Science.gov

Sample records for accelerated aging phenotypes

  1. Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue.

    PubMed

    Treiber, Nicolai; Maity, Pallab; Singh, Karmveer; Kohn, Matthias; Keist, Alexander F; Ferchiu, Florentina; Sante, Lea; Frese, Sebastian; Bloch, Wilhelm; Kreppel, Florian; Kochanek, Stefan; Sindrilaru, Anca; Iben, Sebastian; Högel, Josef; Ohnmacht, Michael; Claes, Lutz E; Ignatius, Anita; Chung, Jin H; Lee, Min J; Kamenisch, York; Berneburg, Mark; Nikolaus, Thorsten; Braunstein, Kerstin; Sperfeld, Anne-Dorte; Ludolph, Albert C; Briviba, Karlis; Wlaschek, Meinhard; Florin, Lore; Angel, Peter; Scharffetter-Kochanek, Karin

    2011-04-01

    The free radical theory of aging postulates that the production of mitochondrial reactive oxygen species is the major determinant of aging and lifespan. Its role in aging of the connective tissue has not yet been established, even though the incidence of aging-related disorders in connective tissue-rich organs is high, causing major disability in the elderly. We have now addressed this question experimentally by creating mice with conditional deficiency of the mitochondrial manganese superoxide dismutase in fibroblasts and other mesenchyme-derived cells of connective tissues in all organs. Here, we have shown for the first time that the connective tissue-specific lack of superoxide anion detoxification in the mitochondria results in reduced lifespan and premature onset of aging-related phenotypes such as weight loss, skin atrophy, kyphosis (curvature of the spine), osteoporosis and muscle degeneration in mutant mice. Increase in p16(INK4a) , a robust in vivo marker for fibroblast aging, may contribute to the observed phenotype. This novel model is particularly suited to decipher the underlying mechanisms and to develop hopefully novel connective tissue-specific anti-aging strategies.

  2. DeltaNp63alpha overexpression induces downregulation of Sirt1 and an accelerated aging phenotype in the mouse.

    PubMed

    Sommer, Matthias; Poliak, Nina; Upadhyay, Sunil; Ratovitski, Edward; Nelkin, Barry D; Donehower, Lawrence A; Sidransky, David

    2006-09-01

    p63 is highly expressed in the skin and appears to be an early marker of keratinocyte differentiation. To examine the role of p63 in vivo, we generated transgenic mice that overexpress deltaNp63alpha in the skin. These mice exhibited an accelerated aging phenotype in the skin characterized by striking wound healing defects, decreased skin thickness, decreased subcutaneous fat tissue, hair loss, and decreased cell proliferation. The accelerated skin aging was accompanied by a dramatic decrease in longevity of the mice. We found that aging in deltaNp63alpha transgenic mice and other mouse models correlated with levels of Sirt1, a mammalian SIR2 orthologue thought to extend the lifespan in lower species. Moreover, increased deltaNp63alpha expression induced cellular senescence that was rescued by Sirt1. Our data suggest that deltaNp63alpha levels may affect aging in mammals, at least in part, through regulation of Sirt1.

  3. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats

    PubMed Central

    Fernandez-Twinn, Denise S.; Chen, Jian Hua; Hargreaves, Iain P.; Neergheen, Viruna; Aiken, Catherine E.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT ‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by

  4. Menopause accelerates biological aging.

    PubMed

    Levine, Morgan E; Lu, Ake T; Chen, Brian H; Hernandez, Dena G; Singleton, Andrew B; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E; Quach, Austin; Kusters, Cynthia D J; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E; Widschwendter, Martin; Ritz, Beate R; Absher, Devin; Assimes, Themistocles L; Horvath, Steve

    2016-08-16

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the "epigenetic clock"), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  5. Olfactory phenotypic expression unveils human aging.

    PubMed

    Mazzatenta, Andrea; Cellerino, Alessandro; Origlia, Nicola; Barloscio, Davide; Sartucci, Ferdinando; Di Giulio, Camillo; Domenici, Luciano

    2016-04-12

    The mechanism of the natural aging of olfaction and its declinein the absence of any overt disease conditions remains unclear. Here, we investigated this mechanism through measurement of one of the parameters of olfactory function, the absolute threshold, in a healthy population from childhood to old age. The absolute olfactory threshold data were collected from an Italian observational study with 622 participants aged 5-105 years. A subjective testing procedure of constant stimuli was used, which was also compared to the 'staircase' method, with the calculation of the reliability. The n-butanol stimulus was used as an ascending series of nine molar concentrations that were monitored using an electronic nose. The data were analyzed using nonparametric statistics because of the multimodal distribution. We show that the age-related variations in the absolute olfactory threshold are not continuous; instead, there are multiple olfactory phenotypes. Three distinct age-related phenotypes were defined, termed as 'juvenile', 'mature' and 'elder'. The frequency of these three phenotypes depends on age. Our data suggest that the sense of smell does not decrease linearly with aging. Our findings provide the basis for further understanding of olfactory loss as an anticipatory sign of aging and neurodegenerative processes. PMID:27027240

  6. Olfactory phenotypic expression unveils human aging

    PubMed Central

    Mazzatenta, Andrea; Cellerino, Alessandro; Origlia, Nicola; Barloscio, Davide; Sartucci, Ferdinando; Giulio, Camillo Di; Domenici, Luciano

    2016-01-01

    The mechanism of the natural aging of olfaction and its declinein the absence of any overt disease conditions remains unclear. Here, we investigated this mechanism through measurement of one of the parameters of olfactory function, the absolute threshold, in a healthy population from childhood to old age. The absolute olfactory threshold data were collected from an Italian observational study with 622 participants aged 5-105 years. A subjective testing procedure of constant stimuli was used, which was also compared to the ‘staircase’ method, with the calculation of the reliability. The n-butanol stimulus was used as an ascending series of nine molar concentrations that were monitored using an electronic nose. The data were analyzed using nonparametric statistics because of the multimodal distribution. We show that the age-related variations in the absolute olfactory threshold are not continuous; instead, there are multiple olfactory phenotypes. Three distinct age-related phenotypes were defined, termed as ‘juvenile’, ‘mature’ and ‘elder’. The frequency of these three phenotypes depends on age. Our data suggest that the sense of smell does not decrease linearly with aging. Our findings provide the basis for further understanding of olfactory loss as an anticipatory sign of aging and neurodegenerative processes. PMID:27027240

  7. Cytomegalovirus infection accelerates epigenetic aging.

    PubMed

    Kananen, Laura; Nevalainen, Tapio; Jylhävä, Juulia; Marttila, Saara; Hervonen, Antti; Jylhä, Marja; Hurme, Mikko

    2015-12-01

    Epigenetic mechanisms such as DNA methylation (DNAm) have a central role in the regulation of gene expression and thereby in cellular differentiation and tissue homeostasis. It has recently been shown that aging is associated with profound changes in DNAm. Several of these methylation changes take place in a clock-like fashion, i.e. correlating with the calendar age of an individual. Thus, the epigenetic clock based on these kind of DNAm changes could provide a new biomarker for human aging process, i.e. being able to separate the calendar and biological age. Information about the correlation of the time indicated by this clock to the various aspects of immunosenescence is still missing. As chronic cytomegalovirus (CMV) infection is probably one of the major driving forces of immunosenescence, we now have analyzed the correlation of CMV seropositivity with the epigenetic age in the Vitality 90+cohort 1920 (122 nonagenarians and 21 young controls, CMV seropositivity rates 95% and 57%, respectively). The data showed that CMV seropositivity was associated with a higher epigenetic age in both of these age groups (median 26.5 vs. 24.0 (p < 0.02,Mann–Whitney U-test) in the young controls and 76.0 vs. 70.0 (p < 0.01) in the nonagenarians). Thus, these data provide a new aspect to the CMV associated pathological processes. PMID:26485162

  8. [Premature aging syndromes : From phenotype to gene].

    PubMed

    Dereure, O; Marque, M; Guillot, B

    2008-01-01

    Syndromes involving premature skin aging provide outstanding models for a better understanding of both skin senescence and of the aging process in general. Although initially merely descriptive, these rare or indeed very rare conditions have been studied in detail and their genetic and biochemical background has been elucidated. The new data are now sufficiently accurate to allow the development of a new classification based on the underlying biochemical pathomechanisms. Three main subsets can be distinguished: progeroid syndromes with direct or indirect impairment of lamin A (progeria), syndromes involving dysfunction of the excision/repair apparatus (Cockayne syndrome), and conditions involving chromosome instability, particularly in the event of helicase mutation (Werner and Rothmund-Thomson syndromes, ataxia-telangiectasia). The diagnosis is still based on clinical examination in most cases, with the dermatologist commonly playing a key role because of the frequently obvious nature of skin changes, whereas other abnormalities may be less clear-cut or initially absent. Specialized genetic studies to confirm phenotypic hypothesis are increasingly available thanks to the development of reference centres. Although treatment continues to be symptomatic in most cases, recent advances in basic research have raised new hopes regarding targeted therapies, notably in progeria.

  9. PETN Coarsening - Predictions from Accelerated Aging Data

    SciTech Connect

    Maiti, Amitesh; Gee, Richard H.

    2011-03-30

    Ensuring good ignition properties over long periods of time necessitates maintaining a good level of porosity in powders of initiator materials and preventing particle coarsening. To simulate porosity changes of such powder materials over long periods of time a common strategy is to perform accelerated aging experiments over shorter time spans at elevated temperatures. In this paper we examine historical accelerated-aging data on powders of Pentaerythritol Tetranitrate (PETN), an important energetic material, and make predictions for long-term aging under ambient conditions. Lastly, we develop an evaporation-condensation- based model to provide some mechanistic understanding of the coarsening process.

  10. Accelerated epigenetic aging in Down syndrome

    PubMed Central

    Horvath, Steve; Garagnani, Paolo; Bacalini, Maria Giulia; Pirazzini, Chiara; Salvioli, Stefano; Gentilini, Davide; Di Blasio, Anna Maria; Giuliani, Cristina; Tung, Spencer; Vinters, Harry V; Franceschi, Claudio

    2015-01-01

    Down Syndrome (DS) entails an increased risk of many chronic diseases that are typically associated with older age. The clinical manifestations of accelerated aging suggest that trisomy 21 increases the biological age of tissues, but molecular evidence for this hypothesis has been sparse. Here, we utilize a quantitative molecular marker of aging (known as the epigenetic clock) to demonstrate that trisomy 21 significantly increases the age of blood and brain tissue (on average by 6.6 years, P = 7.0 × 10−14). PMID:25678027

  11. Accelerated epigenetic aging in Down syndrome.

    PubMed

    Horvath, Steve; Garagnani, Paolo; Bacalini, Maria Giulia; Pirazzini, Chiara; Salvioli, Stefano; Gentilini, Davide; Di Blasio, Anna Maria; Giuliani, Cristina; Tung, Spencer; Vinters, Harry V; Franceschi, Claudio

    2015-06-01

    Down Syndrome (DS) entails an increased risk of many chronic diseases that are typically associated with older age. The clinical manifestations of accelerated aging suggest that trisomy 21 increases the biological age of tissues, but molecular evidence for this hypothesis has been sparse. Here, we utilize a quantitative molecular marker of aging (known as the epigenetic clock) to demonstrate that trisomy 21 significantly increases the age of blood and brain tissue (on average by 6.6 years, P = 7.0 × 10(-14)). PMID:25678027

  12. Obesity accelerates epigenetic aging of human liver.

    PubMed

    Horvath, Steve; Erhart, Wiebke; Brosch, Mario; Ammerpohl, Ole; von Schönfels, Witigo; Ahrens, Markus; Heits, Nils; Bell, Jordana T; Tsai, Pei-Chien; Spector, Tim D; Deloukas, Panos; Siebert, Reiner; Sipos, Bence; Becker, Thomas; Röcken, Christoph; Schafmayer, Clemens; Hampe, Jochen

    2014-10-28

    Because of the dearth of biomarkers of aging, it has been difficult to test the hypothesis that obesity increases tissue age. Here we use a novel epigenetic biomarker of aging (referred to as an "epigenetic clock") to study the relationship between high body mass index (BMI) and the DNA methylation ages of human blood, liver, muscle, and adipose tissue. A significant correlation between BMI and epigenetic age acceleration could only be observed for liver (r = 0.42, P = 6.8 × 10(-4) in dataset 1 and r = 0.42, P = 1.2 × 10(-4) in dataset 2). On average, epigenetic age increased by 3.3 y for each 10 BMI units. The detected age acceleration in liver is not associated with the Nonalcoholic Fatty Liver Disease Activity Score or any of its component traits after adjustment for BMI. The 279 genes that are underexpressed in older liver samples are highly enriched (1.2 × 10(-9)) with nuclear mitochondrial genes that play a role in oxidative phosphorylation and electron transport. The epigenetic age acceleration, which is not reversible in the short term after rapid weight loss induced by bariatric surgery, may play a role in liver-related comorbidities of obesity, such as insulin resistance and liver cancer. PMID:25313081

  13. Pathology of Mouse Models of Accelerated Aging.

    PubMed

    Harkema, L; Youssef, S A; de Bruin, A

    2016-03-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data. PMID:26864891

  14. Accelerated aging test on LEDs life estimation

    NASA Astrophysics Data System (ADS)

    Dong, Yi; Zhang, Shu-sheng; Du, Jiang-qi

    2011-11-01

    Light-emitting diodes(LEDs) have become very attractive in different application field such as Solid State Lighting, automotive and street lights, due to their long operative lifetime, lower energy consumption etc. This paper mainly introduces the accelerated aging test, we focus our attention on the study of a life model for LEDs by relating the time to failure with the supplying condition. The constant accelerated aging experiments were firstly performed on LED samples. Process the experiment data by exploiting the degradation of LED optical power formula and degradation coefficient. Finally, the average lifetime of the samples under normal conditions was calculated via using numerical analytical method. According to data, analysis the test result and the failure mechanism of LED, provide the technical basis to improve product design and quality assurance.

  15. Infection susceptibility and immune senescence with advancing age replicated in accelerated aging Lmna(Dhe) mice.

    PubMed

    Xin, Lijun; Jiang, Tony T; Kinder, Jeremy M; Ertelt, James M; Way, Sing Sing

    2015-12-01

    Aging confers increased susceptibility to common pathogens including influenza A virus. Despite shared vulnerability to infection with advancing age in humans and rodents, the relatively long time required for immune senescence to take hold practically restricts the use of naturally aged mice to investigate aging-induced immunological shifts. Here, we show accelerated aging Lmna(Dhe) mice with spontaneous mutation in the nuclear scaffolding protein, lamin A, replicate infection susceptibility, and substantial immune cell shifts that occur with advancing age. Naturally aged (≥ 20 month) and 2- to 3-month-old Lmna(Dhe) mice share near identically increased influenza A susceptibility compared with age-matched Lmna(WT) control mice. Increased mortality and higher viral burden after influenza infection in Lmna(Dhe) mice parallel reduced accumulation of lung alveolar macrophage cells, systemic expansion of immune suppressive Foxp3⁺ regulatory T cells, and skewed immune dominance among viral-specific CD8⁺T cells similar to the immunological phenotype of naturally aged mice. Thus, aging-induced infection susceptibility and immune senescence are replicated in accelerated aging Lmna(Dhe) mice. PMID:26248606

  16. Changes in the PCOS phenotype with age.

    PubMed

    Hsu, Ming-I

    2013-08-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder of reproductive-age women. The diagnosis of PCOS is mainly based on the following three components: (1) hyperandrogenism, (2) oligo-amenorrhea, and (3) the observation of polycystic ovaries on a sonogram. The comorbidities may include insulin resistance, type II diabetes mellitus, hypertension and cardiovascular disease. Importantly, the diagnostic criteria and complications related to PCOS are age-dependent. Androgen production in women may decrease because of ovarian aging or decreased production by the adrenal glands over time. The prevalence of hirsutism and acne decreases with age. Ovarian volume and follicle number also decrease with age, with the age-related decrease in follicle number seemingly greater than that of ovarian volume. Aging may also be associated with increased risk of insulin resistance and metabolic disturbances. Therefore, these age-related changes may affect the observed incidence and complications of PCOS. In adolescent patients, the criteria described above pose particular diagnostic problems because the characteristics of normal puberty often overlap with the signs and symptoms of PCOS. Hyperandrogenism and chronic anovulation are the primary disturbances in younger women with PCOS; whereas, obesity, insulin resistance, and metabolic disturbances are predominant in older women with PCOS. The deterioration of insulin resistance during the reproductive life of women with PCOS appears to be mainly attributable to the increase in obesity. Therefore, if body weight could be controlled properly, younger hyperandrogenic PCOS women might reduce their risk of insulin resistance and metabolic disturbances later in life. PMID:23624031

