-Twinn, Denise S.; Chen, Jian Hua; Hargreaves, Iain P.; Neergheen, Viruna; Aiken, Catherine E.; Ozanne, Susan E.
2016-01-01
ABSTRACT ‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by increased tumor necrosis factor-α (TNFα) and interleukin-1β (IL1β) protein levels. Taken together, we demonstrate, for the first time to our knowledge, an accelerated aging phenotype in skeletal muscle in the context of developmental programming. These findings may pave the way for suitable interventions in at-risk populations. PMID:27585884
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Shurong; Risques, Rosa Ana; Martin, George M.
2008-01-01
LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. Tomore » our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.« less
A longitudinal study of DNA methylation as a potential mediator of age-related diabetes risk.
Grant, Crystal D; Jafari, Nadereh; Hou, Lifang; Li, Yun; Stewart, James D; Zhang, Guosheng; Lamichhane, Archana; Manson, JoAnn E; Baccarelli, Andrea A; Whitsel, Eric A; Conneely, Karen N
2017-12-01
DNA methylation (DNAm) has been found to show robust and widespread age-related changes across the genome. DNAm profiles from whole blood can be used to predict human aging rates with great accuracy. We sought to test whether DNAm-based predictions of age are related to phenotypes associated with type 2 diabetes (T2D), with the goal of identifying risk factors potentially mediated by DNAm. Our participants were 43 women enrolled in the Women's Health Initiative. We obtained methylation data via the Illumina 450K Methylation array on whole blood samples from participants at three timepoints, covering on average 16 years per participant. We employed the method and software of Horvath, which uses DNAm at 353 CpGs to form a DNAm-based estimate of chronological age. We then calculated the epigenetic age acceleration, or Δ age , at each timepoint. We fit linear mixed models to characterize how Δ age contributed to a longitudinal model of aging and diabetes-related phenotypes and risk factors. For most participants, Δ age remained constant, indicating that age acceleration is generally stable over time. We found that Δ age associated with body mass index (p = 0.0012), waist circumference (p = 0.033), and fasting glucose (p = 0.0073), with the relationship with BMI maintaining significance after correction for multiple testing. Replication in a larger cohort of 157 WHI participants spanning 3 years was unsuccessful, possibly due to the shorter time frame covered. Our results suggest that DNAm has the potential to act as a mediator between aging and diabetes-related phenotypes, or alternatively, may serve as a biomarker of these phenotypes.
Gassen, Nils C; Chrousos, George P; Binder, Elisabeth B; Zannas, Anthony S
2017-03-01
Life stress has been associated with accelerated cellular aging and increased risk for developing aging-related diseases; however, the underlying molecular mechanisms remain elusive. A highly relevant process that may underlie this association is epigenetic regulation. In this review, we build upon existing evidence to propose a model whereby exposure to life stress, in part via its effects on the hypothalamic-pituitary axis and the glucocorticoid signaling system, may alter the epigenetic landscape across the lifespan and, consequently, influence genomic regulation and function in ways that are conducive to the development of aging-related diseases. This model is supported by recent studies showing that life stressors and stress-related phenotypes can accelerate epigenetic aging, a measure that is based on DNA methylation prediction of chronological age and has been associated with several aging-related disease phenotypes. We discuss the implications of this model for the prevention and treatment of aging-related diseases, as well as the challenges and limitations of this line of research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rowan, Sharon L; Purves-Smith, Fennigje M; Solbak, Nathan M; Hepple, Russell T
2011-08-01
The age-related decline in muscle mass, known as sarcopenia, exhibits a marked acceleration in advanced age. Although many studies have remarked upon the accumulation of very small myofibers, particularly at advanced stages of sarcopenia, the significance of this phenomenon in the acceleration of sarcopenia has never been examined. Furthermore, although mitochondrial dysfunction characterized by a lack of cytochrome oxidase (COX) activity has been implicated in myofiber atrophy in sarcopenia, the contribution of this phenotype to the accumulation of severely atrophied fibers in aged muscles has never been determined. To this end, we examined the fiber size distribution in the slow twitch soleus (Sol) and fast twitch gastrocnemius (Gas) muscles between young adulthood (YA) and senescence (SEN). We also quantified the abundance of COX deficient myocytes and their size attributes to gain insight into the contribution of this phenotype to myofiber atrophy with aging. Our data showed that the progression of muscle atrophy, particularly its striking acceleration between late middle age and SEN, was paralleled by an accumulation of severely atrophic myofibers (≤ 1000 μm(2) in size) in both Sol and Gas. On the other hand, we observed no COX deficient myofibers in Sol, despite nearly 20% of the myofibers being severely atrophic. Similarly, only 0.17 ± 0.06% of all fibers in Gas were COX deficient, and their size was generally larger (2375 ± 319 μm(2)) than the severely atrophied myofibers noted above. Collectively, our results suggest that similar processes likely contribute to the acceleration of sarcopenia in both slow twitch and fast twitch muscles, and that COX deficiency is not a major contributor to this phenomenon. Copyright © 2011 Elsevier Inc. All rights reserved.
Accelerated epigenetic aging in Werner syndrome.
Maierhofer, Anna; Flunkert, Julia; Oshima, Junko; Martin, George M; Haaf, Thomas; Horvath, Steve
2017-04-01
Individuals suffering from Werner syndrome (WS) exhibit many clinical signs of accelerated aging. While the underlying constitutional mutation leads to accelerated rates of DNA damage, it is not yet known whether WS is also associated with an increased epigenetic age according to a DNA methylation based biomarker of aging (the "Epigenetic Clock"). Using whole blood methylation data from 18 WS cases and 18 age matched controls, we find that WS is associated with increased extrinsic epigenetic age acceleration (p=0.0072) and intrinsic epigenetic age acceleration (p=0.04), the latter of which is independent of age-related changes in the composition of peripheral blood cells. A multivariate model analysis reveals that WS is associated with an increase in DNA methylation age (on average 6.4 years, p=0.011) even after adjusting for chronological age, gender, and blood cell counts. Further, WS might be associated with a reduction in naïve CD8+ T cells (p=0.025) according to imputed measures of blood cell counts. Overall, this study shows that WS is associated with an increased epigenetic age of blood cells which is independent of changes in blood cell composition. The extent to which this alteration is a cause or effect of WS disease phenotypes remains unknown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoving, Saske; Heeneman, Sylvia; Gijbels, Marion J.J.
2008-07-01
Purpose: Increased risk of atherosclerosis and stroke has been demonstrated in patients receiving radiotherapy for Hodgkin's lymphoma and head-and-neck cancer. We previously showed that 14 Gy to the carotid arteries of hypercholesterolemic ApoE{sup -/-} mice resulted in accelerated development of macrophage-rich, inflammatory atherosclerotic lesions. Here we investigate whether clinically relevant fractionated irradiation schedules and lower single doses also predispose to an inflammatory plaque phenotype. Methods and Materials: ApoE{sup -/-} mice were given 8 or 14 Gy, or 20 x 2.0 Gy in 4 weeks to the neck, and the carotid arteries were subsequently examinated for presence of atherosclerotic lesions, plaquemore » size, and phenotype. Results: At 4 weeks, early atherosclerotic lesions were found in 44% of the mice after single doses of 14 Gy but not in age-matched controls. At 22 to 30 weeks after irradiation there was a twofold increase in the mean number of carotid lesions (8-14 Gy and 20 x 2.0 Gy) and total plaque burden (single doses only), compared with age-matched controls. The majority of lesions seen at 30 to 34 weeks after fractionated irradiation or 14-Gy single doses were granulocyte rich (100% and 63%, respectively), with thrombotic features (90% and 88%), whereas these phenotypes were much less common in age-matched controls or after a single dose of 8 Gy. Conclusions: We showed that fractionated irradiation accelerated the development of atherosclerosis in ApoE{sup -/-} mice and predisposed to the formation of an inflammatory, thrombotic plaque phenotype.« less
Litwin, Mieczysław; Feber, Janusz; Niemirska, Anna; Michałkiewicz, Jacek
2016-02-01
There is an increasing amount of data indicating that primary hypertension (PH) is not only a hemodynamic phenomenon but also a complex syndrome involving abnormal fat tissue distribution, over-activity of the sympathetic nervous system (SNS), metabolic abnormalities, and activation of the immune system. In children, PH usually presents with a typical phenotype of disturbed body composition, accelerated biological maturity, and subtle immunological and metabolic abnormalities. This stage of the disease is potentially reversible. However, long-lasting over-activity of the SNS and immuno-metabolic alterations usually lead to an irreversible stage of cardiovascular disease. We describe an intermediate phenotype of children with PH, showing that PH is associated with accelerated development, i.e., early premature aging of the immune, metabolic, and vascular systems. The associations and determinants of hypertensive organ damage, the principles of treatment, and the possibility of rejuvenation of the cardiovascular system are discussed.
PTSD is associated with an increase in aged T cell phenotypes in adults living in Detroit
Aiello, Allison E.; Dowd, Jennifer B.; Jayabalasingham, Bamini; Feinstein, Lydia; Uddin, Monica; Simanek, Amanda M.; Cheng, Caroline K.; Galea, Sandro; Wildman, Derek E.; Koenen, Karestan; Pawelec, Graham
2016-01-01
Background Psychosocial stress is thought to play a key role in the acceleration of immunological aging. This study investigated the relationship between lifetime and past-year history of post-traumatic stress disorder (PTSD) and the distribution of T cell phenotypes thought to be characteristic of immunological aging. Methods Data were from 85 individuals who participated in the community-based Detroit Neighborhood Health Study. Immune markers assessed included the CD4:CD8 ratio, the ratio of late-differentiated effector (CCR7-CD45RA+CD27-CD28-) to naïve (CCR7+CD45RA+CD27+CD28+) T cells, the percentage of KLRG1-expressing cells, and the percentage of CD57-expressing cells. Results In models adjusted for age, gender, race/ethnicity, education, smoking status, and medication use, we found that past-year PTSD was associated with statistically significant differences in the CD8+ T cell population, including a higher ratio of late-differentiated effector to naïve T cells, a higher percentage of KLRG1+ cells, and a higher percentage of CD57+ cells. The percentage of CD57+ cells in the CD4 subset was also significantly higher and the CD4:CD8 ratio significantly lower among individuals who had experienced past-year PTSD. Lifetime PTSD was also associated with differences in several parameters of immune aging. Conclusions PTSD is associated with an aged immune phenotype and should be evaluated as a potential catalyzer of accelerated immunological aging in future studies. PMID:26894484
Tatsi, Christina; Gkourogianni, Alexandra; Mohnike, Klaus; DeArment, Diana; Witchel, Selma; Andrade, Anenisia C; Markello, Thomas C; Baron, Jeffrey; Nilsson, Ola; Jee, Youn Hee
2017-08-01
Aggrecan, a proteoglycan, is an important component of cartilage extracellular matrix, including that of the growth plate. Heterozygous mutations in ACAN , the gene encoding aggrecan, cause autosomal dominant short stature, accelerated skeletal maturation, and joint disease. The inheritance pattern and the presence of bone age equal to or greater than chronological age have been consistent features, serving as diagnostic clues. From family 1, a 6-year-old boy presented with short stature [height standard deviation score (SDS), -1.75] and bone age advanced by 3 years. There was no family history of short stature (height SDS: father, -0.76; mother, 0.7). Exome sequencing followed by Sanger sequencing identified a de novo novel heterozygous frameshift mutation in ACAN (c.6404delC: p.A2135Dfs). From family 2, a 12-year-old boy was evaluated for short stature (height SDS, -3.9). His bone age at the time of genetic evaluation was approximately 1 year less than his chronological age. Family history was consistent with an autosomal dominant inheritance of short stature, with several affected members also showing early-onset osteoarthritis. Exome sequencing, confirmed by Sanger sequencing, identified a novel nonsense mutation in ACAN (c.4852C>T: p.Q1618X), which cosegregated with the phenotype. In conclusion, patients with ACAN mutations may present with nonfamilial short stature and with bone age less than chronological age. These findings expand the known phenotypic spectrum of heterozygous ACAN mutations and indicate that this diagnosis should be considered in children without a family history of short stature and in children without accelerated skeletal maturation.
Chen, Defu; Li, Yanlan; Fang, Tao; Shi, Xiaoli; Chen, Xiwen
2016-03-01
Tocopherols and tocotrienols are lipophilic antioxidants that are abundant in plant seeds. Although their roles have been extensively studied, our understanding of their functions in rice seeds is still limited. In this study, on the basis of available RNAi rice plants constitutively silenced for homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC), we developed transgenic plants that silenced homogentisate geranylgeranyl transferase (HGGT). All the RNAi plants showed significantly reduced germination percentages and a higher proportion of abnormal seedlings than the control plants, with HGGT transgenics showing the most severe phenotype. The accelerated aging phenotype corresponded well with the amount of H2O2 accumulated in the embryo, glucose level, and ion leakage, but not with the amount of O(2-) accumulated in the embryo and lipid hydroperoxides levels in these genotypes. Under abiotic stress conditions, HPT and TC transgenics showed lower germination percentage and seedling growth than HGGT transgenics, while HGGT transgenics showed almost the same status as the wild type. Therefore, we proposed that tocopherols in the germ may protect the embryo from reactive oxygen species under both accelerated aging and stress conditions, whereas tocotrienols in the pericarp may exclusively help in reducing the metabolic activity of the seed during accelerated aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Huntington's Disease: Relationship Between Phenotype and Genotype.
Sun, Yi-Min; Zhang, Yan-Bin; Wu, Zhi-Ying
2017-01-01
Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease with the typical manifestations of involuntary movements, psychiatric and behavior disorders, and cognitive impairment. It is caused by the dynamic mutation in CAG triplet repeat number in exon 1 of huntingtin (HTT) gene. The symptoms of HD especially the age at onset are related to the genetic characteristics, both the CAG triplet repeat and the modified factors. Here, we reviewed the recent advancement on the genotype-phenotype relationship of HD, mainly focus on the characteristics of different expanded CAG repeat number, genetic modifiers, and CCG repeat number in the 3' end of CAG triplet repeat and their effects on the phenotype. We also reviewed the special forms of HD (juvenile HD, atypical onset HD, and homozygous HD) and their phenotype-genotype correlations. The review will aid clinicians to predict the onset age and disease course of HD, give the genetic counseling, and accelerate research into the HD mechanism.
Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype.
Samsa, William E; Vasanji, Amit; Midura, Ronald J; Kondratov, Roman V
2016-03-01
The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1(-/-) mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1(-/-) mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1(-/-) mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype. Copyright © 2016 Elsevier Inc. All rights reserved.
Deficiency of Circadian Clock Protein BMAL1 in Mice Results in a Low Bone Mass Phenotype
Samsa, William E.; Vasanji, Amit; Midura, Ronald J.; Kondratov, Roman V.
2016-01-01
The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1−/− mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1−/− mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1−/− mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype. PMID:26789548
DNA methylation age is not accelerated in brain or blood of subjects with schizophrenia.
McKinney, Brandon C; Lin, Huang; Ding, Ying; Lewis, David A; Sweet, Robert A
2017-10-05
Individuals with schizophrenia (SZ) exhibit multiple premature age-related phenotypes and die ~20years prematurely. The accelerated aging hypothesis of SZ has been advanced to explain these observations, it posits that SZ-associated factors accelerate the progressive biological changes associated with normal aging. Testing the hypothesis has been limited by the absence of robust, meaningful, and multi-tissue measures of biological age. Recently, a method was described in which DNA methylation (DNAm) levels at 353 genomic sites are used to produce "DNAm age", an estimate of biological age with advantages over existing measures. We used this method and 3 publicly-available DNAm datasets, 1 from brain and 2 from blood, to test the hypothesis. The brain dataset was composed of data from the dorsolateral prefrontal cortex of 232 non-psychiatric control (NPC) and 195 SZ subjects. Blood dataset #1 was composed of data from whole blood of 304 NPC and 332 SZ subjects, and blood dataset #2 was composed of data from whole blood of 405 NPC and 260 SZ subjects. DNAm age and chronological age correlated strongly (r=0.92-0.95, p<0.0001) in both NPC and SZ subjects in all 3 datasets. DNAm age acceleration did not differ between NPC and SZ subjects in the brain dataset (t=0.52, p=0.60), blood dataset #1 (t=1.51, p=0.13), or blood dataset #2 (t=0.93, p=0.35). Consistent with our previous findings from a smaller study of postmortem brains, our findings suggest there is no acceleration of brain or blood aging in SZ and, thus, do not support the accelerated aging hypothesis of SZ. Copyright © 2017 Elsevier B.V. All rights reserved.
Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function.
Kim, Dong-Kyu; Lim, Hee-Sun; Kawasaki, Ichiro; Shim, Yhong-Hee; Vaikath, Nishant N; El-Agnaf, Omar M A; Lee, He-Jin; Lee, Seung-Jae
2016-10-02
Aging is the major risk factor for neurodegenerative diseases that are also associated with impaired proteostasis, resulting in abnormal accumulation of protein aggregates. However, the role of aging in development and progression of disease remains elusive. Here, we used Caenorhabditis elegans models to show that aging-promoting genetic variations accelerated the rate of cell-to-cell transmission of SNCA/α-synuclein aggregates, hallmarks of Parkinson disease, and the progression of disease phenotypes, such as nerve degeneration, behavioral deficits, and reduced life span. Genetic and pharmacological anti-aging manipulations slowed the spread of aggregates and the associated phenotypes. Lysosomal degradation was significantly impaired in aging models, while anti-aging treatments reduced the impairment. Transgenic expression of hlh-30p::hlh-30, the master controller of lysosomal biogenesis, alleviated intercellular transmission of aggregates in the aging model. Our results demonstrate that the rate of aging closely correlates with the rate of aggregate propagation and that general anti-aging treatments can slow aggregate propagation and associated disease progression by restoring lysosomal function.
Long-term exposure to air pollution is associated with biological aging.
Ward-Caviness, Cavin K; Nwanaji-Enwerem, Jamaji C; Wolf, Kathrin; Wahl, Simone; Colicino, Elena; Trevisi, Letizia; Kloog, Itai; Just, Allan C; Vokonas, Pantel; Cyrys, Josef; Gieger, Christian; Schwartz, Joel; Baccarelli, Andrea A; Schneider, Alexandra; Peters, Annette
2016-11-15
Long-term exposure to air pollution is associated with age-related diseases. We explored the association between accelerated biological aging and air pollution, a potential mechanism linking air pollution and health. We estimated long-term exposure to PM10, PM2.5, PM2.5 absorbance/black carbon (BC), and NOx via land-use regression models in individuals from the KORA F4 cohort. Accelerated biological aging was assessed using telomere length (TeloAA) and three epigenetic measures: DNA methylation age acceleration (DNAmAA), extrinsic epigenetic age acceleration (correlated with immune cell counts, EEAA), and intrinsic epigenetic age acceleration (independent of immune cell counts, IEAA). We also investigated sex-specific associations between air pollution and biological aging, given the published association between sex and aging measures. In KORA an interquartile range (0.97 µg/m3) increase in PM2.5 was associated with a 0.33 y increase in EEAA (CI = 0.01, 0.64; P = 0.04). BC and NOx (indicators or traffic exposure) were associated with DNAmAA and IEAA in women, while TeloAA was inversely associated with BC in men. We replicated this inverse BC-TeloAA association in the Normative Aging Study, a male cohort based in the USA. A multiple phenotype analysis in KORA F4 combining all aging measures showed that BC and PM10 were broadly associated with biological aging in men. Thus, we conclude that long-term exposure to air pollution is associated with biological aging measures, potentially in a sex-specific manner. However, many of the associations were relatively weak and further replication of overall and sex-specific associations is warranted.
Long-term exposure to air pollution is associated with biological aging
Ward-Caviness, Cavin K.; Nwanaji-Enwerem, Jamaji C.; Wolf, Kathrin; Wahl, Simone; Colicino, Elena; Trevisi, Letizia; Kloog, Itai; Just, Allan C.; Vokonas, Pantel; Cyrys, Josef; Gieger, Christian; Schwartz, Joel; Baccarelli, Andrea A.; Schneider, Alexandra; Peters, Annette
2016-01-01
Long-term exposure to air pollution is associated with age-related diseases. We explored the association between accelerated biological aging and air pollution, a potential mechanism linking air pollution and health. We estimated long-term exposure to PM10, PM2.5, PM2.5 absorbance/black carbon (BC), and NOx via land-use regression models in individuals from the KORA F4 cohort. Accelerated biological aging was assessed using telomere length (TeloAA) and three epigenetic measures: DNA methylation age acceleration (DNAmAA), extrinsic epigenetic age acceleration (correlated with immune cell counts, EEAA), and intrinsic epigenetic age acceleration (independent of immune cell counts, IEAA). We also investigated sex-specific associations between air pollution and biological aging, given the published association between sex and aging measures. In KORA an interquartile range (0.97 μg/m3) increase in PM2.5 was associated with a 0.33 y increase in EEAA (CI = 0.01, 0.64; P = 0.04). BC and NOx (indicators or traffic exposure) were associated with DNAmAA and IEAA in women, while TeloAA was inversely associated with BC in men. We replicated this inverse BC-TeloAA association in the Normative Aging Study, a male cohort based in the USA. A multiple phenotype analysis in KORA F4 combining all aging measures showed that BC and PM10 were broadly associated with biological aging in men. Thus, we conclude that long-term exposure to air pollution is associated with biological aging measures, potentially in a sex-specific manner. However, many of the associations were relatively weak and further replication of overall and sex-specific associations is warranted. PMID:27793020
Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru
2015-07-01
Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.
Fimognari, Nicholas; Hollings, Ashley; Lam, Virginie; Tidy, Rebecca J; Kewish, Cameron M; Albrecht, Matthew A; Takechi, Ryu; Mamo, John C L; Hackett, Mark J
2018-06-14
Western society is facing a health epidemic due to the increasing incidence of dementia in ageing populations, and there are still few effective diagnostic methods, minimal treatment options, and no cure. Ageing is the greatest risk factor for memory loss that occurs during the natural ageing process, as well as being the greatest risk factor for neurodegenerative disease such as Alzheimer's disease. Therefore, greater understanding of the biochemical pathways that drive a healthy ageing brain towards dementia (pathological ageing or Alzheimer's disease), is required to accelerate the development of improved diagnostics and therapies. Unfortunately, many animal models of dementia model chronic amyloid precursor protein over-expression, which although highly relevant to mechanisms of amyloidosis and familial Alzheimer's disease, does not model well dementia during the natural ageing process. A promising animal model reported to model mechanisms of accelerated natural ageing and memory impairments, is the senescence accelerated murine prone strain 8 (SAMP8), which has been adopted by many research group to study the biochemical transitions that occur during brain ageing. A limitation to traditional methods of biochemical characterisation is that many important biochemical and elemental markers (lipid saturation, lactate, transition metals) cannot be imaged at meso- or micro-spatial resolution. Therefore, in this investigation we report the first multi-modal biospectroscopic characterisation of the SAMP8 model, and have identified important biochemical and elemental alterations, and co-localisations, between 4 month old SAMP8 mice and the relevant control (SAMR1) mice. Specifically, we demonstrate direct evidence of altered metabolism and disturbed lipid homeostasis within corpus callosum white matter, in addition to localised hippocampal metal deficiencies, in the accelerated ageing phenotype. Such findings have important implication for future research aimed at elucidating specific biochemical pathways for therapeutic intervention.
A drug-induced accelerated senescence (DIAS) is a possibility to study aging in time lapse.
Alili, Lirija; Diekmann, Johanna; Giesen, Melanie; Holtkötter, Olaf; Brenneisen, Peter
2014-06-01
Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. Accordingly, a stress-induced senescence-like phenotype of human dermal fibroblasts can be induced in vitro by the exposure of human diploid fibroblasts to subcytotoxic concentrations of hydrogen peroxide. However, several biomarkers of replicative senescence e.g. cell cycle arrest and enlarged morphology are abrogated 14 days after treatment, indicating that reactive oxygen species (ROS) rather acts as a trigger for short-term senescence (1-3 days) than being responsible for the maintenance of the senescence-like phenotype. Further, DNA-damaging factors are discussed resulting in a permanent senescent cell type. To induce long-term premature senescence and to understand the molecular alterations occurring during the aging process, we analyzed mitomycin C (MMC) as an alkylating DNA-damaging agent and ROS producer. Human dermal fibroblasts (HDF), used as model for skin aging, were exposed to non-cytotoxic concentrations of MMC and analyzed for potential markers of cellular aging, for example enlarged morphology, activity of senescence-associated-ß-galactosidase, cell cycle arrest, increased ROS production and MMP1-activity, which are well-documented for HDF in replicative senescence. Our data show that mitomycin C treatment results in a drug-induced accelerated senescence (DIAS) with long-term expression of senescence markers, demonstrating that a combination of different susceptibility factors, here ROS and DNA alkylation, are necessary to induce a permanent senescent cell type.
Sod2 haploinsufficiency does not accelerate aging of telomere dysfunctional mice
Guachalla, Luis Miguel; Ju, Zhenyu; Koziel, Rafal; von Figura, Guido; Song, Zhangfa; Fusser, Markus; Epe, Bernd; Jansen-Dűrr, Pidder; Rudolph, K. Lenhard
2009-01-01
Telomere shortening represents a causal factor of cellular senescence. At the same time, several lines of evidence indicate a pivotal role of oxidative DNA damage for the aging process in vivo. A causal connection between the two observations was suggested by experiments showing accelerated telomere shorting under conditions of oxidative stress in cultured cells, but has never been studied in vivo. We therefore have analysed whether an increase in mitochondrial derived oxidative stress in response to heterozygous deletion of superoxide dismutase (Sod2+/-) would exacerbate aging phenotypes in telomere dysfunctional (mTerc-/-) mice. Heterozygous deletion of Sod2 resulted in reduced SOD2 protein levels and increased oxidative stress in aging telomere dysfunctional mice, but this did not lead to an increase in basal levels of oxidative nuclear DNA damage, an accumulation of nuclear DNA breaks, or an increased rate of telomere shortening in the mice. Moreover, heterozygous deletion of Sod2 did not accelerate the depletion of stem cells and the impairment in organ maintenance in aging mTerc-/- mice. In agreement with these observations, Sod2 haploinsufficiency did not lead to a further reduction in lifespan of mTerc-/- mice. Together, these results indicate that a decrease in SOD2-dependent antioxidant defence does not exacerbate aging in the context of telomere dysfunction. PMID:20195488
Priming of microglia in a DNA-repair deficient model of accelerated aging.
Raj, Divya D A; Jaarsma, Dick; Holtman, Inge R; Olah, Marta; Ferreira, Filipa M; Schaafsma, Wandert; Brouwer, Nieske; Meijer, Michel M; de Waard, Monique C; van der Pluijm, Ingrid; Brandt, Renata; Kreft, Karim L; Laman, Jon D; de Haan, Gerald; Biber, Knut P H; Hoeijmakers, Jan H J; Eggen, Bart J L; Boddeke, Hendrikus W G M
2014-09-01
Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state. Copyright © 2014 Elsevier Inc. All rights reserved.
Safdar, Adeel; Bourgeois, Jacqueline M.; Ogborn, Daniel I.; Little, Jonathan P.; Hettinga, Bart P.; Akhtar, Mahmood; Thompson, James E.; Melov, Simon; Mocellin, Nicholas J.; Kujoth, Gregory C.; Prolla, Tomas A.; Tarnopolsky, Mark A.
2011-01-01
A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities. PMID:21368114
Jin, Xian; Yao, Tongqing; Zhou, Zhong'e; Zhu, Jian; Zhang, Song; Hu, Wei; Shen, Chengxing
2015-01-01
Atherosclerotic lesions are accelerated in patients with diabetes. M1 (classically activated in contrast to M2 alternatively activated) macrophages play key roles in the progression of atherosclerosis. Since advanced glycation end products (AGEs) are major pathogenic factors and active inflammation inducers in diabetes mellitus, this study assessed the effects of AGEs on macrophage polarization. The present study showed that AGEs significantly promoted macrophages to express IL-6 and TNF-α. M1 macrophage markers such as iNOS and surface markers including CD11c and CD86 were significantly upregulated while M2 macrophage markers such as Arg1 and CD206 remained unchanged after AGEs stimulation. AGEs significantly increased RAGE expression in macrophages and activated NF-κB pathway, and the aforementioned effects were partly abolished by administration of anti-RAGE antibody or NF-κB inhibitor PDTC. In conclusion, our results suggest that AGEs enhance macrophage differentiation into proinflammatory M1 phenotype at least partly via RAGE/NF-κB pathway activation. PMID:26114112
Diverse Application of Magnetic Resonance Imaging for Mouse Phenotyping
Wu, Yijen L.; Lo, Cecilia W.
2017-01-01
Small animal models, particularly mouse models, of human diseases are becoming an indispensable tool for biomedical research. Studies in animal models have provided important insights into the etiology of diseases and accelerated the development of therapeutic strategies. Detailed phenotypic characterization is essential, both for the development of such animal models and mechanistic studies into disease pathogenesis and testing the efficacy of experimental therapeutics. Magnetic Resonance Imaging (MRI) is a versatile and non-invasive imaging modality with excellent penetration depth, tissue coverage, and soft tissue contrast. MRI, being a multi-modal imaging modality, together with proven imaging protocols and availability of good contrast agents, is ideally suited for phenotyping mutant mouse models. Here we describe the applications of MRI for phenotyping structural birth defects involving the brain, heart, and kidney in mice. The versatility of MRI and its ease of use are well suited to meet the rapidly increasing demands for mouse phenotyping in the coming age of functional genomics. PMID:28544650
Kuwano, Kazuyoshi; Araya, Jun; Hara, Hiromichi; Minagawa, Shunsuke; Takasaka, Naoki; Ito, Saburo; Kobayashi, Kenji; Nakayama, Katsutoshi
2016-11-01
Aging is associated with impairments in homeostasis. Although aging and senescence are not equivalent, the number of senescent cells increases with aging. Cellular senescence plays important roles in tissue repair or remodeling, as well as embryonic development. Autophagy is a process of lysosomal self-degradation that maintains a homeostatic balance between the synthesis, degradation, and recycling of cellular proteins. Autophagy diminishes with aging; additionally, accelerated aging can be attributed to reduced autophagy. Cellular senescence has been widely implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), a disease of accelerated lung aging, presumably by impairing cell repopulation and by aberrant cytokine secretion in the senescence-associated secretory phenotype. The possible participation of autophagy in the pathogenic sequence of COPD has been extensively explored. Although it has been reported that increased autophagy may induce epithelial cell death, an insufficient reserve of autophagy can induce cellular senescence in bronchial epithelial cells of COPD. Furthermore, advanced age is one of the most important risk factors for the development of idiopathic pulmonary fibrosis (IPF). Telomere shortening is found in blood leukocytes and alveolar epithelial cells from patients with IPF. Accelerated senescence of epithelial cells plays a role in IPF pathogenesis by perpetuating abnormal epithelial-mesenchymal interactions. Insufficient autophagy may be an underlying mechanism of accelerated epithelial cell senescence and myofibroblast differentiation in IPF. Herein, we review the molecular mechanisms of cellular senescence and autophagy and summarize the role of cellular senescence and autophagy in both COPD and IPF. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
Ageing induced vascular smooth muscle cell senescence in atherosclerosis.
Uryga, Anna K; Bennett, Martin R
2016-04-15
Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Mouse models of ageing and their relevance to disease.
Kõks, Sulev; Dogan, Soner; Tuna, Bilge Guvenc; González-Navarro, Herminia; Potter, Paul; Vandenbroucke, Roosmarijn E
2016-12-01
Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan
2015-12-01
Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
The Identification of Zebrafish Mutants Showing Alterations in Senescence-Associated Biomarkers
Uchiyama, Junzo; Koshimizu, Eriko; Qi, Jie; Nanjappa, Purushothama; Imamura, Shintaro; Islam, Asiful; Neuberg, Donna; Amsterdam, Adam; Roberts, Thomas M.
2008-01-01
There is an interesting overlap of function in a wide range of organisms between genes that modulate the stress responses and those that regulate aging phenotypes and, in some cases, lifespan. We have therefore screened mutagenized zebrafish embryos for the altered expression of a stress biomarker, senescence-associated β-galactosidase (SA-β-gal) in our current study. We validated the use of embryonic SA-β-gal production as a screening tool by analyzing a collection of retrovirus-insertional mutants. From a pool of 306 such mutants, we identified 11 candidates that showed higher embryonic SA-β-gal activity, two of which were selected for further study. One of these mutants is null for a homologue of Drosophila spinster, a gene known to regulate lifespan in flies, whereas the other harbors a mutation in a homologue of the human telomeric repeat binding factor 2 (terf2) gene, which plays roles in telomere protection and telomere-length regulation. Although the homozygous spinster and terf2 mutants are embryonic lethal, heterozygous adult fish are viable and show an accelerated appearance of aging symptoms including lipofuscin accumulation, which is another biomarker, and shorter lifespan. We next used the same SA-β-gal assay to screen chemically mutagenized zebrafish, each of which was heterozygous for lesions in multiple genes, under the sensitizing conditions of oxidative stress. We obtained eight additional mutants from this screen that, when bred to homozygosity, showed enhanced SA-β-gal activity even in the absence of stress, and further displayed embryonic neural and muscular degenerative phenotypes. Adult fish that are heterozygous for these mutations also showed the premature expression of aging biomarkers and the accelerated onset of aging phenotypes. Our current strategy of mutant screening for a senescence-associated biomarker in zebrafish embryos may thus prove to be a useful new tool for the genetic dissection of vertebrate stress response and senescence mechanisms. PMID:18704191
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S.; Wentzell, Jill S.; Kretzschmar, Doris; Giebultowicz, Jadwiga M.
2012-01-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per01) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni1), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni1 mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per01 sni1 flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per01 mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws1), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. PMID:22227001
The emerging role of alternative splicing in senescence and aging.
Deschênes, Mathieu; Chabot, Benoit
2017-10-01
Deregulation of precursor mRNA splicing is associated with many illnesses and has been linked to age-related chronic diseases. Here we review recent progress documenting how defects in the machinery that performs intron removal and controls splice site selection contribute to cellular senescence and organismal aging. We discuss the functional association linking p53, IGF-1, SIRT1, and ING-1 splice variants with senescence and aging, and review a selection of splicing defects occurring in accelerated aging (progeria), vascular aging, and Alzheimer's disease. Overall, it is becoming increasingly clear that changes in the activity of splicing factors and in the production of key splice variants can impact cellular senescence and the aging phenotype. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Age-related changes in endothelial function and blood flow regulation.
Toda, Noboru
2012-02-01
Vascular endothelial dysfunction is regarded as a primary phenotypic expression of normal human aging. This senescence-induced disorder is the likely culprit underlying the increased cardiovascular and metabolic disease risks associated with aging. The rate of this age-dependent deterioration is largely influenced by the poor-quality lifestyle choice, such as smoking, sedentary daily life, chronic alcohol ingestion, high salt intake, unbalanced diet, and mental stress; and it is accelerated by cardiovascular and metabolic diseases. Although minimizing these detrimental factors is the best course of action, nonetheless chronological age steadily impairs endothelial function through reduced endothelial nitric oxide synthase (eNOS) expression/action, accelerated nitric oxide (NO) degradation, increased phosphodiesterase activity, inhibition of NOS activity by endogenous NOS inhibitors, increased production of reactive oxygen species, inflammatory reactions, decreased endothelial progenitor cell number and function, and impaired telomerase activity or telomere shortening. Endothelial dysfunction in regional vasculatures results in cerebral hypoperfusion triggering cognitive dysfunction and Alzheimer's disease, coronary artery insufficiency, penile erectile dysfunction, and circulatory failures in other organs and tissues. Possible prophylactic measures to minimize age-related endothelial dysfunction are also summarized in this review. Copyright © 2011 Elsevier Inc. All rights reserved.
Van Aller, Carla; Lara, Jose; Stephan, Blossom C M; Donini, Lorenzo Maria; Heymsfield, Steven; Katzmarzyk, Peter T; Wells, Jonathan C K; Prado, Carla M; Siervo, Mario
2018-02-15
There is no consensus on the definition of sarcopenic obesity (SO), resulting in inconsistent associations of SO with mortality risk. We aim to evaluate association of dual energy x-ray absorptiometry (DXA) SO models with mortality risk in a US adult population (≥50 years). The study population consisted of 3577 participants aged 50 years and older from the 1999-2004 National Health and Nutrition and Examination Survey with mortality follow-up data through December 31, 2011. Difference in survival time in people with and without SO defined by three body composition DXA models (Model 1: body composition phenotype model; Model 2: Truncal Fat Mass (TrFM)/Appendicular Skeletal Muscle Mass (ASM) ratio model; Model 3: Fat Mass (FM)/Fat Free Mass (FFM) ratio). The differences between the models were assessed by the acceleration failure time model, and expressed as time ratios (TR). Participants age 50-70 years with SO had a significantly decreased survival time, according to the body composition phenotype model (TR: 0.92; 95% CI: 0.87-0.97), and TrFM/ASM ratio model (TR: 0.88; 95% CI: 0.81-0.95). The FM/FFM ratio model did not detect significant differences in survival time. Participants with SO aged 70 years and older did not have a significantly decreased survival time, according to all three models. A SO phenotype increases mortality risk in people of age 50-70 years, but not in people aged 70 years and older. The application of the body composition phenotype and the TrFM/ASM ratio models may represent useful diagnostic approaches to improve the prediction of disease and mortality risk. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
The fetal programming of telomere biology hypothesis: an update.
Entringer, Sonja; de Punder, Karin; Buss, Claudia; Wadhwa, Pathik D
2018-03-05
Research on mechanisms underlying fetal programming of health and disease risk has focused primarily on processes that are specific to cell types, organs or phenotypes of interest. However, the observation that developmental conditions concomitantly influence a diverse set of phenotypes, the majority of which are implicated in age-related disorders, raises the possibility that such developmental conditions may additionally exert effects via a common underlying mechanism that involves cellular/molecular ageing-related processes. In this context, we submit that telomere biology represents a process of particular interest in humans because, firstly, this system represents among the most salient antecedent cellular phenotypes for common age-related disorders; secondly, its initial (newborn) setting appears to be particularly important for its long-term effects; and thirdly, its initial setting appears to be plastic and under developmental regulation. We propose that the effects of suboptimal intrauterine conditions on the initial setting of telomere length and telomerase expression/activity capacity may be mediated by the programming actions of stress-related maternal-placental-fetal oxidative, immune, endocrine and metabolic pathways in a manner that may ultimately accelerate cellular dysfunction, ageing and disease susceptibility over the lifespan. This perspectives paper provides an overview of each of the elements underlying this hypothesis, with an emphasis on recent developments, findings and future directions.This article is part of the theme issue 'Understanding diversity in telomere dynamics'. © 2018 The Author(s).
Front acceleration by dynamic selection in Fisher population waves
NASA Astrophysics Data System (ADS)
Bénichou, O.; Calvez, V.; Meunier, N.; Voituriez, R.
2012-10-01
We introduce a minimal model of population range expansion in which the phenotypes of individuals present no selective advantage and differ only in their diffusion rate. We show that such neutral phenotypic variability (i.e., that does not modify the growth rate) alone can yield phenotype segregation at the front edge, even in absence of genetic noise, and significantly impact the dynamical properties of the expansion wave. We present an exact asymptotic traveling wave solution and show analytically that phenotype segregation accelerates the front propagation. The results are compatible with field observations such as invasions of cane toads in Australia or bush crickets in Britain.
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M
2012-03-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.
Alive and Well? Exploring Disease by Studying Lifespan
Brett, Jamie O.; Rando, Thomas A.
2014-01-01
A common concept in aging research is that chronological age is the most important risk factor for the development of diverse diseases, including degenerative diseases and cancers. The mechanistic link between the aging process and disease pathogenesis, however, is still enigmatic. Nevertheless, measurement of lifespan, as a surrogate for biological aging, remains among the most frequently used assays in aging research. In this review, we examine the connection between “normal aging” and age-related disease from the point of view that they form a continuum of aging phenotypes. This notion of common mechanisms gives rise to the converse postulate that diseases may be risk factors for accelerated aging. We explore the advantages and caveats associated with using lifespan as a metric to understand cell and tissue aging, focusing on the elucidation of molecular mechanisms and potential therapies for age-related diseases. PMID:25005743
Grubb, Stephen C.; Maddatu, Terry P.; Bult, Carol J.; Bogue, Molly A.
2009-01-01
The Mouse Phenome Database (MPD; http://www.jax.org/phenome) is an open source, web-based repository of phenotypic and genotypic data on commonly used and genetically diverse inbred strains of mice and their derivatives. MPD is also a facility for query, analysis and in silico hypothesis testing. Currently MPD contains about 1400 phenotypic measurements contributed by research teams worldwide, including phenotypes relevant to human health such as cancer susceptibility, aging, obesity, susceptibility to infectious diseases, atherosclerosis, blood disorders and neurosensory disorders. Electronic access to centralized strain data enables investigators to select optimal strains for many systems-based research applications, including physiological studies, drug and toxicology testing, modeling disease processes and complex trait analysis. The ability to select strains for specific research applications by accessing existing phenotype data can bypass the need to (re)characterize strains, precluding major investments of time and resources. This functionality, in turn, accelerates research and leverages existing community resources. Since our last NAR reporting in 2007, MPD has added more community-contributed data covering more phenotypic domains and implemented several new tools and features, including a new interactive Tool Demo available through the MPD homepage (quick link: http://phenome.jax.org/phenome/trytools). PMID:18987003
Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice.
Razzaque, Mohammed S; Lanske, Beate
2006-07-01
The essential role of low levels of vitamin D during aging is well documented. However, possible effects of high levels of vitamin D on the aging process are not yet clear. Recent in vivo genetic-manipulation studies have shown increased serum level of vitamin D and altered mineral-ion homeostasis in mice that lack either fibroblast growth factor 23 (Fgf23) or klotho (Kl) genes. These mice develop identical phenotypes consistent with premature aging. Elimination or reduction of vitamin-D activity from Fgf23 and Kl mutant mice, either by dietary restriction or genetic manipulation could rescue premature aging-like features and ectopic calcifications, resulting in prolonged survival of both mutants. Such in vivo experimental studies indicated that excessive vitamin-D activity and altered mineral-ion homeostasis could accelerate the aging process.
GUSTAFSON, D.R.; SHI, Q.; THURN, M.; HOLMAN, S.A.; MINKOFF, H.; COHEN, M.; PLANKEY, M.W.; HAVLIK, R.; SHARMA, A.; GANGE, S.; GANDHI, M.; MILAM, J.; HOOVER, D.
2016-01-01
Background Biological similarities are noted between aging and HIV infection. Middle-aged adults with HIV infection may present as elderly due to accelerated aging or having more severe aging phenotypes occurring at younger ages. Objectives We explored age-adjusted prevalence of frailty, a geriatric condition, among HIV+ and at risk HIV− women. Design Cross-sectional. Setting The Women's Interagency HIV Study (WIHS). Participants 2028 middle-aged (average age 39 years) female participants (1449 HIV+; 579 HIV−). Measurements The Fried Frailty Index (FFI), HIV status variables, and constellations of variables representing Demographic/health behaviors and Aging-related chronic diseases. Associations between the FFI and other variables were estimated, followed by stepwise regression models. Results Overall frailty prevalence was 15.2% (HIV+, 17%; HIV−, 10%). A multivariable model suggested that HIV infection with CD4 count<200; age>40 years; current or former smoking; income ≤$12,000; moderate vs low fibrinogen-4 (FIB-4) levels; and moderate vs high estimated glomerular filtration rate (eGFR) were positively associated with frailty. Low or moderate drinking was protective. Conclusions Frailty is a multidimensional aging phenotype observed in mid-life among women with HIV infection. Prevalence of frailty in this sample of HIV-infected women exceeds that for usual elderly populations. This highlights the need for geriatricians and gerontologists to interact with younger `at risk' populations, and assists in the formulation of best recommendations for frailty interventions to prevent early aging, excess morbidities and early death. PMID:26980368
Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders
Nordahl, Christine Wu; Lange, Nicholas; Li, Deana D.; Barnett, Lou Ann; Lee, Aaron; Buonocore, Michael H.; Simon, Tony J.; Rogers, Sally; Ozonoff, Sally; Amaral, David G.
2011-01-01
Autism is a heterogeneous disorder with multiple behavioral and biological phenotypes. Accelerated brain growth during early childhood is a well-established biological feature of autism. Onset pattern, i.e., early onset or regressive, is an intensely studied behavioral phenotype of autism. There is currently little known, however, about whether, or how, onset status maps onto the abnormal brain growth. We examined the relationship between total brain volume and onset status in a large sample of 2- to 4-y-old boys and girls with autism spectrum disorder (ASD) [n = 53, no regression (nREG); n = 61, regression (REG)] and a comparison group of age-matched typically developing controls (n = 66). We also examined retrospective head circumference measurements from birth through 18 mo of age. We found that abnormal brain enlargement was most commonly found in boys with regressive autism. Brain size in boys without regression did not differ from controls. Retrospective head circumference measurements indicate that head circumference in boys with regressive autism is normal at birth but diverges from the other groups around 4–6 mo of age. There were no differences in brain size in girls with autism (n = 22, ASD; n = 24, controls). These results suggest that there may be distinct neural phenotypes associated with different onsets of autism. For boys with regressive autism, divergence in brain size occurs well before loss of skills is commonly reported. Thus, rapid head growth may be a risk factor for regressive autism. PMID:22123952
The fetal programming of telomere biology hypothesis: an update
Entringer, Sonja; Buss, Claudia; Wadhwa, Pathik D.
2018-01-01
Research on mechanisms underlying fetal programming of health and disease risk has focused primarily on processes that are specific to cell types, organs or phenotypes of interest. However, the observation that developmental conditions concomitantly influence a diverse set of phenotypes, the majority of which are implicated in age-related disorders, raises the possibility that such developmental conditions may additionally exert effects via a common underlying mechanism that involves cellular/molecular ageing–related processes. In this context, we submit that telomere biology represents a process of particular interest in humans because, firstly, this system represents among the most salient antecedent cellular phenotypes for common age-related disorders; secondly, its initial (newborn) setting appears to be particularly important for its long-term effects; and thirdly, its initial setting appears to be plastic and under developmental regulation. We propose that the effects of suboptimal intrauterine conditions on the initial setting of telomere length and telomerase expression/activity capacity may be mediated by the programming actions of stress-related maternal–placental–fetal oxidative, immune, endocrine and metabolic pathways in a manner that may ultimately accelerate cellular dysfunction, ageing and disease susceptibility over the lifespan. This perspectives paper provides an overview of each of the elements underlying this hypothesis, with an emphasis on recent developments, findings and future directions. This article is part of the theme issue ‘Understanding diversity in telomere dynamics’. PMID:29335381
SIRT1, 2, 3 protect mouse oocytes from postovulatory aging.
Zhang, Teng; Zhou, Yang; Li, Li; Wang, Hong-Hui; Ma, Xue-Shan; Qian, Wei-Ping; Shen, Wei; Schatten, Heide; Sun, Qing-Yuan
2016-04-01
The quality of metaphase II oocytes will undergo a time-dependent deterioration following ovulation as the result of the oocyte aging process. In this study, we determined that the expression of sirtuin family members (SIRT1, 2, 3) was dramatically reduced in mouse oocytes aged in vivo or in vitro. Increased intracellular ROS was observed when SIRT1, 2, 3 activity was inhibited. Increased frequency of spindle defects and disturbed distribution of mitochondria were also observed in MII oocytes aged in vitro after treatment with Nicotinamide (NAM), indicating that inhibition of SIRT1, 2, 3 may accelerate postovulatory oocyte aging. Interestingly, when MII oocytes were exposed to caffeine, the decline of SIRT1, 2, 3 mRNA levels was delayed and the aging-associated defective phenotypes could be improved. The results suggest that the SIRT1, 2, 3 pathway may play a potential protective role against postovulatory oocyte aging by controlling ROS generation.
Nonlinear ghost waves accelerate the progression of high-grade brain tumors
NASA Astrophysics Data System (ADS)
Pardo, Rosa; Martínez-González, Alicia; Pérez-García, Víctor M.
2016-10-01
We study a reduced continuous model describing the evolution of high grade gliomas in response to hypoxic events through the interplay of different cellular phenotypes. We show that hypoxic events, even when sporadic and/or limited in space, may have a crucial role on the acceleration of high grade gliomas growth. Our modeling approach is based on two cellular phenotypes. One of them is more migratory and a second one is more proliferative. Transitions between both phenotypes are driven by the local oxygen values, assumed in this simple model to be uniform. Surprisingly, even very localized in time hypoxia events leading to transient migratory populations have the potential to accelerate the tumor's invasion speed up to speeds close to those of the migratory phenotype. The high invasion speed persists for times much longer than the lifetime of the hypoxic event. Moreover, the phenomenon is observed both when the migratory cells form a persistent wave of cells located on the invasion front and when they form a evanescent "ghost" wave disappearing after a short time by decay to the more proliferative phenotype. Our findings are obtained through numerical simulations of the model equations both in 1D and higher dimensional scenarios. We also provide a deeper mathematical analysis of some aspects of the problem such as the conditions for the existence of persistent waves of cells with a more migratory phenotype.
Lee, Who-Seung; Monaghan, Pat; Metcalfe, Neil B
2016-04-01
Fluctuations in early developmental conditions can cause changes in growth trajectories that subsequently affect the adult phenotype. Here, we investigated whether compensatory growth has long-term consequences for patterns of senescence.Using three-spined sticklebacks ( Gasterosteus aculeatus ), we show that a brief period of dietary manipulation in early life affected skeletal growth rate not only during the manipulation itself, but also during a subsequent compensatory phase when fish caught up in size with controls.However, this growth acceleration influenced swimming endurance and its decline over the course of the breeding season, with a faster decline in fish that had undergone faster growth compensation.Similarly, accelerated growth led to a more pronounced reduction in the breeding period (as indicated by the duration of sexual ornamentation) over the following two breeding seasons, suggesting faster reproductive senescence. Parallel experiments showed a heightened effect of accelerated growth on these age-related declines in performance if the fish were under greater time stress to complete their compensation prior to the breeding season.Compensatory growth led to a reduction in median life span of 12% compared to steadily growing controls. While life span was independent of the eventual adult size attained, it was negatively correlated with the age-related decline in swimming endurance and sexual ornamentation.These results, complementary to those found when growth trajectories were altered by temperature rather than dietary manipulations, show that the costs of accelerated growth can last well beyond the time over which growth rates differ and are affected by the time available until an approaching life-history event such as reproduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pashtan, Itai M.; Recht, Abram; Ancukiewicz, Marek
Purpose: External beam accelerated partial breast irradiation (APBI) is an increasingly popular technique for treatment of patients with early stage breast cancer following breast-conserving surgery. Here we present 5-year results of a prospective trial. Methods and Materials: From October 2003 through November 2005, 98 evaluable patients with stage I breast cancer were enrolled in the first dose step (32 Gy delivered in 8 twice-daily fractions) of a prospective, multi-institutional, dose escalation clinical trial of 3-dimensional conformal external beam APBI (3D-APBI). Median age was 61 years; median tumor size was 0.8 cm; 89% of tumors were estrogen receptor positive; 10% hadmore » a triple-negative phenotype; and 1% had a HER-2-positive subtype. Median follow-up was 71 months (range, 2-88 months; interquartile range, 64-75 months). Results: Five patients developed ipsilateral breast tumor recurrence (IBTR), for a 5-year actuarial IBTR rate of 5% (95% confidence interval [CI], 1%-10%). Three of these cases occurred in patients with triple-negative disease and 2 in non-triple-negative patients, for 5-year actuarial IBTR rates of 33% (95% CI, 0%-57%) and 2% (95% CI, 0%-6%; P<.0001), respectively. On multivariable analysis, triple-negative phenotype was the only predictor of IBTR, with borderline statistical significance after adjusting for tumor grade (P=.0537). Conclusions: Overall outcomes were excellent, particularly for patients with estrogen receptor-positive disease. Patients in this study with triple-negative breast cancer had a significantly higher IBTR rate than patients with other receptor phenotypes when treated with 3D-APBI. Larger, prospective 3D-APBI clinical trials should continue to evaluate the effect of hormone receptor phenotype on IBTR rates.« less
Pashtan, Itai M; Recht, Abram; Ancukiewicz, Marek; Brachtel, Elena; Abi-Raad, Rita F; D'Alessandro, Helen A; Levy, Antonin; Wo, Jennifer Y; Hirsch, Ariel E; Kachnic, Lisa A; Goldberg, Saveli; Specht, Michelle; Gadd, Michelle; Smith, Barbara L; Powell, Simon N; Taghian, Alphonse G
2012-11-01
External beam accelerated partial breast irradiation (APBI) is an increasingly popular technique for treatment of patients with early stage breast cancer following breast-conserving surgery. Here we present 5-year results of a prospective trial. From October 2003 through November 2005, 98 evaluable patients with stage I breast cancer were enrolled in the first dose step (32 Gy delivered in 8 twice-daily fractions) of a prospective, multi-institutional, dose escalation clinical trial of 3-dimensional conformal external beam APBI (3D-APBI). Median age was 61 years; median tumor size was 0.8 cm; 89% of tumors were estrogen receptor positive; 10% had a triple-negative phenotype; and 1% had a HER-2-positive subtype. Median follow-up was 71 months (range, 2-88 months; interquartile range, 64-75 months). Five patients developed ipsilateral breast tumor recurrence (IBTR), for a 5-year actuarial IBTR rate of 5% (95% confidence interval [CI], 1%-10%). Three of these cases occurred in patients with triple-negative disease and 2 in non-triple-negative patients, for 5-year actuarial IBTR rates of 33% (95% CI, 0%-57%) and 2% (95% CI, 0%-6%; P<.0001), respectively. On multivariable analysis, triple-negative phenotype was the only predictor of IBTR, with borderline statistical significance after adjusting for tumor grade (P=.0537). Overall outcomes were excellent, particularly for patients with estrogen receptor-positive disease. Patients in this study with triple-negative breast cancer had a significantly higher IBTR rate than patients with other receptor phenotypes when treated with 3D-APBI. Larger, prospective 3D-APBI clinical trials should continue to evaluate the effect of hormone receptor phenotype on IBTR rates. Copyright © 2012 Elsevier Inc. All rights reserved.
Mutational robustness accelerates the origin of novel RNA phenotypes through phenotypic plasticity.
Wagner, Andreas
2014-02-18
Novel phenotypes can originate either through mutations in existing genotypes or through phenotypic plasticity, the ability of one genotype to form multiple phenotypes. From molecules to organisms, plasticity is a ubiquitous feature of life, and a potential source of exaptations, adaptive traits that originated for nonadaptive reasons. Another ubiquitous feature is robustness to mutations, although it is unknown whether such robustness helps or hinders the origin of new phenotypes through plasticity. RNA is ideal to address this question, because it shows extensive plasticity in its secondary structure phenotypes, a consequence of their continual folding and unfolding, and these phenotypes have important biological functions. Moreover, RNA is to some extent robust to mutations. This robustness structures RNA genotype space into myriad connected networks of genotypes with the same phenotype, and it influences the dynamics of evolving populations on a genotype network. In this study I show that both effects help accelerate the exploration of novel phenotypes through plasticity. My observations are based on many RNA molecules sampled at random from RNA sequence space, and on 30 biological RNA molecules. They are thus not only a generic feature of RNA sequence space but are relevant for the molecular evolution of biological RNA. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Adiposity-Related Biochemical Phenotype in Senescence-Accelerated Mouse Prone 6 (SAMP6)
Niimi, Kimie; Takahashi, Eiki; Itakura, Chitoshi
2009-01-01
Senescence-accelerated mouse prone 6 (SAMP6) is a model of senile osteoporosis. From 10 to 22 wk of age, SAMP6 mice were heavier than age-matched AKR/J and SAMR1 mice. Body mass indices of 10- and 25-wk-old SAMP6 mice were higher than those of age-matched AKR/J and SAMR1 mice, indicating obesity in the SAMP6 animals. We compared the blood biochemical values among SAMP6, SAMR1, and AKR/J mice to assess whether the SAMP6 strain has abnormal obesity-related parameters. Plasma glucose, triglyceride, insulin, and leptin levels were higher in 10-wk-old SAMP6 mice than in age-matched SAMR1 and AKR/J mice, whereas plasma glucagon and adiponectin levels in 25-wk-old SAMP6 were lower compared with those in age-matched SAMR1 and AKR/J. Total cholesterol levels in SAMR1 and SAMP6 mice at 10 and 25 wk of age were higher than those in AKR/J mice. Hepatic lipid levels were higher in 10- and 25-wk-old SAMP6 mice compared with age-matched AKR/J and SAMR1 animals. These results indicate that SAMP6 mice exhibit obesity and hyperlipidemia, suggesting that the SAMP6 strain is a potential tool for the study of hyperlipidemia. PMID:19887026
Konsolaki, Eleni; Skaliora, Irini
2015-08-01
The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis
Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.
2018-01-01
Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372
The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry
Nooner, Kate Brody; Colcombe, Stanley J.; Tobe, Russell H.; Mennes, Maarten; Benedict, Melissa M.; Moreno, Alexis L.; Panek, Laura J.; Brown, Shaquanna; Zavitz, Stephen T.; Li, Qingyang; Sikka, Sharad; Gutman, David; Bangaru, Saroja; Schlachter, Rochelle Tziona; Kamiel, Stephanie M.; Anwar, Ayesha R.; Hinz, Caitlin M.; Kaplan, Michelle S.; Rachlin, Anna B.; Adelsberg, Samantha; Cheung, Brian; Khanuja, Ranjit; Yan, Chaogan; Craddock, Cameron C.; Calhoun, Vincent; Courtney, William; King, Margaret; Wood, Dylan; Cox, Christine L.; Kelly, A. M. Clare; Di Martino, Adriana; Petkova, Eva; Reiss, Philip T.; Duan, Nancy; Thomsen, Dawn; Biswal, Bharat; Coffey, Barbara; Hoptman, Matthew J.; Javitt, Daniel C.; Pomara, Nunzio; Sidtis, John J.; Koplewicz, Harold S.; Castellanos, Francisco Xavier; Leventhal, Bennett L.; Milham, Michael P.
2012-01-01
The National Institute of Mental Health strategic plan for advancing psychiatric neuroscience calls for an acceleration of discovery and the delineation of developmental trajectories for risk and resilience across the lifespan. To attain these objectives, sufficiently powered datasets with broad and deep phenotypic characterization, state-of-the-art neuroimaging, and genetic samples must be generated and made openly available to the scientific community. The enhanced Nathan Kline Institute-Rockland Sample (NKI-RS) is a response to this need. NKI-RS is an ongoing, institutionally centered endeavor aimed at creating a large-scale (N > 1000), deeply phenotyped, community-ascertained, lifespan sample (ages 6–85 years old) with advanced neuroimaging and genetics. These data will be publically shared, openly, and prospectively (i.e., on a weekly basis). Herein, we describe the conceptual basis of the NKI-RS, including study design, sampling considerations, and steps to synchronize phenotypic and neuroimaging assessment. Additionally, we describe our process for sharing the data with the scientific community while protecting participant confidentiality, maintaining an adequate database, and certifying data integrity. The pilot phase of the NKI-RS, including challenges in recruiting, characterizing, imaging, and sharing data, is discussed while also explaining how this experience informed the final design of the enhanced NKI-RS. It is our hope that familiarity with the conceptual underpinnings of the enhanced NKI-RS will facilitate harmonization with future data collection efforts aimed at advancing psychiatric neuroscience and nosology. PMID:23087608
Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong
2016-01-01
Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. PMID:27401230
Gkourogianni, Alexandra; Andrew, Melissa; Tyzinski, Leah; Crocker, Melissa; Douglas, Jessica; Dunbar, Nancy; Fairchild, Jan; Funari, Mariana F. A.; Heath, Karen E.; Jorge, Alexander A. L.; Kurtzman, Tracey; LaFranchi, Stephen; Lalani, Seema; Lebl, Jan; Lin, Yuezhen; Los, Evan; Newbern, Dorothee; Nowak, Catherine; Olson, Micah; Popovic, Jadranka; Průhová, Štěpánka; Elblova, Lenka; Quintos, Jose Bernardo; Segerlund, Emma; Sentchordi, Lucia; Shinawi, Marwan; Stattin, Eva-Lena; Swartz, Jonathan; del Angel, Ariadna González; Cuéllar, Sinhué Diaz; Hosono, Hidekazu; Sanchez-Lara, Pedro A.; Hwa, Vivian; Baron, Jeffrey; Dauber, Andrew
2017-01-01
Context: Heterozygous mutations in the aggrecan gene (ACAN) cause autosomal dominant short stature with accelerated skeletal maturation. Objective: We sought to characterize the phenotypic spectrum and response to growth-promoting therapies. Patients and Methods: One hundred three individuals (57 females, 46 males) from 20 families with autosomal dominant short stature and heterozygous ACAN mutations were identified and confirmed using whole-exome sequencing, targeted next-generation sequencing, and/or Sanger sequencing. Clinical information was collected from the medical records. Results: Identified ACAN variants showed perfect cosegregation with phenotype. Adult individuals had mildly disproportionate short stature [median height, −2.8 standard deviation score (SDS); range, −5.9 to −0.9] and a history of early growth cessation. The condition was frequently associated with early-onset osteoarthritis (12 families) and intervertebral disc disease (9 families). No apparent genotype–phenotype correlation was found between the type of ACAN mutation and the presence of joint complaints. Childhood height was less affected (median height, −2.0 SDS; range, −4.2 to −0.6). Most children with ACAN mutations had advanced bone age (bone age − chronologic age; median, +1.3 years; range, +0.0 to +3.7 years). Nineteen individuals had received growth hormone therapy with some evidence of increased growth velocity. Conclusions: Heterozygous ACAN mutations result in a phenotypic spectrum ranging from mild and proportionate short stature to a mild skeletal dysplasia with disproportionate short stature and brachydactyly. Many affected individuals developed early-onset osteoarthritis and degenerative disc disease, suggesting dysfunction of the articular cartilage and intervertebral disc cartilage. Additional studies are needed to determine the optimal treatment strategy for these patients. PMID:27870580
NF-κB activation impairs somatic cell reprogramming in ageing.
Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos
2015-08-01
Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.
Fisetin Reduces the Impact of Aging on Behavior and Physiology in the Rapidly Aging SAMP8 Mouse.
Currais, Antonio; Farrokhi, Catherine; Dargusch, Richard; Armando, Aaron; Quehenberger, Oswald; Schubert, David; Maher, Pamela
2018-03-02
Alzheimer's disease (AD) is rarely addressed in the context of aging even though there is an overlap in pathology. We previously used a phenotypic screening platform based on old age-associated brain toxicities to identify the flavonol fisetin as a potential therapeutic for AD and other age-related neurodegenerative diseases. Based on earlier results with fisetin in transgenic AD mice, we hypothesized that fisetin would be effective against brain aging and cognitive dysfunction in rapidly aging senescence-accelerated prone 8 (SAMP8) mice, a model for sporadic AD and dementia. An integrative approach was used to correlate protein expression and metabolite levels in the brain with cognition. It was found that fisetin reduced cognitive deficits in old SAMP8 mice while restoring multiple markers associated with impaired synaptic function, stress, and inflammation. These results provide further evidence for the potential benefits of fisetin for the treatment of age-related neurodegenerative diseases.
Accelerating root system phenotyping of seedlings through a computer-assisted processing pipeline.
Dupuy, Lionel X; Wright, Gladys; Thompson, Jacqueline A; Taylor, Anna; Dekeyser, Sebastien; White, Christopher P; Thomas, William T B; Nightingale, Mark; Hammond, John P; Graham, Neil S; Thomas, Catherine L; Broadley, Martin R; White, Philip J
2017-01-01
There are numerous systems and techniques to measure the growth of plant roots. However, phenotyping large numbers of plant roots for breeding and genetic analyses remains challenging. One major difficulty is to achieve high throughput and resolution at a reasonable cost per plant sample. Here we describe a cost-effective root phenotyping pipeline, on which we perform time and accuracy benchmarking to identify bottlenecks in such pipelines and strategies for their acceleration. Our root phenotyping pipeline was assembled with custom software and low cost material and equipment. Results show that sample preparation and handling of samples during screening are the most time consuming task in root phenotyping. Algorithms can be used to speed up the extraction of root traits from image data, but when applied to large numbers of images, there is a trade-off between time of processing the data and errors contained in the database. Scaling-up root phenotyping to large numbers of genotypes will require not only automation of sample preparation and sample handling, but also efficient algorithms for error detection for more reliable replacement of manual interventions.
Evolution on neutral networks accelerates the ticking rate of the molecular clock.
Manrubia, Susanna; Cuesta, José A
2015-01-06
Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive 'phenotypic entrapment' entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Evolution on neutral networks accelerates the ticking rate of the molecular clock
Manrubia, Susanna; Cuesta, José A.
2015-01-01
Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive ‘phenotypic entrapment’ entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives. PMID:25392402
Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats.
Kolosova, Nataliya G; Muraleva, Natalia A; Zhdankina, Anna A; Stefanova, Natalia A; Fursova, Anzhela Z; Blagosklonny, Mikhail V
2012-08-01
Age-related macular degeneration, a neurodegenerative and vascular retinal disease, is the most common cause of blindness in the Western countries. Evidence accumulates that target of rapamycin is involved in aging and age-related diseases, including neurodegeneration. The target of rapamycin inhibitor, rapamycin, suppresses the senescent cell phenotype and extends life span in diverse species, including mice. Rapamycin decreases senescence-associated phenotypes in retinal pigment epithelial cells in culture. Herein, we investigated the effect of rapamycin on spontaneous retinopathy in senescence-accelerated OXYS rats, an animal model of age-related macular degeneration. Rats were treated with either 0.1 or 0.5 mg/kg rapamycin, which was given orally as a food mixture. In a dose-dependent manner, rapamycin decreased the incidence and severity of retinopathy. Rapamycin improved some (but not all) histological abnormalities associated with retinopathy. Thus, in retinal pigment epithelial cell layers, rapamycin decreased nuclei heterogeneity and normalized intervals between nuclei. In photoreceptor cells, associated neurons, and radial glial cells, rapamycin prevented nuclear and cellular pyknosis. More important, rapamycin prevented destruction of ganglionar neurons in the retina. Rapamycin did not exert any adverse effects on the retina in control disease-free Wistar rats. Taken together, our data suggest the therapeutic potential of rapamycin for treatment and prevention of retinopathy. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Motor impairment: a new ethanol withdrawal phenotype in mice
Philibin, Scott D.; Cameron, Andy J.; Metten, Pamela; Crabbe, John C.
2015-01-01
Alcoholism is a complex disorder with genetic and environmental risk factors. The presence of withdrawal symptoms is one criterion for alcohol dependence. Genetic animal models have followed a reductionist approach by quantifying various effects of ethanol withdrawal separately. Different ethanol withdrawal symptoms may have distinct genetic etiologies, and therefore differentiating distinct neurobiological mechanisms related to separate signs of withdrawal would increase our understanding of various aspects of the complex phenotype. This study establishes motor incoordination as a new phenotype of alcohol withdrawal in mice. Mice were made physically dependent on ethanol by exposure to ethanol vapor for 72 h. The effects of ethanol withdrawal in mice from different genetic backgrounds were measured on the accelerating rotarod, a simple motor task. Ethanol withdrawal disrupted accelerating rotarod behavior in mice. The disruptive effects of withdrawal suggest a performance rather than a learning deficit. Inbred strain comparisons suggest genetic differences in magnitude of this withdrawal phenotype. The withdrawal-induced deficits were not correlated with the selection response difference in handling convulsion severity in selectively bred Withdrawal Seizure-Prone and Withdrawal Seizure-Resistant lines. The accelerating rotarod seems to be a simple behavioral measure of ethanol withdrawal that is suitable for comparing genotypes. PMID:18690115
Hyper telomere recombination accelerates replicative senescence and may promote premature aging
Hagelstrom, R. Tanner; Blagoev, Krastan B.; Niedernhofer, Laura J.; Goodwin, Edwin H.; Bailey, Susan M.
2010-01-01
Werner syndrome and Bloom syndrome result from defects in the RecQ helicases Werner (WRN) and Bloom (BLM), respectively, and display premature aging phenotypes. Similarly, XFE progeroid syndrome results from defects in the ERCC1-XPF DNA repair endonuclease. To gain insight into the origin of cellular senescence and human aging, we analyzed the dependence of sister chromatid exchange (SCE) frequencies on location [i.e., genomic (G-SCE) vs. telomeric (T-SCE) DNA] in primary human fibroblasts deficient in WRN, BLM, or ERCC1-XPF. Consistent with our other studies, we found evidence of elevated T-SCE in telomerase-negative but not telomerase-positive backgrounds. In telomerase-negative WRN-deficient cells, T-SCE—but not G-SCE—frequencies were significantly increased compared with controls. In contrast, SCE frequencies were significantly elevated in BLM-deficient cells irrespective of genome location. In ERCC1-XPF-deficient cells, neither T- nor G-SCE frequencies differed from controls. A theoretical model was developed that allowed an in silico investigation into the cellular consequences of increased T-SCE frequency. The model predicts that in cells with increased T-SCE, the onset of replicative senescence is dramatically accelerated even though the average rate of telomere loss has not changed. Premature cellular senescence may act as a powerful tumor-suppressor mechanism in telomerase-deficient cells with mutations that cause T-SCE levels to rise. Furthermore, T-SCE-driven premature cellular senescence may be a factor contributing to accelerated aging in Werner and Bloom syndromes, but not XFE progeroid syndrome. PMID:20798040
Holcomb, Valerie B; von Lindern, Marieke; Jong, Willeke M. C; Zeeuw, Chris I. De; Suh, Yousin; Hasty, Paul; Hoeijmakers, Jan H. J; van der Horst, Gijsbertus T. J; Mitchell, James R
2006-01-01
How congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a likely contributing mechanism. Contrary to expectations, neither accelerated senescence nor acute oxidative stress hypersensitivity was detected in primary fibroblast or erythroblast cultures from multiple progeroid mouse models for defects in the nucleotide excision DNA repair pathway, which share premature aging features including postnatal growth retardation, cerebellar ataxia, and death before weaning. Instead, we report a prominent phenotypic overlap with long-lived dwarfism and calorie restriction during postnatal development (2 wk of age), including reduced size, reduced body temperature, hypoglycemia, and perturbation of the growth hormone/insulin-like growth factor 1 neuroendocrine axis. These symptoms were also present at 2 wk of age in a novel progeroid nucleotide excision repair-deficient mouse model (XPDG602D/R722W/XPA−/−) that survived weaning with high penetrance. However, despite persistent cachectic dwarfism, blood glucose and serum insulin-like growth factor 1 levels returned to normal by 10 wk, with hypoglycemia reappearing near premature death at 5 mo of age. These data strongly suggest changes in energy metabolism as part of an adaptive response during the stressful period of postnatal growth. Interestingly, a similar perturbation of the postnatal growth axis was not detected in another progeroid mouse model, the double-strand DNA break repair deficient Ku80 −/− mouse. Specific (but not all) types of genome instability may thus engage a conserved response to stress that evolved to cope with environmental pressures such as food shortage. PMID:17173483
van de Ven, Marieke; Andressoo, Jaan-Olle; Holcomb, Valerie B; von Lindern, Marieke; Jong, Willeke M C; De Zeeuw, Chris I; Suh, Yousin; Hasty, Paul; Hoeijmakers, Jan H J; van der Horst, Gijsbertus T J; Mitchell, James R
2006-12-15
How congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a likely contributing mechanism. Contrary to expectations, neither accelerated senescence nor acute oxidative stress hypersensitivity was detected in primary fibroblast or erythroblast cultures from multiple progeroid mouse models for defects in the nucleotide excision DNA repair pathway, which share premature aging features including postnatal growth retardation, cerebellar ataxia, and death before weaning. Instead, we report a prominent phenotypic overlap with long-lived dwarfism and calorie restriction during postnatal development (2 wk of age), including reduced size, reduced body temperature, hypoglycemia, and perturbation of the growth hormone/insulin-like growth factor 1 neuroendocrine axis. These symptoms were also present at 2 wk of age in a novel progeroid nucleotide excision repair-deficient mouse model (XPD(G602D/R722W)/XPA(-/-)) that survived weaning with high penetrance. However, despite persistent cachectic dwarfism, blood glucose and serum insulin-like growth factor 1 levels returned to normal by 10 wk, with hypoglycemia reappearing near premature death at 5 mo of age. These data strongly suggest changes in energy metabolism as part of an adaptive response during the stressful period of postnatal growth. Interestingly, a similar perturbation of the postnatal growth axis was not detected in another progeroid mouse model, the double-strand DNA break repair deficient Ku80(-/-) mouse. Specific (but not all) types of genome instability may thus engage a conserved response to stress that evolved to cope with environmental pressures such as food shortage.
Age-related increase in Wnt inhibitor causes a senescence-like phenotype in human cardiac stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Tamami; Hosoyama, Tohru; Regenerative Medicine Institute, Yamaguchi University Graduate School of Medicine
Aging of cardiac stem/progenitor cells (CSCs) impairs heart regeneration and leads to unsatisfactory outcomes of cell-based therapies. As the precise mechanisms underlying CSC aging remain unclear, the use of therapeutic strategies for elderly patients with heart failure is severely delayed. In this study, we used human cardiosphere-derived cells (CDCs), a subtype of CSC found in the postnatal heart, to identify secreted factor(s) associated with CSC aging. Human CDCs were isolated from heart failure patients of various ages (2–83 years old). Gene expression of key soluble factors was compared between CDCs derived from young and elderly patients. Among these factors, SFRP1,more » a gene encoding a Wnt antagonist, was significantly up-regulated in CDCs from elderly patients (≥65 years old). sFRP1 levels was increased significantly also in CDCs, whose senescent phenotype was induced by anti-cancer drug treatment. These results suggest the participation of sFRP1 in CSC aging. We show that the administration of recombinant sFRP1 induced cellular senescence in CDCs derived from young patients, as indicated by increased levels of markers such as p16, and a senescence-associated secretory phenotype. In addition, co-administration of recombinant sFRP1 could abrogate the accelerated CDC proliferation induced by Wnt3A. Taken together, our results suggest that canonical Wnt signaling and its antagonist, sFRP1, regulate proliferation of human CSCs. Furthermore, excess sFRP1 in elderly patients causes CSC aging. - Highlights: • Wnt signaling regulates proliferation of human cardiac stem cells. • Expression of sFRP1, which is a Wnt antagonist, is up-regulated in elderly patients with heart failure. • Expression of sFRP1 is increased in anti-cancer drug-induced senescent human cardiac stem cells. • sFRP1 causes cellular senescence of young patients-derived cardiac stem cells.« less
Le Maitre, Christine Lyn; Freemont, Anthony John; Hoyland, Judith Alison
2007-01-01
Current evidence implicates intervertebral disc degeneration as a major cause of low back pain, although its pathogenesis is poorly understood. Numerous characteristic features of disc degeneration mimic those seen during ageing but appear to occur at an accelerated rate. We hypothesised that this is due to accelerated cellular senescence, which causes fundamental changes in the ability of disc cells to maintain the intervertebral disc (IVD) matrix, thus leading to IVD degeneration. Cells isolated from non-degenerate and degenerate human tissue were assessed for mean telomere length, senescence-associated β-galactosidase (SA-β-gal), and replicative potential. Expression of P16INK4A (increased in cellular senescence) was also investigated in IVD tissue by means of immunohistochemistry. RNA from tissue and cultured cells was used for real-time polymerase chain reaction analysis for matrix metalloproteinase-13, ADAMTS 5 (a disintegrin and metalloprotease with thrombospondin motifs 5), and P16INK4A. Mean telomere length decreased with age in cells from non-degenerate tissue and also decreased with progressive stages of degeneration. In non-degenerate discs, there was an age-related increase in cellular expression of P16INK4A. Cells from degenerate discs (even from young patients) exhibited increased expression of P16INK4A, increased SA-β-gal staining, and a decrease in replicative potential. Importantly, there was a positive correlation between P16INK4A and matrix-degrading enzyme gene expression. Our findings indicate that disc cell senescence occurs in vivo and is accelerated in IVD degeneration. Furthermore, the senescent phenotype is associated with increased catabolism, implicating cellular senescence in the pathogenesis of IVD degeneration. PMID:17498290
Ferris, Elliott; Abegglen, Lisa M; Schiffman, Joshua D; Gregg, Christopher
2018-03-06
The identity of most functional elements in the mammalian genome and the phenotypes they impact are unclear. Here, we perform a genome-wide comparative analysis of patterns of accelerated evolution in species with highly distinctive traits to discover candidate functional elements for clinically important phenotypes. We identify accelerated regions (ARs) in the elephant, hibernating bat, orca, dolphin, naked mole rat, and thirteen-lined ground squirrel lineages in mammalian conserved regions, uncovering ∼33,000 elements that bind hundreds of different regulatory proteins in humans and mice. ARs in the elephant, the largest land mammal, are uniquely enriched near elephant DNA damage response genes. The genomic hotspot for elephant ARs is the E3 ligase subunit of the Fanconi anemia complex, a master regulator of DNA repair. Additionally, ARs in the six species are associated with specific human clinical phenotypes that have apparent concordance with overt traits in each species. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
2018-01-01
ABSTRACT We describe results from a multicenter study evaluating the Accelerate Pheno system, a first of its kind diagnostic system that rapidly identifies common bloodstream pathogens from positive blood cultures within 90 min and determines bacterial phenotypic antimicrobial susceptibility testing (AST) results within ∼7 h. A combination of fresh clinical and seeded blood cultures were tested, and results from the Accelerate Pheno system were compared to Vitek 2 results for identification (ID) and broth microdilution or disk diffusion for AST. The Accelerate Pheno system accurately identified 14 common bacterial pathogens and two Candida spp. with sensitivities ranging from 94.6 to 100%. Of fresh positive blood cultures, 89% received a monomicrobial call with a positive predictive value of 97.3%. Six common Gram-positive cocci were evaluated for ID. Five were tested against eight antibiotics, two resistance phenotypes (methicillin-resistant Staphylococcus aureus and Staphylococcus spp. [MRSA/MRS]), and inducible clindamycin resistance (MLSb). From the 4,142 AST results, the overall essential agreement (EA) and categorical agreement (CA) were 97.6% and 97.9%, respectively. Overall very major error (VME), major error (ME), and minor error (mE) rates were 1.0%, 0.7%, and 1.3%, respectively. Eight species of Gram-negative rods were evaluated against 15 antibiotics. From the 6,331 AST results, overall EA and CA were 95.4% and 94.3%, respectively. Overall VME, ME, and mE rates were 0.5%, 0.9%, and 4.8%, respectively. The Accelerate Pheno system has the unique ability to identify and provide phenotypic MIC and categorical AST results in a few hours directly from positive blood culture bottles and support accurate antimicrobial adjustment. PMID:29305546
Leveraging Collaborative Filtering to Accelerate Rare Disease Diagnosis
Shen, Feichen; Liu, Sijia; Wang, Yanshan; Wang, Liwei; Afzal, Naveed; Liu, Hongfang
2017-01-01
In the USA, rare diseases are defined as those affecting fewer than 200,000 patients at any given time. Patients with rare diseases are frequently misdiagnosed or undiagnosed which may due to the lack of knowledge and experience of care providers. We hypothesize that patients’ phenotypic information available in electronic medical records (EMR) can be leveraged to accelerate disease diagnosis based on the intuition that providers need to document associated phenotypic information to support the diagnosis decision, especially for rare diseases. In this study, we proposed a collaborative filtering system enriched with natural language processing and semantic techniques to assist rare disease diagnosis based on phenotypic characterization. Specifically, we leveraged four similarity measurements with two neighborhood algorithms on 2010-2015 Mayo Clinic unstructured large patient cohort and evaluated different approaches. Preliminary results demonstrated that the use of collaborative filtering with phenotypic information is able to stratify patients with relatively similar rare diseases. PMID:29854225
Leveraging Collaborative Filtering to Accelerate Rare Disease Diagnosis.
Shen, Feichen; Liu, Sijia; Wang, Yanshan; Wang, Liwei; Afzal, Naveed; Liu, Hongfang
2017-01-01
In the USA, rare diseases are defined as those affecting fewer than 200,000 patients at any given time. Patients with rare diseases are frequently misdiagnosed or undiagnosed which may due to the lack of knowledge and experience of care providers. We hypothesize that patients' phenotypic information available in electronic medical records (EMR) can be leveraged to accelerate disease diagnosis based on the intuition that providers need to document associated phenotypic information to support the diagnosis decision, especially for rare diseases. In this study, we proposed a collaborative filtering system enriched with natural language processing and semantic techniques to assist rare disease diagnosis based on phenotypic characterization. Specifically, we leveraged four similarity measurements with two neighborhood algorithms on 2010-2015 Mayo Clinic unstructured large patient cohort and evaluated different approaches. Preliminary results demonstrated that the use of collaborative filtering with phenotypic information is able to stratify patients with relatively similar rare diseases.
Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong
2016-10-01
Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair.
Borgesius, Nils Z; de Waard, Monique C; van der Pluijm, Ingrid; Omrani, Azar; Zondag, Gerben C M; van der Horst, Gijsbertus T J; Melton, David W; Hoeijmakers, Jan H J; Jaarsma, Dick; Elgersma, Ype
2011-08-31
Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair. We show that these mice exhibit an age-dependent decrease in neuronal plasticity and progressive neuronal pathology, suggestive of neurodegenerative processes. A similar phenotype is observed in mice where the mutation is restricted to excitatory forebrain neurons. Moreover, these neuron-specific mutants develop a learning impairment. Together, these results suggest a causal relationship between unrepaired, accumulating DNA damage, and age-dependent cognitive decline and neurodegeneration. Hence, accumulated DNA damage could therefore be an important factor in the onset and progression of age-related cognitive decline and neurodegenerative diseases.
Issa, Abdul-Raouf; Seugnet, Laurent; Klarsfeld, André
2017-01-01
Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila. PMID:28072817
Lee, Wei-Hua; Higuchi, Hitoshi; Ikeda, Sakae; Macke, Erica L; Takimoto, Tetsuya; Pattnaik, Bikash R; Liu, Che; Chu, Li-Fang; Siepka, Sandra M; Krentz, Kathleen J; Rubinstein, C Dustin; Kalejta, Robert F; Thomson, James A; Mullins, Robert F; Takahashi, Joseph S; Pinto, Lawrence H; Ikeda, Akihiro
2016-01-01
While the aging process is central to the pathogenesis of age-dependent diseases, it is poorly understood at the molecular level. We identified a mouse mutant with accelerated aging in the retina as well as pathologies observed in age-dependent retinal diseases, suggesting that the responsible gene regulates retinal aging, and its impairment results in age-dependent disease. We determined that a mutation in the transmembrane 135 (Tmem135) is responsible for these phenotypes. We observed localization of TMEM135 on mitochondria, and imbalance of mitochondrial fission and fusion in mutant Tmem135 as well as Tmem135 overexpressing cells, indicating that TMEM135 is involved in the regulation of mitochondrial dynamics. Additionally, mutant retina showed higher sensitivity to oxidative stress. These results suggest that the regulation of mitochondrial dynamics through TMEM135 is critical for protection from environmental stress and controlling the progression of retinal aging. Our study identified TMEM135 as a critical link between aging and age-dependent diseases. DOI: http://dx.doi.org/10.7554/eLife.19264.001 PMID:27863209
Pop, Viorela; Sorensen, Dane W; Kamper, Joel E; Ajao, David O; Murphy, M Paul; Head, Elizabeth; Hartman, Richard E; Badaut, Jérôme
2013-02-01
Clinical studies suggest that traumatic brain injury (TBI) hastens cognitive decline and development of neuropathology resembling brain aging. Blood-brain barrier (BBB) disruption following TBI may contribute to the aging process by deregulating substance exchange between the brain and blood. We evaluated the effect of juvenile TBI (jTBI) on these processes by examining long-term alterations of BBB proteins, β-amyloid (Aβ) neuropathology, and cognitive changes. A controlled cortical impact was delivered to the parietal cortex of male rats at postnatal day 17, with behavioral studies and brain tissue evaluation at 60 days post-injury (dpi). Immunoglobulin G extravasation was unchanged, and jTBI animals had higher levels of tight-junction protein claudin 5 versus shams, suggesting the absence of BBB disruption. However, decreased P-glycoprotein (P-gp) on cortical blood vessels indicates modifications of BBB properties. In parallel, we observed higher levels of endogenous rodent Aβ in several brain regions of the jTBI group versus shams. In addition at 60 dpi, jTBI animals displayed systematic search strategies rather than relying on spatial memory during the water maze. Together, these alterations to the BBB phenotype after jTBI may contribute to the accumulation of toxic products, which in turn may induce cognitive differences and ultimately accelerate brain aging.
Petkau, T L; Hill, A; Leavitt, B R
2016-02-19
Loss-of-function mutations in the progranulin gene (GRN) are a common cause of familial frontotemporal lobar degeneration (FTLD). A high degree of heterogeneity in the age-of-onset, duration of disease, and clinical presentation of FTLD, even among families carrying the same GRN mutation, suggests that additional modifying genes may be important to pathogenesis. Progranulin-knockout mice display subtle behavioral abnormalities and progressive neuropathological changes, as well as altered dendritic morphology and synaptic deficits in the hippocampus. In this study we evaluated multiple neuropathological endpoints in aged progranulin knockout mice and their wild-type littermates on two different genetic backgrounds: C57Bl/6 and 129/SvImJ. We find that in most brain regions, both strains are susceptible to progranulin-mediated neuropathological phenotypes, including astrogliosis, microgliosis, and highly accelerated deposition of the aging pigment lipofuscin. Neuroinflammation due to progranulin deficiency is exaggerated in the B6 strain and present, but less pronounced, in the 129 strain. Differences between the strains in hippocampal neuron counts and neuronal morphology suggest a complex role for progranulin in the hippocampus. We conclude that core progranulin-mediated neurodegenerative phenotypes are penetrant on multiple inbred mouse strains, but that genetic background modulates progranulin's role in neuroinflammation and hippocampal biology. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.
Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam
2017-09-01
Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.
Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B.; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain
2017-01-01
Abstract Background: The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Results: Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Conclusions: Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. PMID:28327993
Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain; Jelinsky, Scott A
2017-05-01
The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. © The Author 2017. Published by Oxford University Press.
Natural History of Aging in Cornelia de Lange Syndrome
KLINE, ANTONIE D.; GRADOS, MARCO; SPONSELLER, PAUL; LEVY, HOWARD P.; BLAGOWIDOW, NATALIE; SCHOEDEL, CHRISTIANNE; RAMPOLLA, JONI; CLEMENS, DOUGLAS K.; KRANTZ, IAN; KIMBALL, AMY; PICHARD, CARMEN; TUCHMAN, DAVID
2016-01-01
Observations about the natural history of aging in Cornelia de Lange syndrome (CdLS) are made, based on 49 patients from a multidisciplinary clinic for adolescents and adults. The mean age was 17 years. Although most patients remain small, obesity may develop. Gastroesophageal reflux persists or worsens, and there are early long-term sequelae, including Barrett esophagus in 10%; other gastrointestinal findings include risk for volvulus, rumination, and chronic constipation. Submucous cleft palate was found in 14%, most undetected before our evaluation. Chronic sinusitis was noted in 39%, often with nasal polyps. Blepharitis improves with age; cataracts and detached retina may occur. Decreased bone density is observed, with occasional fractures. One quarter have leg length discrepancy and 39% scoliosis. Most females have delayed or irregular menses but normal gynecologic exams and pap smears. Benign prostatic hypertrophy occurred in one male prior to 40 years. The phenotype is variable, but there is a distinct pattern of facial changes with aging. Premature gray hair is frequent; two patients had cutis verticis gyrata. Behavioral issues and specific psychiatric diagnoses, including self-injury, anxiety, attention-deficit disorder, autistic features, depression, and obsessive-compulsive behavior, often worsen with age. This work presents some evidence for accelerated aging in CdLS. Of 53% with mutation analysis, 55% demonstrate a detectable mutation in NIPBL or SMC1A. Although no specific genotype–phenotype correlations have been firmly established, individuals with missense mutations in NIPBL and SMC1A appear milder than those with other mutations. Based on these observations, recommendations for clinical management of adults with CdLS are made. PMID:17640042
Heart Rate Fragmentation: A Symbolic Dynamical Approach.
Costa, Madalena D; Davis, Roger B; Goldberger, Ary L
2017-01-01
Background: We recently introduced the concept of heart rate fragmentation along with a set of metrics for its quantification. The term was coined to refer to an increase in the percentage of changes in heart rate acceleration sign, a dynamical marker of a type of anomalous variability. The effort was motivated by the observation that fragmentation, which is consistent with the breakdown of the neuroautonomic-electrophysiologic control system of the sino-atrial node, could confound traditional short-term analysis of heart rate variability. Objective: The objectives of this study were to: (1) introduce a symbolic dynamical approach to the problem of quantifying heart rate fragmentation; (2) evaluate how the distribution of the different dynamical patterns ("words") varied with the participants' age in a group of healthy subjects and patients with coronary artery disease (CAD); and (3) quantify the differences in the fragmentation patterns between the two sample populations. Methods: The symbolic dynamical method employed here was based on a ternary map of the increment NN interval time series and on the analysis of the relative frequency of symbolic sequences (words) with a pre-defined set of features. We analyzed annotated, open-access Holter databases of healthy subjects and patients with CAD, provided by the University of Rochester Telemetric and Holter ECG Warehouse (THEW). Results: The degree of fragmentation was significantly higher in older individuals than in their younger counterparts. However, the fragmentation patterns were different in the two sample populations. In healthy subjects, older age was significantly associated with a higher percentage of transitions from acceleration/deceleration to zero acceleration and vice versa (termed "soft" inflection points). In patients with CAD, older age was also significantly associated with higher percentages of frank reversals in heart rate acceleration (transitions from acceleration to deceleration and vice versa , termed "hard" inflection points). Compared to healthy subjects, patients with CAD had significantly higher percentages of soft and hard inflection points, an increased percentage of words with a high degree of fragmentation and a decreased percentage of words with a lower degree of fragmentation. Conclusion: The symbolic dynamical method employed here was useful to probe the newly recognized property of heart rate fragmentation. The findings from these cross-sectional studies confirm that CAD and older age are associated with higher levels of heart rate fragmentation. Furthermore, fragmentation with healthy aging appears to be phenotypically different from fragmentation in the context of CAD.
A roadmap for the genetic analysis of renal aging
Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron
2015-01-01
Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736
Martínez-García, Cristina; Izquierdo, Adriana; Velagapudi, Vidya; Vivas, Yurena; Velasco, Ismael; Campbell, Mark; Burling, Keith; Cava, Fernando; Ros, Manuel; Orešič, Matej; Vidal-Puig, Antonio; Medina-Gomez, Gema
2012-01-01
SUMMARY Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27Kip1 expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice. PMID:22773754
Martínez-García, Cristina; Izquierdo, Adriana; Velagapudi, Vidya; Vivas, Yurena; Velasco, Ismael; Campbell, Mark; Burling, Keith; Cava, Fernando; Ros, Manuel; Oresic, Matej; Vidal-Puig, Antonio; Medina-Gomez, Gema
2012-09-01
Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27(Kip1) expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice.
Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency
Barnhoorn, Sander; Uittenboogaard, Lieneke M.; Jaarsma, Dick; ...
2014-10-09
As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg -/- mouse model which—in a C57BL6/FVB F1 hybrid genetic background—displaysmore » many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg -/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.« less
Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnhoorn, Sander; Uittenboogaard, Lieneke M.; Jaarsma, Dick
As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg -/- mouse model which—in a C57BL6/FVB F1 hybrid genetic background—displaysmore » many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg -/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.« less
Feast and famine: Adipose tissue adaptations for healthy aging.
Lettieri Barbato, Daniele; Aquilano, Katia
2016-07-01
Proper adipose tissue function controls energy balance with favourable effects on metabolic health and longevity. The molecular and metabolic asset of adipose tissue quickly and dynamically readapts in response to nutrient fluctuations. Once delivered into cells, nutrients are managed by mitochondria that represent a key bioenergetics node. A persistent nutrient overload generates mitochondrial exhaustion and uncontrolled reactive oxygen species ((mt)ROS) production. In adipocytes, metabolic/molecular reorganization is triggered culminating in the acquirement of a hypertrophic and hypersecretory phenotype that accelerates aging. Conversely, dietary regimens such as caloric restriction or time-controlled fasting endorse mitochondrial functionality and (mt)ROS-mediated signalling, thus promoting geroprotection. In this perspective view, we argued some important molecular and metabolic aspects related to adipocyte response to nutrient stress. Finally we delineated hypothetical routes by which molecularly and metabolically readapted adipose tissue promotes healthy aging. Copyright © 2016 Elsevier B.V. All rights reserved.
Abdolvahabi, Alireza; Shi, Yunhua; Rasouli, Sanaz; Croom, Corbin M; Aliyan, Amir; Martí, Angel A; Shaw, Bryan F
2017-06-21
Over 150 mutations in SOD1 (superoxide dismutase-1) cause amyotrophic lateral sclerosis (ALS), presumably by accelerating SOD1 amyloidogenesis. Like many nucleation processes, SOD1 fibrillization is stochastic (in vitro), which inhibits the determination of aggregation rates (and obscures whether rates correlate with patient phenotypes). Here, we diverged from classical chemical kinetics and used Kaplan-Meier estimators to quantify the probability of apo-SOD1 fibrillization (in vitro) from ∼10 3 replicate amyloid assays of wild-type (WT) SOD1 and nine ALS variants. The probability of apo-SOD1 fibrillization (expressed as a Hazard ratio) is increased by certain ALS-linked SOD1 mutations but is decreased or remains unchanged by other mutations. Despite this diversity, Hazard ratios of fibrillization correlated linearly with (and for three mutants, approximately equaled) Hazard ratios of patient survival (R 2 = 0.67; Pearson's r = 0.82). No correlation exists between Hazard ratios of fibrillization and age of initial onset of ALS (R 2 = 0.09). Thus, Hazard ratios of fibrillization might explain rates of disease progression but not onset. Classical kinetic metrics of fibrillization, i.e., mean lag time and propagation rate, did not correlate as strongly with phenotype (and ALS mutations did not uniformly accelerate mean rate of nucleation or propagation). A strong correlation was found, however, between mean ThT fluorescence at lag time and patient survival (R 2 = 0.93); oligomers of SOD1 with weaker fluorescence correlated with shorter survival. This study suggests that SOD1 mutations trigger ALS by altering a property of SOD1 or its oligomers other than the intrinsic rate of amyloid nucleation (e.g., oligomer stability; rates of intercellular propagation; affinity for membrane surfaces; and maturation rate).
HFE p.H63D polymorphism does not influence ALS phenotype and survival.
Chiò, Adriano; Mora, Gabriele; Sabatelli, Mario; Caponnetto, Claudia; Lunetta, Christian; Traynor, Bryan J; Johnson, Janel O; Nalls, Mike A; Calvo, Andrea; Moglia, Cristina; Borghero, Giuseppe; Monsurrò, Maria Rosaria; La Bella, Vincenzo; Volanti, Paolo; Simone, Isabella; Salvi, Fabrizio; Logullo, Francesco O; Nilo, Riva; Giannini, Fabio; Mandrioli, Jessica; Tanel, Raffaella; Murru, Maria Rita; Mandich, Paola; Zollino, Marcella; Conforti, Francesca L; Penco, Silvana; Brunetti, Maura; Barberis, Marco; Restagno, Gabriella
2015-10-01
It has been recently reported that the p.His63Asp polymorphism of the HFE gene accelerates disease progression both in the SOD1 transgenic mouse and in amyotrophic lateral sclerosis (ALS) patients. We have evaluated the effect of HFE p.His63Asp polymorphism on the phenotype in 1351 Italian ALS patients (232 of Sardinian ancestry). Patients were genotyped for the HFE p.His63Asp polymorphism (CC, GC, and GG). All patients were also assessed for C9ORF72, TARDBP, SOD1, and FUS mutations. Of the 1351 ALS patients, 363 (29.2%) were heterozygous (GC) for the p.His63Asp polymorphism and 30 (2.2%) were homozygous for the minor allele (GG). Patients with CC, GC, and GG polymorphisms did not significantly differ by age at onset, site of onset of symptoms, and survival; however, in SOD1 patients with CG or GG polymorphism had a significantly longer survival than those with a CC polymorphism. Differently from what observed in the mouse model of ALS, the HFE p.His63Asp polymorphism has no effect on ALS phenotype in this large series of Italian ALS patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Long-term genetic selection reduced prevalence of hip and elbow dysplasia in 60 dog breeds
Keller, G. G.; Famula, T. R.
2017-01-01
Canine hip dysplasia (CHD) and elbow dysplasia (ED) impact the health and welfare of all dogs. The first formally organized assessment scheme to improve canine health centered on reducing the prevalence of these orthopedic disorders. Phenotypic screening of joint conformation remains the currently available strategy for breeders to make selection decisions. The present study evaluated the efficacy of employing phenotypic selection on breed improvement of hips and elbows using the Orthopedic Foundation for Animals complete database spanning the 1970–2015 time period. Sixty breeds having more than 1000 unique hip evaluations and 500 elbow evaluations (1,056,852 and 275,129 hip and elbow records, respectively) were interrogated to derive phenotypic improvement, sex and age at time of assessment effects, correlation between the two joints, heritability estimates, estimated breeding values (EBV), and effectiveness of maternal/paternal selection. The data demonstrated that there has been overall improvement in hip and elbow conformation with a reduction in EBV for disease liability, although the breeds differed in the magnitude of the response to selection. Heritabilities also differed substantially across the breeds as did the correlation of the joints; in the absence of a universal association of these differences with breed size, popularity, or participation in screening, it appears that the breeds themselves vary in genetic control. There was subtle, though again breed specific, impact of sex and older ages on CHD and ED. There was greater paternal impact on a reduction of CHD. In the absence of direct genetic tests for either of these two diseases, phenotypic selection has proven to be effective. Furthermore, the data underscore that selection schemes must be breed specific and that it is likely the genetic profiles will be unique across the breeds for these two conditions. Despite the advances achieved with phenotypic selection, incorporation of EBVs into selection schemes should accelerate advances in hip and elbow improvement. PMID:28234985
Long-term genetic selection reduced prevalence of hip and elbow dysplasia in 60 dog breeds.
Oberbauer, A M; Keller, G G; Famula, T R
2017-01-01
Canine hip dysplasia (CHD) and elbow dysplasia (ED) impact the health and welfare of all dogs. The first formally organized assessment scheme to improve canine health centered on reducing the prevalence of these orthopedic disorders. Phenotypic screening of joint conformation remains the currently available strategy for breeders to make selection decisions. The present study evaluated the efficacy of employing phenotypic selection on breed improvement of hips and elbows using the Orthopedic Foundation for Animals complete database spanning the 1970-2015 time period. Sixty breeds having more than 1000 unique hip evaluations and 500 elbow evaluations (1,056,852 and 275,129 hip and elbow records, respectively) were interrogated to derive phenotypic improvement, sex and age at time of assessment effects, correlation between the two joints, heritability estimates, estimated breeding values (EBV), and effectiveness of maternal/paternal selection. The data demonstrated that there has been overall improvement in hip and elbow conformation with a reduction in EBV for disease liability, although the breeds differed in the magnitude of the response to selection. Heritabilities also differed substantially across the breeds as did the correlation of the joints; in the absence of a universal association of these differences with breed size, popularity, or participation in screening, it appears that the breeds themselves vary in genetic control. There was subtle, though again breed specific, impact of sex and older ages on CHD and ED. There was greater paternal impact on a reduction of CHD. In the absence of direct genetic tests for either of these two diseases, phenotypic selection has proven to be effective. Furthermore, the data underscore that selection schemes must be breed specific and that it is likely the genetic profiles will be unique across the breeds for these two conditions. Despite the advances achieved with phenotypic selection, incorporation of EBVs into selection schemes should accelerate advances in hip and elbow improvement.
Cockayne syndrome: Clinical features, model systems and pathways
Karikkineth, Ajoy C.; Scheibye-Knudsen, Morten; Fivenson, Elayne; Croteau, Deborah L.; Bohr, Vilhelm A.
2016-01-01
Cockayne syndrome (CS) is a disorder characterized by a variety of clinical features including cachectic dwarfism, severe neurological manifestations including microcephaly and cognitive deficits, pigmentary retinopathy, cataracts, sensorineural deafness, and ambulatory and feeding difficulties, leading to death by 12 years of age on average. It is an autosomal recessive disorder, with a prevalence of approximately 2.5 per million. There are several phenotypes (1, 2 and 3) and complementation groups (CSA and CSB), and overlaps with xeroderma pigmentosum (XP). It has been considered a progeria, and many of the clinical features resemble accelerated aging. As such, the study of CS affords an opportunity to better understand the underlying mechanisms of aging. The molecular basis of CS has traditionally been considered to be due to defects in transcription and transcription-coupled nucleotide excision repair (TC-NER). However, recent work suggests that defects in base excision DNA repair and mitochondrial functions may also play key roles. This opens up the possibility of molecular interventions in CS, and by extrapolation, possibly in aging. PMID:27507608
Bailey-Downs, Lora C.; Mitschelen, Matthew; Sosnowska, Danuta; Toth, Peter; Pinto, John T.; Ballabh, Praveen; Valcarcel-Ares, M.Noa; Farley, Julie; Koller, Akos; Henthorn, Jim C.; Bass, Caroline; Sonntag, William E.; Csiszar, Anna
2012-01-01
Recent studies demonstrate that age-related dysfunction of NF-E2–related factor-2 (Nrf2)–driven pathways impairs cellular redox homeostasis, exacerbating age-related cellular oxidative stress and increasing sensitivity of aged vessels to oxidative stress–induced cellular damage. Circulating levels of insulin-like growth factor (IGF)-1 decline during aging, which significantly increases the risk for cardiovascular diseases in humans. To test the hypothesis that adult-onset IGF-1 deficiency impairs Nrf2-driven pathways in the vasculature, we utilized a novel mouse model with a liver-specific adeno-associated viral knockdown of the Igf1 gene using Cre-lox technology (Igf1f/f + MUP-iCre-AAV8), which exhibits a significant decrease in circulating IGF-1 levels (∼50%). In the aortas of IGF-1–deficient mice, there was a trend for decreased expression of Nrf2 and the Nrf2 target genes GCLC, NQO1 and HMOX1. In cultured aorta segments of IGF-1–deficient mice treated with oxidative stressors (high glucose, oxidized low-density lipoprotein, and H2O2), induction of Nrf2-driven genes was significantly attenuated as compared with control vessels, which was associated with an exacerbation of endothelial dysfunction, increased oxidative stress, and apoptosis, mimicking the aging phenotype. In conclusion, endocrine IGF-1 deficiency is associated with dysregulation of Nrf2-dependent antioxidant responses in the vasculature, which likely promotes an adverse vascular phenotype under pathophysiological conditions associated with oxidative stress (eg, diabetes mellitus, hypertension) and results in accelerated vascular impairments in aging. PMID:22021391
Tif1γ regulates the TGF-β1 receptor and promotes physiological aging of hematopoietic stem cells.
Quéré, Ronan; Saint-Paul, Laetitia; Carmignac, Virginie; Martin, Romain Z; Chrétien, Marie-Lorraine; Largeot, Anne; Hammann, Arlette; Pais de Barros, Jean-Paul; Bastie, Jean-Noël; Delva, Laurent
2014-07-22
The hematopoietic system declines with age. Myeloid-biased differentiation and increased incidence of myeloid malignancies feature aging of hematopoietic stem cells (HSCs), but the mechanisms involved remain uncertain. Here, we report that 4-mo-old mice deleted for transcription intermediary factor 1γ (Tif1γ) in HSCs developed an accelerated aging phenotype. To reinforce this result, we also show that Tif1γ is down-regulated in HSCs during aging in 20-mo-old wild-type mice. We established that Tif1γ controls TGF-β1 receptor (Tgfbr1) turnover. Compared with young HSCs, Tif1γ(-/-) and old HSCs are more sensitive to TGF-β signaling. Importantly, we identified two populations of HSCs specifically discriminated by Tgfbr1 expression level and provided evidence of the capture of myeloid-biased (Tgfbr1(hi)) and myeloid-lymphoid-balanced (Tgfbr1(lo)) HSCs. In conclusion, our data provide a new paradigm for Tif1γ in regulating the balance between lymphoid- and myeloid-derived HSCs through TGF-β signaling, leading to HSC aging.
USDA-ARS?s Scientific Manuscript database
The innate immune cell populations that mediate metazoan parasite expulsion remain largely undefined. We examined the role of innate cells in the immune response to the nematode parasite Nippostrongylus brasiliensis hypothesizing that they may mediate the markedly accelerated CD4+ T cell-independen...
Chan, Kaitlyn A.; Bernal, Angelica B.; Vickers, Mark H.; Gohir, Wajiha; Petrik, Jim J.; Sloboda, Deborah M.
2015-01-01
ABSTRACT Maternal nutritional restriction has been shown to induce impairments in a number of organ systems including the ovary. We have previously shown that maternal undernutrition induces fetal growth restriction and low birth weight, and results in an offspring ovarian phenotype characteristic of premature ovarian aging with reduced ovarian reserve. In the present study, we set out to investigate the underlying mechanisms that lead offspring of undernourished mothers to premature ovarian aging. Pregnant dams were randomized to 1) a standard diet throughout pregnancy and lactation (control), 2) a calorie-restricted (50% of control) diet during pregnancy, 3) a calorie-restricted (50% of control) diet during pregnancy and lactation, or 4) a calorie-restricted (50% of control) diet during lactation alone. The present study shows that early life undernutrition-induced reduction of adult ovarian follicles may be mediated by increased ovarian endoplasmic reticulum stress in a manner that increased follicular apoptosis but not autophagy. These changes were associated with a loss of ovarian vessel density and are consistent with an accelerated ovarian aging phenotype. Whether these changes are mediated specifically by a reduction in the local antioxidant environment is unclear, although our data suggest the possibility that ovarian melatonin may play a part in early life nutritional undernutrition and impaired offspring folliculogenesis. PMID:25810471
NASA Astrophysics Data System (ADS)
Serrano, Paloma; van Loon, Jack J. W. A.; Medina, F. Javier; Herranz, Raúl
2013-02-01
Motility and aging in Drosophila have proven to be highly modified under altered gravity conditions (both in space and ground simulation facilities). In order to find out how closely connected they are, five strains with altered geotactic response or survival rates were selected and exposed to an altered gravity environment of 2 g. By analysing the different motile and behavioural patterns and the median survival rates, we show that altered gravity leads to changes in motility, which will have a negative impact on the flies' survival. Previous results show a differential gene expression between sessile samples and adults and confirm that environmentally-conditioned behavioural patterns constrain flies' gene expression and life span. Therefore, hypergravity is considered an environmental stress factor and strains that do not respond to this new environment experience an increment in motility, which is the major cause for the observed increased mortality also under microgravity conditions. The neutral-geotaxis selected strain (strain M) showed the most severe phenotype, unable to respond to variations in the gravitational field. Alternatively, the opposite phenotype was observed in positive-geotaxis and long-life selected flies (strains B and L, respectively), suggesting that these populations are less sensitive to alterations in the gravitational load. We conclude that the behavioural response has a greater contribution to aging than the modified energy consumption in altered gravity environments.
Yamamoto, Suguru; Zuo, Yiqin; Ma, Ji; Yancey, Patricia G.; Hunley, Tracy E.; Motojima, Masaru; Fogo, Agnes B.; Linton, MacRae F.; Fazio, Sergio; Ichikawa, Iekuni
2011-01-01
Background. Accelerated atherosclerosis and increased cardiovascular events are not only more common in chronic kidney disease (CKD) but are more resistant to therapeutic interventions effective in the general population. The oral charcoal adsorbent, AST-120, currently used to delay start of dialysis, reduces circulating and tissue uremic toxins, which may contribute to vasculopathy, including atherosclerosis. We, therefore, investigated whether AST-120 affects CKD-induced atherosclerosis. Methods. Apolipoprotein E-deficient mice, a model of atherosclerosis, underwent uninephrectomy, subtotal nephrectomy or sham operation at 8 weeks of age and were treated with AST-120 after renal ablation. Atherosclerosis and its characteristics were assessed at 25 weeks of age. Results. Uninephrectomy and subtotal nephrectomised mice had significantly increased acceleration of atherosclerosis. AST-120 treatment dramatically reduced the atherosclerotic burden in mice with kidney damage, while there was no beneficial effect in sham-operated mice. The benefit was independent of blood pressure, serum total cholesterol or creatinine clearance. AST-120 significantly decreased necrotic areas and lessened aortic deposition of the uremic toxin indoxyl sulfate without affecting lesional macrophage or collagen content. Furthermore, AST-120 lessened aortic expression of monocyte chemoattractant protein-1, tumor necrosis factor-α and interleukin-1β messenger RNA. Conclusions. AST-120 lessens the extent of atherosclerosis induced by kidney injury and alters lesion characteristics in apolipoprotein E-deficient mice, resulting in plaques with a more stable phenotype with less necrosis and reduced inflammation. PMID:21245127
Aliper, Alexander M; Csoka, Antonei Benjamin; Buzdin, Anton; Jetka, Tomasz; Roumiantsev, Sergey; Moskalev, Alexy; Zhavoronkov, Alex
2015-01-01
For the past several decades, research in understanding the molecular basis of human aging has progressed significantly with the analysis of premature aging syndromes. Progerin, an altered form of lamin A, has been identified as the cause of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), and may be a contributing causative factor in normal aging. However, the question of whether HGPS actually recapitulates the normal aging process at the cellular and organismal level, or simply mimics the aging phenotype is widely debated. In the present study we analyzed publicly available microarray datasets for fibroblasts undergoing cellular aging in culture, as well as fibroblasts derived from young, middle-age, and old-age individuals, and patients with HGPS. Using GeroScope pathway analysis and drug discovery platform we analyzed the activation states of 65 major cellular signaling pathways. Our analysis reveals that signaling pathway activation states in cells derived from chronologically young patients with HGPS strongly resemble cells taken from normal middle-aged and old individuals. This clearly indicates that HGPS may truly represent accelerated aging, rather than being just a simulacrum. Our data also points to potential pathways that could be targeted to develop drugs and drug combinations for both HGPS and normal aging.
A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging.
Scheibye-Knudsen, Morten; Scheibye-Alsing, Karsten; Canugovi, Chandrika; Croteau, Deborah L; Bohr, Vilhelm A
2013-03-01
The inherent complex and pleiotropic phenotype of mitochondrial diseases poses a significant diagnostic challenge for clinicians as well as an analytical barrier for scientists. To overcome these obstacles we compiled a novel database, www.mitodb.com, containing the clinical features of primary mitochondrial diseases. Based on this we developed a number of qualitative and quantitative measures, enabling us to determine whether a disorder can be characterized as mitochondrial. These included a clustering algorithm, a disease network, a mitochondrial barcode and two scoring algorithms. Using these tools we detected mitochondrial involvement in a number of diseases not previously recorded as mitochondrial. As a proof of principle Cockayne syndrome, ataxia with oculomotor apraxia 1 (AOA1), spinocerebellar ataxia with axonal neuropathy 1 (SCAN1) and ataxia-telangiectasia have recently been shown to have mitochondrial dysfunction and those diseases showed strong association with mitochondrial disorders. We next evaluated mitochondrial involvement in aging and detected two distinct categories of accelerated aging disorders, one of them being associated with mitochondrial dysfunction. Normal aging seemed to associate stronger with the mitochondrial diseases than the non-mitochondrial partially supporting a mitochondrial theory of aging.
Polygenic Risk, Appetite Traits, and Weight Gain in Middle Childhood: A Longitudinal Study.
Steinsbekk, Silje; Belsky, Daniel; Guzey, Ismail Cuneyt; Wardle, Jane; Wichstrøm, Lars
2016-02-01
Genome-wide association studies have identified genetic risks for obesity. These genetic risks influence development of obesity partly by accelerating weight gain in childhood. Research is needed to identify mechanisms to inform intervention. Cross-sectional studies suggest appetite traits as a candidate mechanism. Longitudinal studies are needed to test whether appetite traits mediate genetic influences on children's weight gain. To test whether genetic risk for obesity predicts accelerated weight gain in middle childhood (ages 4-8 years) and whether genetic association with accelerated weight gain is mediated by appetite traits. Longitudinal study of a representative birth cohort at the Trondheim Early Secure Study, Trondheim, Norway, enrolled at age 4 years during 2007 to 2008, with follow-ups at ages 6 and 8 years. Participants were sampled from all children born in 2003 or 2004 who attended regular community health checkups for 4-year-olds (97.2% attendance; 82.0% consent rate, n = 2475). Nine hundred ninety-five children participated at age 4 years, 795 at age 6 years, and 699 at age 8 years. Analyses included 652 children with genotype, adiposity, and appetite data. Outcomes were body mass index and body-fat phenotypes measured from anthropometry (ages 4, 6, and 8 years) and bioelectrical impedance (ages 6 and 8 years). Genetic risk for obesity was measured using a genetic risk score composed of 32 single-nucleotide polymorphisms previously discovered in genome-wide association studies of adult body mass index. Appetite traits were measured at age 6 years with the Children's Eating Behavior Questionnaire. Of the 652 genotyped child participants, 323 (49.5%) were female, 58 (8.9%) were overweight, and 1 (0.2%) was obese. Children at higher genetic risk for obesity had higher baseline body mass index and fat mass compared with lower genetic risk peers, and they gained weight and fat mass more rapidly during follow-up. Each SD increase in genetic risk score was associated with a 0.22-point increase in BMI at age-4 baseline (for the intercept, unstandardized path coefficient B = 0.22 [95% CI, 0.06-0.38]; P = .008. Children with higher genetic risk scores also gained BMI points more rapidly from ages 4 to 6 years (B = 0.11 [95% CI, 0.03-0.20]; P = .01 ; β = 0.12) and from 6 to 8 years (B = 0.09 [95% CI, 0.00-0.19]; P = .05; β = 0.10), compared with their lower genetic risk peers. Children at higher genetic risk had higher levels of alleged obesogenic appetite traits than peers with lower genetic risk at age 6 years, but appetite traits did not mediate genetic associations with weight gain. The sum of the 5 indirect effects was B = -0.001 (95% CI, -0.02 -0.01); P = .86; β = 0.00. Genetic risk for obesity is associated with accelerated childhood weight gain. Interventions targeting childhood weight gain may provide one path to mitigating genetic risk. However, middle childhood appetite traits may not be a promising target for such interventions. Studies of early-childhood samples are needed to test whether appetite traits explain how genetic risks accelerate growth earlier in development.
Protocols and programs for high-throughput growth and aging phenotyping in yeast.
Jung, Paul P; Christian, Nils; Kay, Daniel P; Skupin, Alexander; Linster, Carole L
2015-01-01
In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting "Colony Forming Units". To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens.
Belsky, Daniel W; Moffitt, Terrie E; Houts, Renate; Bennett, Gary G; Biddle, Andrea K; Blumenthal, James A; Evans, James P; Harrington, Honalee; Sugden, Karen; Williams, Benjamin; Poulton, Richie; Caspi, Avshalom
2012-06-01
To test how genomic loci identified in genome-wide association studies influence the development of obesity. A 38-year prospective longitudinal study of a representative birth cohort. The Dunedin Multidisciplinary Health and Development Study, Dunedin, New Zealand. One thousand thirty-seven male and female study members. We assessed genetic risk with a multilocus genetic risk score. The genetic risk score was composed of single-nucleotide polymorphisms identified in genome-wide association studies of obesity-related phenotypes. We assessed family history from parent body mass index data collected when study members were 11 years of age. Body mass index growth curves, developmental phenotypes of obesity, and adult obesity outcomes were defined from anthropometric assessments at birth and at 12 subsequent in-person interviews through 38 years of age. Individuals with higher genetic risk scores were more likely to be chronically obese in adulthood. Genetic risk first manifested as rapid growth during early childhood. Genetic risk was unrelated to birth weight. After birth, children at higher genetic risk gained weight more rapidly and reached adiposity rebound earlier and at a higher body mass index. In turn, these developmental phenotypes predicted adult obesity, mediating about half the genetic effect on adult obesity risk. Genetic associations with growth and obesity risk were independent of family history, indicating that the genetic risk score could provide novel information to clinicians. Genetic variation linked with obesity risk operates, in part, through accelerating growth in the early childhood years after birth. Etiological research and prevention strategies should target early childhood to address the obesity epidemic.
Van Eetvelde, M; Opsomer, G
2017-08-01
As heifer rearing is a costly investment, dairy farmers have been stimulated to maximize early growth of their calves, mainly by enhanced liquid feeding. However, the long-term effects of this "accelerated growth" are largely unknown. Studies recently performed at Ghent University indicate that in dairy cattle, certain maternal factors (such as young age and high milk yield) and environmental factors (such as high ambient temperatures) create a suboptimal environment for the developing foetus, altering the phenotype of the newborn calf. According to the "thrifty phenotype hypothesis," these metabolic alterations prepare the newborn for similar ("matching") conditions after birth, enhancing its survival during periods of limited feeding. Yet, when an abundance of nutrients is available in post-natal life (e.g., during periods of enhanced feeding), the "mismatch" between pre- and post-natal environment results in an early catch-up growth, with potential negative consequences. The aim of the article was to discuss this mismatch between pre- and post-natal environment in dairy calves. Previous studies, especially in human medicine, have shown catch-up growth to be associated with obesity, fertility problems, metabolic diseases and a reduced lifespan. Hence, we hypothesize that, by applying programs of accelerated growth, our current management system accentuates the mismatch between the pre- and post-natal environment in dairy calves. We can conclude that, although more research is necessary, the current findings point towards a more individual approach when rearing dairy heifers. © 2017 Blackwell Verlag GmbH.
Trajectories of the healthy ageing phenotype among middle-aged and older Britons, 2004-2013.
Tampubolon, Gindo
2016-06-01
Since the ageing population demands a response to ensure older people remain healthy and active, we studied the dynamics of a recently proposed healthy ageing phenotype. We drew the phenotype's trajectories and tested whether their levels and rates of change are influenced by health behaviours, comorbidities and socioeconomic positions earlier in the life course. The English Longitudinal Ageing Study, a prospective, nationally representative sample of people aged ≥50 years, measured a set of eight biomarkers which make up the outcome of the healthy ageing phenotype three times over nearly a decade (N2004=5009, N2008=5301, N2013=4455). A cluster of health behaviours, comorbidities and socioeconomic positions were also measured repeatedly. We assessed the phenotype's distribution non-parametrically, then fitted linear mixed models to phenotypic change and further examined time interactions with gender and socioeconomic position. We ran additional analyses to test robustness. Women had a wider distribution of the healthy ageing phenotype than men had. The phenotype declined annually by -0.242 (95% confidence interval [CI]: -0.352, -0.131). However, there was considerable heterogeneity in the levels and rates of phenotypic change. Women started at higher levels, then declined more steeply by -0.293 (CI: -0.403, -0.183) annually, leading to crossover in the trajectories. Smoking and physical activity assessed on the Allied Dunbar scale were strongly associated with the trajectories. Though marked by secular decline, the trajectories of the healthy ageing phenotype showed distinct socioeconomic gradients. The trajectories were also susceptible to variations in health behaviours, strengthening the case for serial interventions to attain healthy and active ageing. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
Ariffin, Hany; Azanan, Mohamad Shafiq; Abd Ghafar, Sayyidatul Syahirah; Oh, Lixian; Lau, Kee Hie; Thirunavakarasu, Tharshanadhevasheri; Sedan, Atiqah; Ibrahim, Kamariah; Chan, Adelyne; Chin, Tong Foh; Liew, Fong Fong; Jeyamogan, Shareni; Rosli, Erda Syerena; Baharudin, Rashidah; Yap, Tsiao Yi; Skinner, Roderick; Lum, Su Han; Hainaut, Pierre
2017-11-01
Large epidemiologic studies have reported the premature onset of age-related conditions, such as ischemic heart disease and diabetes mellitus, in childhood cancer survivors, decades earlier than in their peers. The authors investigated whether young adult survivors of childhood acute lymphoblastic leukemia (ALL) have a biologic phenotype of cellular ageing and chronic inflammation. Plasma inflammatory cytokines were measured using a cytometric bead array in 87 asymptomatic young adult survivors of childhood ALL (median age, 25 years; age range, 18-35 years) who attended annual follow-up clinic and compared with healthy, age-matched and sex-matched controls. Leukocyte telomere length (LTL) was measured using Southern blot analysis. Survivors had significant elevation of plasma interleukin-2 (IL-2), IL-10, IL-17a, and high-sensitivity C-reactive protein levels (all P < .05). A raised high-sensitivity C-reactive protein level (>0.8 mg/dL) was related to increased odds of having metabolic syndrome (odds ratio, 7.256; 95% confidence interval, 1.501-35.074). Survivors also had significantly shorter LTL compared with controls (median, 9866 vs 10,392 base pairs; P = .021). Compared with published data, LTL in survivors was similar to that in healthy individuals aged 20 years older. Survivors who received cranial irradiation had shorter LTL compared with those who had not (P = .013). Asymptomatic young adult survivors of childhood ALL demonstrate a biologic profile of chronic inflammation and telomere attrition, consistent with an early onset of cellular processes that drive accelerated aging. These processes may explain the premature development of age-related chronic conditions in childhood cancer survivors. Understanding their molecular basis may facilitate targeted interventions to disrupt the accelerated aging process and its long-term impact on overall health. Cancer 2017;123:4207-4214. © 2017 American Cancer Society. © 2017 American Cancer Society.
Kim, Mara; Cooper, Brian A.; Venkat, Rohit; Phillips, Julie B.; Eidem, Haley R.; Hirbo, Jibril; Nutakki, Sashank; Williams, Scott M.; Muglia, Louis J.; Capra, J. Anthony; Petren, Kenneth; Abbot, Patrick; Rokas, Antonis; McGary, Kriston L.
2016-01-01
Mammalian gestation and pregnancy are fast evolving processes that involve the interaction of the fetal, maternal and paternal genomes. Version 1.0 of the GEneSTATION database (http://genestation.org) integrates diverse types of omics data across mammals to advance understanding of the genetic basis of gestation and pregnancy-associated phenotypes and to accelerate the translation of discoveries from model organisms to humans. GEneSTATION is built using tools from the Generic Model Organism Database project, including the biology-aware database CHADO, new tools for rapid data integration, and algorithms that streamline synthesis and user access. GEneSTATION contains curated life history information on pregnancy and reproduction from 23 high-quality mammalian genomes. For every human gene, GEneSTATION contains diverse evolutionary (e.g. gene age, population genetic and molecular evolutionary statistics), organismal (e.g. tissue-specific gene and protein expression, differential gene expression, disease phenotype), and molecular data types (e.g. Gene Ontology Annotation, protein interactions), as well as links to many general (e.g. Entrez, PubMed) and pregnancy disease-specific (e.g. PTBgene, dbPTB) databases. By facilitating the synthesis of diverse functional and evolutionary data in pregnancy-associated tissues and phenotypes and enabling their quick, intuitive, accurate and customized meta-analysis, GEneSTATION provides a novel platform for comprehensive investigation of the function and evolution of mammalian pregnancy. PMID:26567549
Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M
2016-01-01
Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.
Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R.; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier
2016-01-01
Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders. PMID:27739443
Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier
2016-10-14
Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders.
Epistasis can accelerate adaptive diversification in haploid asexual populations.
Griswold, Cortland K
2015-03-07
A fundamental goal of the biological sciences is to determine processes that facilitate the evolution of diversity. These processes can be separated into ecological, physiological, developmental and genetic. An ecological process that facilitates diversification is frequency-dependent selection caused by competition. Models of frequency-dependent adaptive diversification have generally assumed a genetic basis of phenotype that is non-epistatic. Here, we present a model that indicates diversification is accelerated by an epistatic basis of phenotype in combination with a competition model that invokes frequency-dependent selection. Our model makes use of a genealogical model of epistasis and insights into the effects of balancing selection on the genealogical structure of a population to understand how epistasis can facilitate diversification. The finding that epistasis facilitates diversification may be informative with respect to empirical results that indicate an epistatic basis of phenotype in experimental bacterial populations that experienced adaptive diversification. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice.
Zhang, Jieyu; Dyment, Nathaniel A; Rowe, David W; Siu, Sarah Y; Sundberg, John P; Uitto, Jouni; Li, Qiaoli
2016-03-15
Generalized arterial calcification of infancy (GACI), an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. A spontaneous asj-2J mutant mouse has been characterized as a model for GACI. Previous studies focused on phenotypic characterization of skin and vascular tissues. This study further examined the ectopic mineralization phenotype of cartilage, collagen-rich tendons and ligaments in this mouse model. The mice were placed on either control diet or the "acceleration diet" for up to 12 weeks of age. Soft connective tissues, such as ear (elastic cartilage) and trachea (hyaline cartilage), were processed for standard histology. Assessment of ectopic mineralization in articular cartilage and fibrocartilage as well as tendons and ligaments which are attached to long bones were performed using a novel cryo-histological method without decalcification. These analyses demonstrated ectopic mineralization in cartilages as well as tendons and ligaments in the homozygous asj-2J mice at 12 weeks of age, with the presence of immature osteophytes displaying alkaline phosphatase and tartrate-resistant acid phosphatase activities as early as at 6 weeks of age. Alkaline phosphatase activity was significantly increased in asj-2J mouse serum as compared to wild type mice, indicating increased bone formation rate in these mice. Together, these data highlight the key role of ENPP1 in regulating calcification of both soft and skeletal tissues.
Towards an Age-Phenome Knowledge-base
2011-01-01
Background Currently, data about age-phenotype associations are not systematically organized and cannot be studied methodically. Searching for scientific articles describing phenotypic changes reported as occurring at a given age is not possible for most ages. Results Here we present the Age-Phenome Knowledge-base (APK), in which knowledge about age-related phenotypic patterns and events can be modeled and stored for retrieval. The APK contains evidence connecting specific ages or age groups with phenotypes, such as disease and clinical traits. Using a simple text mining tool developed for this purpose, we extracted instances of age-phenotype associations from journal abstracts related to non-insulin-dependent Diabetes Mellitus. In addition, links between age and phenotype were extracted from clinical data obtained from the NHANES III survey. The knowledge stored in the APK is made available for the relevant research community in the form of 'Age-Cards', each card holds the collection of all the information stored in the APK about a particular age. These Age-Cards are presented in a wiki, allowing community review, amendment and contribution of additional information. In addition to the wiki interaction, complex searches can also be conducted which require the user to have some knowledge of database query construction. Conclusions The combination of a knowledge model based repository with community participation in the evolution and refinement of the knowledge-base makes the APK a useful and valuable environment for collecting and curating existing knowledge of the connections between age and phenotypes. PMID:21651792
Imbert, Isabelle; Botto, Jean-Marie; Farra, Claude D; Domloge, Nouha
2012-06-01
Telomere shortening is considered as one of the main characteristics of cellular aging by limiting cellular division. Besides the fundamental advances through the discoveries of telomere and telomerase, which were recognized by a Nobel Prize, telomere protection remains an essential area of research. Recently, it was evidenced that studying the cross-talks between the proteins associated with telomere should provide a better understanding of the mechanistic basis for telomere-associated aging phenotypes. In this review, we discuss the current knowledge on telomere shortening, telomerase activity, and the essential role of telomere binding proteins in telomere stabilization and telomere-end protection. This review highlights the capacity of telomere binding proteins to limit cellular senescence and to maintain skin tissue homeostasis, which is of key importance to reduce accelerated tissue aging. Future studies addressing telomere protection and limitation of DNA damage response in human skin should include investigations on telomere binding proteins. As little is known about the expression of telomere binding proteins in human skin and modulation of their expression with aging, it remains an interesting field of skin research and a key area for future skin protection and anti-aging developments. © 2012 Wiley Periodicals, Inc.
Genetic effects on refraction and correlation with hemodynamic variables: a twin study.
Toth, G Zs; Tarnoki, Adam Domonkos; Tarnoki, D L; Racz, A; Szekelyhidi, Z; Littvay, L; Karlinger, K; Lannert, A; Molnar, A A; Garami, Zs; Berczi, V; Suveges, I; Nemeth, J
2014-09-01
Spherical equivalent (SE) has not been linked to increased cardiovascular morbidity. Methods: 132 Hungarian twins(age 43.3±16.9 years) underwent refraction measurements (Huvitz MRK-3100 Premium AutoRefractokeratometer)and oscillometry (TensioMed Arteriograph). Results: Heritability analysis indicated major role for genetic components in the presence of right and left SE (82.7%, 95%CI, 62.9 to 93.7%, and 89.3%, 95%CI, 72.8 to 96.6%),while unshared environmental effects accounted for 17% (95%CI, 6.3% to 37%), and 11% (95%CI, 3.4% to 26.7%)of variations adjusted for age and sex. Bilateral SE showed weak age-dependent correlations with augmentation index (AIx), aortic pulse wave velocity (r ranging between 0.218 and 0.389, all p < 0.01), aortic systolic blood pressure and pulse pressure (r between 0.188 and 0.289, p < 0.05). Conclusions: These findings support heritability of spherical equivalent, which does not coexist with altered hemodynamics (e.g. accelerated arterial aging).Accordingly, SE and the investigated hemodynamic parameters seem neither phenotypically nor genetically associated.
Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice.
Yamada, Yosuke; Tomaru, Utano; Ishizu, Akihiro; Ito, Tomoki; Kiuchi, Takayuki; Ono, Ayako; Miyajima, Syota; Nagai, Katsura; Higashi, Tsunehito; Matsuno, Yoshihiro; Dosaka-Akita, Hirotoshi; Nishimura, Masaharu; Miwa, Soichi; Kasahara, Masanori
2015-06-01
Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly.
From Hayflick to Walford: the role of T cell replicative senescence in human aging.
Effros, Rita B
2004-06-01
The immunologic theory of aging, proposed more than 40 years ago by Roy Walford, suggests that the normal process of aging in man and in animals is pathogenetically related to faulty immunological processes. Since that time, research on immunological aging has undergone extraordinary expansion, leading to new information in areas spanning from molecular biology and cell signaling to large-scale clinical studies. Investigation in this area has also provided unexpected insights into HIV disease, many aspects of which represent accelerated immunological aging. This article describes the initial insights and vision of Roy Walford into one particular facet of human immunological aging, namely, the potential relevance of the well-studied human fibroblast replicative senescence model, initially developed by Leonard Hayflick, to cells of the immune system. Extensive research on T cell senescence in cell culture has now documented changes in vitro that closely mirror alterations occurring during in vivo aging in humans, underscoring the biological significance of T cell replicative senescence. Moreover, the inclusion of high proportions of putatively senescent T cells in the 'immune risk phenotype' that is associated with early mortality in octogenarians provides initial clinical confirmation of both the immunologic theory of aging and the role of the T cell Hayflick Limit in human aging, two areas of gerontological research pioneered by Roy Walford.
Juvenile Paget’s Disease With Heterozygous Duplication In TNFRSF11A Encoding RANK
Whyte, Michael P.; Tau, Cristina; McAlister, William H.; Zhang, Xiafang; Novack, Deborah V.; Preliasco, Virginia; Santini-Araujo, Eduardo; Mumm, Steven
2014-01-01
Mendelian disorders of RANKL/OPG/RANK signaling feature the extremes of aberrant osteoclastogenesis and cause either osteopetrosis or rapid turnover skeletal disease. The patients with autosomal dominant accelerated bone remodeling have familial expansile osteolysis, early-onset Paget’s disease of bone, expansile skeletal hyperphosphatasia, or panostotic expansile bone disease due to heterozygous 18-, 27-, 15-, and 12-bp insertional duplications, respectively, within exon 1 of TNFRSF11A that encodes the signal peptide of RANK. Juvenile Paget’s disease (JPD), an autosomal recessive disorder, manifests extremely fast skeletal remodeling, and is usually caused by loss-of-function mutations within TNFRSF11B that encodes OPG. These disorders are ultra-rare. A 13-year-old Bolivian girl was referred at age 3 years. One femur was congenitally short and curved. Then, both bowed. Deafness at age 2 years involved missing ossicles and eroded cochleas. Teeth often had absorbed roots, broke, and were lost. Radiographs had revealed acquired tubular bone widening, cortical thickening, and coarse trabeculation. Biochemical markers indicated rapid skeletal turnover. Histopathology showed accelerated remodeling with abundant osteoclasts. JPD was diagnosed. Immobilization from a femur fracture caused severe hypercalcemia that responded rapidly to pamidronate treatment followed by bone turnover marker and radiographic improvement. No TNFRSF11B mutation was found. Instead, a unique heterozygous 15-bp insertional tandem duplication (87dup15) within exon 1 of TNFRSF11A predicted the same pentapeptide extension of RANK that causes expansile skeletal hyperphosphatasia (84dup15). Single nucleotide polymorphisms in TNFRSF11A and TNFRSF11B possibly impacted her phenotype. Our findings: i) reveal that JPD can be associated with an activating mutation within TNFRSF11A, ii) expand the range and overlap of phenotypes among the mendelian disorders of RANK activation, and iii) call for mutation analysis to improve diagnosis, prognostication, recurrence risk assessment, and perhaps treatment selection among the monogenic disorders of RANKL/OPG/RANK activation. PMID:25063546
Bauer, Johannes H; Goupil, Stephan; Garber, Graham B; Helfand, Stephen L
2004-08-31
Recent advances in aging research have uncovered genes and genetic pathways that influence lifespan in such diverse organisms as yeast, nematodes, flies, and mice. The discovery of genes and drugs that affect lifespan has been delayed by the absence of a phenotype other than survivorship, which depends on the measurement of age at death of individuals in a population. The use of survivorship to identify genetic and pharmacological interventions that prolong life is time-consuming and requires a large number of homogeneous animals. Here, we report the development of an assay in Drosophila melanogaster using the expression of molecular biomarkers that accelerates the ability to evaluate potential lifespan-altering interventions. Coupling the expression of an age-dependent molecular biomarker to a lethal toxin reduces the time needed to perform lifespan studies by 80%. The assay recapitulates the effect of the three best known environmental life-span-extending interventions in the fly: ambient temperature, reproductive status, and calorie reduction. Single gene mutations known to extend lifespan in the fly such as Indy and rpd3 also extend lifespan in this assay. We used this assay as a screen to identify drugs that extend lifespan in flies. Lipoic acid and resveratrol were identified as being beneficial in our assay and shown to extend lifespan under normal laboratory conditions. We propose that this assay can be used to screen pharmacological as well as genetic interventions more rapidly for positive effects on lifespan. Copyright 2004 The National Academy of Sciencs of the USA
Bauer, Johannes H.; Goupil, Stephan; Garber, Graham B.; Helfand, Stephen L.
2004-01-01
Recent advances in aging research have uncovered genes and genetic pathways that influence lifespan in such diverse organisms as yeast, nematodes, flies, and mice. The discovery of genes and drugs that affect lifespan has been delayed by the absence of a phenotype other than survivorship, which depends on the measurement of age at death of individuals in a population. The use of survivorship to identify genetic and pharmacological interventions that prolong life is time-consuming and requires a large number of homogeneous animals. Here, we report the development of an assay in Drosophila melanogaster using the expression of molecular biomarkers that accelerates the ability to evaluate potential lifespan-altering interventions. Coupling the expression of an age-dependent molecular biomarker to a lethal toxin reduces the time needed to perform lifespan studies by 80%. The assay recapitulates the effect of the three best known environmental life-span-extending interventions in the fly: ambient temperature, reproductive status, and calorie reduction. Single gene mutations known to extend lifespan in the fly such as Indy and rpd3 also extend lifespan in this assay. We used this assay as a screen to identify drugs that extend lifespan in flies. Lipoic acid and resveratrol were identified as being beneficial in our assay and shown to extend lifespan under normal laboratory conditions. We propose that this assay can be used to screen pharmacological as well as genetic interventions more rapidly for positive effects on lifespan. PMID:15328413
Fuggle, N R; Westbury, L D; Syddall, H E; Duggal, N A; Shaw, S C; Maslin, K; Dennison, E M; Lord, J; Cooper, C
2018-05-28
Among 365 Hertfordshire Cohort Study participants (aged 59-71 years at baseline), higher adiponectin and adiponectin to leptin ratios were associated with lower baseline lumbar spine and femoral neck bone mineral density (BMD). Lower IL-10 was associated with accelerated decline in lumbar spine BMD. This suggests that bone health can be influenced by changes in immune phenotype and alterations in adipokine homeostasis. The aim of this study was to examine the association between indices of inflammation and BMD in a population-based cohort of older adults in the UK. Analyses were based on a sample of 194 men and 171 women of the Hertfordshire Cohort Study (community-living, older adults). Dual energy X-ray absorptiometry (DXA) was performed at the lumbar spine and proximal femur at baseline and repeated at a median of 4.5 years (inter-quartile range 3.6 to 5.2). Inflammatory markers (CRP, TNF, IL-1β, IL-6, IL-8, IL-10, adiponectin and leptin) were ascertained at baseline using enzyme-linked immunosorbent assay (ELISA) techniques and Bio-Plex Pro Assays. Gender-adjusted linear regression was used to examine the associations between markers of inflammation and outcomes with and without adjustment for anthropometric and lifestyle factors. The mean (SD) ages at baseline were 64.4 (2.5) and 66.5 (2.7) years for men and women respectively. Higher levels of adiponectin and adiponectin to leptin ratios were each associated with lower baseline lumbar spine and femoral neck BMD in gender-adjusted (p < 0.01) and fully adjusted (p < 0.05) analyses. Lower levels of IL-10 and TNF were each associated with accelerated decline in lumbar spine BMD in both gender-adjusted (p ≤ 0.05) and fully adjusted (p < 0.05) analyses. In a cohort of older adults, high levels of adiponectin and adiponectin to leptin ratios were both associated with lower BMD at the lumbar spine and femoral neck at baseline, and lower IL-10 was associated with accelerated decline in BMD at the lumbar spine. This adds weight to the theory that bone health can be influenced by changes in immune phenotype and alterations in adipokine homeostasis.
Reduced Gut Acidity Induces an Obese-Like Phenotype in Drosophila melanogaster and in Mice
Yen, Jui-Hung; Kuo, Ping-Chang; Yeh, Sheng-Rong; Lin, Hung-Yu; Fu, Tsai-Feng; Wu, Ming-Shiang; Wang, Horng-Dar; Wang, Pei-Yu
2015-01-01
In order to identify genes involved in stress and metabolic regulation, we carried out a Drosophila P-element-mediated mutagenesis screen for starvation resistance. We isolated a mutant, m2, that showed a 23% increase in survival time under starvation conditions. The P-element insertion was mapped to the region upstream of the vha16-1 gene, which encodes the c subunit of the vacuolar-type H+-ATPase. We found that vha16-1 is highly expressed in the fly midgut, and that m2 mutant flies are hypomorphic for vha16-1 and also exhibit reduced midgut acidity. This deficit is likely to induce altered metabolism and contribute to accelerated aging, since vha16-1 mutant flies are short-lived and display increases in body weight and lipid accumulation. Similar phenotypes were also induced by pharmacological treatment, through feeding normal flies and mice with a carbonic anhydrase inhibitor (acetazolamide) or proton pump inhibitor (PPI, lansoprazole) to suppress gut acid production. Our study may thus provide a useful model for investigating chronic acid suppression in patients. PMID:26436771
Brandenberger, Christina; Mühlfeld, Christian
2017-03-01
Lung aging is associated with structural remodeling, a decline of respiratory function and a higher susceptibility to acute and chronic lung diseases. Individual factors that modulate pulmonary aging include basic genetic configuration, environmental exposure, life-style and biography of systemic diseases. However, the actual aging of the lung takes place in pulmonary resident cells and is closely linked to aging of the immune system (immunosenescence). Therefore, this article reviews the current knowledge about the impact of aging on pulmonary cells and the immune system, without analyzing those factors that may accelerate the aging process in depth. Hallmarks of aging include alterations at molecular, cellular and cell-cell interaction levels. Because of the great variety of cell types in the lung, the consequences of aging display a broad spectrum of phenotypes. For example, aging is associated with more collagen and less elastin production by fibroblasts, thus increasing pulmonary stiffness and lowering compliance. Decreased sympathetic airway innervation may increase the constriction status of airway smooth muscle cells. Aging of resident and systemic immune cells leads to a pro-inflammatory milieu and reduced capacity of fighting infectious diseases. The current review provides an overview of cellular changes occurring with advancing age in general and in several cell types of the lung as well as of the immune system. Thereby, this survey not only aims at providing a better understanding of the mechanisms of pulmonary aging but also to identify gaps in knowledge that warrant further investigations.
Polygenic Risk, Appetite Traits, and Weight Gain in Middle Childhood
Steinsbekk, Silje; Belsky, Daniel; Guzey, Ismail Cuneyt; Wardle, Jane; Wichstrøm, Lars
2018-01-01
IMPORTANCE Genome-wide association studies have identified genetic risks for obesity. These genetic risks influence development of obesity partly by accelerating weight gain in childhood. Research is needed to identify mechanisms to inform intervention. Cross-sectional studies suggest appetite traits as a candidate mechanism. Longitudinal studies are needed to test whether appetite traits mediate genetic influences on children’s weight gain. OBJECTIVE To test whether genetic risk for obesity predicts accelerated weight gain in middle childhood (ages 4–8 years) and whether genetic association with accelerated weight gain is mediated by appetite traits. DESIGN, SETTING, AND PARTICIPANTS Longitudinal study of a representative birth cohort at the Trondheim Early Secure Study, Trondheim, Norway, enrolled at age 4 years during 2007 to 2008, with follow-ups at ages 6 and 8 years. Participants were sampled from all children born in 2003 or 2004 who attended regular community health checkups for 4-year-olds (97.2%attendance; 82.0%consent rate, n = 2475). Nine hundred ninety-five children participated at age 4 years, 795 at age 6 years, and 699 at age 8 years. Analyses included 652 children with genotype, adiposity, and appetite data. MAIN OUTCOMES AND MEASURES Outcomes were body mass index and body-fat phenotypes measured from anthropometry (ages 4, 6, and 8 years) and bioelectrical impedance (ages 6 and 8 years). Genetic risk for obesity was measured using a genetic risk score composed of 32 single-nucleotide polymorphisms previously discovered in genome-wide association studies of adult body mass index. Appetite traits were measured at age 6 years with the Children’s Eating Behavior Questionnaire. RESULTS Of the 652 genotyped child participants, 323 (49.5%) were female, 58 (8.9%) were overweight, and 1 (0.2%) was obese. Children at higher genetic risk for obesity had higher baseline body mass index and fat mass compared with lower genetic risk peers, and they gained weight and fat mass more rapidly during follow-up. Each SD increase in genetic risk score was associated with a 0.22-point increase in BMI at age-4 baseline (for the intercept, unstandardized path coefficient B = 0.22 [95%CI, 0.06–0.38]; P = .008. Children with higher genetic risk scores also gained BMI points more rapidly from ages 4 to 6 years (B = 0.11 [95% CI, 0.03–0.20]; P = .01 ; β = 0.12) and from 6 to 8 years (B = 0.09 [95%CI, 0.00–0.19]; P = .05; β = 0.10), compared with their lower genetic risk peers. Children at higher genetic risk had higher levels of alleged obesogenic appetite traits than peers with lower genetic risk at age 6 years, but appetite traits did not mediate genetic associations with weight gain. The sum of the 5 indirect effects was B = −0.001 (95%CI, −0.02 –0.01); P = .86; β = 0.00. CONCLUSIONS AND RELEVANCE Genetic risk for obesity is associated with accelerated childhood weight gain. Interventions targeting childhood weight gain may provide one path to mitigating genetic risk. However, middle childhood appetite traits may not be a promising target for such interventions. Studies of early-childhood samples are needed to test whether appetite traits explain how genetic risks accelerate growth earlier in development. PMID:26830872
Applications of chemogenomic library screening in drug discovery.
Jones, Lyn H; Bunnage, Mark E
2017-04-01
The allure of phenotypic screening, combined with the industry preference for target-based approaches, has prompted the development of innovative chemical biology technologies that facilitate the identification of new therapeutic targets for accelerated drug discovery. A chemogenomic library is a collection of selective small-molecule pharmacological agents, and a hit from such a set in a phenotypic screen suggests that the annotated target or targets of that pharmacological agent may be involved in perturbing the observable phenotype. In this Review, we describe opportunities for chemogenomic screening to considerably expedite the conversion of phenotypic screening projects into target-based drug discovery approaches. Other applications are explored, including drug repositioning, predictive toxicology and the discovery of novel pharmacological modalities.