  17. Senescence-accelerated mouse (SAM): a biogerontological resource in aging research.

    PubMed

    Takeda, T

    1999-01-01

    The senescence-accelerated mouse (SAM), consisting of 14 senescence-prone inbred strains (SAMP) and 4 senescence-resistant inbred strains (SAMR) has been under development since 1970 through the selective inbreeding of AKR/J strain mice donated by the Jackson laboratory in 1968, based on the data of the grading score of senescence, life span, and pathologic phenotypes. The characteristic feature of aging common to all SAMP and SAMR mice is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains manifest various pathobiological phenotypes which include such neurobiological phenotypes as deficits in learning and memory, emotional disorders, abnormal circadian rhythms, brain atrophy, hearing impairment, etc., and are often characteristic enough to differentiate the strains. Various efforts are currently being made using the SAM model to clarify the underlying mechanisms in accelerated senescence as well as the etiopathogenic mechanisms in age-associated pathobiologies. Genetic background and significance of SAM development are discussed. PMID:10537019

  18. Accelerated ageing: from mechanism to therapy through animal models.

    PubMed

    Osorio, Fernando G; Obaya, Alvaro J; López-Otín, Carlos; Freije, José M P

    2009-02-01

    Ageing research benefits from the study of accelerated ageing syndromes such as Hutchinson-Gilford progeria syndrome (HGPS), characterized by the early appearance of symptoms normally associated with advanced age. Most HGPS cases are caused by a mutation in the gene LMNA, which leads to the synthesis of a truncated precursor of lamin A known as progerin that lacks the target sequence for the metallopotease FACE-1/ZMPSTE24 and remains constitutively farnesylated. The use of Face-1/Zmpste24-deficient mice allowed us to demonstrate that accumulation of farnesylated prelamin A causes severe abnormalities of the nuclear envelope, hyper-activation of p53 signalling, cellular senescence, stem cell dysfunction and the development of a progeroid phenotype. The reduction of prenylated prelamin A levels in genetically modified mice leads to a complete reversal of the progeroid phenotype, suggesting that inhibition of protein farnesylation could represent a therapeutic option for the treatment of progeria. However, we found that both prelamin A and its truncated form progerin can undergo either farnesylation or geranylgeranylation, revealing the need of targeting both activities for an efficient treatment of HGPS. Using Face-1/Zmpste24-deficient mice as model, we found that a combination of statins and aminobisphosphonates inhibits both types of modifications of prelamin A and progerin, improves the ageing-like symptoms of these mice and extends substantially their longevity, opening a new therapeutic possibility for human progeroid syndromes associated with nuclear-envelope defects. We discuss here the use of this and other animal models to investigate the molecular mechanisms underlying accelerated ageing and to test strategies for its treatment.

  19. Kidney aging: from phenotype to genetics.

    PubMed

    Buemi, Michele; Nostro, Lorena; Aloisi, Carmela; Cosentini, Vincenzo; Criseo, Manila; Frisina, Nicola

    2005-01-01

    Aging is a physiological process that causes structural and functional changes in human body systems, sometimes leading to various organ failure. As far as the kidney is concerned, both genetic factors and environmental agents may influence the tissues damage in elderly people and the related loss of function. On the other hand, functional adaptations to structural changes appear to be compromised by co-morbid conditions that are frequently found in elderly people, such as atherosclerosis and hypertension. It is not yet known whether physiological aging is inevitably accompanied by a decline in renal function or how rapidly it might happen. The discovery of molecular mechanisms responsible for tissue damage in aging could offer new perspectives on interventions. The role of nitric oxide, oxidative stress, the renin-angiotensin system, changes in length of telomeres, and klotho gene expression are important subjects for further in-depth studies about aging. A better understanding of physiological renal aging could improve the clinical approach to this process and widen the therapeutic possibilities offered by transplantation.

  20. Insights into accelerated aging of SSL luminaires

    SciTech Connect

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; Shepherd, Sarah; Yaga, Robert; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy

    2013-09-30

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6” downlights in environments of 85oC and 85% relative humidity (RH) and 75oC and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.

  1. Insights into accelerated aging of SSL luminaires

    NASA Astrophysics Data System (ADS)

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; Shepherd, Sarah; Yaga, Robert; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy

    2013-09-01

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6" downlights in environments of 85°C and 85% relative humidity (RH) and 75°C and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.

  2. Insights into accelerated aging of SSL luminaires

    DOE PAGES

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; Shepherd, Sarah; Yaga, Robert; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy

    2013-09-30

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6” downlights in environments of 85oC and 85% relative humiditymore » (RH) and 75oC and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.« less

  3. Accelerated Aging in Electrolytic Capacitors for Prognostics

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan; Saha, Sankalita; Biswas, Gautam; Goebel, Kai Frank

    2012-01-01

    The focus of this work is the analysis of different degradation phenomena based on thermal overstress and electrical overstress accelerated aging systems and the use of accelerated aging techniques for prognostics algorithm development. Results on thermal overstress and electrical overstress experiments are presented. In addition, preliminary results toward the development of physics-based degradation models are presented focusing on the electrolyte evaporation failure mechanism. An empirical degradation model based on percentage capacitance loss under electrical overstress is presented and used in: (i) a Bayesian-based implementation of model-based prognostics using a discrete Kalman filter for health state estimation, and (ii) a dynamic system representation of the degradation model for forecasting and remaining useful life (RUL) estimation. A leave-one-out validation methodology is used to assess the validity of the methodology under the small sample size constrain. The results observed on the RUL estimation are consistent through the validation tests comparing relative accuracy and prediction error. It has been observed that the inaccuracy of the model to represent the change in degradation behavior observed at the end of the test data is consistent throughout the validation tests, indicating the need of a more detailed degradation model or the use of an algorithm that could estimate model parameters on-line. Based on the observed degradation process under different stress intensity with rest periods, the need for more sophisticated degradation models is further supported. The current degradation model does not represent the capacitance recovery over rest periods following an accelerated aging stress period.

  4. Accelerated Aging of Lead-Free Propellant

    NASA Technical Reports Server (NTRS)

    Furrow, Keith W.; Jervey, David D.

    2000-01-01

    Following higher than expected 2-NDPA depletion rates in a lead-free doublebase formulation (RPD-422), an accelerated aging study was conducted to verify the depletion rates. A test plan was prepared to compare the aging characteristics of lead-free propellant and NOSIH-AA2. The study was also designed to determine which lead-free ballistic modifiers accelerated 2-NDPA depletion. The increased depletion rate occurred in propellants containing monobasic copper salicylate. Four lead-free propellants were then formulated to improved aging characteristics over previous lead-free propellant formulations. The new formulations reduced or replaced the monobasic copper salicylate. The new formulations had improved aging characteristics. Their burn rates, however, were unacceptable for use in a 2.75 inch rocket. To compare aging characteristics, stabilizer depletion rates of RPD-422, AA2, M28, and RLC 470/6A were measured or taken from the literature. The data were fit to a kinetic model. The model contained first and zero order terms which allowed the stabilizer concentration to go to zero. In the model, only the concentration of the primary stabilizer was considered. Derivatives beyond the first nitrated or nitroso derivative of 2-NPDA were not considered. The rate constants were fit to the Arrhenius equation and extrapolated to lower temperatures. The time to complete stabilizer depletion was estimated using the kinetic model. The four propellants were compared and the RPD-422 depleted faster at 45 C than both A22 and M28. These types of predictions depend on the validity of the model and on confidence in the Arrhenius relationship holding at lower temperatures. At 45 C, the zero order portion of the model dominates the depletion rate.

  5. Accelerated aging of EPDM and butyl elastomers

    SciTech Connect

    Wilson, M.H.

    1996-06-01

    This study was composed of three parts: a post cure study to optimize final properties of an ethylene-propylene-diene (EPDM) formulation, an accelerated aging study to compare the stress relaxation behavior of a butyl and an EPDM elastomer under compression, and a cursory evaluation of a new 70 Shore A EPDM. The optimum postcure for the EPDM was found to be 2 to 4 hours at 182{degrees}C in a vacuum. The EPDM was also shown to have superior aging characteristics compared to the butyl and is recommended for use instead of the butyl material. The physical properties for new 70 Shore A EPDM are satisfactory, and the stress relaxation behavior was only slightly inferior to the other EPDM.

  6. Degradation mechanisms and accelerated aging test design

    SciTech Connect

    Clough, R L; Gillen, K T

    1985-01-01

    The fundamental mechanisms underlying the chemical degradation of polymers can change as a function of environmental stress level. When this occurs, it greatly complicates any attempt to use accelerated tests for predicting long-term material degradation behaviors. Understanding how degradation mechanisms can change at different stress levels facilitates both the design and the interpretation of aging tests. Oxidative degradation is a predominant mechanism for many polymers exposed to a variety of different environments in the presence of air, and there are two mechanistic considerations which are widely applicable to material oxidation. One involves a physical process, oxygen diffusion, as a rate-limiting step. This mechanism can predominate at high stress levels. The second is a chemical process, the time-dependent decomposition of peroxide species. This leads to chain branching and can become a rate-controlling factor at lower stress levels involving time-scales applicable to use environments. The authors describe methods for identifying the operation of these mechanisms and illustrate the dramatic influence they can have on the degradation behaviors of a number of polymer types. Several commonly used approaches to accelerated aging tests are discussed in light of the behaviors which result from changes in degradation mechanisms. 9 references, 4 figures.

  7. US Particle Accelerators at Age 50.

    ERIC Educational Resources Information Center

    Wilson, R. R.

    1981-01-01

    Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)

  8. Premature and accelerated aging: HIV or HAART?

    PubMed

    Smith, Reuben L; de Boer, Richard; Brul, Stanley; Budovskaya, Yelena; van Spek, Hans

    2012-01-01

    Highly active antiretroviral therapy (HAART) has significantly increased life expectancy of the human immunodeficiency virus (HIV)-positive population. Nevertheless, the average lifespan of HIV-patients remains shorter compared to uninfected individuals. Immunosenescence, a current explanation for this difference invokes heavily on viral stimulus despite HAART efficiency in viral suppression. We propose here that the premature and accelerated aging of HIV-patients can also be caused by adverse effects of antiretroviral drugs, specifically those that affect the mitochondria. The nucleoside reverse transcriptase inhibitor (NRTI) antiretroviral drug class for instance, is known to cause depletion of mitochondrial DNA via inhibition of the mitochondrial specific DNA polymerase-γ. Besides NRTIs, other antiretroviral drug classes such as protease inhibitors also cause severe mitochondrial damage by increasing oxidative stress and diminishing mitochondrial function. We also discuss important areas for future research and argue in favor of the use of Caenorhabditis elegans as a novel model system for studying these effects.

  9. Accelerated aging of polymer composite bridge materials

    NASA Astrophysics Data System (ADS)

    Carlson, Nancy M.; Blackwood, Larry G.; Torres, Lucinda L.; Rodriguez, Julio G.; Yoder, Timothy S.

    1999-05-01

    Accelerated aging research on samples of composite materials and candidate UV protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory. Durability results and sensor data form test with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  10. Accelerated Aging of Polymer Composite Bridge Materials

    SciTech Connect

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  11. Does Accumulation of Advanced Glycation End Products Contribute to the Aging Phenotype?

    PubMed Central

    Nicklett, Emily J.; Ferrucci, Luigi

    2010-01-01

    Background. Aging is a complex multifactorial process characterized by accumulation of deleterious changes in cells and tissues, progressive deterioration of structural integrity and physiological function across multiple organ systems, and increased risk of death. Methods. We conducted a review of the scientific literature on the relationship of advanced glycation end products (AGEs) with aging. AGEs are a heterogeneous group of bioactive molecules that are formed by the nonenzymatic glycation of proteins, lipids, and nucleic acids. Results. Humans are exposed to AGEs produced in the body, especially in individuals with abnormal glucose metabolism, and AGEs ingested in foods. AGEs cause widespread damage to tissues through upregulation of inflammation and cross-linking of collagen and other proteins. AGEs have been shown to adversely affect virtually all cells, tissues, and organ systems. Recent epidemiological studies demonstrate that elevated circulating AGEs are associated with increased risk of developing many chronic diseases that disproportionally affect older individuals. Conclusions. Based on these data, we propose that accumulation of AGEs accelerate the multisystem functional decline that occurs with aging, and therefore contribute to the aging phenotype. Exposure to AGEs can be reduced by restriction of dietary intake of AGEs and drug treatment with AGE inhibitors and AGE breakers. Modification of intake and circulating levels of AGEs may be a possible strategy to promote health in old age, especially because most Western foods are processed at high temperature and are rich in AGEs. PMID:20478906

  12. Accelerated aging syndromes, are they relevant to normal human aging?

    PubMed

    Dreesen, Oliver; Stewart, Colin L

    2011-09-01

    Hutchinson-Gilford Progeria (HGPS) and Werner syndromes are diseases that clinically resemble some aspects of accelerated aging. HGPS is caused by mutations in theLMNA gene resulting in post-translational processing defects that trigger Progeria in children. Werner syndrome, arising from mutations in the WRN helicase gene, causes premature aging in young adults. What are the molecular mechanism(s) underlying these disorders and what aspects of the diseases resemble physiological human aging? Much of what we know stems from the study of patient derived fibroblasts with both mutations resulting in increased DNA damage, primarily at telomeres. However, in vivo patients with Werner's develop arteriosclerosis, among other pathologies. In HGPS patients, including iPS derived cells from HGPS patients, as well as some mouse models for Progeria, vascular smooth muscle (VSM) appears to be among the most severely affected tissues. Defective Lamin processing, associated with DNA damage, is present in VSM from old individuals, indicating processing defects may be a factor in normal aging. Whether persistent DNA damage, particularly at telomeres, is the root cause for these pathologies remains to be established, since not all progeroid Lmna mutations result in DNA damage and genome instability.

  13. Trajectories of the healthy ageing phenotype among middle-aged and older Britons, 2004–2013

    PubMed Central

    Tampubolon, Gindo

    2016-01-01

    Objectives Since the ageing population demands a response to ensure older people remain healthy and active, we studied the dynamics of a recently proposed healthy ageing phenotype. We drew the phenotype’s trajectories and tested whether their levels and rates of change are influenced by health behaviours, comorbidities and socioeconomic positions earlier in the life course. Design and outcomes The English Longitudinal Ageing Study, a prospective, nationally representative sample of people aged ≥50 years, measured a set of eight biomarkers which make up the outcome of the healthy ageing phenotype three times over nearly a decade (N2004 = 5009, N2008 = 5301, N2013 = 4455). A cluster of health behaviours, comorbidities and socioeconomic positions were also measured repeatedly. We assessed the phenotype’s distribution non-parametrically, then fitted linear mixed models to phenotypic change and further examined time interactions with gender and socioeconomic position. We ran additional analyses to test robustness. Results Women had a wider distribution of the healthy ageing phenotype than men had. The phenotype declined annually by −0.242 (95% confidence interval [CI]: −0.352, −0.131). However, there was considerable heterogeneity in the levels and rates of phenotypic change. Women started at higher levels, then declined more steeply by −0.293 (CI: −0.403, −0.183) annually, leading to crossover in the trajectories. Smoking and physical activity assessed on the Allied Dunbar scale were strongly associated with the trajectories. Conclusion Though marked by secular decline, the trajectories of the healthy ageing phenotype showed distinct socioeconomic gradients. The trajectories were also susceptible to variations in health behaviours, strengthening the case for serial interventions to attain healthy and active ageing. PMID:27105690

  14. Epigenome-Wide Scans Identify Differentially Methylated Regions for Age and Age-Related Phenotypes in a Healthy Ageing Population

    PubMed Central

    Yang, Tsun-Po; Pidsley, Ruth; Nisbet, James; Glass, Daniel; Mangino, Massimo; Zhai, Guangju; Zhang, Feng; Valdes, Ana; Shin, So-Youn; Dempster, Emma L.; Murray, Robin M.; Grundberg, Elin; Hedman, Asa K.; Nica, Alexandra; Small, Kerrin S.; Dermitzakis, Emmanouil T.; McCarthy, Mark I.; Mill, Jonathan; Spector, Tim D.; Deloukas, Panos

    2012-01-01

    Age-related changes in DNA methylation have been implicated in cellular senescence and longevity, yet the causes and functional consequences of these variants remain unclear. To elucidate the role of age-related epigenetic changes in healthy ageing and potential longevity, we tested for association between whole-blood DNA methylation patterns in 172 female twins aged 32 to 80 with age and age-related phenotypes. Twin-based DNA methylation levels at 26,690 CpG-sites showed evidence for mean genome-wide heritability of 18%, which was supported by the identification of 1,537 CpG-sites with methylation QTLs in cis at FDR 5%. We performed genome-wide analyses to discover differentially methylated regions (DMRs) for sixteen age-related phenotypes (ap-DMRs) and chronological age (a-DMRs). Epigenome-wide association scans (EWAS) identified age-related phenotype DMRs (ap-DMRs) associated with LDL (STAT5A), lung function (WT1), and maternal longevity (ARL4A, TBX20). In contrast, EWAS for chronological age identified hundreds of predominantly hyper-methylated age DMRs (490 a-DMRs at FDR 5%), of which only one (TBX20) was also associated with an age-related phenotype. Therefore, the majority of age-related changes in DNA methylation are not associated with phenotypic measures of healthy ageing in later life. We replicated a large proportion of a-DMRs in a sample of 44 younger adult MZ twins aged 20 to 61, suggesting that a-DMRs may initiate at an earlier age. We next explored potential genetic and environmental mechanisms underlying a-DMRs and ap-DMRs. Genome-wide overlap across cis-meQTLs, genotype-phenotype associations, and EWAS ap-DMRs identified CpG-sites that had cis-meQTLs with evidence for genotype–phenotype association, where the CpG-site was also an ap-DMR for the same phenotype. Monozygotic twin methylation difference analyses identified one potential environmentally-mediated ap-DMR associated with total cholesterol and LDL (CSMD1). Our results suggest that in a

  15. Acceleration of the aging process by oxygen

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Lunderen, P. R.; Bensch, K. G.