Polygenic Risk, Rapid Childhood Growth, and the Development of Obesity
Belsky, Daniel W.; Moffitt, Terrie E.; Houts, Renate; Bennett, Gary G.; Biddle, Andrea K.; Blumenthal, James A.; Evans, James P.; Harrington, HonaLee; Sugden, Karen; Williams, Benjamin; Poulton, Richie; Caspi, Avshalom
2012-01-01
Objective To test how genomic loci identified in genome-wide association studies influence the development of obesity. Design A 38-year prospective longitudinal study of a representative birth cohort. Setting The Dunedin Multidisciplinary Health and Development Study, Dunedin, New Zealand. Participants One thousand thirty-seven male and female study members. Main Exposures We assessed genetic risk with a multilocus genetic risk score. The genetic risk score was composed of single-nucleotide polymorphisms identified in genome-wide association studies of obesity-related phenotypes. We assessed family history from parent body mass index data collected when study members were 11 years of age. Main Outcome Measures Body mass index growth curves, developmental phenotypes of obesity, and adult obesity outcomes were defined from anthropometric assessments at birth and at 12 subsequent in-person interviews through 38 years of age. Results Individuals with higher genetic risk scores were more likely to be chronically obese in adulthood. Genetic risk first manifested as rapid growth during early childhood. Genetic risk was unrelated to birth weight. After birth, children at higher genetic risk gained weight more rapidly and reached adiposity rebound earlier and at a higher body mass index. In turn, these developmental phenotypes predicted adult obesity, mediating about half the genetic effect on adult obesity risk. Genetic associations with growth and obesity risk were independent of family history, indicating that the genetic risk score could provide novel information to clinicians. Conclusions Genetic variation linked with obesity risk operates, in part, through accelerating growth in the early childhood years after birth. Etiological research and prevention strategies should target early childhood to address the obesity epidemic. PMID:22665028
Riesen, Michèle; Feyst, Inna; Rattanavirotkul, Nattaphong; Ezcurra, Marina; Tullet, Jennifer M.A.; Papatheodorou, Irene; Ziehm, Matthias; Au, Catherine; Gilliat, Ann F.; Hellberg, Josephine; Thornton, Janet M.; Gems, David
2014-01-01
In C. elegans, increased lifespan in daf-2 insulin/IGF-1 receptor mutants is accompanied by up-regulation of the MDL-1 Mad basic helix-loop-helix leucine zipper transcription factor. Here we describe the role of mdl-1 in C. elegans germline proliferation and aging. The deletion allele mdl-1(tm311) shortened lifespan, and did so significantly more so in long-lived daf-2 mutants implying that mdl-1(+) contributes to effects of daf-2 on lifespan. mdl-1 mutant hermaphrodites also lay increased numbers of unfertilized oocytes. During aging, unfertilized oocytes in the uterus develop into tumors, whose development was accelerated by mdl-1(tm311). Opposite phenotypes were seen in daf-2 mutants, i.e. mdl-1 and daf-2 mutant germlines are hyperplastic and hypoplastic, respectively. Thus, MDL-1, like its mammalian orthologs, is an inhibitor of cell proliferation and growth that slows progression of an age-related pathology in C. elegans (uterine tumors). In addition, intestine-limited rescue of mdl-1 increased lifespan but not to wild type levels. Thus, mdl-1 likely acts both in the intestine and the germline to influence age-related mortality. PMID:24531613
Reduced mitochondrial SOD displays mortality characteristics reminiscent of natural aging
Paul, Anirban; Belton, Amy; Nag, Sanjay; Martin, Ian; Grotewiel, Michael S.; Duttaroy, Atanu
2009-01-01
Manganese superoxide dismutase (MnSOD or SOD2) is a key mitochondrial enzymatic antioxidant. Arguably the most striking phenotype associated with complete loss of SOD2 in flies and mice is shortened life span. To further explore the role of SOD2 in protecting animals from aging and age-associated pathology, we generated a unique collection of Drosophila mutants that progressively reduce SOD2 expression and function. Mitochondrial aconitase activity was substantially reduced in the Sod2 mutants, suggesting that SOD2 normally ensures the functional capacity of mitochondria. Flies with severe reductions in SOD2 expression exhibited accelerated senescence of olfactory behavior as well as precocious neurodegeneration and DNA strand breakage in neurons. Furthermore, life span was progressively shortened and age-dependent mortality was increased in conjunction with reduced SOD2 expression, while initial mortality and developmental viability were unaffected. Interestingly, life span and age-dependent mortality varied exponentially with SOD2 activity, indicating that there might normally be a surplus of this enzyme for protecting animals from premature death. Our data support a model in which disruption of the protective effects of SOD2 on mitochondria manifests as profound changes in behavioral and demographic aging as well as exacerbated age-related pathology in the nervous system. PMID:18078670
Spontaneous physical activity protects against fat mass gain
Teske, Jennifer A.; Billington, Charles J.; Kuskowski, Michael A.; Kotz, Catherine M.
2011-01-01
It is unclear whether elevated spontaneous physical activity (SPA, very low-intensity physical activity) positively influences body composition long-term. Objective We determined whether SPA and caloric intake were differentially related to the growth curve trajectories of body weight, FM and FFM between obesity resistant and Sprague-Dawley rats at specific age intervals. Design and Subjects Body composition, SPA and caloric intake were measured in selectively-bred obesity resistant and out-bred Sprague-Dawley rats from 1-18 mo. Data from development throughout maturation were analyzed by longitudinal growth curve modeling to determine the rate and acceleration of body weight, fat mass (FM) and fat-free mass (FFM) gain. Results Obesity resistant rats had a lower rate of FM gain overall, a lower acceleration in body weight early in life, significantly greater SPA and lower cumulative caloric intake. Greater SPA in obesity resistant rats was significantly associated with a lower rate of FM gain overall and lower acceleration in body weight early in life. Obesity resistant rats lost less FFM compared to Sprague-Dawley rats despite that obesity resistant rats had a lower acceleration in FFM gain early in life. Obesity resistant rats gained less FM and more FFM per gram body weight and were less energy efficient than Sprague-Dawley rats. Caloric intake was significantly and positively related to body weight, FM and FFM gain in both groups. Circadian patterns of caloric intake were group and age-dependent. Our data demonstrate that elevated and sustained SPA during development and over the lifespan are related to the reduced the rate of FM gain and may preserve FFM. Conclusion These data support the idea that SPA level is a reproducible marker that reliably predicts propensity for obesity in rats, and that elevated levels of SPA maintained during the lifespan promote a lean phenotype. PMID:21610695
Endothelial transplantation rejuvenates aged hematopoietic stem cell function
Poulos, Michael G.; Gutkin, Michael C.; Llanos, Pierre; Gilleran, Katherine; Rabbany, Sina Y.; Butler, Jason M.
2017-01-01
Age-related changes in the hematopoietic compartment are primarily attributed to cell-intrinsic alterations in hematopoietic stem cells (HSCs); however, the contribution of the aged microenvironment has not been adequately evaluated. Understanding the role of the bone marrow (BM) microenvironment in supporting HSC function may prove to be beneficial in treating age-related functional hematopoietic decline. Here, we determined that aging of endothelial cells (ECs), a critical component of the BM microenvironment, was sufficient to drive hematopoietic aging phenotypes in young HSCs. We used an ex vivo hematopoietic stem and progenitor cell/EC (HSPC/EC) coculture system as well as in vivo EC infusions following myelosuppressive injury in mice to demonstrate that aged ECs impair the repopulating activity of young HSCs and impart a myeloid bias. Conversely, young ECs restored the repopulating capacity of aged HSCs but were unable to reverse the intrinsic myeloid bias. Infusion of young, HSC-supportive BM ECs enhanced hematopoietic recovery following myelosuppressive injury and restored endogenous HSC function in aged mice. Coinfusion of young ECs augmented aged HSC engraftment and enhanced overall survival in lethally irradiated mice by mitigating damage to the BM vascular microenvironment. These data lay the groundwork for the exploration of EC therapies that can serve as adjuvant modalities to enhance HSC engraftment and accelerate hematopoietic recovery in the elderly population following myelosuppressive regimens. PMID:29035282
The effect of accelerated aging on the wear of UHMWPE.
Sakoda, H; Fisher, J; Lu, S; Buchanan, F
2001-01-01
Oxidative degradation of UHMWPE has been found to be a cause of elevated wear rate of the polymer in total joint replacement leading to failure of these devices. In order to evaluate long term stability of polymers, various accelerated aging methods have been developed. In this study, wear rates of shelf aged UHMWPE and "accelerated aged" UHMWPE were compared using a multi-directional pin-on-plate wear test machine in order to evaluate the effect of the accelerated aging on wear. Wear factors of the aged materials were found to depend on their density, which is a measure of oxidation level. Finally, accelerated aging was calibrated against shelf aging in terms of wear rate. Copyright 2001 Kluwer Academic Publishers
Non-atopic males with adult onset asthma are at risk of persistent airflow limitation.
Amelink, M; de Nijs, S B; Berger, M; Weersink, E J; ten Brinke, A; Sterk, P J; Bel, E H
2012-05-01
Patients with asthma have on average a more rapid decline in FEV (1) as compared with the general population. Recent cluster analysis has revealed different asthma phenotypes that can be distinguished by age of onset and reversibility of airflow limitation. This study aimed at detecting risk factors associated with persistent airflow limitation in patients with the adult onset asthma phenotype. We recruited 88 patients with adult onset (≥ 18 years) asthma from an academic pulmonary outpatient clinic in the Netherlands. The associations of age, age of asthma onset, asthma duration, gender, race, atopy, smoking pack-years, BMI, use of oral corticosteroids with post-bronchodilator FEV (1) /FVC were investigated. Multiple linear regression analysis showed an association of absence of atopy (r = -0.27, B = -0.26, P = 0.01) and male gender (r = 0.31, B = 0.30, P = 0.004) with post-bronchodilator FEV (1) /FVC. Multiple logistic regression analysis showed that male patients were 10.8 (CI: 2.6-45.2) times the odds than women to have an FEV (1) /FVC < 0.7, and non-atopic patients were 5.2 (CI: 1.3-20.3) times the odds to have an FEV (1) /FVC < 0.7 than atopic patients. We conclude that in patients with adult onset asthma, male gender and absence of atopy are associated with persistent airflow limitation. This might suggest that amongst patients with adult onset asthma, non-atopic male patients are at increased risk of accelerated decline in lung function. © 2012 Blackwell Publishing Ltd.
[Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments].
Afonnikov, D A; Genaev, M A; Doroshkov, A V; Komyshev, E G; Pshenichnikova, T A
2016-07-01
Phenomics is a field of science at the junction of biology and informatics which solves the problems of rapid, accurate estimation of the plant phenotype; it was rapidly developed because of the need to analyze phenotypic characteristics in large scale genetic and breeding experiments in plants. It is based on using the methods of computer image analysis and integration of biological data. Owing to automation, new approaches make it possible to considerably accelerate the process of estimating the characteristics of a phenotype, to increase its accuracy, and to remove a subjectivism (inherent to humans). The main technologies of high-throughput plant phenotyping in both controlled and field conditions, their advantages and disadvantages, and also the prospects of their use for the efficient solution of problems of plant genetics and breeding are presented in the review.
The thymus of the hairless rhino-j (hr/hr-j) mice
SAN JOSE, I.; GARCÍA-SUÁREZ, O.; HANNESTAD, J.; CABO, R.; GAUNA, L.; REPRESA, J.; VEGA, J. A.
2001-01-01
The hairless (hr) gene is expressed in a large number of tissues, primarily the skin, and a mutation in the hr gene is responsible for the typical cutaneous phenotype of hairless mice. Mutant hr mouse strains show immune defects involving especially T cells and macrophages, as well as an age-related immunodeficiency and an accelerated atrophy of the thymus. These data suggest that the hr mutation causes a defect of this organ, although hr transcripts have not been detected in fetal or adult mice thymus. The present study analyses the thymus of young (3 mo) and adult (9 mo) homozygous hr-rh-j mice (a strain of hairless mice) by means of structural techniques and immunohistochemistry to selectively identify thymic epithelial cells, dendritic cells, and macrophages. There were structural alterations in the thymus of both young and adult rh-rh-j mice, which were more severe in older animals. These alterations consisted of relative cortical atrophy, enlargement of blood vessels, proliferation of perivascular connective tissue, and the appearance of cysts. hr-rh-j mice also showed a decrease in the number of epithelial and dendritic cells, and macrophages. Taken together, present results strongly suggest degeneration and accelerated age-dependent regression of the thymus in hr-rh-j mice, which could explain at least in part the immune defects reported in hairless mouse strains. PMID:11327202
Nilsson, O; Isoherranen, N; Guo, M H; Lui, J C; Jee, Y H; Guttmann-Bauman, I; Acerini, C; Lee, W; Allikmets, R; Yanovski, J A; Dauber, A; Baron, J
2016-11-01
Nutritional excess of vitamin A, a precursor for retinoic acid (RA), causes premature epiphyseal fusion, craniosynostosis, and light-dependent retinopathy. Similarly, homozygous loss-of-function mutations in CYP26B1, one of the major RA-metabolizing enzymes, cause advanced bone age, premature epiphyseal fusion, and craniosynostosis. In this paper, a patient with markedly accelerated skeletal and dental development, retinal scarring, and autism-spectrum disease is presented and the role of retinoic acid in longitudinal bone growth and skeletal maturation is reviewed. Genetic studies were carried out using SNP array and exome sequencing. RA isomers were measured in the patient, family members, and in 18 age-matched healthy children using high-performance liquid chromatography coupled to tandem mass spectrometry. A genomic SNP array identified a novel 8.3 megabase microdeletion on chromosome 10q23.2-23.33. The 79 deleted genes included CYP26A1 and C1 , both major RA-metabolizing enzymes. Exome sequencing did not detect any variants that were predicted to be deleterious in the remaining alleles of these genes or other known retinoic acid-metabolizing enzymes. The patient exhibited elevated plasma total RA (16.5 vs. 12.6±1.5 nM, mean±SD, subject vs. controls) and 13- cis RA (10.7 nM vs. 6.1±1.1). The findings support the hypothesis that elevated RA concentrations accelerate bone and dental maturation in humans. CYP26A1 and C1 haploinsufficiency may contribute to the elevated retinoic acid concentrations and clinical findings of the patient, although this phenotype has not been reported in other patients with similar deletions, suggesting that other unknown genetic or environmental factors may also contribute. © Georg Thieme Verlag KG Stuttgart · New York.
Fox, Raymond G; Magness, Scott; Kujoth, Gregory C; Prolla, Tomas A; Maeda, Nobuyo
2012-05-01
Changes in intestinal absorption of nutrients are important aspects of the aging process. To address this issue, we investigated the impact of accelerated mitochondrial DNA mutations on the stem/progenitor cells in the crypts of Lieberkühn in mice homozygous for a mitochondrial DNA polymerase gamma mutation, Polg(D257A), that exhibit accelerated aging phenotype. As early as 3-7 mo of age, the small intestine was significantly enlarged in the PolgD257A mice. The crypts of the PolgD257A mice contained 20% more cells than those of their wild-type littermates and exhibited a 10-fold increase in cellular apoptosis primarily in the stem/progenitor cell zones. Actively dividing cells were proportionally increased, yet a significantly smaller proportion of cells was in the S phase of the cell cycle. Stem cell-derived organoids from PolgD257A mice failed to develop fully in culture and exhibited fewer crypt units, indicating an impact of the mutation on the intestinal epithelial stem/progenitor cell maintenance. In addition, epithelial cell migration along the crypt-villus axis was slowed and less organized, and the ATP content in the villi was significantly reduced. On a high-fat, high-carbohydrate diet, PolgD257A mice showed significantly restricted absorption of excess lipids accompanied by an increase in fecal steatocrits. We conclude that the PolgD257A mutation causes cell cycle dysregulation in the crypts leading to the age-associated changes in the morphology of the small intestine and contributes to the restricted absorption of dietary lipids.
Outcomes of Childhood Asthma and Wheezy Bronchitis. A 50-Year Cohort Study.
Tagiyeva, Nara; Devereux, Graham; Fielding, Shona; Turner, Stephen; Douglas, Graham
2016-01-01
Cohort studies suggest that airflow obstruction is established early in life, manifests as childhood asthma and wheezy bronchitis, and continues into early adulthood. Although an association between childhood asthma and chronic obstructive pulmonary disease (COPD) in later life has been demonstrated, it is unclear if childhood wheezy bronchitis is associated with COPD. To investigate whether childhood wheezy bronchitis increases the risk of COPD in the seventh decade. A cohort of children recruited in 1964 at age 10 to 15 years, which was followed up in 1989, 1995, and 2001, was followed up again in 2014 when at age 60 to 65 years. Discrete time-to-event and linear mixed effects models were used. FEV1 and FVC were measured. COPD was defined as post-bronchodilator FEV1/FVC <0.7. Childhood wheezing phenotype was related to 1989, 1995, 2001, and 2014 spirometry data. Three hundred thirty subjects, mean age 61 years, were followed up: 38 with childhood asthma; 53 with childhood wheezy bronchitis; and 239 control subjects (of whom 57 developed adulthood-onset wheeze between ages 16 and 46 yr). In adjusted multivariate analyses, childhood asthma was associated with an increased risk of COPD (odds ratio, 6.37; 95% confidence interval, 3.73-10.94), as was childhood wheezy bronchitis (odd ratio 1.81; 95% confidence interval, 1.12-2.91). The COPD risk increased with childhood asthma, and wheezy bronchitis was associated with reduced FEV1 that was evident by the fifth decade and not an accelerated rate of FEV1 decline. In contrast, adulthood-onset wheeze was associated with accelerated FEV1 decline. Childhood wheezy bronchitis and asthma are associated with an increased risk of COPD and reduced ventilatory function.
Redondo, Juliana; Sarkar, Pamela; Kemp, Kevin; Virgo, Paul F; Pawade, Joya; Norton, Aimie; Emery, David C; Guttridge, Martin G; Marks, David I; Wilkins, Alastair; Scolding, Neil J; Rice, Claire M
2017-05-01
Autologous bone-marrow-derived cells are currently employed in clinical studies of cell-based therapy in multiple sclerosis (MS) although the bone marrow microenvironment and marrow-derived cells isolated from patients with MS have not been extensively characterised. To examine the bone marrow microenvironment and assess the proliferative potential of multipotent mesenchymal stromal cells (MSCs) in progressive MS. Comparative phenotypic analysis of bone marrow and marrow-derived MSCs isolated from patients with progressive MS and control subjects was undertaken. In MS marrow, there was an interstitial infiltrate of inflammatory cells with lymphoid (predominantly T-cell) nodules although total cellularity was reduced. Controlling for age, MSCs isolated from patients with MS had reduced in vitro expansion potential as determined by population doubling time, colony-forming unit assay, and expression of β-galactosidase. MS MSCs expressed reduced levels of Stro-1 and displayed accelerated shortening of telomere terminal restriction fragments (TRF) in vitro. Our results are consistent with reduced proliferative capacity and ex vivo premature ageing of bone-marrow-derived cells, particularly MSCs, in MS. They have significant implication for MSC-based therapies for MS and suggest that accelerated cellular ageing and senescence may contribute to the pathophysiology of progressive MS. The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Funding for this study was provided by the Medical Research Council, UK (grant no. MR/K004166/1). The ACTiMuS study is sup-ported by the Silverman Family Foundation, Multiple Sclerosis Trust, Rosetree’s Trust, Catholic Bishops of England and Wales and Friends of Frenchay and SIAMMS-II by the Sir Halley Stewart Trust. C.M.R., P.S., and K.K. received support from the Burden Neurological Institute.
Perinatally acquired HIV infection accelerates epigenetic aging in South African adolescents.
Horvath, Steve; Phillips, Nicole; Heany, Sarah J; Kobor, Michael S; Lin, David Ts; Myer, Landon; Zar, Heather J; Stein, Dan J; Levine, Andrew J; Hoare, Jacqueline
2018-05-08
Recent studies demonstrate that infection with the Human Immunodeficiency Virus-1 (HIV) is associated with accelerated aging effects in adults according to a highly accurate epigenetic biomarker of aging known as epigenetic clock. However, it not yet known whether epigenetic age acceleration occurs as early as adolescence in perinatally HIV-infected (PHIV+) youth. Observational study of PHIV and HIV-uninfected adolescents enrolled in the Cape Town Adolescent Antiretroviral Cohort (CTAAC) Study. The Illumina EPIC array was used to generate blood DNA methylation data from 204 PHIV and 44 age-matched, uninfected (HIV-) adolescents aged 9 to 12 years old. The epigenetic clock software and method was used to estimate two measures of epigenetic age acceleration. Each participant completed a comprehensive neuropsychological test battery upon enrolment to CTAAC. HIV is associated with biologically older blood in PHIV+ adolescents according to both measures of epigenetic age acceleration. One of the measures, extrinsic epigenetic age acceleration, is negatively correlated with measures of cognitive functioning (executive functioning, working memory, processing speed). Overall, our results indicate that epigenetic age acceleration in blood can be observed in PHIV+ adolescents and that these epigenetic changes accompany poorer cognitive functioning.
Chen, Qiuhong; Huang, Junying; Gong, Wenyan; Chen, Zhiquan; Huang, Jiani; Liu, Peiqing; Huang, Heqing
2018-01-15
Advanced glycation end products (AGEs), formed at an accelerated rate under diabetes, play a role in inflammation and fibrosis in mesangial areas in diabetic nephropathy (DN). However, the transcriptional modulator that mediates the cellular response to AGEs remains largely obscure. Our goal was to determine whether myocardin-related transcription factor (MRTF)-A, a key protein involved in the transcriptional regulation of smooth muscle cell phenotype, was responsible for the glomerular mesangial cells (GMCs) injury by AGEs, and, if so, how MRTF-A promoted mesangial dysfunction initiated by AGEs. In this study, MRTF-A was activated by AGEs in terms of protein expression and nuclear translocation in rat GMCs. MRTF-A overexpression synergistically enhanced the induction of FN and ICAM-1 by AGEs. In contract, depletion of MRTF-A abrogated the pathogenic program triggered by AGEs. Then, by interfering with MRTF-A, STAT1, STAT3 and STAT5 nuclear translocation were observed and we screened out STAT5, which was decreased obviously when MRTF-A depleted. Further investigation showed that MRTF-A interacted with STAT5 and promoted its nuclear accumulation and transcriptional activity. Therefore, our present findings suggested a role of MRTF-A in AGEs-induced GMCs injury, and further revealed that the underlying molecular mechanism was related to activating the nuclear factor STAT5. Copyright © 2017 Elsevier B.V. All rights reserved.
Van Camp, Gilles; Cigalotti, Jenny; Bouwalerh, Hammou; Mairesse, Jérôme; Gatta, Eleonora; Palanza, Paola; Maccari, Stefania; Morley-Fletcher, Sara
2018-07-01
The interplay between experiences during critical developmental periods and later adult life is crucial in shaping individual variability in stress coping strategies. Exposure to stressful events in early life has strongly programs an individual's phenotype and adaptive capabilities. Until now, studies on programming and reversal strategies in early life stress animal models have been essentially limited to males. By using the perinatal stress (PRS) rat model (a model more sensitive to aging changes) in middle-aged females, we investigated the behavioral and endocrine responses following exposure in later life to an unpredictable chronic mild stress (uCMS) condition for six weeks. PRS by itself accelerated the ageing-related-disruption in the estrous cycle and led to reductions in the levels of estradiol. It also reduced motivational and risk-taking behavior in later life, with PRS females being characterized by a reduction in self-grooming in the splash test, in the exploration of the light compartment in the light/dark box test and in the time spent eating a palatable food in the novelty-induced suppression feeding test. PRS females showed impaired regulation of plasma glucose and insulin levels following a glucose challenge, with a hyperglycemic phenotype, and disrupted feedback of the HPA axis after acute stress with respect to controls. Remarkably, all PRS-induced alterations were modified by exposure to the uCMS procedure, thus resulting in a disease-dependent intervention; controls were not affected by uCMS, except for a slight and transient reduction in body weight, while PRS females displayed a reduced body weight gain for the entire duration of the uCMS procedure. Interestingly, the effects of uCMS on PRS females were still observed up to two months after its termination and the females displayed heightened rhythms of locomotor activity and enhanced sensitivity to reward with respect to controls exposed to uCMS. Our findings indicate that many parameters of the PRS female adult phenotype are shaped by both early and later life experiences in a non-additive way. As a consequence, early stressed individuals may be programmed with a more dynamic phenotype than non-stressed individuals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sugimura, Tetsu; Jounai, Kenta; Ohshio, Konomi; Suzuki, Hiroaki; Kirisako, Takayoshi; Sugihara, Yoshihiko; Fujiwara, Daisuke
2018-05-01
The decline in immune function caused by aging increases the risk of infectious diseases, tumorigeneses and chronic inflammation, resulting in accelerating senescence. We previously reported a lactic acid bacteria, Lactococcus lactis strain Plasma (synonym of Lactococcus lactis subsp. lactis JCM 5805, Lc-Plasma), that stimulates plasmacytoid dendritic cells (pDCs), which play a crucial role in phylaxis from viral infection. In this study, we investigated the anti-aging effects of long-term oral administration of Lc-Plasma in a senescence-accelerated mouse strain, SAMP6. Mice given Lc-Plasma showed a significant improvement in survival rate at 82 weeks and a decreased senescence score as compared with control mice throughout this study. Anatomic analysis at 82 weeks revealed that the frequency of altered hepatocellular foci was significantly lower, and the incidence of other pathological findings in the liver and lungs tended to be lower in Lc-Plasma mice than in control mice. Transcription level of the IL-1β gene in lungs also tended to be lower in Lc-Plasma mice. Furthermore, the thinning of skin and age-related decrease in muscle mass were also significantly suppressed in the Lc-Plasma group as compared with the control group. Consistent with these phenotypic features, pDCs activity was significantly higher in Lc-Plasma mice than in control mice. In conclusion, long-term administration of Lc-Plasma can decelerate senescence and prolong lifespan via maintenance of the immune system due to activation of pDCs. Copyright © 2018 Elsevier B.V. All rights reserved.
Ramanadham, Sasanka; Yarasheski, Kevin E.; Silva, Matthew J.; Wohltmann, Mary; Novack, Deborah Veis; Christiansen, Blaine; Tu, Xiaolin; Zhang, Sheng; Lei, Xiaoyong; Turk, John
2008-01-01
Phospholipases A2 (PLA2) hydrolyze the sn−2 fatty acid substituent, such as arachidonic acid, from phospholipids, and arachidonate metabolites are recognized mediators of bone modeling. We have previously generated knockout (KO) mice lacking the group VIA PLA2 (iPLA2β), which participates in a variety of signaling events; iPLA2β mRNA is expressed in bones of wild-type (WT) but not KO mice. Cortical bone size, trabecular bone volume, bone mineralizing surfaces, and bone strength are similar in WT and KO mice at 3 months and decline with age in both groups, but the decreases are more pronounced in KO mice. The lower bone mass phenotype observed in KO mice is not associated with an increase in osteoclast abundance/activity or a decrease in osteoblast density, but is accompanied by an increase in bone marrow fat. Relative to WT mice, undifferentiated bone marrow stromal cells (BMSCs) from KO mice express higher levels of PPAR-γ and lower levels of Runx2 mRNA, and this correlates with increased adipogenesis and decreased osteogenesis in BMSCs from these mice. In summary, our studies indicate that age-related losses in bone mass and strength are accelerated in iPLA2β-null mice. Because adipocytes and osteoblasts share a common mesenchymal stem cell origin, our findings suggest that absence of iPLA2β causes abnormalities in osteoblast function and BMSC differentiation and identify a previously unrecognized role of iPLA2β in bone formation. PMID:18349124
Is Post-Traumatic Stress Disorder Associated with Premature Senescence? A Review of the Literature
Lohr, James B.; Palmer, Barton W.; Eidt, Carolyn A.; Aailaboyina, Smitha; Mausbach, Brent T.; Wolkowitz, Owen M.; Thorp, Steven R.; Jeste, Dilip V.
2015-01-01
Post-Traumatic Stress Disorder (PTSD) has major public health significance. Evidence that PTSD may be associated with premature senescence (early or accelerated aging) would have major implications for quality of life and healthcare policy. We conducted a comprehensive review of published empirical studies relevant to early aging in PTSD. Our search included the PubMed, PsycINFO and PILOTS databases for empirical reports published since the year 2000 relevant to early senescence and PTSD, including: (1) biomarkers of senescence (leukocyte telomere length (LTL) and pro-inflammatory markers), (2) prevalence of senescence-associated medical conditions, and (3) mortality rates. All six studies examining LTL indicated reduced LTL in PTSD (pooled Cohen’s d = 0.76). We also found consistent evidence of increased pro-inflammatory markers in PTSD (mean Cohen’s ds), including C-reactive protein = 0.18, Interleukin-1 beta = 0.44, Interleukin-6 = 0.78, and tumor necrosis factor alpha = 0.81. The majority of reviewed studies also indicated increased medical comorbidity among several targeted conditions known to be associated with normal aging, including cardiovascular disease, type 2 diabetes mellitus, gastrointestinal ulcer disease, and dementia. We also found seven of 10 studies indicated PTSD to be associated with earlier mortality (average HR = 1.29). In short, evidence from multiple lines of investigation suggests that PTSD may be associated with a phenotype of accelerated senescence. Further research is critical to understand the nature of this association. There may be a need to re-conceptualize PTSD beyond the boundaries of mental illness, and instead as a full systemic disorder. PMID:25959921
Gong, Aixiu; Chen, Jie; Wu, Jun; Li, Jing; Wang, Lin; Goltzman, David; Miao, Dengshun
2018-04-10
Vitamin D is critical for bone homeostasis and immunomodulation. We therefore assessed whether 1,25-dihydroxyvitamin D (1,25(OH) 2 D) deficiency in mice with targeted deletion of the gene encoding 25-hydroxyvitaminD-1αhydroxylase [1α(OH)ase] (1αOH)ase -/- mice) results in alveolar bone loss and periodontal inflammation in vivo. 10-week-old and 12-month-old 1α(OH)ase -/- mice and wild-type littermates were fed a normal diet or a rescue diet, and the phenotype of the periodontium was then analyzed using micro-computed tomography, histology, immunohistochemistry and real-time RT-PCR. Alveolar bone loss was increased and maxillary bone mineral density (BMD), osteoblast numbers and the number of osterix-positive cells were decreased significantly in 1α(OH)ase -/- mice compared with wild-type mice. Although aging from 10 weeks to 12 months accentuated these changes, and a rescue diet reduced them, the alterations in the 1α(OH)ase -/- mice exceeded the effects of aging and diet change. Nuclear factor kappa light-chain-enhancer of activated B cells (NF-кB) p65 and CD3 positive cells, and the gene expression levels of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), matrix metalloproteinase (MMP) -3 and -8 were all increased significantly in periodontal tissues of 1α(OH)ase -/- mice compared with wild-type mice. Aging from 10 weeks to 12 months also accentuated these changes, and a rescue diet reduced them, however, the alterations in the 1α(OH)ase -/- mice exceeded the effects of aging and diet change. 1,25(OH) 2 D deficiency in the 1α(OH)ase -/- mice accelerated alveolar bone loss by inhibiting osteoblastic bone formation and enhancing periodontal tissue degeneration in a calcium and phosphorus as well as age independent manner. This article is protected by copyright. All rights reserved. © 2018 American Academy of Periodontology.
Luo, Huinan; Tang, Xuehua; Dong, Zhen; Tang, Hui; Nakamura, Takashi; Yatani, Hirofumi
2016-01-01
This study evaluated the influences of accelerated aging on the mechanical properties of veneering ceramics used for zirconia frameworks. Five different veneering ceramics for zirconia frameworks were used. Twenty specimens were fabricated for each veneering ceramic. All specimens were divided into two groups. One was subjected to accelerated aging and the other was used as a control. Accelerated aging was performed in distilled water for 5 h at 200ºC and 2 atm. The density, open porosity, surface roughness, three-point flexural strength, and Vickers hardness were measured. The results showed that the density, open porosity, and surface roughness of all examined veneering ceramics were changed by the accelerated aging process. Accelerated aging was also found to have a positive effect on strength and a negative effect on the hardness.
Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.
Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M
2016-08-18
Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.
Novel gene function revealed by mouse mutagenesis screens for models of age-related disease
Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.
2016-01-01
Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441
Suspected ontogeny of a recently described hypo-androgenic PCOS-like phenotype with advancing age.
Gleicher, Norbert; Kushnir, Vitaly A; Darmon, Sarah K; Wang, Qi; Zhang, Lin; Albertini, David F; Barad, David H
2018-03-01
A recent report described a new PCOS-like phenotype in lean older infertile women, and was characterized by high age-specific anti-Müllerian hormone (AMH) but hypo- rather than the expected hyper-androgenism. The hypo-androgenism was, furthermore, characterized of, likely, adrenal origin and autoimmune etiology. We extracted data on 708 consecutive infertility patients, and separated them into three age-strata, <35, 36-42, and >42 years. In each stratum, we investigated how levels of anti-Müllerian hormone (AMH) and testosterone (T) interrelate between high-AMH (AMH ≥ 75th quantile) and normal AMH (25th-75th quantile) and low-T (total testosterone ≤19.0 ng/dL), normal-T (19.0-29.0 ng/dL) and high-T (>29.0 ng/dL). High-AMH cycles were presumed to reflect PCOS-like patients. Routine in vitro fertilization (IVF) cycle outcomes and clinical phenotypes of patients were then compared between groups with AMH and T as statistical variables. This hypo-androgenic PCOS-like phenotype already exists in age stratum <35 years. It appears to arise from a lean, at very young ages hyper-androgenic PCOS phenotype that develops in comparison to controls (likely autoimmune-induced) insufficiency of the adrenal zona reticularis (low-T and low-DHEAS) and zona fasciculata (low-C), and is characterized by frequent evidence of autoimmunity. A degree of adrenal insufficiency, thus, concomitantly appears to affect adrenal androgen and, to lesser degrees, glucocorticoid production (mineralocorticoids were not investigated). Here investigated new PCOS-like phenotype demonstrates features compatible with what under Rotterdam criteria has been referred to as PCOS phenotype-D. If confirmed, the observation that the ontogeny of this phenotype already at young ages is, likely, driven by adrenal autoimmunity, supports the position of the androgen excess and PCOS society that the etiology of phenotype-D differs from that of classical hyper-androgenic PCOS of mostly ovarian etiology.
Brain Growth Across the Life Span in Autism: Age-Specific Changes in Anatomical Pathology
Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie
2014-01-01
Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has lead to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism there may also be age-specific changes in gene expression, molecular, synaptic, cellular and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. PMID:20920490
Biomedical Informatics on the Cloud: A Treasure Hunt for Advancing Cardiovascular Medicine.
Ping, Peipei; Hermjakob, Henning; Polson, Jennifer S; Benos, Panagiotis V; Wang, Wei
2018-04-27
In the digital age of cardiovascular medicine, the rate of biomedical discovery can be greatly accelerated by the guidance and resources required to unearth potential collections of knowledge. A unified computational platform leverages metadata to not only provide direction but also empower researchers to mine a wealth of biomedical information and forge novel mechanistic insights. This review takes the opportunity to present an overview of the cloud-based computational environment, including the functional roles of metadata, the architecture schema of indexing and search, and the practical scenarios of machine learning-supported molecular signature extraction. By introducing several established resources and state-of-the-art workflows, we share with our readers a broadly defined informatics framework to phenotype cardiovascular health and disease. © 2018 American Heart Association, Inc.
Orlando, Paul A; Gatenby, Robert A; Brown, Joel S
2013-01-01
We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations.
Papež, Václav; Denaxas, Spiros; Hemingway, Harry
2017-01-01
Electronic Health Records are electronic data generated during or as a byproduct of routine patient care. Structured, semi-structured and unstructured EHR offer researchers unprecedented phenotypic breadth and depth and have the potential to accelerate the development of precision medicine approaches at scale. A main EHR use-case is defining phenotyping algorithms that identify disease status, onset and severity. Phenotyping algorithms utilize diagnoses, prescriptions, laboratory tests, symptoms and other elements in order to identify patients with or without a specific trait. No common standardized, structured, computable format exists for storing phenotyping algorithms. The majority of algorithms are stored as human-readable descriptive text documents making their translation to code challenging due to their inherent complexity and hinders their sharing and re-use across the community. In this paper, we evaluate the two key Semantic Web Technologies, the Web Ontology Language and the Resource Description Framework, for enabling computable representations of EHR-driven phenotyping algorithms.
Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.
2013-01-01
We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations. PMID:23508890
Gottlieb, Michael M; Arenillas, David J; Maithripala, Savanie; Maurer, Zachary D; Tarailo Graovac, Maja; Armstrong, Linlea; Patel, Millan; van Karnebeek, Clara; Wasserman, Wyeth W
2015-04-01
Advances in next-generation sequencing (NGS) technologies have helped reveal causal variants for genetic diseases. In order to establish causality, it is often necessary to compare genomes of unrelated individuals with similar disease phenotypes to identify common disrupted genes. When working with cases of rare genetic disorders, finding similar individuals can be extremely difficult. We introduce a web tool, GeneYenta, which facilitates the matchmaking process, allowing clinicians to coordinate detailed comparisons for phenotypically similar cases. Importantly, the system is focused on phenotype annotation, with explicit limitations on highly confidential data that create barriers to participation. The procedure for matching of patient phenotypes, inspired by online dating services, uses an ontology-based semantic case matching algorithm with attribute weighting. We evaluate the capacity of the system using a curated reference data set and 19 clinician entered cases comparing four matching algorithms. We find that the inclusion of clinician weights can augment phenotype matching. © 2015 WILEY PERIODICALS, INC.
Burks, Tyesha N; Marx, Ruth; Powell, Laura; Rucker, Jasma; Bedja, Djahida; Heacock, Elisa; Smith, Barbara J; Foster, D Brian; Kass, David; O'Rourke, Brian; Walston, Jeremy D; Abadir, Peter M
2015-05-20
Although the effects of aging and inflammation on the health of the cardiac muscle are well documented, the combined effects of aging and chronic inflammation on cardiac muscle are largely unknown. The renin-angiotensin system (RAS) has been linked independently to both aging and inflammation, but is understudied in the context of their collective effect. Thus, we investigated localized cardiac angiotensin II type I and type II receptors (AT(1)R, AT(2)R), downstream effectors, and phenotypic outcomes using mouse models of the combination of aging and inflammation and compared it to a model of aging and a model of inflammation. We show molecular distinction in the combined effect of aging and inflammation as compared to each independently. The combination maintained an increased AT(1)R:AT(2)R and expression of Nox2 and exhibited the lowest activity of antioxidants. Despite signaling pathway differences, the combined effect shared phenotypic similarities with aging including oxidative damage, fibrosis, and hypertrophy. These phenotypic similarities have dubbed inflammatory conditions as premature aging, but they are, in fact, molecularly distinct. Moreover, treatment with an AT(1)R blocker, losartan, selectively reversed the signaling changes and ameliorated adverse phenotypic effects in the combination of aging and inflammation as well as each independently.
Burks, Tyesha N.; Marx, Ruth; Powell, Laura; Rucker, Jasma; Bedja, Djahida; Heacock, Elisa; Smith, Barbara J.; Foster, D. Brian; Kass, David; O'Rourke, Brian; Walston, Jeremy D.; Abadir, Peter M.
2015-01-01
Although the effects of aging and inflammation on the health of the cardiac muscle are well documented, the combined effects of aging and chronic inflammation on cardiac muscle are largely unknown. The renin-angiotensin system (RAS) has been linked independently to both aging and inflammation, but is understudied in the context of their collective effect. Thus, we investigated localized cardiac angiotensin II type I and type II receptors (AT1R, AT2R), downstream effectors, and phenotypic outcomes using mouse models of the combination of aging and inflammation and compared it to a model of aging and a model of inflammation. We show molecular distinction in the combined effect of aging and inflammation as compared to each independently. The combination maintained an increased AT1R:AT2R and expression of Nox2 and exhibited the lowest activity of antioxidants. Despite signaling pathway differences, the combined effect shared phenotypic similarities with aging including oxidative damage, fibrosis, and hypertrophy. These phenotypic similarities have dubbed inflammatory conditions as premature aging, but they are, in fact, molecularly distinct. Moreover, treatment with an AT1R blocker, losartan, selectively reversed the signaling changes and ameliorated adverse phenotypic effects in the combination of aging and inflammation as well as each independently. PMID:26221650
Seidmann, L; Suhan, T; Unger, R; Gerein, V; Kirkpatrick, C J
2014-09-01
Placental growth and villous maturation are critical parameters of placental function at the end of pregnancy. A failure in these processes leads to the development of placental dysfunction, as well as fetal and neonatal mortality and morbidity. The aim of the study was to determine the relevant diagnostic markers associated with pathological placental development. Forty tissue samples from normal placentas of different gestational age and 68 pathological term placentas with defective villous maturation (GDM, idiopathic IUFD, preeclamsia, HELLP syndrome) comprised the comparative immunohistochemical study (CD15, CD45 and CD34). Positive immunohistochemical reactions were quantitatively assessed in the chorionic plate and vessels of the villi of different histological type. Physiologically immature placentas of the first and second trimester and pathologically immature term placentas were characterized by marked endothelial CD15-immunostaining. A significant loss of CD15-positive endothelium of the placentas was associated with a physiological and accelerated villous maturity. A spatio-temporal correlation was shown for CD15+ endothelial cells (ECs) and the number of CD45+ stromal cells (SCs). A negative temporal correlation was shown for CD15+ ECs and CD15+ myelomonocytes in the fetal blood. CD34 expression in the ECs was stable during the pregnancy. A correlation between a transient CD15-positive endothelial phenotype and a physiological and pathological fetoplacental immaturity was demonstrated. Physiological and accelerated placental maturation was accompanied by a significant disappearance of CD15-positive endothelium. We propose that "immature" CD15+ endothelium is an important diagnostic marker of the physiological and pathological fetoplacental immaturity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Neurological Dysfunction in Early Maturity of a Model for Niemann-Pick C1 Carrier Status.
Hung, Ya Hui; Walterfang, Mark; Churilov, Leonid; Bray, Lisa; Jacobson, Laura H; Barnham, Kevin J; Jones, Nigel C; O'Brien, Terence J; Velakoulis, Dennis; Bush, Ashley I
2016-07-01
Autosomal recessive inheritance of NPC1 with loss-of-function mutations underlies Niemann-Pick disease, type C1 (NP-C1), a lysosomal storage disorder with progressive neurodegeneration. It is uncertain from limited biochemical studies and patient case reports whether NPC1 haploinsufficiency can cause a partial NP-C1 phenotype in carriers. In the present study, we examined this possibility in heterozygotes of a natural loss-of-function mutant Npc1 mouse model. We found partial motor dysfunction and increased anxiety-like behavior in Npc1 (+/-) mice by 9 weeks of age. Relative to Npc1 (+/+) mice, Npc1 (+/-) mice failed to show neurodevelopmental improvements in motor coordination and balance on an accelerating Rotarod. In the open-field test, Npc1 (+/-) mice showed an intermediate phenotype in spontaneous locomotor activity compared with Npc1 (+/+) and Npc1 (-/-) mice, as well as decreased center tendency. Together with increased stride length under anxiogenic conditions on the DigiGait treadmill, these findings are consistent with heightened anxiety. Our findings indicate that pathogenic NPC1 allele carriers, who represent about 0.66 % of humans, could be vulnerable to motor and anxiety disorders.
Life at the extreme limit: phenotypic characteristics of supercentenarians in Okinawa.
Willcox, D Craig; Willcox, Bradley J; Wang, Nien-Chiang; He, Qimei; Rosenbaum, Matthew; Suzuki, Makoto
2008-11-01
As elite representatives of the rapidly increasing "oldest-old" population, centenarians have become an important model population for understanding human aging. However, as we are beginning to understand more about this important phenotype, another demographic group of even more elite survivors is emerging-so-called "supercentenarians" or those who survive 110-plus years. Little is known about these exceptional survivors. We assessed the Okinawa Centenarian Study (OCS) database for all information on supercentenarians. The database includes dates of birth and year of death for all residents of Okinawa 99 years old or older and a yearly geriatric assessment of all centenarians who consented, enabling prospective study of age-related traits. Of 20 potential supercentenarians identified, 15 had agreed to participate in the OCS interview, physical examination, and blood draw. Of these 15, 12 (3 men and 9 women) met our age validation criteria and were accepted as supercentenarians. Phenotypic variables studied include medical and social history, activities of daily living (ADLs), and clinical phenotypes (physiology, hematology, biochemistry, and immunology). Age at death ranged from 110 to 112 years. The majority of supercentenarians had minimal clinically apparent disease until late in life, with cataracts (42%) and fractures (33%) being common and coronary heart disease (8%), stroke (8%), cancer (0%), and diabetes (0%) rare or not evident on clinical examination. Functionally, most supercentenarians were independent in ADLs at age 100 years, and few were institutionalized before the age of 105 years. Most had normal clinical parameters at age 100 years, but by age 105 exhibited multiple clinical markers of frailty coincident with a rapid ADL decline. Supercentenarians displayed an exceptionally healthy aging phenotype where clinically apparent major chronic diseases and disabilities were markedly delayed, often beyond age 100. They had little clinical history of cardiovascular disease and reported no history of cancer or diabetes. This phenotype is consistent with a more elite phenotype than has been observed in prior studies of centenarians. The genetic and environmental antecedents of this exceptionally healthy aging phenotype deserve further study.
Age is associated with asthma phenotypes.
Ponte, Eduardo V; Lima, Aline; Almeida, Paula C A; de Jesus, Juliana P V; Lima, Valmar B; Scichilone, Nicola; Souza-Machado, Adelmir; Cruz, Álvaro A
2017-11-01
The relationship between age and asthma phenotypes is important as population is ageing, asthma is becoming common in older ages and recently developed treatments for asthma are guided by phenotypes. The aim of this study is to evaluate whether age is associated with specific asthma phenotypes. This is a cross-sectional study. We included subjects with asthma of varied degrees of severity. Subjects underwent spirometry, skin prick test to aeroallergens, answered the Asthma Control Questionnaire and had blood samples collected. We performed binary logistic regression analysis to evaluate whether age is associated with asthma phenotypes. We enrolled 868 subjects. In comparison with subjects ≤ 40 years, older subjects had high odds of irreversible airway obstruction (from 41 to 64 years, OR: 1.83 (95% CI: 1.32-2.54); ≥65 years, OR: 3.45 (2.12-5.60)) and severe asthma phenotypes (from 41 to 64 years, OR: 3.23 (2.26-4.62); ≥65 years, OR: 4.55 (2.39-8.67)). Older subjects had low odds of atopic (from 41 to 64 years, OR: 0.56 (0.39-0.79); ≥65 years, OR: 0.47 (0.27-0.84)) and eosinophilic phenotypes (from 41 to 64 years, OR: 0.63 (0.46-0.84); ≥65 years, OR: 0.39 (0.24-0.64)). Older subjects with asthma have low odds of atopic and eosinophilic phenotypes, whereas they present high odds of irreversible airway obstruction and severe asthma. © 2017 Asian Pacific Society of Respirology.
A novel MC4R deletion coexisting with FTO and MC1R gene variants, causes severe early onset obesity.
Neocleous, Vassos; Shammas, Christos; Phelan, Marie M; Fanis, Pavlos; Pantelidou, Maria; Skordis, Nicos; Mantzoros, Christos; Phylactou, Leonidas A; Toumba, Meropi
2016-07-01
Heterozygous mutations on the melanocortin-4-receptor gene (MC4R) are the most frequent cause of monogenic obesity. We describe a novel MC4R deletion in a girl with severe early onset obesity, tall stature, pale skin and red hair. Clinical and hormonal parameters were evaluated in a girl born full-term by non-consanguineous parents. Her body mass index (BMI) at presentation (3 years) was 30 kg/m 2 (z-score: +4.5SDS). By the age of 5.2 years, she exhibited extreme linear growth acceleration and developed hyperinsulinemia. Direct sequencing of the MC4R, MC1Rand for the knownFTOsingle nucleotide polymorphism (SNP) rs9939609was performed for the patient and her family. A novel heterozygous MC4R p.Met215del (c.643_645delATG) deletion was identified in the patient, her father and her brother, both of whom exhibited a milder phenotype. 3D structural dynamic simulation studies investigated the conformational changes induced by the p.Met215del. The patient and her mother were also found to be carriers of the obesity risk associated FTOrs9939609SNP. Finally, the identification of the known p.Arg160Trp MC1Rvariant in the patient accounts for the red hair and pale skin phenotypic features. The p.Met215del causes global conformational and functional changes as it is localized at the alpha-helical transmembrane regions and the membrane spanning regions of the beta-barrel. This novel mutation produces a severe overgrowth phenotype that is apparent as from infancy and is progressive in childhood. The additional negative effect of environmental and unhealthy lifestyle habits as well as a possible co-interaction of FTOrs9939609 SNP may worsen the phenotype.
Roxo, Fábio F; Lujan, Nathan K; Tagliacollo, Victor A; Waltz, Brandon T; Silva, Gabriel S C; Oliveira, Claudio; Albert, James S
2017-01-01
Identifying habitat characteristics that accelerate organismal evolution is essential to understanding both the origins of life on Earth and the ecosystem properties that are most critical to maintaining life into the future. Searching for these characteristics on a large scale has only recently become possible via advances in phylogenetic reconstruction, time-calibration, and comparative analyses. In this study, we combine these tools with habitat and phenotype data for 105 species in a clade of Neotropical suckermouth catfishes commonly known as cascudinhos. Our goal was to determine whether riverine mesohabitats defined by different flow rates (i.e., pools vs. rapids) and substrates (plants vs. rocks) have affected rates of cascudinho cladogenesis and morphological diversification. In contrast to predictions based on general theory related to life in fast-flowing, rocky riverine habitats, Neoplecostomini lineages associated with these habitats exhibited increased body size, head shape diversity, and lineage and phenotype diversification rates. These findings are consistent with a growing understanding of river rapids as incubators of biological diversification and specialization. They also highlight the urgent need to conserve rapids habitats throughout the major rivers of the world.
Wang, Chuangqi; Choi, Hee June; Kim, Sung-Jin; Desai, Aesha; Lee, Namgyu; Kim, Dohoon; Bae, Yongho; Lee, Kwonmoo
2018-04-27
Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover "accelerating protrusion", which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.
Nabeshima, Yoko; Washida, Miwa; Tamura, Masaru; Maeno, Akiteru; Ohnishi, Mutsuko; Shiroishi, Toshihiko; Imura, Akihiro; Razzaque, M Shawkat; Nabeshima, Yo-ichi
2014-08-01
Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho(-/-) (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl(-/-) mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl(-/-) mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis.
Nabeshima, Yoko; Washida, Miwa; Tamura, Masaru; Maeno, Akiteru; Ohnishi, Mutsuko; Shiroishi, Toshihiko; Imura, Akihiro; Razzaque, M. Shawkat; Nabeshima, Yo-ichi
2014-01-01
Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho-/- (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl-/- mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl-/- mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis. PMID:25080854
Accelerated DNA Methylation Age: Associations with PTSD and Neural Integrity
Wolf, Erika J.; Logue, Mark W.; Hayes, Jasmeet P.; Sadeh, Naomi; Schichman, Steven A.; Stone, Annjanette; Salat, David H.; Milberg, William; McGlinchey, Regina; Miller, Mark W.
2015-01-01
Background Accumulating evidence suggests that post traumatic stress disorder (PTSD) may accelerate cellular aging and lead to premature morbidity and neurocognitive decline. Methods This study evaluated associations between PTSD and DNA methylation (DNAm) age using recently developed algorithms of cellular age by Horvath (2013) and Hannum et al. (2013). These estimates reflect accelerated aging when they exceed chronological age. We also examined if accelerated cellular age manifested in degraded neural integrity, indexed via diffusion tensor imaging. Results Among 281 male and female veterans of the conflicts in Iraq and Afghanistan, DNAm age was strongly related to chronological age (rs ~.88). Lifetime PTSD severity was associated with Hannum DNAm age estimates residualized for chronological age (β = .13, p= .032). Advanced DNAm age was associated with reduced integrity in the genu of the corpus callosum (β = −.17, p= .009) and indirectly linked to poorer working memory performance via this region (indirect β = − .05, p= .029). Horvath DNAm age estimates were not associated with PTSD or neural integrity. Conclusions Results provide novel support for PTSD-related accelerated aging in DNAm and extend the evidence base of known DNAm age correlates to the domains of neural integrity and cognition. PMID:26447678
Diabetes and Neurodegeneration in Wolfram Syndrome
Rohayem, Julia; Ehlers, Christian; Wiedemann, Bärbel; Holl, Reinhard; Oexle, Konrad; Kordonouri, Olga; Salzano, Giuseppina; Meissner, Thomas; Burger, Walter; Schober, Edith; Huebner, Angela; Lee-Kirsch, Min Ae
2011-01-01
OBJECTIVE To describe the diabetes phenotype in Wolfram syndrome compared with type 1 diabetes, to investigate the effect of glycemic control on the neurodegenerative process, and to assess the genotype-phenotype correlation. RESEARCH DESIGN AND METHODS The clinical data of 50 patients with Wolfram syndrome-related diabetes (WSD) were reviewed and compared with the data of 24,164 patients with type 1 diabetes. Patients with a mean HbA1c during childhood and adolescence of ≤7.5 and >7.5% were compared with respect to the occurrence of additional Wolfram syndrome symptoms. The wolframin (WFS1) gene was screened for mutations in 39 patients. WFS1 genotypes were examined for correlation with age at onset of diabetes. RESULTS WSD was diagnosed earlier than type 1 diabetes (5.4 ± 3.8 vs. 7.9 ± 4.2 years; P < 0.001) with a lower prevalence of ketoacidosis (7 vs. 20%; P = 0.049). Mean duration of remission in WSD was 2.3 ± 2.4 vs. 1.6 ± 2.1 in type 1 diabetes (NS). Severe hypoglycemia occurred in 37 vs. 7.9% (P < 0.001). Neurologic disease progression was faster in the WSD group with a mean HbA1c >7.5% (P = 0.031). Thirteen novel WSF1 mutations were identified. Predicted functional consequence of WFS1 mutations correlated with age at WSD onset (P = 0.028). CONCLUSIONS Endoplasmic reticulum stress–mediated decline of β-cells in WSD occurs earlier in life than autoimmune-mediated β-cell destruction in type 1 diabetes. This study establishes a role for WFS1 in determining the age at onset of diabetes in Wolfram syndrome and identifies glucose toxicity as an accelerating feature in the progression of disease. PMID:21602428
Gertych, Arkadiusz; Tajbakhsh, Jian
2013-01-01
This study reports on probing the utility of in situ chromatin texture features such as nuclear DNA methylation and chromatin condensation patterns — visualized by fluorescent staining and evaluated by dedicated three-dimensional (3D) quantitative and high-throughput cell-by-cell image analysis — in assessing the proliferative capacity, i.e. growth behavior of cells: to provide a more dynamic picture of a cell population with potential implications in basic science, cancer diagnostics/prognostics and therapeutic drug development. Two types of primary cells and four different cancer cell lines were propagated and subjected to cell-counting, flow cytometry, confocal imaging, and 3D image analysis at various points in culture. Additionally a subset of primary and cancer cells was accelerated into senescence by oxidative stress. DNA methylation and chromatin condensation levels decreased with declining doubling times when primary cells aged in culture with the lowest levels reached at the stage of proliferative senescence. In comparison, immortal cancer cells with constant but higher doubling times mostly displayed lower and constant levels of the two in situ-derived features. However, stress-induced senescent primary and cancer cells showed similar levels of these features compared with primary cells that had reached natural growth arrest. With regards to global DNA methylation and chromatin condensation levels, aggressively growing cancer cells seem to take an intermediate level between normally proliferating and senescent cells. Thus, normal cells apparently reach cancer-cell equivalent stages of the two parameters at some point in aging, which might challenge phenotypic distinction between these two types of cells. Companion high-resolution molecular profiling could provide information on possible underlying differences that would explain benign versus malign cell growth behaviors. PMID:23562889
Oh, Jin Ho; Gertych, Arkadiusz; Tajbakhsh, Jian
2013-03-01
This study reports on probing the utility of in situ chromatin texture features such as nuclear DNA methylation and chromatin condensation patterns - visualized by fluorescent staining and evaluated by dedicated three-dimensional (3D) quantitative and high-throughput cell-by-cell image analysis - in assessing the proliferative capacity, i.e. growth behavior of cells: to provide a more dynamic picture of a cell population with potential implications in basic science, cancer diagnostics/prognostics and therapeutic drug development. Two types of primary cells and four different cancer cell lines were propagated and subjected to cell-counting, flow cytometry, confocal imaging, and 3D image analysis at various points in culture. Additionally a subset of primary and cancer cells was accelerated into senescence by oxidative stress. DNA methylation and chromatin condensation levels decreased with declining doubling times when primary cells aged in culture with the lowest levels reached at the stage of proliferative senescence. In comparison, immortal cancer cells with constant but higher doubling times mostly displayed lower and constant levels of the two in situ-derived features. However, stress-induced senescent primary and cancer cells showed similar levels of these features compared with primary cells that had reached natural growth arrest. With regards to global DNA methylation and chromatin condensation levels, aggressively growing cancer cells seem to take an intermediate level between normally proliferating and senescent cells. Thus, normal cells apparently reach cancer-cell equivalent stages of the two parameters at some point in aging, which might challenge phenotypic distinction between these two types of cells. Companion high-resolution molecular profiling could provide information on possible underlying differences that would explain benign versus malign cell growth behaviors.
Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair
Zárate, Sandra; Stevnsner, Tinna; Gredilla, Ricardo
2017-01-01
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer’s disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain. PMID:29311911
Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai
2018-03-01
With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.
Panidis, Dimitrios; Tziomalos, Konstantinos; Papadakis, Efstathios; Chatzis, Panagiotis; Kandaraki, Eleni A; Tsourdi, Elena A; Macut, Djuro; Bjekic-Macut, Jelica; Marthopoulos, Apostolos; Katsikis, Ilias
2015-01-01
Limited data suggest that menstrual cycle abnormalities are more pronounced in younger and more obese patients with polycystic ovary syndrome (PCOS). We aimed to evaluate the association between menstrual cycle pattern and age, obesity and PCOS phenotype in a large population of women with PCOS. We studied 1,297 women with PCOS and divided them according to: a) age in ≤ 20, 21-30 and > 30 years old, b) body mass index in normal weight, overweight and obese and c) PCOS phenotype in phenotype 1 (anovulation, hyperandrogenemia and polycystic ovaries), 2 (anovulation and hyperandrogenemia without polycystic ovaries), 3 (hyperandrogenemia and polycystic ovaries without anovulation) and 4 (anovulation and polycystic ovaries without hyperandrogenemia). The proportion of women with regular menstrual cycles progressively increased in the older age groups, being 8.1, 10.5 and 12.7% in women ≤ 20, 21-30 and > 30 years old, respectively (p = 0.037). The proportion of women with regular menstrual cycles did not differ between normal weight and obese women but was higher in overweight women (9.3, 9.4 and 13%, respectively; p = 0.020). The proportion of women with regular cycles alternating with irregular cycles was highest in women with phenotype 4, intermediate in women with phenotype 2 and lowest in women with phenotype 1 (74.3, 69.4 and 61.7%, respectively; p = 0.027). Menstrual cycle pattern is more irregular in women with the "classic" PCOS phenotypes than in phenotype 4 but appears to normalize with ageing. On the other hand, obesity does not appear to have an important effect on menstrual cycle pattern in PCOS.
Accelerated and accentuated neurocognitive aging in HIV infection.
Sheppard, David P; Iudicello, Jennifer E; Morgan, Erin E; Kamat, Rujvi; Clark, Lindsay R; Avci, Gunes; Bondi, Mark W; Woods, Steven Paul
2017-06-01
There is debate as to whether the neurocognitive changes associated with HIV infection represent an acceleration of the typical aging process or more simply reflect a greater accentuated risk for age-related declines. We aimed to determine whether accelerated neurocognitive aging is observable in a sample of older HIV-infected individuals compared to age-matched seronegatives and older old (i.e., aged ≥65) seronegative adults. Participants in a cross-sectional design included 48 HIV-seronegative (O-) and 40 HIV-positive (O+) participants between the ages of 50-65 (mean ages = 55 and 56, respectively) and 40 HIV-seronegative participants aged ≥65 (OO-; mean age = 74) who were comparable for other demographics. All participants were administered a brief neurocognitive battery of attention, episodic memory, speeded executive functions, and confrontation naming (i.e., Boston Naming Test). The O+ group performed more poorly than the O- group (i.e., accentuated aging), but not differently from the OO- on digit span and initial recall of a supraspan word list, consistent with an accelerating aging profile. However, the O+ group's performance was comparable to the O- group on all other neurocognitive tests (ps > 0.05). These data partially support a model of accelerated neurocognitive aging in HIV infection, which was observed in the domain of auditory verbal attention, but not in the areas of memory, language, or speeded executive functions. Future studies should examine whether HIV-infected adults over 65 evidence accelerated aging in downstream neurocognitive domains and subsequent everyday functioning outcomes.
Csiszar, Anna; Labinskyy, Nazar; Podlutsky, Andrej; Kaminski, Pawel M.; Wolin, Michael S.; Zhang, Cuihua; Mukhopadhyay, Partha; Pacher, Pal; Hu, Furong; de Cabo, Rafael; Ballabh, Praveen; Ungvari, Zoltan
2008-01-01
The dietary polyphenolic compound resveratrol, by activating the protein deacetylase enzyme silent information regulator 2/sirtuin 1 (SIRT1), prolongs life span in evolutionarily distant organisms and may mimic the cytoprotective effects of dietary restriction. The present study was designed to elucidate the effects of resveratrol on cigarette smoke-induced vascular oxidative stress and inflammation, which is a clinically highly relevant model of accelerated vascular aging. Cigarette smoke exposure of rats impaired the acetylcholine-induced relaxation of carotid arteries, which could be prevented by resveratrol treatment. Smoking and in vitro treatment with cigarette smoke extract (CSE) increased reactive oxygen species production in rat arteries and cultured coronary arterial endothelial cells (CAECs), respectively, which was attenuated by resveratrol treatment. The smoking-induced upregulation of inflammatory markers (ICAM-1, inducible nitric oxide synthase, IL-6, and TNF-α) in rat arteries was also abrogated by resveratrol treatment. Resveratrol also inhibited CSE-induced NF-κB activation and inflammatory gene expression in CAECs. In CAECs, the aforementioned protective effects of resveratrol were abolished by knockdown of SIRT1, whereas the overexpression of SIRT1 mimicked the effects of resveratrol. Resveratrol treatment of rats protected aortic endothelial cells against cigarette smoking-induced apoptotic cell death. Resveratrol also exerted antiapoptotic effects in CSE-treated CAECs, which could be abrogated by knockdown of SIRT1. Resveratrol treatment also attenuated CSE-induced DNA damage in CAECs (comet assay). Thus resveratrol and SIRT1 exert antioxidant, anti-inflammatory, and antiapoptotic effects, which protect the endothelial cells against the adverse effects of cigarette smoking-induced oxidative stress. The vasoprotective effects of resveratrol will likely contribute to its anti-aging action in mammals and may be especially beneficial in patho-physiological conditions associated with accelerated vascular aging. PMID:18424637
Traumatic stress and accelerated DNA methylation age: A meta-analysis.
Wolf, Erika J; Maniates, Hannah; Nugent, Nicole; Maihofer, Adam X; Armstrong, Don; Ratanatharathorn, Andrew; Ashley-Koch, Allison E; Garrett, Melanie; Kimbrel, Nathan A; Lori, Adriana; Va Mid-Atlantic Mirecc Workgroup; Aiello, Allison E; Baker, Dewleen G; Beckham, Jean C; Boks, Marco P; Galea, Sandro; Geuze, Elbert; Hauser, Michael A; Kessler, Ronald C; Koenen, Karestan C; Miller, Mark W; Ressler, Kerry J; Risbrough, Victoria; Rutten, Bart P F; Stein, Murray B; Ursano, Robert J; Vermetten, Eric; Vinkers, Christiaan H; Uddin, Monica; Smith, Alicia K; Nievergelt, Caroline M; Logue, Mark W
2018-06-01
Recent studies examining the association between posttraumatic stress disorder (PTSD) and accelerated aging, as defined by DNA methylation-based estimates of cellular age that exceed chronological age, have yielded mixed results. We conducted a meta-analysis of trauma exposure and PTSD diagnosis and symptom severity in association with accelerated DNA methylation age using data from 9 cohorts contributing to the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (combined N = 2186). Associations between demographic and cellular variables and accelerated DNA methylation age were also examined, as was the moderating influence of demographic variables. Meta-analysis of regression coefficients from contributing cohorts revealed that childhood trauma exposure (when measured with the Childhood Trauma Questionnaire) and lifetime PTSD severity evidenced significant, albeit small, meta-analytic associations with accelerated DNA methylation age (ps = 0.028 and 0.016, respectively). Sex, CD4T cell proportions, and natural killer cell proportions were also significantly associated with accelerated DNA methylation age (all ps < 0.02). PTSD diagnosis and lifetime trauma exposure were not associated with advanced DNA methylation age. There was no evidence of moderation of the trauma or PTSD variables by demographic factors. Results suggest that traumatic stress is associated with advanced epigenetic age and raise the possibility that cells integral to immune system maintenance and responsivity play a role in this. This study highlights the need for additional research into the biological mechanisms linking traumatic stress to accelerated DNA methylation age and the importance of furthering our understanding of the neurobiological and health consequences of PTSD. Published by Elsevier Ltd.
Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard
2015-03-09
Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. Copyright © 2015 Brown et al.
Zbrowse: An interactive GWAS results browser
USDA-ARS?s Scientific Manuscript database
The growing number of genotyped populations, the advent of high-throughput phenotyping techniques and the development of GWAS analysis software has rapidly accelerated the number of GWAS experimental results. Candidate gene discovery from these results files is often tedious, involving many manual s...
Whole Genome Analysis for Beef Tenderness
USDA-ARS?s Scientific Manuscript database
Meat tenderness is the single most important trait affecting palatability and consumer satisfaction with beef products. Current breeding values for meat tenderness traits have low accuracy because progeny phenotypes are not generally recorded. Selection for this trait could be accelerated by DNA m...
Accelerated age-related olfactory decline among type 1 Usher patients
Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D.
2016-01-01
Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin’ Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome. PMID:27329700
Accelerated age-related olfactory decline among type 1 Usher patients.
Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D
2016-06-22
Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin' Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome.
Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma.
Liu, Hen-Yu; Huang, Chiung-Fang; Lin, Tzu-Chieh; Tsai, Ching-Yu; Tina Chen, Szu-Yu; Liu, Alice; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Williams, David F; Deng, Win-Ping
2014-12-01
Aging is related to loss of functional stem cell accompanying loss of tissue and organ regeneration potentials. Previously, we demonstrated that the life span of ovariectomy-senescence accelerated mice (OVX-SAMP8) was significantly prolonged and similar to that of the congenic senescence-resistant strain of mice after platelet rich plasma (PRP)/embryonic fibroblast transplantation. The aim of this study is to investigate the potential of PRP for recovering cellular potential from senescence and then delaying animal aging. We first examined whether stem cells would be senescent in aged mice compared to young mice. Primary adipose derived stem cells (ADSCs) and bone marrow derived stem cells (BMSCs) were harvested from young and aged mice, and found that cell senescence was strongly correlated to animal aging. Subsequently, we demonstrated that PRP could recover cell potential from senescence, such as promote cell growth (cell proliferation and colony formation), increase osteogenesis, decrease adipogenesis, restore cell senescence related markers and resist the oxidative stress in stem cells from aged mice. The results also showed that PRP treatment in aged mice could delay mice aging as indicated by survival, body weight and aging phenotypes (behavior and gross morphology) in term of recovering the cellular potential of their stem cells compared to the results on aged control mice. In conclusion these findings showed that PRP has potential to delay aging through the recovery of stem cell senescence and could be used as an alternative medicine for tissue regeneration and future rejuvenation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brain growth across the life span in autism: age-specific changes in anatomical pathology.
Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie
2011-03-22
Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has led to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism, there may also be age-specific changes in gene expression, molecular, synaptic, cellular, and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation, and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. Copyright © 2010 Elsevier B.V. All rights reserved.
Bashkireva, A S
2012-01-01
The studies of biological age, aging rate, mental work capacity in professional drivers were conducted. The examination revealed peculiarities of system organization of functions determining the mental work capacity levels. Dynamics of the aging process of professional driver's organism in relation with calendar age and driving experience were shown using the biological age model. The results point at the premature decrease of the mental work capacity in professional drivers. It was proved, that premature age-related changes of physiologic and psychophysiologic indices in drivers are just "risk indicators", while long driving experience is a real risk factor, accelerating the aging process. The "risk group" with manifestations of accelerating aging was observed in 40-49-year old drivers with 15-19 years of professional experience. The expediency of using the following methods for the age rate estimation according to biologic age indices and necessity of prophylactic measures for premature and accelerated aging prevention among working population was demonstrated.
Computational Approaches to Phenotyping
Lussier, Yves A.; Liu, Yang
2007-01-01
The recent completion of the Human Genome Project has made possible a high-throughput “systems approach” for accelerating the elucidation of molecular underpinnings of human diseases, and subsequent derivation of molecular-based strategies to more effectively prevent, diagnose, and treat these diseases. Although altered phenotypes are among the most reliable manifestations of altered gene functions, research using systematic analysis of phenotype relationships to study human biology is still in its infancy. This article focuses on the emerging field of high-throughput phenotyping (HTP) phenomics research, which aims to capitalize on novel high-throughput computation and informatics technology developments to derive genomewide molecular networks of genotype–phenotype associations, or “phenomic associations.” The HTP phenomics research field faces the challenge of technological research and development to generate novel tools in computation and informatics that will allow researchers to amass, access, integrate, organize, and manage phenotypic databases across species and enable genomewide analysis to associate phenotypic information with genomic data at different scales of biology. Key state-of-the-art technological advancements critical for HTP phenomics research are covered in this review. In particular, we highlight the power of computational approaches to conduct large-scale phenomics studies. PMID:17202287
Chronic inflammation as a determinant of future aging phenotypes.
Akbaraly, Tasnime N; Hamer, Mark; Ferrie, Jane E; Lowe, Gordon; Batty, G David; Hagger-Johnson, Gareth; Singh-Manoux, Archana; Shipley, Martin J; Kivimäki, Mika
2013-11-05
The importance of chronic inflammation as a determinant of aging phenotypes may have been underestimated in previous studies that used a single measurement of inflammatory markers. We assessed inflammatory markers twice over a 5-year exposure period to examine the association between chronic inflammation and future aging phenotypes in a large population of men and women. We obtained data for 3044 middle-aged adults (28.2% women) who were participating in the Whitehall II study and had no history of stroke, myocardial infarction or cancer at our study's baseline (1997-1999). Interleukin-6 was measured at baseline and 5 years earlier. Cause-specific mortality, chronic disease and functioning were ascertained from hospital data, register linkage and clinical examinations. We used these data to create 4 aging phenotypes at the 10-year follow-up (2007-2009): successful aging (free of major chronic disease and with optimal physical, mental and cognitive functioning), incident fatal or nonfatal cardiovascular disease, death from noncardiovascular causes and normal aging (all other participants). Of the 3044 participants, 721 (23.7%) met the criteria for successful aging at the 10-year follow-up, 321 (10.6%) had cardiovascular disease events, 147 (4.8%) died from noncardiovascular causes, and the remaining 1855 (60.9%) were included in the normal aging phenotype. After adjustment for potential confounders, having a high interleukin-6 level (> 2.0 ng/L) twice over the 5-year exposure period nearly halved the odds of successful aging at the 10-year follow-up (odds ratio [OR] 0.53, 95% confidence interval [CI] 0.38-0.74) and increased the risk of future cardiovascular events (OR 1.64, 95% CI 1.15-2.33) and noncardiovascular death (OR 2.43, 95% CI 1.58-3.80). Chronic inflammation, as ascertained by repeat measurements, was associated with a range of unhealthy aging phenotypes and a decreased likelihood of successful aging. Our results suggest that assessing long-term chronic inflammation by repeat measurement of interleukin-6 has the potential to guide clinical practice.
Wang, Guo-Kun; Zhang, Meng; Gong, Jiang-Feng; Guo, Qi-Fang; Feng, Ya-Nan; Wang, Wei
2012-12-01
Overexpressing TaUb2 promoted stem growth and resulted in early flowering in transgenic tobacco plants. Ubiquitin are involved in the production, metabolism and proper function of gibberellin. The ubiquitin-26S proteasome system (UPS), in which ubiquitin (Ub) functions as a marker, is a post-translational regulatory system that plays a prominent role in various biological processes. To investigate the impact of different Ub levels on plant growth and development, transgenic tobacco (Nicotiana tabacum L.) plants were engineered to express an Ub gene (TaUb2) from wheat (Triticum aestivum L.) under the control of cauliflower mosaic virus 35S promoter. Transgenic tobacco plants overexpressing TaUb2 demonstrated an accelerated growth rate at early stage and an early flowering phenotype in development. The preceding expression of MADS-box genes also corresponded to the accelerated developmental phenotypes of the transgenic tobacco plants compared to that of wild-type (WT). Total gibberellin (GA) and active GA contents in transgenic tobacco plants were higher than those in WT at the corresponding developmental stages, and some GA metabolism genes were upregulated. Treatment with GA(3) conferred a similarly accelerated grown rate in WT plants to that of transgenic tobacco plants, while growth was inhibited when transgenic tobacco plants were treated with a GA biosynthesis inhibitor. Thus, the results suggest that Ub are involved in the production, metabolism and proper function of GA, which is important in the regulation of plant growth and development.