    1975-01-01

    Tissue changes induced by hyperoxia have been compared with those of normal aging. Results of investigations using male flies prompt conclusion that normal aging, radiation syndrome, and hyperoxic injury share at least one common feature--lipid peroxidation damage to all mambranes resulting in accumulation of age pigment.

  16. Accelerated Aging of the M119 Simulator

    NASA Technical Reports Server (NTRS)

    Bixon, Eric R.

    2000-01-01

    This paper addresses the storage requirement, shelf life, and the reliability of M119 Whistling Simulator. Experimental conditions have been determined and the data analysis has been completed for the accelerated testing of the system. A general methodology to evaluate the shelf life of the system as a function of the storage time, temperature, and relative humidity is discussed.

  17. Air Pollution Stress and the Aging Phenotype: The Telomere Connection.

    PubMed

    Martens, Dries S; Nawrot, Tim S

    2016-09-01

    Aging is a complex physiological phenomenon. The question why some subjects grow old while remaining free from disease whereas others prematurely die remains largely unanswered. We focus here on the role of air pollution in biological aging. Hallmarks of aging can be grouped into three main categories: genomic instability, telomere attrition, and epigenetic alterations leading to altered mitochondrial function and cellular senescence. At birth, the initial telomere length of a person is largely determined by environmental factors. Telomere length shortens with each cell division and exposure to air pollution as well as low residential greens space exposure is associated with shorter telomere length. Recent studies show that the estimated effects of particulate air pollution exposure on the telomere mitochondrial axis of aging may play an important role in chronic health effects of air pollution. The exposome encompasses all exposures over an entire life. As telomeres can be considered as the cellular memories of exposure to oxidative stress and inflammation, telomere maintenance may be a proxy for assessing the "exposome". If telomeres are causally related to the aging phenotype and environmental air pollution is an important determinant of telomere length, this might provide new avenues for future preventive strategies. PMID:27357566

  18. Air Pollution Stress and the Aging Phenotype: The Telomere Connection.

    PubMed

    Martens, Dries S; Nawrot, Tim S

    2016-09-01

    Aging is a complex physiological phenomenon. The question why some subjects grow old while remaining free from disease whereas others prematurely die remains largely unanswered. We focus here on the role of air pollution in biological aging. Hallmarks of aging can be grouped into three main categories: genomic instability, telomere attrition, and epigenetic alterations leading to altered mitochondrial function and cellular senescence. At birth, the initial telomere length of a person is largely determined by environmental factors. Telomere length shortens with each cell division and exposure to air pollution as well as low residential greens space exposure is associated with shorter telomere length. Recent studies show that the estimated effects of particulate air pollution exposure on the telomere mitochondrial axis of aging may play an important role in chronic health effects of air pollution. The exposome encompasses all exposures over an entire life. As telomeres can be considered as the cellular memories of exposure to oxidative stress and inflammation, telomere maintenance may be a proxy for assessing the "exposome". If telomeres are causally related to the aging phenotype and environmental air pollution is an important determinant of telomere length, this might provide new avenues for future preventive strategies.

  19. An Epigenetic Clock Measures Accelerated Aging in Treated HIV Infection.

    PubMed

    Boulias, Konstantinos; Lieberman, Judy; Greer, Eric Lieberman

    2016-04-21

    In this issue of Molecular Cell, Gross et al. (2016) find a CpG DNA methylation signature in blood cells of patients with chronic well-controlled HIV infection that correlates with accelerated aging. PMID:27105110

  20. Mdm2-p53 signaling regulates epidermal stem cell senescence and premature aging phenotypes in mouse skin.

    PubMed

    Gannon, Hugh S; Donehower, Lawrence A; Lyle, Stephen; Jones, Stephen N

    2011-05-01

    The p53 transcription factor is activated by various types of cell stress or DNA damage and induces the expression of genes that control cell growth and inhibit tumor formation. Analysis of mice that express mutant forms of p53 suggest that inappropriate p53 activation can alter tissue homeostasis and life span, connecting p53 tumor suppressor functions with accelerated aging. However, other mouse models that display increased levels of wildtype p53 in various tissues fail to corroborate a link between p53 and aging phenotypes, possibly due to the retention of signaling pathways that negatively regulate p53 activity in these models. In this present study, we have generated mice lacking Mdm2 in the epidermis. Deletion of Mdm2, the chief negative regulator of p53, induced an aging phenotype in the skin of mice, including thinning of the epidermis, reduced wound healing, and a progressive loss of fur. These phenotypes arise due to an induction of p53-mediated senescence in epidermal stem cells and a gradual loss of epidermal stem cell function. These results reveal that activation of endogenous p53 by ablation of Mdm2 can induce accelerated aging phenotypes in mice.

  1. Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.

    2011-01-01

    Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics

  2. Accelerated thermal and radiative ageing of hydrogenated NBR for DRC

    SciTech Connect

    Mares, G.; Notingher, P.

    1996-12-31

    The accelerated thermal and gamma radiation ageing of HNBR carbon black-T80 has been studied by measuring the residual deformation under constant deflection -- DRC, in air, using a relevant equation for the relaxation phenomena. The residual deformation under constant deflection during the process of accelerated ageing is increasing but the structure of polymer answers in the proper manner to the mechanical stress. The degradation equations were obtained, using Alfrey model for the relaxation polymer subject to compression and an Arrhenius dependence for the chemical reaction rate. The inverted relaxation time for the thermal degradation is depending on the chemical reaction rate and the dose rate of gamma radiation.

  3. Dicarbonyl-induced accelerated aging in vitro in human skin fibroblasts.

    PubMed

    Sejersen, Henrik; Rattan, Suresh I S

    2009-04-01

    Dicarbonyls glyoxal (GO) and methylglyoxal (MGO) produced during the autoxidation of reducing sugars are a source of macromolecular damage in cells. Since an accumulation of damaged macromolecules is a universal characteristic of aging, we have tested whether GO and MGO which cause oxidative damage to proteins and other macromolecules can bring about accelerated aging in normal human skin fibroblasts in vitro. A treatment of cells with 1.0 mM GO or 400 microM MGO leads to the appearance of senescent phenotype within 3 days, as judged by the following criteria: morphological phenotype, irreversible growth arrest and G2 arrest, increased senescence-associated beta-galactosidase (SABG) activity, increased H2O2 level, increased Nxi-(carboxymethyl)-lysine (CML) protein level, and altered activities of superoxide dismutase and catalase antioxidant enzymes. This experimental model of accelerated cellular aging in vitro can be useful for studies on testing the effects of various physical, chemical and biological conditions, including natural and synthetic molecules, for the modulation of aging.

  4. The nutritional phenotype in the age of metabolomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of the nutritional phenotype is proposed as a defined and integrated set of genetic, proteomic, metabolomic, functional, and behavioral factors that, when measured, form the basis for assessment of human nutritional status. The nutritional phenotype integrates the effects of diet on dise...

  5. The senescence-accelerated mouse (SAM): a higher oxidative stress and age-dependent degenerative diseases model.

    PubMed

    Chiba, Yoichi; Shimada, Atsuyoshi; Kumagai, Naoko; Yoshikawa, Keisuke; Ishii, Sanae; Furukawa, Ayako; Takei, Shiro; Sakura, Masaaki; Kawamura, Noriko; Hosokawa, Masanori

    2009-04-01

    The SAM strain of mice is actually a group of related inbred strains consisting of a series of SAMP (accelerated senescence-prone) and SAMR (accelerated senescence-resistant) strains. Compared with the SAMR strains, the SAMP strains show a more accelerated senescence process, a shorter lifespan, and an earlier onset and more rapid progress of age-associated pathological phenotypes similar to human geriatric disorders. The higher oxidative stress status observed in SAMP mice is partly caused by mitochondrial dysfunction, and may be a cause of this senescence acceleration and age-dependent alterations in cell structure and function. Based on our recent observations, we discuss a possible mechanism for mitochondrial dysfunction resulting in the excessive production of reactive oxygen species, and a role for the hyperoxidative stress status in neurodegeneration in SAMP mice. These SAM strains can serve as a useful tool to understand the cellular mechanisms of age-dependent degeneration, and to develop clinical interventions. PMID:18688709

  6. Lamin Mutations Accelerate Aging via Defective Export of Mitochondrial mRNAs through Nuclear Envelope Budding.

    PubMed

    Li, Yihang; Hassinger, Linda; Thomson, Travis; Ding, Baojin; Ashley, James; Hassinger, William; Budnik, Vivian

    2016-08-01

    Defective RNA metabolism and transport are implicated in aging and degeneration [1, 2], but the underlying mechanisms remain poorly understood. A prevalent feature of aging is mitochondrial deterioration [3]. Here, we link a novel mechanism for RNA export through nuclear envelope (NE) budding [4, 5] that requires A-type lamin, an inner nuclear membrane-associated protein, to accelerated aging observed in Drosophila LaminC (LamC) mutations. These LamC mutations were modeled after A-lamin (LMNA) mutations causing progeroid syndromes (PSs) in humans. We identified mitochondrial assembly regulatory factor (Marf), a mitochondrial fusion factor (mitofusin), as well as other transcripts required for mitochondrial integrity and function, in a screen for RNAs that exit the nucleus through NE budding. PS-modeled LamC mutations induced premature aging in adult flight muscles, including decreased levels of specific mitochondrial protein transcripts (RNA) and progressive mitochondrial degradation. PS-modeled LamC mutations also induced the accelerated appearance of other phenotypes associated with aging, including a progressive accumulation of polyubiquitin aggregates [6, 7] and myofibril disorganization [8, 9]. Consistent with these observations, the mutants had progressive jumping and flight defects. Downregulating marf alone induced the above aging defects. Nevertheless, restoring marf was insufficient for rescuing the aging phenotypes in PS-modeled LamC mutations, as other mitochondrial RNAs are affected by inhibition of NE budding. Analysis of NE budding in dominant and recessive PS-modeled LamC mutations suggests a mechanism by which abnormal lamina organization prevents the egress of these RNAs via NE budding. These studies connect defects in RNA export through NE budding to progressive loss of mitochondrial integrity and premature aging. PMID:27451905

  7. Accelerated aging of GaAs concentrator solar cells

    SciTech Connect

    Gregory, P.E.

    1982-04-01

    An accelerated aging study of AlGaAs/GaAs solar cells has been completed. The purpose of the study was to identify the possible degradation mechanisms of AlGaAs/GaAs solar cells in terrestrial applications. Thermal storage tests and accelerated AlGaAs corrosion studies were performed to provide an experimental basis for a statistical analysis of the estimated lifetime. Results of this study suggest that a properly designed and fabricated AlGaAs/GaAs solar cell can be mechanically rugged and environmentally stable with projected lifetimes exceeding 100 years.

  8. [Anti-aging studies on the senescence accelerated mouse (SAM) strains].

    PubMed

    Takahashi, Ryoya

    2010-01-01

    Senescence accelerated mouse (SAM), a murine model of accelerated senescence, was established by Toshio Takeda and colleagues. SAM consists of series of SAMP (prone) and SAMR (resistant) lines. All SAMP lines (from SAMP1 to SAMP11) are characterized by accelerated accumulation of senile features, earlier onset and faster progress of age-associated pathological phenotypes, such as amyloidosis, impaired immune response, senile osteoporosis and deficits in learning and memory. These SAMP lines are useful for evaluation of putative anti-aging therapies. For example, SAMP1 line is used to study the anti-aging effect of the antioxidant containing foods and various anti-oxidants, such as coenzyme Q10, vitamin C, lycopene. SAMP8 line exhibiting an early onset of impaired learning and memory is often used for test strategies for therapeutic intervention of dementia of early onset. SAMP6 is used as an animal model for developing new strategies for the treatment of osteoporosis in humans. Various lines of SAM (P1, P6, P8, P10 and R1) are now commercially available for research. In this review, I will briefly introduce various usages of SAM in anti-aging research. PMID:20046059

  9. Cognitive deterioration in adult epilepsy: Does accelerated cognitive ageing exist?

    PubMed

    Breuer, L E M; Boon, P; Bergmans, J W M; Mess, W H; Besseling, R M H; de Louw, A; Tijhuis, A G; Zinger, S; Bernas, A; Klooster, D C W; Aldenkamp, A P

    2016-05-01

    A long-standing concern has been whether epilepsy contributes to cognitive decline or so-called 'epileptic dementia'. Although global cognitive decline is generally reported in the context of chronic refractory epilepsy, it is largely unknown what percentage of patients is at risk for decline. This review is focused on the identification of risk factors and characterization of aberrant cognitive trajectories in epilepsy. Evidence is found that the cognitive trajectory of patients with epilepsy over time differs from processes of cognitive ageing in healthy people, especially in adulthood-onset epilepsy. Cognitive deterioration in these patients seems to develop in a 'second hit model' and occurs when epilepsy hits on a brain that is already vulnerable or vice versa when comorbid problems develop in a person with epilepsy. Processes of ageing may be accelerated due to loss of brain plasticity and cognitive reserve capacity for which we coin the term 'accelerated cognitive ageing'. We believe that the concept of accelerated cognitive ageing can be helpful in providing a framework understanding global cognitive deterioration in epilepsy.

  10. Cognitive deterioration in adult epilepsy: Does accelerated cognitive ageing exist?

    PubMed

    Breuer, L E M; Boon, P; Bergmans, J W M; Mess, W H; Besseling, R M H; de Louw, A; Tijhuis, A G; Zinger, S; Bernas, A; Klooster, D C W; Aldenkamp, A P

    2016-05-01

    A long-standing concern has been whether epilepsy contributes to cognitive decline or so-called 'epileptic dementia'. Although global cognitive decline is generally reported in the context of chronic refractory epilepsy, it is largely unknown what percentage of patients is at risk for decline. This review is focused on the identification of risk factors and characterization of aberrant cognitive trajectories in epilepsy. Evidence is found that the cognitive trajectory of patients with epilepsy over time differs from processes of cognitive ageing in healthy people, especially in adulthood-onset epilepsy. Cognitive deterioration in these patients seems to develop in a 'second hit model' and occurs when epilepsy hits on a brain that is already vulnerable or vice versa when comorbid problems develop in a person with epilepsy. Processes of ageing may be accelerated due to loss of brain plasticity and cognitive reserve capacity for which we coin the term 'accelerated cognitive ageing'. We believe that the concept of accelerated cognitive ageing can be helpful in providing a framework understanding global cognitive deterioration in epilepsy. PMID:26900650

  11. Accelerated aging test results for aerospace wire insulation constructions

    NASA Technical Reports Server (NTRS)

    Dunbar, William G.

    1995-01-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  12. Accelerated aging and stabilization of radiation-vulcanized EPDM rubber

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Abdel-Aziz, M. M.; Mofti, S.

    2000-03-01

    The effect of different antioxidants and their mixtures on the thermal aging and accelerated weathering of γ-radiation vulcanized EPDM rubber in presence of crosslinking coagent, was investigated. The compounds used were either a synergistic blend of phenolic and phosphite antioxidants, i.e. 1:4 Irganox 1076: Irgafos 168 or a blend of arylamine and quinoline type antioxidants, i.e. 1:1 IPPD: TMQ, at fixed concentration. Tinuvin 622 LD hindered amine light stabilized (HALS) was also used. The response was evaluated by the tensile strength and elongation at break for irradiated samples after thermal aging at 100°C for 28 days and accelerated weathering (Xenon test) up to 200 h.