Menopause accelerates biological aging
Levine, Morgan E.; Lu, Ake T.; Chen, Brian H.; Hernandez, Dena G.; Singleton, Andrew B.; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E.; Quach, Austin; Kusters, Cynthia D. J.; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E.; Widschwendter, Martin; Ritz, Beate R.; Absher, Devin; Assimes, Themistocles L.; Horvath, Steve
2016-01-01
Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the “epigenetic clock”), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926
Kochunov, Peter; Glahn, David C; Rowland, Laura M; Olvera, Rene L; Winkler, Anderson; Yang, Yi-Hong; Sampath, Hemalatha; Carpenter, Will T; Duggirala, Ravindranath; Curran, Joanne; Blangero, John; Hong, L Elliot
2013-03-01
Elevated rate of aging-related biological and functional decline, termed "accelerated aging," is reported in patients with schizophrenia (SCZ) and major depressive disorder (MDD). We used diffusion tensor imaging derived fractional anisotropy (FA) as a biomarker of aging-related decline in white matter (WM) integrity to test the hypotheses of accelerated aging in SCZ and MDD. The SCZ cohort comprised 58 SCZ patients and 60 controls (aged 20-60 years). The MDD cohort comprised 136 MDD patients and 351 controls (aged 20-79 years). The main outcome measures were the diagnosis-by-age interaction on whole-brain-averaged WM FA values and FA values from 12 major WM tracts. Diagnosis-by-age interaction for the whole-brain average FA was significant for the SCZ (p = .04) but not the MDD (p = .80) cohort. Diagnosis-by-age interaction was nominally significant (p<.05) for five WM tracts for SCZ and for none of the tracts in the MDD cohort. Tract-specific heterochronicity of the onset of age-related decline in SCZ demonstrated strong negative correlations with the age-of-peak myelination and the rates of age-related decline obtained from normative sample (r =-.61 and-.80, p<.05, respectively). No such trends existed for MDD cohort. Cerebral WM showed accelerated aging in SCZ but not in MDD, suggesting some difference in the pathophysiology underlying their WM aging changes. Tract-specific heterochronicity of WM development modulated presentation of accelerated aging in SCZ: WM tracts that matured later in life appeared more sensitive to the pathophysiology of SCZ and demonstrated more susceptibility to disorder-related accelerated decline in FA values with age. This trend was not observed in MDD cohort. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Kochunov, P.; Glahn, D.C.; Rowland, L.M.; Olvera, R.L.; Winkler, A; Yang, Y.H.; Sampath, H.; Carpenter, W.T.; Dugarrila, R.; Curran, J.; Blangero, J.; Hong, L.E.
2012-01-01
Introduction Elevated rate of aging-related biological and functional decline, termed accelerated aging, is reported in patients with schizophrenia (SCZ) and major depressive disorder (MDD). We used diffusion tensor imaging (DTI) derived fractional anisotropy (FA) as biomarkers of aging-related decline in white matter (WM) integrity to test the hypotheses of accelerated aging in SCZ and MDD. Methods The SCZ cohort was composed of 58/60 SCZ patients/controls (age=20–60years). MDD cohort was composed of 136/351 MDD patients/controls (age=20–79years). Main outcome measures were the diagnosis-by-age interaction on whole-brain-averaged WM FA values and FA values from twelve major WM tracts. Results Diagnosis-by-age interaction for the whole-brain average FA was significant for the SCZ (p=0.04) but not in MDD cohort (p=0.80). Diagnosis-by-age interaction was nominally significant (p<0.05) for five WM tracts for SCZ and for none of the tracts in the MDD cohort. Tract-specific heterochronicity of the onset of age-related decline in SCZ demonstrated strong negative correlations with the age-of- peak myelination and the rates of age-related decline obtained from normative sample (r=−0.61 and −0.80, p<0.05, respectively). No such trends existed for MDD cohort. Conclusion Cerebral WM showed accelerated aging in SCZ but not in MDD, suggesting some difference in the pathophysiology underlying their WM aging changes. Tract-specific heterochronicity of WM development modulated presentation of accelerated aging in SCZ: white matter tracts that matured later in life appeared more sensitive to the pathophysiology of SCZ and demonstrated more susceptibility to disorder-related accelerated decline in FA values with age. This trend was not observed in MDD cohort. PMID:23200529
Cell and small animal models for phenotypic drug discovery.
Szabo, Mihaly; Svensson Akusjärvi, Sara; Saxena, Ankur; Liu, Jianping; Chandrasekar, Gayathri; Kitambi, Satish S
2017-01-01
The phenotype-based drug discovery (PDD) approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s) or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery.
Taylor, Chelsea; Commander, Clayton W.; Collaco, Joseph M.; Strug, Lisa J.; Li, Weili; Wright, Fred A.; Webel, Aaron D.; Pace, Rhonda G.; Stonebraker, Jaclyn R.; Naughton, Kathleen; Dorfman, Ruslan; Sandford, Andrew; Blackman, Scott M.; Berthiaume, Yves; Paré, Peter; Drumm, Mitchell L.; Zielenski, Julian; Durie, Peter; Cutting, Garry R.; Knowles, Michael R.; Corey, Mary
2011-01-01
SUMMARY Genetic studies of lung disease in Cystic Fibrosis are hampered by the lack of a severity measure that accounts for chronic disease progression and mortality attrition. Further, combining analyses across studies requires common phenotypes that are robust to study design and patient ascertainment. Using data from the North American Cystic Fibrosis Modifier Consortium (Canadian Consortium for CF Genetic Studies, Johns Hopkins University CF Twin and Sibling Study, and University of North Carolina/Case Western Reserve University Gene Modifier Study), the authors calculated age-specific CF percentile values of FEV1 which were adjusted for CF age-specific mortality data. The phenotype was computed for 2061 patients representing the Canadian CF population, 1137 extreme phenotype patients in the UNC/Case Western study, and 1323 patients from multiple CF sib families in the CF Twin and Sibling Study. Despite differences in ascertainment and median age, our phenotype score was distributed in all three samples in a manner consistent with ascertainment differences, reflecting the lung disease severity of each individual in the underlying population. The new phenotype score was highly correlated with the previously recommended complex phenotype, but the new phenotype is more robust for shorter follow-up and for extreme ages. A disease progression and mortality adjusted phenotype reduces the need for stratification or additional covariates, increasing statistical power and avoiding possible distortions. This approach will facilitate large scale genetic and environmental epidemiological studies which will provide targeted therapeutic pathways for the clinical benefit of patients with CF. PMID:21462361
Optimum Selection Age for Wood Density in Loblolly Pine
D.P. Gwaze; K.J. Harding; R.C. Purnell; Floyd E. Brigwater
2002-01-01
Genetic and phenotypic parameters for core wood density of Pinus taeda L. were estimated for ages ranging from 5 to 25 years at two sites in southern United States. Heritability estimates on an individual-tree basis for core density were lower than expected (0.20-0.31). Age-age genetic correlations were higher than phenotypic correlations,...
Berghänel, Andreas; Heistermann, Michael; Schülke, Oliver; Ostner, Julia
2016-09-28
Prenatal maternal stress affects offspring phenotype in numerous species including humans, but it is debated whether these effects are evolutionarily adaptive. Relating stress to adverse conditions, current explanations invoke either short-term developmental constraints on offspring phenotype resulting in decelerated growth to avoid starvation, or long-term predictive adaptive responses (PARs) resulting in accelerated growth and reproduction in response to reduced life expectancies. Two PAR subtypes were proposed, acting either on predicted internal somatic states or predicted external environmental conditions, but because both affect phenotypes similarly, they are largely indistinguishable. Only external (not internal) PARs rely on high environmental stability particularly in long-lived species. We report on a crucial test case in a wild long-lived mammal, the Assamese macaque (Macaca assamensis), which evolved and lives in an unpredictable environment where external PARs are probably not advantageous. We quantified food availability, growth, motor skills, maternal caretaking style and maternal physiological stress from faecal glucocorticoid measures. Prenatal maternal stress was negatively correlated to prenatal food availability and led to accelerated offspring growth accompanied by decelerated motor skill acquisition and reduced immune function. These results support the 'internal PAR' theory, which stresses the role of stable adverse internal somatic states rather than stable external environments. © 2016 The Author(s).
Luong, Preston M.; Shogan, Benjamin D.; Zaborin, Alexander; Belogortseva, Natalia; Shrout, Joshua D.
2014-01-01
We recently demonstrated that Pseudomonas aeruginosa PAO1 undergoes a pronounced phenotypic change when introduced into the intestines of rats during surgical injury. Recovered strains displayed a specific phenotype (termed the P2 phenotype) characterized by altered pyocyanin production, high collagenase activity, high swarming motility, low resistance to chloramphenicol, and increased killing of Caenorhabditis elegans compared to the inoculating strain (termed the P1 phenotype). The aims of this study were to characterize the differences between the P. aeruginosa P1 and P2 phenotypes in quorum sensing and competitiveness. We then determined the presence of the P2 phenotype among PAO1 strains from various laboratories. Results demonstrated that P2 cells display accelerated growth during early exponential phase and early activation of quorum-sensing systems and overcome the growth of P1 cells in a mixed population. Among eight PAO1 strains obtained from different laboratories, four exhibited the P2 phenotype. Of 27 mutants analyzed from the P. aeruginosa MPAO1 transposon library, 25 displayed P2 phenotypes. The P2 phenotype in both cases correlated with a lack of expression of mexE or mexF due to mutations in mexT and mexF genes. In summary, strains possessing the P2 phenotype are distributed among PAO1 strains commonly used across a variety of research laboratories. Genetically, they are characterized by various mutations in mexT or mexF. PMID:24244000
Abeysinghe, Hima C S; Bokhari, Laita; Quigley, Anita; Choolani, Mahesh; Chan, Jerry; Dusting, Gregory J; Crook, Jeremy M; Kobayashi, Nao R; Roulston, Carli L
2015-09-29
Despite attempts to prevent brain injury during the hyperacute phase of stroke, most sufferers end up with significant neuronal loss and functional deficits. The use of cell-based therapies to recover the injured brain offers new hope. In the current study, we employed human neural stem cells (hNSCs) isolated from subventricular zone (SVZ), and directed their differentiation into GABAergic neurons followed by transplantation to ischemic brain. Pre-differentiated GABAergic neurons, undifferentiated SVZ-hNSCs or media alone were stereotaxically transplanted into the rat brain (n=7/group) 7 days after endothelin-1 induced stroke. Neurological outcome was assessed by neurological deficit scores and the cylinder test. Transplanted cell survival, cellular phenotype and maturation were assessed using immunohistochemistry and confocal microscopy. Behavioral assessments revealed accelerated improvements in motor function 7 days post-transplant in rats treated with pre-differentiated GABAergic cells in comparison to media alone and undifferentiated hNSC treated groups. Histopathology 28 days-post transplant indicated that pre-differentiated cells maintained their GABAergic neuronal phenotype, showed evidence of synaptogenesis and up-regulated expression of both GABA and calcium signaling proteins associated with neurotransmission. Rats treated with pre-differentiated cells also showed increased neurogenic activity within the SVZ at 28 days, suggesting an additional trophic role of these GABAergic cells. In contrast, undifferentiated SVZ-hNSCs predominantly differentiated into GFAP-positive astrocytes and appeared to be incorporated into the glial scar. Our study is the first to show enhanced exogenous repopulation of a neuronal phenotype after stroke using techniques aimed at GABAergic cell induction prior to delivery that resulted in accelerated and improved functional recovery.
Soerensen, Mette; Nygaard, Marianne; Debrabant, Birgit; Mengel-From, Jonas; Dato, Serena; Thinggaard, Mikael; Christensen, Kaare; Christiansen, Lene
2016-06-01
In this study we explored the association between aging-related phenotypes previously reported to predict survival in old age and variation in 77 genes from the DNA repair pathway, 32 genes from the growth hormone 1/ insulin-like growth factor 1/insulin (GH/IGF-1/INS) signalling pathway and 16 additional genes repeatedly considered as candidates for human longevity: APOE, APOA4, APOC3, ACE, CETP, HFE, IL6, IL6R, MTHFR, TGFB1, SIRTs 1, 3, 6; and HSPAs 1A, 1L, 14. Altogether, 1,049 single nucleotide polymorphisms (SNPs) were genotyped in 1,088 oldest-old (age 92-93 years) Danes and analysed with phenotype data on physical functioning (hand grip strength), cognitive functioning (mini mental state examination and a cognitive composite score), activity of daily living and self-rated health. Five SNPs showed association to one of the phenotypes; however, none of these SNPs were associated with a change in the relevant phenotype over time (7 years of follow-up) and none of the SNPs could be confirmed in a replication sample of 1,281 oldest-old Danes (age 94-100). Hence, our study does not support association between common variation in the investigated longevity candidate genes and aging-related phenotypes consistently shown to predict survival. It is possible that larger sample sizes are needed to robustly reveal associations with small effect sizes. Copyright © 2016 Elsevier Inc. All rights reserved.
Romero-Suarez, Sandra; Shen, Jinhua; Brotto, Leticia; Hall, Todd; Mo, Chenglin; Valdivia, Héctor H; Andresen, Jon; Wacker, Michael; Nosek, Thomas M; Qu, Cheng-Kui; Brotto, Marco
2010-08-01
We have recently reported that a novel muscle-specific inositide phosphatase (MIP/MTMR14) plays a critical role in [Ca2+]i homeostasis through dephosphorylation of sn-1-stearoyl-2-arachidonoyl phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2). Loss of function mutations in MIP have been identified in human centronuclear myopathy. We developed a MIP knockout (MIPKO) animal model and found that MIPKO mice were more susceptible to exercise-induced muscle damage, a trademark of muscle functional changes in older subjects. We used wild-type (Wt) mice and MIPKO mice to elucidate the roles of MIP in muscle function during aging. We found MIP mRNA expression, MIP protein levels, and MIP phosphatase activity significantly decreased in old Wt mice. The mature MIPKO mice displayed phenotypes that closely resembled those seen in old Wt mice: i) decreased walking speed, ii) decreased treadmill activity, iii) decreased contractile force, and iv) decreased power generation, classical features of sarcopenia in rodents and humans. Defective Ca2+ homeostasis is also present in mature MIPKO and old Wt mice, suggesting a putative role of MIP in the decline of muscle function during aging. Our studies offer a new avenue for the investigation of MIP roles in skeletal muscle function and as a potential therapeutic target to treat aging sarcopenia.
Cordovez, Viviane; Mommer, Liesje; Moisan, Kay; Lucas-Barbosa, Dani; Pierik, Ronald; Mumm, Roland; Carrion, Victor J.; Raaijmakers, Jos M.
2017-01-01
Beneficial soil microorganisms can affect plant growth and resistance by the production of volatile organic compounds (VOCs). Yet, little is known on how VOCs from soil-borne plant pathogens affect plant growth and resistance. Here we show that VOCs released from mycelium and sclerotia of the fungal root pathogen Rhizoctonia solani enhance growth and accelerate development of Arabidopsis thaliana. Seedlings briefly exposed to the fungal VOCs showed similar phenotypes, suggesting that enhanced biomass and accelerated development are primed already at early developmental stages. Fungal VOCs did not affect plant resistance to infection by the VOC-producing pathogen itself but reduced aboveground resistance to the herbivore Mamestra brassicae. Transcriptomics of A. thaliana revealed that genes involved in auxin signaling were up-regulated, whereas ethylene and jasmonic acid signaling pathways were down-regulated by fungal VOCs. Mutants disrupted in these pathways showed similar VOC-mediated growth responses as the wild-type A. thaliana, suggesting that other yet unknown pathways play a more prominent role. We postulate that R. solani uses VOCs to predispose plants for infection from a distance by altering root architecture and enhancing root biomass. Alternatively, plants may use enhanced root growth upon fungal VOC perception to sacrifice part of the root biomass and accelerate development and reproduction to survive infection. PMID:28785271
Whole-genome sequencing of Atacama skeleton shows novel mutations linked with dysplasia.
Bhattacharya, Sanchita; Li, Jian; Sockell, Alexandra; Kan, Matthew J; Bava, Felice A; Chen, Shann-Ching; Ávila-Arcos, María C; Ji, Xuhuai; Smith, Emery; Asadi, Narges B; Lachman, Ralph S; Lam, Hugo Y K; Bustamante, Carlos D; Butte, Atul J; Nolan, Garry P
2018-04-01
Over a decade ago, the Atacama humanoid skeleton (Ata) was discovered in the Atacama region of Chile. The Ata specimen carried a strange phenotype-6-in stature, fewer than expected ribs, elongated cranium, and accelerated bone age-leading to speculation that this was a preserved nonhuman primate, human fetus harboring genetic mutations, or even an extraterrestrial. We previously reported that it was human by DNA analysis with an estimated bone age of about 6-8 yr at the time of demise. To determine the possible genetic drivers of the observed morphology, DNA from the specimen was subjected to whole-genome sequencing using the Illumina HiSeq platform with an average 11.5× coverage of 101-bp, paired-end reads. In total, 3,356,569 single nucleotide variations (SNVs) were found as compared to the human reference genome, 518,365 insertions and deletions (indels), and 1047 structural variations (SVs) were detected. Here, we present the detailed whole-genome analysis showing that Ata is a female of human origin, likely of Chilean descent, and its genome harbors mutations in genes ( COL1A1 , COL2A1 , KMT2D , FLNB , ATR , TRIP11 , PCNT ) previously linked with diseases of small stature, rib anomalies, cranial malformations, premature joint fusion, and osteochondrodysplasia (also known as skeletal dysplasia). Together, these findings provide a molecular characterization of Ata's peculiar phenotype, which likely results from multiple known and novel putative gene mutations affecting bone development and ossification. © 2018 Bhattacharya et al.; Published by Cold Spring Harbor Laboratory Press.
Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F; Eszes, Marika; Faull, Richard L M; Curtis, Maurice A; Waldvogel, Henry J; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V; Coppola, Giovanni; Yang, X William
2016-07-01
Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=-0.41, p=5.5×10-8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels.
Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels
Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F.; Eszes, Marika; Faull, Richard L.M.; Curtis, Maurice A.; Waldvogel, Henry J.; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V.; Coppola, Giovanni; Yang, X. William
2016-01-01
Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=−0.41, p=5.5×10−8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels. PMID:27479945
Unmanned aerial vehicles for high-throughput phenotyping and agronomic research
USDA-ARS?s Scientific Manuscript database
Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants....
Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard
2015-01-01
Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824
Effect of accelerated aging on the cross-link density of medical grade silicones.
Mahomed, Aziza; Pormehr, Negin Bagheri
2016-11-25
Four specimens of Nagor silicone of different hardness (soft, medium and hard) were swollen, until they reached equilibrium (i.e. constant mass) in five liquids at 25°C, before and after accelerated aging. For the specimens swollen before accelerated aging, the greatest swelling was obtained in methyl cyclohexane, while for the specimens swollen after accelerated aging, the greatest swelling was obtained in cyclohexane. The cross-link density, υ, was also calculated from the swelling measurements for all the specimens, before and after accelerated aging, using the Flory-Rehner equation. The softer silicones, which swelled the most, had lower υ values than harder silicones. The amount of swelling (measured in terms of ϕ) and υ varied significantly (p<0.05) in some cases, between the different silicone hardness and between different liquids. Furthermore, the cross-link density, υ, significantly (p<0.05) increased after accelerated aging in most liquids.Note: ϕ is defined as the volume fraction of polymer in its equilibrium swollen state. A probability value of statistical significance of 0.05 or 5% was selected, hence if a p value of less than 0.05 was obtained, the null hypothesis was rejected (i.e. significant if p<0.05).
Marasco, Valeria; Spencer, Karen A; Robinson, Jane; Herzyk, Pawel; Costantini, David
2013-09-15
Across diverse vertebrate taxa, stressful environmental conditions during development can shape phenotypic trajectories of developing individuals, which, while adaptive in the short-term, may impair health and survival in adulthood. Regardless, the long-lasting benefits or costs of early life stress are likely to depend on the conditions experienced across differing stages of development. Here, we used the Japanese quail (Coturnix coturnix japonica) to experimentally manipulate exposure to stress hormones in developing individuals. We tested the hypothesis that interactions occurring between pre- and post-natal developmental periods can induce long-term shifts on the adult oxidant phenotype in non-breeding sexually mature individuals. We showed that early life stress can induce long-term alterations in the basal antioxidant defences. The magnitude of these effects depended upon the timing of glucocorticoid exposure and upon interactions between the pre- and post-natal stressful stimuli. We also found differences among tissues with stronger effects in the erythrocytes than in the brain in which the long-term effects of glucocorticoids on antioxidant biomarkers appeared to be region-specific. Recent experimental work has demonstrated that early life exposure to stress hormones can markedly reduce adult survival (Monaghan et al., 2012). Our results suggest that long-term shifts in basal antioxidant defences might be one of the potential mechanisms driving such accelerated ageing processes and that post-natal interventions during development may be a potential tool to shape the effects induced by pre-natally glucococorticoid-exposed phenotypes. Copyright © 2013 Elsevier Inc. All rights reserved.
Kamal, Muna; Tamana, Sukhpreet K; Smithson, Lisa; Ding, Linda; Lau, Amanda; Chikuma, Joyce; Mariasine, Jennifer; Lefebvre, Diana L; Subbarao, Padmaja; Becker, Allan B; Turvey, Stuart E; Sears, Malcolm R; Pei, Jacqueline; Mandhane, Piush J
2018-05-03
Childhood sleep-disordered breathing (SDB) symptoms may comprise multiple phenotypes depending on craniofacial anatomy, tonsil and adenoid growth, body habitus, and rhinitis symptoms. The primary objective of this study is to identify and characterize the different SDB phenotypes to two years of age. Data from 770 infants in the Edmonton sub-cohort of the Canadian Healthy Infant Longitudinal Study (CHILD) were analyzed to identify SDB phenotypes based on age of onset and duration of symptoms. Parents completed the 22-item sleep-related breathing disorder (SRBD) scale. Children with a SRBD ratio greater than 0.33 were considered positive for SDB at each quarterly assessment between three months and two years. The STATA Proc trajectory extension identified SDB phenotypes based on their age of onset and duration of symptoms and attributed the percentage chance of a participant being assigned to each phenotype. Multivariate linear regression identified factors associated with increased risk of being assigned to each SDB phenotype. Trajectory analysis identified four phenotypes: no SDB (65.7%), early-onset SDB (15.7%) with peak symptoms at nine months, late-onset SDB (14.2%) with peak symptoms at 18 months, and persistent SDB (5.3%) with symptoms from 3 to 24 months. Rhinitis was associated with all three SDB symptom trajectories (p < 0.05). Children with gastroesophageal reflux disease presented with early (p = 0.03) and late SDB (p < 0.001). Maternal obstructive sleep apnea syndrome (OSAS) was associated with persistent (p = 0.01) and late SDB (p < 0.001). Atopy (positive skin prick test at one year) was associated with persistent SDB (p = 0.04). Infants born prior to 36.5 weeks gestational age were more likely to present with late SDB (p = 0.03). Childhood SDB symptoms, rather than being a homogenous disorder, may comprise multiple overlapping phenotypes each with unique risk factors. Copyright © 2018 Elsevier B.V. All rights reserved.
Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs
NASA Technical Reports Server (NTRS)
Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.
2011-01-01
Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics
Explosive and pyrotechnic aging demonstration
NASA Technical Reports Server (NTRS)
Rouch, L. L., Jr.; Maycock, J. N.
1976-01-01
The survivability was experimentally verified of fine selected explosive and pyrotechnic propellant materials when subjected to sterilization, and prolonged exposure to space environments. This verification included thermal characterization, sterilization heat cycling, sublimation measurements, isothermal decomposition measurements, and accelerated aging at a preselected elevated temperature. Temperatures chosen for sublimation and isothermal decomposition measurements were those in which the decomposition processess occurring would be the same as those taking place in real-time aging. The elevated temperature selected (84 C) for accelerated aging was based upon the parameters calculated from the kinetic data obtained in the isothermal measurement tests and was such that one month of accelerated aging in the laboratory approximated one year of real-time aging at 66 C. Results indicate that HNS-IIA, pure PbN6, KDNBF, and Zr/KC10 are capable of withstanding sterilization. The accelerated aging tests indicated that unsterilized HNS-IIA and Zr/KC104 can withstand the 10 year, elevated temperature exposure, pure PbN6 and KDNBF exhibit small weight losses (less than 2 percent) and B/KC104 exhibits significant changes in its thermal characteristics. Accelerated aging tests after sterilization indicated that only HNS-IIA exhibited high stability.
Asynchrony of senescence among phenotypic traits in a wild mammal population
Hayward, Adam D.; Moorad, Jacob; Regan, Charlotte E.; Berenos, Camillo; Pilkington, Jill G.; Pemberton, Josephine M.; Nussey, Daniel H.
2015-01-01
The degree to which changes in lifespan are coupled to changes in senescence in different physiological systems and phenotypic traits is a central question in biogerontology. It is underpinned by deeper biological questions about whether or not senescence is a synchronised process, or whether levels of synchrony depend on species or environmental context. Understanding how natural selection shapes patterns of synchrony in senescence across physiological systems and phenotypic traits demands the longitudinal study of many phenotypes under natural conditions. Here, we examine the patterns of age-related variation in late adulthood in a wild population of Soay sheep (Ovis aries) that have been the subject of individual-based monitoring for thirty years. We examined twenty different phenotypic traits in both males and females, encompassing vital rates (survival and fecundity), maternal reproductive performance (offspring birth weight, birth date and survival), male rutting behaviour, home range measures, parasite burdens, and body mass. We initially quantified age-related variation in each trait having controlled for annual variation in the environment, among-individual variation and selective disappearance effects. We then standardised our age-specific trait means and tested whether age trajectories could be meaningfully grouped according to sex or the type of trait. Whilst most traits showed age-related declines in later life, we found striking levels of asynchrony both within and between the sexes. Of particular note, female fecundity and reproductive performance declined with age, but male annual reproductive success did not. We also discovered that whilst home range size and quality decline with age in females, home range size increases with age in males. Our findings highlight the complexity of phenotypic ageing under natural conditions and, along with emerging data from other wild populations and laboratory models, suggest that the long-standing hypothesis within evolutionary biology that fitness-related traits should senesce in a synchronous manner is seriously flawed. PMID:26277618
Seeley, Todd W; Sternlicht, Mark D; Klaus, Stephen J; Neff, Thomas B; Liu, David Y
2017-01-01
The effects of pharmacological hypoxia-inducible factor (HIF) stabilization were investigated in the MMTV-Neundl-YD5 (NeuYD) mouse model of breast cancer. This study first confirmed the sensitivity of this model to increased vascular endothelial growth factor (VEGF), using bigenic NeuYD;MMTV-VEGF-25 mice. Tumor initiation was dramatically accelerated in bigenic animals. Bigenic tumors were also more aggressive, with shortened doubling times and increased lung metastasis as compared to NeuYD controls. In separate studies, NeuYD mice were treated three times weekly from 7 weeks of age until study end with two different HIF prolyl hydroxylase inhibitors (HIF-PHIs), FG-4497 or roxadustat (FG-4592). In NeuYD mice, HIF-PHI treatments elevated erythropoiesis markers, but no differences were detected in tumor onset or the phenotypes of established tumors. PMID:28331872
Velarde, Michael C.; Flynn, James M.; Day, Nicholas U.; Melov, Simon; Campisi, Judith
2012-01-01
Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypes in vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo. PMID:22278880
Directed evolution and synthetic biology applications to microbial systems.
Bassalo, Marcelo C; Liu, Rongming; Gill, Ryan T
2016-06-01
Biotechnology applications require engineering complex multi-genic traits. The lack of knowledge on the genetic basis of complex phenotypes restricts our ability to rationally engineer them. However, complex phenotypes can be engineered at the systems level, utilizing directed evolution strategies that drive whole biological systems toward desired phenotypes without requiring prior knowledge of the genetic basis of the targeted trait. Recent developments in the synthetic biology field accelerates the directed evolution cycle, facilitating engineering of increasingly complex traits in biological systems. In this review, we summarize some of the most recent advances in directed evolution and synthetic biology that allows engineering of complex traits in microbial systems. Then, we discuss applications that can be achieved through engineering at the systems level. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Chiao-Chi; Lyu, Yadong; Yu, Li-Chieh; Gu, Xiaohong
2016-09-01
Channel cracking fragmentation testing and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were utilized to study mechanical and chemical degradation of a multilayered backsheet after outdoor and accelerated laboratory aging. A model sample of commercial PPE backsheet, namely polyethylene terephthalate/polyethylene terephthalate/ethylene vinyl acetate (PET/PET/EVA) was investigated. Outdoor aging was performed in Gaithersburg, Maryland, USA for up to 510 days, and complementary accelerated laboratory aging was conducted on the NIST (National Institute of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure). Fracture energy, mode I stress intensity factor and film strength were analyzed using an analytical model based on channel cracking fragmentation testing results. The correlation between mechanical and chemical degradation was discussed for both outdoor and accelerated laboratory aging. The results of this work provide preliminary understanding on failure mechanism of backsheets after weathering, laying the groundwork for linking outdoor and indoor accelerated laboratory testing for multilayer photovoltaic backsheets.
Butler, John S; Beiser, Ines M; Williams, Laura; McGovern, Eavan; Molloy, Fiona; Lynch, Tim; Healy, Dan G; Moore, Helena; Walsh, Richard; Reilly, Richard B; O'Riordan, Seán; Walsh, Cathal; Hutchinson, Michael
2015-01-01
Adult-onset isolated focal dystonia (AOIFD) presenting in early adult life is more frequent in men, whereas in middle age it is female predominant. Temporal discrimination, an endophenotype of adult-onset idiopathic isolated focal dystonia, shows evidence of sexual dimorphism in healthy participants. We assessed the distinctive features of age-related sexual dimorphism of (i) sex ratios in dystonia phenotypes and (ii) sexual dimorphism in temporal discrimination in unaffected relatives of cervical dystonia patients. We performed (i) a meta-regression analysis of the proportion of men in published cohorts of phenotypes of adult-onset dystonia in relation to their mean age of onset and (ii) an analysis of temporal discrimination thresholds in 220 unaffected first-degree relatives (125 women) of cervical dystonia patients. In 53 studies of dystonia phenotypes, the proportion of men showed a highly significant negative association with mean age of onset (p < 0.0001, pseudo-R (2) = 59.6%), with increasing female predominance from 40 years of age. Age of onset and phenotype together explained 92.8% of the variance in proportion of men. Temporal discrimination in relatives under the age of 35 years is faster in women than men but the age-related rate of deterioration in women is twice that of men; after 45 years of age, men have faster temporal discrimination than women. Temporal discrimination in unaffected relatives of cervical dystonia patients and sex ratios in adult-onset dystonia phenotypes show similar patterns of age-related sexual dimorphism. Such age-related sexual dimorphism in temporal discrimination and adult-onset focal dystonia may reflect common underlying mechanisms. Cerebral GABA levels have been reported to show similar age-related sexual dimorphism in healthy participants and may be the mechanism underlying the observed age-related sexual dimorphism in temporal discrimination and the sex ratios in AOIFD.
Effect of accelerated aging on the viscoelastic properties of a medical grade silicone.
Mahomed, Aziza; Hukins, David W L; Kukureka, Stephen N
2015-01-01
The viscoelastic properties of cylinders (diameter 5 mm, height 2.2 ± 0.2 mm) of Nagor silicone elastomer of medium hardness, were investigated before and after the specimens had undergone accelerated aging in saline solution at 70°C for 38, 76 and 114 days (to simulate aging at 37°C, for 1, 2 and 3 years, respectively). All sets of specimens were immersed in physiological saline solution at 37°C during testing and the properties were measured using dynamic mechanical analysis (DMA). A sinusoidal cyclic compression of 40 N ± 5 N was applied over a frequency range, f, of 0.02-25 Hz. Values of the storage, E', and loss, E″, moduli were found to depend on f; the dependence of E' or E″ on the logarithm (base 10) of f was represented by a second-order polynomial. After accelerated aging, the E' and E″ values did not increase significantly (p<0.05). Furthermore, scanning electron microscopy (SEM) showed that accelerated aging did not affect the surface morphology of silicone. Attenuated total reflectance Fourier transform infra-red spectroscopy (ATR-FTIR) showed that accelerated aging had a negligible effect on the surface chemical structures of the material. Differential scanning calorimetry (DSC) showed no changes to the bulk properties of silicone, following accelerated aging.
Cuadrado-Tejedor, Mar; García-Osta, Ana
2016-01-01
A comprehensive chronic mild stress (CMS) procedure is presented, which consists in the application of unpredictable mild stressors to animal models in a random order for several weeks. This assay can be applied to Alzheimer's disease (AD) mouse models, leading to accelerated onset and increased severity of AD phenotypes and signs, including memory deficits and the accumulation of amyloid-β and phospho-tau. These assays open the way towards advanced studies on the influence of sustained mild stress, stress responses and pathways on the onset and propagation of Alzheimer's disease.
Challenges of accelerated aging techniques for elastomer lifetime predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen, Kenneth T.; Bernstein, R.; Celina, M.
Elastomers are often degraded when exposed to air or high humidity for extended times (years to decades). Lifetime estimates normally involve extrapolating accelerated aging results made at higher than ambient environments. Several potential problems associated with such studies are reviewed, and experimental and theoretical methods to address them are provided. The importance of verifying time–temperature superposition of degradation data is emphasized as evidence that the overall nature of the degradation process remains unchanged versus acceleration temperature. The confounding effects that occur when diffusion-limited oxidation (DLO) contributes under accelerated conditions are described, and it is shown that the DLO magnitude canmore » be modeled by measurements or estimates of the oxygen permeability coefficient (P Ox) and oxygen consumption rate (Φ). P Ox and Φ measurements can be influenced by DLO, and it is demonstrated how confident values can be derived. In addition, several experimental profiling techniques that screen for DLO effects are discussed. Values of Φ taken from high temperature to temperatures approaching ambient can be used to more confidently extrapolate accelerated aging results for air-aged materials, and many studies now show that Arrhenius extrapolations bend to lower activation energies as aging temperatures are lowered. Furthermore, best approaches for accelerated aging extrapolations of humidity-exposed materials are also offered.« less
Challenges of accelerated aging techniques for elastomer lifetime predictions
Gillen, Kenneth T.; Bernstein, R.; Celina, M.
2015-03-01
Elastomers are often degraded when exposed to air or high humidity for extended times (years to decades). Lifetime estimates normally involve extrapolating accelerated aging results made at higher than ambient environments. Several potential problems associated with such studies are reviewed, and experimental and theoretical methods to address them are provided. The importance of verifying time–temperature superposition of degradation data is emphasized as evidence that the overall nature of the degradation process remains unchanged versus acceleration temperature. The confounding effects that occur when diffusion-limited oxidation (DLO) contributes under accelerated conditions are described, and it is shown that the DLO magnitude canmore » be modeled by measurements or estimates of the oxygen permeability coefficient (P Ox) and oxygen consumption rate (Φ). P Ox and Φ measurements can be influenced by DLO, and it is demonstrated how confident values can be derived. In addition, several experimental profiling techniques that screen for DLO effects are discussed. Values of Φ taken from high temperature to temperatures approaching ambient can be used to more confidently extrapolate accelerated aging results for air-aged materials, and many studies now show that Arrhenius extrapolations bend to lower activation energies as aging temperatures are lowered. Furthermore, best approaches for accelerated aging extrapolations of humidity-exposed materials are also offered.« less
Ma, Chun-ming; Liu, Xiao-li; Yin, Fu-Zai; Gao, Guo-qin; Wang, Rui; Lu, Qiang
2015-09-01
Hypertriglyceridemic waist (HW) phenotype was associated with an atherogenic lipid profile in adolescents. But unlike adults, the cutoffs of waist circumference are age- and gender-specific standards and are less feasible for non-professional use. The present study tested the hypothesis that simple variables, such as waist-to-height ratio (WHtR) and serum triacylglycerol (TG) concentrations, could be used as screening tools for the identification of adolescents characterized by atherogenic lipid profile. In 2006, anthropometric and biochemical measurements were assessed in a cross-sectional population-based study of 3136 Han adolescents, aged 13-17 years. The hypertriglyceridemic waist-to-height ratio (HWHtR) phenotype was defined as serum TG concentrations ≥1.47 mmol/L and WHtR ≥0.48 for boys and ≥0.46 for girls. Hypercholesterolemia (total cholesterol ≥5.18 mmol/L), high low-density lipoprotein cholesterol (LDL-C ≥3.37 mmol/L), low high-density lipoprotein cholesterol (HDL-C <1.03 mmol/L), and high non-HDL-C (≥3.76 mmol/L) were considered as atherogenic lipid profiles. After control for age and sex, adolescents with the HWHtR phenotype were more likely to have hypercholesterolemia (odds ratio (OR) = 7.8, 95 % confidence interval (CI) = 3.5-17.3, P < 0.001), high LDL-C (OR = 9.4, 95 % CI = 2.8-31.2, P < 0.001), low HDL-C (OR = 10.8, 95 % CI = 6.9-17.0, P < 0.001), and high non-HDL-C (OR = 22.9, 95 % CI = 10.0-52.2, P < 0.001) than those adolescents with normal WHtR and normal serum TG concentrations. The present study demonstrates that HWHtR phenotype is a simple marker for identifying adolescents with atherogenic lipid profile. Compared with HW phenotype, HWHtR phenotype is a non-age-dependent index with higher applicability to screen for cardiovascular risk factors in adolescents. • The hypertriglyceridemic waist phenotype is represented by the simultaneous presence of elevated serum triacylglycerol and increased waist circumference. Hypertriglyceridemic waist phenotype can identify adolescents with metabolic syndrome. But the cutoffs of waist circumference are age- and gender-specific standards and are less feasible for non-professional use. • The present study demonstrates that hypertriglyceridemic waist-to-height ratio phenotype is a simple marker for identifying adolescents with atherogenic lipid profile. Compared with hypertriglyceridemic waist phenotype, hypertriglyceridemic waist-to-height ratio phenotype is a non-age-dependent index with higher applicability to screen for cardiovascular risk factors in adolescents.
High-fidelity detection of crop biomass quantitative trait loci from low-cost imaging in the field
USDA-ARS?s Scientific Manuscript database
Field-based, rapid, and non-destructive techniques for assessing plant productivity can accelerate the discovery of genotype-to-phenotype relationships needed to improve next-generation biomass grass crops. The use of hemispherical imaging and light attenuation modeling was evaluated against destruc...
Kammermeier, Jochen; Dziubak, Robert; Pescarin, Matilde; Drury, Suzanne; Godwin, Heather; Reeve, Kate; Chadokufa, Sibongile; Huggett, Bonita; Sider, Sara; James, Chela; Acton, Nikki; Cernat, Elena; Gasparetto, Marco; Noble-Jamieson, Gabi; Kiparissi, Fevronia; Elawad, Mamoun; Beales, Phil L; Sebire, Neil J; Gilmour, Kimberly; Uhlig, Holm H; Bacchelli, Chiara; Shah, Neil
2017-01-01
Inflammatory bowel disease [IBD] presenting in early childhood is extremely rare. More recently, progress has been made to identify children with monogenic forms of IBD predominantly presenting very early in life. In this study, we describe the heterogeneous phenotypes and genotypes of patients with IBD presenting before the age of 2 years and establish phenotypic features associated with underlying monogenicity. Phenotype data of 62 children with disease onset before the age of 2 years presenting over the past 20 years were reviewed. Children without previously established genetic diagnosis were prospectively recruited for next-generation sequencing. In all, 62 patients [55% male] were identified. The median disease onset was 3 months of age (interquartile range [IQR]: 1 to 11). Conventional IBD classification only applied to 15 patients with Crohn's disease [CD]-like [24%] and three with ulcerative colitis [UC]-like [5%] phenotype; 44 patients [71%] were diagnosed with otherwise unclassifiable IBD. Patients frequently required parenteral nutrition [40%], extensive immunosuppression [31%], haematopoietic stem-cell transplantation [29%], and abdominal surgery [19%]. In 31% of patients, underlying monogenic diseases were established [EPCAM, IL10, IL10RA, IL10RB, FOXP3, LRBA, SKIV2L, TTC37, TTC7A]. Phenotypic features significantly more prevalent in monogenic IBD were: consanguinity, disease onset before the 6th month of life, stunting, extensive intestinal disease and histological evidence of epithelial abnormalities. IBD in children with disease onset before the age of 2 years is frequently unclassifiable into Crohn's disease and ulcerative colitis, particularly treatment resistant, and can be indistinguishable from monogenic diseases with IBD-like phenotype. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Dziubak, Robert; Pescarin, Matilde; Drury, Suzanne; Godwin, Heather; Reeve, Kate; Chadokufa, Sibongile; Huggett, Bonita; Sider, Sara; James, Chela; Acton, Nikki; Cernat, Elena; Gasparetto, Marco; Noble-Jamieson, Gabi; Kiparissi, Fevronia; Elawad, Mamoun; Beales, Phil L.; Sebire, Neil J.; Gilmour, Kimberly; Uhlig, Holm H.; Bacchelli, Chiara; Shah, Neil
2017-01-01
Abstract Objectives: Inflammatory bowel disease [IBD] presenting in early childhood is extremely rare. More recently, progress has been made to identify children with monogenic forms of IBD predominantly presenting very early in life. In this study, we describe the heterogeneous phenotypes and genotypes of patients with IBD presenting before the age of 2 years and establish phenotypic features associated with underlying monogenicity. Methods: Phenotype data of 62 children with disease onset before the age of 2 years presenting over the past 20 years were reviewed. Children without previously established genetic diagnosis were prospectively recruited for next-generation sequencing. Results: In all, 62 patients [55% male] were identified. The median disease onset was 3 months of age (interquartile range [IQR]: 1 to 11). Conventional IBD classification only applied to 15 patients with Crohn’s disease [CD]-like [24%] and three with ulcerative colitis [UC]-like [5%] phenotype; 44 patients [71%] were diagnosed with otherwise unclassifiable IBD. Patients frequently required parenteral nutrition [40%], extensive immunosuppression [31%], haematopoietic stem-cell transplantation [29%], and abdominal surgery [19%]. In 31% of patients, underlying monogenic diseases were established [EPCAM, IL10, IL10RA, IL10RB, FOXP3, LRBA, SKIV2L, TTC37, TTC7A]. Phenotypic features significantly more prevalent in monogenic IBD were: consanguinity, disease onset before the 6th month of life, stunting, extensive intestinal disease and histological evidence of epithelial abnormalities. Conclusions: IBD in children with disease onset before the age of 2 years is frequently unclassifiable into Crohn’s disease and ulcerative colitis, particularly treatment resistant, and can be indistinguishable from monogenic diseases with IBD-like phenotype. PMID:27302973
Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation
Wong, Wai T.
2013-01-01
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and age-related macular degeneration (AMD), share two characteristics in common: (1) a disease prevalence that increases markedly with advancing age, and (2) neuroinflammatory changes in which microglia, the primary resident immune cell of the CNS, feature prominently. These characteristics have led to the hypothesis that pathogenic mechanisms underlying age-related neurodegenerative disease involve aging changes in microglia. If correct, targeting features of microglial senescence may constitute a feasible therapeutic strategy. This review explores this hypothesis and its implications by considering the current knowledge on how microglia undergo change during aging and how the emergence of these aging phenotypes relate to significant alterations in microglial function. Evidence and theories on cellular mechanisms implicated in driving senescence in microglia are reviewed, as are “rejuvenative” measures and strategies that aim to reverse or ameliorate the aging microglial phenotype. Understanding and controlling microglial aging may represent an opportunity for elucidating disease mechanisms and for formulating novel therapies. PMID:23493481
Begum, Jusnara; Lal, Neeraj; Zuo, Jianmin; Beggs, Andrew; Moss, Paul
2016-01-01
Cytomegalovirus (CMV) infection elicits a very strong and sustained intravascular T cell immune response which may contribute towards development of accelerated immune senescence and vascular disease in older people. Virus-specific CD8+ T cell responses have been investigated extensively through the use of HLA-peptide tetramers but much less is known regarding CMV-specific CD4+ T cells. We used a range of HLA class II-peptide tetramers to investigate the phenotypic and transcriptional profile of CMV-specific CD4+ T cells within healthy donors. We show that such cells comprise an average of 0.45% of the CD4+ T cell pool and can reach up to 24% in some individuals (range 0.01–24%). CMV-specific CD4+ T cells display a highly differentiated effector memory phenotype and express a range of cytokines, dominated by dual TNF-α and IFN-γ expression, although substantial populations which express IL-4 were seen in some donors. Microarray analysis and phenotypic expression revealed a profile of unique features. These include the expression of CX3CR1, which would direct cells towards fractalkine on activated endothelium, and the β2-adrenergic receptor, which could permit rapid response to stress. CMV-specific CD4+ T cells display an intense cytotoxic profile with high level expression of granzyme B and perforin, a pattern which increases further during aging. In addition CMV-specific CD4+ T cells demonstrate strong cytotoxic activity against antigen-loaded target cells when isolated directly ex vivo. PD-1 expression is present on 47% of cells but both the intensity and distribution of the inhibitory receptor is reduced in older people. These findings reveal the marked accumulation and unique phenotype of CMV-specific CD4+ T cells and indicate how such T cells may contribute to the vascular complications associated with CMV in older people. PMID:27606804
Shannon, Diane B; McKeown, Scott T W; Lundy, Fionnuala T; Irwin, Chris R
2006-01-01
Wounds of the oral mucosa heal in an accelerated fashion with reduced scarring compared with cutaneous wounds. The differences in healing outcome between oral mucosa and skin could be because of phenotypic differences between the respective fibroblast populations. This study compared paired mucosal and dermal fibroblasts in terms of collagen gel contraction, alpha-smooth muscle actin expression (alpha-SMA), and production of the epithelial growth factors: keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (HGF). The effects of transforming growth factor -beta1 and -beta3 on each parameter were also determined. Gel contraction in floating collagen lattices was determined over a 7-day period. alpha-SMA expression by fibroblasts was determined by Western blotting. KGF and HGF expression were determined by an enzyme-linked immunosorbent assay. Oral fibroblasts induced accelerated collagen gel contraction, yet surprisingly expressed lower levels of alpha-SMA. Oral cells also produced significantly greater levels of both KGF and HGF than their dermal counterparts. Transforming growth factor-beta1 and -beta3, over the concentration range of 0.1-10 ng/mL, had similar effects on cell function, stimulating both gel contraction and alpha-SMA production, but inhibiting KGF and HGF production by both cell types. These data indicate phenotypic differences between oral and dermal fibroblasts that may well contribute to the differences in healing outcome between these two tissues.
NASA Astrophysics Data System (ADS)
Plaček, Vít; Kohout, Tomáš
2010-03-01
Two cable types, which currently are used in nuclear power plants (NPP) and which are composed by jacket/insulation materials, i.e. PVC/PVC and PVC/PE, were exposed to accelerated ageing conditions, in order to simulate their behavior after 10 years in service. The cables were aged under two different test conditions: With relatively high accelerating ageing speed:Radiation ageing was carried out at room temperature at a dose rate of 2900 Gy/h, followed by thermal ageing at 100 °C. This accelerated ageing condition was fairly fast, but still in compliance with the standards. With moderate ageing speed:The radiation and thermal ageing was performed simultaneously (superimposed) at a dose rate of 2.7-3.7Gy/h and a temperature of 68-70 °C. Such a test condition seems to be very close to the radiation and temperature impact onto the cables in the real NPP service. Finally, mechanical properties were measured to characterize the ageing status of the cables. The purpose of this study was to compare degradation effects, derived from both ageing methods, and to demonstrate that results obtained from high values of accelerating parameters and from fast ageing simulation can be very different from reality. The observed results corroborated this assumption.
Rajasekaran, S; Kanna, Rishi Mugesh; Reddy, Ranjani Raja; Natesan, Senthil; Raveendran, Muthuraja; Cheung, Kenneth M C; Chan, Danny; Kao, Patrick Y P; Yee, Anita; Shetty, Ajoy Prasad
2016-11-01
Prospective genetic association study. The aim of this study was to document the variations in the genetic associations, when different magnetic resonance imaging (MRI) phenotypes, age stratification, cohort size, and sequence of cohort inclusion are varied in the same study population. Genetic associations with disc degeneration have shown high inconsistency, generally attributed to hereditary factors and ethnic variations. However, the effect of different phenotypes, size of the study population, age of the cohort, etc have not been documented clearly. Seventy-one single-nucleotide polymorphisms (SNPs) of 41 candidate genes were correlated to six MRI markers of disc degeneration (annular tears, Pfirmann grading, Schmorl nodes, Modic changes, Total Endplate Damage score, and disc bulge) in 809 patients with back pain and/or sciatica. In the same study group, the correlations were then retested for different age groups, different sample, size and sequence of subject inclusion (first 404 and the second 405) and the differences documented. The mean age of population (M: 455, F: 354) was 36.7 ± 10.8 years. Different genetic associations were found with different phenotypes: disc bulge with three SNPs of CILP; annular tears with rs2249350 of ADAMTS5 and rs11247361 IGF1R; modic changes with VDR and MMP20; Pfirmann grading with three SNPs of MMP20 and Schmorl node with SNPs of CALM1 and FN1 and none with Total End Plate Score.Subgroup analysis based on three age groups and dividing the total population into two groups also completely changed the associations for all the six radiographic parameters. In the same study population, SNP associations completely change with different phenotypes. Variations in age, inclusion sequence, and sample size resulted in change of genetic associations. Our study questions the validity of previous studies and necessitates the need for standardizing the description of disc degeneration, phenotype selection, study sample size, age, and other variables in future studies. 4.
Are Anxiety Disorders Associated with Accelerated Aging? A Focus on Neuroprogression
Perna, Giampaolo; Iannone, Giuseppe; Alciati, Alessandra; Caldirola, Daniela
2016-01-01
Anxiety disorders (AnxDs) are highly prevalent throughout the lifespan, with detrimental effects on daily-life functioning, somatic health, and quality of life. An emerging perspective suggested that AnxDs may be associated with accelerated aging. In this paper, we explored the association between AnxDs and hallmarks of accelerated aging, with a specific focus on neuroprogression. We reviewed animal and human findings that suggest an overlap between processes of impaired neurogenesis, neurodegeneration, structural, functional, molecular, and cellular modifications in AnxDs, and aging. Although this research is at an early stage, our review suggests a link between anxiety and accelerated aging across multiple processes involved in neuroprogression. Brain structural and functional changes that accompany normal aging were more pronounced in subjects with AnxDs than in coevals without AnxDs, including reduced grey matter density, white matter alterations, impaired functional connectivity of large-scale brain networks, and poorer cognitive performance. Similarly, molecular correlates of brain aging, including telomere shortening, Aβ accumulation, and immune-inflammatory and oxidative/nitrosative stress, were overrepresented in anxious subjects. No conclusions about causality or directionality between anxiety and accelerated aging can be drawn. Potential mechanisms of this association, limitations of the current research, and implications for treatments and future studies are discussed. PMID:26881136
McClelland, Ruth; Christensen, Kelly; Mohammed, Suhaib; McGuinness, Dagmara; Cooney, Josephine; Bakshi, Andisheh; Demou, Evangelia; MacDonald, Ewan; Caslake, Muriel; Stenvinkel, Peter; Shiels, Paul G
2016-05-01
We have sought to explore the impact of dietary Pi intake on human age related health in the pSoBid cohort (n=666) to explain the disparity between health and deprivation status in this cohort. As hyperphosphataemia is a driver of accelerated ageing in rodent models of progeria we tested whether variation in Pi levels in man associate with measures of biological ageing and health. We observed significant relationships between serum Pi levels and markers of biological age (telomere length (p=0.040) and DNA methylation content (p=0.028), gender and chronological age (p=0.032). When analyses were adjusted for socio-economic status and nutritional factors, associations were observed between accelerated biological ageing (telomere length, genomic methylation content) and dietary derived Pi levels among the most deprived males, directly related to the frequency of red meat consumption. Accelerated ageing is associated with high serum Pi levels and frequency of red meat consumption. Our data provide evidence for a mechanistic link between high intake of Pi and age-related morbidities tied to socio-economic status.
Femoral Head Bone Loss Following Short and Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Blaber, E. A.; Cheng-Campbell, M.; Almeida, E. A. C.
2016-01-01
Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31% decrease in bone volume ratio, a 14% decrease in trabecular thickness, and a 20% decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1.This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration persists during long-duration spaceflight. Furthermore, spaceflight femurs from BionM1 indicate onset of an accelerated aging-like phenotype with signs of osteoarthritic disease shown by disruption of the epiphyseal boundary and endochondral ossification. These effects are likely caused by a failure of stem cells to regenerate degraded tissues and may have significant implications for bone and cartilage health following extensive periods of mechanical unloading during long-duration spaceflight.
Femoral Head Bone Loss Following Short and Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Blaber, Elizabeth A.; Cheng-Campbell, Margareth A.; Almeida, Eduardo A. C.
2016-01-01
Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31 decrease in bone volume ratio, a 14 decrease in trabecular thickness, and a 20 decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1. This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration persists during long-duration spaceflight. Furthermore, spaceflight femurs from BionM1 indicate onset of an accelerated aging-like phenotype with signs of osteoarthritic disease shown by disruption of the epiphyseal boundary and endochondral ossification. These effects are likely caused by a failure of stem cells to regenerate degraded tissues and may have significant implications for bone and cartilage health following extensive periods of mechanical unloading during long-duration spaceflight.
Islam, Farhana; Mulsant, Benoit H; Voineskos, Aristotle N; Rajji, Tarek K
2017-07-01
Schizophrenia has been hypothesized to be a syndrome of accelerated aging. Brain plasticity is vulnerable to the normal aging process and affected in schizophrenia: brain-derived neurotrophic factor (BDNF) is an important neuroplasticity molecule. The present review explores the accelerated aging hypothesis of schizophrenia by comparing changes in BDNF expression in schizophrenia with aging-associated changes. Individuals with schizophrenia show patterns of increased overall mortality, metabolic abnormalities, and cognitive decline normally observed later in life in the healthy population. An overall decrease is observed in BDNF expression in schizophrenia compared to healthy controls and in older individuals compared to a younger cohort. There is a marked decrease in BDNF levels in the frontal regions and in the periphery among older individuals and those with schizophrenia; however, data for BDNF expression in the occipital, parietal, and temporal cortices and the hippocampus is inconclusive. Accelerated aging hypothesis is supported based on frontal regions and peripheral studies; however, further studies are needed in other brain regions.
Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori
2015-01-01
Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa -/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa -/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa -/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. PMID:26637123
Giorgio, Marco; Stendardo, Massimo; Migliaccio, Enrica; Pelicci, Pier Giuseppe
2016-06-01
Oxidative stress and telomere attrition are considered the driving factors of aging. As oxidative damage to telomeric DNA favors the erosion of chromosome ends and, in turn, telomere shortening increases the sensitivity to pro-oxidants, these two factors may trigger a detrimental vicious cycle. To check whether limiting oxidative stress slows down telomere shortening and related progeria, we have investigated the effect of p66SHC deletion, which has been shown to reduce oxidative stress and mitochondrial apoptosis, on late-generation TERC (telomerase RNA component)-deficient mice having short telomeres and reduced lifespan. Double mutant (TERC(-/-) p66SHC(-/-) ) mice were generated, and their telomere length, fertility, and lifespan investigated in different generations. Results revealed that p66SHC deletion partially rescues sterility and weight loss, as well as organ atrophy, of TERC-deficient mice, but not their short lifespan and telomere erosion. Therefore, our data suggest that p66SHC-mediated oxidative stress and telomere shortening synergize in some tissues (including testes) to accelerate aging; however, early mortality of late-generation mice seems to be independent of any link between p66SHC-mediated oxidative stress and telomere attrition. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Age-dependent phenotypic characteristics of a triple transgenic mouse model of Alzheimer disease.
Pietropaolo, Susanna; Feldon, Joram; Yee, Benjamin K
2008-08-01
The triple-transgenic mouse line (3 x Tg-AD) harboring PS1M146V, APPSwe, and taup301L transgenes represents the only transgenic model for Alzheimer's disease (AD) to date capturing both beta-amyloid and tau neuropathology. The present study provides an extensive behavioral characterization of the 3 x Tg-AD mouse line, evaluating the emergence of noncognitive and cognitive AD-like symptoms at two ages corresponding to the early (6-7 months) and advanced (12-13 months) stages of AD-pathology. Enhanced responsiveness to aversive stimulation was detected in mutant mice at both ages: the 3 x Tg-AD genotype enhanced acoustic startle response and facilitated performance in the cued-version of the water maze. These noncognitive phenotypes were accompanied by hyperactivity and reduced locomotor habituation in the open field at the older age. Signs of cognitive aberrations were also detected at both ages, but they were limited to associative learning. The present study suggests that this popular transgenic mouse model of AD has clear phenotypes beyond the cognitive domain, and their potential relationship to the cognitive phenotypes should be further explored.
Histone methylation and aging: Lessons learned from model systems
McCauley, Brenna S.; Dang, Weiwei
2014-01-01
Aging induces myriad cellular and, ultimately, physiological changes that cause a decline in an organism's functional capabilities. Although the aging process and pathways that regulate it have been extensively studied, only in the last decade have we begun to appreciate that dynamic histone methylation may contribute to this process. In this review, we discuss recent work implicating histone methylation in aging. Loss of certain histone methyltransferases and demethylases changes lifespan in invertebrates, and alterations in histone methylation in aged organisms regulate lifespan and aging phenotypes, including oxidative stress-induced hormesis in yeast, insulin signaling in Caenorhabiditis elegans and mammals, and the senescence-associated secretory phenotype in mammals. In all cases where histone methylation has been shown to impact aging and aging phenotypes, it does so by regulating transcription, suggesting that this is a major mechanism of its action in this context. Histone methylation additionally regulates or is regulated by other cellular pathways that contribute to or combat aging. Given the numerous processes that regulate aging and histone methylation, and are in turn regulated by them, the role of histone methylation in aging is almost certainly underappreciated. PMID:24859460
Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M.; Batista, Claudia Maria de Castro; Mattson, Mark P.; de Mello Coelho, Valeria
2016-01-01
We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN+ LLC. Some cortical NeuN+ neurons, GFAP+ glia limitans astrocytes, Iba-1+ microglia and S100β+ ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes. PMID:27029648
Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M; Batista, Claudia Maria de Castro; Mattson, Mark P; Mello Coelho, Valeria de
2016-03-31
We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN(+) LLC. Some cortical NeuN(+) neurons, GFAP(+) glia limitans astrocytes, Iba-1(+) microglia and S100β(+) ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes.
Kurtz, S M; Siskey, R; Reitman, M
2010-05-01
The objectives of this study were three-fold: (1) to determine the applicability of the small punch test to characterize Bionate 80A polycarbonate urethane (PCU) acetabular implants; (2) to evaluate the susceptibility of PCU acetabular implants to exhibit degradation of mechanical behavior following gamma irradiation in air and accelerated aging; and (3) to compare the oxidation of gamma-air sterilized PCU following accelerated aging and 5 years of natural shelf aging. In addition to attenuated total reflectance-Fourier transform infrared spectroscopy, we also adapted a miniature specimen mechanical test, the small punch test, for the deformable PCU cups. Accelerated aging was performed using ASTM F2003, a standard test that represents a severe oxidative challenge. The results of this study suggest that the small punch test is sufficiently sensitive and reproducible to discriminate slight differences in the large-deformation mechanical behavior of Bionate 80A following accelerated aging. The gamma-air sterilized PCU had a reduction of 9% in ultimate load after aging. Five years of shelf aging had little effect on the mechanical properties of the PCU. Overall, our findings suggest that the Bionate 80A material has greater oxidative stability than ultra-high molecular weight polyethylene following gamma irradiation in air and exposure to a severe oxidative challenge. (c) 2010 Wiley Periodicals, Inc.
Preparation of organotypic brain slice cultures for the study of Alzheimer’s disease
Croft, Cara L.; Noble, Wendy
2018-01-01
Alzheimer's disease, the most common cause of dementia, is a progressive neurodegenerative disorder characterised by amyloid-beta deposits in extracellular plaques, intracellular neurofibrillary tangles of aggregated tau, synaptic dysfunction and neuronal death. There are no cures for AD and current medications only alleviate some disease symptoms. Transgenic rodent models to study Alzheimer’s mimic features of human disease such as age-dependent accumulation of abnormal beta-amyloid and tau, synaptic dysfunction, cognitive deficits and neurodegeneration. These models have proven vital for improving our understanding of the molecular mechanisms underlying AD and for identifying promising therapeutic approaches. However, modelling neurodegenerative disease in animals commonly involves aging animals until they develop harmful phenotypes, often coupled with invasive procedures. In vivo studies are also resource, labour, time and cost intensive. We have developed a novel organotypic brain slice culture model to study Alzheimer’ disease which brings the potential of substantially reducing the number of rodents used in dementia research from an estimated 20,000 per year. We obtain 36 brain slices from each mouse pup, considerably reducing the numbers of animals required to investigate multiple stages of disease. This tractable model also allows the opportunity to modulate multiple pathways in tissues from a single animal. We believe that this model will most benefit dementia researchers in the academic and drug discovery sectors. We validated the slice culture model against aged mice, showing that the molecular phenotype closely mimics that displayed in vivo, albeit in an accelerated timescale. We showed beneficial outcomes following treatment of slices with agents previously shown to have therapeutic effects in vivo, and we also identified new mechanisms of action of other compounds. Thus, organotypic brain slice cultures from transgenic mouse models expressing Alzheimer’s disease-related genes may provide a valid and sensitive replacement for in vivo studies that do not involve behavioural analysis. PMID:29904599
Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials
2011-09-01
possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to...possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to...suffer from two damage types: matrix micro-cracks and inter- laminar delamination. When subject to fatigue loading matrix micro-cracks develop in the
Accelerated aging: prediction of chemical stability of pharmaceuticals.
Waterman, Kenneth C; Adami, Roger C
2005-04-11
Methods of rapidly and accurately assessing the chemical stability of pharmaceutical dosage forms are reviewed with respect to the major degradation mechanisms generally observed in pharmaceutical development. Methods are discussed, with the appropriate caveats, for accelerated aging of liquid and solid dosage forms, including small and large molecule active pharmaceutical ingredients. In particular, this review covers general thermal methods, as well as accelerated aging methods appropriate to oxidation, hydrolysis, reaction with reactive excipient impurities, photolysis and protein denaturation.
Asanov, E O; Os'mak, Ie D; Kuz'mins'ka, L A
2013-01-01
The peculiarities of the response of the sympathoadrenal system to psychoemotional and hypoxic stress in healthy young people and in aged people with physiological and accelerated aging of respiratory system were studied. It was shown that in aging a more pronounced response of the sympathoadrenal system to psychoemotional stress. At the same time, elderly people with different types of aging of the respiratory system did not demonstrate a difference in the response of the sympathoadrenal system to psychoemotional stress. Unlike in young people, in aged people, combination of psychoemotional and hypoxic stresses resulted in further activation of the sympathoadrenal system. The reaction of the sympathoadrenal system was more expressed in elderly people with accelerated ageing of the respiratory system.
Tolson, Kristen P; Garcia, Christian; Delgado, Iris; Marooki, Nuha; Kauffman, Alexander S
2016-11-01
Kisspeptin regulates reproduction via signaling through the receptor, Kiss1r, in GnRH neurons. However, both kisspeptin and Kiss1r are produced in several peripheral tissues, and recent studies have highlighted a role for kisspeptin signaling in metabolism and glucose homeostasis. We recently reported that Kiss1r knockout (KO) mice display a sexually dimorphic metabolic phenotype, with KO females displaying obesity, impaired metabolism, and glucose intolerance at 4-5 months of age. However, it remains unclear when this metabolic phenotype first emerges in development, or which aspects of the pleiotropic phenotype underlie the metabolic defects and which are secondary to the obesity. Here, we studied Kiss1r KO females at different ages, including several weeks before the emergence of body weight (BW) differences and later when obesity is present. We determined that at young adult ages (6 wk old), KO females already exhibit altered adiposity, leptin levels, metabolism, and energy expenditure, despite having normal BWs at this time. In contrast, food intake, water intake, and glucose tolerance are normal at young ages and only show impairments at older adult ages, suggesting that these impairments may be secondary to earlier alterations in metabolism and adiposity. We also demonstrate that, in addition to BW, all other facets of the adult metabolic phenotype persist even when gonadal sex steroids are similar between genotypes. Collectively, these data highlight the developmental emergence of a metabolic phenotype induced by disrupted kisspeptin signaling and reveal that multiple, but not all, aspects of this phenotype are already disrupted before detectable changes in BW.
Dallaire, Alexandra; Garand, Chantal; Paquet, Eric R.; Mitchell, Sarah J.; de Cabo, Rafael; Simard, Martin J.
2012-01-01
Small non-coding microRNAs are believed to be involved in the mechanism of aging but nothing is known on the impact of microRNAs in the progeroid disorder Werner syndrome (WS). WS is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN ortholog exhibit many phenotypic features of WS, including a pro-oxidant status and a shorter mean life span. Caenorhabditis elegans (C. elegans) with a nonfunctional wrn-1 DNA helicase also exhibit a shorter life span. Thus, both models are relevant to study the expression of microRNAs involved in WS. In this study, we show that miR-124 expression is lost in the liver of Wrn helicase mutant mice. Interestingly, the expression of this conserved miR-124 in whole wrn-1 mutant worms is also significantly reduced. The loss of mir-124 in C. elegans increases reactive oxygen species formation and accumulation of the aging marker lipofuscin, reduces whole body ATP levels and results in a reduction in life span. Finally, supplementation of vitamin C normalizes the median life span of wrn-1 and mir-124 mutant worms. These results suggest that biological pathways involving WRN and miR-124 are conserved in the aging process across different species. PMID:23075628
Osorio, Fernando G; Varela, Ignacio; Lara, Ester; Puente, Xose S; Espada, Jesús; Santoro, Raffaella; Freije, José M P; Fraga, Mario F; López-Otín, Carlos
2010-12-01
Mutations in the nuclear envelope protein lamin A or in its processing protease ZMPSTE24 cause human accelerated aging syndromes, including Hutchinson-Gilford progeria syndrome. Similarly, Zmpste24-deficient mice accumulate unprocessed prelamin A and develop multiple progeroid symptoms, thus representing a valuable animal model for the study of these syndromes. Zmpste24-deficient mice also show marked transcriptional alterations associated with chromatin disorganization, but the molecular links between both processes are unknown. We report herein that Zmpste24-deficient mice show a hypermethylation of rDNA that reduces the transcription of ribosomal genes, being this reduction reversible upon treatment with DNA methyltransferase inhibitors. This alteration has been previously described during physiological aging in rodents, suggesting its potential role in the development of the progeroid phenotypes. We also show that Zmpste24-deficient mice present global hypoacetylation of histones H2B and H4. By using a combination of RNA sequencing and chromatin immunoprecipitation assays, we demonstrate that these histone modifications are associated with changes in the expression of several genes involved in the control of cell proliferation and metabolic processes, which may contribute to the plethora of progeroid symptoms exhibited by Zmpste24-deficient mice. The identification of these altered genes may help to clarify the molecular mechanisms underlying aging and progeroid syndromes as well as to define new targets for the treatment of these dramatic diseases. © 2010 The Authors. Aging Cell © 2010 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Rosales Nieto, C A; Ferguson, M B; Macleay, C A; Briegel, J R; Wood, D A; Martin, G B; Bencini, R; Thompson, A N
2018-02-26
In ewe lambs, acceleration of growth and accumulation of both muscle and fat leads to earlier sexual maturity and better reproductive performance. The next stage in the development of this theme is to test whether these aspects of growth in young ewes affect milk production in their first lactation and the growth of their first progeny. We studied 75 young Merino ewes that had known phenotypic values for depth of eye muscle (EMD) and fat (FAT), and known Australian Sheep Breeding Values for post-weaning weight (PWT) and depths of eye muscle (PEMD) and fat (PFAT). They lambed for the first time at 1 year of age. Their lambs were weighed weekly from birth to weaning at 10 weeks to determine live weight gain and weaning weight. Progeny birth weight was positively associated with live weight gain and weaning weight (P0.05). The PWT of the sire was positively associated with live weight gain (P0.05). The concentrations of fat, protein, lactose and total solids in the milk were not affected by the phenotype or genotype of the mothers or of the sires of the mothers, or by the sex of the progeny (P>0.05). We conclude that selection of young Merino ewes for better growth, and more rapid accumulation of muscle and fat, will lead to progeny that are heavier at birth, grow faster and are heavier at weaning. Moreover, milk production and composition do not seem to be affected by the genetic merit of the mother for post-weaning live weight or PEMD or PFAT. Therefore, Merino ewes can lamb at 1 year of age without affecting the production objectives of the Merino sheep industry.
Zhang, Xue-Ying; Lou, Mei-Fang; Shen, Wei; Fu, Rong-Shu; Wang, De-Hua
The maternal or paternal dietary composition can have important effects on various aspects of their offspring's physiology. Studies from animal models and humans showed that a maternal high-fiber diet protected offspring against fat accumulation. However, little is known about how a maternal low-fiber diet modifies the metabolism of offspring in herbivorous rodents. We hypothesized that a maternal low-fiber diet would confer long-lasting beneficial effects on offspring metabolic phenotypes in herbivorous Brandt's vole (Lasiopodomys brandtii). Female voles were fed either a control (12.4% fiber) or a low-fiber (3.5% fiber) diet throughout pregnancy and lactation, and all offspring were fed the control diet after weaning till 14 wk old. Offspring were sampled from each litter at 18 d and 14 wk of age. Another subset of adult offspring at 15 wk of age was fed a high-fat diet for 8 wk. We found that there was no difference in litter size, litter mass, or pup mass before weaning between the two maternal diet groups. Offspring from the maternal low-fiber diet increased energy intake, body mass, and lean mass; suppressed fat accumulation; and improved glucose tolerance compared with those from the control diet. Moreover, the maternal low-fiber diet alleviated high-fat diet-induced obesity in the adult offspring. Serum leptin concentration and uncoupling protein 1 content in brown adipose tissue of offspring were not affected by a maternal low-fiber diet. We demonstrate that herbivorous females fed a low-fiber diet during pregnancy and lactation may predispose their offspring to accelerated growth of lean tissue, which may increase the opportunity for survival and reproduction in offspring.
Protective actions of melatonin and growth hormone on the aged cardiovascular system.
Paredes, Sergio D; Forman, Katherine A; García, Cruz; Vara, Elena; Escames, Germaine; Tresguerres, Jesús A F
2014-05-01
Epidemiological studies indicate that certain aspects of lifestyle and genetics act as risk factors for a variety of cardiovascular disorders, including coronary disease, hypertension, heart failure and stroke. Aging, however, appears to be the major contributor for morbidity and mortality of the impaired cardiovascular system. Growth hormone (GH) and melatonin seem to prevent cardiac aging, as they contribute to the recovery of several physiological parameters affected by age. These hormones exhibit antioxidant properties and decrease oxidative stress and apoptosis. This paper summarizes a set of studies related to the potential role that therapy with GH and melatonin may play in the protection of the altered cardiac function due to aging, with a focus on experiments performed in our laboratory using the senescence-accelerated mouse as an aging model. In general, we observed significantly increased inflammation, oxidative stress and apoptosis markers in hearts from senescence-accelerated prone 10-month-old animals compared to 2-month-old controls, while anti-inflammatory and antiapoptotic markers as well as endothelial nitric oxide synthase were decreased. Senescence-accelerated resistant animals showed no significant changes with age. GH or melatonin treatment prevented the age-dependent cardiac alterations observed in the senescence-accelerated prone group. Combined administration of GH plus melatonin reduced the age-related changes in senescence-accelerated prone hearts in an additive fashion that was different to that displayed when administered alone. GH and melatonin may be potential agents for counteracting oxidative stress, apoptosis and inflammation in the aging heart.
Brunst, Kelly J; Ryan, Patrick H; Brokamp, Cole; Bernstein, David; Reponen, Tiina; Lockey, James; Khurana Hershey, Gurjit K; Levin, Linda; Grinshpun, Sergey A; LeMasters, Grace
2015-08-15
The timing and duration of traffic-related air pollution (TRAP) exposure may be important for childhood wheezing and asthma development. We examined the relationship between TRAP exposure and longitudinal wheezing phenotypes and asthma at age 7 years. Children completed clinical examinations annually from age 1 year through age 4 years and age 7 years. Parental-reported wheezing was assessed at each age, and longitudinal wheezing phenotypes (early-transient, late-onset, persistent) and asthma were defined at age 7 years. Participants' time-weighted exposure to TRAP, from birth through age 7 years, was estimated using a land-use regression model. The relationship between TRAP exposure and wheezing phenotypes and asthma was examined. High TRAP exposure at birth was significantly associated with both transient and persistent wheezing phenotypes (adjusted odds ratio [aOR] = 1.64; 95% confidence interval [CI], 1.04-2.57 and aOR = 2.31; 95% CI, 1.28-4.15, respectively); exposure from birth to age 1 year and age 1 to 2 years was also associated with persistent wheeze. Only children with high average TRAP exposure from birth through age 7 years were at significantly increased risk for asthma (aOR = 1.71; 95% CI, 1.01-2.88). Early-life exposure to TRAP is associated with increased risk for persistent wheezing, but only long-term exposure to high levels of TRAP throughout childhood was associated with asthma development.
BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder.
Nenadić, Igor; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian
2017-08-30
BrainAGE (brain age gap estimation) is a novel morphometric parameter providing a univariate score derived from multivariate voxel-wise analyses. It uses a machine learning approach and can be used to analyse deviation from physiological developmental or aging-related trajectories. Using structural MRI data and BrainAGE quantification of acceleration or deceleration of in individual aging, we analysed data from 45 schizophrenia patients, 22 bipolar I disorder patients (mostly with previous psychotic symptoms / episodes), and 70 healthy controls. We found significantly higher BrainAGE scores in schizophrenia, but not bipolar disorder patients. Our findings indicate significantly accelerated brain structural aging in schizophrenia. This suggests, that despite the conceptualisation of schizophrenia as a neurodevelopmental disorder, there might be an additional progressive pathogenic component. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Brody, Gene H; Yu, Tianyi; Chen, Edith; Beach, Steven R H; Miller, Gregory E
2016-05-01
Research has suggested that 'risky' family processes have unforeseen negative consequences for health later in life. The purpose of this study was to further understanding of risky family environments and development of health vulnerabilities by (a) examining the likelihood that elevated levels of parental depressive symptoms when children are age 11 forecast accelerated epigenetic aging 9 years later at age 20; (b) determining whether participation in an efficacious family-centered prevention program focused on enhancing supportive parenting and strengthening family relationships will ameliorate this association; and (c) testing a moderation-mediation hypothesis that prevention-induced reductions in harsh parenting across adolescence will account for prevention effects in reducing accelerated epigenetic aging. In the rural southeastern United States, parents and 11-year-old children from 399 families participated in the Strong African American Families (SAAF) program or a control condition. Parents reported their own depressive symptoms when their children were 11, and both youths and parents reported youth exposure to harsh parenting at ages 11 and 16. Blood was drawn from youths at age 20 to measure accelerated epigenetic aging using a marker derived from the DNA methylation of cells. Elevated parental depressive symptoms forecast accelerated epigenetic aging among youths in the control condition, but not among SAAF participants. Moderated-mediation analyses confirmed that reductions in harsh parenting accounted for SAAF's protective effects on epigenetic aging. Subsequent exploratory analyses indicated that accelerated epigenetic aging forecast emotional distress among young adults in the control condition but not among those who participated in SAAF. This study is unique in using a randomized prevention trial to test hypotheses about the ways risky family processes contribute to accelerated epigenetic aging. The results suggest that developmentally appropriate family-centered interventions designed to enhance parenting and strengthen families can buffer the biological residue of life in a risky family. © 2015 Association for Child and Adolescent Mental Health.
Panidis, Dimitrios; Tziomalos, Konstantinos; Macut, Djuro; Delkos, Dimitrios; Betsas, George; Misichronis, Georgios; Katsikis, Ilias
2012-02-01
To assess the effects of age on the hormonal, metabolic, and ultrasonographic features of polycystic ovary syndrome (PCOS). Observational study. University department of obstetrics and gynecology. Patients with PCOS (n = 1,212) and healthy women (n = 254). None. Differences in the hormonal, metabolic, and ultrasonographic features of PCOS between age groups. A progressive decline in circulating androgens was observed with advancing age. Patients 21-30 years old had lower plasma glucose and insulin levels, lower area under the oral glucose tolerance test curve and lower homeostasis model assessment of insulin resistance index, and higher glucose/insulin and quantitative insulin sensitivity check index than patients 31-39 years old. The prevalence of PCOS phenotypes changed with age. More specifically, the distribution of the phenotypes did not differ substantially between patients ≤ 20 years old and patients 21-30 years old. However, a decline in the prevalence of phenotype 1 (characterized by anovulation, hyperandrogenemia, and polycystic ovaries) and an increase in the prevalence of phenotype 4 (characterized by anovulation and polycystic ovaries without hyperandrogenemia) were observed in patients 31-39 years old. In women with PCOS, hyperandrogenemia appears to diminish during reproductive life whereas insulin resistance worsens. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Suter, Léonie; Widmer, Alex
2013-01-01
Plants that can adapt their phenotype may be more likely to survive changing environmental conditions. Heritable epigenetic variation could provide a way to rapidly adapt to such changes. Here we tested whether environmental stress induces heritable, potentially adaptive phenotypic changes independent of genetic variation over few generations in Arabidopsis thaliana. We grew two accessions (Col-0, Sha-0) of A. thaliana for three generations under salt, heat and control conditions and tested for induced heritable phenotypic changes in the fourth generation (G4) and in reciprocal F1 hybrids generated in generation three. Using these crosses we further tested whether phenotypic changes were maternally or paternally transmitted. In generation five (G5), we assessed whether phenotypic effects persisted over two generations in the absence of stress. We found that exposure to heat stress in previous generations accelerated flowering under G4 control conditions in Sha-0, but heritable effects disappeared in G5 after two generations without stress exposure. Previous exposure to salt stress increased salt tolerance in one of two reciprocal F1 hybrids. Transgenerational effects were maternally and paternally inherited. Lacking genetic variability, maternal and paternal inheritance and reversibility of transgenerational effects together indicate that stress can induce heritable, potentially adaptive phenotypic changes, probably through epigenetic mechanisms. These effects were strongly dependent on plant genotype and may not be a general response to stress in A. thaliana. PMID:23585834
NASA Astrophysics Data System (ADS)
Zhang, Zhen-Ning; Freitas, Beatriz C.; Qian, Hao; Lux, Jacques; Acab, Allan; Trujillo, Cleber A.; Herai, Roberto H.; Nguyen Huu, Viet Anh; Wen, Jessica H.; Joshi-Barr, Shivanjali; Karpiak, Jerome V.; Engler, Adam J.; Fu, Xiang-Dong; Muotri, Alysson R.; Almutairi, Adah
2016-03-01
Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays, as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here, we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders, such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. Using this platform, we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus, this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.
Towne, Danli L; Nicholl, Emily E; Comess, Kenneth M; Galasinski, Scott C; Hajduk, Philip J; Abraham, Vivek C
2012-09-01
Efficient elucidation of the biological mechanism of action of novel compounds remains a major bottleneck in the drug discovery process. To address this need in the area of oncology, we report the development of a multiparametric high-content screening assay panel at the level of single cells to dramatically accelerate understanding the mechanism of action of cell growth-inhibiting compounds on a large scale. Our approach is based on measuring 10 established end points associated with mitochondrial apoptosis, cell cycle disruption, DNA damage, and cellular morphological changes in the same experiment, across three multiparametric assays. The data from all of the measurements taken together are expected to help increase our current understanding of target protein functions, constrain the list of possible targets for compounds identified using phenotypic screens, and identify off-target effects. We have also developed novel data visualization and phenotypic classification approaches for detailed interpretation of individual compound effects and navigation of large collections of multiparametric cellular responses. We expect this general approach to be valuable for drug discovery across multiple therapeutic areas.
Cobley, James N.; Ab. Malik, Zulezwan; Morton, James P.; Close, Graeme L.; Edwards, Ben J.; Burniston, Jatin G.
2016-01-01
Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry) are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM). We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping. PMID:28248225
Osorio, Fernando G; Bárcena, Clea; Soria-Valles, Clara; Ramsay, Andrew J; de Carlos, Félix; Cobo, Juan; Fueyo, Antonio; Freije, José M P; López-Otín, Carlos
2012-10-15
Alterations in the architecture and dynamics of the nuclear lamina have a causal role in normal and accelerated aging through both cell-autonomous and systemic mechanisms. However, the precise nature of the molecular cues involved in this process remains incompletely defined. Here we report that the accumulation of prelamin A isoforms at the nuclear lamina triggers an ATM- and NEMO-dependent signaling pathway that leads to NF-κB activation and secretion of high levels of proinflammatory cytokines in two different mouse models of accelerated aging (Zmpste24(-/-) and Lmna(G609G/G609G) mice). Causal involvement of NF-κB in accelerated aging was demonstrated by the fact that both genetic and pharmacological inhibition of NF-κB signaling prevents age-associated features in these animal models, significantly extending their longevity. Our findings provide in vivo proof of principle for the feasibility of pharmacological modulation of the NF-κB pathway to slow down the progression of physiological and pathological aging.
Lv, Ya-Jie; Yang, Yi; Sui, Bing-Dong; Hu, Cheng-Hu; Zhao, Pan; Liao, Li; Chen, Ji; Zhang, Li-Qiang; Yang, Tong-Tao; Zhang, Shao-Feng; Jin, Yan
2018-01-01
Rational: Senescence of mesenchymal stem cells (MSCs) and the related functional decline of osteogenesis have emerged as the critical pathogenesis of osteoporosis in aging. Resveratrol (RESV), a small molecular compound that safely mimics the effects of dietary restriction, has been well documented to extend lifespan in lower organisms and improve health in aging rodents. However, whether RESV promotes function of senescent stem cells in alleviating age-related phenotypes remains largely unknown. Here, we intend to investigate whether RESV counteracts senescence-associated bone loss via osteogenic improvement of MSCs and the underlying mechanism. Methods: MSCs derived from bone marrow (BMMSCs) and the bone-specific, senescence-accelerated, osteoblastogenesis/osteogenesis-defective mice (the SAMP6 strain) were used as experimental models. In vivo application of RESV was performed at 100 mg/kg intraperitoneally once every other day for 2 months, and in vitro application of RESV was performed at 10 μM. Bone mass, bone formation rates and osteogenic differentiation of BMMSCs were primarily evaluated. Metabolic statuses of BMMSCs and the mitochondrial activity, transcription and morphology were also examined. Mitofilin expression was assessed at both mRNA and protein levels, and short hairpin RNA (shRNA)-based gene knockdown was applied for mechanistic experiments. Results: Chronic intermittent application of RESV enhances bone formation and counteracts accelerated bone loss, with RESV improving osteogenic differentiation of senescent BMMSCs. Furthermore, in rescuing osteogenic decline under BMMSC senescence, RESV restores cellular metabolism through mitochondrial functional recovery via facilitating mitochondrial autonomous gene transcription. Molecularly, in alleviating senescence-associated mitochondrial disorders of BMMSCs, particularly the mitochondrial morphological alterations, RESV upregulates Mitofilin, also known as inner membrane protein of mitochondria (Immt) or Mic60, which is the core component of the mitochondrial contact site and cristae organizing system (MICOS). Moreover, Mitofilin is revealed to be indispensable for mitochondrial homeostasis and osteogenesis of BMMSCs, and that insufficiency of Mitofilin leads to BMMSC senescence and bone loss. More importantly, Mitofilin mediates resveratrol-induced mitochondrial and osteogenic improvements of BMMSCs in senescence. Conclusion: Our findings uncover osteogenic functional improvements of senescent MSCs as critical impacts in anti-osteoporotic practice of RESV, and unravel Mitofilin as a novel mechanism mediating RESV promotion on mitochondrial function in stem cell senescence. PMID:29721087
Lv, Ya-Jie; Yang, Yi; Sui, Bing-Dong; Hu, Cheng-Hu; Zhao, Pan; Liao, Li; Chen, Ji; Zhang, Li-Qiang; Yang, Tong-Tao; Zhang, Shao-Feng; Jin, Yan
2018-01-01
Rational: Senescence of mesenchymal stem cells (MSCs) and the related functional decline of osteogenesis have emerged as the critical pathogenesis of osteoporosis in aging. Resveratrol (RESV), a small molecular compound that safely mimics the effects of dietary restriction, has been well documented to extend lifespan in lower organisms and improve health in aging rodents. However, whether RESV promotes function of senescent stem cells in alleviating age-related phenotypes remains largely unknown. Here, we intend to investigate whether RESV counteracts senescence-associated bone loss via osteogenic improvement of MSCs and the underlying mechanism. Methods: MSCs derived from bone marrow (BMMSCs) and the bone-specific, senescence-accelerated, osteoblastogenesis/osteogenesis-defective mice (the SAMP6 strain) were used as experimental models. In vivo application of RESV was performed at 100 mg/kg intraperitoneally once every other day for 2 months, and in vitro application of RESV was performed at 10 μM. Bone mass, bone formation rates and osteogenic differentiation of BMMSCs were primarily evaluated. Metabolic statuses of BMMSCs and the mitochondrial activity, transcription and morphology were also examined. Mitofilin expression was assessed at both mRNA and protein levels, and short hairpin RNA (shRNA)-based gene knockdown was applied for mechanistic experiments. Results: Chronic intermittent application of RESV enhances bone formation and counteracts accelerated bone loss, with RESV improving osteogenic differentiation of senescent BMMSCs. Furthermore, in rescuing osteogenic decline under BMMSC senescence, RESV restores cellular metabolism through mitochondrial functional recovery via facilitating mitochondrial autonomous gene transcription. Molecularly, in alleviating senescence-associated mitochondrial disorders of BMMSCs, particularly the mitochondrial morphological alterations, RESV upregulates Mitofilin, also known as inner membrane protein of mitochondria (Immt) or Mic60, which is the core component of the mitochondrial contact site and cristae organizing system (MICOS). Moreover, Mitofilin is revealed to be indispensable for mitochondrial homeostasis and osteogenesis of BMMSCs, and that insufficiency of Mitofilin leads to BMMSC senescence and bone loss. More importantly, Mitofilin mediates resveratrol-induced mitochondrial and osteogenic improvements of BMMSCs in senescence. Conclusion: Our findings uncover osteogenic functional improvements of senescent MSCs as critical impacts in anti-osteoporotic practice of RESV, and unravel Mitofilin as a novel mechanism mediating RESV promotion on mitochondrial function in stem cell senescence.
Epigenetic changes in solid and hematopoietic tumors.
Toyota, Minoru; Issa, Jean-Pierre J
2005-10-01
There are three connected molecular mechanisms of epigenetic cellular memory in mammalian cells: DNA methylation, histone modifications, and RNA interference. The first two have now been firmly linked to neoplastic transformation. Hypermethylation of CpG-rich promoters triggers local histone code modifications resulting in a cellular camouflage mechanism that sequesters gene promoters away from transcription factors and results in stable silencing. This normally restricted mechanism is ubiquitously used in cancer to silence hundreds of genes, among which some critically contribute to the neoplastic phenotype. Virtually every pathway important to cancer formation is affected by this process. Methylation profiling of human cancers reveals tissue-specific epigenetic signatures, as well as tumor-specific signatures, reflecting in particular the presence of epigenetic instability in a subset of cancers affected by the CpG island methylator phenotype. Generally, methylation patterns can be traced to a tissue-specific, proliferation-dependent accumulation of aberrant promoter methylation in aging tissues, a process that can be accelerated by chronic inflammation and less well-defined mechanisms including, possibly, diet and genetic predisposition. The epigenetic machinery can also be altered in cancer by specific lesions in epigenetic effector genes, or by aberrant recruitment of these genes by mutant transcription factors and coactivators. Epigenetic patterns are proving clinically useful in human oncology via risk assessment, early detection, and prognostic classification. Pharmacologic manipulation of these patterns-epigenetic therapy-is also poised to change the way we treat cancer in the clinic.
Human Fetal Membranes at Term: Dead Tissue or Signalers of Parturition?
MENON, Ramkumar
2017-01-01
Various endocrine, immune, and mechanical factors produced by feto-maternal compartments at term increase intrauterine inflammatory loads to induce labor. The role of fetal (placental) membranes (amniochorion) as providers of parturition signals has not been well investigated. Fetal membranes line the intrauterine cavity and grow with and protect the fetus. Fetal membranes exist as an entity between the mother and fetus and perform unique functions during pregnancy. Membranes undergo a telomere-dependent p38 MAPK-induced senescence and demonstrate a decline in functional and mechanical abilities at term, showing signs of aging. Fetal membrane senescence is also allied with completion of fetal maturation at term as the fetus readies for delivery, which may also indicate the end of independent life and longevity of fetal membranes as their functional role concludes. Fetal membrane senescence is accelerated at term because of oxidative stress and increased stretching. Senescent fetal membranes cells produce senescence-associated secretory phenotype (SASP-inflammation) and also release proinflammatory damage-associated molecular patterns (DAMPs), namely HMGB1 and cell-free fetal telomere fragments. In a feedback loop, SASP and DAMPs increase senescence and enhance the inflammatory load to promote labor. Membranes increase the inflammatory load to disrupt homeostatic balance to transition quiescent uterine tissues toward a labor phenotype. Therefore, along with other well-described labor-promoting signals, senescent fetal membranes may also contribute to human term parturition. PMID:27452431
Human fetal membranes at term: Dead tissue or signalers of parturition?
Menon, Ramkumar
2016-08-01
Various endocrine, immune, and mechanical factors produced by feto-maternal compartments at term increase intrauterine inflammatory loads to induce labor. The role of fetal (placental) membranes (amniochorion) as providers of parturition signals has not been well investigated. Fetal membranes line the intrauterine cavity and grow with and protect the fetus. Fetal membranes exist as an entity between the mother and fetus and perform unique functions during pregnancy. Membranes undergo a telomere-dependent p38 MAPK-induced senescence and demonstrate a decline in functional and mechanical abilities at term, showing signs of aging. Fetal membrane senescence is also allied with completion of fetal maturation at term as the fetus readies for delivery, which may also indicate the end of independent life and longevity of fetal membranes as their functional role concludes. Fetal membrane senescence is accelerated at term because of oxidative stress and increased stretching. Senescent fetal membranes cells produce senescence-associated secretory phenotype (SASP-inflammation) and also release proinflammatory damage-associated molecular patterns (DAMPs), namely HMGB1 and cell-free fetal telomere fragments. In a feedback loop, SASP and DAMPs increase senescence and enhance the inflammatory load to promote labor. Membranes increase the inflammatory load to disrupt homeostatic balance to transition quiescent uterine tissues toward a labor phenotype. Therefore, along with other well-described labor-promoting signals, senescent fetal membranes may also contribute to human term parturition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shade avoidance components and pathways in adult plants revealed by phenotypic profiling.
Nozue, Kazunari; Tat, An V; Kumar Devisetty, Upendra; Robinson, Matthew; Mumbach, Maxwell R; Ichihashi, Yasunori; Lekkala, Saradadevi; Maloof, Julin N
2015-04-01
Shade from neighboring plants limits light for photosynthesis; as a consequence, plants have a variety of strategies to avoid canopy shade and compete with their neighbors for light. Collectively the response to foliar shade is called the shade avoidance syndrome (SAS). The SAS includes elongation of a variety of organs, acceleration of flowering time, and additional physiological responses, which are seen throughout the plant life cycle. However, current mechanistic knowledge is mainly limited to shade-induced elongation of seedlings. Here we use phenotypic profiling of seedling, leaf, and flowering time traits to untangle complex SAS networks. We used over-representation analysis (ORA) of shade-responsive genes, combined with previous annotation, to logically select 59 known and candidate novel mutants for phenotyping. Our analysis reveals shared and separate pathways for each shade avoidance response. In particular, auxin pathway components were required for shade avoidance responses in hypocotyl, petiole, and flowering time, whereas jasmonic acid pathway components were only required for petiole and flowering time responses. Our phenotypic profiling allowed discovery of seventeen novel shade avoidance mutants. Our results demonstrate that logical selection of mutants increased success of phenotypic profiling to dissect complex traits and discover novel components.
Reversible Age-Related Phenotypes Induced during Larval Quiescence in C. elegans
Roux, Antoine E.; Langhans, Kelley; Huynh, Walter; Kenyon, Cynthia
2017-01-01
Summary Cells can enter quiescent states in which cell cycling and growth are suspended. We find that during a long developmental arrest (quiescence) induced by starvation, newly-hatched C. elegans acquire features associated with impaired proteostasis and aging: mitochondrial fission, ROS production, protein aggregation, decreased proteotoxic-stress resistance, and at the organismal level, decline of mobility and high mortality. All signs of aging but one, the presence of protein aggregates, were reversed upon return to development induced by feeding. The endoplasmic reticulum receptor IRE-1 is completely required for recovery, and the downstream transcription factor XBP-1, as well as a protein kinase, KGB-1, are partially required. Interestingly, kgb-1(−) mutants that do recover fail to reverse aging-like mitochondrial phenotypes and have a short adult lifespan. Our study describes the first pathway that reverses phenotypes of aging at the exit of prolonged quiescence. PMID:27304510
Diego, Vincent P; Almasy, Laura; Dyer, Thomas D; Soler, Júlia M P; Blangero, John
2003-12-31
Using univariate and multivariate variance components linkage analysis methods, we studied possible genotype x age interaction in cardiovascular phenotypes related to the aging process from the Framingham Heart Study. We found evidence for genotype x age interaction for fasting glucose and systolic blood pressure. There is polygenic genotype x age interaction for fasting glucose and systolic blood pressure and quantitative trait locus x age interaction for a linkage signal for systolic blood pressure phenotypes located on chromosome 17 at 67 cM.
Latent Class Analysis of Early Developmental Trajectory in Baby Siblings of Children with Autism
Landa, Rebecca J.; Gross, Alden L.; Stuart, Elizabeth A.; Bauman, Margaret
2012-01-01
Background Siblings of children with autism (sibs-A) are at increased genetic risk for autism spectrum disorders (ASD) and milder impairments. To elucidate diversity and contour of early developmental trajectories exhibited by sibs-A, regardless of diagnostic classification, latent class modeling was used. Methods Sibs-A (n=204) were assessed with the Mullen Scales of Early Learning from age 6–36 months. Mullen T scores served as dependent variables. Outcome classifications at age 36 months included: ASD (n=52); non-ASD social/communication delay (broader autism phenotype; BAP) (n=31); and unaffected (n=121). Child-specific patterns of performance were studied using latent class growth analysis. Latent class membership was then related to diagnostic outcome through estimation of within-class proportions of children assigned to each diagnostic classification. Results A 4-class model was favored. Class 1 represented accelerated development and consisted of 25.7% of the sample, primarily unaffected children. Class 2 (40.0% of the sample), was characterized by normative development with above-average nonverbal cognitive outcome. Class 3 (22.3% of the sample) was characterized by receptive language, and gross and fine motor delay. Class 4 (12.0% of the sample), was characterized by widespread delayed skill acquisition, reflected by declining trajectories. Children with an outcome diagnosis of ASD were spread across Classes 2, 3, and 4. Conclusions Results support a category of ASD that involves slowing in early non-social development. Receptive language and motor development is vulnerable to early delay in sibs-A with and without ASD outcomes. Non-ASD sibs-A are largely distributed across classes depicting average or accelerated development. Developmental trajectories of motor, language, and cognition appear independent of communication and social delays in non-ASD sibs-A. PMID:22574686
Losartan increases bone mass and accelerates chondrocyte hypertrophy in developing skeleton
Rianon, Nahid; Rajagopal, Abbhirami; Munivez, Elda; Bertin, Terry; Dawson, Brian; Chen, Yuqing; Jiang, Ming-Ming; Lee, Brendan; Yang, Tao; Bae, Yangjin
2015-01-01
Angiotensin receptor blockers (ARBs) are a group of anti-hypertensive drugs that are widely used to treat pediatric hypertension. Recent application of ARBs to treat diseases such as Marfan syndrome or Alport syndrome has shown positive outcomes in animal and human studies, suggesting a broader therapeutic potential for this class of drugs. Multiple studies have reported a benefit of ARBs on adult bone homeostasis; however, its effect on the growing skeleton in children is unknown. We investigated the effect of Losartan, an ARB, in regulating bone mass and cartilage during development in mice. Wild type mice were treated with Losartan from birth until 6 weeks of age, after which bones were collected for microCT and histomorphometric analyses. Losartan increased trabecular bone volume vs. tissue volume (a 98% increase) and cortical thickness (a 9% increase) in 6-weeks old wild type mice. The bone changes were attributed to decreased osteoclastogenesis as demonstrated by reduced osteoclast number per bone surface in vivo and suppressed osteoclast differentiation in vitro. At the molecular level, Angiotensin II-induced ERK1/2 phosphorylation in RAW cells was attenuated by Losartan. Similarly, RANKL-induced ERK1/2 phosphorylation was suppressed by Losartan, suggesting a convergence of RANKL and angiotensin signaling at the level of ERK1/2 regulation. To assess the effect of Losartan on cartilage development, we examined the cartilage phenotype of wild type mice treated with Losartan in utero from conception to 1 day of age. Growth plates of these mice showed an elongated hypertrophic chondrocyte zone and increased Col10a1 expression level, with minimal changes in chondrocyte proliferation. Altogether, inhibition of the angiotensin pathway by Losartan increases bone mass and accelerates chondrocyte hypertrophy in growth plate during skeletal development. PMID:25779879
Losartan increases bone mass and accelerates chondrocyte hypertrophy in developing skeleton.
Chen, Shan; Grover, Monica; Sibai, Tarek; Black, Jennifer; Rianon, Nahid; Rajagopal, Abbhirami; Munivez, Elda; Bertin, Terry; Dawson, Brian; Chen, Yuqing; Jiang, Ming-Ming; Lee, Brendan; Yang, Tao; Bae, Yangjin
2015-05-01
Angiotensin receptor blockers (ARBs) are a group of anti-hypertensive drugs that are widely used to treat pediatric hypertension. Recent application of ARBs to treat diseases such as Marfan syndrome or Alport syndrome has shown positive outcomes in animal and human studies, suggesting a broader therapeutic potential for this class of drugs. Multiple studies have reported a benefit of ARBs on adult bone homeostasis; however, its effect on the growing skeleton in children is unknown. We investigated the effect of Losartan, an ARB, in regulating bone mass and cartilage during development in mice. Wild type mice were treated with Losartan from birth until 6 weeks of age, after which bones were collected for microCT and histomorphometric analyses. Losartan increased trabecular bone volume vs. tissue volume (a 98% increase) and cortical thickness (a 9% increase) in 6-weeks old wild type mice. The bone changes were attributed to decreased osteoclastogenesis as demonstrated by reduced osteoclast number per bone surface in vivo and suppressed osteoclast differentiation in vitro. At the molecular level, Angiotensin II-induced ERK1/2 phosphorylation in RAW cells was attenuated by Losartan. Similarly, RANKL-induced ERK1/2 phosphorylation was suppressed by Losartan, suggesting a convergence of RANKL and angiotensin signaling at the level of ERK1/2 regulation. To assess the effect of Losartan on cartilage development, we examined the cartilage phenotype of wild type mice treated with Losartan in utero from conception to 1 day of age. Growth plates of these mice showed an elongated hypertrophic chondrocyte zone and increased Col10a1 expression level, with minimal changes in chondrocyte proliferation. Altogether, inhibition of the angiotensin pathway by Losartan increases bone mass and accelerates chondrocyte hypertrophy in growth plate during skeletal development. Copyright © 2015 Elsevier Inc. All rights reserved.
WRN Mutation Update: Mutation Spectrum, Patient Registries, and Translational Prospects.
Yokote, Koutaro; Chanprasert, Sirisak; Lee, Lin; Eirich, Katharina; Takemoto, Minoru; Watanabe, Aki; Koizumi, Naoko; Lessel, Davor; Mori, Takayasu; Hisama, Fuki M; Ladd, Paula D; Angle, Brad; Baris, Hagit; Cefle, Kivanc; Palanduz, Sukru; Ozturk, Sukru; Chateau, Antoinette; Deguchi, Kentaro; Easwar, T K M; Federico, Antonio; Fox, Amy; Grebe, Theresa A; Hay, Beverly; Nampoothiri, Sheela; Seiter, Karen; Streeten, Elizabeth; Piña-Aguilar, Raul E; Poke, Gemma; Poot, Martin; Posmyk, Renata; Martin, George M; Kubisch, Christian; Schindler, Detlev; Oshima, Junko
2017-01-01
Werner syndrome (WS) is a rare autosomal recessive disorder characterized by a constellation of adult onset phenotypes consistent with an acceleration of intrinsic biological aging. It is caused by pathogenic variants in the WRN gene, which encodes a multifunctional nuclear protein with exonuclease and helicase activities. WRN protein is thought to be involved in optimization of various aspects of DNA metabolism, including DNA repair, recombination, replication, and transcription. In this update, we summarize a total of 83 different WRN mutations, including eight previously unpublished mutations identified by the International Registry of Werner Syndrome (Seattle, WA) and the Japanese Werner Consortium (Chiba, Japan), as well as 75 mutations already reported in the literature. The Seattle International Registry recruits patients from all over the world to investigate genetic causes of a wide variety of progeroid syndromes in order to contribute to the knowledge of basic mechanisms of human aging. Given the unusually high prevalence of WS patients and heterozygous carriers in Japan, the major goal of the Japanese Consortium is to develop effective therapies and to establish management guidelines for WS patients in Japan and elsewhere. This review will also discuss potential translational approaches to this disorder, including those currently under investigation. © 2016 WILEY PERIODICALS, INC.
WRN Mutation Update: Mutation Spectrum, Patient Registries, and Translational Prospects
Yokote, Koutaro; Chanprasert, Sirisak; Lee, Lin; Eirich, Katharina; Takemoto, Minoru; Watanabe, Aki; Koizumi, Naoko; Lessel, Davor; Mori, Takayasu; Hisama, Fuki M.; Ladd, Paula D.; Angle, Brad; Baris, Hagit; Cefle, Kivanc; Palanduz, Sukru; Ozturk, Sukru; Chateau, Antoinette; Deguchi, Kentaro; Easwar, T.K.M; Federico, Antonio; Fox, Amy; Grebe, Theresa A.; Hay, Beverly; Nampoothiri, Sheela; Seiter, Karen; Streeten, Elizabeth; Piña-Aguilar, Raul E.; Poke, Gemma; Poot, Martin; Posmyk, Renata; Martin, George M.; Kubisch, Christian; Schindler, Detlev; Oshima, Junko
2017-01-01
Werner syndrome (WS) is a rare autosomal recessive disorder characterized by a constellation of adult onset phenotypes consistent with an acceleration of intrinsic biological aging. It is caused by pathogenic variants in the WRN gene, which encodes a multifunctional nuclear protein with exonuclease and helicase activities. WRN protein is thought to be involved in optimization of various aspects of DNA metabolism, including DNA repair, recombination, replication, and transcription. In this update, we summarize a total of 83 different WRN mutations, including eight previously unpublished mutations identified by the International Registry of Werner Syndrome (Seattle, WA) and the Japanese Werner Consortium (Chiba, Japan), as well as 75 mutations already reported in the literature. The Seattle International Registry recruits patients from all over the world to investigate genetic causes of a wide variety of progeroid syndromes in order to contribute to the knowledge of basic mechanisms of human aging. Given the unusually high prevalence of WS patients and heterozygous carriers in Japan, the major goal of the Japanese Consortium is to develop effective therapies and to establish management guidelines for WS patients in Japan and elsewhere. This review will also discuss potential translational approaches to this disorder, including those currently under investigation. PMID:27667302
Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders.
Wolff, Markus; Johannesen, Katrine M; Hedrich, Ulrike B S; Masnada, Silvia; Rubboli, Guido; Gardella, Elena; Lesca, Gaetan; Ville, Dorothée; Milh, Mathieu; Villard, Laurent; Afenjar, Alexandra; Chantot-Bastaraud, Sandra; Mignot, Cyril; Lardennois, Caroline; Nava, Caroline; Schwarz, Niklas; Gérard, Marion; Perrin, Laurence; Doummar, Diane; Auvin, Stéphane; Miranda, Maria J; Hempel, Maja; Brilstra, Eva; Knoers, Nine; Verbeek, Nienke; van Kempen, Marjan; Braun, Kees P; Mancini, Grazia; Biskup, Saskia; Hörtnagel, Konstanze; Döcker, Miriam; Bast, Thomas; Loddenkemper, Tobias; Wong-Kisiel, Lily; Baumeister, Friedrich M; Fazeli, Walid; Striano, Pasquale; Dilena, Robertino; Fontana, Elena; Zara, Federico; Kurlemann, Gerhard; Klepper, Joerg; Thoene, Jess G; Arndt, Daniel H; Deconinck, Nicolas; Schmitt-Mechelke, Thomas; Maier, Oliver; Muhle, Hiltrud; Wical, Beverly; Finetti, Claudio; Brückner, Reinhard; Pietz, Joachim; Golla, Günther; Jillella, Dinesh; Linnet, Karen M; Charles, Perrine; Moog, Ute; Õiglane-Shlik, Eve; Mantovani, John F; Park, Kristen; Deprez, Marie; Lederer, Damien; Mary, Sandrine; Scalais, Emmanuel; Selim, Laila; Van Coster, Rudy; Lagae, Lieven; Nikanorova, Marina; Hjalgrim, Helle; Korenke, G Christoph; Trivisano, Marina; Specchio, Nicola; Ceulemans, Berten; Dorn, Thomas; Helbig, Katherine L; Hardies, Katia; Stamberger, Hannah; de Jonghe, Peter; Weckhuysen, Sarah; Lemke, Johannes R; Krägeloh-Mann, Ingeborg; Helbig, Ingo; Kluger, Gerhard; Lerche, Holger; Møller, Rikke S
2017-05-01
Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that mutations associated with early infantile epilepsy result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-dependent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations in children with SCN2A-related epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.
Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V
2013-06-01
Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.
Rapamycin suppresses brain aging in senescence-accelerated OXYS rats
Kolosova, Nataliya G.; Vitovtov, Anton O.; Muraleva, Natalia A; Akulov, Andrey E.; Stefanova, Natalia A.; Blagosklonny, Mikhail V.
2013-01-01
Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span in C elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wistar rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging. PMID:23817674
Declined Expression of Histone Deacetylase 6 Contributes to Periodontal Ligament Stem Cell Aging.
Li, Qian; Ma, Yushi; Zhu, Yunyan; Zhang, Ting; Zhou, Yanheng
2017-01-01
Identification of regulators for aging-associated stem cell (SC) dysfunctions is a critical topic in SC biology and SC-based therapies. Periodontal ligament stem cell (PDLSC), a kind of dental mesenchymal SC with dental regeneration potential, ages with functional deterioration in both in vivo and ex vivo expansion. However, little is known about regulators for PDLSC aging. Expression changes of a potential regulator for PDLSC aging, histone deacetylase 6 (HDAC6), were evaluated within various models. Senescence-associated phenotypic and functional alternations of PDLSC in loss-of-function models for HDAC6 were examined using HDAC6-specific pharmacologic inhibitors or RNA interference-based knockdown. Involvement of p27 Kip1 in HDAC6-associated aging was demonstrated by its acetylation and stability changes along with overexpression or functional inhibition of HDAC6. Expression of HDAC6 decreased significantly in replicative senescence and induced SC aging models. Loss-of-function experiments suggested that pharmacologic inhibition of deacetylase activity of HDAC6 accelerated PDLSC senescence and impaired its SC activities, which showed reduced osteogenic differentiation and diminished migration capacities. Examination of markers for proliferative exhaustion of SCs revealed that protein level of p27 Kip1 was specifically elevated after HDAC6 inhibition. HDAC6 physically interacted with p27 Kip1 and could deacetylate p27 Kip1 . Importantly, acetylation of p27 Kip1 was negatively regulated by HDAC6, which correlated with alteration of p27 Kip1 protein levels. Data suggest that HDAC6 plays an important role in PDLSC aging, which is dependent, at least partially, on regulation of p27 Kip1 acetylation.
Park, Yong-Moon Mark; Steck, Susan E; Fung, Teresa T; Zhang, Jiajia; Hazlett, Linda J; Han, Kyungdo; Lee, Seung-Hwan; Kwon, Hyuk-Sang; Merchant, Anwar T
2017-10-01
There is sparse evidence on the relationship between the Mediterranean diet, Dietary Approaches to Stop Hypertension (DASH) style diet, and metabolic health, especially comparing cardiometabolic phenotypes among in normal weight and obese populations. We aimed to investigate the association of the Mediterranean diet scores (MDS) and DASH index with metabolically healthy obese (MHO) and metabolically obese normal weight (MONW) phenotypes in a representative U.S. MDS and DASH index were calculated using dietary data from 2767 adults aged 20-90 years without any prior diagnosis of cancer or cardiovascular disease from the National Health and Nutrition Examination Survey III, 1988-1994. MHO and MONW individuals were identified using fasting glucose, insulin resistance, blood pressure, triglycerides, C-reactive protein, and high-density lipoprotein-cholesterol. Higher MDS was associated with higher odds of MHO phenotype (odds ratio (OR) T3 vs T1 , 2.57 [95% confidence interval (CI), 1.04-6.35]; P trend = 0.04), and higher DASH index was associated with lower odds of MONW phenotype (OR T3 vs T1, 0.59 [95% CI, 0.38-0.93]; P trend = 0.03) only in the younger age group (<45 years for men or premenopausal women). No significant associations of MDS and DASH index with MHO and MONW phenotypes were observed in the older age group (≥45 years for men or postmenopausal women). Adherence to Mediterranean diet or DASH style diet was favorably associated with MHO and MONW phenotypes only in the younger age group, suggesting that potential dietary intervention to prevent cardiometabolic disease differ by age group. Published by Elsevier Ltd.
Accelerated White Matter Aging in Schizophrenia: Role of White Matter Blood Perfusion
Chiappelli, Joshua; McMahon, Robert; Muellerklein, Florian; Wijtenburg, S. Andrea; White, Michael G.; Rowland, Laura M.; Hong, L. Elliot
2014-01-01
Elevated rate of age-related decline in white matter integrity, indexed by fractional anisotropy (FA) from diffusion tensor imaging, was reported in patients with schizophrenia. Its etiology is unknown. We hypothesized that a decline of blood perfusion to the white matter may underlie the accelerated age-related reduction in FA in schizophrenia. Resting white matter perfusion and FA were collected using pseudo-continuous arterial spin labeling and high-angular-resolution diffusion tensor imaging, respectively, in 50 schizophrenia patients and 70 controls (age=18-63 years). Main outcome measures were the diagnosis-by-age interaction on whole-brain white matter perfusion, and FA. Significant age-related decline in brain white matter perfusion and FA were present in both groups. Age-by-diagnosis interaction was significant for FA (p<0.001) but not white matter perfusion. Age-by-diagnosis interaction for FA values remained significant even after accounting for age-related decline in perfusion. Therefore, we replicated the finding of an increased rate of age-related white matter FA decline in schizophrenia, and observed a significant age-related decline in white matter blood perfusion, although the latter did not contribute to the accelerated age-related decline in FA. The results suggest that factors other than reduced perfusion account for the accelerated age-related decline in white matter integrity in schizophrenia. PMID:24680326
O'Duibhir, Eoghan; Carragher, Neil O; Pollard, Steven M
2017-04-01
Patients diagnosed with glioblastoma (GBM) continue to face a bleak prognosis. It is critical that new effective therapeutic strategies are developed. GBM stem cells have molecular hallmarks of neural stem and progenitor cells and it is possible to propagate both non-transformed normal neural stem cells and GBM stem cells, in defined, feeder-free, adherent culture. These primary stem cell lines provide an experimental model that is ideally suited to cell-based drug discovery or genetic screens in order to identify tumour-specific vulnerabilities. For many solid tumours, including GBM, the genetic disruptions that drive tumour initiation and growth have now been catalogued. CRISPR/Cas-based genome editing technologies have recently emerged, transforming our ability to functionally annotate the human genome. Genome editing opens prospects for engineering precise genetic changes in normal and GBM-derived neural stem cells, which will provide more defined and reliable genetic models, with critical matched pairs of isogenic cell lines. Generation of more complex alleles such as knock in tags or fluorescent reporters is also now possible. These new cellular models can be deployed in cell-based phenotypic drug discovery (PDD). Here we discuss the convergence of these advanced technologies (iPS cells, neural stem cell culture, genome editing and high content phenotypic screening) and how they herald a new era in human cellular genetics that should have a major impact in accelerating glioblastoma drug discovery. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Brunst, Kelly J.; Brokamp, Cole; Bernstein, David; Reponen, Tiina; Lockey, James; Khurana Hershey, Gurjit K.; Levin, Linda; Grinshpun, Sergey A.; LeMasters, Grace
2015-01-01
Rationale: The timing and duration of traffic-related air pollution (TRAP) exposure may be important for childhood wheezing and asthma development. Objectives: We examined the relationship between TRAP exposure and longitudinal wheezing phenotypes and asthma at age 7 years. Methods: Children completed clinical examinations annually from age 1 year through age 4 years and age 7 years. Parental-reported wheezing was assessed at each age, and longitudinal wheezing phenotypes (early-transient, late-onset, persistent) and asthma were defined at age 7 years. Participants’ time-weighted exposure to TRAP, from birth through age 7 years, was estimated using a land-use regression model. The relationship between TRAP exposure and wheezing phenotypes and asthma was examined. Measurements and Main Results: High TRAP exposure at birth was significantly associated with both transient and persistent wheezing phenotypes (adjusted odds ratio [aOR] = 1.64; 95% confidence interval [CI], 1.04–2.57 and aOR = 2.31; 95% CI, 1.28–4.15, respectively); exposure from birth to age 1 year and age 1 to 2 years was also associated with persistent wheeze. Only children with high average TRAP exposure from birth through age 7 years were at significantly increased risk for asthma (aOR = 1.71; 95% CI, 1.01–2.88). Conclusions: Early-life exposure to TRAP is associated with increased risk for persistent wheezing, but only long-term exposure to high levels of TRAP throughout childhood was associated with asthma development. PMID:26106807
Recent advances in the evolutionary engineering of industrial biocatalysts.
Winkler, James D; Kao, Katy C
2014-12-01
Evolutionary engineering has been used to improve key industrial strain traits, such as carbon source utilization, tolerance to adverse environmental conditions, and resistance to chemical inhibitors, for many decades due to its technical simplicity and effectiveness. The lack of need for prior genetic knowledge underlying the phenotypes of interest makes this a powerful approach for strain development for even species with minimal genotypic information. While the basic experimental procedure for laboratory adaptive evolution has remained broadly similar for many years, a range of recent advances show promise for improving the experimental workflows for evolutionary engineering by accelerating the pace of evolution, simplifying the analysis of evolved mutants, and providing new ways of linking desirable phenotypes to selectable characteristics. This review aims to highlight some of these recent advances and discuss how they may be used to improve industrially relevant microbial phenotypes. Copyright © 2014 Elsevier Inc. All rights reserved.
[PSYCHO PHYSIOLOGICAL MARKERS OF ACCELERATED AGING AMONG THOSE WORKING WITH OCCUPATIONAL HAZARDS].
Bashkireva, A S; Kachan, Ye Yu; Kulapina, M E
2015-01-01
Using comparative analysis of two occupational groups we assessed the significance of psycho physiological markers of short-term memory accelerated aging in order to reveal how the age-related changes and working process affect mental work capacity. We revealed peculiarities of systemic structure of functions which determine mental work capacity depending on the age and length of service in lorry drivers. It was proved that age and long driving experience affect mnestic functions which show up quantitative and qualitative changes such as reduced volume of memorized information, longer time needed to memorize it, and tendency to diminished accuracy of memorization. We also proved that premature age-related changes of psycho physiological indices in drivers are the "risk indicators", while long driving experience is a real risk factor contributing to the acceleration of aging.
US Particle Accelerators at Age 50.
ERIC Educational Resources Information Center
Wilson, R. R.
1981-01-01
Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)
Daniel Saenz; James B. Johnson; Cory K. Adams; Gage H. Dayton
2003-01-01
Phenotypic plasticity, such as morphological and behavioral changes in response to predators, is common in larval anurans. Less is known about inducible defenses in the embryonic stages of development. We investigated the predation risk imposed by crayfish (Procambarus nigrocinctus) on southern leopard frog (Rana sphenocephala)...
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) are the most abundant DNA sequence variation in the genomes which can be used to associate genotypic variation to the phenotype. Therefore, availability of a high-density SNP array with uniform genome coverage can advance genetic studies and breeding applicatio...
Sleep EEG Fingerprints Reveal Accelerated Thalamocortical Oscillatory Dynamics in Williams Syndrome
ERIC Educational Resources Information Center
Bodizs, Robert; Gombos, Ferenc; Kovacs, Ilona
2012-01-01
Sleep EEG alterations are emerging features of several developmental disabilities, but detailed quantitative EEG data on the sleep phenotype of patients with Williams syndrome (WS, 7q11.23 microdeletion) is still lacking. Based on laboratory (Study I) and home sleep records (Study II) here we report WS-related features of the patterns of…
Epithelial phenotype and the RPE: is the answer blowing in the Wnt?
Burke, Janice M
2008-11-01
Cells of the human retinal pigment epithelium (RPE) have a regular epithelial cell shape within the tissue in situ, but for reasons that remain elusive the RPE shows an incomplete and variable ability to re-develop an epithelial phenotype after propagation in vitro. In other epithelial cell cultures, formation of an adherens junction (AJ) composed of E-cadherin plays an important early inductive role in epithelial morphogenesis, but E-cadherin is largely absent from the RPE. In this review, the contribution of cadherins, both minor (E-cadherin) and major (N-cadherin), to RPE phenotype development is discussed. Emphasis is placed on the importance for future studies of actin cytoskeletal remodeling during assembly of the AJ, which in epithelial cells results in an actin organization that is characteristically zonular. Other markers of RPE phenotype that are used to gauge the maturation state of RPE cultures including tissue-specific protein expression, protein polarity, and pigmentation are described. An argument is made that RPE epithelial phenotype, cadherin-based cell-cell adhesion and melanization are linked by a common signaling pathway: the Wnt/beta-catenin pathway. Analyzing this pathway and its intersecting signaling networks is suggested as a useful framework for dissecting the steps in RPE morphogenesis. Also discussed is the effect of aging on RPE phenotype. Preliminary evidence is provided to suggest that light-induced sub-lethal oxidative stress to cultured ARPE-19 cells impairs organelle motility. Organelle translocation, which is mediated by stress-susceptible cytoskeletal scaffolds, is an essential process in cell phenotype development and retention. The observation of impaired organelle motility therefore raises the possibility that low levels of stress, which are believed to accompany RPE aging, may produce subtle disruptions of cell phenotype. Over time these would be expected to diminish the support functions performed by the RPE on behalf of photoreceptors, theoretically contributing to aging retinal disease such as age-related macular degeneration (AMD). Analyzing sub-lethal stress that produces declines in RPE functional efficiency rather than overt cell death is suggested as a useful future direction for understanding the effects of age on RPE organization and physiology. As for phenotype and pigmentation, a role for the Wnt/beta-catenin pathway is also suggested in regulating the RPE response to oxidative stress. Exploration of this pathway in the RPE therefore may provide a unifying strategy for advancing our understanding of both RPE phenotype and the consequences of mild oxidative stress on RPE structure and function.
Epithelial phenotype and the RPE: Is the answer blowing in the Wnt?
Burke, Janice M.
2008-01-01
Cells of the human retinal pigment epithelium (RPE) have a regular epithelial cell shape within the tissue in situ, but for reasons that remain elusive the RPE shows an incomplete and variable ability to re-develop an epithelial phenotype after propagation in vitro. In other epithelial cell cultures, formation of an adherens junction (AJ) composed of E-cadherin plays an important early inductive role in epithelial morphogenesis, but E-cadherin is largely absent from the RPE. In this review, the contribution of cadherins, both minor (E-cadherin) and major (N-cadherin), to RPE phenotype development is discussed. Emphasis is placed on the importance for future studies of actin cytoskeletal remodeling during assembly of the AJ, which in epithelial cells results in an actin organization that is characteristically zonular. Other markers of RPE phenotype that are used to gauge the maturation state of RPE cultures including tissue-specific protein expression, protein polarity, and pigmentation are described. An argument is made that RPE epithelial phenotype, cadherin-based cell–cell adhesion and melanization are linked by a common signaling pathway: the Wnt/β-catenin pathway. Analyzing this pathway and its intersecting signaling networks is suggested as a useful framework for dissecting the steps in RPE morphogenesis. Also discussed is the effect of aging on RPE phenotype. Preliminary evidence is provided to suggest that light-induced sub-lethal oxidative stress to cultured ARPE-19 cells impairs organelle motility. Organelle translocation, which is mediated by stress-susceptible cytoskeletal scaffolds, is an essential process in cell phenotype development and retention. The observation of impaired organelle motility therefore raises the possibility that low levels of stress, which are believed to accompany RPE aging, may produce subtle disruptions of cell phenotype. Over time these would be expected to diminish the support functions performed by the RPE on behalf of photoreceptors, theoretically contributing to aging retinal disease such as age-related macular degeneration (AMD). Analyzing sub-lethal stress that produces declines in RPE functional efficiency rather than overt cell death is suggested as a useful future direction for understanding the effects of age on RPE organization and physiology. As for phenotype and pigmentation, a role for the Wnt/β-catenin pathway is also suggested in regulating the RPE response to oxidative stress. Exploration of this pathway in the RPE therefore may provide a unifying strategy for advancing our understanding of both RPE phenotype and the consequences of mild oxidative stress on RPE structure and function. PMID:18775790
Gami, Minaxi S; Iser, Wendy B; Hanselman, Keaton B; Wolkow, Catherine A
2006-01-01
Background In the nematode, Caenorhabditis elegans, a conserved insulin-like signaling pathway controls larval development, stress resistance and adult lifespan. AGE-1, a homolog of the p110 catalytic subunit of phosphoinositide 3-kinases (PI3K) comprises the major known effector pathway downstream of the insulin receptor, DAF-2. Phospholipid products of AGE-1/PI3K activate AKT/PKB kinase signaling via PDK-1. AKT/PKB signaling antagonizes nuclear translocation of the DAF-16/FOXO transcription factor. Reduced AGE-1/PI3K signaling permits DAF-16 to direct dauer larval arrest and promote long lifespan in adult animals. In order to study the downstream effectors of AGE-1/PI3K signaling in C. elegans, we conducted a genetic screen for mutations that suppress the constitutive dauer arrest phenotype of age-1(mg109) animals. Results This report describes mutations recovered in a screen for suppressors of the constitutive dauer arrest (daf-C) phenotype of age-1(mg109). Two mutations corresponded to alleles of daf-16. Two mutations were gain-of-function alleles in the genes, akt-1 and pdk-1, encoding phosphoinositide-dependent serine/threonine kinases. A fifth mutation, mg227, located on chromosome X, did not correspond to any known dauer genes, suggesting that mg227 may represent a new component of the insulin pathway. Genetic epistasis analysis by RNAi showed that reproductive development in age-1(mg109);akt-1(mg247) animals was dependent on the presence of pdk-1. Similarly, reproductive development in age-1(mg109);pdk-1(mg261) animals was dependent on akt-1. However, reproductive development in age-1(mg109); mg227 animals required only akt-1, and pdk-1 activity was dispensable in this background. Interestingly, while mg227 suppressed dauer arrest in age-1(mg109) animals, it enhanced the long lifespan phenotype. In contrast, akt-1(mg247) and pdk-1(mg261) did not affect lifespan or stress resistance, while both daf-16 alleles fully suppressed these phenotypes. Conclusion A screen for suppressors of PI3K mutant phenotypes identified activating mutations in two known pathway components, providing insights into their regulation. In particular, the interdependence of akt-1 and pdk-1, even in activated forms, supports the existence of AGE-1-independent pathways for these phospholipid-dependent kinases. Phenotypic analysis of these alleles shows that the larval and adult outputs of AGE-1/PI3K are fully separable in these mutants. PMID:17020605
Denver, R J
1997-04-01
Environmentally induced phenotypic plasticity allows developing organisms to respond adaptively to changes in their habitat. Desert amphibians have evolved traits which allow successful development in unpredictable environments. Tadpoles of these species can accelerate metamorphosis as their pond dries, thus escaping mortality in the larval habitat. This developmental response can be replicated in the laboratory, which allows elucidation of the underlying physiological mechanisms. Here I demonstrate a link between a classical neurohormonal stress pathway (involving corticotropin-releasing hormone, CRH) and the developmental response to habitat desiccation. Injections of CRH-like peptides accelerated metamorphosis in western spadefoot toad tadpoles. Conversely, treatment with two CRH antagonists, the CRH receptor antagonist alpha-helical CRH(9-41) and anti-CRH serum, attenuated the developmental acceleration induced by habitat desiccation. Tadpoles subjected to habitat desiccation exhibited elevated hypothalamic CRH content at the time when they responded developmentally to the declining water level. CRH injections elevated whole-body thyroxine, triiodothyronine, and corticosterone content, the primary hormonal regulators of metamorphosis. In contrast, alpha-helical CRH(9-41) reduced thyroid activity. These results support a central role for CRH as a neurohormonal transducer of environmental stimuli into the endocrine response which modulates the rate of metamorphosis. Because in mammals, increased fetal/placental CRH production may initiate parturition, and CRH has been implicated in precipitating preterm birth arising from fetal stress, this neurohormonal pathway may represent a phylogenetically ancient developmental regulatory system that allows the organism to escape an unfavorable larval/fetal habitat.
Antibiotic efficacy is linked to bacterial cellular respiration
Lobritz, Michael A.; Belenky, Peter; Porter, Caroline B. M.; Gutierrez, Arnaud; Yang, Jason H.; Schwarz, Eric G.; Dwyer, Daniel J.; Khalil, Ahmad S.; Collins, James J.
2015-01-01
Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes—the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy. PMID:26100898
Osorio, Fernando G.; Bárcena, Clea; Soria-Valles, Clara; Ramsay, Andrew J.; de Carlos, Félix; Cobo, Juan; Fueyo, Antonio; Freije, José M.P.; López-Otín, Carlos
2012-01-01
Alterations in the architecture and dynamics of the nuclear lamina have a causal role in normal and accelerated aging through both cell-autonomous and systemic mechanisms. However, the precise nature of the molecular cues involved in this process remains incompletely defined. Here we report that the accumulation of prelamin A isoforms at the nuclear lamina triggers an ATM- and NEMO-dependent signaling pathway that leads to NF-κB activation and secretion of high levels of proinflammatory cytokines in two different mouse models of accelerated aging (Zmpste24−/− and LmnaG609G/G609G mice). Causal involvement of NF-κB in accelerated aging was demonstrated by the fact that both genetic and pharmacological inhibition of NF-κB signaling prevents age-associated features in these animal models, significantly extending their longevity. Our findings provide in vivo proof of principle for the feasibility of pharmacological modulation of the NF-κB pathway to slow down the progression of physiological and pathological aging. PMID:23019125
Zannas, Anthony S; Arloth, Janine; Carrillo-Roa, Tania; Iurato, Stella; Röh, Simone; Ressler, Kerry J; Nemeroff, Charles B; Smith, Alicia K; Bradley, Bekh; Heim, Christine; Menke, Andreas; Lange, Jennifer F; Brückl, Tanja; Ising, Marcus; Wray, Naomi R; Erhardt, Angelika; Binder, Elisabeth B; Mehta, Divya
2015-12-17
Chronic psychological stress is associated with accelerated aging and increased risk for aging-related diseases, but the underlying molecular mechanisms are unclear. We examined the effect of lifetime stressors on a DNA methylation-based age predictor, epigenetic clock. After controlling for blood cell-type composition and lifestyle parameters, cumulative lifetime stress, but not childhood maltreatment or current stress alone, predicted accelerated epigenetic aging in an urban, African American cohort (n = 392). This effect was primarily driven by personal life stressors, was more pronounced with advancing age, and was blunted in individuals with higher childhood abuse exposure. Hypothesizing that these epigenetic effects could be mediated by glucocorticoid signaling, we found that a high number (n = 85) of epigenetic clock CpG sites were located within glucocorticoid response elements. We further examined the functional effects of glucocorticoids on epigenetic clock CpGs in an independent sample with genome-wide DNA methylation (n = 124) and gene expression data (n = 297) before and after exposure to the glucocorticoid receptor agonist dexamethasone. Dexamethasone induced dynamic changes in methylation in 31.2 % (110/353) of these CpGs and transcription in 81.7 % (139/170) of genes neighboring epigenetic clock CpGs. Disease enrichment analysis of these dexamethasone-regulated genes showed enriched association for aging-related diseases, including coronary artery disease, arteriosclerosis, and leukemias. Cumulative lifetime stress may accelerate epigenetic aging, an effect that could be driven by glucocorticoid-induced epigenetic changes. These findings contribute to our understanding of mechanisms linking chronic stress with accelerated aging and heightened disease risk.
Accelerated aging of concrete : a literature review
DOT National Transportation Integrated Search
2002-02-01
This report provides a review of the literature on accelerated aging of concrete. It was undertaken, as part of a research project : on predicting the long-term environmental performance of Portland cement concrete (PCC) pavements containing coal fly...
Down Syndrome - Genetics and Cardiogenetics.
Plaiasu, Vasilica
2017-09-01
During the last years, Down syndrome has been the focus of special attention. Down syndrome is a genetic disorder characterized by distinct physical features and some degree of cognitive disability. Patients with Down syndrome also present many other congenital anomalies. The mapping for phenotypes to specific regions of chromosome 21 permits to identify which genes (or small regions) contribute to the phenotypic features of Down syndrome and thus, to understand its pathogenesis. Mainly there are three cytogenetic forms of Down syndrome: free trisomy 21, mosaic trisomy 21 and robertsonian translocation trisomy 21. Prenatal and postnatal testing has become commonly used to diagnose different cases presenting the same pathology. Early clinical diagnosis is extremely important for patient prognosis. Lately, advances in Down syndrome research have been registered, but little is known about cardiovascular phenotype in Down syndrome. About half of patients with Down syndrome have congenital heart disease, and atrioventricular septal defects are the most common defects found. Basic research on Down syndrome is now rapidly accelerating, using new genomic technologies. There were many studies performed to identify a correlation between genotype and phenotype in Down syndrome.
Wang, Shuang; Jiang, Xiaoqian; Singh, Siddharth; Marmor, Rebecca; Bonomi, Luca; Fox, Dov; Dow, Michelle; Ohno-Machado, Lucila
2016-01-01
Accessing and integrating human genomic data with phenotypes is important for biomedical research. Making genomic data accessible for research purposes, however, must be handled carefully to avoid leakage of sensitive individual information to unauthorized parties and improper use of data. In this article, we focus on data sharing within the scope of data accessibility for research. Current common practices to gain biomedical data access are strictly rule based, without a clear and quantitative measurement of the risk of privacy breaches. In addition, several types of studies require privacy-preserving linkage of genotype and phenotype information across different locations (e.g., genotypes stored in a sequencing facility and phenotypes stored in an electronic health record) to accelerate discoveries. The computer science community has developed a spectrum of techniques for data privacy and confidentiality protection, many of which have yet to be tested on real-world problems. In this article, we discuss clinical, technical, and ethical aspects of genome data privacy and confidentiality in the United States, as well as potential solutions for privacy-preserving genotype–phenotype linkage in biomedical research. PMID:27681358
An XML-based interchange format for genotype-phenotype data.
Whirl-Carrillo, M; Woon, M; Thorn, C F; Klein, T E; Altman, R B
2008-02-01
Recent advances in high-throughput genotyping and phenotyping have accelerated the creation of pharmacogenomic data. Consequently, the community requires standard formats to exchange large amounts of diverse information. To facilitate the transfer of pharmacogenomics data between databases and analysis packages, we have created a standard XML (eXtensible Markup Language) schema that describes both genotype and phenotype data as well as associated metadata. The schema accommodates information regarding genes, drugs, diseases, experimental methods, genomic/RNA/protein sequences, subjects, subject groups, and literature. The Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB; www.pharmgkb.org) has used this XML schema for more than 5 years to accept and process submissions containing more than 1,814,139 SNPs on 20,797 subjects using 8,975 assays. Although developed in the context of pharmacogenomics, the schema is of general utility for exchange of genotype and phenotype data. We have written syntactic and semantic validators to check documents using this format. The schema and code for validation is available to the community at http://www.pharmgkb.org/schema/index.html (last accessed: 8 October 2007). (c) 2007 Wiley-Liss, Inc.
Marin, Benoît; Logroscino, Giancarlo; Boumédiene, Farid; Labrunie, Anaïs; Couratier, Philippe; Babron, Marie-Claude; Leutenegger, Anne Louise; Preux, Pierre Marie; Beghi, Ettore
2016-03-01
To review how the phenotype and outcome of amyotrophic lateral sclerosis (ALS) change with variations in population ancestral origin (PAO). Knowledge of how PAO modifies ALS phenotype may provide important insight into the risk factors and pathogenic mechanisms of the disease. We performed a systematic review and meta-analysis of the literature concerning differences in phenotype and outcome of ALS that relate to PAO. A review of 3111 records identified 78 population-based studies. The 40 that were included covered 40 geographical areas in 10 subcontinents. Around 12,700 ALS cases were considered. The results highlight the phenotypic heterogeneity of ALS at time of onset [age, sex ratio (SR), bulbar onset], age at diagnosis, occurrence of comorbidities in the first year after diagnosis, and outcome (survival). Subcontinent is a major explanatory factor for the variability of the ALS phenotype in population-based studies. Some markers of ALS phenotype were homogeneously distributed in western countries (SR, mean age at onset/diagnosis) but their distributions in other subcontinents were remarkably different. Other markers presented variations in European subcontinents (familial ALS, bulbar onset) and in other continents. As a consequence, ALS outcome strongly varied, with a median survival time from onset ranging from 24 months (Northern Europe) to 48 months (Central Asia). This review sets the scene for a collaborative study involving a wide international consortium to investigate, using a standard methodology, the link between ancestry, environment, and ALS phenotype.
Why and How We Age, and Is That Process Modifiable?
NASA Astrophysics Data System (ADS)
Arking, R.
Aging is an almost-universal biological process that is better understood in terms of an evolutionary explanation than in terms of a medical or adaptationist explanation. The major advances in human longevity which took place in developed countries during the past century arose from decreases in external (e.g., environmental) sources of mortality, and not from any effect on the aging process. Laboratory studies show that the aging process is under genetic control, can be manipulated, and can be expressed in three different phenotypes. The adult lifespan consists of the health span (ages 20-55 yrs) and the senescent span (ages 55+), with a relatively short but variable transition phase between the two. The most socially desirable phenotype would be that where the transition phase is delayed and the health span extended with little effect on the senescent span. The genetic, nutritional, cell-signaling and pharmecutical interventions inducing this phenotype are discussed. The genetic architecture of senescence is discussed and its stochastic nature made clear. The social and ethical consequences of pharmecutical intervention into the aging process are briefly discussed.
The mitochondrial and kidney disease phenotypes of kd/kd mice under germfree conditions
Hallman, Troy M.; Peng, Min; Meade, Ray; Hancock, Wayne W.; Madaio, Michael P.; Gasser, David L.
2008-01-01
Interstitial nephritis occurs spontaneously in kd/kd mice, but the mechanisms leading to this disease have not been fully elucidated. The earliest manifestation of a phenotype is the appearance of ultrastructural defects in the mitochondria of mice as young as 42 days of age. To examine the influence of the environment on the phenotype, homozygous B6.kd/kd mice were transferred from specific pathogen-free (SPF) conditions to a germfree (GF) environment, and the development of the disease was observed. The GF state resulted in a highly significant reduction in the frequency of tubulointerstitial nephritis. In addition, GF conditions markedly reduced the appearance of the mitochondrial phenotype, with no sign of mitochondrial abnormalities in GF mice of up to 155 days of age. These results suggest that environmental factors are involved in the progression of all known manifestations of this disease phenotype. PMID:16337774
A custom multi-modal sensor suite and data analysis pipeline for aerial field phenotyping
NASA Astrophysics Data System (ADS)
Bartlett, Paul W.; Coblenz, Lauren; Sherwin, Gary; Stambler, Adam; van der Meer, Andries
2017-05-01
Our group has developed a custom, multi-modal sensor suite and data analysis pipeline to phenotype crops in the field using unpiloted aircraft systems (UAS). This approach to high-throughput field phenotyping is part of a research initiative intending to markedly accelerate the breeding process for refined energy sorghum varieties. To date, single rotor and multirotor helicopters, roughly 14 kg in total weight, are being employed to provide sensor coverage over multiple hectaresized fields in tens of minutes. The quick, autonomous operations allow for complete field coverage at consistent plant and lighting conditions, with low operating costs. The sensor suite collects data simultaneously from six sensors and registers it for fusion and analysis. High resolution color imagery targets color and geometric phenotypes, along with lidar measurements. Long-wave infrared imagery targets temperature phenomena and plant stress. Hyperspectral visible and near-infrared imagery targets phenotypes such as biomass and chlorophyll content, as well as novel, predictive spectral signatures. Onboard spectrometers and careful laboratory and in-field calibration techniques aim to increase the physical validity of the sensor data throughout and across growing seasons. Off-line processing of data creates basic products such as image maps and digital elevation models. Derived data products include phenotype charts, statistics, and trends. The outcome of this work is a set of commercially available phenotyping technologies, including sensor suites, a fully integrated phenotyping UAS, and data analysis software. Effort is also underway to transition these technologies to farm management users by way of streamlined, lower cost sensor packages and intuitive software interfaces.
Langhammer, Martina; Michaelis, Marten; Hoeflich, Andreas; Sobczak, Alexander; Schoen, Jennifer; Weitzel, Joachim M
2014-01-01
Animal models are valuable tools in fertility research. Worldwide, there are more than 400 transgenic or knockout mouse models available showing a reproductive phenotype; almost all of them exhibit an infertile or at least subfertile phenotype. By contrast, animal models revealing an improved fertility phenotype are barely described. This article summarizes data on two outbred mouse models exhibiting a 'high-fertility' phenotype. These mouse lines were generated via selection over a time period of more than 40 years and 161 generations. During this selection period, the number of offspring per litter and the total birth weight of the entire litter nearly doubled. Concomitantly with the increased fertility phenotype, several endocrine parameters (e.g. serum testosterone concentrations in male animals), physiological parameters (e.g. body weight, accelerated puberty, and life expectancy), and behavioral parameters (e.g. behavior in an open field and endurance fitness on a treadmill) were altered. We demonstrate that the two independently bred high-fertility mouse lines warranted their improved fertility phenotype using different molecular and physiological strategies. The fertility lines display female- as well as male-specific characteristics. These genetically heterogeneous mouse models provide new insights into molecular and cellular mechanisms that enhance fertility. In view of decreasing fertility in men, these models will therefore be a precious information source for human reproductive medicine. Translated abstract A German translation of abstract is freely available at http://www.reproduction-online.org/content/147/4/427/suppl/DC1.
Simultaneous Thermal and Gamma Radiation Aging of Cable Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Liu, Shuaishuai; Bowler, Nicola
Polymers used in nuclear power plant electrical cable systems experience aging and degradation over time due to environmental stress including heat and gamma irradiation. Prediction of long-term cable performance has been based on results of short-term accelerated laboratory aging studies, but questions remain regarding the correlation of accelerated aging to long-term, in-plant aging. This work seeks to increase understanding of the combined effects of heat and radiation on cable polymer material aging toward addressing these questions.
Compression set in gas-blown condensation-cured polysiloxane elastomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Mogon; Chinn, Sarah; Maxwell, Robert S.
2010-12-01
Accelerated thermal ageing studies on foamed condensation cured polysiloxane materials have been performed in support of life assessment and material replacement programmes. Two different types of filled hydrogen-blown and condensation cured polysiloxane foams were tested; commercial (RTV S5370), and an in-house formulated polysiloxane elastomer (Silfoam). Compression set properties were investigated using Thermomechanical (TMA) studies and compared against two separate longer term ageing trials carried out in air and in dry inert gas atmospheres using compression jigs. Isotherms measured from these studies were assessed using time-temperature (T/t) superposition. Acceleration factors were determined and fitted to Arrhenius kinetics. For both materials, themore » thermo-mechanical results were found to closely follow the longer term accelerated ageing trials. Comparison of the accelerated ageing data in dry nitrogen atmospheres against field trial results showed the accelerated ageing trends over predict, however the comparison is difficult as the field data suffer from significant component to component variability. Of the long term ageing trials reported here, those carried out in air deviate more significantly from field trials data compared to those carried out in dry nitrogen atmospheres. For field return samples, there is evidence for residual post-curing reactions influencing mechanical performance, which would accelerate compression set. Multiple quantum-NMR studies suggest that compression set is not associated with significant changes in net crosslink density, but that some degree of network rearrangement has occurred due to viscoelastic relaxation as well as bond breaking and forming processes, with possible post-curing reactions at early times.« less
Longitudinal cognitive decline in the AIBL cohort: The role of APOE ε4 status.
Albrecht, Matthew A; Szoeke, Cassandra; Maruff, Paul; Savage, Greg; Lautenschlager, Nicola T; Ellis, Kathryn A; Taddei, Kevin; Martins, Ralph; Masters, Colin L; Ames, David; Foster, Jonathan K
2015-08-01
The ε4 polymorphism of the APOE gene confers a substantially increased risk of developing Alzheimer's disease. However, the influence of the ε4 allele on age-related cognitive functioning is more contentious. Previously, we demonstrated relatively little evidence for a role of the ε4 allele on baseline cognitive performance in older adults in the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Ageing (Foster et al., 2013). We here investigated whether the APOE ε4 allele influenced cognitive status over time when the AIBL cohort was studied longitudinally over a 3-year period. The AIBL neuropsychological test battery was administered at baseline, after 18 months and again after 36 months. Participants comprised 764 Healthy Controls and 131 Mild Cognitively Impaired individuals enrolled in the AIBL Study of Ageing. We compared individuals within each group with and without an ε4 allele. Healthy Controls with an ε4 allele manifested a modest acceleration in cognitive decline over 36 months on measures of verbal episodic memory. By contrast, Mild Cognitively Impaired individuals with an ε4 allele showed increased cognitive decline across a range of cognitive tasks, putatively reflecting early cognitive signs of Alzheimer's disease. Given the long prodromal period that has been noted in late onset Alzheimer's disease, we suggest that these findings are consistent with a prodromal account rather than a phenotypic account of ε4-related cognitive ageing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Auditory Phenotype of Smith-Magenis Syndrome
ERIC Educational Resources Information Center
Brendal, Megan A.; King, Kelly A.; Zalewski, Christopher K.; Finucane, Brenda M.; Introne, Wendy; Brewer, Carmen C.; Smith, Ann C. M.
2017-01-01
Purpose: The purpose of this study was to describe the auditory phenotype of a large cohort with Smith-Magenis syndrome (SMS), a rare disorder including physical anomalies, cognitive deficits, sleep disturbances, and a distinct behavioral phenotype. Method: Hearing-related data were collected for 133 individuals with SMS aged 1-49 years. Audiogram…
Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recognition Study.
Schnack, Hugo G; van Haren, Neeltje E M; Nieuwenhuis, Mireille; Hulshoff Pol, Hilleke E; Cahn, Wiepke; Kahn, René S
2016-06-01
Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used support vector regression, a supervised machine learning technique, to address this question. In a longitudinal sample of 341 schizophrenia patients and 386 healthy subjects with one or more structural MRI scans (1,197 in total), machine learning algorithms were used to build models to predict the age of the brain and the presence of schizophrenia ("schizophrenia score"), based on the gray matter density maps. Age at baseline ranged from 16 to 67 years, and follow-up scans were acquired between 1 and 13 years after the baseline scan. Differences between brain age and chronological age ("brain age gap") and between schizophrenia score and healthy reference score ("schizophrenia gap") were calculated. Accelerated brain aging was calculated from changes in brain age gap between two consecutive measurements. The age prediction model was validated in an independent sample. In schizophrenia patients, brain age was significantly greater than chronological age at baseline (+3.36 years) and progressively increased during follow-up (+1.24 years in addition to the baseline gap). The acceleration of brain aging was not constant: it decreased from 2.5 years/year just after illness onset to about the normal rate (1 year/year) approximately 5 years after illness onset. The schizophrenia gap also increased during follow-up, but more pronounced variability in brain abnormalities at follow-up rendered this increase nonsignificant. The progressive brain loss in schizophrenia appears to reflect two different processes: one relatively homogeneous, reflecting accelerated aging of the brain and related to various measures of outcome, and a more variable one, possibly reflecting individual variation and medication use. Differentiating between these two processes may not only elucidate the various factors influencing brain loss in schizophrenia, but also assist in individualizing treatment.