  13. Accelerated optical polymer aging studies for LED luminaire applications

    NASA Astrophysics Data System (ADS)

    Estupiñán, Edgar; Wendling, Peter; Kostrun, Marijan; Garner, Richard

    2013-09-01

    There is a need in the lighting industry to design and implement accelerated aging methods that accurately simulate the aging process of LED luminaire components. In response to this need, we have built a flexible and reliable system to study the aging characteristics of optical polymer materials, and we have employed it to study a commercially available LED luminaire diffuser made of PMMA. The experimental system consists of a "Blue LED Emitter" and a working surface. Both the temperatures of the samples and the optical powers of the LEDs are appropriately characterized in the system. Several accelerated aging experiments are carried out at different temperatures and optical powers over a 90 hour period and the measured transmission values are used as inputs to a degradation model derived using plausibility arguments. This model seems capable of predicting the behavior of the material as a function of time, temperature and optical power. The model satisfactorily predicts the measured transmission values of diffusers aged in luminaires at two different times and thus can be used to make application recommendations for this material. Specifically, at 35000 hours (the manufacturer's stated life of the luminaire) and at the typical operational temperature of the diffuser, the model predicts a transmission loss of only a few percent over the original transmission of the material at 450 nm, which renders this material suitable for this application.

  14. Tracking accelerated aging of composites with ultrasonic attenuation measurements

    SciTech Connect

    Chinn, D.J.; Durbin, P.F.; Thomas, G.H.; Groves, S.E.

    1996-10-01

    Composite materials are steadily replacing traditional materials in many industries. For many carbon composite materials, particularly in aerospace applications, durability is a critical design parameter which must be accurately characterized. Lawrence Livermore National Laboratory (LLNL) and Boeing Commercial Airplane Group have established a cooperative research and development agreement (CRADA) to assist in the high speed research program at Boeing. LLNL`s expertise in fiber composites, computer modeling, mechanical testing, chemical analysis and nondestructive evaluation (ND) will contribute to the study of advanced composite materials in commercial aerospace applications. Through thermo-mechanical experiments with periodic chemical analysis and nondestructive evaluation, the aging mechanisms in several continuous fiber polymer composites will be studied. Several measurement techniques are being studied for their correlation with aging. This paper describes through-transmission ultrasonic attenuation measurements of isothermally aged composite materials and their use as a tracking parameter for accelerated aging.

  15. Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution

    PubMed Central

    Sun, Liguang; Guo, Jianfei; Brown, Robert; Amagai, Takashi; Zhao, Yong; Su, Dong-Ming

    2010-01-01

    SUMMARY Age-related thymic involution may be triggered by gene expression changes in lymphohematopoietic and/or non-hematopoietic thymic epithelial cells (TECs). The role of epithelial cell-autonomous gene FoxN1 may be involved in the process, but it is still a puzzle due to shortage of evidence from gradual loss-of-function and exogenous gain-of-function studies. Using our recently generated loxP-floxed-FoxN1(fx) mouse carrying the ubiquitous CreERT (uCreERT) transgene with a low dose of spontaneous activation, which causes gradual FoxN1 deletion with age, we found that the uCreERT-fx/fx mice showed an accelerated age-related thymic involution due to progressive loss of FoxN1+ TECs. The thymic aging phenotypes were clearly observable as early as at 3–6 months of age, resembling the naturally aged (18–22-month-old) murine thymus. By intrathymically supplying aged wild-type mice with exogenous FoxN1-cDNA, thymic involution and defective peripheral CD4+ T-cell function could be partially rescued. The results support the notion that decline of a single epithelial cell-autonomous gene FoxN1 levels with age causes primary deterioration in TECs followed by impairment of the total postnatal thymic microenvironment, and potentially triggers age-related thymic involution in mice. PMID:20156205

  16. Sod2 haploinsufficiency does not accelerate aging of telomere dysfunctional mice.

    PubMed

    Guachalla, Luis Miguel; Ju, Zhenyu; Koziel, Rafal; von Figura, Guido; Song, Zhangfa; Fusser, Markus; Epe, Bernd; Jansen-Durr, Pidder; Rudolph, K Lenhard

    2009-03-05

    Telomere shortening represents a causal factor of cellular senescence. At the same time, several lines of evidence indicate a pivotal role of oxidative DNA damage for the aging process in vivo. A causal connection between the two observations was suggested by experiments showing accelerated telomere shorting under conditions of oxidative stress in cultured cells, but has never been studied in vivo. We therefore have analysed whether an increase in mitochondrial derived oxidative stress in response to heterozygous deletion of superoxide dismutase (Sod2(+/-)) would exacerbate aging phenotypes in telomere dysfunctional (mTerc(-/-)) mice. Heterozygous deletion of Sod2 resulted in reduced SOD2 protein levels and increased oxidative stress in aging telomere dysfunctional mice, but this did not lead to an increase in basal levels of oxidative nuclear DNA damage, an accumulation of nuclear DNA breaks, or an increased rate of telomere shortening in the mice. Moreover, heterozygous deletion of Sod2 did not accelerate the depletion of stem cells and the impairment in organ maintenance in aging mTerc(-/-) mice. In agreement with these observations, Sod2 haploinsufficiency did not lead to a further reduction in lifespan of mTerc(-/-) mice. Together, these results indicate that a decrease in SOD2-dependent antioxidant defence does not exacerbate aging in the context of telomere dysfunction.

  17. Electrochemical migration technique to accelerate ageing of cementitious materials

    NASA Astrophysics Data System (ADS)

    Babaahmadi, A.; Tang, L.; Abbas, Z.

    2013-07-01

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen's micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  18. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion

    PubMed Central

    Chen, Fei; Wu, Wenhui; Millman, Ariel; Craft, Joshua F.; Chen, Eunice; Patel, Nirav; Boucher, Jean L.; Urban, Joseph F.; Kim, Charles C.; Gause, William C.

    2014-01-01

    We examined the role of innate cells in acquired resistance to the natural murine parasitic nematode, Nippostrongylus brasiliensis. Macrophages obtained as late as 45 days after N. brasiliensis inoculation were able to transfer accelerated parasite clearance to naive recipients. Primed macrophages adhered to larvae in vitro and triggered increased mortality of parasites. Neutrophil depletion in primed mice abrogated the protective effects of transferred macrophages and inhibited their in vitro binding to larvae. Neutrophils in parasite-infected mice showed a distinct transcriptional profile and promoted alternatively activated M2 macrophage polarization through secretory factors including IL-13. Differentially activated neutrophils in the context of a type 2 immune response therefore prime a long-lived effector macrophage phenotype that directly mediates rapid nematode damage and clearance. PMID:25173346

  19. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    SciTech Connect

    Phadke, Manali; Krynetskaia, Natalia; Mishra, Anurag; Krynetskiy, Evgeny

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  20. Accelerated aging tests of liners for uranium mill tailings disposal

    SciTech Connect

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing.

  1. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  2. Cerebrolysin Accelerates Metamorphosis and Attenuates Aging-Accelerating Effect of High Temperature in Drosophila Melanogaster

    PubMed Central

    Navrotskaya, V.; Vorobyova, L.; Sharma, H.; Muresanu, D.; Summergrad, P.

    2015-01-01

    Cerebrolysin® (CBL) is a neuroprotective drug used for the treatment of neurodegenerative diseases. CBL’s mechanisms of action remain unclear. Involvement of tryptophan (TRP)–kynurenine (KYN) pathway in neuroprotective effect of CBL might be suggested considering that modulation of KYN pathway of TRP metabolism by CBL, and protection against eclosion defect and prolongation of life span of Drosophila melanogaster with pharmacologically or genetically-induced down-regulation of TRP conversion into KYN. To investigate possible involvement of TRP–KYN pathway in mechanisms of neuroprotective effect of CBL, we evaluated CBL effects on metamorphosis and life span of Drosophila melanogaster maintained at 23 °C and 28 °C ambient temperature. CBL accelerated metamorphosis, exerted strong tendency (p = 0.04) to prolong life span in female but not in male flies, and attenuated aging-accelerating effect of high (28 °C) ambient temperature in both female and male flies. Further research of CBL effects on metamorphosis and resistance to aging-accelerating effect of high temperature might offer new insights in mechanisms of its neuroprotective action and expand its clinical applications. PMID:25798213

  3. Spiked Alloy Production for Accelerated Aging of Plutonium

    SciTech Connect

    Wilk, P A; McNeese, J A; Dodson, K E; Williams, W L; Krikorian, O H; Blau, M S; Schmitz, J E; Bajao, F G; Mew, D A; Matz, T E; Torres, R A; Holck, D M; Moody, K J; Kenneally, J M

    2009-07-10

    The accelerated aging effects on weapons grade plutonium alloys are being studied using {sup 238}Pu-enriched plutonium metal to increase the rate of formation of defect structures. Pyrochemical processing methods have been used to produce two {sup 238}Pu-spiked plutonium alloys with nominal compositions of 7.5 wt% {sup 238}Pu. Processes used in the preparation of the alloys include direct oxide reduction of PuO{sub 2} with calcium and electrorefining. Rolled disks were prepared from the spiked alloys for sampling. Test specimens were cut out of the disks for physical property measurements.

  4. Accelerated aging for testing polymeric biomaterials and medical devices.

    PubMed

    Hukins, D W L; Mahomed, A; Kukureka, S N

    2008-12-01

    Elevated temperature is frequently used to accelerate the aging process in polymers that are associated with medical devices and other applications. A common approach is to assume that the rate of aging is increased by a factor of 2(DeltaT/10), where DeltaT is the temperature increase. This result is a mathematical expression of the empirical observation that increasing the temperature by about 10 degrees C roughly doubles the rate of many polymer reactions. It is equivalent to assuming that the aging process is a first order chemical reaction with an activation energy of 10R/log(e)2, where R is the universal gas constant. A better approach would be to determine the activation energy for the process being considered but this is not always practicable. The simple approach does not depend on the temperature increase, provided that it is not so great that it initiates any physical or chemical process that is unlikely to be involved in normal aging. If a temperature increment theta were to increase a given polymer reaction rate n times, then an elevated temperature would increase the rate of aging by a factor of n(DeltaT/theta).

  5. Deactivation of Accelerated Engine-Aged and Field-Aged Fe-Zeolite SCR Catalysts

    SciTech Connect

    Toops, Todd J; Nguyen, Ke; Foster, Adam; Bunting, Bruce G; Hagaman, Edward {Ed} W; Jiao, Jian

    2010-01-01

    A single-cylinder diesel engine with an emissions control system - diesel oxidation catalyst (DOC), Fe-zeolite selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF) - was used to perform accelerated thermal aging of the SCR catalyst. Cyclic aging is performed at SCR inlet temperatures of 650, 750 and 850 degrees C for up to 50 aging cycles. To assess the validity of the implemented accelerated thermal aging protocol, a field-aged SCR catalyst of similar formulation was also evaluated. The monoliths were cut into sections and evaluated for NO{sub x} performance in a bench-flow reactor. While the rear section of both the field-aged and the accelerated engine-aged SCR catalysts maintained high NO{sub x}conversion, 75-80% at 400 degrees C, the front section exhibited a drastic decrease to only 20-35% at 400 degrees C. This two-tiered deactivation was also observed for field-aged samples that were analyzed in this study. To understand the observed performance changes, thorough materials characterization was performed which revealed two primary degradation mechanisms. The first mechanism is a general Fe-zeolite deterioration which led to surface area losses, dealumination of the zeolite, and Fe{sub 2}O{sub 3} crystal growth. This degradation accelerated above 750 degrees C, and the effects were generally more severe in the front of the catalyst. The second deactivation mechanism is linked to trace levels of Pt that are suspected to be volatizing from the DOC and depositing on the front section of the SCR catalyst. Chemical evidence of this can be seen in the high levels of NH{sub 3} oxidation (80% conversion at 400 degrees C), which coincides with the decrease in performance.

  6. Protocols and Programs for High-Throughput Growth and Aging Phenotyping in Yeast

    PubMed Central

    Jung, Paul P.; Christian, Nils; Kay, Daniel P.; Skupin, Alexander; Linster, Carole L.

    2015-01-01

    In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting “Colony Forming Units”. To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens. PMID:25822370

  7. Disrupting the circadian clock: Gene-specific effects on aging, cancer, and other phenotypes

    PubMed Central

    Yu, Elizabeth A.; Weaver, David R.

    2011-01-01

    The circadian clock imparts 24-hour rhythmicity on gene expression and cellular physiology in virtually all cells. Disruption of the genes necessary for the circadian clock to function has diverse effects, including aging-related phenotypes. Some circadian clock genes have been described as tumor suppressors, while other genes have less clear functions in aging and cancer. In this Review, we highlight a recent study [Dubrovsky et al., Aging 2: 936-944, 2010] and discuss the much larger field examining the relationship between circadian clock genes, circadian rhythmicity, aging-related phenotypes, and cancer. PMID:21566258

  8. Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes.

    PubMed

    Yu, Elizabeth A; Weaver, David R

    2011-05-01

    The circadian clock imparts 24-hour rhythmicity on gene expression and cellular physiology in virtually all cells. Disruption of the genes necessary for the circadian clock to function has diverse effects, including aging-related phenotypes. Some circadian clock genes have been described as tumor suppressors, while other genes have less clear functions in aging and cancer. In this Review, we highlight a recent study [Dubrovsky et al., Aging 2: 936-944, 2010] and discuss the much larger field examining the relationship between circadian clock genes, circadian rhythmicity, aging-related phenotypes, and cancer.

  9. Parasite infection accelerates age polyethism in young honey bees

    PubMed Central

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  10. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  11. Acrylamide induces accelerated endothelial aging in a human cell model.

    PubMed

    Sellier, Cyril; Boulanger, Eric; Maladry, François; Tessier, Frédéric J; Lorenzi, Rodrigo; Nevière, Rémi; Desreumaux, Pierre; Beuscart, Jean-Baptiste; Puisieux, François; Grossin, Nicolas

    2015-09-01

    Acrylamide (AAM) has been recently discovered in food as a Maillard reaction product. AAM and glycidamide (GA), its metabolite, have been described as probably carcinogenic to humans. It is widely established that senescence and carcinogenicity are closely related. In vitro, endothelial aging is characterized by replicative senescence in which primary cells in culture lose their ability to divide. Our objective was to assess the effects of AAM and GA on human endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as model. HUVECs were cultured over 3 months with AAM or GA (1, 10 or 100 μM) until growth arrest. To analyze senescence, β-galactosidase activity and telomere length of HUVECs were measured by cytometry and semi-quantitative PCR, respectively. At all tested concentrations, AAM or GA reduced cell population doubling compared to the control condition (p < 0.001). β-galactosidase activity in endothelial cells was increased when exposed to AAM (≥10 μM) or GA (≥1 μM) (p < 0.05). AAM (≥10 μM) or GA (100 μM) accelerated telomere shortening in HUVECs (p < 0.05). In conclusion, in vitro chronic exposure to AAM or GA at low concentrations induces accelerated senescence. This result suggests that an exposure to AAM might contribute to endothelial aging.

  12. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  13. The aryl hydrocarbon receptor promotes aging phenotypes across species

    PubMed Central

    Eckers, Anna; Jakob, Sascha; Heiss, Christian; Haarmann-Stemmann, Thomas; Goy, Christine; Brinkmann, Vanessa; Cortese-Krott, Miriam M.; Sansone, Roberto; Esser, Charlotte; Ale-Agha, Niloofar; Altschmied, Joachim; Ventura, Natascia; Haendeler, Judith

    2016-01-01

    The ubiquitously expressed aryl hydrocarbon receptor (AhR) induces drug metabolizing enzymes as well as regulators of cell growth, differentiation and apoptosis. Certain AhR ligands promote atherosclerosis, an age-associated vascular disease. Therefore, we investigated the role of AhR in vascular functionality and aging. We report a lower pulse wave velocity in young and old AhR-deficient mice, indicative of enhanced vessel elasticity. Moreover, endothelial nitric oxide synthase (eNOS) showed increased activity in the aortas of these animals, which was reflected in increased NO production. Ex vivo, AhR activation reduced the migratory capacity of primary human endothelial cells. AhR overexpression as well as treatment with a receptor ligand, impaired eNOS activation and reduced S-NO content. All three are signs of endothelial dysfunction. Furthermore, AhR expression in blood cells of healthy human volunteers positively correlated with vessel stiffness. In the aging model Caenorhabditis elegans, AhR-deficiency resulted in increased mean life span, motility, pharynx pumping and heat shock resistance, suggesting healthier aging. Thus, AhR seems to have a negative impact on vascular and organismal aging. Finally, our data from human subjects suggest that AhR expression levels could serve as an additional, new predictor of vessel aging. PMID:26790370

  14. Ultraweak chemiluminescence of rice seeds during accelerated aging

    NASA Astrophysics Data System (ADS)

    Chen, Wenli; Xing, Da; He, Yonghong

    2002-04-01

    Ultraweak Chemiluminescence (UCL) studies of different aging degree of rice (Oryza sativa L.) seeds stored in a high temperature 40 degree(s)C and high relative humidity 90% environment (0 day, 8 days, 15 days, and 22 days) were carried out. We firstly observed that aging degree of rice seeds was positive correlation with ultraweak chemiluminescence during the early imbibition (0-1h). Addition of water to rice seeds stimulates ultraweak chemiluminescence, the intensity of which depends upon aging degree of seeds. The shorter the seed accelerated aging time was, the higher the intensity of the UCL in the early imbibition period, the lower hydrogen peroxide (H2O2) concentration of rice seeds, the higher percentage seed germination. The germination and superoxide dismutase (SOD) activity of dry rice seeds was obvious positive correlation with the intensity of UCL. While catalase (CAT) activity of rice seeds was determined. Mechanism of ultraweak chemiluminescence was discussed. It was concluded that the store time of rice seeds could be judged from their UCL characters during the early imbibition period, which might be a way to examine vigor of seeds.