Regulation of hematopoietic stem cell aging by the small RhoGTPase Cdc42
Geiger, Hartmut; Zheng, Yi
2015-01-01
Summary Aging of stem cells might be the underlying cause of tissue aging in tissue that in the adult heavily rely on stem cell activity, like the blood forming system. Hematopoiesis, the generation of blood forming cells, is sustained by hematopoietic stem cells. In this review article, we introduce the canonical set of phenotypes associated with aged HSCs, focus on the novel aging-associated phenotype apolarity caused by elevated activity of the small RhoGTPase in aged HSCs, disuccs the role of Cdc42 in hematopoiesis and describe that pharmacological inhibition of Cdc42 activity in aged HSCs results in functionally young and thus rejuvenated HSCs. PMID:25220425
Global urban signatures of phenotypic change in animal and plant populations
Correa, Cristian; Marzluff, John M.; Hendry, Andrew P.; Palkovacs, Eric P.; Hunt, Victoria M.; Apgar, Travis M.; Zhou, Yuyu
2017-01-01
Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human well-being depends. PMID:28049817
Global urban signatures of phenotypic change in animal and plant populations.
Alberti, Marina; Correa, Cristian; Marzluff, John M; Hendry, Andrew P; Palkovacs, Eric P; Gotanda, Kiyoko M; Hunt, Victoria M; Apgar, Travis M; Zhou, Yuyu
2017-08-22
Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human well-being depends.
HIV-associated cellular senescence: A contributor to accelerated aging.
Cohen, Justin; Torres, Claudio
2017-07-01
Due to the advent of antiretroviral therapy HIV is no longer a terminal disease and the HIV infected patients are becoming increasingly older. While this is a major success, with increasing age comes an increased risk for disease. The age-related comorbidities that HIV infected patients experience suggest that they suffer from accelerated aging. One possible contributor to this accelerated aging is cellular senescence, an age-associated response that can occur prematurely in response to stress, and that is emerging as a contributor to disease and aging. HIV patients experience several stressors such as the virus itself, antiretroviral drugs and to a lesser extent, substance abuse that can induce cellular senescence. This review summarizes the current knowledge of senescence induction in response to these stressors and their relation to the comorbidities in HIV patients. Cellular senescence may be a possible therapeutic target for these comorbidities. Copyright © 2016 Elsevier B.V. All rights reserved.
Solder joint aging characteristics from the MC2918 firing set of a B61 accelerated aging unit (AAU)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vianco, P.T.; Rejent, J.A.
1997-10-01
The B61 accelerated aging unit (AAU) provided a unique opportunity to document the effects of a controlled, long-term thermal cycling environment on the aging of materials used in the device. This experiment was of particular interest to solder technologists because thermal cycling environments are a predominant source of solder joint failures in electronic assemblies. Observations of through hole solder joints in the MC2918 Firing Set from the B61 AAU did not reveal signs of catastrophic failure. Quantitative analyses of the microstructural metrics of intermetallic compound layer thickness and Pb-rich phase particle distributions indicated solder joint aging that was commensurate withmore » the accelerated aging environment. The effects of stress-enhanced coarsening of the Pb-rich phase were also documented.« less
Zhou, Bin; Gao, Wenjing; Lv, Jun; Yu, Canqing; Wang, Shengfeng; Liao, Chunxiao; Pang, Zengchang; Cong, Liming; Dong, Zhong; Wu, Fan; Wang, Hua; Wu, Xianping; Jiang, Guohong; Wang, Xiaojie; Wang, Binyou; Cao, Weihua; Li, Liming
2015-07-01
The relative importance of genetic and environmental influences on obesity-related phenotypes remains unclear, and few studies have targeted the Chinese population. Here, we used Chinese twins reared apart and together to explore genetic and environmental influences on body mass index (BMI), waist circumference (WC) and waist-height ratio (WHtR), further to differentiate phenotype heritability between different age groups and genders separately and to differentiate influences of rearing environment and correlated environment. Phenotype heritability was calculated using the structural equation model in 11,401 twin pairs aged 25-85 years. BMI (0.70, 95 % confidence interval (CI) 0.66-0.74) of the total population was highly heritable, while WC (0.53, 95 %CI 0.50-0.57) and WHtR (0.48, 95 %CI 0.45-0.51) were moderately heritable. Age and gender stratified analyses found higher heritability in the younger group and males than the older group and females. The correlated environment had a greater influence on the phenotypes than the rearing environment, especially on WC and WHtR, indicating that more correlated environment actions should be taken to prevent the rising trend of abdominal obesity.
Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George
2016-06-01
The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages murine PDA to acquire an immune-suppressive phenotype and disabled T-cell-mediated anti-tumor responses. MCSF blockade negates this effect, allowing radiation to have increased efficacy in slowing tumor growth. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice
Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George
2016-01-01
Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs of mice to acquire an immune-suppressive phenotype and reduce T-cell mediated anti-tumor responses. Agents that block MCSF prevent this effect, allowing radiation to have increased efficacy in slowing tumor growth. PMID:26946344
Duan, Bin; Yin, Ziying; Hockaday Kang, Laura; Magin, Richard L; Butcher, Jonathan T
2016-05-01
Calcific aortic valve disease (CAVD) progression is a highly dynamic process whereby normally fibroblastic valve interstitial cells (VIC) undergo osteogenic differentiation, maladaptive extracellular matrix (ECM) composition, structural remodeling, and tissue matrix stiffening. However, how VIC with different phenotypes dynamically affect matrix properties and how the altered matrix further affects VIC phenotypes in response to physiological and pathological conditions have not yet been determined. In this study, we develop 3D hydrogels with tunable matrix stiffness to investigate the dynamic interplay between VIC phenotypes and matrix biomechanics. We find that VIC populated within hydrogels with valve leaflet like stiffness differentiate towards myofibroblasts in osteogenic media, but surprisingly undergo osteogenic differentiation when cultured within lower initial stiffness hydrogels. VIC differentiation progressively stiffens the hydrogel microenvironment, which further upregulates both early and late osteogenic markers. These findings identify a dynamic positive feedback loop that governs acceleration of VIC calcification. Temporal stiffening of pathologically lower stiffness matrix back to normal level, or blocking the mechanosensitive RhoA/ROCK signaling pathway, delays the osteogenic differentiation process. Therefore, direct ECM biomechanical modulation can affect VIC phenotypes towards and against osteogenic differentiation in 3D culture. These findings highlight the importance of the homeostatic maintenance of matrix stiffness to restrict pathological VIC differentiation. We implement 3D hydrogels with tunable matrix stiffness to investigate the dynamic interaction between valve interstitial cells (VIC, major cell population in heart valve) and matrix biomechanics. This work focuses on how human VIC responses to changing 3D culture environments. Our findings identify a dynamic positive feedback loop that governs acceleration of VIC calcification, which is the hallmark of calcific aortic valve disease. Temporal stiffening of pathologically lower stiffness matrix back to normal level, or blocking the mechanosensitive signaling pathway, delays VIC osteogenic differentiation. Our findings provide an improved understanding of VIC-matrix interactions to aid in interpretation of VIC calcification studies in vitro and suggest that ECM disruption resulting in local tissue stiffness decreases may promote calcific aortic valve disease. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Haptoglobin Phenotype Among Arab Patients With Mental Disorders.
Armaly, Zaher; Farhat, Kamal; Kinaneh, Safa; Farah, Joseph
2018-03-01
Depression, schizophrenia and panic disorder are common mental disorders in the community and hospitalized patients. These mental disorders negatively affect life quality and even expectancy of life. Haptoglobin (Hp) phenotype (Hp 1-1, 1-2, or 2-2) is associated with risk for cardiovascular diseases, but its association with psychiatric disorders, a growing concern in the modern society, has not been studied thoroughly. The aim of the study was to examine whether Hp phenotype is associated with common mental disorders such as depression, schizophrenia, and panic disorder. The study included 92 Arab patients with mental disorders, and among them 44 suffered from schizophrenia (mean age 39 ± 1.5 years), 17 from depression (mean age 44.5 ± 3.1 years), 31 from panic disorder (mean age of 44.9 ± 2.7 years), and 206 healthy Arab control subjects with a mean age of 42.6 ± 0.9 years. Beck's depression inventory assessment and Hamilton depression scale were administered for depression and panic disorder diagnosis. Schizophrenia was evaluated with positive and negative affect schedule (Panas) test. All mental disorders were evaluated by clinical review. Blood analysis for Hp phenotype was performed. Diagnosis was made using the Diagnostic and Statistical Manual of Mental Disorders axis to correlate depression with Hp phenotype. In mentally healthy controls, 10.7% were Hp 1-1, 38.8% Hp 2-1, and 50.5% Hp 2-2. In patients with the studied psychiatric disorders, Hp phenotype was comparable to healthy subjects; 8.7% were Hp 1-1, 50% Hp 2-1, and 41.3% Hp 2-2. When Hp phenotyping was analyzed in the psychiatric subgroups, Hp 2-1 was more common among depressed and schizophrenic patients, as compared with healthy subjects (58.8% and 52.3% vs. 38.8%). In patients who suffer from panic disorder, Hp phenotype distribution was 6.5% Hp 1-1, 41.9% Hp 2-1, and 51.6% Hp 2-2, suggesting a lower prevalence among Hp 1-1 phenotype. Arab patients who carry Hp 2-1 phenotype may be at risk to develop depression or schizophrenia more than the general healthy population. In contrast, Hp 1-1 subjects have a lower prevalence of panic disorder.
'Laminopathies': A wide spectrum of human diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worman, Howard J.; Bonne, Gisele; Universite Pierre et Marie Curie-Paris 6, Faculte de medecine, Paris F-75013
2007-06-10
Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called 'laminopathies.' Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasiamore » and Pelger-Huet anomaly. While mutations and clinical phenotypes of 'laminopathies' have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new 'laminopathies' and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.« less
Ichkova, Aleksandra; Rodriguez-Grande, Beatriz; Bar, Claire; Villega, Frederic; Konsman, Jan Pieter; Badaut, Jerome
2017-12-01
Traumatic brain injury (TBI) is the leading cause of death and disability in children. Indeed, the acute mechanical injury often evolves to a chronic brain disorder with long-term cognitive, emotional and social dysfunction even in the case of mild TBI. Contrary to the commonly held idea that children show better recovery from injuries than adults, pediatric TBI patients actually have worse outcome than adults for the same injury severity. Acute trauma to the young brain likely interferes with the fine-tuned developmental processes and may give rise to long-lasting consequences on brain's function. This review will focus on cerebrovascular dysfunction as an important early event that may lead to long-term phenotypic changes in the brain after pediatric TBI. These, in turn may be associated with accelerated brain aging and cognitive dysfunction. Finally, since no effective treatments are currently available, understanding the unique pathophysiological mechanisms of pediatric TBI is crucial for the development of new therapeutic options. Copyright © 2017 Elsevier Ltd. All rights reserved.
C-reactive protein and familial risk for dementia: a phenotype for successful cognitive aging.
Silverman, Jeremy M; Schmeidler, James; Beeri, Michal S; Rosendorff, Clive; Sano, Mary; Grossman, Hillel T; Carrión-Baralt, José R; Bespalova, Irina N; West, Rebecca; Haroutunian, Vahram
2012-09-11
Identifying phenotypes for successful cognitive aging, intact cognition into late-old age (>age 75), can help identify genes and neurobiological systems that may lead to interventions against and prevention of late-life cognitive impairment. The association of C-reactive protein (CRP) with cognitive impairment and dementia, observed primarily in young-elderly samples, appears diminished or reversed in late-old age (75+ years). A family history study determined if high CRP levels in late-old aged cognitively intact probands are associated with a reduced risk of dementia in their first-degree family members, suggesting a familial successful cognitive aging phenotype. The primary sample was 1,329 parents and siblings of 277 cognitively intact male veteran probands at least 75 years old. The replication sample was 202 relatives of 51 cognitively intact community-ascertained probands at least 85 years old. Relatives were assessed for dementia by proband informant interview. Their hazard ratio (HR) for dementia as a function of the proband's log-transformed CRP was calculated using the proportional hazards model. Covarying for key demographics, higher CRP in probands was strongly associated with lower risk of dementia in relatives (HR = 0.55 [95% confidence interval (CI) 0.41, 0.74], p < 0.02). The replication sample relationship was in the same direction, stronger in magnitude, and also significant (HR = 0.15 [95% CI 0.06, 0.37], p < 0.0001). Relatives of successful cognitive aging individuals with high levels of CRP are relatively likely to remain free of dementia. High CRP in successful cognitive aging individuals may constitute a phenotype for familial-and thus possibly genetic-successful cognitive aging.
Nagahara, Ryu; Takai, Yohei; Haramura, Miki; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo
2018-02-24
We aimed to elucidate age-related differences in spatiotemporal and ground reaction force variables during sprinting in boys over a broad range of chronological ages. Ground reaction force signals during 50-m sprinting were recorded in 99 boys aged 6.5-15.4 years. Step-to-step spatiotemporal variables and mean forces were then calculated. There was a slower rate of development in sprinting performance in the age span from 8.8 to 12.1 years compared with younger and older boys. During that age span, mean propulsive force was almost constant, and step frequency for older boys was lower regardless of sprinting phase. During the ages younger than 8.8 years and older than 12.1 years, sprint performance rapidly increased with increasing mean propulsive forces during the middle acceleration and maximal speed phases and during the initial acceleration phase. There was a stage of temporal slower development of sprinting ability from age 8.8 to 12.1 years, being characterized by unchanged propulsive force and decreased step frequency. Moreover, increasing propulsive forces during the middle acceleration and maximal speed phases and during the initial acceleration phase are probably responsible for the rapid development of sprinting ability before and after the period of temporal slower development of sprinting ability.
Heart Failure as an Aging-Related Phenotype.
Morita, Hiroyuki; Komuro, Issei
2018-01-27
The molecular pathophysiology of heart failure, which is one of the leading causes of mortality, is not yet fully understood. Heart failure can be regarded as a systemic syndrome of aging-related phenotypes. Wnt/β-catenin signaling and the p53 pathway, both of which are key regulators of aging, have been demonstrated to play a critical role in the pathogenesis of heart failure. Circulating C1q was identified as a novel activator of Wnt/β-catenin signaling, promoting systemic aging-related phenotypes including sarcopenia and heart failure. On the other hand, p53 induces the apoptosis of cardiomyocytes in the failing heart. In these molecular mechanisms, the cross-talk between cardiomyocytes and non-cardiomyocytes (e,g,. endothelial cells, fibroblasts, smooth muscle cells, macrophages) deserves mentioning. In this review, we summarize recent advances in the understanding of the molecular pathophysiology underlying heart failure, focusing on Wnt/β-catenin signaling and the p53 pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, S.G.; Hardy, D.R.
1995-05-01
Thermally unstable jet fuels pose operational problems. In order to adequately identify such fuels, factors that realistically impact on thermal stability were examined. Evaluation was based on a quantitative method of measuring thermal stability, viz., NRL`s recently developed gravimetric JFTOT. This method gives a quantitative measurement of both the strip deposit and filterables formed. The pertinent factors examined, included the individual and interactive effects of: soluble copper, MDA (metal deactivator), and aging. The latter was accelerated to simulate field conditions of approximately six months aging at ambient temperature and pressure. The results indicate that the individual and interactive effects ofmore » copper, MDA, and accelerated aging appear to be fuel dependent. Based on the results, the three test fuels examined (one JP-8 and two JP-5s) were categorized as exhibiting very good, typical, and poor thermal stabilities, respectively. For both the very good and poor thermal stability fuels, the effect of copper in conjunction with accelerated aging did not significantly increase the total thermal deposits of the neat fuels. In contrast, for the typical thermal stability fuel, the combined effects of copper and accelerated aging, did. Furthermore, the addition of MDA prior to aging of the copper-doped, typical stability fuel significantly counteracted the adverse effect of copper and aging. A similar beneficial effect of MDA was not observed for the poor stability fuel. These results focus on the compositional differences among fuels and the need to elucidate these differences (physical and chemical) for a better understanding and prediction of their performance.« less
Cortez, IbDanelo; Bulavin, Dmitry V.; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T
2018-01-01
A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38αAF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38αAF/+) and kinase activity. As a result, aged DN-p38αAF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer’s disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual’s relative risk. In the present study, we evaluated aged DN-p38αAF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38αAF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38αAF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38αAF/+, we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38αAF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. PMID:27765672
Roos, Carolyn M.; Hagler, Michael; Zhang, Bin; Oehler, Elise A.; Arghami, Arman
2013-01-01
The purpose of this study was to characterize changes in antioxidant and age-related gene expression in aorta and aortic valve with aging, and test the hypothesis that increased mitochondrial oxidative stress accelerates age-related endothelial and aortic valve dysfunction. Wild-type (MnSOD+/+) and manganese SOD heterozygous haploinsufficient (MnSOD+/−) mice were studied at 3 and 18 mo of age. In aorta from wild-type mice, antioxidant expression was preserved, although there were age-associated increases in Nox2 expression. Haploinsufficiency of MnSOD did not alter antioxidant expression in aorta, but increased expression of Nox2. When compared with that of aorta, age-associated reductions in antioxidant expression were larger in aortic valves from wild-type and MnSOD haploinsufficient mice, although Nox2 expression was unchanged. Similarly, sirtuin expression was relatively well-preserved in aorta from both genotypes, whereas expression of SIRT1, SIRT2, SIRT3, SIRT4, and SIRT6 were significantly reduced in the aortic valve. Expression of p16ink4a, a marker of cellular senescence, was profoundly increased in both aorta and aortic valve from MnSOD+/+ and MnSOD+/− mice. Functionally, we observed comparable age-associated reductions in endothelial function in aorta from both MnSOD+/+ and MnSOD+/− mice. Interestingly, inhibition of NAD(P)H oxidase with apocynin or gp91ds-tat improved endothelial function in MnSOD+/+ mice but significantly impaired endothelial function in MnSOD+/− mice at both ages. Aortic valve function was not impaired by aging or MnSOD haploinsufficiency. Changes in antioxidant and sirtuin gene expression with aging differ dramatically between aorta and aortic valve. Furthermore, although MnSOD does not result in overt cardiovascular dysfunction with aging, compensatory transcriptional responses to MnSOD deficiency appear to be tissue specific. PMID:23997094
Cortez, IbDanelo; Bulavin, Dmitry V; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T
2017-03-30
A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38α AF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38α AF/+ ) and kinase activity. As a result, aged DN-p38α AF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer's disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual's relative risk. In the present study, we evaluated aged DN-p38α AF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38α AF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38α AF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38α AF/+ , we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38α AF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. Copyright © 2016 Elsevier B.V. All rights reserved.
Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing.
Zhou, Can-Can; Yang, Xi; Hua, Xia; Liu, Jian; Fan, Mao-Bing; Li, Guo-Qiang; Song, Jie; Xu, Tian-Ying; Li, Zhi-Yong; Guan, Yun-Feng; Wang, Pei; Miao, Chao-Yu
2016-08-01
Ageing is an important risk factor of non-alcoholic fatty liver disease (NAFLD). Here, we investigated whether the deficiency of nicotinamide adenine dinucleotide (NAD(+) ), a ubiquitous coenzyme, links ageing with NAFLD. Hepatic concentrations of NAD(+) , protein levels of nicotinamide phosphoribosyltransferase (NAMPT) and several other critical enzymes regulating NAD(+) biosynthesis, were compared in middle-aged and aged mice or patients. The influences of NAD(+) decline on the steatosis and steatohepatitis were evaluated in wild-type and H247A dominant-negative, enzymically-inactive NAMPT transgenic mice (DN-NAMPT) given normal or high-fat diet (HFD). Hepatic NAD(+) level decreased in aged mice and humans. NAMPT-controlled NAD(+) salvage, but not de novo biosynthesis pathway, was compromised in liver of elderly mice and humans. Given normal chow, middle-age DN-NAMPT mice displayed systemic NAD(+) reduction and had moderate NAFLD phenotypes, including lipid accumulation, enhanced oxidative stress, triggered inflammation and impaired insulin sensitivity in liver. All these NAFLD phenotypes, especially release of pro-inflammatory factors, Kupffer cell accumulation, monocytes infiltration, NLRP3 inflammasome pathway and hepatic fibrosis (Masson's staining and α-SMA staining), deteriorated further under HFD challenge. Oral administration of nicotinamide riboside, a natural NAD(+) precursor, completely corrected these NAFLD phenotypes induced by NAD(+) deficiency alone or HFD, whereas adenovirus-mediated SIRT1 overexpression only partially rescued these phenotypes. These results provide the first evidence that ageing-associated NAD(+) deficiency is a critical risk factor for NAFLD, and suggest that supplementation with NAD(+) substrates may be a promising therapeutic strategy to prevent and treat NAFLD. © 2016 The British Pharmacological Society.
USDA-ARS?s Scientific Manuscript database
Triphenyl phosphate (TPP) is an additive used globally to in furniture, foams, and electronics products either as a flame retardant or plasticizer and is found in household dust. We administered TPP from gestational day 8.5 to weaning and evaluated metabolic phenotypes of 3.5 month old male and fema...
Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery
Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O
2011-01-01
Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493
Li, Jingyun; Zhang, Yuan; Zhang, Luo
2015-02-01
Allergic rhinitis and allergy are complex conditions, in which both genetic and environmental factors contribute to the pathogenesis. Genome-wide association studies (GWASs) employing common single-nucleotide polymorphisms have accelerated the search for novel and interesting genes, and also confirmed the role of some previously described genes which may be involved in the cause of allergic rhinitis and allergy. The aim of this review is to provide an overview of the genetic basis of allergic rhinitis and the associated allergic phenotypes, with particular focus on GWASs. The last decade has been marked by the publication of more than 20 GWASs of allergic rhinitis and the associated allergic phenotypes. Allergic diseases and traits have been shown to share a large number of genetic susceptibility loci, of which IL33/IL1RL1, IL-13-RAD50 and C11orf30/LRRC32 appear to be important for more than two allergic phenotypes. GWASs have further reflected the genetic heterogeneity underlying allergic phenotypes. Large-scale genome-wide association strategies are underway to discover new susceptibility variants for allergic rhinitis and allergic phenotypes. Characterization of the underlying genetics provides us with an insight into the potential targets for future studies and the corresponding interventions.
Potential fitness benefits of the half-pounder life history in Klamath River steelhead
Hodge, Brian W.; Wilzbach, Peggy; Duffy, Walter G.
2014-01-01
Steelhead Oncorhynchus mykiss from several of the world's rivers display the half-pounder life history, a variant characterized by an amphidromous (and, less often, anadromous) return to freshwater in the year of initial ocean entry. We evaluated factors related to expression of the half-pounder life history in wild steelhead from the lower Klamath River basin, California. We also evaluated fitness consequences of the half-pounder phenotype using a simple life history model that was parameterized with our empirical data and outputs from a regional survival equation. The incidence of the half-pounder life history differed among subbasins of origin and smolt ages. Precocious maturation occurred in approximately 8% of half-pounders and was best predicted by individual length in freshwater preceding ocean entry. Adult steelhead of the half-pounder phenotype were smaller and less fecund at age than adult steelhead of the alternative (ocean contingent) phenotype. However, our data suggest that fish of the half-pounder phenotype are more likely to spawn repeatedly than are fish of the ocean contingent phenotype. Models predicted that if lifetime survivorship were equal between phenotypes, the fitness of the half-pounder phenotype would be 17–28% lower than that of the ocean contingent phenotype. To meet the condition of equal fitness between phenotypes would require that first-year ocean survival be 21–40% higher among half-pounders in freshwater than among their cohorts at sea. We concluded that continued expression of the half-pounder phenotype is favored by precocious maturation and increased survival relative to that of the ocean contingent phenotype.
Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R.; Weissman, Amir; Binah, Ofer
2016-01-01
Background Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) only 3 types of action potentials (AP) exist: nodal, atrial and ventricular-like. Objective To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) during culture development a cardiac precursor cell is present that - depending on age - can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of nodal phenotype, transient appearance of atrial phenotype, evolution to ventricular phenotype, and persistence of transitional phenotypes. Methods To test these hypotheses we: (1) performed FACS analysis of nodal, atrial and ventricular markers; (2) recorded AP from 280 7-to-95 day old iPSC-CMs; (3) analyzed AP characteristics. Results The major findings were: (1) FACS analysis of 30 and 60-day old cultures showed that an iPSC-CMs population shifts from nodal into atrial/ventricular phenotype, while including significant transitional populations.(2) The AP population did not consist of 3 distinct phenotypes; (3) Culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57–70 days) appearance of atrial phenotype; (4) Beat Rate Variability was more prominent in nodal than ventricular cardiomyocytes while If density increased in older cultures. Conclusions From the onset of development the iPSC-CMs population includes nodal, atrial and ventricular AP and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial which appears only transiently, yet dominates at 57–70 days of evolution. PMID:27639456
Swaminathan, Shankar; Lu, Hong; Williams, Robert W; Lu, Lu; Jablonski, Monica M
2013-01-01
We investigated the contributions of Tyrp1 and Gpnmb to the iris transillumination defect (TID) in five age cohorts of BXD mice. Using systems genetics, we also evaluated the role of other known pigmentation genes (PGs). Mapping studies indicate that Tyrp1 contributes to the phenotype at all ages, yet the TID maps to Gpnmb only in the oldest cohort. Composite interval mapping reveals secondary loci viz. Oca2, Myo5a, Prkcz, and Zbtb20 that modulate the phenotype in the age groups up to 10–13 months. The contributions of Tyrp1 and Gpnmb were highly significant in all age cohorts. Moreover, in young mice, all six gene candidates had substantial interactions in our model. Our model accounted for 71–88% of the explained variance of the TID phenotype across the age bins. These results demonstrate that along with Tyrp1 and Gpnmb, Oca2, Myo5a, Prkcz, and Zbtb20 modulate the TID in an age-dependent manner. PMID:23582180
Iyadurai, Stanley; Arnold, W David; Kissel, John T; Ruhno, Corey; Mcgovern, Vicki L; Snyder, Pamela J; Prior, Thomas W; Roggenbuck, Jennifer; Burghes, Arthur H; Kolb, Stephen J
2017-08-01
Distal hereditary motor neuropathy (dHMN) causes distal-predominant weakness without prominent sensory loss. Myosin heavy chain disorders most commonly result in distal myopathy and cardiomyopathy with or without hearing loss, but a complex phenotype with dHMN, myopathy, hoarseness, and hearing loss was reported in a Korean family with a c.2822G>T mutation in MYH14. In this study we report phenotypic features in a North American family with the c.2822G>T in MYH14. Clinical and molecular characterization was performed in a large, 6-generation, Caucasian family with MYH14 dHMN. A total of 11 affected and 7 unaffected individuals were evaluated and showed varying age of onset and severity of weakness. Genotypic concordance was confirmed with molecular analysis. Electrophysiological studies demonstrated distal motor axonal degeneration without myopathy in all affected subjects tested. Mutation of MYH14 can result in a range of neuromuscular phenotypes that includes a dHMN and hearing loss phenotype with variable age of onset. Muscle Nerve 56: 341-345, 2017. © 2016 Wiley Periodicals, Inc.
Li, Yuanyuan; Tollefsbol, Trygve O
2016-01-01
Aging is considered as one of the most important developmental processes in organisms and is closely associated with global deteriorations of epigenetic markers such as aberrant methylomic patterns. This altered epigenomic state, referred to ‘epigenetic drift’, reflects deficient maintenance of epigenetic marks and contributes to impaired cellular and molecular functions in aged cells. Epigenetic drift-induced abnormal changes during aging are scantily repaired by epigenetic modulators. This inflexibility in the aged epigenome may lead to an age-related decline in phenotypic plasticity at the cellular and molecular levels due to epigenetic drift. This perspective aims to provide novel concepts for understanding epigenetic effects on the aging process and to provide insights into epigenetic prevention and therapeutic strategies for age-related human disease. PMID:27882781
Is biological aging accelerated in drug addiction?
Bachi, Keren; Sierra, Salvador; Volkow, Nora D; Goldstein, Rita Z; Alia-Klein, Nelly
2017-02-01
Drug-addiction may trigger early onset of age-related disease, due to drug-induced multi-system toxicity and perilous lifestyle, which remains mostly undetected and untreated. We present the literature on pathophysiological processes that may hasten aging and its relevance to addiction, including: oxidative stress and cellular aging, inflammation in periphery and brain, decline in brain volume and function, and early onset of cardiac, cerebrovascular, kidney, and liver disease. Timely detection of accelerated aging in addiction is crucial for the prevention of premature morbidity and mortality.
When stem cells grow old: phenotypes and mechanisms of stem cell aging.
Schultz, Michael B; Sinclair, David A
2016-01-01
All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. © 2016. Published by The Company of Biologists Ltd.
When stem cells grow old: phenotypes and mechanisms of stem cell aging
Schultz, Michael B.; Sinclair, David A.
2016-01-01
All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. PMID:26732838
Becker, Laren; Nguyen, Linh; Gill, Jaspreet; Kulkarni, Subhash; Pasricha, Pankaj Jay; Habtezion, Aida
2018-05-01
The enteric nervous system (ENS) undergoes neuronal loss and degenerative changes with age. The cause of this neurodegeneration is poorly understood. Muscularis macrophages residing in close proximity to enteric ganglia maintain neuromuscular function via direct crosstalk with enteric neurons and have been implicated in the pathogenesis of GI motility disorders like gastroparesis and postoperative ileus. The aim of this study was to assess whether ageing causes alterations in macrophage phenotype that contributes to age-related degeneration of the ENS. Longitudinal muscle and myenteric plexus from small intestine of young, mid-aged and old mice were dissected and prepared for whole mount immunostaining, flow cytometry, Luminex immunoassays, western blot analysis, enteric neural stem cell (ENSC) isolation or conditioned media. Bone marrow derived macrophages were prepared and polarised to classic (M1) or alternative (M2) activation states. Markers for macrophage phenotype were measured using quantitative RT-PCR. Ageing causes a shift in macrophage polarisation from anti-inflammatory 'M2' to proinflammatory 'M1' that is associated with a rise in cytokines and immune cells in the ENS. This phenotypic shift is associated with a neural response to inflammatory signals, increase in apoptosis and loss of enteric neurons and ENSCs, and delayed intestinal transit. An age-dependent decrease in expression of the transcription factor FoxO3, a known longevity gene, contributes to the loss of anti-inflammatory behaviour in macrophages of old mice, and FoxO3-deficient mice demonstrate signs of premature ageing of the ENS. A shift by macrophages towards a proinflammatory phenotype with ageing causes inflammation-mediated degeneration of the ENS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B
2014-01-01
Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.
[PSYCHO PHYSIOLOGICAL MARKERS OF ACCELERATED AGING AMONG THOSE WORKING WITH OCCUPATIONAL HAZARDS].
Bashkireva, A S; Kachan, Ye Yu; Kulapina, M E
2015-01-01
We assessed the significance of psycho physiological markers of accelerated aging of the function of attention using comparative analysis of two occupational groups in order to reveal how the working process affects mental work capacity. We revealed peculiarities of systemic structure of functions which determine mental work capacity depending on the age and length of service in lorry drivers. It was proved that decrease in the mnestic functions of lorry-drivers takes place 10-15 years earlier compared to the control group. Psycho physiological indices, reflecting the functioning of attention, decreased not only with aging but also with longer driving experience. Our results show that it is necessary to conduct further studies of psycho physiological markers of age-related decrease in short-term memory depending on the activities at work in order to prevent accelerated aging and achieve professional longevity.
Atherosclerosis in epilepsy: its causes and implications.
Hamed, Sherifa A
2014-12-01
Evidence from epidemiological, longitudinal, prospective, double-blinded clinical trials as well as case reports documents age-accelerated atherosclerosis with increased carotid artery intima media thickness (CA-IMT) in patients with epilepsy. These findings raise concern regarding their implications for age-accelerated cognitive and behavioral changes in midlife and risk of later age-related cognitive disorders including neurodegenerative processes such as Alzheimer's disease (AD). Chronic epilepsy, cerebral atherosclerosis, and age-related cognitive disorders including AD share many clinical manifestations (e.g. characteristic cognitive deficits), risk factors, and structural and pathological brain abnormalities. These shared risk factors include increased CA-IMT, hyperhomocysteinemia (HHcy), lipid abnormalities, weight gain and obesity, insulin resistance (IR), and high levels of inflammatory and oxidative stresses. The resulting brain structural and pathological abnormalities include decreased volume of the hippocampus, increased cortical thinning of the frontal lobe, ventricular expansion and increased white matter ischemic disease, total brain atrophy, and β-amyloid protein deposition in the brain. The knowledge that age-accelerated atherosclerosis may contribute to age-accelerated cognitive and behavioral abnormalities and structural brain pathologies in patients with chronic epilepsy represents an important research path to pursue future clinical and management considerations. Copyright © 2014 Elsevier Inc. All rights reserved.
Accelerated epigenetic aging in Down syndrome
Horvath, Steve; Garagnani, Paolo; Bacalini, Maria Giulia; Pirazzini, Chiara; Salvioli, Stefano; Gentilini, Davide; Di Blasio, Anna Maria; Giuliani, Cristina; Tung, Spencer; Vinters, Harry V; Franceschi, Claudio
2015-01-01
Down Syndrome (DS) entails an increased risk of many chronic diseases that are typically associated with older age. The clinical manifestations of accelerated aging suggest that trisomy 21 increases the biological age of tissues, but molecular evidence for this hypothesis has been sparse. Here, we utilize a quantitative molecular marker of aging (known as the epigenetic clock) to demonstrate that trisomy 21 significantly increases the age of blood and brain tissue (on average by 6.6 years, P = 7.0 × 10−14). PMID:25678027
Patterson, Victoria L; Thompson, Brian S; Cherry, Catherine; Wang, Shao-Bin; Chen, Bo; Hoh, Josephine
2016-07-14
Age-related diseases are becoming increasingly prevalent and the burden continues to grow as our population ages. Effective treatments are necessary to lessen the impact of debilitating conditions but remain elusive in many cases. Only by understanding the causes and pathology of diseases associated with aging, can scientists begin to identify potential therapeutic targets and develop strategies for intervention. The most common age-related conditions are neurodegenerative disorders such as Parkinson's disease and blindness. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Genome wide association studies have previously identified loci that are associated with increased susceptibility to this disease and identified two regions of interest: complement factor H (CFH) and the 10q26 locus, where the age-related maculopathy susceptibility 2 (ARMS2) and high-temperature requirement factor A1 (HtrA1) genes are located. CFH acts as a negative regulator of the alternative pathway (AP) of the complement system while HtrA1 is an extracellular serine protease. ARMS2 is located upstream of HtrA1 in the primate genome, although the gene is absent in mice. To study the effects of these genes, humanized knock-in mouse lines of Cfh and ARMS2, knockouts of Cfh, HtrA1, HtrA2, HtrA3 and HtrA4 as well as a conditional neural deletion of HtrA2 were generated. Of all the genetically engineered mice produced only mice lacking HtrA2, either systemically or in neural tissues, displayed clear phenotypes. In order to examine these mice thoroughly and systematically, an initial phenotyping schedule was established, consisting of a series of tests related to two main diseases of interest: AMD and Parkinson's. Genetically modified mice can be subjected to appropriate experiments to identify phenotypes that may be related to the associated diseases in humans. A phenotyping regimen with a mitochondrial focus is presented here alongside representative results from the tests of interest.
DNA methylation age of human tissues and cell types
2013-01-01
Background It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. Results I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. Conclusions I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research. PMID:24138928
Accelerated model of lupus autoimmunity and vasculopathy driven by toll-like receptor 7/9 imbalance
Liu, Yudong; Seto, Nickie L; Carmona-Rivera, Carmelo; Kaplan, Mariana J
2018-01-01
Objectives Activation of endosomal toll-like receptor (TLR)7 or TLR9 has been proposed as a critical step for the initiation and development of SLE. Traditional spontaneous lupus models normally introduce multiple risk alleles, thereby adding additional confounding factors. In the induced lupus models, the role of TLR9 remains unclear. In the present study, we explored the role of an imbalance between TLR7 and TLR9 pathways in the pathogenesis of lupus and its associated vasculopathy using the imiquimod model in TLR9 KO/B6 background. Methods Wild type (WT) and Tlr9-/- mice were epicutaneously treated with imiquimod cream 5% on both ears three times per week for indicated times. At euthanasia, mice were analysed for organ involvement, endothelium-dependent vasorelaxation, serum autoantibodies, and innate and adaptive immune responses. Results Compared with the lupus-like phenotype that develops in imiquimod-treated WT mice, Tlr9-/- mice exposed to imiquimod have increased severity of autoimmunity features and inflammatory phenotype that develops at earlier stages. These abnormalities are characterised by enhanced TLR7 expression and immune activation, increased immune complex deposition, Th1 T cells and dendritic cell kidney infiltration and significant impairments in endothelial function. Modulation of TLR7 expression was observed in the Tlr9-/- mice. Conclusions These findings further underscore the protective role of TLR9 in TLR7-driven autoimmunity and also in the development of vasculopathy, further strengthening the importance of tightly manipulating TLRs in putative therapeutic strategies. This study provides a new model of accelerated lupus phenotype driven by danger-associated molecular patterns. PMID:29765617
Accelerated model of lupus autoimmunity and vasculopathy driven by toll-like receptor 7/9 imbalance.
Liu, Yudong; Seto, Nickie L; Carmona-Rivera, Carmelo; Kaplan, Mariana J
2018-01-01
Activation of endosomal toll-like receptor (TLR)7 or TLR9 has been proposed as a critical step for the initiation and development of SLE. Traditional spontaneous lupus models normally introduce multiple risk alleles, thereby adding additional confounding factors. In the induced lupus models, the role of TLR9 remains unclear. In the present study, we explored the role of an imbalance between TLR7 and TLR9 pathways in the pathogenesis of lupus and its associated vasculopathy using the imiquimod model in TLR9 KO/B6 background. Wild type (WT) and Tlr9 -/- mice were epicutaneously treated with imiquimod cream 5% on both ears three times per week for indicated times. At euthanasia, mice were analysed for organ involvement, endothelium-dependent vasorelaxation, serum autoantibodies, and innate and adaptive immune responses. Compared with the lupus-like phenotype that develops in imiquimod-treated WT mice, Tlr9 -/- mice exposed to imiquimod have increased severity of autoimmunity features and inflammatory phenotype that develops at earlier stages. These abnormalities are characterised by enhanced TLR7 expression and immune activation, increased immune complex deposition, Th1 T cells and dendritic cell kidney infiltration and significant impairments in endothelial function. Modulation of TLR7 expression was observed in the Tlr9 -/- mice. These findings further underscore the protective role of TLR9 in TLR7-driven autoimmunity and also in the development of vasculopathy, further strengthening the importance of tightly manipulating TLRs in putative therapeutic strategies. This study provides a new model of accelerated lupus phenotype driven by danger-associated molecular patterns.
Yamamoto, Kyosuke; Togami, Takashi; Yamaguchi, Norio
2017-11-06
Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture-in cooperation with image processing technologies-for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis.
Togami, Takashi; Yamaguchi, Norio
2017-01-01
Unmanned aerial vehicles (UAVs or drones) are a very promising branch of technology, and they have been utilized in agriculture—in cooperation with image processing technologies—for phenotyping and vigor diagnosis. One of the problems in the utilization of UAVs for agricultural purposes is the limitation in flight time. It is necessary to fly at a high altitude to capture the maximum number of plants in the limited time available, but this reduces the spatial resolution of the captured images. In this study, we applied a super-resolution method to the low-resolution images of tomato diseases to recover detailed appearances, such as lesions on plant organs. We also conducted disease classification using high-resolution, low-resolution, and super-resolution images to evaluate the effectiveness of super-resolution methods in disease classification. Our results indicated that the super-resolution method outperformed conventional image scaling methods in spatial resolution enhancement of tomato disease images. The results of disease classification showed that the accuracy attained was also better by a large margin with super-resolution images than with low-resolution images. These results indicated that our approach not only recovered the information lost in low-resolution images, but also exerted a beneficial influence on further image analysis. The proposed approach will accelerate image-based phenotyping and vigor diagnosis in the field, because it not only saves time to capture images of a crop in a cultivation field but also secures the accuracy of these images for further analysis. PMID:29113104
Goiato, Marcelo Coelho; Santos, Daniela Micheline dos; Souza, Josiene Firmino; Moreno, Amália; Pesqueira, Aldiéris Alves
2010-12-01
Esthetics and durability of materials used to fabricate artificial eyes has been an important issue since artificial eyes are essential to restore esthetics and function, protect the remaining tissues and help with patients' psychological therapy. However, these materials are submitted to degrading effects of environmental agents on the physical properties of the acrylic resin. This study assessed the color stability of acrylic resins used to fabricate sclera in three basic shades (N1, N2 and N3) when subjected to accelerated aging, mechanical and chemical polishing. Specimens of each resin were fabricated and submitted to mechanical and chemical polishing. Chromatic analysis was performed before and after accelerated aging through ultraviolet reflection spectrophotometry. All specimens revealed color alteration following polishing and accelerated aging. The resins presented statistically significant chromatic alteration (p<0.01) between the periods of 252 and 1008 h. Both polishing methods presented no significant difference between the values of color derivatives of resins.
Factors in Early Adolescence Associated With a Mole-Prone Phenotype in Late Adolescence.
Xu, Haoming; Marchetti, Michael A; Dusza, Stephen W; Chung, Esther; Fonseca, Maira; Scope, Alon; Geller, Alan C; Bishop, Marilyn; Marghoob, Ashfaq A; Halpern, Allan C
2017-10-01
Nevi are important phenotypic risk factors for melanoma in adults. Few studies have examined the constitutional and behavioral factors associated with a mole-prone phenotype in adolescents. To identify host, behavioral, and dermoscopic factors in early adolescence (age, 14 years) that are associated with a mole-prone phenotype in late adolescence (age, 17 years). A prospective observational cohort study from the Study of Nevi in Children was conducted from January 1, 2009, to December 31, 2014, with a 2- to 3-year follow-up. A total of 569 students from the school system in Framingham, Massachusetts, were enrolled in the 8th or 9th grade (baseline; mean [SD] age, 14.4 [0.7] years). The overall retention rate was 73.3%, and 417 students were reassessed in the 11th grade. Mole-prone phenotype in the 11th grade, defined as total nevus count of the back and 1 randomly selected leg in the top decile of the cohort or having any nevi greater than 5 mm in diameter. Of the 417 students assessed at follow-up in the 11th grade (166 females and 251 males; mean [SD] age, 17.0 [0.4] years), 111 participants (26.6%) demonstrated a mole-prone phenotype: 69 students (62.2%) with 1 nevus greater than 5 mm in diameter, 23 students (20.7%) with total nevus count in the top decile, and 19 students (17.1%) with both characteristics. On multivariate analysis, baseline total nevus count (adjusted odds ratio, 9.08; 95% CI, 4.0-23.7; P < .001) and increased variability of nevus dermoscopic pattern (adjusted odds ratio, 4.24; 95% CI, 1.36-13.25; P = .01) were associated with a mole-prone phenotype. This study found clinically recognizable factors associated with a mole-prone phenotype that may facilitate the identification of individuals at risk for melanoma. These findings could have implications for primary prevention strategies and help target at-risk adolescents for higher-intensity counseling about sun protection and skin self-examination.
Rodrigues, Jorge L. M.; Serres, Margrethe H.; Tiedje, James M.
2011-01-01
The use of comparative genomics for the study of different microbiological species has increased substantially as sequence technologies become more affordable. However, efforts to fully link a genotype to its phenotype remain limited to the development of one mutant at a time. In this study, we provided a high-throughput alternative to this limiting step by coupling comparative genomics to the use of phenotype arrays for five sequenced Shewanella strains. Positive phenotypes were obtained for 441 nutrients (C, N, P, and S sources), with N-based compounds being the most utilized for all strains. Many genes and pathways predicted by genome analyses were confirmed with the comparative phenotype assay, and three degradation pathways believed to be missing in Shewanella were confirmed as missing. A number of previously unknown gene products were predicted to be parts of pathways or to have a function, expanding the number of gene targets for future genetic analyses. Ecologically, the comparative high-throughput phenotype analysis provided insights into niche specialization among the five different strains. For example, Shewanella amazonensis strain SB2B, isolated from the Amazon River delta, was capable of utilizing 60 C compounds, whereas Shewanella sp. strain W3-18-1, isolated from deep marine sediment, utilized only 25 of them. In spite of the large number of nutrient sources yielding positive results, our study indicated that except for the N sources, they were not sufficiently informative to predict growth phenotypes from increasing evolutionary distances. Our results indicate the importance of phenotypic evaluation for confirming genome predictions. This strategy will accelerate the functional discovery of genes and provide an ecological framework for microbial genome sequencing projects. PMID:21642407
Zdrazil, B.; Neefs, J.-M.; Van Vlijmen, H.; Herhaus, C.; Caracoti, A.; Brea, J.; Roibás, B.; Loza, M. I.; Queralt-Rosinach, N.; Furlong, L. I.; Gaulton, A.; Bartek, L.; Senger, S.; Chichester, C.; Engkvist, O.; Evelo, C. T.; Franklin, N. I.; Marren, D.; Ecker, G. F.
2016-01-01
Phenotypic screening is in a renaissance phase and is expected by many academic and industry leaders to accelerate the discovery of new drugs for new biology. Given that phenotypic screening is per definition target agnostic, the emphasis of in silico and in vitro follow-up work is on the exploration of possible molecular mechanisms and efficacy targets underlying the biological processes interrogated by the phenotypic screening experiments. Herein, we present six exemplar computational protocols for the interpretation of cellular phenotypic screens based on the integration of compound, target, pathway, and disease data established by the IMI Open PHACTS project. The protocols annotate phenotypic hit lists and allow follow-up experiments and mechanistic conclusions. The annotations included are from ChEMBL, ChEBI, GO, WikiPathways and DisGeNET. Also provided are protocols which select from the IUPHAR/BPS Guide to PHARMACOLOGY interaction file selective compounds to probe potential targets and a correlation robot which systematically aims to identify an overlap of active compounds in both the phenotypic as well as any kinase assay. The protocols are applied to a phenotypic pre-lamin A/C splicing assay selected from the ChEMBL database to illustrate the process. The computational protocols make use of the Open PHACTS API and data and are built within the Pipeline Pilot and KNIME workflow tools. PMID:27774140
Accelerated Testing Of Photothermal Degradation Of Polymers
NASA Technical Reports Server (NTRS)
Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow
1989-01-01
Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppé, Jean-Philippe; Patil, Christopher; Rodier, Francis
2008-10-24
Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cellsmore » in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.« less
Towards Accelerated Aging Methodologies and Health Management of Power MOSFETs (Technical Brief)
NASA Technical Reports Server (NTRS)
Celaya, Jose R.; Patil, Nishad; Saha, Sankalita; Wysocki, Phil; Goebel, Kai
2009-01-01
Understanding aging mechanisms of electronic components is of extreme importance in the aerospace domain where they are part of numerous critical subsystems including avionics. In particular, power MOSFETs are of special interest as they are involved in high voltage switching circuits such as drivers for electrical motors. With increased use of electronics in aircraft control, it becomes more important to understand the degradation of these components in aircraft specific environments. In this paper, we present an accelerated aging methodology for power MOSFETs that subject the devices to indirect thermal overstress during high voltage switching. During this accelerated aging process, two major modes of failure were observed - latch-up and die attach degradation. In this paper we present the details of our aging methodology along with details of experiments and analysis of the results.
Computer modeling of photodegradation
NASA Technical Reports Server (NTRS)
Guillet, J.
1986-01-01
A computer program to simulate the photodegradation of materials exposed to terrestrial weathering environments is being developed. Input parameters would include the solar spectrum, the daily levels and variations of temperature and relative humidity, and materials such as EVA. A brief description of the program, its operating principles, and how it works was initially described. After that, the presentation focuses on the recent work of simulating aging in a normal, terrestrial day-night cycle. This is significant, as almost all accelerated aging schemes maintain a constant light illumination without a dark cycle, and this may be a critical factor not included in acceleration aging schemes. For outdoor aging, the computer model is indicating that the night dark cycle has a dramatic influence on the chemistry of photothermal degradation, and hints that a dark cycle may be needed in an accelerated aging scheme.
Al-Ajmi, Nouf; Saretzki, Gabriele; Miles, Colin; Spyridopoulos, Ioakim
2014-10-01
Ageing is associated with an overall decline in the functional capacity of tissues and stem cells, including haematopoietic stem and progenitor cells (HSPCs), as well as telomere dysfunction. Dietary restriction (DR) is a recognised anti-ageing intervention that extends lifespan and improves health in several organisms. To investigate the role of telomeres and telomerase in haematopoietic ageing, we compared the HSPC profile and clonogenic capacity of bone marrow cells from wild type with telomerase-deficient mice and the effect of DR on these parameters. Compared with young mice, aged wild type mice demonstrated a significant accumulation of HSPCs (1.3% vs 0.2%, P=0.002) and elevated numbers of granulocyte/macrophage colony forming units (CFU-GM, 26.4 vs 17.3, P=0.0037) consistent with myeloid "skewing" of haematopoiesis. DR was able to restrict the increase in HSPC number as well as the myeloid "skewing" in aged wild type mice. In order to analyse the influence of short telomeres on the ageing phenotype we examined mice lacking the RNA template for telomerase, TERC(-/-). Telomere shortening resulted in a similar bone marrow phenotype to that seen in aged mice, with significantly increased HSPC numbers and an increased formation of all myeloid colony types but at a younger age than wild type mice. However, an additional increase in erythroid colonies (BFU-E) was also evident. Mice lacking telomerase reverse transcriptase without shortened telomeres, TERT(-/-), also presented with augmented haematopoietic ageing which was ameliorated by DR, demonstrating that the effect of DR was not dependent on the presence of telomerase in HSPCs. We conclude that whilst shortened telomeres mimic some aspects of haematopoietic ageing, both shortened telomeres and the lack of telomerase produce specific phenotypes, some of which can be prevented by dietary restriction. Copyright © 2014 Elsevier Inc. All rights reserved.
Accelerated aging effects on surface hardness and roughness of lingual retainer adhesives.
Ramoglu, Sabri Ilhan; Usumez, Serdar; Buyukyilmaz, Tamer
2008-01-01
To test the null hypothesis that accelerated aging has no effect on the surface microhardness and roughness of two light-cured lingual retainer adhesives. Ten samples of light-cured materials, Transbond Lingual Retainer (3M Unitek) and Light Cure Retainer (Reliance) were cured with a halogen light for 40 seconds. Vickers hardness and surface roughness were measured before and after accelerated aging of 300 hours in a weathering tester. Differences between mean values were analyzed for statistical significance using a t-test. The level of statistical significance was set at P < .05. The mean Vickers hardness of Transbond Lingual Retainer was 62.8 +/- 3.5 and 79.6 +/- 4.9 before and after aging, respectively. The mean Vickers hardness of Light Cure Retainer was 40.3 +/- 2.6 and 58.3 +/- 4.3 before and after aging, respectively. Differences in both groups were statistically significant (P < .001). Following aging, mean surface roughness was changed from 0.039 microm to 0.121 microm and from 0.021 microm to 0.031 microm for Transbond Lingual Retainer and Light Cure Retainer, respectively. The roughening of Transbond Lingual Retainer with aging was statistically significant (P < .05), while the change in the surface roughness of Light Cure Retainer was not (P > .05). Accelerated aging significantly increased the surface microhardness of both light-cured retainer adhesives tested. It also significantly increased the surface roughness of the Transbond Lingual Retainer.
Remigi, Philippe; Capela, Delphine; Clerissi, Camille; Tasse, Léna; Torchet, Rachel; Bouchez, Olivier; Batut, Jacques; Cruveiller, Stéphane; Rocha, Eduardo P. C.; Masson-Boivin, Catherine
2014-01-01
Horizontal gene transfer (HGT) is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and β-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT. PMID:25181317
High fat diet accelerates cartilage repair in DBA/1 mice.
Wei, Wu; Bastiaansen-Jenniskens, Yvonne M; Suijkerbuijk, Mathijs; Kops, Nicole; Bos, Pieter K; Verhaar, Jan A N; Zuurmond, Anne-Marie; Dell'Accio, Francesco; van Osch, Gerjo J V M
2017-06-01
Obesity is a well-known risk factor for osteoarthritis, but it is unknown what it does on cartilage repair. Here we investigated whether a high fat diet (HFD) influences cartilage repair in a mouse model of cartilage repair. We fed DBA/1 mice control or HFD (60% energy from fat). After 2 weeks, a full thickness cartilage defect was made in the trochlear groove. Mice were sacrificed, 1, 8, and 24 weeks after operation. Cartilage repair was evaluated on histology. Serum glucose, insulin and amyloid A were measured 24 h before operation and at endpoints. Immunohistochemical staining was performed on synovium and adipose tissue to evaluate macrophage infiltration and phenotype. One week after operation, mice on HFD had defect filling with fibroblast-like cells and more cartilage repair as indicated by a lower Pineda score. After 8 weeks, mice on a HFD still had a lower Pineda score. After 24 weeks, no mice had complete cartilage repair and we did not detect a significant difference in cartilage repair between diets. Bodyweight was increased by HFD, whereas serum glucose, amyloid A and insulin were not influenced. Macrophage infiltration and phenotype in adipose tissue and synovium were not influenced by HFD. In contrast to common wisdom, HFD accelerated intrinsic cartilage repair in DBA/1 mice on the short term. Resistance to HFD induced inflammatory and metabolic changes could be associated with accelerated cartilage repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1258-1264, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Macrophage Differentiation in Normal and Accelerated Wound Healing.
Kotwal, Girish J; Chien, Sufan
2017-01-01
Chronic wounds pose considerable public health challenges and burden. Wound healing is known to require the participation of macrophages, but mechanisms remain unclear. The M1 phenotype macrophages have a known scavenger function, but they also play multiple roles in tissue repair and regeneration when they transition to an M2 phenotype. Macrophage precursors (mononuclear cells/monocytes) follow the influx of PMN neutrophils into a wound during the natural wound-healing process, to become the major cells in the wound. Natural wound-healing process is a four-phase progression consisting of hemostasis, inflammation, proliferation, and remodeling. A lag phase of 3-6 days precedes the remodeling phase, which is characterized by fibroblast activation and finally collagen production. This normal wound-healing process can be accelerated by the intracellular delivery of ATP to wound tissue. This novel ATP-mediated acceleration arises due to an alternative activation of the M1 to M2 transition (macrophage polarization), a central and critical feature of the wound-healing process. This response is also characterized by an early increased release of pro-inflammatory cytokines (TNF, IL-1 beta, IL-6), a chemokine (MCP-1), an activation of purinergic receptors (a family of plasma membrane receptors found in almost all mammalian cells), and an increased production of platelets and platelet microparticles. These factors trigger a massive influx of macrophages, as well as in situ proliferation of the resident macrophages and increased synthesis of VEGFs. These responses are followed, in turn, by rapid neovascularization and collagen production by the macrophages, resulting in wound covering with granulation tissue within 24 h.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-20
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on Diesel Aftertreatment Accelerated Aging Cycles--Heavy... Institute-- Cooperative Research Group on Diesel Aftertreatment Accelerated Aging Cycles--Heavy-Duty...
Kulshreshtha, Bindu; Singh, Seerat; Arora, Arpita
2013-12-01
The phenotypic variability among PCOS could be due to differences in insulin patterns. Hyperinsulinemia commonly accompanies Diabetes Mellitus (DM), obesity, hypertension and CAD, though, to a variable degree. We speculate that a family history of these diseases could differentially affect the phenotype of PCOS. To study the effect of DM/CAD/HT and obesity on the phenotype of PCOS. PCOS patients and age matched controls were enquired for a family background of DM, hypertension, CAD and obesity among parents and grandparents. Regression modelling was employed to examine predictors of obesity and first symptom in PCOS patients. There were 88 PCOS women and 77 age-matched controls (46 lean, 31 obese). A high prevalence of DM, CAD, obesity and hypertension was observed among parents and grandparents of women with PCOS compared to controls. Hypertension and CAD manifested more in father's side of family. BMI of PCOS subjects was significantly related to parental DM and obesity after correcting for age. First symptom of weight gain was significantly associated with number of parents with DM (p = 0.02) and first symptom of irregular periods was associated with number of parents with hypertension (p = 0.06). A family background of DM/HT and obesity diseases affects the phenotype of PCOS.
Accelerated longitudinal designs: An overview of modelling, power, costs and handling missing data.
Galbraith, Sally; Bowden, Jack; Mander, Adrian
2017-02-01
Longitudinal studies are often used to investigate age-related developmental change. Whereas a single cohort design takes a group of individuals at the same initial age and follows them over time, an accelerated longitudinal design takes multiple single cohorts, each one starting at a different age. The main advantage of an accelerated longitudinal design is its ability to span the age range of interest in a shorter period of time than would be possible with a single cohort longitudinal design. This paper considers design issues for accelerated longitudinal studies. A linear mixed effect model is considered to describe the responses over age with random effects for intercept and slope parameters. Random and fixed cohort effects are used to cope with the potential bias accelerated longitudinal designs have due to multiple cohorts. The impact of other factors such as costs and the impact of dropouts on the power of testing or the precision of estimating parameters are examined. As duration-related costs increase relative to recruitment costs the best designs shift towards shorter duration and eventually cross-sectional design being best. For designs with the same duration but differing interval between measurements, we found there was a cutoff point for measurement costs relative to recruitment costs relating to frequency of measurements. Under our model of 30% dropout there was a maximum power loss of 7%.
Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R; Weissman, Amir; Binah, Ofer
2016-12-01
Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs), only 3 types of action potentials (APs) exist: nodal-, atrial-, and ventricular-like. To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) During culture development a cardiac precursor cell is present that-depending on age-can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of a nodal phenotype, transient appearance of an atrial phenotype, evolution to a ventricular phenotype, and persistence of transitional phenotypes. To test these hypotheses, we (1) performed fluorescence-activated cell sorting analysis of nodal, atrial, and ventricular markers; (2) recorded APs from 280 7- to 95-day-old iPSC-CMs; and (3) analyzed AP characteristics. The major findings were as follows: (1) fluorescence-activated cell sorting analysis of 30- and 60-day-old cultures showed that an iPSC-CMs population shifts from the nodal to the atrial/ventricular phenotype while including significant transitional populations; (2) the AP population did not consist of 3 phenotypes; (3) culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57-70 days) appearance of the atrial phenotype; and (4) beat rate variability was more prominent in nodal than in ventricular cardiomyocytes, while pacemaker current density increased in older cultures. From the onset of development in culture, the iPSC-CMs population includes nodal, atrial, and ventricular APs and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial, which appears only transiently yet dominates at 57-70 days of evolution. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Activity of daily living for Morquio A syndrome.
Yasuda, Eriko; Suzuki, Yasuyuki; Shimada, Tsutomu; Sawamoto, Kazuki; Mackenzie, William G; Theroux, Mary C; Pizarro, Christian; Xie, Li; Miller, Freeman; Rahman, Tariq; Kecskemethy, Heidi H; Nagao, Kyoko; Morlet, Thierry; Shaffer, Thomas H; Chinen, Yasutsugu; Yabe, Hiromasa; Tanaka, Akemi; Shintaku, Haruo; Orii, Kenji E; Orii, Koji O; Mason, Robert W; Montaño, Adriana M; Fukao, Toshiyuki; Orii, Tadao; Tomatsu, Shunji
2016-06-01
The aim of this study was to evaluate the activity of daily living (ADL) and surgical interventions in patients with mucopolysaccharidosis IVA (MPS IVA). The factor(s) that affect ADL are age, clinical phenotypes, surgical interventions, therapeutic effect, and body mass index. The ADL questionnaire comprises three domains: "Movement," "Movement with cognition," and "Cognition." Each domain has four subcategories rated on a 5-point scale based on the level of assistance. The questionnaire was collected from 145 healthy controls and 82 patients with MPS IVA. The patient cohort consisted of 63 severe and 17 attenuated phenotypes (2 were undefined); 4 patients treated with hematopoietic stem cell transplantation (HSCT), 33 patients treated with enzyme replacement therapy (ERT) for more than a year, and 45 untreated patients. MPS IVA patients show a decline in ADL scores after 10years of age. Patients with a severe phenotype have a lower ADL score than healthy control subjects, and lower scores than patients with an attenuated phenotype in domains of "Movement" and "Movement with cognition." Patients, who underwent HSCT and were followed up for over 10years, had higher ADL scores and fewer surgical interventions than untreated patients. ADL scores for ERT patients (2.5years follow-up on average) were similar with the-age-matched controls below 10years of age, but declined in older patients. Surgical frequency was higher for severe phenotypic patients than attenuated ones. Surgical frequency for patients treated with ERT was not decreased compared to untreated patients. In conclusion, we have shown the utility of the proposed ADL questionnaire and frequency of surgical interventions in patients with MPS IVA to evaluate the clinical severity and therapeutic efficacy compared with age-matched controls. Copyright © 2016. Published by Elsevier Inc.
Qualls, Clifford; Schuyler, Mark; Arynchyn, Alexander; Alvarado, Jesse H.; Smith, Lewis J.; Jacobs, David R.
2013-01-01
Rationale: Although asthma is usually considered to originate in childhood, adult-onset disease is being increasingly reported. Objectives: To contrast the proportion and natural history of adult-onset versus pediatric-onset asthma in a community-based cohort. We hypothesized that asthma in women is predominantly of adult onset rather than of pediatric onset. Methods: This study used data from the Coronary Artery Risk Development in Young Adults (CARDIA) cohort in the United States over a 25-year period. Adult- and pediatric-onset asthma phenotypes were studied, as defined by age at onset of 18 years or older. Subjects with asthma were categorized by sex, obesity, atopy, smoking, and race by mean age/examination year, using a three-way analysis of covariance model. Natural history of disease was examined using probabilities derived from a Markov chain model. Measurements and Main Results: Asthma of adult onset became the dominant (i.e., exceeded 50%) phenotype in women by age 40 years. The age by which adult-onset asthma became the dominant phenotype was further lowered for obese, nonatopic, ever-smoking, or white women. The prevalence trend with increasing time for adult-onset disease was greater among subjects with nonatopic than atopic asthma among both sexes. Furthermore, adult-onset asthma had remarkable sex-related differences in risk factors. In both sexes, the quiescent state for adult-onset asthma was less frequent and also “less stable” over time than for pediatric-onset asthma. Conclusions: Using a large national cohort, this study challenges the dictum that most asthma in adults originates in childhood. Studies of the differences between pediatric- and adult-onset asthma may provide greater insight into the phenotypic heterogeneity of asthma. PMID:23802814
Association of the ACTN3 Genotype and Physical Functioning With Age in Older Adults
Delmonico, Matthew J.; Zmuda, Joseph M.; Taylor, Brent C.; Cauley, Jane A.; Harris, Tamara B.; Manini, Todd M.; Schwartz, Ann; Li, Rongling; Roth, Stephen M.; Hurley, Ben F.; Bauer, Douglas C.; Ferrell, Robert E.; Newman, Anne B.
2009-01-01
Objective The purpose of this study was to examine the association of the alpha-actinin-3 (ACTN3) R577X polymorphism on muscle function and physical performance in older adults. Methods We measured knee extensor torque, midthigh muscle cross-sectional area, muscle quality, short physical performance battery score, and 400-meter walk time at baseline and after 5 years in white older adults aged 70–79 years in the Health, Aging and Body Composition Study cohort (n = 1367). Incident persistent lower extremity limitation (PLL) over 5 years was additionally assessed. We also examined white men in the Osteoporotic Fractures in Men Study, a longitudinal, observational cohort (n = 1152) of men 65 years old or older as a validation cohort for certain phenotypes. Results There were no significant differences between genotype groups in men or women for adjusted baseline phenotypes. Male X-homozygotes had a significantly greater adjusted 5-year increase in their 400-meter walk time compared to R-homozygotes and heterozygotes (p = .03). In women, X-homozygotes had a ~35% greater risk of incident PLL compared to R-homozygotes (hazard ratio = 0.65, 95% confidence interval = 0.44–0.94). There were no other significant associations between any of the phenotypes and ACTN3 genotype with aging in either cohort. Conclusions The ACTN3 polymorphism may influence declines in certain measures of physical performance with aging in older white adults, based on longitudinal assessments. However, the influence of the ACTN3 R577X polymorphism does not appear to have a strong effect on skeletal muscle–related phenotypes based on the strength and consistency of the associations and lack of replication with regard to specific phenotypes. PMID:19038838
Ritchie, Rebecca H.; Leo, Chen Huei; Qin, Chengxue; Stephenson, Erin J.; Bowden, Marissa A.; Buxton, Keith D.; Lessard, Sarah J.; Rivas, Donato A.; Koch, Lauren G.; Britton, Steven L.; Woodman, Owen L.
2013-01-01
Rats selectively bred for low (LCR) or high (HCR) intrinsic running capacity simultaneously present with contrasting risk factors for cardiovascular and metabolic disease. However, the impact of these phenotypes on left ventricular (LV) morphology and microvascular function, and their progression with aging, remains unresolved. We tested the hypothesis that the LCR phenotype induces progressive age-dependent LV remodeling and impairments in microvascular function, glucose utilization, and β-adrenergic responsiveness, compared with HCR. Hearts and vessels isolated from female LCR (n = 22) or HCR (n = 26) were studied at 12 and 35 wk. Nonselected N:NIH founder rats (11 wk) were also investigated (n = 12). LCR had impaired glucose tolerance and elevated plasma insulin (but not glucose) and body-mass at 12 wk compared with HCR, with early LV remodeling. By 35 wk, LV prohypertrophic and glucose transporter GLUT4 gene expression were up- and downregulated, respectively. No differences in LV β-adrenoceptor expression or cAMP content between phenotypes were observed. Macrovascular endothelial function was predominantly nitric oxide (NO)-mediated in both phenotypes and remained intact in LCR for both age-groups. In contrast, mesenteric arteries microvascular endothelial function, which was impaired in LCR rats regardless of age. At 35 wk, endothelial-derived hyperpolarizing factor-mediated relaxation was impaired whereas the NO contribution to relaxation is intact. Furthermore, there was reduced β2-adrenoceptor responsiveness in both aorta and mesenteric LCR arteries. In conclusion, diminished intrinsic exercise capacity impairs systemic glucose tolerance and is accompanied by progressive development of LV remodeling. Impaired microvascular perfusion is a likely contributing factor to the cardiac phenotype. PMID:23262135
Psychological Adjustment in a College-Level Program of Marked Academic Acceleration.
ERIC Educational Resources Information Center
Robinson, Nancy M.; Janos, Paul M.
1986-01-01
The questionnaire responses of 24 markedly accelerated young students at the University of Washington were compared with those of 24 regular-aged university students, 23 National Merit Scholors, and 27 students who had qualified for acceleration but instead elected to participate in high school. Accelerants appeared as well adjusted as all…
Perinatal Complications and Aging Indicators by Midlife
Caspi, Avshalom; Ambler, Antony; Belsky, Daniel W.; Chapple, Simon; Cohen, Harvey Jay; Israel, Salomon; Poulton, Richie; Ramrakha, Sandhya; Rivera, Christine D.; Sugden, Karen; Williams, Benjamin; Wolke, Dieter; Moffitt, Terrie E.
2014-01-01
BACKGROUND: Perinatal complications predict increased risk for morbidity and early mortality. Evidence of perinatal programming of adult mortality raises the question of what mechanisms embed this long-term effect. We tested a hypothesis related to the theory of developmental origins of health and disease: that perinatal complications assessed at birth predict indicators of accelerated aging by midlife. METHODS: Perinatal complications, including both maternal and neonatal complications, were assessed in the Dunedin Multidisciplinary Health and Development Study cohort (N = 1037), a 38-year, prospective longitudinal study of a representative birth cohort. Two aging indicators were assessed at age 38 years, objectively by leukocyte telomere length (TL) and subjectively by perceived facial age. RESULTS: Perinatal complications predicted both leukocyte TL (β = −0.101; 95% confidence interval, −0.169 to −0.033; P = .004) and perceived age (β = 0.097; 95% confidence interval, 0.029 to 0.165; P = .005) by midlife. We repeated analyses with controls for measures of family history and social risk that could predispose to perinatal complications and accelerated aging, and for measures of poor health taken in between birth and the age-38 follow-up. These covariates attenuated, but did not fully explain the associations observed between perinatal complications and aging indicators. CONCLUSIONS: Our findings provide support for early-life developmental programming by linking newborns’ perinatal complications to accelerated aging at midlife. We observed indications of accelerated aging “inside,” as measured by leukocyte TL, an indicator of cellular aging, and “outside,” as measured by perceived age, an indicator of declining tissue integrity. A better understanding of mechanisms underlying perinatal programming of adult aging is needed. PMID:25349321
The mechanisms of cachexia underlying muscle dysfunction in COPD.
Remels, A H V; Gosker, H R; Langen, R C J; Schols, A M W J
2013-05-01
Pulmonary cachexia is a prevalent, debilitating, and well-recognized feature of COPD associated with increased mortality and loss of peripheral and respiratory muscle function. The exact cause and underlying mechanisms of cachexia in COPD are still poorly understood. Increasing evidence, however, shows that pathological changes in intracellular mechanisms of muscle mass maintenance (i.e., protein turnover and myonuclear turnover) are likely involved. Potential factors triggering alterations in these mechanisms in COPD include oxidative stress, myostatin, and inflammation. In addition to muscle wasting, peripheral muscle in COPD is characterized by a fiber-type shift toward a more type II, glycolytic phenotype and an impaired oxidative capacity (collectively referred to as an impaired oxidative phenotype). Atrophied diaphragm muscle in COPD, however, displays an enhanced oxidative phenotype. Interestingly, intrinsic abnormalities in (lower limb) peripheral muscle seem more pronounced in either cachectic patients or weight loss-susceptible emphysema patients, suggesting that muscle wasting and intrinsic changes in peripheral muscle's oxidative phenotype are somehow intertwined. In this manuscript, we will review alterations in mechanisms of muscle mass maintenance in COPD and discuss the involvement of oxidative stress, inflammation, and myostatin as potential triggers of cachexia. Moreover, we postulate that an impaired muscle oxidative phenotype in COPD can accelerate the process of cachexia, as it renders muscle in COPD less energy efficient, thereby contributing to an energy deficit and weight loss when not dietary compensated. Furthermore, loss of peripheral muscle oxidative phenotype may increase the muscle's susceptibility to inflammation- and oxidative stress-induced muscle damage and wasting.
Functional genomics of physiological plasticity and local adaptation in killifish.
Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F
2011-01-01
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.
Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish
Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.
2011-01-01
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107
Wangler, Michael F; Reiter, Lawrence T; Zimm, Georgianna; Trimble-Morgan, Jennifer; Wu, Jane; Bier, Ethan
2011-07-01
Alzheimer's disease (AD) pathogenesis is characterized by senile plaques in the brain and evidence of oxidative damage. Oxidative stress may precede plaque formation in AD; however, the link between oxidative damage and plaque formation remains unknown. Presenilins are transmembrane proteins in which mutations lead to accelerated plaque formation and early-onset familial Alzheimer's disease. Presenilins physically interact with two antioxidant enzymes thiol-specific antioxidant (TSA) and proliferation-associated gene (PAG) of the peroxiredoxin family. The functional consequences of these interactions are unclear. In the current study we expressed a presenilin transgene in Drosophila wing and sensory organ precursors of the fly. This caused phenotypes typical of Notch signaling loss-of-function mutations. We found that while expression of TSA or PAG alone produced no phenotype, co-expression of TSA and PAG with presenilin led to an enhanced Notch loss-of-function phenotype. This phenotype was more severe and more penetrant than that caused by the expression of Psn alone. In order to determine whether these phenotypes were indeed affecting Notch signaling, this experiment was performed in a genetic background carrying an activated Notch (Abruptex) allele. The phenotypes were almost completely rescued by this activated Notch allele. These results link peroxiredoxins with the in vivo function of Presenilin, which ultimately connects two key pathogenetic mechanisms in AD, namely, antioxidant activity and plaque formation, and raises the possibility of a role for peroxiredoxin family members in Alzheimer's pathogenesis.
Phenotypic Effects of Salt and Heat Stress over Three Generations in Arabidopsis thaliana
Suter, Léonie; Widmer, Alex
2013-01-01
Current and predicted environmental change will force many organisms to adapt to novel conditions, especially sessile organisms such as plants. It is therefore important to better understand how plants react to environmental stress and to what extent genotypes differ in such responses. It has been proposed that adaptation to novel conditions could be facilitated by heritable epigenetic changes induced by environmental stress, independent of genetic variation. Here we assessed phenotypic effects of heat and salt stress within and across three generations using four highly inbred Arabidopsis thaliana genotypes (Col, Cvi, Ler and Sha). Salt stress generally decreased fitness, but genotypes were differently affected, suggesting that susceptibility of A. thaliana to salt stress varies among genotypes. Heat stress at an early rosette stage had less detrimental effects but accelerated flowering in three out of four accessions. Additionally, we found three different modes of transgenerational effects on phenotypes, all harboring the potential of being adaptive: heat stress in previous generations induced faster rosette growth in Sha, both under heat and control conditions, resembling a tracking response, while in Cvi, the phenotypic variance of several traits increased, resembling diversified bet-hedging. Salt stress experienced in earlier generations altered plant architecture of Sha under salt but not control conditions, similar to transgenerational phenotypic plasticity. However, transgenerational phenotypic effects depended on the type of stress as well as on genotype, suggesting that such effects may not be a general response leading to adaptation to novel environmental conditions in A. thaliana. PMID:24244719
TOMATOMA Update: Phenotypic and Metabolite Information in the Micro-Tom Mutant Resource.