  15. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  16. A higher oxidative status accelerates senescence and aggravates age-dependent disorders in SAMP strains of mice.

    PubMed

    Hosokawa, Masanori

    2002-11-01

    The SAM strain of mice is actually a group of related inbred strains consisting of series of SAMP (accelerated senescence-prone, short-lived) and SAMR (accelerated senescence-resistant, longer-lived) strains. Comparing with the SAMR strains, the SAMP strains of mice show a more accelerated senescence process, shorter lifespan, and an earlier onset and more rapid progress of age-associated pathological phenotypes similar to several geriatric disorders observed in humans, including senile osteoporosis, degenerative joint disease, age-related deficits in learning and memory, olfactory bulb and forebrain atrophy, presbycusis and retinal atrophy, senile amyloidosis, immunosenescence, senile lungs, and diffuse medial thickening of the aorta. The higher oxidative stress observed in the SAMP strains of mice are partly caused by mitochondrial dysfunction, and may be one cause of the senescence acceleration and age-dependent alterations in cell structure and function, including neuronal cell degeneration. This senescence acceleration is also observed during senescence/crisis in cultures of isolated fibroblast-like cells from SAMP strains of mice, and was associated with a hyperoxidative status. These observations suggest that the SAM strains are useful tools in the attempt to understand the mechanisms of age-dependent degeneration of cells and tissues, and their aggravation, and to develop clinical interventions. PMID:12470893

  17. A drug-induced accelerated senescence (DIAS) is a possibility to study aging in time lapse.

    PubMed

    Alili, Lirija; Diekmann, Johanna; Giesen, Melanie; Holtkötter, Olaf; Brenneisen, Peter

    2014-06-01

    Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. Accordingly, a stress-induced senescence-like phenotype of human dermal fibroblasts can be induced in vitro by the exposure of human diploid fibroblasts to subcytotoxic concentrations of hydrogen peroxide. However, several biomarkers of replicative senescence e.g. cell cycle arrest and enlarged morphology are abrogated 14 days after treatment, indicating that reactive oxygen species (ROS) rather acts as a trigger for short-term senescence (1-3 days) than being responsible for the maintenance of the senescence-like phenotype. Further, DNA-damaging factors are discussed resulting in a permanent senescent cell type. To induce long-term premature senescence and to understand the molecular alterations occurring during the aging process, we analyzed mitomycin C (MMC) as an alkylating DNA-damaging agent and ROS producer. Human dermal fibroblasts (HDF), used as model for skin aging, were exposed to non-cytotoxic concentrations of MMC and analyzed for potential markers of cellular aging, for example enlarged morphology, activity of senescence-associated-ß-galactosidase, cell cycle arrest, increased ROS production and MMP1-activity, which are well-documented for HDF in replicative senescence. Our data show that mitomycin C treatment results in a drug-induced accelerated senescence (DIAS) with long-term expression of senescence markers, demonstrating that a combination of different susceptibility factors, here ROS and DNA alkylation, are necessary to induce a permanent senescent cell type.

  18. Influence of age, irradiation and humanization on NSG mouse phenotypes

    PubMed Central

    Knibbe-Hollinger, Jaclyn S.; Fields, Natasha R.; Chaudoin, Tammy R; Epstein, Adrian A.; Makarov, Edward; Akhter, Sidra P.; Gorantla, Santhi; Bonasera, Stephen J.; Gendelman, Howard E.; Poluektova, Larisa Y.

    2015-01-01

    ABSTRACT Humanized mice are frequently utilized in bench to bedside therapeutic tests to combat human infectious, cancerous and degenerative diseases. For the fields of hematology-oncology, regenerative medicine, and infectious diseases, the immune deficient mice have been used commonly in basic research efforts. Obstacles in true translational efforts abound, as the relationship between mouse and human cells in disease pathogenesis and therapeutic studies requires lengthy investigations. The interplay between human immunity and mouse biology proves ever more complicated when aging, irradiation, and human immune reconstitution are considered. All can affect a range of biochemical and behavioral functions. To such ends, we show age- and irradiation-dependent influences for the development of macrocytic hyper chromic anemia, myelodysplasia, blood protein reductions and body composition changes. Humanization contributes to hematologic abnormalities. Home cage behavior revealed day and dark cycle locomotion also influenced by human cell reconstitutions. Significant age-related day-to-day variability in movement, feeding and drinking behaviors were observed. We posit that this data serves to enable researchers to better design translational studies in this rapidly emerging field of mouse humanization. PMID:26353862

  19. Evaluating age-associated phenotypes in a mouse model of protein dyshomeostasis.

    PubMed

    Min, Jin-Na; Patterson, Cam

    2011-03-01

    Proteotoxicity caused by an imbalanced protein quality control surveillance system is believed to contribute to the phenotypes associated with aging as well as many neurodegenerative diseases. Understanding and monitoring the impact of proteotoxicity in these processes offers researchers keen insight into the biology of aging, as well as other conditions that share similar pathological etiologies. In Section 2, we present various technical approaches that can be used to calculate and characterize the phenotypes associated with aging that are linked to increased proteotoxicity. Methods such as the measurement of oligomer protein expression and the capacity of proteasome function are useful tools in observing both aging phenotypes and neurodegenerative diseases, both of which share the phenomenon of impaired protein homeostasis.

  20. Aging of organic materials around high-energy particle accelerators

    NASA Astrophysics Data System (ADS)

    Tavlet, Marc

    1997-08-01

    Around particle accelerators used for fundamental research on the basic structure of matter, materials and components are exposed to ionizing radiation caused by beam losses in the proton machines and by synchrotron radiation in the lepton machines. Furthermore, with the high-energy and high-intensity collisions produced from future colliders, radiation damage is also to be expected in particle-physics detectors. Therefore, for a safe and reliable operation, the radiation aging of most of the components has to be assessed prior to their selection. An extensive radiation-damage test program has been carried out at CERN for decades on a routine basis and many results have been published. The tests have mainly concentrated on magnet-coil insulations and cable-insulating materials; they are carried out in accordance with the IEC 544 standard which defines the mechanical tests to be performed and the methods of degradation evaluation. The mechanical tests are also used to assess the degradation of composite structural materials. Moreover, electrical properties of high-voltage insulations and optical properties of organic scintillators and wave guides have also been studied. Our long-term experience has pointed out many parameters to be taken into account for the estimate of the lifetime of components in the radiation environment of our accelerators. One of the main parameters is the dose-rate effect, but the influence of other parameters has sometimes to be taken into account.

  1. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  2. Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences.

    PubMed

    Hart, Adam D; Wyttenbach, Andreas; Perry, V Hugh; Teeling, Jessica L

    2012-07-01

    Subtle regional differences in microglial phenotype exist in the adult mouse brain. We investigated whether these differences were amplified during ageing and following systemic challenge with lipopolysaccharide (LPS). We studied microglial morphology and phenotype in young (4mo) and aged (21mo) C57/BL6 mice using immunohistochemistry and quantified the expression levels of surface molecules on microglia in white and grey matter along the rostral-caudal neuraxis. We detected significant regional, age dependent differences in microglial phenotypes, with the microglia of white matter and caudal areas of the CNS exhibiting greater upregulation of CD11b, CD68, CD11c, F4/80 and FcγRI than grey matter and rostral CNS areas. Upregulation of CD11c with age was restricted to the white matter, as was the appearance of multinucleated giant cells. Systemic LPS caused a subtle upregulation of FcγRI after 24 h, but the other markers examined were not affected. Burrowing behaviour and static rod assays were used to assess hippocampal and cerebellar integrity. Aged mice exhibited exaggerated and prolonged burrowing deficits following systemic LPS injection, while in the absence of an inflammatory challenge aged mice performed significantly worse than young mice in the static rod test. Taken together, these findings show that the effects of age on microglial phenotype and functional integrity vary significantly between CNS compartments, as do, albeit to a lesser extent, the effects of systemic LPS.

  3. Is rate of skin wound healing associated with aging or longevity phenotype?

    PubMed

    Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Fraifeld, Vadim E

    2011-12-01

    Wound healing (WH) is a fundamental biological process. Is it associated with a longevity or aging phenotype? In an attempt to answer this question, we compared the established mouse models with genetically modified life span and also an altered rate of WH in the skin. Our analysis showed that the rate of skin WH in advanced ages (but not in the young animals) may be used as a marker for biological age, i.e., to be indicative of the longevity or aging phenotype. The ability to preserve the rate of skin WH up to an old age appears to be associated with a longevity phenotype, whereas a decline in WH-with an aging phenotype. In the young, this relationship is more complex and might even be inversed. While the aging process is likely to cause wounds to heal slowly, an altered WH rate in younger animals could indicate a different cellular proliferation and/or migration capacity, which is likely to affect other major processes such as the onset and progression of cancer. As a point for future studies on WH and longevity, using only young animals might yield confusing or misleading results, and therefore including older animals in the analysis is encouraged.

  4. Opposite phenotypes of cancer and aging arise from alternative regulation of common signaling pathways.

    PubMed

    Ukraintseva, Svetlana V; Yashin, Anatoly I

    2003-12-01

    Phenotypic features of malignant and senescent cells are in many instances opposite. Cancer cells do not "age"; their metabolic, proliferative, and growth characteristics are opposite to those observed with cellular aging (both replicative and functional). In many such characteristics cancer cells resemble embryonic cells. One can say that cancer manifests itself as a local, uncontrolled "rejuvenation" in an organism. Available evidence from human and animal studies suggests that the opposite phenotypic features of aging and cancer arise from the opposite regulation of genes participating in apoptosis/growth arrest or growth signal transduction pathways in cells. This fact may be applicable in the development of new anti-aging treatments. Genes that are contrarily regulated in cancer and aging cells (e.g., proto-oncogenes or tumor suppressors) could be candidate targets for anti-aging interventions. Their "cancer-like" regulation, if strictly controlled, might help to rejuvenate the human organism. PMID:15033776

  5. Volatile profile of Madeira wines submitted to traditional accelerated ageing.

    PubMed

    Pereira, Vanda; Cacho, Juan; Marques, José C

    2014-11-01

    The evolution of monovarietal fortified Madeira wines forced-aged by traditional thermal processing (estufagem) were studied in terms of volatiles. SPE extracts were analysed by GC-MS before and after heating at 45 °C for 3 months (standard) and at 70 °C for 1 month (overheating). One hundred and ninety volatile compounds were identified, 53 of which were only encountered in baked wines. Most chemical families increased after standard heating, especially furans and esters, up to 61 and 3-fold, respectively. On the contrary, alcohols, acetates and fatty acids decreased after heating. Varietal aromas, such as Malvasia's monoterpenic alcohols were not detected after baking. The accelerated ageing favoured the development of some volatiles previously reported as typical aromas of finest Madeira wines, particularly phenylacetaldeyde, β-damascenone and 5-ethoxymethylfurfural. Additionally, ethyl butyrate, ethyl 2-methylbutyrate, ethyl caproate, ethyl isovalerate, guaiacol, 5-hydroxymethylfurfural and γ-decalactone were also found as potential contributors to the global aroma of baked wines.

  6. Reversing the aging stromal phenotype prevents carcinoma initiation.

    PubMed

    Lewis, Davina A; Travers, Jeffrey B; Machado, Christiane; Somani, Ally-Khan; Spandau, Dan F

    2011-04-01

    The accumulation of senescent stromal cells in aging tissue changes the local microenvironment from normal to a state similar to chronic inflammation. This inflammatory microenvironment can stimulate the proliferation of epithelial cells containing DNA mutations which can ultimately lead to cancer. Using geriatric skin as a model, we demonstrated that senescent fibroblasts also alter how epithelial keratinocytes respond to genotoxic stress, due to the silencing of IGF-1 expression in geriatric fibroblasts. These data indicate that in addition to promoting epithelial tumor growth, senescent fibroblasts also can promote carcinogenic initiation. We hypothesized that commonly used therapeutic stromal wounding therapies can reduce the percentage of senescent fibroblasts and consequently prevent the formation of keratinocytes proliferating with DNA mutations following acute genotoxic (UVB) stress. Sun-protected skin on the lower back of geriatric human volunteers was wounded by dermabrasion and the skin was allowed to heal for three months. In geriatric skin, we found that dermabrasion wounding decreases the proportion of senescent fibroblasts found in geriatric dermis, increases the expression of IGF-1, and restores the appropriate UVB response to epidermal keratinocytes in geriatric skin. Therefore, dermal rejuvenation therapies may play a significant role in preventing the initiation of skin cancer in geriatric patients. PMID:21515933

  7. Reversing the aging stromal phenotype prevents carcinoma initiation.

    PubMed

    Lewis, Davina A; Travers, Jeffrey B; Machado, Christiane; Somani, Ally-Khan; Spandau, Dan F

    2011-04-01

    The accumulation of senescent stromal cells in aging tissue changes the local microenvironment from normal to a state similar to chronic inflammation. This inflammatory microenvironment can stimulate the proliferation of epithelial cells containing DNA mutations which can ultimately lead to cancer. Using geriatric skin as a model, we demonstrated that senescent fibroblasts also alter how epithelial keratinocytes respond to genotoxic stress, due to the silencing of IGF-1 expression in geriatric fibroblasts. These data indicate that in addition to promoting epithelial tumor growth, senescent fibroblasts also can promote carcinogenic initiation. We hypothesized that commonly used therapeutic stromal wounding therapies can reduce the percentage of senescent fibroblasts and consequently prevent the formation of keratinocytes proliferating with DNA mutations following acute genotoxic (UVB) stress. Sun-protected skin on the lower back of geriatric human volunteers was wounded by dermabrasion and the skin was allowed to heal for three months. In geriatric skin, we found that dermabrasion wounding decreases the proportion of senescent fibroblasts found in geriatric dermis, increases the expression of IGF-1, and restores the appropriate UVB response to epidermal keratinocytes in geriatric skin. Therefore, dermal rejuvenation therapies may play a significant role in preventing the initiation of skin cancer in geriatric patients.

  8. A history of phenotypic plasticity accelerates adaptation to a new environment.

    PubMed

    Fierst, J L

    2011-09-01

    Can a history of phenotypic plasticity increase the rate of adaptation to a new environment? Theory suggests it can be through two different mechanisms. Phenotypically plastic organisms can adapt rapidly to new environments through genetic assimilation, or the fluctuating environments that result in phenotypic plasticity can produce evolvable genetic architectures. In this article, I studied a model of a gene regulatory network that determined a phenotypic character in one population selected for phenotypic plasticity and a second population in a constant environment. A history of phenotypic plasticity increased the rate of adaptation in a new environment, but the amount of this increase was dependent on the strength of selection in the original environment. Phenotypic variance in the original environment predicted the adaptive capacity of the trait within, but not between, plastic and nonplastic populations. These results have implications for invasive species and ecological studies of rapid adaptation.

  9. Altered splicing in prelamin A-associated premature aging phenotypes.

    PubMed

    De Sandre-Giovannoli, Annachiara; Lévy, Nicolas

    2006-01-01

    Hutchinson-Gilford progeria (HGPS), a rare and severe developmental disorder characterized by features recalling premature aging, and restrictive dermopathy (RD), a neonatal lethal genodermatosis, have recently been identified as being primary or secondary "laminopathies." These are heterogeneous disorders due to altered function of lamins A/C or related proteins. In physiological conditions, mature lamin A is obtained through a series of post-translational processing steps performed on a protein precursor, prelamin A. The major pathophysiological mechanism involved in progeria is an aberrant splicing of pre-mRNAs issued from the LMNA gene, due to a de novo heterozygous point mutation, leading to the production and accumulation of truncated lamin A precursors. Aberrant splicing of prelamin A pre-mRNAs causing the production of more extensively truncated precursors is involved in the allelic disease restrictive dermopathy. Other restrictive dermopathy cases are due to the inactivation of a key enzyme involved in the maturation of lamin A precursors (ZMPSTE24). In functional terms, all these conditions share the same pathophysiological basis: intranuclear accumulation of lamin A precursors, which cannot be fully processed (due to primary or secondary events) and exert toxic, dominant negative effects on nuclear homeostasis. Most other laminopathies are due to autosomal dominant LMNA point mutations inferred to cause single amino acid substitutions. In any case, the impact of these mutations on pre-mRNA splicing has rarely been assessed. These disorders affect different tissues and organs, mainly including bone, skin, striated muscles, adipose tissue, vessels, and peripheral nerves in isolated or combined fashions, giving rise to syndromes whose severity ranges from mild to perinatally lethal. In this chapter we review the structure and functions of lamins A/C in physiological and pathological conditions, describe their known or putative roles, namely, in the

  10. When stem cells grow old: phenotypes and mechanisms of stem cell aging.

    PubMed

    Schultz, Michael B; Sinclair, David A

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan.

  11. Effects of Accelerated Aging on Fiber Damage Thresholds

    SciTech Connect

    Setchell, R.E.

    1999-02-15

    internal defects. Damage characteristics obtained from fibers subjected to each of these aging environments were compared to results from fresh fibers tested under identical conditions. A surprising result was that internal damage was not observed in any of the tested fibers. Only breakdown at the fiber entrance face and catastrophic damage at both end faces were observed. Fiber end faces were not sealed during the accelerated aging environments, and thresholds at these faces were significantly lower in the aged fibers. However, most fibers transmitted relatively high pulse energies before damaging, and a large fraction never damaged before we reached the limits of our test laser. The absence of any observable affect on internal damage thresholds is encouraging, but the current results do not rule out the possibility that some other approach to accelerated aging could reveal a growth mechanism for internal defects.

  12. Age-Related Disruption of Steady-State Thymic Medulla Provokes Autoimmune Phenotype via Perturbing Negative Selection.

    PubMed

    Xia, Jiangyan; Wang, Hongjun; Guo, Jianfei; Zhang, Zhijie; Coder, Brandon; Su, Dong-Ming

    2012-06-01

    The hymic medulla plays an essential role in the generation of central tolerance by eliminating self-reactive T-cell clones through thymic negative selection and developing natural regulatory T cells. Age-related FoxN1 decline induces disruption of medullary thymic epithelial cells (mTECs). However, it is unknown whether this perturbs central tolerance to increase autoimmune predisposition in the elderly. Using a loxP-floxed-FoxN1 (FoxN1(flox)) mouse model, which exhibits a spontaneous ubiquitous deletion of FoxN1 with age to accelerate thymic aging, we investigated whether disruption of steady-state thymic medulla results in an increase of autoimmune-prone associated with age. We demonstrated age-associated ubiquitous loss of FoxN1(flox)-formed two-dimensional thymic epithelial cysts were primarily located in the medulla. This resulted in disruption of thymic medullary steady state, with evidence of perturbed negative selection, including reduced expression of the autoimmune regulator (Aire) gene and disrupted accumulation of thymic dendritic cells in the medulla, which are required for negative selection. These provoke autoimmune phenotypes, including increased inflammatory cell infiltration in multiple organs in these mice. This finding in an animal model provides a mechanistic explanation of increased susceptibility to autoimmunity in aged humans, although they may not show clinic manifestations without induction.

  13. Accelerated aging studies and environmental stability of prototype tamper tapes

    SciTech Connect

    Wright, B.W.; Wright, C.W.; Bunk, A.R.

    1995-05-01

    This report describes the results of accelerated aging experiments (weathering) conducted on prototype tamper tapes bonded to a variety of surface materials. The prototype tamper tapes were based on the patented Confirm{reg_sign} tamper-indicating technology developed and produced by 3M Company. Tamper tapes bonded to surfaces using pressure sensitive adhesive (PSA) and four rapid-set adhesives were evaluated. The configurations of the PSA-bonded tamper tapes were 1.27-cm-wide Confirm{reg_sign} 1700 windows with vinyl underlay and 2.54-cm-wide Confirm{reg_sign} 1700 windows with vinyl and polyester underlays. The configurations of the rapid-set adhesive-bonded tamper tapes were 2.54-cm-wide Confirm{reg_sign} (1700, 1500 with and without primer, and 1300) windows with vinyl underlay. Surfaces used for bonding included aluminum, steel, stainless steel, Kevlar{reg_sign}, brass, copper, fiberglass/resin with and without gel coat, polyurethane-painted steel, acrylonitrile:butadiene:styrene plastic, polyester fiberglass board, Lexan polycarbonate, and cedar wood. Weathering conditions included a QUV cabinet (ultraviolet light at 60{degrees}C, condensing humidity at 40{degrees}C), a thermal cycling cabinet (-18{degrees}C to 46{degrees}C), a Weather-O-Meter (Xenon lamp), and exposure outdoors in Daytona Beach, Florida. Environmental aging exposures lasted from 7 weeks to 5 months. After exposure, the tamper tapes were visually examined and tested for transfer resistance. Tamper tapes were also exposed to a variety of chemical liquids (including organic solvents, acids, bases, and oxidizing liquids) to determine chemical resistance and to sand to determine abrasion resistance.

  14. [Senescence-accelerated mouse (SAM): with special reference to age-associated pathologies and their modulation].

    PubMed

    Takeda, T

    1996-07-01

    The senescence-accelerated mouse (SAM) has been under development by our research team at Kyoto University since 1970 through selective inbreeding of the AKR/J strain of mice donated by the Jackson Laboratory in 1968, based on the data of the grading score of senescence, life span, and pathologic phenotypes. At present, there are 12 lines of SAM; the 9 senescence-prone inbred strains (SAMP) include SAMP1, SAMP2, SAMP3, SAMP6, SAMP7, SAMP8, SAMP9, SAMP10 and SAMP11, and the 3 senescence-resistant inbred strains (SAMR) SAMR1, SANR4 and SAMR5. Data from survival curves, the Gompertzian function and the grading score of senescence, together with growth patterns of body weight of these SAMP and SAMR mice revealed that the characteristic feature of aging common to all SAMP mice is "accelerated senescence": early onset and irreversible advance of senescence manifested by several signs and gross lesions such as the loss of normal behavior, various skin lesions, increased lordokyphosis, etc., after a period of normal development. Routine postmortem examinations and the pathobiological features revealed by systematically designed studies have shown several pathologic phenotypes, which are often characteristic enough to differentiate among the various SAM strains: senile amyloidosis in SAMP1, -P2, -P7, -P9, -P10 and -P11, secondary amyloidosis in SAMP2 and -P6, contracted kidney in SAMP1, -P2, -P10, -P11, immunoblastic lymphoma in SAMR1 and -R4, histiocytic sarcoma in SAMR1 and -R4, ovarian cysts in SAMR1, impaired immune response in SAMP1, -P2 and -P8, hyperinflation of the lungs in SAMP1, hearing impairment in SAMP1, degenerative temporomandibular joint disease in SAMP3, senile osteoporosis in SAMP6, deficits in learning and memory in SAMP8 and -P10, emotional disorders in SAMP8 and -P10, cataracts in SAMP9, and brain atrophy in SAMP10. These are all age-associated pathologies, the incidence and severity of which increase with advancing age. The SAM model in which these

  15. Reversible Age-Related Phenotypes Induced during Larval Quiescence in C. elegans.

    PubMed

    Roux, Antoine E; Langhans, Kelley; Huynh, Walter; Kenyon, Cynthia

    2016-06-14

    Cells can enter quiescent states in which cell cycling and growth are suspended. We find that during a long developmental arrest (quiescence) induced by starvation, newly hatched C. elegans acquire features associated with impaired proteostasis and aging: mitochondrial fission, ROS production, protein aggregation, decreased proteotoxic-stress resistance, and at the organismal level, decline of mobility and high mortality. All signs of aging but one, the presence of protein aggregates, were reversed upon return to development induced by feeding. The endoplasmic reticulum receptor IRE-1 is completely required for recovery, and the downstream transcription factor XBP-1, as well as a protein kinase, KGB-1, are partially required. Interestingly, kgb-1(-) mutants that do recover fail to reverse aging-like mitochondrial phenotypes and have a short adult lifespan. Our study describes the first pathway that reverses phenotypes of aging at the exit of prolonged quiescence. PMID:27304510

  16. Color stability of repaired composite submitted to accelerated artificial aging.

    PubMed

    Souza, Ana Beatriz Silva; Silame, Francisca Daniele Jardilino; Alandia-Roman, Carla Cecilia; Cruvinel, Diogo Rodrigues; Garcia, Lucas da Fonseca Roberti; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2012-01-01

    The aim of this study was to evaluate the color stability (ΔE) of nanoparticulate composite, with consideration for the type of surface treatment performed before repair. A Teflon matrix was used to fabricate 50 test specimens from composite. After initial color readout, the specimens were submitted to 100 hours of accelerated artificial aging (AAA). The samples were divided into five groups (n = 10), according to the surface treatment performed: sandblasting with aluminum oxide powder, phosphoric acid, and an adhesive system (Group 1); sandblasting with aluminum oxide powder, phosphoric acid, and a flowable composite (Group 2); abrasion with a diamond bur, phosphoric acid, and an adhesive system (Group 3); abrasion with a diamond bur, phosphoric acid, and a nanoparticulate composite (Group 4); and a control group (Group 5). After repair, a new color readout was taken, the test specimens were submitted to a new AAA cycle (300 hours), and the final color readout was taken. Comparison of the ΔE means (one-way ANOVA and Tukey tests, p < 0.05) demonstrated no statistically significant differences among the groups (p > 0.05) after 100 hours of AAA. After repair, Group 1 (4.61 ± 2.03) presented the highest color alteration with a statistically significant difference compared with the other groups (p < 0.05). After 300 hours, Group 4 specimens (13.84 ± 0.71) presented the lowest color alteration in comparison with the other groups, with a statistically significant difference (p < 0.05). It was concluded that the repair performed in Group 4 provided greater esthetic recovery, made possible by the regression in the ΔE values of the restorations after repair, and less color alteration of the restorations over the course of time. PMID:23032241

  17. Mitochondria are required for pro-ageing features of the senescent phenotype.

    PubMed

    Correia-Melo, Clara; Marques, Francisco D M; Anderson, Rhys; Hewitt, Graeme; Hewitt, Rachael; Cole, John; Carroll, Bernadette M; Miwa, Satomi; Birch, Jodie; Merz, Alina; Rushton, Michael D; Charles, Michelle; Jurk, Diana; Tait, Stephen W G; Czapiewski, Rafal; Greaves, Laura; Nelson, Glyn; Bohlooly-Y, Mohammad; Rodriguez-Cuenca, Sergio; Vidal-Puig, Antonio; Mann, Derek; Saretzki, Gabriele; Quarato, Giovanni; Green, Douglas R; Adams, Peter D; von Zglinicki, Thomas; Korolchuk, Viktor I; Passos, João F

    2016-04-01

    Cell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro-inflammatory and pro-oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood. Here, we show the critical role of mitochondria in cellular senescence. In multiple models of senescence, absence of mitochondria reduced a spectrum of senescence effectors and phenotypes while preserving ATP production via enhanced glycolysis. Global transcriptomic analysis by RNA sequencing revealed that a vast number of senescent-associated changes are dependent on mitochondria, particularly the pro-inflammatory phenotype. Mechanistically, we show that the ATM, Akt and mTORC1 phosphorylation cascade integrates signals from the DNA damage response (DDR) towards PGC-1β-dependent mitochondrial biogenesis, contributing to aROS-mediated activation of the DDR and cell cycle arrest. Finally, we demonstrate that the reduction in mitochondrial content in vivo, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence in the ageing mouse liver. Our results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues.

  18. Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse.

    PubMed

    Dillon, Lloye M; Williams, Siôn L; Hida, Aline; Peacock, Jacqueline D; Prolla, Tomas A; Lincoln, Joy; Moraes, Carlos T

    2012-05-15

    Aging is an intricate process that increases susceptibility to sarcopenia and cardiovascular diseases. The accumulation of mitochondrial DNA (mtDNA) mutations is believed to contribute to mitochondrial dysfunction, potentially shortening lifespan. The mtDNA mutator mouse, a mouse model with a proofreading-deficient mtDNA polymerase γ, was shown to develop a premature aging phenotype, including sarcopenia, cardiomyopathy and decreased lifespan. This phenotype was associated with an accumulation of mtDNA mutations and mitochondrial dysfunction. We found that increased expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a crucial regulator of mitochondrial biogenesis and function, in the muscle of mutator mice increased mitochondrial biogenesis and function and also improved the skeletal muscle and heart phenotypes of the mice. Deep sequencing analysis of their mtDNA showed that the increased mitochondrial biogenesis did not reduce the accumulation of mtDNA mutations but rather caused a small increase. These results indicate that increased muscle PGC-1α expression is able to improve some premature aging phenotypes in the mutator mice without reverting the accumulation of mtDNA mutations.

  19. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses.

    PubMed

    Pulko, Vesna; Davies, John S; Martinez, Carmine; Lanteri, Marion C; Busch, Michael P; Diamond, Michael S; Knox, Kenneth; Bush, Erin C; Sims, Peter A; Sinari, Shripad; Billheimer, Dean; Haddad, Elias K; Murray, Kristy O; Wertheimer, Anne M; Nikolich-Žugich, Janko

    2016-08-01

    The number of naive T cells decreases and susceptibility to new microbial infections increases with age. Here we describe a previously unknown subset of phenotypically naive human CD8(+) T cells that rapidly secreted multiple cytokines in response to persistent viral antigens but differed transcriptionally from memory and effector T cells. The frequency of these CD8(+) T cells, called 'memory T cells with a naive phenotype' (TMNP cells), increased with age and after severe acute infection and inversely correlated with the residual capacity of the immune system to respond to new infections with age. CD8(+) TMNP cells represent a potential new target for the immunotherapy of persistent infections and should be accounted for and subtracted from the naive pool if truly naive T cells are needed to respond to antigens. PMID:27270402

  20. Heterozygous knockout of the Bmi-1 gene causes an early onset of phenotypes associated with brain aging.

    PubMed

    Gu, Minxia; Shen, Lihua; Bai, Lei; Gao, Junying; Marshall, Charles; Wu, Ting; Ding, Jiong; Miao, Dengshun; Xiao, Ming

    2014-02-01

    Previous studies reported that the polycomb group gene Bmi-1 is downregulated in the aging brain. The aim of this study was to investigate whether decreased Bmi-1 expression accelerates brain aging by analyzing the brain phenotype of adult Bmi-1 heterozygous knockout (Bmi-1(+/-)) mice. An 8-month-old Bmi-1(+/-) brains demonstrated mild oxidative stress, revealed by significant increases in hydroxy radical and nitrotyrosine, and nonsignificant increases in reactive oxygen species and malonaldehyde compared with the wild-type littermates. Bmi-1(+/-) hippocampus had high apoptotic percentage and lipofuscin deposition in pyramidal neurons associated with upregulation of cyclin-dependent kinase inhibitors p19, p27, and p53 and downregulation of anti-apoptotic protein Bcl-2. Mild activation of astrocytes was also observed in Bmi-1(+/-) hippocampus. Furthermore, Bmi-1(+/-) mice showed mild spatial memory impairment in the Morris Water Maze test. These results demonstrate that heterozygous Bmi-1 gene knockout causes an early onset of age-related brain changes, suggesting that Bmi-1 has a role in regulating brain aging.