Shikata, Masahito; Hoshikawa, Ken; Ariizumi, Tohru; Fukuda, Naoya; Yamazaki, Yukiko; Ezura, Hiroshi
2016-01-01
TOMATOMA (http://tomatoma.nbrp.jp/) is a tomato mutant database providing visible phenotypic data of tomato mutant lines generated by ethylmethane sulfonate (EMS) treatment or γ-ray irradiation in the genetic background of Micro-Tom, a small and rapidly growing variety. To increase mutation efficiency further, mutagenized M3 seeds were subjected to a second round of EMS treatment; M3M1 populations were generated. These plants were self-pollinated, and 4,952 lines of M3M2 mutagenized seeds were generated. We checked for visible phenotypes in the M3M2 plants, and 618 mutant lines with 1,194 phenotypic categories were identified. In addition to the phenotypic information, we investigated Brix values and carotenoid contents in the fruits of individual mutants. Of 466 samples from 171 mutant lines, Brix values and carotenoid contents were between 3.2% and 11.6% and 6.9 and 37.3 µg g(-1) FW, respectively. This metabolite information concerning the mutant fruits would be useful in breeding programs as well as for the elucidation of metabolic regulation. Researchers are able to browse and search this phenotypic and metabolite information and order seeds of individual mutants via TOMATOMA. Our new Micro-Tom double-mutagenized populations and the metabolic information could provide a valuable genetic toolkit to accelerate tomato research and potential breeding programs. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Changing course in ageing research: The healthy ageing phenotype.
Franco, Oscar H; Karnik, Kavita; Osborne, Gabrielle; Ordovas, Jose M; Catt, Michael; van der Ouderaa, Frans
2009-05-20
Ageing is often associated with the aged and the diseased, nevertheless ageing is a process that starts in-uterus and is characterised by a progressive functional loss but not necessarily by the presence of disease and poor quality of life. How to meander through life without crossing the confines of major chronic disease and cognitive and physical impairment remains one of the most relevant challenges for science and humankind. Delimiting that 'immaculate' trajectory - that we dub as the 'Healthy Ageing Phenotype' - and exploring solutions to help the population to stay or return to this trajectory should constitute the core focus of scientific research. Nevertheless, current efforts on ageing research are mainly focused on developing animal models to disentangle the human ageing process, and on age-related disorders often providing merely palliative solutions. Therefore, to identify alternative perspectives in ageing research, Unilever and the Medical Research Council (MRC) UK convened a Spark workshop entitled 'The Healthy Ageing Phenotype'. In this meeting, international specialists from complementary areas related to ageing research, gathered to find clear attributes and definitions of the 'Healthy Ageing Phenotype', to identify potential mechanisms and interventions to improve healthy life expectancy of the population; and to highlight areas within ageing research that should be prioritised in the future. General agreement was reached in recognising ageing research as a disaggregated field with little communication between basic, epidemiological and clinical areas of research and limited translation to society. A more holistic, multi-disciplinary approach emanating from a better understanding of healthy ageing trajectories and centred along human biological resilience, its maintenance and the reversibility from early deviations into pathological trajectories, is urgently required. Future research should concentrate on understanding the mechanisms that permit individuals to maintain optimal health when facing pathological hazards and on developing and assessing potential interventions that could aid to re-establish resilience when lost or guarantee its integrity if present. Furthermore it is fundamental that scientific findings are translated incessantly into clear messages delivered to governmental institutions, the industry and society in general.
PON1-192 phenotype and genotype assessments in 918 subjects of the Stanislas cohort study.
Vincent-Viry, Monique; Sass, Catherine; Bastien, Sabine; Aguillon, Dominique; Siest, Gérard; Visvikis, Sophie
2003-04-01
This study describes the factors of variation of the enzymes related to the PON1-192 phenotype assessment, i.e., basal paraoxonase, salt-stimulated paraoxonase and arylesterase activities, and compares the PON1-192 phenotype to the PON1-192 genotype assessments in supposedly healthy subjects issued from the Stanislas cohort study. The studied population included 918 subjects, i.e., 221 families including 441 adults and 477 children aged 4 to 58 years. Potential determinants such as age, gender, body mass index, alcohol and tobacco consumption, and oral contraceptive intake have been studied. The PON ratio (salt-stimulated paraoxonase/arylesterase) was trimodally distributed and the cut-off values used to differentiate the two homozygous (AA and BB phenotypes) from the heterozygous (AB phenotype) subjects were 3.0 and 7.0 in this study. In males, basal paraoxonase and salt-stimulated paraoxonase activities were not affected by alcohol consumption and current smoking, but basal paraoxonase activity was decreased by 15% by current smoking and was increased by 15% by oral contraceptive intake in females as was the salt-stimulated paraoxonase activity. The level of discordance between phenotype and genotype assessments was 7.2% (66/918). Most of the discrepancies were observed between the BB and AB phenotypes (4.25%).
Age Dependent Variability in Gene Expression in Fischer 344 ...
Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response does increase with age. However, few reports address the question of variation in gene expression as an underlying cause for increased variability of phenotypic response in the aged. In this study, we utilized global analysis to compare variation in constitutive gene expression in the retinae of young (4 mos), middle-aged (11 mos) and aged (23 mos) Fischer 344 rats. Three hundred and forty transcripts were identified in which variance in expression increased from 4 to 23 mos of age, while only twelve transcripts were found for which it decreased. Functional roles for identified genes were clustered in basic biological categories including cell communication, function, metabolism and response to stimuli. Our data suggest that population stochastically-induced variability should be considered in assessing sensitivity due to old age. Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response does increase with age. However, few reports address the question of variation in
Ma, Yonggang; Mouton, Alan J.; Lindsey, Merry L.
2018-01-01
Macrophages play critical roles in homeostatic maintenance of the myocardium under normal conditions and in tissue repair after injury. In the steady-state heart, resident cardiac macrophages remove senescent and dying cells and facilitate electrical conduction. In the aging heart, the shift in macrophage phenotype to a proinflammatory subtype leads to inflammaging. Following myocardial infarction (MI), macrophages recruited to the infarct produce both proinflammatory and anti-inflammatory mediators (cytokines, chemokines, matrix metalloproteinases, and growth factors), phagocytize dead cells, and promote angiogenesis and scar formation. These diverse properties are attributed to distinct macrophage subtypes and polarization status. Infarct macrophages exhibit a proinflammatory M1 phenotype early and become polarized toward an anti-inflammatory M2 phenotype later post- MI. Although this classification system is oversimplified and needs to be refined to accommodate the multiple different macrophage subtypes that have been recently identified, general concepts on macrophage roles are independent of subtype classification. This review summarizes current knowledge about cardiac macrophage origins, roles, and phenotypes in the steady state, with aging, and after MI, as well as highlights outstanding areas of investigation. PMID:29106912
Muramoto, Nobuhiko; Oda, Arisa; Tanaka, Hidenori; Nakamura, Takahiro; Kugou, Kazuto; Suda, Kazuki; Kobayashi, Aki; Yoneda, Shiori; Ikeuchi, Akinori; Sugimoto, Hiroki; Kondo, Satoshi; Ohto, Chikara; Shibata, Takehiko; Mitsukawa, Norihiro; Ohta, Kunihiro
2018-05-18
DNA double-strand break (DSB)-mediated genome rearrangements are assumed to provide diverse raw genetic materials enabling accelerated adaptive evolution; however, it remains unclear about the consequences of massive simultaneous DSB formation in cells and their resulting phenotypic impact. Here, we establish an artificial genome-restructuring technology by conditionally introducing multiple genomic DSBs in vivo using a temperature-dependent endonuclease TaqI. Application in yeast and Arabidopsis thaliana generates strains with phenotypes, including improved ethanol production from xylose at higher temperature and increased plant biomass, that are stably inherited to offspring after multiple passages. High-throughput genome resequencing revealed that these strains harbor diverse rearrangements, including copy number variations, translocations in retrotransposons, and direct end-joinings at TaqI-cleavage sites. Furthermore, large-scale rearrangements occur frequently in diploid yeasts (28.1%) and tetraploid plants (46.3%), whereas haploid yeasts and diploid plants undergo minimal rearrangement. This genome-restructuring system (TAQing system) will enable rapid genome breeding and aid genome-evolution studies.
Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue.
Park, Ye Seul; Uddin, Md Jamal; Piao, Lingjuan; Hwang, Inah; Lee, Jung Hwa; Ha, Hunjoo
2016-01-01
Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance.
Pathways to extinction: beyond the error threshold.
Manrubia, Susanna C; Domingo, Esteban; Lázaro, Ester
2010-06-27
Since the introduction of the quasispecies and the error catastrophe concepts for molecular evolution by Eigen and their subsequent application to viral populations, increased mutagenesis has become a common strategy to cause the extinction of viral infectivity. Nevertheless, the high complexity of virus populations has shown that viral extinction can occur through several other pathways apart from crossing an error threshold. Increases in the mutation rate enhance the appearance of defective forms and promote the selection of mechanisms that are able to counteract the accelerated appearance of mutations. Current models of viral evolution take into account more realistic scenarios that consider compensatory and lethal mutations, a highly redundant genotype-to-phenotype map, rough fitness landscapes relating phenotype and fitness, and where phenotype is described as a set of interdependent traits. Further, viral populations cannot be understood without specifying the characteristics of the environment where they evolve and adapt. Altogether, it turns out that the pathways through which viral quasispecies go extinct are multiple and diverse.
Physical exercise during muscle regeneration improves recovery of the slow/oxidative phenotype.
Koulmann, Nathalie; Richard-Bulteau, Hélène; Crassous, Brigitte; Serrurier, Bernard; Pasdeloup, Marielle; Bigard, Xavier; Banzet, Sébastien
2017-01-01
As skeletal muscle mass recovery after extensive injury is improved by contractile activity, we explored whether concomitant exercise accelerates recovery of the contractile and metabolic phenotypes after muscle injury. After notexin-induced degeneration of a soleus muscle, Wistar rats were assigned to active (running exercise) or sedentary groups. Myosin heavy chains (MHC), metabolic enzymes, and calcineurin were studied during muscle regeneration at different time points. The mature MHC profile recovered earlier in active rats (21 days after injury) than in sedentary rats (42 days). Calcineurin was higher in the active degenerated than in the sedentary degenerated muscles at day 14. Citrate synthase and total lactate dehydrogenase (LDH) activity decreased after injury and were similarly recovered in both active and sedentary groups at 14 or 42 days, respectively. H-LDH isozyme activity recovered earlier in the active rats. Exercise improved recovery of the slow/oxidative phenotype after soleus muscle injury. Muscle Nerve 55: 91-100, 2017. © 2016 Wiley Periodicals, Inc.
Wang, Shuang; Jiang, Xiaoqian; Singh, Siddharth; Marmor, Rebecca; Bonomi, Luca; Fox, Dov; Dow, Michelle; Ohno-Machado, Lucila
2017-01-01
Accessing and integrating human genomic data with phenotypes are important for biomedical research. Making genomic data accessible for research purposes, however, must be handled carefully to avoid leakage of sensitive individual information to unauthorized parties and improper use of data. In this article, we focus on data sharing within the scope of data accessibility for research. Current common practices to gain biomedical data access are strictly rule based, without a clear and quantitative measurement of the risk of privacy breaches. In addition, several types of studies require privacy-preserving linkage of genotype and phenotype information across different locations (e.g., genotypes stored in a sequencing facility and phenotypes stored in an electronic health record) to accelerate discoveries. The computer science community has developed a spectrum of techniques for data privacy and confidentiality protection, many of which have yet to be tested on real-world problems. In this article, we discuss clinical, technical, and ethical aspects of genome data privacy and confidentiality in the United States, as well as potential solutions for privacy-preserving genotype-phenotype linkage in biomedical research. © 2016 New York Academy of Sciences.
Gama, Clarissa
2017-01-01
Abstract Background: Schizophrenia (SZ) is associated with increased somatic morbidity and mortality, in addition to cognitive impairments similar to those seen in normal aging, which may suggest that pathological accelerated aging occurs in SZ. Therefore, we aim to evaluate the relationships of age, telomere length (TL) and CCL11 (aging and inflammatory biomarkers), and gray matter volumes (GM) to episodic memory performance in individuals with SZ compared to healthy controls (HC). Methods: 112 participants (48 SZ and 64 HC) underwent clinical and memory assessments, structural MRI, and had their peripheral blood drawn for biomarkers analysis. Comparisons of group means and correlations were performed. Results: Participants with SZ had decreased TL and GM residual volume, increased CCL11, and worse memory performance compared to HC. In SZ, shorter TL was related to increased CCL11, and they were both related to reduced GM residual volume, all of which were related to worse memory performance. Older age was only associated with reduced GM, but longer duration of illness was related with all the aforementioned variables. Younger age of disease onset was related with increased CCL11 levels and worse memory performance. In HC, there were no significant correlations except for between memory and GM. Conclusion: Our results are consistent with accelerated aging in SZ. These results may indicate that it is not age itself, but the impact of the disease associated with a pathological accelerated aging that leads to impaired outcomes in SZ. Akira Sawa, johns Hopkins University, Johns Hopkins Hospital and Medical Institutions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group On: Diesel After Treatment Accelerated Aging Cycles--Heavy... Institute--Cooperative Research Group on Diesel After Treatment Accelerated Aging Cycles--Heavy-Duty...
Accelerated Reader: Evaluation Report and Executive Summary
ERIC Educational Resources Information Center
Gorard, Stephen; Siddiqui, Nadia; See, Beng Huat
2015-01-01
Accelerated Reader (AR) is a whole-group reading management and monitoring program that aims to foster the habit of independent reading among primary and early secondary age pupils. The internet-based software initially screens pupils according to their reading levels, and suggests books that match their reading age and reading interest. Pupils…
Nuclear power plant cable materials :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard
2013-05-01
A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by amore » LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.« less
Relationship between endophenotype and phenotype in ADHD
Rommelse, Nanda NJ; Altink, Marieke E; Martin, Neilson C; Buschgens, Cathelijne JM; Faraone, Stephen V; Buitelaar, Jan K; Sergeant, Joseph A; Oosterlaan, Jaap
2008-01-01
Background It has been hypothesized that genetic and environmental factors relate to psychiatric disorders through the effect of intermediating, vulnerability traits called endophenotypes. The study had a threefold aim: to examine the predictive validity of an endophenotypic construct for the ADHD diagnosis, to test whether the magnitude of group differences at the endophenotypic and phenotypic level is comparable, and to investigate whether four factors (gender, age, IQ, rater bias) have an effect (moderation or mediation) on the relation between endophenotype and phenotype. Methods Ten neurocognitive tasks were administered to 143 children with ADHD, 68 non-affected siblings, and 120 control children (first-borns) and 132 children with ADHD, 78 non-affected siblings, and 113 controls (second-borns) (5 – 19 years). The task measures have been investigated previously for their endophenotypic viability and were combined to one component which was labeled 'the endophenotypic construct': one measure representative of endophenotypic functioning across several domains of functioning. Results The endophenotypic construct classified children with moderate accuracy (about 50% for each of the three groups). Non-affected children differed as much from controls at the endophenotypic as at the phenotypic level, but affected children displayed a more severe phenotype than endophenotype. Although a potentially moderating effect (age) and several mediating effects (gender, age, IQ) were found affecting the relation between endophenotypic construct and phenotype, none of the effects studied could account for the finding that affected children had a more severe phenotype than endophenotype. Conclusion Endophenotypic functioning is moderately predictive of the ADHD diagnosis, though findings suggest substantial overlap exists between endophenotypic functioning in the groups of affected children, non-affected siblings, and controls. Results suggest other factors may be crucial and aggravate the ADHD symptoms in affected children. PMID:18234079
Globalization of diabetes: the role of diet, lifestyle, and genes.
Hu, Frank B
2011-06-01
Type 2 diabetes is a global public health crisis that threatens the economies of all nations, particularly developing countries. Fueled by rapid urbanization, nutrition transition, and increasingly sedentary lifestyles, the epidemic has grown in parallel with the worldwide rise in obesity. Asia's large population and rapid economic development have made it an epicenter of the epidemic. Asian populations tend to develop diabetes at younger ages and lower BMI levels than Caucasians. Several factors contribute to accelerated diabetes epidemic in Asians, including the "normal-weight metabolically obese" phenotype; high prevalence of smoking and heavy alcohol use; high intake of refined carbohydrates (e.g., white rice); and dramatically decreased physical activity levels. Poor nutrition in utero and in early life combined with overnutrition in later life may also play a role in Asia's diabetes epidemic. Recent advances in genome-wide association studies have contributed substantially to our understanding of diabetes pathophysiology, but currently identified genetic loci are insufficient to explain ethnic differences in diabetes risk. Nonetheless, interactions between Westernized diet and lifestyle and genetic background may accelerate the growth of diabetes in the context of rapid nutrition transition. Epidemiologic studies and randomized clinical trials show that type 2 diabetes is largely preventable through diet and lifestyle modifications. Translating these findings into practice, however, requires fundamental changes in public policies, the food and built environments, and health systems. To curb the escalating diabetes epidemic, primary prevention through promotion of a healthy diet and lifestyle should be a global public policy priority.
Gao, Pengfei; Ma, Chen; Sun, Zheng; Wang, Lifeng; Huang, Shi; Su, Xiaoquan; Xu, Jian; Zhang, Heping
2017-08-03
Reducing antibiotics overuse in animal agriculture is one key in combat against the spread of antibiotic resistance. Probiotics are a potential replacement of antibiotics in animal feed; however, it is not clear whether and how probiotics and antibiotics differ in impact on physiology and microbial ecology of host animals. Host phenotype and fecal microbiota of broilers with either antibiotics or probiotics as feed additive were simultaneously sampled at four time points from birth to slaughter and then compared. Probiotic feeding resulted in a lower feed conversion ratio (FCR) and induced the highest level of immunity response, suggesting greater economic benefits in broiler farming. Probiotic use but not antibiotic use recapitulated the characteristics of age-dependent development of gut microbiota in the control group. The maturation of intestinal microbiota was greatly accelerated by probiotic feeding, yet significantly retarded and eventually delayed by antibiotic feeding. LP-8 stimulated the growth of many intestinal Lactobacillus spp. and led to an altered bacterial correlation network where Lactobacillus spp. are negatively correlated with 14 genera and positively linked with none, yet from the start antibiotic feeding featured a less-organized network where such inter-genera interactions were fewer and weaker. Consistently, microbiota-encoded functions as revealed by metagenome sequencing were highly distinct between the two groups. Thus, "intestinal microbiota maturation index" was proposed to quantitatively compare impact of feed additives on animal microecology. Our results reveal a tremendous potential of probiotics as antibiotics' substitute in poultry farming.
2011-01-01
Type 2 diabetes is a global public health crisis that threatens the economies of all nations, particularly developing countries. Fueled by rapid urbanization, nutrition transition, and increasingly sedentary lifestyles, the epidemic has grown in parallel with the worldwide rise in obesity. Asia's large population and rapid economic development have made it an epicenter of the epidemic. Asian populations tend to develop diabetes at younger ages and lower BMI levels than Caucasians. Several factors contribute to accelerated diabetes epidemic in Asians, including the “normal-weight metabolically obese” phenotype; high prevalence of smoking and heavy alcohol use; high intake of refined carbohydrates (e.g., white rice); and dramatically decreased physical activity levels. Poor nutrition in utero and in early life combined with overnutrition in later life may also play a role in Asia's diabetes epidemic. Recent advances in genome-wide association studies have contributed substantially to our understanding of diabetes pathophysiology, but currently identified genetic loci are insufficient to explain ethnic differences in diabetes risk. Nonetheless, interactions between Westernized diet and lifestyle and genetic background may accelerate the growth of diabetes in the context of rapid nutrition transition. Epidemiologic studies and randomized clinical trials show that type 2 diabetes is largely preventable through diet and lifestyle modifications. Translating these findings into practice, however, requires fundamental changes in public policies, the food and built environments, and health systems. To curb the escalating diabetes epidemic, primary prevention through promotion of a healthy diet and lifestyle should be a global public policy priority. PMID:21617109
The queen's gut refines with age: longevity phenotypes in a social insect model.
Anderson, Kirk E; Ricigliano, Vincent A; Mott, Brendon M; Copeland, Duan C; Floyd, Amy S; Maes, Patrick
2018-06-18
In social insects, identical genotypes can show extreme lifespan variation providing a unique perspective on age-associated microbial succession. In honey bees, short- and long-lived host phenotypes are polarized by a suite of age-associated factors including hormones, nutrition, immune senescence, and oxidative stress. Similar to other model organisms, the aging gut microbiota of short-lived (worker) honey bees accrue Proteobacteria and are depleted of Lactobacillus and Bifidobacterium, consistent with a suite of host senescence markers. In contrast, long-lived (queen) honey bees maintain youthful cellular function with much lower expression of oxidative stress genes, suggesting a very different host environment for age-associated microbial succession. We sequenced the microbiota of 63 honey bee queens exploring two chronological ages and four alimentary tract niches. To control for genetic and environmental variation, we quantified carbonyl accumulation in queen fat body tissue as a proxy for biological aging. We compared our results to the age-specific microbial succession of worker guts. Accounting for queen source variation, two or more bacterial species per niche differed significantly by queen age. Biological aging in queens was correlated with microbiota composition highlighting the relationship of microbiota with oxidative stress. Queens and workers shared many major gut bacterial species, but differ markedly in community structure and age succession. In stark contrast to aging workers, carbonyl accumulation in queens was significantly associated with increased Lactobacillus and Bifidobacterium and depletion of various Proteobacteria. We present a model system linking changes in gut microbiota to diet and longevity, two of the most confounding variables in human microbiota research. The pattern of age-associated succession in the queen microbiota is largely the reverse of that demonstrated for workers. The guts of short-lived worker phenotypes are progressively dominated by three major Proteobacteria, but these same species were sparse or significantly depleted in long-lived queen phenotypes. More broadly, age-related changes in the honey bee microbiota reflect the regulatory anatomy of reproductive host metabolism. Our synthesis suggests that the evolution of colony-level reproductive physiology formed the context for host-microbial interactions and age-related succession of honey bee microbiota.
Genetic and Environmental Architecture of Changes in Episodic Memory from Middle to Late Middle Age
Panizzon, Matthew S.; Neale, Michael C.; Docherty, Anna R.; Franz, Carol E.; Jacobson, Kristen C.; Toomey, Rosemary; Xian, Hong; Vasilopoulos, Terrie; Rana, Brinda K.; McKenzie, Ruth M.; Lyons, Michael J.; Kremen, William S.
2015-01-01
Episodic memory is a complex construct at both the phenotypic and genetic level. Ample evidence supports age-related cognitive stability and change being accounted for by general and domain-specific factors. We hypothesized that general and specific factors would underlie change even within this single cognitive domain. We examined six measures from three episodic memory tests in a narrow age cohort at middle and late middle age. The factor structure was invariant across occasions. At both timepoints two of three test-specific factors (story recall, design recall) had significant genetic influences independent of the general memory factor. Phenotypic stability was moderate to high, and primarily accounted for by genetic influences, except for one test-specific factor (list learning). Mean change over time was nonsignificant for one test-level factor; one declined; one improved. The results highlight the phenotypic and genetic complexity of memory and memory change, and shed light on an understudied period of life. PMID:25938244
High phenotypic variability in Gerstmann-Sträussler-Scheinker disease.
Smid, Jerusa; Studart, Adalberto; Landemberger, Michele Christine; Machado, Cleiton Fagundes; Nóbrega, Paulo Ribeiro; Canedo, Nathalie Henriques Silva; Schultz, Rodrigo Rizek; Naslavsky, Michel Satya; Rosemberg, Sérgio; Kok, Fernando; Chimelli, Leila; Martins, Vilma Regina; Nitrini, Ricardo
2017-06-01
Gerstmann-Sträussler-Scheinker is a genetic prion disease and the most common mutation is p.Pro102Leu. We report clinical, molecular and neuropathological data of seven individuals, belonging to two unrelated Brazilian kindreds, carrying the p.Pro102Leu. Marked differences among patients were observed regarding age at onset, disease duration and clinical presentation. In the first kindred, two patients had rapidly progressive dementia and three exhibited predominantly ataxic phenotypes with variable ages of onset and disease duration. In this family, age at disease onset in the mother and daughter differed by 39 years. In the second kindred, different phenotypes were also reported and earlier ages of onset were associated with 129 heterozygosis. No differences were associated with apoE genotype. In these kindreds, the codon 129 polymorphism could not explain the clinical variability and 129 heterozygosis was associated with earlier disease onset. Neuropathological examination in two patients confirmed the presence of typical plaques and PrPsc immunopositivity.
Genetic and environmental architecture of changes in episodic memory from middle to late middle age.
Panizzon, Matthew S; Neale, Michael C; Docherty, Anna R; Franz, Carol E; Jacobson, Kristen C; Toomey, Rosemary; Xian, Hong; Vasilopoulos, Terrie; Rana, Brinda K; McKenzie, Ruth; Lyons, Michael J; Kremen, William S
2015-06-01
Episodic memory is a complex construct at both the phenotypic and genetic level. Ample evidence supports age-related cognitive stability and change being accounted for by general and domain-specific factors. We hypothesized that general and specific factors would underlie change even within this single cognitive domain. We examined 6 measures from 3 episodic memory tests in a narrow age cohort at middle and late middle age. The factor structure was invariant across occasions. At both timepoints 2 of 3 test-specific factors (story recall, design recall) had significant genetic influences independent of the general memory factor. Phenotypic stability was moderate to high, and primarily accounted for by genetic influences, except for 1 test-specific factor (list learning). Mean change over time was nonsignificant for 1 test-level factor; 1 declined; 1 improved. The results highlight the phenotypic and genetic complexity of memory and memory change, and shed light on an understudied period of life. (c) 2015 APA, all rights reserved.
Diet-induced obesity accelerates acute lymphoblastic leukemia progression in two murine models.
Yun, Jason P; Behan, James W; Heisterkamp, Nora; Butturini, Anna; Klemm, Lars; Ji, Lingyun; Groffen, John; Müschen, Markus; Mittelman, Steven D
2010-10-01
Obesity is associated with an increased incidence of many cancers, including leukemia, although it is unknown whether leukemia incidence is increased directly by obesity or rather by associated genetic, lifestyle, health, or socioeconomic factors. We developed animal models of obesity and leukemia to test whether obesity could directly accelerate acute lymphoblastic leukemia (ALL) using BCR/ABL transgenic and AKR/J mice weaned onto a high-fat diet. Mice were observed until development of progressive ALL. Although obese and control BCR/ABL mice had similar median survival, older obese mice had accelerated ALL onset, implying a time-dependent effect of obesity on ALL. Obese AKR mice developed ALL significantly earlier than controls. The effect of obesity was not explained by WBC count, thymus/spleen weight, or ALL phenotype. However, obese AKR mice had higher leptin, insulin, and interleukin-6 levels than controls, and these obesity-related hormones all have potential roles in leukemia pathogenesis. In conclusion, obesity directly accelerates presentation of ALL, likely by increasing the risk of an early event in leukemogenesis. This is the first study to show that obesity can directly accelerate the progression of ALL. Thus, the observed associations between obesity and leukemia incidence are likely to be directly related to biological effects of obesity. ©2010 AACR.
Prior, Steven J; Roth, Stephen M; Wang, Xiaojing; Kammerer, Candace; Miljkovic-Gacic, Iva; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M
2007-10-01
The aim of this study was to estimate the heritability of and environmental contributions to skeletal muscle phenotypes (appendicular lean mass and calf muscle cross-sectional area) in subjects of African descent and to determine whether heritability estimates are impacted by sex or age. Body composition was measured by dual-energy X-ray absorptiometry and computed tomography in 444 men and women aged 18 yr and older (mean: 43 yr) from eight large, multigenerational Afro-Caribbean families (family size range: 21-112). Using quantitative genetic methods, we estimated heritability and the association of anthropometric, lifestyle, and medical variables with skeletal muscle phenotypes. In the overall group, we estimated the heritability of lean mass and calf muscle cross-sectional area (h(2) = 0.18-0.23, P < 0.01) and contribution of environmental factors to these phenotypes (r(2) = 0.27-0.55, P < 0.05). In our age-specific analysis, the heritability of leg lean mass was lower in older vs. younger individuals (h(2) = 0.05 vs. 0.23, respectively, P = 0.1). Sex was a significant covariate in our models (P < 0.001), although sex-specific differences in heritability varied depending on the lean mass phenotype analyzed. High genetic correlations (rho(G) = 0.69-0.81; P < 0.01) between different lean mass measures suggest these traits share a large proportion of genetic components. Our results demonstrate the heritability of skeletal muscle traits in individuals of African heritage and that heritability may differ as a function of sex and age. As the loss of skeletal muscle mass is related to metabolic abnormalities, disability, and mortality in older individuals, further research is warranted to identify specific genetic loci that contribute to these traits in general and in a sex- and age-specific manner.
Sokoloff, Alan J.; Douglas, Megan; Rahnert, Jill A.; Burkholder, Thomas; Easley, Kirk A.; Luo, Qingwei
2016-01-01
Introduction Equivocal decline of tongue muscle performance with age is compatible with resistance of the tongue to sarcopenia, the loss of muscle volume and function that typically occurs with aging. To test this possibility we characterized anatomical and molecular indices of sarcopenia in the macaque tongue muscle styloglossus (SG). Methods We quantified myosin heavy chain (MHC), muscle fiber MHC phenotype and size and total and phosphorylated growth- and atrophy-related proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), immunoblot and immunohistochemistry (IHC) in the SG in twenty-four macaque monkeys (Macaca rhesus, age range 9 months to 31 years) categorized into Young (<8 years of age), Middle-aged (15–21 years of age) and Old (> 22 years of age) groups. Results In Young, Middle and Old age groups, by SDS-PAGE MHCI comprised ~1/3 and MHCII ~2/3 of total MHC. MHCI relative frequency was lower and MHCII higher in Middle versus Young (p=0.0099) and Middle versus Old (p=0.052). Relative frequencies of MHC fiber phenotype were not different by age but were different by phenotype (rates 233, 641 and 111 per 1000 fibers for MHCI, MHCII and MHCI-II respectively, P = 0.03). Few or no fibers were positive for developmental MHC. Mean cross-sectional area (CSA) was not different among the three age groups for MHCII and MHCI-II; however MHCI fibers tended to be larger in Middle versus Old and Young (mean = 2257 um2, 1917 um2 (p=0.05) and 1704 um2 (p=0.06), respectively). For each age group, mean CSA increased across MHC phenotype (lowest mean CSA for MHCI and highest mean CSA for MHCII). Spearman analysis demonstrated age-related increases in total p70 ribosomal protein S6 kinase (P70), phosphorylated P70421/424, phosphorylated P38 mitogen-activated protein kinase and muscle atrophy F-Box, a trend to age-related decrease in total extracellular signal-regulated kinase (ERK), and no age-related change in total protein kinase B (Akt/PKB), phosphorylated Akt, phosphorylated ERK, phosphorylated c-Jun N-terminal kinase (JNK46) and phosphorylated P70389. Conclusion Common anatomical and molecular indices of sarcopenia are absent in our sample of macaque SG. Relative frequencies of MHCII protein and phenotype are preserved with age. Although MAFbx expression increases with age, this is not associated with fiber atrophy, perhaps reflecting compensatory growth signaling by p70. The resistant nature of the styloglossus muscle to sarcopenia may be related to routine activation of tongue muscles in respiration and swallowing and the preservation of hypoglossal motoneuron number with age. PMID:27566374
Accelerated aging and stabilization of radiation-vulcanized EPDM rubber
NASA Astrophysics Data System (ADS)
Basfar, A. A.; Abdel-Aziz, M. M.; Mofti, S.
2000-03-01
The effect of different antioxidants and their mixtures on the thermal aging and accelerated weathering of γ-radiation vulcanized EPDM rubber in presence of crosslinking coagent, was investigated. The compounds used were either a synergistic blend of phenolic and phosphite antioxidants, i.e. 1:4 Irganox 1076: Irgafos 168 or a blend of arylamine and quinoline type antioxidants, i.e. 1:1 IPPD: TMQ, at fixed concentration. Tinuvin 622 LD hindered amine light stabilized (HALS) was also used. The response was evaluated by the tensile strength and elongation at break for irradiated samples after thermal aging at 100°C for 28 days and accelerated weathering (Xenon test) up to 200 h.
Silame, F D J; Tonani, R; Alandia-Roman, C C; Chinelatti, M; Panzeri, H; Pires-de-Souza, F C P
2013-12-01
This study evaluated the colour stability of temporary prosthetic restorations with different thicknesses submitted to artificial accelerated aging. The occlusal surfaces of 40 molars were grinded to obtain flat enamel surfaces. Twenty acrylic resin specimens [Polymethyl methacrylate (Duralay) and Bis-methyl acrylate (Luxatemp)] were made with two different thicknesses, 0.5 mm and 1.0 mm. Temporary restorations were fixed on enamel and CIE L*a*b* colour parameters of each specimen were assessed before and after artificial accelerated aging. All groups showed colour alterations above the clinically acceptable limit. Luxatemp showed the lowest colour alteration regardless its thickness and Duralay showed the greatest alteration with 0.5 mm.
Body Acceleration as Indicator for Walking Economy in an Ageing Population.
Valenti, Giulio; Bonomi, Alberto G; Westerterp, Klaas R
2015-01-01
In adults, walking economy declines with increasing age and negatively influences walking speed. This study aims at detecting determinants of walking economy from body acceleration during walking in an ageing population. 35 healthy elderly (18 males, age 51 to 83 y, BMI 25.5±2.4 kg/m2) walked on a treadmill. Energy expenditure was measured with indirect calorimetry while body acceleration was sampled at 60Hz with a tri-axial accelerometer (GT3X+, ActiGraph), positioned on the lower back. Walking economy was measured as lowest energy needed to displace one kilogram of body mass for one meter while walking (WCostmin, J/m/kg). Gait features were extracted from the acceleration signal and included in a model to predict WCostmin. On average WCostmin was 2.43±0.42 J/m/kg and correlated significantly with gait rate (r2 = 0.21, p<0.01) and regularity along the frontal (anteroposterior) and lateral (mediolateral) axes (r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively). Together, the three variables explained 46% of the inter-subject variance (p<0.001) with a standard error of estimate of 0.30 J/m/kg. WCostmin and regularity along the frontal and lateral axes were related to age (WCostmin: r2 = 0.44, p<0.001; regularity: r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively frontal and lateral). The age associated decline in walking economy is induced by the adoption of an increased gait rate and by irregular body acceleration in the horizontal plane.
Developmental profile of slow hand movement oscillation coupling in humans.
Deutsch, Katherine M; Stephens, John A; Farmer, Simon F
2011-05-01
In adults, slow hand and finger movements are characterized by 6- to 12-Hz discontinuities visible in the raw records and spectra of motion signals such as acceleration. This pulsitile behavior is correlated with motor unit synchronization at 6-12 Hz as shown by significant coherence at these frequencies between pairs of motor units and between the motor units and the acceleration recorded from the limb part controlled by the muscle, suggesting that it has a central origin. In this study, we examined the correlation between this 6- to 12-Hz pulsatile behavior and muscle activity as a function of childhood development. Sixty-eight participants (ages 4-25 yr) performed static wrist extensions against gravity or slow wrist extension and flexion movements while extensor carpi radialis muscle electromyographic (EMG) and wrist acceleration signals were simultaneously recorded. Coherence between EMG and acceleration within the 6- to 12-Hz frequency band was used as an index of the strength of the relation between central drive and the motor output. The main findings of the study are 1) EMG-acceleration coherence increased with increases in age, with the age differences being greater under movement conditions and the difference between conditions increasing with age; 2) the EMG signal showed increases in normalized power with increases in age under both conditions; and 3) coherence under movement conditions was moderately positively correlated with manual dexterity. These findings indicate that the strength of the 6- to 12-Hz central oscillatory drive to the motor output increases through childhood development and may contribute to age-related improvements in motor skills.
Park, Joung-Sun; Jeon, Ho-Jun; Pyo, Jung-Hoon; Kim, Young-Shin; Yoo, Mi-Ae
2018-03-07
Stem cell dysfunction is closely linked to tissue and organismal aging and age-related diseases, and heavily influenced by the niche cells' environment. The DNA damage response (DDR) is a key pathway for tissue degeneration and organismal aging; however, the precise protective role of DDR in stem cell/niche aging is unclear. The Drosophila midgut is an excellent model to study the biology of stem cell/niche aging because of its easy genetic manipulation and its short lifespan. Here, we showed that deficiency of DDR in Drosophila enterocytes (ECs) accelerates intestinal stem cell (ISC) aging. We generated flies with knockdown of Mre11 , Rad50 , Nbs1 , ATM , ATR , Chk1 , and Chk2 , which decrease the DDR system in ECs. EC-specific DDR depletion induced EC death, accelerated the aging of ISCs, as evidenced by ISC hyperproliferation, DNA damage accumulation, and increased centrosome amplification, and affected the adult fly's survival. Our data indicated a distinct effect of DDR depletion in stem or niche cells on tissue-resident stem cell proliferation. Our findings provide evidence of the essential role of DDR in protecting EC against ISC aging, thus providing a better understanding of the molecular mechanisms of stem cell/niche aging.
2012-01-01
Particulate matter (PM) pollution is responsible for hundreds of thousands of deaths worldwide, the majority due to cardiovascular disease (CVD). While many potential pathophysiological mechanisms have been proposed, there is not yet a consensus as to which are most important in causing pollution-related morbidity/mortality. Nor is there consensus regarding which specific types of PM are most likely to affect public health in this regard. One toxicological mechanism linking exposure to airborne PM with CVD outcomes is oxidative stress, a contributor to the development of CVD risk factors including atherosclerosis. Recent work suggests that accelerated shortening of telomeres and, thus, early senescence of cells may be an important pathway by which oxidative stress may accelerate biological aging and the resultant development of age-related morbidity. This pathway may explain a significant proportion of PM-related adverse health outcomes, since shortened telomeres accelerate the progression of many diseases. There is limited but consistent evidence that vehicular emissions produce oxidative stress in humans. Given that oxidative stress is associated with accelerated erosion of telomeres, and that shortened telomeres are linked with acceleration of biological ageing and greater incidence of various age-related pathology, including CVD, it is hypothesized that associations noted between certain pollution types and sources and oxidative stress may reflect a mechanism by which these pollutants result in CVD-related morbidity and mortality, namely accelerated aging via enhanced erosion of telomeres. This paper reviews the literature providing links among oxidative stress, accelerated erosion of telomeres, CVD, and specific sources and types of air pollutants. If certain PM species/sources might be responsible for adverse health outcomes via the proposed mechanism, perhaps the pathway to reducing mortality/morbidity from PM would become clearer. Not only would pollution reduction imperatives be more focused, but interventions which could reduce oxidative stress would become all the more important. PMID:22713210
Phenotypes Associated with SHOX Deficiency.
Ross, J L; Scott, C; Marttila, P; Kowal, K; Nass, A; Papenhausen, P; Abboudi, J; Osterman, L; Kushner, H; Carter, P; Ezaki, M; Elder, F; Wei, F; Chen, H; Zinn, A R
2001-12-01
Leri-Weill dyschondrosteosis (LWD) (MIM 127300) is a dominantly inherited skeletal dysplasia characterized phenotypically by Madelung wrist deformity, mesomelia, and short stature. LWD can now be defined genetically by haploinsufficiency of the SHOX (short stature homeobox-containing) gene. We have studied 21 LWD families (43 affected LWD subjects, including 32 females and 11 males, ages 3-56 yr) with confirmed SHOX abnormalities. We investigated the relationship between SHOX mutations, height deficit, and Madelung deformity to determine the contribution of SHOX haploinsufficiency to the LWD and Turner syndrome (TS) phenotypes. Also, we examined the effects of age, gender, and female puberty (estrogen) on the LWD phenotype. SHOX deletions were present in affected individuals from 17 families (81%), and point mutations were detected in 4 families (19%). In the LWD subjects, height deficits ranged from -4.6 to +0.6 SD (mean +/- SD = -2.2 +/- 1.0). There were no statistically significant effects of age, gender, pubertal status, or parental origin of SHOX mutations on height z-score. The height deficit in LWD is approximately two thirds that of TS. Madelung deformity was present in 74% of LWD children and adults and was more frequent and severe in females than males. The prevalence of the Madelung deformity was higher in the LWD vs. a TS population. The prevalence of increased carrying angle, high arched palate, and scoliosis was similar in the two populations. In conclusion, SHOX deletions or mutations accounted for all of our LWD cases. SHOX haploinsufficiency accounts for most, but not all, of the TS height deficit. The LWD phenotype shows some gender- and age-related differences.
Hepatic NAD+ deficiency as a therapeutic target for non‐alcoholic fatty liver disease in ageing
Zhou, Can‐Can; Yang, Xi; Hua, Xia; Liu, Jian; Fan, Mao‐Bing; Li, Guo‐Qiang; Song, Jie; Xu, Tian‐Ying; Li, Zhi‐Yong; Guan, Yun‐Feng
2016-01-01
Abstract Background and Purpose Ageing is an important risk factor of non‐alcoholic fatty liver disease (NAFLD). Here, we investigated whether the deficiency of nicotinamide adenine dinucleotide (NAD+), a ubiquitous coenzyme, links ageing with NAFLD. Experimental Approach Hepatic concentrations of NAD+, protein levels of nicotinamide phosphoribosyltransferase (NAMPT) and several other critical enzymes regulating NAD+ biosynthesis, were compared in middle‐aged and aged mice or patients. The influences of NAD+ decline on the steatosis and steatohepatitis were evaluated in wild‐type and H247A dominant‐negative, enzymically‐inactive NAMPT transgenic mice (DN‐NAMPT) given normal or high‐fat diet (HFD). Key Results Hepatic NAD+ level decreased in aged mice and humans. NAMPT‐controlled NAD+ salvage, but not de novo biosynthesis pathway, was compromised in liver of elderly mice and humans. Given normal chow, middle‐age DN‐NAMPT mice displayed systemic NAD+ reduction and had moderate NAFLD phenotypes, including lipid accumulation, enhanced oxidative stress, triggered inflammation and impaired insulin sensitivity in liver. All these NAFLD phenotypes, especially release of pro‐inflammatory factors, Kupffer cell accumulation, monocytes infiltration, NLRP3 inflammasome pathway and hepatic fibrosis (Masson's staining and α‐SMA staining), deteriorated further under HFD challenge. Oral administration of nicotinamide riboside, a natural NAD+ precursor, completely corrected these NAFLD phenotypes induced by NAD+ deficiency alone or HFD, whereas adenovirus‐mediated SIRT1 overexpression only partially rescued these phenotypes. Conclusions and Implications These results provide the first evidence that ageing‐associated NAD+ deficiency is a critical risk factor for NAFLD, and suggest that supplementation with NAD+ substrates may be a promising therapeutic strategy to prevent and treat NAFLD. PMID:27174364
A novel healthy blood pressure phenotype in the Long Life Family Study.
Marron, Megan M; Singh, Jatinder; Boudreau, Robert M; Christensen, Kaare; Cosentino, Stephanie; Feitosa, Mary F; Minster, Ryan L; Perls, Thomas; Schupf, Nicole; Sebastiani, Paola; Ukraintseva, Svetlana; Wojczynski, Mary K; Newman, Anne B
2018-01-01
Hypertension tends to run in families and has both genetic and environmental determinants. We assessed the hypothesis that a novel healthy blood pressure (BP) phenotype is also familial and sought to identify its associated factors. We developed a healthy BP phenotype in the Long Life Family Study, a cohort of two-generation families selected for longevity. Participants from the offspring generation (n = 2211, ages 32-88) were classified as having healthy BP if their age-adjusted and sex-adjusted SBP z-score was between -1.5 and -0.5. Offspring on antihypertensive medications were classified as not having healthy BP. Families with at least two offspring (n = 419 families) were defined as meeting the healthy BP phenotype if at least two and at least 50% of their offspring had healthy BP. Among 2211 offspring, 476 (21.5%) met the healthy BP phenotype. When examining the 419 families, only 44 (10.5%) families met the criteria for the healthy BP phenotype. Both offspring and probands from families with healthy BP performed better on neuropsychological tests that place demands on complex attention and executive function when compared with offspring and probands from remaining families. Among families with the healthy BP phenotype compared with families without, a higher proportion of offspring met the American Heart Association definition of ideal cardiovascular health (10.8 versus 3.8%, respectively; driven by BP, smoking status, and BMI components). In this cohort of familial longevity, few families had a novel healthy BP phenotype in multiple members. Families with this healthy BP phenotype may represent a specific pathway to familial longevity.
Immunologic Aging in Adults with Congenital Heart Disease: Does Infant Sternotomy Matter?
Elder, Robert W; George, Roshan P; McCabe, Nancy M; Rodriguez, Fred H; Book, Wendy M; Mahle, William T; Kirk, Allan D
2015-10-01
Thymectomy is performed routinely in infants undergoing cardiothoracic surgery. Children post-sternotomy have decreased numbers of T lymphocytes, although the mechanisms involved and long-term consequences of this have not been defined. We hypothesized that lymphopenia in patients with adult congenital heart disease (ACHD) would be reflective of premature T cell maturation and exhaustion. Adults with ACHD who had sternotomy to repair congenital heart disease as infants (<1 year) and age-matched ACHD patients without prior sternotomy were studied using polychromatic flow cytometry interrogating markers of lymphocyte maturation, exhaustion and senescence. Group differences were analyzed using Mann-Whitney U and Fisher's exact tests. Eighteen ACHD patients aged 21-40 years participated: 10 cases and 8 controls. Median age at sternotomy for cases was 52 days. Cases and controls were matched for age (28.9 vs. 29.1 years; p = 0.83), gender (p = 0.15) and race (p = 0.62) and had similar case complexity. Cases had a lower mean percentage of cytotoxic CD8 lymphocytes compared to controls (26.8 vs. 33.9 %; p = 0.016), with fewer naive, undifferentiated CD8 T cells (31.0 vs. 53.6 %; p = 0.027). CD8 cells expressing PD1, a marker of immune exhaustion, trended higher in cases versus controls (25.6 vs. 19.0 %; p = 0.083). Mean percentage of CD4 cells was higher in cases versus controls (65.6 vs. 59.6 %; p = 0.027), without differences in CD4 T cell maturation subtype. In summary, ACHD patients who undergo sternotomy as infants exhibit differences in T lymphocyte composition compared to ACHD controls, suggesting accelerated immunologic exhaustion. Investigation is warranted to assess the progressive nature and clinical impact of this immune phenotypic change.
Chemical vs. Physical Acceleration of Cement Hydration
Bentz, Dale P.; Zunino, Franco; Lootens, Didier
2016-01-01
Cold weather concreting often requires the use of chemical accelerators to speed up the hydration reactions of the cement, so that setting and early-age strength development will occur in a timely manner. While calcium chloride (dihydrate – CaCl2·2H2O) is the most commonly used chemical accelerator, recent research using fine limestone powders has indicated their high proficiency for physically accelerating early-age hydration and reducing setting times. This paper presents a comparative study of the efficiency of these two approaches in accelerating hydration (as assessed via isothermal calorimetry), reducing setting times (Vicat needle), and increasing early-age mortar cube strength (1 d and 7 d). Both the CaCl2 and the fine limestone powder are used to replace a portion of the finest sand in the mortar mixtures, while keeping both the water-to-cement ratio and volume fractions of water and cement constant. Studies are conducted at 73.4 °F (23°C) and 50 °F (10 °C), so that activation energies can be estimated for the hydration and setting processes. Because the mechanisms of acceleration of the CaCl2 and limestone powder are different, a hybrid mixture with 1 % CaCl2 and 20 % limestone powder (by mass of cement) is also investigated. Both technologies are found to be viable options for reducing setting times and increasing early-age strengths, and it is hoped that concrete producers and contractors will consider the addition of fine limestone powder to their toolbox of techniques for assuring performance in cold weather and other concreting conditions where acceleration may be needed. PMID:28077884
Initial Human Response to Nuclear Radiation
1982-04-01
radiation from a linear accelerator . Victim A , age 31, received a dose of 100 rads; victim B, age 29... The radiation has always been in the million-electron- volt range, usually from a cobalt 60 source but sometimes using linear accelerators prouucing up...more recent medical experience, Appendix B presents comments by a radiation oncologist on the
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-04
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Diesel After Treatment Accelerated Aging Cycles--Heavy-Duty Notice is hereby given... Group on Diesel After treatment Accelerated Aging Cycles--Heavy-Duty (``DAAAC-HD'') has filed written...
Accelerated aging of phenolic-bonded flakeboards
Andrew J. Baker; Robert H. Gillespie
1978-01-01
Specimens of phenolic-bonded flakeboard, vertical-grain southern pine and Douglas-fir, and marine-grade Douglas-fir plywood were exposed to four accelerated aging situations. These consisted of: 1) Multiple cycles of boiling and elevated-temperature drying, 2) multiple cycles of vacuum- pressure soaking and intermediate-temperature drying, 3) the six-cycle ASTM D-1037...
NASA Astrophysics Data System (ADS)
Tsanakas, John A.; Jaffre, Damien; Sicre, Mathieu; Elouamari, Rachid; Vossier, Alexis; de Salins, Jean-Edouard; Bechou, Laurent; Levrier, Bruno; Perona, Arnaud; Dollet, Alain
2014-09-01
This paper presents a preliminary study upon a novel approach proposed for highly accelerated ageing and reliability optimization of high concentrating photovoltaic (HCPV) cells and assemblies. The intended approach aims to overcome several limitations of some current accelerated ageing tests (AAT) adopted up today, proposing the use of an alternative experimental set-up for performing faster and more realistic thermal cycles, under real sun, without the involvement of environmental chamber. The study also includes specific characterization techniques, before and after each AAT sequence, which respectively provide the initial and final diagnosis on the condition of the tested sample. The acquired data from these diagnostic/characterization methods are then used as indices to determine both quantitatively and qualitatively the severity of degradation and, thus, the ageing level for each tested HCPV assembly or cell sample. Ultimate goal of such "initial diagnosis - AAT - final diagnosis" sequences is to provide the basis for a future work on the reliability analysis of the main degradation mechanisms and confident prediction of failure propagation in HCPV cells, by means of acceleration factor (AF) and mean-time-to-failure (MTTF) estimations.
Proteomics and metabolomics in ageing research: from biomarkers to systems biology.
Hoffman, Jessica M; Lyu, Yang; Pletcher, Scott D; Promislow, Daniel E L
2017-07-15
Age is the single greatest risk factor for a wide range of diseases, and as the mean age of human populations grows steadily older, the impact of this risk factor grows as well. Laboratory studies on the basic biology of ageing have shed light on numerous genetic pathways that have strong effects on lifespan. However, we still do not know the degree to which the pathways that affect ageing in the lab also influence variation in rates of ageing and age-related disease in human populations. Similarly, despite considerable effort, we have yet to identify reliable and reproducible 'biomarkers', which are predictors of one's biological as opposed to chronological age. One challenge lies in the enormous mechanistic distance between genotype and downstream ageing phenotypes. Here, we consider the power of studying 'endophenotypes' in the context of ageing. Endophenotypes are the various molecular domains that exist at intermediate levels of organization between the genotype and phenotype. We focus our attention specifically on proteins and metabolites. Proteomic and metabolomic profiling has the potential to help identify the underlying causal mechanisms that link genotype to phenotype. We present a brief review of proteomics and metabolomics in ageing research with a focus on the potential of a systems biology and network-centric perspective in geroscience. While network analyses to study ageing utilizing proteomics and metabolomics are in their infancy, they may be the powerful model needed to discover underlying biological processes that influence natural variation in ageing, age-related disease, and longevity. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Proteomics and metabolomics in ageing research: from biomarkers to systems biology
Hoffman, Jessica M.; Lyu, Yang; Pletcher, Scott D.; Promislow, Daniel E.L.
2017-01-01
Age is the single greatest risk factor for a wide range of diseases, and as the mean age of human populations grows steadily older, the impact of this risk factor grows as well. Laboratory studies on the basic biology of ageing have shed light on numerous genetic pathways that have strong effects on lifespan. However, we still do not know the degree to which the pathways that affect ageing in the lab also influence variation in rates of ageing and age-related disease in human populations. Similarly, despite considerable effort, we have yet to identify reliable and reproducible ‘biomarkers’, which are predictors of one’s biological as opposed to chronological age. One challenge lies in the enormous mechanistic distance between genotype and downstream ageing phenotypes. Here, we consider the power of studying ‘endophenotypes’ in the context of ageing. Endophenotypes are the various molecular domains that exist at intermediate levels of organization between the genotype and phenotype. We focus our attention specifically on proteins and metabolites. Proteomic and metabolomic profiling has the potential to help identify the underlying causal mechanisms that link genotype to phenotype. We present a brief review of proteomics and metabolomics in ageing research with a focus on the potential of a systems biology and network-centric perspective in geroscience. While network analyses to study ageing utilizing proteomics and metabolomics are in their infancy, they may be the powerful model needed to discover underlying biological processes that influence natural variation in ageing, age-related disease, and longevity. PMID:28698311
Growth pattern from birth to adulthood in African pygmies of known age.
Rozzi, Fernando V Ramirez; Koudou, Yves; Froment, Alain; Le Bouc, Yves; Botton, Jérémie
2015-07-28
The African pygmy phenotype stems from genetic foundations and is considered to be the product of a disturbance in the growth hormone-insulin-like growth factor (GH-IGF) axis. However, when and how the pygmy phenotype is acquired during growth remains unknown. Here we describe growth patterns in Baka pygmies based on two longitudinal studies of individuals of known age, from the time of birth to the age of 25 years. Body size at birth among the Baka is within standard limits, but their growth rate slows significantly during the first two years of life. It then more or less follows the standard pattern, with a growth spurt at adolescence. Their life history variables do not allow the Baka to be distinguished from other populations. Therefore, the pygmy phenotype in the Baka is the result of a change in growth that occurs during infancy, which differentiates them from East African pygmies revealing convergent evolution.
Spotted phenotypes in horses lost attractiveness in the Middle Ages
Wutke, Saskia; Benecke, Norbert; Sandoval-Castellanos, Edson; Döhle, Hans-Jürgen; Friederich, Susanne; Gonzalez, Javier; Hallsson, Jón Hallsteinn; Hofreiter, Michael; Lõugas, Lembi; Magnell, Ola; Morales-Muniz, Arturo; Orlando, Ludovic; Pálsdóttir, Albína Hulda; Reissmann, Monika; Ruttkay, Matej; Trinks, Alexandra; Ludwig, Arne
2016-01-01
Horses have been valued for their diversity of coat colour since prehistoric times; this is especially the case since their domestication in the Caspian steppe in ~3,500 BC. Although we can assume that human preferences were not constant, we have only anecdotal information about how domestic horses were influenced by humans. Our results from genotype analyses show a significant increase in spotted coats in early domestic horses (Copper Age to Iron Age). In contrast, medieval horses carried significantly fewer alleles for these phenotypes, whereas solid phenotypes (i.e., chestnut) became dominant. This shift may have been supported because of (i) pleiotropic disadvantages, (ii) a reduced need to separate domestic horses from their wild counterparts, (iii) a lower religious prestige, or (iv) novel developments in weaponry. These scenarios may have acted alone or in combination. However, the dominance of chestnut is a remarkable feature of the medieval horse population. PMID:27924839
Rhea, Antonette; Ahila, S C; Kumar, B Muthu
2017-01-01
Maxillofacial prosthesis are supported by implants, require a retentive matrix to retain the suprastructure. The retentive matrix is made up of acrylic resin to which the silicone prostheses are anchored by micro-mechanical bond. The delamination of silicone away from the retentive matrix is a persisting problem in implant-supported maxillofacial prosthesis. This study aimed to evaluate the effect of laser etching on the shear bond strength (BS) between acrylic resin and maxillofacial silicone, after 24 h of fabrication and after 200 h of accelerated aging. The samples were prepared according to ISO/TR 11405:1994 in maxillofacial silicone and polymethyl methacrylate resin. The untreated samples were Group A (control), Group B (silicon carbide [SiC] paper abrasion 80 grit size), and Group C (erbium-doped yttrium aluminum garnet laser etching). Then, the samples were coated with primer and bonded to maxillofacial silicone. The samples were subjected to shear BS test in an universal testing machine after 24 h of fabrication and after 200 h of accelerated aging. The results were statistically analyzed using one-way ANOVA and Tukey's HSD post hoc test. The shear BS test after 24 h of fabrication showed better BS in SiC paper abrasion. The shear BS test after 200 h of accelerated aging showed better BS in laser etching compared to SiC abrasion. Laser etching produced better shear BS compared to conventional SiC paper abrasion after 200 h of accelerated aging process.
Adrenal maturation, nutritional status, and mucosal immunity in Bolivian youth.
Hodges-Simeon, Carolyn R; Prall, Sean P; Blackwell, Aaron D; Gurven, Michael; Gaulin, Steven J C
2017-09-10
Humans-and several other apes-exhibit a unique pattern of post-natal adrenal maturation; however, the causes and consequences of variation in adrenal development are not well understood. In this study, we examine developmental and age-related maturation of the adrenal gland (measured via dehydroepiandrosterone-sulfate [DHEA-S]) for potential life-history associations with growth and mucosal immunity in a rural population of immune-challenged Bolivian juveniles and adolescents. Salivary DHEA-S, anthropometrics, and salivary mucosal immunity (secretory IgA [sIgA]) were measured in 171 males and females, aged 8-23. Males with greater energy (i.e. fat) stores showed higher DHEA-S levels. Controlling for age and energetic condition (to control for phenotypic correlation), higher DHEA-S was associated with higher mucosal immunity (sIgA) among both males and females. Higher DHEA-S levels were positively associated with growth (i.e. height and strength) in males. In accordance with predictions derived from life-history theory, males with higher energy stores secrete more adrenal androgens. This suggests that adrenal maturation is costly and subject to constraints; that is, only males with sufficient reserves will invest in accelerated adrenal maturation. Further, DHEA-S appears to have a measureable influence on immunocompetence in adolescent males and females; therefore, deficits in DHEA-S may have important consequences for health and maturation during this period. Adrenal maturation is an important, but understudied component of human growth and development. © 2017 Wiley Periodicals, Inc.
Neilson, E. H.; Edwards, A. M.; Blomstedt, C. K.; Berger, B.; Møller, B. Lindberg; Gleadow, R. M.
2015-01-01
The use of high-throughput phenotyping systems and non-destructive imaging is widely regarded as a key technology allowing scientists and breeders to develop crops with the ability to perform well under diverse environmental conditions. However, many of these phenotyping studies have been optimized using the model plant Arabidopsis thaliana. In this study, The Plant Accelerator® at The University of Adelaide, Australia, was used to investigate the growth and phenotypic response of the important cereal crop, Sorghum bicolor L. Moench and related hybrids to water-limited conditions and different levels of fertilizer. Imaging in different spectral ranges was used to monitor plant composition, chlorophyll, and moisture content. Phenotypic image analysis accurately measured plant biomass. The data set obtained enabled the responses of the different sorghum varieties to the experimental treatments to be differentiated and modelled. Plant architectural instead of architecture elements were determined using imaging and found to correlate with an improved tolerance to stress, for example diurnal leaf curling and leaf area index. Analysis of colour images revealed that leaf ‘greenness’ correlated with foliar nitrogen and chlorophyll, while near infrared reflectance (NIR) analysis was a good predictor of water content and leaf thickness, and correlated with plant moisture content. It is shown that imaging sorghum using a high-throughput system can accurately identify and differentiate between growth and specific phenotypic traits. R scripts for robust, parsimonious models are provided to allow other users of phenomic imaging systems to extract useful data readily, and thus relieve a bottleneck in phenotypic screening of multiple genotypes of key crop plants. PMID:25697789
Treatment outcome of creatine transporter deficiency: international retrospective cohort study.
Bruun, Theodora U J; Sidky, Sarah; Bandeira, Anabela O; Debray, Francoise-Guillaume; Ficicioglu, Can; Goldstein, Jennifer; Joost, Kairit; Koeberl, Dwight D; Luísa, Diogo; Nassogne, Marie-Cecile; O'Sullivan, Siobhan; Õunap, Katrin; Schulze, Andreas; van Maldergem, Lionel; Salomons, Gajja S; Mercimek-Andrews, Saadet
2018-06-01
To evaluate the outcome of current treatment for creatine transporter (CRTR) deficiency, we developed a clinical severity score and initiated an international treatment registry. An online questionnaire was completed by physicians following patients with CRTR deficiency on a treatment, including creatine and/or arginine, and/or glycine. Clinical severity score included 1) global developmental delay/intellectual disability; 2) seizures; 3) behavioural disorder. Phenotype scored 1-3 = mild; 4-6 = moderate; and 7-9 = severe. We applied the clinical severity score pre- and on-treatment. Seventeen patients, 14 males and 3 females, from 16 families were included. Four patients had severe, 6 patients had moderate, and 7 patients had a mild phenotype. The phenotype ranged from mild to severe in patients diagnosed at or before 2 years of age or older than 6 years of age. The phenotype ranged from mild to severe in patients with mildly elevated urine creatine to creatinine ratio. Fourteen patients were on the combined creatine, arginine and glycine therapy. On the combined treatment with creatine, arginine and glycine, none of the males showed either deterioration or improvements in their clinical severity score, whereas two females showed improvements in the clinical severity score. Creatine monotherapy resulted in deterioration of the clinical severity score in one male. There seems to be no correlation between phenotype and degree of elevation in urine creatine to creatinine ratio, genotype, or age at diagnosis. Combined creatine, arginine and glycine therapy might have stopped disease progression in males and improved phenotype in females.
Deletion of Fmr1 results in sex-specific changes in behavior.
Nolan, Suzanne O; Reynolds, Conner D; Smith, Gregory D; Holley, Andrew J; Escobar, Brianna; Chandler, Matthew A; Volquardsen, Megan; Jefferson, Taylor; Pandian, Ashvini; Smith, Tileena; Huebschman, Jessica; Lugo, Joaquin N
2017-10-01
In this study, we used a systemic Fmr1 knockout in order to investigate both genotype- and sex-specific differences across multiple measures of sociability, repetitive behaviors, activity levels, anxiety, and fear-related learning and memory. Fragile X syndrome is the most common monogenic cause of intellectual disability and autism. Few studies to date have examined sex differences in a mouse model of Fragile X syndrome, though clinical data support the idea of differences in both overall prevalence and phenotype between the sexes. Using wild-type and systemic homozygous Fmr1 knockout mice, we assessed a variety of behavioral paradigms in adult animals, including the open field test, elevated plus maze, nose-poke assay, accelerating rotarod, social partition task, three-chambered social task, and two different fear conditioning paradigms. Tests were ordered such that the most invasive tests were performed last in the sequence, and testing paradigms for similar behaviors were performed in separate cohorts to minimize testing effects. Our results indicate several sex-specific changes in Fmr1 knockout mice, including male-specific increases in activity levels, and female-specific increases in repetitive behaviors on both the nose-poke assay and motor coordination on the accelerating rotarod task. The results also indicated that Fmr1 deletion results in deficits in fear learning and memory across both sexes, and no changes in social behavior across two tasks. These findings highlight the importance of including female subjects in preclinical studies, as simply studying the impact of genetic mutations in males does not yield a complete picture of the phenotype. Further research should explore these marked phenotypic differences among the sexes. Moreover, given that treatment strategies are typically equivalent between the sexes, the results highlight a potential need for sex-specific therapeutics.
Evidence of a Conserved Molecular Response to Selection for Increased Brain Size in Primates
Harrison, Peter W.; Caravas, Jason A.; Raghanti, Mary Ann; Phillips, Kimberley A.; Mundy, Nicholas I.
2017-01-01
The adaptive significance of human brain evolution has been frequently studied through comparisons with other primates. However, the evolution of increased brain size is not restricted to the human lineage but is a general characteristic of primate evolution. Whether or not these independent episodes of increased brain size share a common genetic basis is unclear. We sequenced and de novo assembled the transcriptome from the neocortical tissue of the most highly encephalized nonhuman primate, the tufted capuchin monkey (Cebus apella). Using this novel data set, we conducted a genome-wide analysis of orthologous brain-expressed protein coding genes to identify evidence of conserved gene–phenotype associations and species-specific adaptations during three independent episodes of brain size increase. We identify a greater number of genes associated with either total brain mass or relative brain size across these six species than show species-specific accelerated rates of evolution in individual large-brained lineages. We test the robustness of these associations in an expanded data set of 13 species, through permutation tests and by analyzing how genome-wide patterns of substitution co-vary with brain size. Many of the genes targeted by selection during brain expansion have glutamatergic functions or roles in cell cycle dynamics. We also identify accelerated evolution in a number of individual capuchin genes whose human orthologs are associated with human neuropsychiatric disorders. These findings demonstrate the value of phenotypically informed genome analyses, and suggest at least some aspects of human brain evolution have occurred through conserved gene–phenotype associations. Understanding these commonalities is essential for distinguishing human-specific selection events from general trends in brain evolution. PMID:28391320
NASA Technical Reports Server (NTRS)
Frickland, P. O.; Repar, J.
1982-01-01
A previously developed test design for accelerated aging of photovoltaic modules was experimentally evaluated. The studies included a review of relevant field experience, environmental chamber cycling of full size modules, and electrical and physical evaluation of the effects of accelerated aging during and after the tests. The test results indicated that thermally induced fatigue of the interconnects was the primary mode of module failure as measured by normalized power output. No chemical change in the silicone encapsulant was detectable after 360 test cycles.
Accelerated life testing of spacecraft subsystems
NASA Technical Reports Server (NTRS)
Wiksten, D.; Swanson, J.
1972-01-01
The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.
NASA Astrophysics Data System (ADS)
Hellqvist Kjell, Maria; Malmgren, Sara; Ciosek, Katarzyna; Behm, Mårten; Edström, Kristina; Lindbergh, Göran
2013-12-01
Accelerated aging at elevated temperature is commonly used to test lithium-ion battery lifetime, but the effect of an elevated temperature is still not well understood. If aging at elevated temperature would only be faster, but in all other respects equivalent to aging at ambient temperature, cells aged to end-of-life (EOL) at different temperatures would be very similar. The present study compares graphite/LiFePO4-based cells either cycle- or calendar-aged to EOL at 22 °C and 55 °C. Cells cycled at the two temperatures show differences in electrochemical impedance spectra as well as in X-ray photoelectron spectroscopy (XPS) spectra. These results show that lithium-ion cell aging is a complex set of processes. At elevated temperature, the aging is accelerated in process-specific ways. Furthermore, the XPS results of cycle-aged samples indicate increased deposition of oxygenated LiPF6 decomposition products in both the negative and positive electrode/electrolyte interfaces. The decomposition seems more pronounced at elevated temperature, and largely accelerated by cycling, which could contribute to the observed cell impedance increase.
Accelerated aging-related transcriptome changes in the female prefrontal cortex
Yuan, Yuan; Chen, Yi-Ping Phoebe; Boyd-Kirkup, Jerome; Khaitovich, Philipp; Somel, Mehmet
2012-01-01
Human female life expectancy is higher than that of males. Intriguingly, it has been reported that women display faster rates of age-related cognitive decline and a higher prevalence of Alzheimer’s disease (AD). To assess the molecular bases of these contradictory trends, we analyzed differences in expression changes with age between adult males and females, in four brain regions. In the superior frontal gyrus (SFG), a part of the prefrontal cortex, we observed manifest differences between the two sexes in the timing of age-related changes, that is, sexual heterochrony. Intriguingly, age-related expression changes predominantly occurred earlier, or at a faster pace, in females compared to men. These changes included decreased energy production and neural function and up-regulation of the immune response, all major features of brain aging. Furthermore, we found that accelerated expression changes in the female SFG correlated with expression changes observed in AD, as well as stress effects in the frontal cortex. Accelerated aging-related changes in the female SFG transcriptome may provide a link between a higher stress exposure or sensitivity in women and the higher prevalence of AD. PMID:22783978
Angulo, Javier; El Assar, Mariam; Rodríguez-Mañas, Leocadio
2016-08-01
Frailty is a functional status that precedes disability and is characterized by decreased functional reserve and increased vulnerability. In addition to disability, the frailty phenotype predicts falls, institutionalization, hospitalization and mortality. Frailty is the consequence of the interaction between the aging process and some chronic diseases and conditions that compromise functional systems and finally produce sarcopenia. Many of the clinical manifestations of frailty are explained by sarcopenia which is closely related to poor physical performance. Reduced regenerative capacity, malperfusion, oxidative stress, mitochondrial dysfunction and inflammation compose the sarcopenic skeletal muscle alterations associated to the frailty phenotype. Inflammation appears as a common determinant for chronic diseases, sarcopenia and frailty. The strategies to prevent the frailty phenotype include an adequate amount of physical activity and exercise as well as pharmacological interventions such as myostatin inhibitors and specific androgen receptor modulators. Cell response to stress pathways such as Nrf2, sirtuins and klotho could be considered as future therapeutic interventions for the management of frailty phenotype and aging-related chronic diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
DNA methylation age is elevated in breast tissue of healthy women.
Sehl, Mary E; Henry, Jill E; Storniolo, Anna Maria; Ganz, Patricia A; Horvath, Steve
2017-07-01
Limited evidence suggests that female breast tissue ages faster than other parts of the body according to an epigenetic biomarker of aging known as the "epigenetic clock." However, it is unknown whether breast tissue samples from healthy women show a similar accelerated aging effect relative to other tissues, and what could drive this acceleration. The goal of this study is to validate our initial finding of advanced DNA methylation (DNAm) age in breast tissue, by directly comparing it to that of peripheral blood tissue from the same individuals, and to do a preliminary assessment of hormonal factors that could explain the difference. We utilized n = 80 breast and 80 matching blood tissue samples collected from 40 healthy female participants of the Susan G. Komen Tissue Bank at the Indiana University Simon Cancer Center who donated these samples at two time points spaced at least a year apart. DNA methylation levels (Illumina 450K platform) were used to estimate the DNAm age. DNAm age was highly correlated with chronological age in both peripheral blood (r = 0.94, p < 0.0001) and breast tissues (r = 0.86, p < 0.0001). A measure of epigenetic age acceleration (age-adjusted DNAm Age) was substantially increased in breast relative to peripheral blood tissue (p = 1.6 × 10 -11 ). The difference between DNAm age of breast and blood decreased with advancing chronologic age (r = -0.53, p = 4.4 × 10 -4 ). Our data clearly demonstrate that female breast tissue has a higher epigenetic age than blood collected from the same subject. We also observe that the degree of elevation in breast diminishes with advancing age. Future larger studies will be needed to examine associations between epigenetic age acceleration and cumulative hormone exposure.
Weycker, Derek; Atwood, Mark Andrew; Standaert, Baudouin; Krishnarajah, Girishanthy
2014-01-01
We developed a cohort model to evaluate the expected public health impact of accelerated regimens for immunization against rotavirus gastroenteritis (RVGE). Alternative strategies for vaccination with the pentavalent human-bovine reassortant vaccine, Rotateq® (RV5, Merck) and the oral live attenuated human rotavirus vaccine, Rotarix® (RV1, GlaxoSmithKline Vaccines) were considered, including acceleration of the 1st dose only (by 2 weeks) as well as acceleration of the 1st (by 2 weeks) and subsequent doses (by up to 10 weeks). Assuming vaccine coverage levels consistent with current US clinical practice, accelerated regimens would be expected to reduce annual numbers of RVGE-related hospitalizations by 300–400, emergency department visits by 3000–4000, and outpatient visits by 3000–4000 (i.e., by 9–14%) among US children aged <6 months. Accordingly, accelerating the immunization of children against RVGE may yield substantive reductions in the number of RV-related encounters in US clinical practice. PMID:25424813
Genetic evaluation of weekly body weight in Japanese quail using random regression models.