  1. Examining genotypic variation in autism spectrum disorder and its relationship to parental age and phenotype

    PubMed Central

    Geier, David A; Kern, Janet K; Sykes, Lisa K; Geier, Mark R

    2016-01-01

    Background Previous studies on genetic testing of chromosomal abnormalities in individuals diagnosed with autism spectrum disorder (ASD) found that ~80% have negative genetic test results (NGTRs) and ~20% have positive genetic test results (PGTRs), of which ~7% were probable de novo mutations (PDNMs). Research suggests that parental age is a risk factor for an ASD diagnosis. This study examined genotypic variation in ASD and its relationship to parental age and phenotype. Methods Phenotype was derived from detailed clinical information, and genotype was derived from high-resolution blood chromosome and blood whole-genome copy number variant genetic testing on a consecutive cohort (born: 1983–2009) of subjects diagnosed with ASD (N=218). Results Among the subjects examined, 80.3% had NGTRs and 19.7% had PGTRs, of which 6.9% had PDNMs. NGTR subjects were born more recently (the risk of PDNMs decreasing by 12% per more recent birth year) and tended to have an increased male–female ratio compared to PDNM subjects. PDNM subjects had significantly increased mean parental age and paternal age at subject’s birth (the risk of a PDNM increasing by 7%–8% per year of parental or paternal age) compared to NGTR subjects. PGTR and NGTR subjects showed significant improvements in speech/language/communication with increasing age. PGTR subjects showed significant improvements in sociability, a core feature of an ASD diagnosis, with increasing age, whereas NGTR subjects showed significant worsening in sociability with increasing age. Conclusion This study helps to elucidate different phenotypic ASD subtypes and may even indicate the need for differential diagnostic classifications. PMID:27555794

  2. Ovarian Aging-Like Phenotype in the Hyperandrogenism-Induced Murine Model of Polycystic Ovary

    PubMed Central

    Rezvanfar, Mohammad Amin; Shojaei Saadi, Habib A.; Gooshe, Maziar; Abdolghaffari, Amir Hosein; Baeeri, Maryam; Abdollahi, Mohammad

    2014-01-01

    There are prominently similar symptoms, effectors, and commonalities in the majority of characteristics between ovarian aging and polycystic ovarian syndrome (PCOS). Despite the approved role of oxidative stress in the pathogenesis of PCOS and aging, to our knowledge, the link between the PCO(S) and aging has not been investigated yet. In this study we investigated the possible exhibition of ovarian aging phenotype in murine model of PCO induced by daily oral administration of letrozole (1 mg/kg body weight) for 21 consecutive days in the female Wistar rats. Hyperandrogenization showed irregular cycles and histopathological characteristics of PCO which was associated with a significant increase in lipid peroxidation (LPO) and reactive oxygen species (ROS) and decrease in total antioxidant capacity (TAC) in serum and ovary. Moreover, serum testosterone, insulin and tumor necrosis factor-alpha (TNF-α) levels, and ovarian matrix metalloproteinase-2 (MMP-2) were increased in PCO rats compared with healthy controls, while estradiol and progesterone diminished. Almost all of these findings are interestingly found to be common with the characteristics identified with (ovarian) aging showing that hyperandrogenism-induced PCO in rat is associated with ovarian aging-like phenotypes. To our knowledge, this is the first report that provides evidence regarding the phenomenon of aging in PCO. PMID:24693338

  3. CCN1 contributes to skin connective tissue aging by inducing age-associated secretory phenotype in human skin dermal fibroblasts.

    PubMed

    Quan, Taihao; Qin, Zhaoping; Robichaud, Patrick; Voorhees, John J; Fisher, Gary J

    2011-08-01

    Dermal connective tissue collagen is the major structural protein in skin. Fibroblasts within the dermis are largely responsible for collagen production and turnover. We have previously reported that dermal fibroblasts, in aged human skin in vivo, express elevated levels of CCN1, and that CCN1 negatively regulates collagen homeostasis by suppressing collagen synthesis and increasing collagen degradation (Quan et al. Am J Pathol 169:482-90, 2006, J Invest Dermatol 130:1697-706, 2010). In further investigations of CCN1 actions, we find that CCN1 alters collagen homeostasis by promoting expression of specific secreted proteins, which include matrix metalloproteinases and proinflammatory cytokines. We also find that CCN1-induced secretory proteins are elevated in aged human skin in vivo. We propose that CCN1 induces an "Age-Associated Secretory Phenotype", in dermal fibroblasts, which mediates collagen reduction and fragmentation in aged human skin.

  4. Hypothesis: is yeast a clock model to study the onset of humans aging phenotypes?

    PubMed

    Mazzoni, Cristina; Mangiapelo, Eleonora; Palermo, Vanessa; Falcone, Claudio

    2012-01-01

    In this paper we report the growth and aging of yeast colonies derived from single cells isolated by micromanipulation and seeded one by one on separated plates to avoid growth interference by surrounding colonies. We named this procedure clonal life span, and it could represent a third way of studying aging together with the replicative life span and chronological life span. In this study we observed over time the formation of cell mass similar to the human "senile warts" (seborrheic keratoses), the skin lesions that often appear after 30 years of life and increase in number and size over the years. We observed that similar signs of aging appear in yeast colonies after about 27 days of growth and increase during aging. In this respect we hypothesize to use yeast as a clock to study the onset of human aging phenotypes.

  5. Severe asthma in school-age children: evaluation and phenotypic advances.

    PubMed

    Coverstone, Andrea; Bacharier, Leonard B; Fitzpatrick, Anne M

    2015-05-01

    Although the majority of children with asthma have a favorable clinical response to treatment with low to moderate doses of inhaled corticosteroids (ICS), a small subset of children have "severe" asthma characterized by ongoing symptoms and airway inflammation despite treatment with high doses of ICS and even oral corticosteroids. Although there is symptom heterogeneity in the affected children, children with severe asthma share the risk for adverse outcomes, including recurrent and potentially life-threatening exacerbations, which contribute to substantial economic burden. This article reviews current knowledge of severe asthma in school-age children (age 6-17 years) with a focus on recent literature published after January 2012. Clinical management approaches for children with severe asthma are discussed as well as current phenotyping efforts and emerging phenotypic-directed therapies that may be of benefit for subpopulations of children with severe asthma in the future.

  6. Phenotype screening for genetically deermined age-onset disorders and increased longevity in ENU-mutagenized mice

    SciTech Connect

    Johnson, Dabney K; Rinchik, Eugene M; Moustaid-Moussa, Naima; Miller, Darla R; Williams, Robert; Michaud III, Edward J; Jablonski, Monica M.; Elberger, Andrea; Hamre, Kristin M.; Smeyne, Richard; Chesler, Elissa J; Goldowitz, Daniel

    2005-01-01

    With the goal of discovering genes that contribute to late-onset neurological and ocular disorders and also genes that extend the healthy life span in mammals, we are phenotyping mice carrying new mutations induced by the chemical N-ethyl-N-nitrosourea (ENU). The phenotyping plan includes basic behavioral, neurohistological, and vision testing in sibling cohorts of mice aged to 18 months, and then evaluation for markers of growth trajectory and stress response in these same cohorts aged up to 28 months. Statistical outliers are identified by comparison to test results of similar aged cohorts, and potential mutants are recovered for re-aging to confirm heritability of the phenotype.

  7. Can accelerated aqueous aging simulate in vivo oxidation of gamma-sterilized UHMWPE?

    PubMed

    Mazzucco, Daniel C; Dumbleton, John; Kurtz, Steven M

    2006-10-01

    Oxidation of ultrahigh molecular weight polyethylene (UHMWPE) gamma-sterilized arthroplasty components occurs in vivo. Though accelerated in vitro protocols have been developed to test the relative oxidation resistance of various types of UHMWPE, it is desirable to develop an accelerated aging protocol that more closely approximates the in vivo environment. The goal of this study was to investigate the effects of temperature, solute, and oxygen partial pressure in aqueous media on the oxidation of gamma-sterilized UHMWPE, as the basis for the development of improved accelerated aging protocols. The accelerated oxidation behavior of gamma-sterilized GUR 1150 was studied at 60 and 70 degrees C in an open vessel filled with distilled water or PBS in equilibrium with a controlled partial pressure of oxygen. The extent of oxidation was assessed using standardized mechanical and chemical evaluation techniques (small punch and Fourier transform infrared spectroscopy). Accelerated oxidation of UHMWPE was achieved in aqueous environments; however, both clinically relevant and nonrelevant oxidation species (e.g., aldehydes) were observed for long aging times at 60 degrees C, and for all aging times at 70 degrees C. These findings point the way to the development of an accelerated aging protocol. The current data, considered in conjunction with real-time aging studies, suggest that a temperature between body temperature and 60 degrees C may accelerate oxidative degradation without altering the oxidative patterns encountered in vivo.

  8. Accelerated aging of extruded dielectric power cables. Part 1; Control and monitoring methodology

    SciTech Connect

    Walton, M.S.; Smith, J.T. III ); Thue, W.A. )

    1992-04-01

    In accelerated cable life testing of power cables, cable samples are usually subjected to elevated voltages and temperatures in the presence of water in order to promote aging of the insulation and premature failures through the treeing mechanism. Failure to accurately control and monitor these accelerating facts can have adverse effects on test results and can lead to erroneous conclusions. In this paper, a new and improved accelerated cable life test is described. Through the use of programmable logic controllers (PLCs), very precise and consistent control of the accelerated aging process has been achieved. A computer has been utilized to make continuous real-time data acquisition and storage to key operating parameters possible. This precise control of monitoring methodology has permitted the study of the synergistic effects of voltage and temperature on the accelerated aging of full-sized cables in the laboratory.

  9. GPU-Accelerated Molecular Modeling Coming Of Age

    PubMed Central

    Stone, John E.; Hardy, David J.; Ufimtsev, Ivan S.

    2010-01-01

    Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualization of molecular structures and animation of trajectories resulting from molecular dynamics simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be exploited to accelerate many scientific computations, typically providing about one order of magnitude speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper surveys the development of molecular modeling algorithms that leverage GPU computing, the advances already made and remaining issues to be resolved, and the continuing evolution of GPU technology that promises to become even more useful to molecular modeling. Hardware acceleration with commodity GPUs is expected to benefit the overall computational biology community by bringing teraflops performance to desktop workstations and in some cases potentially changing what were formerly batch-mode computational jobs into interactive tasks. PMID:20675161

  10. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The innate immune cell populations that mediate metazoan parasite expulsion remain largely undefined. We examined the role of innate cells in the immune response to the nematode parasite Nippostrongylus brasiliensis hypothesizing that they may mediate the markedly accelerated CD4+ T cell-independen...

  11. Lipid-Laden Multilocular Cells in the Aging Thymus Are Phenotypically Heterogeneous

    PubMed Central

    Langhi, Larissa G. P.; Andrade, Leonardo R.; Shimabukuro, Marilia Kimie; van Ewijk, Willem; Taub, Dennis D.; Borojevic, Radovan; de Mello Coelho, Valeria

    2015-01-01

    Intrathymic lipid-laden multilocular cells (LLMC) are known to express pro-inflammatory factors that might regulate functional activity of the thymus. However, the phenotype of age-associated intrathymic LLMC is still controversial. In this study, we evaluated LLMC density in the aging thymus and better characterized their distribution, ultrastructure and phenotype. Our results show an increased density of LLMC in the thymus from 03 to 24 months of age. Morphologically, intrathymic LLMC exhibit fibroblastoid fusiform, globular or stellate shapes and can be found in the subcapsular region as well as deeper in the parenchyma, including the perivascular area. Some parenchymal LLMC were like telocytes accumulating lipids. We identified lipid droplets with different electrondensities, lipofuscin granules and autolipophagosome-like structures, indicating heterogeneous lipid content in these cells. Autophagosome formation in intrathymic LLMC was confirmed by positive staining for beclin-1 and perilipin (PLIN), marker for lipid droplet-associated proteins. We also found LLMC in close apposition to thymic stromal cells, endothelial cells, mast cells and lymphocytes. Phenotypically, we identified intrathymic LLMC as preadipocytes (PLIN+PPARγ2+), brown adipocytes (PLIN+UCP1+), macrophages (PLIN+Iba-1+) or pericytes (PLIN+NG2+) but not epithelial cells (PLIN- panCK+). These data indicate that intrathymic LLMC are already present in the young thymus and their density significantly increases with age. We also suggest that LLMC, which are morphologically distinct, establish direct contact with lymphocytes and interact with stromal cells. Finally, we evidence that intrathymic LLMC correspond to not only one but to distinct cell types accumulating lipids. PMID:26509710

  12. Lipid-Laden Multilocular Cells in the Aging Thymus Are Phenotypically Heterogeneous.

    PubMed

    Langhi, Larissa G P; Andrade, Leonardo R; Shimabukuro, Marilia Kimie; van Ewijk, Willem; Taub, Dennis D; Borojevic, Radovan; de Mello Coelho, Valeria

    2015-01-01

    Intrathymic lipid-laden multilocular cells (LLMC) are known to express pro-inflammatory factors that might regulate functional activity of the thymus. However, the phenotype of age-associated intrathymic LLMC is still controversial. In this study, we evaluated LLMC density in the aging thymus and better characterized their distribution, ultrastructure and phenotype. Our results show an increased density of LLMC in the thymus from 03 to 24 months of age. Morphologically, intrathymic LLMC exhibit fibroblastoid fusiform, globular or stellate shapes and can be found in the subcapsular region as well as deeper in the parenchyma, including the perivascular area. Some parenchymal LLMC were like telocytes accumulating lipids. We identified lipid droplets with different electrondensities, lipofuscin granules and autolipophagosome-like structures, indicating heterogeneous lipid content in these cells. Autophagosome formation in intrathymic LLMC was confirmed by positive staining for beclin-1 and perilipin (PLIN), marker for lipid droplet-associated proteins. We also found LLMC in close apposition to thymic stromal cells, endothelial cells, mast cells and lymphocytes. Phenotypically, we identified intrathymic LLMC as preadipocytes (PLIN+PPARγ2+), brown adipocytes (PLIN+UCP1+), macrophages (PLIN+Iba-1+) or pericytes (PLIN+NG2+) but not epithelial cells (PLIN- panCK+). These data indicate that intrathymic LLMC are already present in the young thymus and their density significantly increases with age. We also suggest that LLMC, which are morphologically distinct, establish direct contact with lymphocytes and interact with stromal cells. Finally, we evidence that intrathymic LLMC correspond to not only one but to distinct cell types accumulating lipids.

  13. Aging as accelerated accumulation of somatic variants: whole-genome sequencing of centenarian and middle-aged monozygotic twin pairs.

    PubMed

    Ye, Kai; Beekman, Marian; Lameijer, Eric-Wubbo; Zhang, Yanju; Moed, Matthijs H; van den Akker, Erik B; Deelen, Joris; Houwing-Duistermaat, Jeanine J; Kremer, Dennis; Anvar, Seyed Yahya; Laros, Jeroen F J; Jones, David; Raine, Keiran; Blackburne, Ben; Potluri, Shobha; Long, Quan; Guryev, Victor; van der Breggen, Ruud; Westendorp, Rudi G J; 't Hoen, Peter A C; den Dunnen, Johan; van Ommen, Gert Jan B; Willemsen, Gonneke; Pitts, Steven J; Cox, David R; Ning, Zemin; Boomsma, Dorret I; Slagboom, P Eline

    2013-12-01

    It has been postulated that aging is the consequence of an accelerated accumulation of somatic DNA mutations and that subsequent errors in the primary structure of proteins ultimately reach levels sufficient to affect organismal functions. The technical limitations of detecting somatic changes and the lack of insight about the minimum level of erroneous proteins to cause an error catastrophe hampered any firm conclusions on these theories. In this study, we sequenced the whole genome of DNA in whole blood of two pairs of monozygotic (MZ) twins, 40 and 100 years old, by two independent next-generation sequencing (NGS) platforms (Illumina and Complete Genomics). Potentially discordant single-base substitutions supported by both platforms were validated extensively by Sanger, Roche 454, and Ion Torrent sequencing. We demonstrate that the genomes of the two twin pairs are germ-line identical between co-twins, and that the genomes of the 100-year-old MZ twins are discerned by eight confirmed somatic single-base substitutions, five of which are within introns. Putative somatic variation between the 40-year-old twins was not confirmed in the validation phase. We conclude from this systematic effort that by using two independent NGS platforms, somatic single nucleotide substitutions can be detected, and that a century of life did not result in a large number of detectable somatic mutations in blood. The low number of somatic variants observed by using two NGS platforms might provide a framework for detecting disease-related somatic variants in phenotypically discordant MZ twins. PMID:24182360

  14. Comparative Proteomic Profiling of Divergent Phenotypes for Water Holding Capacity across the Post Mortem Ageing Period in Porcine Muscle Exudate.

    PubMed

    Di Luca, Alessio; Hamill, Ruth M; Mullen, Anne Maria; Slavov, Nikolai; Elia, Giuliano

    2016-01-01

    Two dimensional Difference Gel Electrophoresis (2-D DIGE) and mass spectrometry were applied to investigate the changes in metabolic proteins that occur over a seven day (day 1, 3 and 7) post mortem ageing period in porcine centrifugal exudate from divergent meat quality phenotypes. The objectives of the research were to enhance our understanding of the phenotype (water holding capacity) and search for biomarkers of this economically significant pork quality attribute. Major changes in protein abundance across nine phenotype-by-time conditions were observed. Proteomic patterns were dominated by post mortem ageing timepoint. Using a machine learning algorithm (l1-regularized logistic regression), a model was derived with the ability to discriminate between high drip and low drip phenotypes using a subset of 25 proteins with an accuracy of 63%. Models discriminating between divergent phenotypes with accuracy of 72% and 73% were also derived comparing respectively, high drip plus intermediate phenotype (considered as one phenotype) versus low drip and comparing low drip plus intermediate phenotype (considered as one phenotype) versus high drip. In all comparisons, the general classes of discriminatory proteins identified include metabolic enzymes, stress response, transport and structural proteins. In this research we have enhanced our understanding of the protein related processes underpinning this phenotype and provided strong data to work toward development of protein biomarkers for water holding capacity.