Karami, K; Zerehdaran, S; Tahmoorespur, M; Barzanooni, B; Lotfi, E
2017-02-01
1. A total of 11 826 records from 2489 quails, hatched between 2012 and 2013, were used to estimate genetic parameters for BW (body weight) of Japanese quail using random regression models. Weekly BW was measured from hatch until 49 d of age. WOMBAT software (University of New England, Australia) was used for estimating genetic and phenotypic parameters. 2. Nineteen models were evaluated to identify the best orders of Legendre polynomials. A model with Legendre polynomial of order 3 for additive genetic effect, order 3 for permanent environmental effects and order 1 for maternal permanent environmental effects was chosen as the best model. 3. According to the best model, phenotypic and genetic variances were higher at the end of the rearing period. Although direct heritability for BW reduced from 0.18 at hatch to 0.12 at 7 d of age, it gradually increased to 0.42 at 49 d of age. It indicates that BW at older ages is more controlled by genetic components in Japanese quail. 4. Phenotypic and genetic correlations between adjacent periods except hatching weight were more closely correlated than remote periods. The present results suggested that BW at earlier ages, especially at hatch, are different traits compared to BW at older ages. Therefore, BW at earlier ages could not be used as a selection criterion for improving BW at slaughter age.
Auditory Phenotype of Smith-Magenis Syndrome.
Brendal, Megan A; King, Kelly A; Zalewski, Christopher K; Finucane, Brenda M; Introne, Wendy; Brewer, Carmen C; Smith, Ann C M
2017-04-14
The purpose of this study was to describe the auditory phenotype of a large cohort with Smith-Magenis syndrome (SMS), a rare disorder including physical anomalies, cognitive deficits, sleep disturbances, and a distinct behavioral phenotype. Hearing-related data were collected for 133 individuals with SMS aged 1-49 years. Audiogram data (97 participants) were used for cross-sectional and longitudinal analyses. Caregivers completed a sound sensitivity survey for 98 individuals with SMS and a control group of 24 unaffected siblings. Nearly 80% of participants with interpretable audiograms (n = 76) had hearing loss, which was typically slight to mild in degree. When hearing loss type could be determined (40 participants), sensorineural hearing loss (48.1%) occurred most often in participants aged 11-49 years. Conductive hearing loss (35.2%) was typically observed in children aged 1-10 years. A pattern of fluctuating and progressive hearing decline was documented. Hyperacusis was reported in 73.5% of participants with SMS compared with 12.5% of unaffected siblings. This study offers the most comprehensive characterization of the auditory phenotype of SMS to date. The auditory profile in SMS is multifaceted and can include a previously unreported manifestation of hyperacusis. Routine audiologic surveillance is recommended as part of standard clinical care.
Latent class analysis of early developmental trajectory in baby siblings of children with autism.
Landa, Rebecca J; Gross, Alden L; Stuart, Elizabeth A; Bauman, Margaret
2012-09-01
Siblings of children with autism (sibs-A) are at increased genetic risk for autism spectrum disorders (ASD) and milder impairments. To elucidate diversity and contour of early developmental trajectories exhibited by sibs-A, regardless of diagnostic classification, latent class modeling was used. Sibs-A (N = 204) were assessed with the Mullen Scales of Early Learning from age 6 to 36 months. Mullen T scores served as dependent variables. Outcome classifications at age 36 months included: ASD (N = 52); non-ASD social/communication delay (broader autism phenotype; BAP; N = 31); and unaffected (N = 121). Child-specific patterns of performance were studied using latent class growth analysis. Latent class membership was then related to diagnostic outcome through estimation of within-class proportions of children assigned to each diagnostic classification. A 4-class model was favored. Class 1 represented accelerated development and consisted of 25.7% of the sample, primarily unaffected children. Class 2 (40.0% of the sample), was characterized by normative development with above-average nonverbal cognitive outcome. Class 3 (22.3% of the sample) was characterized by receptive language, and gross and fine motor delay. Class 4 (12.0% of the sample), was characterized by widespread delayed skill acquisition, reflected by declining trajectories. Children with an outcome diagnosis of ASD were spread across Classes 2, 3, and 4. Results support a category of ASD that involves slowing in early non-social development. Receptive language and motor development is vulnerable to early delay in sibs-A with and without ASD outcomes. Non-ASD sibs-A are largely distributed across classes depicting average or accelerated development. Developmental trajectories of motor, language, and cognition appear independent of communication and social delays in non-ASD sibs-A. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.
ERIC Educational Resources Information Center
Mbano, Nellie
2003-01-01
Investigates whether the critical period for cognitive transition from concrete operations to formal operations at 12-14 years of age actually exists. Uses the Cognitive Acceleration through Science Education (CASE) intervention program in Malawi. Discusses the existence of the critical period, academic achievement, and explanations for age and…
An Multivariate Distance-Based Analytic Framework for Connectome-Wide Association Studies
Shehzad, Zarrar; Kelly, Clare; Reiss, Philip T.; Craddock, R. Cameron; Emerson, John W.; McMahon, Katie; Copland, David A.; Castellanos, F. Xavier; Milham, Michael P.
2014-01-01
The identification of phenotypic associations in high-dimensional brain connectivity data represents the next frontier in the neuroimaging connectomics era. Exploration of brain-phenotype relationships remains limited by statistical approaches that are computationally intensive, depend on a priori hypotheses, or require stringent correction for multiple comparisons. Here, we propose a computationally efficient, data-driven technique for connectome-wide association studies (CWAS) that provides a comprehensive voxel-wise survey of brain-behavior relationships across the connectome; the approach identifies voxels whose whole-brain connectivity patterns vary significantly with a phenotypic variable. Using resting state fMRI data, we demonstrate the utility of our analytic framework by identifying significant connectivity-phenotype relationships for full-scale IQ and assessing their overlap with existent neuroimaging findings, as synthesized by openly available automated meta-analysis (www.neurosynth.org). The results appeared to be robust to the removal of nuisance covariates (i.e., mean connectivity, global signal, and motion) and varying brain resolution (i.e., voxelwise results are highly similar to results using 800 parcellations). We show that CWAS findings can be used to guide subsequent seed-based correlation analyses. Finally, we demonstrate the applicability of the approach by examining CWAS for three additional datasets, each encompassing a distinct phenotypic variable: neurotypical development, Attention-Deficit/Hyperactivity Disorder diagnostic status, and L-dopa pharmacological manipulation. For each phenotype, our approach to CWAS identified distinct connectome-wide association profiles, not previously attainable in a single study utilizing traditional univariate approaches. As a computationally efficient, extensible, and scalable method, our CWAS framework can accelerate the discovery of brain-behavior relationships in the connectome. PMID:24583255
Evaluation of hardness and colour change of soft liners after accelerated ageing.
Mancuso, Daniela Nardi; Goiato, Marcelo Coelho; Zuccolotti, Bruna Carolina Rossatti; Moreno, Amália; dos Santos, Daniela Micheline
2009-07-01
Soft liners have been developed to offer comfort to denture wearers. However, this comfort is compromised when there is a change in the properties of the material, causing colour change, solubility, absorption and hardening. These characteristics can compromise the longevity of soft liners. The aim of this in vitro study was to investigate the effect of ageing on both the hardness and colour change of two soft liners following accelerated ageing. Two denture liners, one resin based (Trusoft, Bosworth, Illinois, USA) and one silicone based (Ufi Gel P, Voco GMBH, Cuxhaven, Germany), were tested in this study for both hardness (using the Shore A scale) and colour change (using the CIE L*a*b* colour scale), initially and after 1008 hours (6 weeks) of accelerated ageing. Statistical analysis was performed using the unpaired t-test with the Welch correction. These indicated that both materials increased in hardness and underwent colour change after accelerated ageing. The initial hardness of Trusoft was far lower than that of Ufi Gel P (18.2 Shore A units vs 34.8 Shore A units). However, for Trusoft the changes for both hardness (from 18.2 to 52.1 Shore A units) and colour change (16.85 on the CIE L*a*b* colour scale) were greater than those for Ufi Gel P, for which hardness changed from 34.8 to 36.5 Shore A units and the colour change was 5.19 on the CIE L*a*b* colour scale. Ufi Gel P underwent less hardness and colour change after accelerated ageing than Trusoft. On the other hand, the use of Trusoft may be preferable in cases where initial softness is a major consideration, such as when relining an immediate denture after implant surgery.
Zhang, Yiqiang; Fischer, Kathleen E; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B
2015-06-15
Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality, leading some to suggest this condition represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers of function and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal, functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. Published by Elsevier Inc.
Mancuso, Daniela Nardi; Goiato, Marcelo Coelho; Dekon, Stefan Fiuza de Carvalho; Gennari-Filho, Humberto
2009-01-01
The objective of this study was to evaluate by a visual method of comparison the color stability of nonpigmented and pigmented facial silicones after accelerated aging. Two kinds of silicones were used in this study; one specifically formulated for facial prostheses and the other an acetic silicone for industrial use. Twenty-four trial bodies were made for each silicone. These were divided into colorless and intrinsically pigmented groups: ceramic, make-up, and iron oxide. The groups were submitted to accelerated aging for nonmetallic materials. An initial reading and subsequent readings were made at 163, 351, 692, and 1000 hours using a visual method of comparison. The values were annotated in a spreadsheet by two observers, according to scores elaborated for this study. All groups presented color stability in the visual method. According to the results obtained and analyzed in this study, we can conclude that both silicones, Silastic 732 RTV and Silastic MDX 4-4210, behaved similarly, they can therefore be indicated for use in maxillofacial prosthesis. The time factor of aging influenced negatively, independently of the pigmentation, or lack of it, and of silicones and no group had visually noticeable alterations in any of the accelerated aging time, independently of the addition or not of pigments.
Zhang, Yiqiang; Fischer, Kathleen E.; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B.
2015-01-01
Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality leading some to suggest this represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased in high fat-fed mice as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. PMID:25558793
ERIC Educational Resources Information Center
Illinois State Board of Education, Springfield. Dept. of School Improvement Services.
The thesis of this conference report is that acceleration is a much more effective method than remediation for bringing at-risk children into the educational mainstream at an early age. The papers summarized in the report provide a background on the history, politics, and demography of at-risk students and suggest applications of acceleration to…
ERIC Educational Resources Information Center
Pruitt, Megan M.; Rhoden, Madeline; Ekas, Naomi V.
2018-01-01
This study aimed to examine the mechanisms responsible for the association between the broad autism phenotype and depressive symptoms in mothers of a child with autism spectrum disorder. A total of 98 mothers who had a child with autism spectrum disorder between the ages of 2 and 16 years completed assessments of maternal broad autism phenotype,…
Psoriasis and polycystic ovary syndrome: a new link in different phenotypes.
Moro, Francesca; Tropea, Anna; Scarinci, Elisa; Federico, Alex; De Simone, Clara; Caldarola, Giacomo; Leoncini, Emanuele; Boccia, Stefania; Lanzone, Antonio; Apa, Rosanna
2015-08-01
Women affected by PCOS and psoriasis are more likely to have insulin-resistance, hyperinsulinemia, reduced HDL cholesterol levels and a more severe degree of skin disease than those with psoriasis alone. The mechanism underlying this association between PCOS and psoriasis is currently unknown. The aim of the present study was to evaluate the features of psoriasis and the psoriasis severity scores in the different PCOS phenotypes and in age and body mass index (BMI)-matched psoriatic control patients. A cross-sectional study was performed on 150 psoriatic patients: 94 PCOS and 56 age- and BMI-matched controls. PCOS patients were diagnosed and divided into four phenotypes according to Rotterdam criteria: A - patients with complete phenotype with hyperandrogenism (H) plus oligoamenorrhea (O) plus polycystic ovary (PCO) on ultrasound examination; B - patients with H plus O (without PCO); C - patients with H plus PCO (ovulatory phenotype); D - patients with O plus PCO (without H). The patient's Psoriasis Area and Severity Index (PASI) as well as the Physician's Global Assessment (PGA) were calculated. A PASI score ≥10 was correlated with common indicator of severe disease. A PGA ≥4 was considered as a condition of moderate to severe disease. Among the four phenotypes investigated, the group with complete phenotype (H plus O plus PCO) had a higher prevalence of patients with patient's PASI ≥10 compared to controls (Odds Ratio (OR) 4.71, 95% confidence intervals (CI) 1.59-13.95). The group with O plus PCO had a higher prevalence of patients with PGA ≥4 compared to controls (OR 26.79, 95% CI 3.40-211.02) while the ovulatory group had a lower prevalence of patients with PGA ≥4 (OR 0.06, 95% CI 0.01-0.51). The ovulatory phenotype displays a milder psoriasis form than other phenotypes while the phenotypes with oligoamenorrhea presented higher severity scores of disease than other phenotypes and control group. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zygmunt, Deborah A.; Singhal, Neha; Kim, Mi-Lyang; Cramer, Megan L.; Crowe, Kelly E.; Xu, Rui; Jia, Ying; Adair, Jessica; Martinez-Pena y Valenzuela, Isabel; Akaaboune, Mohammed; White, Peter; Janssen, Paulus M.
2017-01-01
ABSTRACT Sarcopenia, the loss of muscle mass and strength during normal aging, involves coordinate changes in skeletal myofibers and the cells that contact them, including satellite cells and motor neurons. Here we show that the protein O-fucosyltransferase 1 gene (Pofut1), which encodes a glycosyltransferase required for NotchR-mediated cell-cell signaling, has reduced expression in aging skeletal muscle. Moreover, premature postnatal deletion of Pofut1 in skeletal myofibers can induce aging-related phenotypes in cis within skeletal myofibers and in trans within satellite cells and within motor neurons via the neuromuscular junction. Changed phenotypes include reduced skeletal muscle size and strength, decreased myofiber size, increased slow fiber (type 1) density, increased muscle degeneration and regeneration in aged muscles, decreased satellite cell self-renewal and regenerative potential, and increased neuromuscular fragmentation and occasional denervation. Pofut1 deletion in skeletal myofibers reduced NotchR signaling in young adult muscles, but this effect was lost with age. Increasing muscle NotchR signaling also reduced muscle size. Gene expression studies point to regulation of cell cycle genes, muscle myosins, NotchR and Wnt pathway genes, and connective tissue growth factor by Pofut1 in skeletal muscle, with additional effects on α dystroglycan glycosylation. PMID:28265002
Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Tahir, Haroon Elrasheid
2017-10-01
The present study was undertaken to assess accelerating aging effects of high pressure, ultrasound and manosonication on the aromatic profile and sensorial attributes of aged mulberry wines (AMW). A total of 166 volatile compounds were found amongst the AMW. The outcomes of the investigation were presented by means of geometric mean (GM), cluster analysis (CA), principal component analysis (PCA), partial least squares regressions (PLSR) and principal component regression (PCR). GM highlighted 24 organoleptic attributes responsible for the sensorial profile of the AMW. Moreover, CA revealed that the volatile composition of the non-thermal accelerated aged wines differs from that of the conventional aged wines. Besides, PCA discriminated the AMW on the basis of their main sensorial characteristics. Furthermore, PLSR identified 75 aroma compounds which were mainly responsible for the olfactory notes of the AMW. Finally, the overall quality of the AMW was noted to be better predicted by PLSR than PCR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging?
Shalev, Idan; Belsky, Jay
2016-05-01
Two seemingly independent bodies of research suggest a two-hit model of accelerated aging, one highlighting early-life stress and the other reproduction. The first, informed by developmental models of early-life stress, highlights reduced longevity effects of early adversity on telomere erosion, whereas the second, informed by evolutionary theories of aging, highlights such effects with regard to reproductive cost (in females). The fact that both early-life adversity and reproductive effort are associated with shorter telomeres and increased oxidative stress raises the prospect, consistent with life-history theory, that these two theoretical frameworks currently informing much research are tapping into the same evolutionary-developmental process of increased senescence and reduced longevity. Here we propose a mechanistic view of a two-hit model of accelerated aging in human females through (a) early-life adversity and (b) early reproduction, via a process of telomere erosion, while highlighting mediating biological embedding mechanisms that might link these two developmental aging processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
A novel healthy blood pressure phenotype in the Long Life Family Study
Marron, Megan M.; Singh, Jatinder; Boudreau, Robert M.; Christensen, Kaare; Cosentino, Stephanie; Feitosa, Mary F.; Minster, Ryan L.; Perls, Thomas; Schupf, Nicole; Sebastiani, Paola; Ukraintseva, Svetlana; Wojczynski, Mary K.; Newman, Anne B.
2018-01-01
Background Hypertension tends to run in families and has both genetic and environmental determinants. We assessed the hypothesis that a novel healthy blood pressure (BP) phenotype is also familial and sought to identify its associated factors. Methods We developed a healthy BP phenotype in the Long Life Family Study, a cohort of two-generation families selected for longevity. Participants from the offspring generation (n = 2211, ages 32–88) were classified as having healthy BP if their age-adjusted and sex-adjusted SBP z-score was between −1.5 and −0.5. Offspring on antihypertensive medications were classified as not having healthy BP. Families with at least two offspring (n = 419 families) were defined as meeting the healthy BP phenotype if at least two and at least 50% of their offspring had healthy BP. Results Among 2211 offspring, 476 (21.5%) met the healthy BP phenotype. When examining the 419 families, only 44 (10.5%) families met the criteria for the healthy BP phenotype. Both offspring and probands from families with healthy BP performed better on neuropsychological tests that place demands on complex attention and executive function when compared with offspring and probands from remaining families. Among families with the healthy BP phenotype compared with families without, a higher proportion of offspring met the American Heart Association definition of ideal cardiovascular health (10.8 versus 3.8%, respectively; driven by BP, smoking status, and BMI components). Conclusion In this cohort of familial longevity, few families had a novel healthy BP phenotype in multiple members. Families with this healthy BP phenotype may represent a specific pathway to familial longevity. PMID:28837423
Accelerated Post-Weld Natural Ageing in Ultrasonic Welding Aluminium 6111-T4 Automotive Sheet
NASA Astrophysics Data System (ADS)
Chen, Ying-Chun; Prangnell, Phil
In contrast to previously published reports, it is shown that there is an observable HAZ when ultrasonic spot welding (USW) automotive alloys, like AA6111-T4, the severity of which depends on the welding energy. Immediately after welding, softening is seen relative to the T4 condition, but this is rapidly recovered by natural ageing, which masks the presence of a HAZ, and the weld strength eventually exceeds that of the parent material. This behaviour is caused by dissolution of the solute clusters/GPZs in the T4 sheet, due to the high weld temperatures (> 400 °C), combined with accelerated post-weld natural ageing to a more advanced state than in the parent material. Modelling has demonstrated that this accelerated natural ageing behaviour can be attributed to an excess vacancy concentration generated by the USW process.
Nissan, Xavier; Blondel, Sophie; Peschanski, Marc
2011-12-01
Progeria, also known as HGPS (Hutchinson-Gilford progeria syndrome), is a rare fatal genetic disease characterized by an appearance of accelerated aging in children. This syndrome is typically caused by mutations in codon 608 (C1804T) of the gene encoding lamins A and C, LMNA, leading to the production of a truncated form of the protein called progerin. Owing to their unique potential to self-renew and to differentiate into any cell types of the organism, pluripotent stem cells offer a unique tool to study molecular and cellular mechanisms related to this global and systemic disease. Recent studies have exploited this potential by generating human induced pluripotent stem cells from HGPS patients' fibroblasts displaying several phenotypic defects characteristic of HGPS such as nuclear abnormalities, progerin expression, altered DNA-repair mechanisms and premature senescence. Altogether, these findings provide new insights on the use of pluripotent stem cells for pathological modelling and may open original therapeutic perspectives for diseases that lack pre-clinical in vitro human models, such as HGPS.
KIF16B is a candidate gene for a novel autosomal-recessive intellectual disability syndrome.
Alsahli, Saud; Arold, Stefan T; Alfares, Ahmed; Alhaddad, Bader; Al Balwi, Mohammed; Kamsteeg, Erik-Jan; Al-Twaijri, Waleed; Alfadhel, Majid
2018-05-07
Intellectual disability (ID) and global developmental delay are closely related; the latter is reserved for children under the age of 5 years as it is challenging to reliably assess clinical severity in this population. ID is a common condition, with up to 1%-3% of the population being affected and leading to a huge social and economic impact. ID is attributed to genetic abnormalities most of the time; however, the exact role of genetic involvement in ID is yet to be determined. Whole exome sequencing (WES) has gained popularity in the workup for ID, and multiple studies have been published examining the diagnostic yield in identification of the disease-causing variant (16%-55%), with the genetic involvement increasing as intelligence quotient decreases. WES has also accelerated novel disease gene discovery in this field. We identified a novel biallelic variant in the KIF16B gene (NM_024704.4:c.3611T > G) in two brothers that may be the cause of their phenotype. © 2018 Wiley Periodicals, Inc.
Aging Research Using Mouse Models
Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.
2015-01-01
Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080
Ott, H; Wilke, J; Baron, J M; Höger, P H; Fölster-Holst, R
2010-04-01
Soluble immune receptors (SIRs) have been proposed as biomarkers in patients with atopic dermatitis (AD). However, their clinical applicability in affected children has rarely been studied. To assess the diagnostic usefulness of serum SIRs in childhood AD by correlating the obtained receptor profiles with serological parameters and clinical features such as age, AD phenotype and disease severity. We investigated 100 children with AD. The sCD14, sCD23, sCD25, sCD30, total IgE (tIgE) and eosinophilic cationic protein (ECP) were determined using sera of all children. The clinical phenotype was classified as extrinsic AD (ADe) or intrinsic AD (ADi) by the presence of allergen-specific IgE antibodies. A total of 55 male and 45 female children were recruited. The sCD23, sCD25 and sCD30 serum levels revealed significant age-dependency. At a mean SCORAD of 40 (range 8-98), none of the evaluated SIRs was correlated to disease severity. In all, 73% of patients suffered from ADe while 27% showed the ADi phenotype. None of the analysed SIRs differed significantly between ADe and ADi patients, while tIgE and ECP levels were elevated in the ADe subgroup. The current study provides evidence that sCD23, sCD25 and sCD30 serum levels are highly age-dependent. Serum concentrations of all investigated SIRs did not significantly correlate with disease severity in children with AD and were not differentially expressed in patients of different AD phenotypes. Therefore, we believe that the studied SIRs cannot be regarded as clinically useful biomarkers for the assessment of childhood AD.
NASA Astrophysics Data System (ADS)
Bocsi, József; Lenz, Dominik; Mittag, Anja; Sauer, Ursula; Wild, Lena; Hess, John; Schranz, Dietmar; Hambsch, Jörg; Schneider, Peter; Tárnok, Attila
2008-02-01
Complex immunophenotyping single-cell analysis are essential for systems biology and cytomics. The application of cytomics in immunology and cardiac research and diagnostics is very broad, ranging from the better understanding of the cardiovascular cell biology to the identification of heart function and immune consequences after surgery. TCPC or Fontan-type circulation is an accepted palliative surgery for patients with a functionally univentricular heart. Protein-losing enteropathy (PLE), the enteric loss of proteins, is a potential late complication after TCPC surgery. PLE etiology is poorly understood, but immunological factors seem to play a role. This study was aimed to gain insight into immune phenotype alterations following post-TCPC PLE. Patients were studied during routine follow-up up to 5yrs after surgery, blood samples of TCPC patients without (n=21, age 6.8+/-2.6 years at surgery; mean+/-SD) and with manifest PLE (n=12, age 12.8+/- 4.5 years at sampling) and age matched healthy children (control, n=22, age 8.6+/-2.5 years) were collected. Routine laboratory, immune phenotype and serological parameters were determined. Following PLE the immune phenotype dramatically changed with signs of acute inflammation (increased neutrophil and monocyte count, CRP, IL-8). In contrast, lymphocyte count (NK-cells, αβTCR +CD4 +, αβTCR +CD8 + cells) decreased (p<0.001). The residual T-cells had elevated CD25 and CD69 expression. In PLE-patients unique cell populations with CD3 +αβ/γδTCR - and αβTCR +CD4 -8 - phenotype were present in increased frequencies. Our studies show dramatically altered leukocyte phenotype after PLE in TCPC patients. These alterations resemble to changes in autoimmune diseases. We conclude that autoimmune processes may play a role in etiology and pathophysiology of PLE.
Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma.
Schatz, Michael; Hsu, Jin-Wen Y; Zeiger, Robert S; Chen, Wansu; Dorenbaum, Alejandro; Chipps, Bradley E; Haselkorn, Tmirah
2014-06-01
Asthma phenotyping can facilitate understanding of disease pathogenesis and potential targeted therapies. To further characterize the distinguishing features of phenotypic groups in difficult-to-treat asthma. Children ages 6-11 years (n = 518) and adolescents and adults ages ≥12 years (n = 3612) with severe or difficult-to-treat asthma from The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study were evaluated in this post hoc cluster analysis. Analyzed variables included sex, race, atopy, age of asthma onset, smoking (adolescents and adults), passive smoke exposure (children), obesity, and aspirin sensitivity. Cluster analysis used the hierarchical clustering algorithm with the Ward minimum variance method. The results were compared among clusters by χ(2) analysis; variables with significant (P < .05) differences among clusters were considered as distinguishing feature candidates. Associations among clusters and asthma-related health outcomes were assessed in multivariable analyses by adjusting for socioeconomic status, environmental exposures, and intensity of therapy. Five clusters were identified in each age stratum. Sex, atopic status, and nonwhite race were distinguishing variables in both strata; passive smoke exposure was distinguishing in children and aspirin sensitivity in adolescents and adults. Clusters were not related to outcomes in children, but 2 adult and adolescent clusters distinguished by nonwhite race and aspirin sensitivity manifested poorer quality of life (P < .0001), and the aspirin-sensitive cluster experienced more frequent asthma exacerbations (P < .0001). Distinct phenotypes appear to exist in patients with severe or difficult-to-treat asthma, which is related to outcomes in adolescents and adults but not in children. The study of the therapeutic implications of these phenotypes is warranted. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Associations of MC1R Genotype and Patient Phenotypes with BRAF and NRAS Mutations in Melanoma.
Thomas, Nancy E; Edmiston, Sharon N; Kanetsky, Peter A; Busam, Klaus J; Kricker, Anne; Armstrong, Bruce K; Cust, Anne E; Anton-Culver, Hoda; Gruber, Stephen B; Luo, Li; Orlow, Irene; Reiner, Anne S; Gallagher, Richard P; Zanetti, Roberto; Rosso, Stefano; Sacchetto, Lidia; Dwyer, Terence; Parrish, Eloise A; Hao, Honglin; Gibbs, David C; Frank, Jill S; Ollila, David W; Begg, Colin B; Berwick, Marianne; Conway, Kathleen
2017-12-01
Associations of MC1R with BRAF mutations in melanoma have been inconsistent between studies. We sought to determine for 1,227 participants in the international population-based Genes, Environment, and Melanoma (GEM) study whether MC1R and phenotypes were associated with melanoma BRAF/NRAS subtypes. We used logistic regression adjusted by age, sex, and study design features and examined effect modifications. BRAF + were associated with younger age, blond/light brown hair, increased nevi, and less freckling, and NRAS + with older age relative to the wild type (BRAF - /NRAS - ) melanomas (all P < 0.05). Comparing specific BRAF subtypes to the wild type, BRAF V600E was associated with younger age, blond/light brown hair, and increased nevi and V600K with increased nevi and less freckling (all P < 0.05). MC1R was positively associated with BRAF V600E cases but only among individuals with darker phototypes or darker hair (P interaction < 0.05) but inversely associated with BRAF V600K (P trend = 0.006) with no significant effect modification by phenotypes. These results support distinct etiologies for BRAF V600E, BRAF V600K, NRAS + , and wild-type melanomas. MC1R's associations with BRAF V600E cases limited to individuals with darker phenotypes indicate that MC1R genotypes specifically provide information about BRAF V600E melanoma risk in those not considered high risk based on phenotype. Our results also suggest that melanin pathways deserve further study in BRAF V600E melanomagenesis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi
2016-11-01
Erythrocyte swelling in non-ionic sucrose media and the subsequent osmotic lysis are influenced by mechanisms of regulatory volume adjustment and osmotic water permeability. Kinetics of transmembrane water and ion fluxes in varied physiologic states may determine the phenotype of erythrocyte osmotic fragility (EOF) and affect estimates of EOF. Effects of sex, age, late pregnancy (third trimester) and lactation on the haemolysis of Sahel goat erythrocytes incubated in a series of hyposmotic non-ionic sucrose media were investigated. The fragiligram was sigmoidal in 72 (97%) out of 74 goats. Two male (3%) goats with low and high extreme median erythrocyte fragilities (MEF), had non-sigmoidal curves. The mean fragilities at osmolarities of 30-300 mosmol/L of sucrose and the mean osmolarities responsible for 10%-90% haemolysis (CH10-CH90) were not significantly different between males and non-pregnant dry (NPD) females, amongst the age groups and between pregnant or lactating and NPD female goats. The MEF (CH50) of the goats were at osmolarities of 126-252 mosmol/L (median of data: 171 mosmol/L) with a mean of 175.24±16.20 mosmol/L. Therefore, phenotypic homogeneity of EOF occurred with minor deviance, since EOF variables were not differentiated by sex, age, late pregnancy or lactation. Physiologic states of the goat did not affect EOF phenotype in non-ionic sucrose media. Sigmoidal fragility phenotype seemed to be homogeneously conserved by osmoregulatory mechanisms not partitioned by sex, age, late pregnancy or lactation, but a minor non-sigmoidal curve might have occurred due to altered erythrocyte osmotic behaviour that would require further investigation.
[Marfan syndrome in childhood and adolescence].
Magotteaux, S; Bulk, S; Farhat, N; Sakalihasan, N; Defraigne, J-O; Seghaye, M-Ch
2016-07-01
The Marfan syndrome is a systemic connective tissue disorder with autosomal dominant inheritance. A mutation of the fibrillin-1 gene, a glycoprotein which is the main constituent of the extracellular matrix, is the cause of the disease. The cardinal features involve the skeletal, ocular and cardiovascular systems. The expression of the Marfan syndrome varies from the severe neonatal presentation to the classical manifestations of the child and young adult, but also comprises isolated features. In children, phenotypical manifestations are age dependent. For these reasons, the diagnosis of Marfan syndrome might be lately revealed by its cardiovascular complications. We report the case of 2 siblings: it illustrates the phenotypic variability that might be observed in a same family, the phenotype evolution with age and the diagnosis challenge in childhood.
Accounting for the Down syndrome advantage?
Esbensen, Anna J; Seltzer, Marsha Mailick
2011-01-01
The authors examined factors that could explain the higher levels of psychosocial well being observed in past research in mothers of individuals with Down syndrome compared with mothers of individuals with other types of intellectual disabilities. The authors studied 155 mothers of adults with Down syndrome, contrasting factors that might validly account for the ?Down syndrome advantage? (behavioral phenotype) with those that have been portrayed in past research as artifactual (maternal age, social supports). The behavioral phenotype predicted less pessimism, more life satisfaction, and a better quality of the mother?child relationship. However, younger maternal age and fewer social supports, as well as the behavioral phenotype, predicted higher levels of caregiving burden. Implications for future research on families of individuals with Down syndrome are discussed.
Ariffin, Hany; Hainaut, Pierre; Puzio-Kuter, Anna; Choong, Soo Sin; Chan, Adelyne Sue Li; Tolkunov, Denis; Rajagopal, Gunaretnam; Kang, Wenfeng; Lim, Leon Li Wen; Krishnan, Shekhar; Chen, Kok-Siong; Achatz, Maria Isabel; Karsa, Mawar; Shamsani, Jannah; Levine, Arnold J; Chan, Chang S
2014-10-28
The Li-Fraumeni syndrome (LFS) and its variant form (LFL) is a familial predisposition to multiple forms of childhood, adolescent, and adult cancers associated with germ-line mutation in the TP53 tumor suppressor gene. Individual disparities in tumor patterns are compounded by acceleration of cancer onset with successive generations. It has been suggested that this apparent anticipation pattern may result from germ-line genomic instability in TP53 mutation carriers, causing increased DNA copy-number variations (CNVs) with successive generations. To address the genetic basis of phenotypic disparities of LFS/LFL, we performed whole-genome sequencing (WGS) of 13 subjects from two generations of an LFS kindred. Neither de novo CNV nor significant difference in total CNV was detected in relation with successive generations or with age at cancer onset. These observations were consistent with an experimental mouse model system showing that trp53 deficiency in the germ line of father or mother did not increase CNV occurrence in the offspring. On the other hand, individual records on 1,771 TP53 mutation carriers from 294 pedigrees were compiled to assess genetic anticipation patterns (International Agency for Research on Cancer TP53 database). No strictly defined anticipation pattern was observed. Rather, in multigeneration families, cancer onset was delayed in older compared with recent generations. These observations support an alternative model for apparent anticipation in which rare variants from noncarrier parents may attenuate constitutive resistance to tumorigenesis in the offspring of TP53 mutation carriers with late cancer onset.
Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.
Ueda, Hiroaki; Kusaba, Makoto
2015-09-01
Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf. © 2015 American Society of Plant Biologists. All Rights Reserved.
Longo, Francesco; Russo, Isabella; Shimshek, Derya R.; Greggio, Elisa; Morari, Michele
2014-01-01
The leucine-rich repeat kinase 2 mutation G2019S in the kinase-domain is the most common genetic cause of Parkinson's disease. To investigate the impact of the G2019S mutation on motor activity in vivo, a longitudinal phenotyping approach was developed in knock-in (KI) mice bearing this kinase-enhancing mutation. Two cohorts of G2019S KI mice and wild-type littermates (WT) were subjected to behavioral tests, specific for akinesia, bradykinesia and overall gait ability, at different ages (3, 6, 10, 15 and 19 months). The motor performance of G2019S KI mice remained stable up to the age of 19 months and did not show the typical age-related decline in immobility time and stepping activity of WT. Several lines of evidence suggest that enhanced LRRK2 kinase activity is the main contributor to the observed hyperkinetic phenotype of G2019S KI mice: i) KI mice carrying a LRRK2 kinase-dead mutation (D1994S KD) showed a similar progressive motor decline as WT; ii) two LRRK2 kinase inhibitors, H-1152 and Nov-LRRK2-11, acutely reversed the hyperkinetic phenotype of G2019S KI mice, while being ineffective in WT or D1994S KD animals. LRRK2 target engagement in vivo was further substantiated by reduction of LRRK2 phosphorylation at Ser935 in the striatum and cortex at efficacious doses of Nov-LRRK2-11, and in the striatum at efficacious doses of H-1152. In summary, expression of the G2019S mutation in the mouse LRRK2 gene confers a hyperkinetic phenotype that is resistant to age-related motor decline, likely via enhancement of LRRK2 kinase activity. This study provides an in vivo model to investigate the effects of LRRK2 inhibitors on motor function. PMID:25107341
2010-01-01
Background We evaluated the influence of chemical disinfection and accelerated aging on the dimensional stability and detail reproduction of a silicone elastomer containing one of two opacifiers. Methods A total of 90 samples were fabricated from Silastic MDX 4-4210 silicone and divided into groups (n = 10) according to opacifier content (barium sulfate or titanium dioxide) and disinfectant solution (neutral soap, Efferdent, or 4% chlorhexidine). The specimens were disinfected 3 times per week during 60 days and then subjected to accelerated aging for 1008 hours. Dimensional stability and detail reproduction tests were performed after specimens' fabrication (baseline), chemical disinfection and periodically during accelerated aging (252, 504, and 1008 hours). The results were analyzed using 3-way repeated-measures ANOVA and the Tukey HSD test (α = 0.05). Results All groups exhibited dimensional changes over time. The opacifier (p = .314), period (p < .0001) and their interactions (p = .0041) affected the dimensional stability of the silicone. Statistical significant dimensional differences occurred between groups with (0.071) and without opacifiers (0.053). Accelerated aging influenced the dimensional stability of the samples. All groups scored 2 in the detail reproduction tests, which represents the fully reproducing of three test grooves with accurate angles. Conclusions Incorporation of opacifiers alters the dimensional stability of silicones used in facial prosthetics, but seems to have no influence on detail reproduction. Accelerated aging is responsible for most of the dimensional changes in Silastic MDX4 4210, but all dimensional changes measured in this study remained within the limits of stability necessary for this application. PMID:21162729
Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James
2015-01-01
Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials. © 2014 Wiley Periodicals, Inc.
Singh, Kameshwar P; Bennett, John A; Casado, Fanny L; Walrath, Jason L; Welle, Stephen L; Gasiewicz, Thomas A
2014-01-15
Loss of immune function and increased hematopoietic disease are among the most clinically significant consequences of aging. Hematopoietic stem cells (HSCs) from mice lacking aryl hydrocarbon receptor (AhR) have high rates of cell division. Studies were designed to test the hypothesis that aging AhR-null allele (AhR-KO) mice develop premature HSC exhaustion, and changes leading to hematological disease. Compared to wild-type, aging AhR-KO mice showed a decreased survival rate, splenomegaly, increased circulating white blood cells, hematopoietic cell accumulation in tissues, and anemia. Analysis of bone marrow indicated increased numbers of stem/progenitor and lineage-committed cells, but decreased erythroid progenitors. There was also decreased self-renewal capacity of HSCs determined by competitive repopulation and serial transplantation. HSCs also showed increased levels of reactive oxygen species (ROS), Ki-67, and γ-H2A.X, but decreased p16(Ink4a). Splenic cells from aging KO mice had abnormal expression of genes, including Gata-1, Sh2d3c, Gfi-1, p21, and c-myc, involved in trafficking and associated with leukemia. HSCs from AhR-KO mice had gene changes related to HSC maintenance and consistent with phenotype observed. The most prominent gene changes (overexpression of Srpk2, Creb1, Hes1, mtor, pdp1) have been associated with HSC hyperproliferation, leukemia, and accelerated aging. Pathway analyses also indicated an enrichment of genes associated with oxidative stress, acute myelogenous leukemia, aging, and heat shock response, and the β-catenin/Wnt pathways. These data indicate that loss of AhR and associated changes in multiple signaling pathways promote premature HSC exhaustion and development of a myeloproliferative disorder. They also implicate a critical role of the AhR in the regulation of HSCs.
Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): A new radiomics descriptor.
Prasanna, Prateek; Tiwari, Pallavi; Madabhushi, Anant
2016-11-22
In this paper, we introduce a new radiomic descriptor, Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe) for capturing subtle differences between benign and pathologic phenotypes which may be visually indistinguishable on routine anatomic imaging. CoLlAGe seeks to capture and exploit local anisotropic differences in voxel-level gradient orientations to distinguish similar appearing phenotypes. CoLlAGe involves assigning every image voxel an entropy value associated with the co-occurrence matrix of gradient orientations computed around every voxel. The hypothesis behind CoLlAGe is that benign and pathologic phenotypes even though they may appear similar on anatomic imaging, will differ in their local entropy patterns, in turn reflecting subtle local differences in tissue microarchitecture. We demonstrate CoLlAGe's utility in three clinically challenging classification problems: distinguishing (1) radiation necrosis, a benign yet confounding effect of radiation treatment, from recurrent tumors on T1-w MRI in 42 brain tumor patients, (2) different molecular sub-types of breast cancer on DCE-MRI in 65 studies and (3) non-small cell lung cancer (adenocarcinomas) from benign fungal infection (granulomas) on 120 non-contrast CT studies. For each of these classification problems, CoLlAGE in conjunction with a random forest classifier outperformed state of the art radiomic descriptors (Haralick, Gabor, Histogram of Gradient Orientations).
Os'mak, E D; Asanov, É O
2014-01-01
The effect of hypoxic training on autonomic regulation in psycho-emotional stress conditions in hypoxic conditions in older people with physiological (25 people) and accelerated (28 people) aging respiratory system. It is shown that hypoxic training leads to an increase in vagal activity indicators (HF) and reduced simpatovagal index (LF/HF), have a normalizing effect on the autonomic balance during stress loads in older people with different types of aging respiratory system.
R.C. Thapliyal; K.F. Connor
1997-01-01
Accelerated ageing of seeds of Dalbergia sissoo Roxb., a multi-purpose tropical legume tree, was effective as a vigour test only at temperatures in excess of 43 deg C for 72 h. Increased leakage of solutes accompanied the decrease in viability, but there was no relationship between seed size and conductivity. Analyses of D. sissoo...
Accelerated Middle Schools. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2008
2008-01-01
Accelerated middle schools are self-contained academic programs designed to help middle school students who are behind grade level catch up with their age peers. If these students begin high school with other students their age, the hope is that they will be more likely to stay in school and graduate. The programs serve students who are one to two…
Popa, S; Moţa, M; Popa, A; Moţa, E; Serafinceanu, C; Guja, C; Catrinoiu, D; Hâncu, N; Lichiardopol, R; Bala, C; Popa, A; Roman, G; Radulian, G; Timar, R; Mihai, B
2016-09-01
The objectives were to assess the prevalence of overweight/obesity, abdominal obesity and metabolic syndrome (MetS), and to evaluate the characteristics of the metabolically unhealthy lean (MUHL) and metabolically healthy overweight/obese (MHO) phenotypes in a Romanian population-based sample from the PREDATORR study. PREDATORR was an epidemiological study with a stratified, cross-sectional, cluster random sampling design. Participants were classified into four cardiometabolic phenotypes based on the BMI, the cut-off value being 25 kg/m(2), and the presence of MetS (defined according to the Harmonization definition 2009): MUHL, MHO, metabolically healthy lean (MHL) and metabolically unhealthy overweight/obese (MUHO). Overall, 2681 subjects aged 20-79 years were included in the analysis. The overall age and sex-adjusted prevalence of obesity was 31.90 %, overweight was 34.7 %, abdominal obesity was 73.90 % and MetS was 38.50 %. The age- and sex-adjusted prevalence of MHO phenotype was 31.60 %, while MUHL phenotype prevalence was 3.90 %. MUHL and MHO participants had a cardiometabolic profile, kidney function and CVD risk intermediary between MHL and MUHO. MUHL had higher odds of being associated with CVD risk (OR 5.8; p < 0.001), abdominal obesity, prediabetes, diabetes, hypertriglyceridemia and hypo-HDL cholesterolemia than MHL, while MHO phenotype was associated with hypo-HDL cholesterolemia (OR 3.1; p = 0.002), prediabetes (OR 2.9; p < 0.001) and abdominal obesity. PREDATORR study showed a high prevalence of obesity/overweight, abdominal obesity and MetS in the adult Romanian population, and their association with kidney function and several cardiometabolic factors.
Mundim, F M; Da Fonseca Roberti Garcia, L; Silva Sousa, A B; Cruvinel, D R; De Carvalho Panzeri Pires-De-Souza, F
2010-10-01
The aim of this study was to evaluate the influence of artificial accelerated aging on the color stability and opacity of composites of different shades. Four composites for direct use (Heliomolar, 4 Seasons, Tetric EvoCeram; QuiXfil) and one for indirect use (SR Adoro) in two shades were used: light (A2) and dark (C3 for direct, and D4 for indirect composite). QuiXfil was obtained in Universal shade. A Teflon matrix (12 X 2 mm) was used to obtain 54 specimens (N=6), which were submitted to color and opacity analysis (Spectrophotometer PCB 6807, Byk Gardner) before and after artificial accelerated aging for 384 hours. After the statistical analysis (2-way ANOVA - Bonferroni - P<0.05), significant color alteration was observed in the light and dark composites studied (P<0.05), with the exception of QuiXfil. Composite 4 Seasons/C3 showed less color alteration (ΔE=0.91). The opacity alteration (ΔOP) was higher for light composites. Artificial accelerated aging interfered in the optical properties assessed; however, the alterations seemed to be more related to the composites composition than to their shade.
Yao, Ruiqing; Tanaka, Miyuki; Misawa, Eriko; Saito, Marie; Nabeshima, Kazumi; Yamauchi, Koji; Abe, Fumiaki; Yamamoto, Yuki; Furukawa, Fukumi
2016-10-12
Estrogen deficiencies associated with menopause accelerate spontaneous skin aging and stimulate the ultraviolet (UV) irradiation-induced photoaging of skin. However, food compositions with the potential to ameliorate the UV irradiation-induced acceleration of skin aging with menopause have not yet been investigated in detail. In the present study, we examined the ability of plant sterols derived from Aloe vera gel to prevent the UV irradiation-induced acceleration of skin aging in ovariectomized mice. Skin transepidermal water loss (TEWL) was significantly higher in the ovariectomy group than in the sham operation group following UVB irradiation, whereas skin elasticity was significantly lower. Ultraviolet B (UVB) irradiation induced greater reductions in skin hyaluronic acid levels and more severe collagen fiber damage in the derims in the ovariectomy group than in the sham group. The intake of AVGP significantly ameliorated this acceleration in skin aging by reducing the expression of matrix metalloproteinases (MMPs) and increasing that of epidermal growth factor (EGF) and hyaluronan synthase (HAS) in the skin. These results indicate that AVGP supplementation prevents skin damage induced by UVB irradiation and ovariectomy in part by inhibiting damage to the extracellular matrix. © 2016 Institute of Food Technologists®.
Genetic and environmental continuity in personality development: a meta-analysis.
Briley, Daniel A; Tucker-Drob, Elliot M
2014-09-01
The longitudinal stability of personality is low in childhood but increases substantially into adulthood. Theoretical explanations for this trend differ in the emphasis placed on intrinsic maturation and socializing influences. To what extent does the increasing stability of personality result from the continuity and crystallization of genetically influenced individual differences, and to what extent does the increasing stability of life experiences explain increases in personality trait stability? Behavioral genetic studies, which decompose longitudinal stability into sources associated with genetic and environmental variation, can help to address this question. We aggregated effect sizes from 24 longitudinal behavioral genetic studies containing information on a total of 21,057 sibling pairs from 6 types that varied in terms of genetic relatedness and ranged in age from infancy to old age. A combination of linear and nonlinear meta-analytic regression models were used to evaluate age trends in levels of heritability and environmentality, stabilities of genetic and environmental effects, and the contributions of genetic and environmental effects to overall phenotypic stability. Both the genetic and environmental influences on personality increase in stability with age. The contribution of genetic effects to phenotypic stability is moderate in magnitude and relatively constant with age, in part because of small-to-moderate decreases in the heritability of personality over child development that offset increases in genetic stability. In contrast, the contribution of environmental effects to phenotypic stability increases from near zero in early childhood to moderate in adulthood. The life-span trend of increasing phenotypic stability, therefore, predominantly results from environmental mechanisms. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Genetic and Environmental Continuity in Personality Development: A Meta-Analysis
Briley, Daniel A.; Tucker-Drob, Elliot M.
2014-01-01
The longitudinal stability of personality is low in childhood, but increases substantially into adulthood. Theoretical explanations for this trend differ in the emphasis placed on intrinsic maturation and socializing influences. To what extent does the increasing stability of personality result from the continuity and crystallization of genetically influenced individual differences, and to what extent does the increasing stability of life experiences explain increases in personality trait stability? Behavioral genetic studies, which decompose longitudinal stability into sources associated with genetic and environmental variation, can help to address this question. We aggregated effect sizes from 24 longitudinal behavioral genetic studies containing information on a total of 21,057 sibling pairs from six types that varied in terms of genetic relatedness and ranged in age from infancy to old age. A combination of linear and nonlinear meta-analytic regression models were used to evaluate age-trends in levels of heritability and environmentality, stabilities of genetic and environmental effects, and the contributions of genetic and environmental effects to overall phenotypic stability. Both the genetic and environmental influences on personality increase in stability with age. The contribution of genetic effects to phenotypic stability is moderate in magnitude and relatively constant with age, in part because of small-to-moderate decreases in the heritability of personality over child development that offset increases in genetic stability. In contrast, the contribution of environmental effects to phenotypic stability increases from near-zero in early childhood to moderate in adulthood. The lifespan trend of increasing phenotypic stability, therefore, predominantly results from environmental mechanisms. PMID:24956122
De Filippis, Elena Anna
2007-01-01
Diabetes is associated with accelerated atherosclerosis and macrovascular complications are a major cause of morbidity and mortality in this disease. Although our understanding of vascular pathology has lately greatly improved, the mechanism(s) underlying enhanced atherosclerosis in diabetes remain unclear. Endothelial cell dysfunction is emerging as a key component in the pathophysiology of cardiovascular abnormalities associated with diabetes. Although it has been established that endothelium plays a critical role in overall homeostasis of the vessels, vascular smooth muscle cells (vSMC) in the arterial intima have a relevant part in the development of atherosclerosis in diabetes. However, high glucose induced alterations in vSMC behaviour are not fully characterized. Several studies have reported that impaired nitric oxide (NO) synthesis and/or actions are often present in diabetes and endothelial dysfunction. Furthermore, although endothelial cells are by far the main site of vascular NO synthesis, vSMC do express nitric oxyde synthases (NOSs) and NO synthesis in vSMC might be important in vessel’s function. Although it is known that vSMC contribute to vascular pathology in diabetes by their change from a quiescent state to an activated proliferative and migratory phenotype (termed phenotypic modulation), whether this altered phenotypic modulation might also involve alterations in the nitrergic systems is still controversial. Our recent data indicate that, in vivo, chronic hyperglycemia might induce an increased number of vSMC proliferative clones which persist in culture and are associated with increased eNOS expression and activity. However, upregulation of eNOS and increased NO synthesis occur in the presence of a marked concomitant increase of O2− production. Since NO bioavailabilty might not be increased in high glucose stimulated vSMC, it is tempting to hypothesize that the proliferative phenotype observed in cells from diabetic rats is associated with a redox imbalance responsible quenching and/or trapping of NO, with the consequent loss of its biological activity. This might provide new insight on the mechanisms responsible for accelerated atherosclerosis in diabetes. PMID:18850175
Shortening tobacco life cycle accelerates functional gene identification in genomic research.
Ning, G; Xiao, X; Lv, H; Li, X; Zuo, Y; Bao, M
2012-11-01
Definitive allocation of function requires the introduction of genetic mutations and analysis of their phenotypic consequences. Novel, rapid and convenient techniques or materials are very important and useful to accelerate gene identification in functional genomics research. Here, over-expression of PmFT (Prunus mume), a novel FT orthologue, and PtFT (Populus tremula) lead to shortening of the tobacco life cycle. A series of novel short life cycle stable tobacco lines (30-50 days) were developed through repeated self-crossing selection breeding. Based on the second transformation via a gusA reporter gene, the promoter from BpFULL1 in silver birch (Betula pendula) and the gene (CPC) from Arabidopsis thaliana were effectively tested using short life cycle tobacco lines. Comparative analysis among wild type, short life cycle tobacco and Arabidopsis transformation system verified that it is optional to accelerate functional gene studies by shortening host plant material life cycle, at least in these short life cycle tobacco lines. The results verified that the novel short life cycle transgenic tobacco lines not only combine the advantages of economic nursery requirements and a simple transformation system, but also provide a robust, effective and stable host system to accelerate gene analysis. Thus, shortening tobacco life cycle strategy is feasible to accelerate heterologous or homologous functional gene identification in genomic research. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Amaral, Rita; Fonseca, João A; Jacinto, Tiago; Pereira, Ana M; Malinovschi, Andrei; Janson, Christer; Alving, Kjell
2018-01-01
Evidence for distinct asthma phenotypes and their overlap is becoming increasingly relevant to identify personalized and targeted therapeutic strategies. In this study, we aimed to describe the overlap of five commonly reported asthma phenotypes in US adults with current asthma and assess its association with asthma outcomes. Data from the National Health and Nutrition Examination Surveys (NHANES) 2007-2012 were used (n = 30,442). Adults with current asthma were selected. Asthma phenotypes were: B-Eos-high [if blood eosinophils (B-Eos) ≥ 300/mm 3 ]; FeNO-high (FeNO ≥ 35 ppb); B-Eos&FeNO-low (B-Eos < 150/mm 3 and FeNO < 20 ppb); asthma with obesity (AwObesity) (BMI ≥ 30 kg/m 2 ); and asthma with concurrent COPD. Data were weighted for the US population and analyses were stratified by age (< 40 and ≥ 40 years old). Of the 18,619 adults included, 1059 (5.6% [95% CI 5.1-5.9]) had current asthma. A substantial overlap was observed both in subjects aged < 40 years (44%) and ≥ 40 years (54%). The more prevalent specific overlaps in both age groups were AwObesity associated with either B-Eos-high (15 and 12%, respectively) or B-Eos&FeNO-low asthma (13 and 11%, respectively). About 14% of the current asthma patients were "non-classified". Regardless of phenotype classification, having concomitant phenotypes was significantly associated with (adjusted OR, 95% CI) ≥ 2 controller medications (2.03, 1.16-3.57), and FEV 1 < LLN (3.21, 1.74-5.94), adjusted for confounding variables. A prevalent overlap of commonly reported asthma phenotypes was observed among asthma patients from the general population, with implications for objective asthma outcomes. A broader approach may be required to better characterize asthma patients and prevent poor asthma outcomes.
Phenotypic heterogeneity associated with a novel mutation (Gly112Glu) in the Norrie disease protein.
Allen, R C; Russell, S R; Streb, L M; Alsheikheh, A; Stone, E M
2006-02-01
To determine the molecular pathology and clinical severity of two pedigrees with a history of early retinal detachment and peripheral retinal vascular abnormalities. Longitudinal cohort study. A longitudinal clinical study and DNA analysis was performed on 49 family members of two pedigrees. Nine individuals were found to be hemizygous for a mutation at codon 112 (Gly112Glu) of the Norrie disease protein (NDP) in one pedigree. Significant phenotypic heterogeneity was found. The proband presented with a unilateral subtotal retinal detachment at the age of 3 years, and subsequently developed a slowly progressive tractional retinal detachment involving the macula in the contralateral eye at the age of 4 years. One individual had only mild peripheral retinal pigmentary changes with normal vision at the age of 79 years. The remaining seven individuals had varying degrees of peripheral retinal vascular abnormalities and anterior segment findings. Seven affected members of a second pedigree affected by a previously reported mutation, Arg74Cys, also demonstrated wide ocular phenotypic variation. A novel mutation (Gly112Glu), which represents the most carboxy located, NDP mutation reported, results in significant phenotypic heterogeneity. These data support the contention that the spectrum of ocular disease severity associated with these NDP mutations is broad. Use of terms that characterize this entity by phenotypic appearance, such as familial exudative vitreoretinopathy, do not adequately communicate the potential spectrum of severity of this disorder to affected or carrier family members.
The correlation between serum AMH and HOMA-IR among PCOS phenotypes.
Wiweko, Budi; Indra, Indra; Susanto, Cynthia; Natadisastra, Muharam; Hestiantoro, Andon
2018-02-09
Polycystic ovarian syndrome (PCOS) is known to be one of the most prevalent endocrine disorders affecting reproductive age women. One of the endocrine disorder is hyperinsulinemia, which corresponds with the severity of PCOS. However, the pathogenesis of PCOS is not fully understood, but one theory of anti-mullerian hormone (AMH) has been proposed as one of the factor related to the degree of severity of PCOS. However, there are no clear correlation between levels of AMH with the incidence of insulin resistance in PCOS patients especially in Indonesia. This is a cross-sectional study involving reproductive age women aged 18-35 years. Subjects were recruited consecutively at Dr. Cipto Mangunkusumo General Hospital between 2011 until 2014. PCOS women diagnosed using 2003 Rotterdam criteria were categorized into four different PCOS phenotypes. Subsequently, serum level of AMH and HOMA-IR was measured and evaluated with correlation tests performed using SPSS 11.0 RESULTS: A total of 125 PCOS patients were included in a study conducted within a 3-year period. Phenotype 1 (anovulation, hyperandrogenism, and polycystic ovaries) shows the highest levels of AMH and HOMA-IR, which decreases in accordance to severity level (p < 0.005). The positive correlation between AMH and HOMA-IR persisted even after adjusting for BMI in multivariate analysis. There was a positive correlation between serum AMH and HOMA IR levels. Serum AMH and HOMA IR levels were significantly different across the four PCOS phenotypes; with the highest values were present with phenotype 1.
Diagnostic Challenges in Retinitis Pigmentosa: Genotypic Multiplicity and Phenotypic Variability
Chang, Susie; Vaccarella, Leah; Olatunji, Sunday; Cebulla, Colleen; Christoforidis, John
2011-01-01
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders. Diagnosis can be challenging as more than 40 genes are known to cause non-syndromic RP and phenotypic expression can differ significantly resulting in variations in disease severity, age of onset, rate of progression, and clinical findings. We describe the clinical manifestations of RP, the more commonly known causative gene mutations, and the genotypic-phenotypic correlation of RP. PMID:22131872
c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3
Sutherland, Kate D; Vaillant, François; Alexander, Warren S; Wintermantel, Tim M; Forrest, Natasha C; Holroyd, Sheridan L; McManus, Edward J; Schutz, Gunther; Watson, Christine J; Chodosh, Lewis A; Lindeman, Geoffrey J; Visvader, Jane E
2006-01-01
Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution. PMID:17139252
Hindt, Maria; Socha, Amanda L.; Zuber, Hélène
2013-01-01
Here we present approaches for using multi-elemental imaging (specifically synchrotron X-ray fluorescence microscopy, SXRF) in ionomics, with examples using the model plant Arabidopsis thaliana. The complexity of each approach depends on the amount of a priori information available for the gene and/or phenotype being studied. Three approaches are outlined, which apply to experimental situations where a gene of interest has been identified but has an unknown phenotype (Phenotyping), an unidentified gene is associated with a known phenotype (Gene Cloning) and finally, a Screening approach, where both gene and phenotype are unknown. These approaches make use of open-access, online databases with which plant molecular genetics researchers working in the model plant Arabidopsis will be familiar, in particular the Ionomics Hub and online transcriptomic databases such as the Arabidopsis eFP browser. The approaches and examples we describe are based on the assumption that altering the expression of ion transporters can result in changes in elemental distribution. We provide methodological details on using elemental imaging to aid or accelerate gene functional characterization by narrowing down the search for candidate genes to the tissues in which elemental distributions are altered. We use synchrotron X-ray microprobes as a technique of choice, which can now be used to image all parts of an Arabidopsis plant in a hydrated state. We present elemental images of leaves, stem, root, siliques and germinating hypocotyls. PMID:23912758
Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum.
Jones, David T; Graff-Radford, Jonathan; Lowe, Val J; Wiste, Heather J; Gunter, Jeffrey L; Senjem, Matthew L; Botha, Hugo; Kantarci, Kejal; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Jack, Clifford R
2017-12-01
Functionally related brain regions are selectively vulnerable to Alzheimer's disease pathophysiology. However, molecular markers of this pathophysiology (i.e., beta-amyloid and tau aggregates) have discrepant spatial and temporal patterns of progression within these selectively vulnerable brain regions. Existing reductionist pathophysiologic models cannot account for these large-scale spatiotemporal inconsistencies. Within the framework of the recently proposed cascading network failure model of Alzheimer's disease, however, these large-scale patterns are to be expected. This model postulates the following: 1) a tau-associated, circumscribed network disruption occurs in brain regions specific to a given phenotype in clinically normal individuals; 2) this disruption can trigger phenotype independent, stereotypic, and amyloid-associated compensatory brain network changes indexed by changes in the default mode network; 3) amyloid deposition marks a saturation of functional compensation and portends an acceleration of the inciting phenotype specific, and tau-associated, network failure. With the advent of in vivo molecular imaging of tau pathology, combined with amyloid and functional network imaging, it is now possible to investigate the relationship between functional brain networks, tau, and amyloid across the disease spectrum within these selectively vulnerable brain regions. In a large cohort (n = 218) spanning the Alzheimer's disease spectrum from young, amyloid negative, cognitively normal subjects to Alzheimer's disease dementia, we found several distinct spatial patterns of tau deposition, including 'Braak-like' and 'non-Braak-like', across functionally related brain regions. Rather than arising focally and spreading sequentially, elevated tau signal seems to occur system-wide based on inferences made from multiple cross-sectional analyses we conducted looking at regional patterns of tau signal. Younger age-of-disease-onset was associated with 'non-Braak-like' patterns of tau, suggesting an association with atypical clinical phenotypes. As predicted by the cascading network failure model of Alzheimer's disease, we found that amyloid is a partial mediator of the relationship between functional network failure and tau deposition in functionally connected brain regions. This study implicates large-scale brain networks in the pathophysiology of tau deposition and offers support to models incorporating large-scale network physiology into disease models linking tau and amyloid, such as the cascading network failure model of Alzheimer's disease. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conley, Shannon; Nour, May; Fliesler, Steven J; Naash, Muna I
2007-12-01
R172W is a common mutation in the human retinal degeneration slow (RDS) gene, associated with a late-onset dominant macular dystrophy. In this study, the authors characterized a mouse model that closely mimics the human phenotype and tested the feasibility of gene supplementation as a disease treatment strategy. Transgenic mouse lines carrying the R172W mutation were generated. The retinal phenotype associated with this mutation in a low-expresser line (L-R172W) was examined, both structurally (histology with correlative immunohistochemistry) and functionally (electroretinography). By examining animals over time and with various rds genetic backgrounds, the authors evaluated the dominance of the defect. To assess the efficacy of gene transfer therapy as a treatment for this defect, a previously characterized transgenic line expressing the normal mouse peripherin/Rds (NMP) was crossed with a higher-expresser Rds line harboring the R172W mutation (H-R172W). Functional, structural, and biochemical analyses were used to assess rescue of the retinal disease phenotype. In the wild-type (WT) background, L-R172W mice exhibited late-onset (12-month) dominant cone degeneration without any apparent effect on rods. The degeneration was slightly accelerated (9 months) in the rds(+/-) background. L-R172W retinas did not form outer segments in the absence of endogenous Rds. With use of the H-R172W line on an rds(+/-) background for proof-of-principle genetic supplementation studies, the NMP transgene product rescued rod and cone functional defects and supported outer segment integrity up to 3 months of age, but the rescue effect did not persist in older (11-month) animals. The R172W mutation leads to dominant cone degeneration in the mouse model, regardless of the expression level of the transgene. In contrast, effects of the mutation on rods are dose dependent, underscoring the usefulness of the L-R172W line as a faithful model of the human phenotype. This model may prove helpful in future studies on the mechanisms of cone degeneration and for elucidating the different roles of Rds in rods and cones. This study provides evidence that Rds genetic supplementation can be used to partially rescue visual function. Although this strategy is capable of rescuing haploinsufficiency, it does not rescue the long-term degeneration associated with a gain-of-function mutation.
Phenotypic assortment in wild primate networks: implications for the dissemination of information.
Carter, Alecia J; Lee, Alexander E G; Marshall, Harry H; Ticó, Miquel Torrents; Cowlishaw, Guy
2015-05-01
Individuals' access to social information can depend on their social network. Homophily-a preference to associate with similar phenotypes-may cause assortment within social networks that could preclude information transfer from individuals who generate information to those who would benefit from acquiring it. Thus, understanding phenotypic assortment may lead to a greater understanding of the factors that could limit the transfer of information between individuals. We tested whether there was assortment in wild baboon (Papio ursinus) networks, using data collected from two troops over 6 years for six phenotypic traits-boldness, age, dominance rank, sex and the propensity to generate/exploit information-using two methods for defining a connection between individuals-time spent in proximity and grooming. Our analysis indicated that assortment was more common in grooming than proximity networks. In general, there was homophily for boldness, age, rank and the propensity to both generate and exploit information, but heterophily for sex. However, there was considerable variability both between troops and years. The patterns of homophily we observed for these phenotypes may impede information transfer between them. However, the inconsistency in the strength of assortment between troops and years suggests that the limitations to information flow may be quite variable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, Jong-Pil, E-mail: jpwon@konkuk.ac.kr; Hwang, Un-Jong; Lee, Su-Jin
This study evaluated the performance of shotcrete using high strength C{sub 12}A{sub 7} mineral-based accelerator that has been developed to improve the durability and long-term strength. Rebound, compressive strength and flexural strength were tested in the field. Test result showed that existing C{sub 12}A{sub 7} mineral-based accelerator exhibits better early strength than the high-strength C{sub 12}A{sub 7} mineral-based accelerator until the early age, but high-strength C{sub 12}A{sub 7} mineral-based accelerator shows about 29% higher at the long-term age of 28 days. Microstructural analysis such as scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption method was evaluated to analyzemore » long-term strength development mechanism of high strength C{sub 12}A{sub 7} mineral-based accelerator. As analysis result, it had more dense structure due to the reaction product by adding material that used to enhanced strength. It had better resistance performance in chloride ion penetration, freezing–thawing and carbonation than shotcrete that used existing C{sub 12}A{sub 7} mineral-based accelerator.« less
Li, Shuxia; Kyvik, Kirsten Ohm; Pang, Zengchang; Zhang, Dongfeng; Duan, Haiping; Tan, Qihua; Hjelmborg, Jacob; Kruse, Torben; Dalgård, Christine
2016-01-01
Objective The rate of change in metabolic phenotypes can be highly indicative of metabolic disorders and disorder-related modifications. We analyzed data from longitudinal twin studies on multiple metabolic phenotypes in Danish and Chinese twins representing two populations of distinct ethnic, cultural, social-economic backgrounds and geographical environments. Materials and Methods The study covered a relatively large sample of 502 pairs of Danish adult twins followed up for a long period of 12 years with a mean age at intake of 38 years (range: 18–65) and a total of 181 Chinese adult twin pairs traced for about 7 years with a mean baseline age of 39.5 years (range: 23–64). The classical twin models were fitted to the longitudinal change in each phenotype (Δphenotype) to estimate the genetic and environmental contributions to the variation in Δphenotype. Results Moderate to high contributions by the unique environment were estimated for all phenotypes in both Danish (from 0.51 for low density lipoprotein cholesterol up to 0.72 for triglycerides) and Chinese (from 0.41 for triglycerides up to 0.73 for diastolic blood pressure) twins; low to moderate genetic components were estimated for long-term change in most of the phenotypes in Danish twins except for triglycerides and hip circumference. Compared with Danish twins, the Chinese twins tended to have higher genetic control over the longitudinal changes in lipids (except high density lipoprotein cholesterol) and glucose, higher unique environmental contribution to blood pressure but no genetic contribution to longitudinal change in body mass traits. Conclusion Our results emphasize the major contribution of unique environment to the observed intra-individual variation in all metabolic phenotypes in both samples, and meanwhile reveal differential patterns of genetic and common environmental regulation on changes over time in metabolic phenotypes across the two samples. PMID:26862898
Phenotypes of asthma revisited upon the presence of atopy.
Nieves, Ana; Magnan, Antoine; Boniface, Stéphanie; Proudhon, Hervé; Lanteaume, André; Romanet, Stéphanie; Vervloet, Daniel; Godard, Philippe
2005-03-01
Immunological studies claimed that atopic and non-atopic asthma share more similarities than differences. However, these two phenotypes of asthma are considered to be distinguishable upon distinct clinical patterns, which were not systematically assessed before in a large population. We studied characteristics discriminating atopic from non-atopic asthma among 751 asthmatic patients and 80 factors were analysed in univariate and multivariate analysis. Age, age of onset of asthma, female/male ratio were higher in non-atopic (n=200) than in atopic (n=551) asthmatics. Familial asthma, seasonal symptoms, rhinitis, conjunctivitis, allergen-triggered symptoms, improvement in altitude, exercise-induced asthma were associated with atopy. Non-atopic asthmatics displayed lower FEV(1) and FVC. Smoking was more frequent and asthma was more severe in these patients. Younger age, early onset, male sex, rhinitis and smoking were independent factors discriminating atopic from non-atopic asthma. This study establishes in a large population of asthmatics that although similarities exist between atopic and non-atopic asthma, two clinical phenotypes can still distinguish both kinds of asthma.
Growth pattern from birth to adulthood in African pygmies of known age
Rozzi, Fernando V. Ramirez; Koudou, Yves; Froment, Alain; Le Bouc, Yves; Botton, Jérémie
2015-01-01
The African pygmy phenotype stems from genetic foundations and is considered to be the product of a disturbance in the growth hormone–insulin-like growth factor (GH–IGF) axis. However, when and how the pygmy phenotype is acquired during growth remains unknown. Here we describe growth patterns in Baka pygmies based on two longitudinal studies of individuals of known age, from the time of birth to the age of 25 years. Body size at birth among the Baka is within standard limits, but their growth rate slows significantly during the first two years of life. It then more or less follows the standard pattern, with a growth spurt at adolescence. Their life history variables do not allow the Baka to be distinguished from other populations. Therefore, the pygmy phenotype in the Baka is the result of a change in growth that occurs during infancy, which differentiates them from East African pygmies revealing convergent evolution. PMID:26218408
Jansen, Michelle A E; van den Heuvel, Diana; Jaddoe, Vincent W V; Moll, Henriette A; van Zelm, Menno C
2017-03-15
Persistent infections with cytomegalovirus (CMV) differentially affect the host immune phenotype in middle-aged males and females. Because CMV already impacts on T-cell memory at a young age, we studied whether these effects were modified by sex in 1,079 children with an average age of 6 years. Sex and CMV independently impacted on multiple B-cell and T-cell subsets. However, there was no significant effect of their interaction. Importantly, the effects of sex and CMV were in part explained by age and infection with other herpesviruses. Thus, immune aging is likely to be more complex, with involvement of hormonal changes with age, socioeconomic status, birth characteristics, and pathogen exposure. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
In vitro cytotoxicity of maxillofacial silicone elastomers: effect of accelerated aging.
Bal, Bilge Turhan; Yilmaz, Handan; Aydin, Cemal; Karakoca, Seçil; Yilmaz, Sükran
2009-04-01
The purpose of this in vitro study was to evaluate the cytotoxicity of three maxillofacial silicone elastomers at 24, 48, and 72 h on L-929 cells and to determine the effect of accelerated aging on the cytotoxicity of these silicone elastomers. Disc-shaped test samples of maxillofacial silicone elastomers (Cosmesil, Episil, Multisil) were fabricated according to manufacturers' instructions under aseptic conditions. Samples were then divided into three groups: (1) not aged; (2) aged for 150 h with an accelerated weathering tester; and (3) aged for 300 h. Then the samples were placed in Dulbecco's Modified Eagle Medium/Ham's F12 (DMEM/F12) for 24, 48, and 72 h. After the incubation periods, cytotoxicity of the extracts to cultured fibroblasts (L-929) was measured by MTT assay. The degree of cytotoxicity of each sample was determined according to the reference value represented by the cells with a control (culture without sample). Statistical significance was determined by repeated measurement ANOVA (p < 0.01) followed by Duncan's test (p < 0.05). All test materials in each group demonstrated high survival rates in MTT assay (Episil; 93.84%, Multisil; 88.30%, Cosmesil; 87.50%, respectively); however, in all groups, Episil material demonstrated significantly higher cell survival rate after each of the experimental incubation periods (p < 0.05). Accelerated aging for 150 and 300 h had no significant effect on the biocompatibility of maxillofacial silicone elastomers tested (p > 0.05).
Shpakovski, George V; Spivak, Svetlana G; Berdichevets, Irina N; Babak, Olga G; Kubrak, Svetlana V; Kilchevsky, Alexander V; Aralov, Andrey V; Slovokhotov, Ivan Yu; Shpakovski, Dmitry G; Baranova, Ekaterina N; Khaliluev, Marat R; Shematorova, Elena K
2017-11-14
The initial stage of the biosynthesis of steroid hormones in animals occurs in the mitochondria of steroidogenic tissues, where cytochrome P450 SCC (CYP11A1) encoded by the CYP11A1 gene catalyzes the conversion of cholesterol into pregnenolone - the general precursor of all the steroid hormones, starting with progesterone. This stage is missing in plants where mitochondrial cytochromes P450 (the mito CYP clan) have not been found. Generating transgenic plants with a mitochondrial type P450 from animals would offer an interesting option to verify whether plant mitochondria could serve as another site of P450 monooxygenase reaction for the steroid hormones biosynthesis. For a more detailed comparison of steroidogenic systems of Plantae and Animalia, we have created and studied transgenic tobacco and tomato plants efficiently expressing mammalian CYP11A1 cDNA. The detailed phenotypic characterization of plants obtained has shown that through four generations studied, the transgenic tobacco plants have reduced a period of vegetative development (early flowering and maturation of bolls), enlarged biomass and increased productivity (quantity and quality of seeds) as compared to the only empty-vector containing or wild type plants. Moreover, the CYP11A1 transgenic plants show resistance to such fungal pathogen as Botrytis cinerea. Similar valuable phenotypes (the accelerated course of ontogenesis and/or stress resistance) are also visible in two clearly distinct transgenic tomato lines expressing CYP11A1 cDNA: one line (No. 4) has an accelerated rate of vegetative development, while the other (No. 7) has enhanced immunity to abiotic and biotic stresses. The progesterone level in transgenic tobacco and tomato leaves is 3-5 times higher than in the control plants of the wild type. For the first time, we could show the compatibility in vivo of even the most specific components of the systems of biosynthesis of steroid hormones in Plantae and Animalia. The hypothesis is proposed and substantiated that the formation of the above-noted special phenotypes of transgenic plants expressing mammalian CYP11A1 cDNA is due to the increased biosynthesis of progesterone that can be considered as a very ancient bioregulator of plant cells and the first real hormone common to plants and animals.