  15. Comparative Proteomic Profiling of Divergent Phenotypes for Water Holding Capacity across the Post Mortem Ageing Period in Porcine Muscle Exudate

    PubMed Central

    Di Luca, Alessio; Hamill, Ruth M.; Mullen, Anne Maria; Slavov, Nikolai; Elia, Giuliano

    2016-01-01

    Two dimensional Difference Gel Electrophoresis (2-D DIGE) and mass spectrometry were applied to investigate the changes in metabolic proteins that occur over a seven day (day 1, 3 and 7) post mortem ageing period in porcine centrifugal exudate from divergent meat quality phenotypes. The objectives of the research were to enhance our understanding of the phenotype (water holding capacity) and search for biomarkers of this economically significant pork quality attribute. Major changes in protein abundance across nine phenotype-by-time conditions were observed. Proteomic patterns were dominated by post mortem ageing timepoint. Using a machine learning algorithm (l1-regularized logistic regression), a model was derived with the ability to discriminate between high drip and low drip phenotypes using a subset of 25 proteins with an accuracy of 63%. Models discriminating between divergent phenotypes with accuracy of 72% and 73% were also derived comparing respectively, high drip plus intermediate phenotype (considered as one phenotype) versus low drip and comparing low drip plus intermediate phenotype (considered as one phenotype) versus high drip. In all comparisons, the general classes of discriminatory proteins identified include metabolic enzymes, stress response, transport and structural proteins. In this research we have enhanced our understanding of the protein related processes underpinning this phenotype and provided strong data to work toward development of protein biomarkers for water holding capacity. PMID:26950297

  16. Hedgehog signaling maintains hair follicle stem cell phenotype in young and aged human skin.

    PubMed

    Rittié, Laure; Stoll, Stefan W; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2009-12-01

    Skin hair follicles (HF) contain bulge stem cells (SC) that regenerate HFs during hair cycles, and repair skin epithelia following injury. As natural aging is associated with decreased skin repair capacity in humans, we have investigated the impact of age on human scalp HF bulge cell number and function. Here, we isolated human bulge cells, characterized as CD200+/KRT15+/KRT19+ cells of the HF, by dissection-combined CD200 selection in young and aged human skin. Targeted transcriptional profiling indicates that KRT15, KRT19, Dkk3, Dkk4, Tcf3, S100A4, Gas1, EGFR and CTGF/CCN2 are also preferentially expressed by human bulge cells, compared to differentiated HF keratinocytes (KC). Our results demonstrate that aging does not alter expression or localization of these HF SC markers. In addition, we could not detect significant differences in HF density or bulge cell number between young and aged human scalp skin. Interestingly, hedgehog (Hh) signaling is activated in human bulge cells in vivo, and down-regulated in differentiated HF KCs, both in young and aged skin. In addition, activation of Hh signaling by lentivirus-mediated overexpression of transcription factor Gli1 induces transcription of HF SC markers KRT15, KRT19, and Gas1, in cultured KCs. Together with previously reported knock-out mouse results, these data suggest a role for Hh signaling in maintaining bulge cell phenotype in young and aged human skin.

  17. Associations between a Polymorphism in the Pleiotropic GCKR and Age-Related Phenotypes: The HALCyon Programme

    PubMed Central

    Alfred, Tamuno; Ben-Shlomo, Yoav; Cooper, Rachel; Hardy, Rebecca; Deary, Ian J.; Elliott, Jane; Harris, Sarah E.; Kivimaki, Mika; Kumari, Meena; Power, Chris; Starr, John M.; Kuh, Diana; Day, Ian N. M.

    2013-01-01

    Background The glucokinase regulatory protein encoded by GCKR plays an important role in glucose metabolism and a single nucleotide polymorphism (SNP) rs1260326 (P446L) in the gene has been associated with several age-related biomarkers, including triglycerides, glucose, insulin and apolipoproteins. However, associations between SNPs in the gene and other ageing phenotypes such as cognitive and physical capability have not been reported. Methods As part of the Healthy Ageing across the Life Course (HALCyon) collaborative research programme, men and women from five UK cohorts aged between 44 and 90+ years were genotyped for rs1260326. Meta-analysis was used to pool within-study genotypic associations between the SNP and several age-related phenotypes, including body mass index (BMI), blood lipid levels, lung function, and cognitive and physical capability. Results We confirm the associations between the minor allele of the SNP and higher triglycerides and lower glucose levels. We also observed a triglyceride-independent association between the minor allele and lower BMI (pooled beta on z-score = −0.04, p-value = 0.0001, n = 16,251). Furthermore, there was some evidence for gene-environment interactions, including physical activity attenuating the effects on triglycerides. However, no associations were observed with measures of cognitive and physical capability. Conclusion Findings from middle-aged to older adults confirm associations between rs1260326 GCKR and triglycerides and glucose, suggest possible gene-environment interactions, but do not provide evidence that its relevance extends to cognitive and physical capability. PMID:23894584

  18. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels

    PubMed Central

    Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F.; Eszes, Marika; Faull, Richard L.M.; Curtis, Maurice A.; Waldvogel, Henry J.; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V.; Coppola, Giovanni; Yang, X. William

    2016-01-01

    Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=−0.41, p=5.5×10−8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels. PMID:27479945

  19. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels.

    PubMed

    Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F; Eszes, Marika; Faull, Richard L M; Curtis, Maurice A; Waldvogel, Henry J; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V; Coppola, Giovanni; Yang, X William

    2016-07-01

    Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=-0.41, p=5.5×10-8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels. PMID:27479945

  20. Does smoking, age or gender affect the protein phenotype of extracellular vesicles in plasma?

    PubMed

    Bæk, R; Varming, K; Jørgensen, M M

    2016-08-01

    Extracellular vesicles (EVs) are involved in several diseases, which have formed the basis for the potential use of EV analyses in a clinical setting. The protein phenotype of EVs can provide information on the functionality of the vesicles and may be used for identification of disease-related biomarkers. With this extensive study of 161 healthy individuals it was elucidated that certain markers of plasma EVs are influenced by demographic variations such as gender, age and smoking status. When the purpose is to use EVs as a diagnostic tool, it should be emphasized how important it is to choose the correct demographic group when comparing marker levels of plasma EVs. PMID:27470710

  1. Nylon 6.6 accelerated aging studies : thermal-oxidative degradation and its interaction with hydrolysis.

    SciTech Connect

    Bernstein, Robert; Derzon, Dora Kay; Gillen, Kenneth T.

    2004-06-01

    Accelerated aging of Nylon 6.6 fibers used in parachutes has been conducted by following the tensile strength loss under both thermal-oxidative and 100% relative humidity conditions. Thermal-oxidative studies (air circulating ovens) were performed for time periods of weeks to years at temperatures ranging from 37 C to 138 C. Accelerated aging humidity experiments (100% RH) were performed under both an argon atmosphere to examine the 'pure' hydrolysis pathway, and under an oxygen atmosphere (oxygen partial pressure close to that occurring in air) to mimic true aging conditions. As expected the results indicated that degradation caused by humidity is much more important than thermal-oxidative degradation. Surprisingly when both oxygen and humidity were present the rate of degradation was dramatically enhanced relative to humidity aging in the absence of oxygen. This significant and previously unknown phenomena underscores the importance of careful accelerated aging that truly mimics real world storage conditions.

  2. Phenotypes of Aging Postovulatory Oocytes After Somatic Cell Nuclear Transfer in Mice.

    PubMed

    Lee, Ah Reum; Shimoike, Takashi; Wakayama, Teruhiko; Kishigami, Satoshi

    2016-06-01

    Oocytes rapidly lose their developmental potential after ovulation, termed postovulatory oocyte aging, and often exhibit characteristic phenotypes, such as cytofragmentation, abnormal spindle shapes, and chromosome misalignments. Here, we reconstructed mouse oocytes using somatic cell nuclear transfer (SCNT) to reveal the effect of somatic cell-derived nuclei on oocyte physiology during aging. Normal oocytes started undergoing cytofragmentation 24 hours after oocyte collection; however, this occurred earlier in SCNT oocytes and was more severe at 48 hours, suggesting that the transferred somatic cell nuclei affected oocyte physiology. We found no difference in the status of acetylated α-tubulin (Ac-Tub) and α-tubulin (Tub) between normal and SCNT aging oocytes, but unlike normal oocytes, aging SCNT oocytes did not have astral microtubules. Interestingly, aging SCNT oocytes displayed more severely scattered chromosomes or irregularly shaped spindles. Observations of the microfilaments showed that, in normal oocytes, there was a clear actin ring beneath the plasma membrane and condensed microfilaments around the spindle (the actin cap) at 0 hours, and the actin filaments started degenerating at 1 hour, becoming completely disrupted and distributed to the cytoplasm at 24 hours. By contrast, in SCNT oocytes, an actin cap formed around the transplanted nuclei within 1 hour of SCNT, which was still present at 24 hours. Thus, SCNT oocytes age in a similar but distinct way, suggesting that they not only contain nuclei with abnormal epigenetics but are also physiologically different. PMID:27253626

  3. Accelerated heat-aging studies on fluororubber in various media

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.; Silver, R. H.; Liu, S. S.

    1976-01-01

    Heat-aging studies were conducted on fluororubber (copolymers of vinylidene fluoride and perfluoropropylene) using N,N-dicinnamylidene-1,6-hexanediamine, a Schiff's base of 1,6-hexanediamine, and MgO as acid acceptor. The principal technique employed was chemical stress relaxation for determining network changes brought about in the heat-aged fluororubber. This technique was backed up by swelling measurements, gel permeation chromatography, and IR spectroscopy. Stress relaxation curves are plotted for a wide range of variation in parameters (time, crosslinking density, state of curing, temperature, intermittent and continuous relaxation).

  4. Polycystic ovary syndrome (PCOS)-like phenotypes in the d-galactose-induced aging mouse model.

    PubMed

    Park, Ji-Hun; Choi, Tae-Saeng

    2012-11-01

    The D-galactose (D-gal)-induced animal model, which is established by consecutive subcutaneous d-gal injections for approximately 6weeks, has been frequently used for aging research. This animal model has been shown to accelerate aging of the brain, kidneys, liver, and blood cells. However, aging of the female reproductive organs in this animal model has not been reported. The aim of this study was to investigate changes in the ovary in the d-gal-induced aging mouse model. First, we evaluated anti-Müllerian hormone (AMH) as a marker of ovarian aging in blood plasma. We speculated there would be lower AMH levels in d-gal-treated mice because ovarian aging would be induced by d-gal, as reported for other tissues. However, the results showed that AMH levels in d-gal-treated mice were approximately four-fold higher than control mice. Abnormally high AMH levels are detected in ovarian cancer and polycystic ovary syndrome (PCOS) patients. Therefore, we examined PCOS-related markers in this mouse model. Total testosterone levels were high and abnormal estrous cycles were induced in d-gal-treated mice. These changes, including AMH levels, in d-gal-treated mice were inhibited by aminoguanidine treatment, an advanced glycation end product reducer. In addition, ovarian cysts were observed in some d-gal-treated mice. These results indicate that with respect to female reproduction, d-gal-treated mice are suitable for PCOS studies, rather than aging studies.

  5. Low intensity laser therapy accelerates muscle regeneration in aged rats

    PubMed Central

    Vatansever, Fatma; Rodrigues, Natalia C.; Assis, Livia L.; Peviani, Sabrina S.; Durigan, Joao L.; Moreira, Fernando M.A.; Hamblin, Michael R.; Parizotto, Nivaldo A.

    2013-01-01

    Background Elderly people suffer from skeletal muscle disorders that undermine their daily activity and quality of life; some of these problems can be listed as but not limited to: sarcopenia, changes in central and peripheral nervous system, blood hypoperfusion, regenerative changes contributing to atrophy, and muscle weakness. Determination, proliferation and differentiation of satellite cells in the regenerative process are regulated by specific transcription factors, known as myogenic regulatory factors (MRFs). In the elderly, the activation of MRFs is inefficient which hampers the regenerative process. Recent studies found that low intensity laser therapy (LILT) has a stimulatory effect in the muscle regeneration process. However, the effects of this therapy when associated with aging are still unknown. Objective This study aimed to evaluate the effects of LILT (λ=830 nm) on the tibialis anterior (TA) muscle of aged rats. Subjects and methods The total of 56 male Wistar rats formed two population sets: old and young, with 28 animals in each set. Each of these sets were randomly divided into four groups of young rats (3 months of age) with n=7 per group and four groups of aged rats (10 months of age) with n=7 per group. These groups were submitted to cryoinjury + laser irradiation, cryoinjury only, laser irradiation only and the control group (no cryoinjury/no laser irradiation). The laser treatment was performed for 5 consecutive days. The first laser application was done 24 h after the injury (on day 2) and on the seventh day, the TA muscle was dissected and removed under anesthesia. After this the animals were euthanized. Histological analyses with toluidine blue as well as hematoxylin-eosin staining (for counting the blood capillaries) were performed for the lesion areas. In addition, MyoD and VEGF mRNA was assessed by quantitative polymerase chain reaction. Results The results showed significant elevation (p<0.05) in MyoD and VEGF genes expression levels

  6. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stromal cells (MSCs) are attractive for cell-based therapies ranging from regenerative medicine and tissue engineering to immunomodulation. However, clinical efficacy is variable and it is unclear how the phenotypes defining bone marrow (BM)-derived MSCs as well as donor characteristics affect their functional properties. Methods BM-MSCs were isolated from 53 (25 female, 28 male; age: 13 to 80 years) donors and analyzed by: (1) phenotype using flow cytometry and cell size measurement; (2) in vitro growth kinetics using population doubling time; (3) colony formation capacity and telomerase activity; and (4) function by in vitro differentiation capacity, suppression of T cell proliferation, cytokines and trophic factors secretion, and hormone and growth factor receptor expression. Additionally, expression of Oct4, Nanog, Prdm14 and SOX2 mRNA was compared to pluripotent stem cells. Results BM-MSCs from younger donors showed increased expression of MCAM, VCAM-1, ALCAM, PDGFRβ, PDL-1, Thy1 and CD71, and led to lower IL-6 production when co-cultured with activated T cells. Female BM-MSCs showed increased expression of IFN-γR1 and IL-6β, and were more potent in T cell proliferation suppression. High-clonogenic BM-MSCs were smaller, divided more rapidly and were more frequent in BM-MSC preparations from younger female donors. CD10, β1integrin, HCAM, CD71, VCAM-1, IFN-γR1, MCAM, ALCAM, LNGFR and HLA ABC were correlated to BM-MSC preparations with high clonogenic potential and expression of IFN-γR1, MCAM and HLA ABC was associated with rapid growth of BM-MSCs. The mesodermal differentiation capacity of BM-MSCs was unaffected by donor age or gender but was affected by phenotype (CD10, IFN-γR1, GD2). BM-MSCs from female and male donors expressed androgen receptor and FGFR3, and secreted VEGF-A, HGF, LIF, Angiopoietin-1, basic fibroblast growth factor (bFGF) and NGFB. HGF secretion correlated negatively to the expression of CD71, CD140b and

  7. Effect of accelerated aging on the viscoelastic properties of a medical grade silicone.

    PubMed

    Mahomed, Aziza; Hukins, David W L; Kukureka, Stephen N

    2015-01-01

    The viscoelastic properties of cylinders (diameter 5 mm, height 2.2 ± 0.2 mm) of Nagor silicone elastomer of medium hardness, were investigated before and after the specimens had undergone accelerated aging in saline solution at 70°C for 38, 76 and 114 days (to simulate aging at 37°C, for 1, 2 and 3 years, respectively). All sets of specimens were immersed in physiological saline solution at 37°C during testing and the properties were measured using dynamic mechanical analysis (DMA). A sinusoidal cyclic compression of 40 N ± 5 N was applied over a frequency range, f, of 0.02-25 Hz. Values of the storage, E', and loss, E″, moduli were found to depend on f; the dependence of E' or E″ on the logarithm (base 10) of f was represented by a second-order polynomial. After accelerated aging, the E' and E″ values did not increase significantly (p<0.05). Furthermore, scanning electron microscopy (SEM) showed that accelerated aging did not affect the surface morphology of silicone. Attenuated total reflectance Fourier transform infra-red spectroscopy (ATR-FTIR) showed that accelerated aging had a negligible effect on the surface chemical structures of the material. Differential scanning calorimetry (DSC) showed no changes to the bulk properties of silicone, following accelerated aging.

  8. Age modifies the genotype-phenotype relationship for the bitter receptor TAS2R38

    PubMed Central

    2010-01-01

    Background The purpose of this study was to investigate the effect of TAS2R38 haplotypes and age on human bitter taste perception. Results Children (3 to 10 yrs), adolescents (11 to 19 yrs) and adults (mostly mothers, 20 to 55 yrs (N = 980) were measured for bitter taste thresholds for 6-n-propylthiouracil (PROP) and genotyped for three polymorphisms of the AS2R38 gene (A49P, V262A, I296V). Subjects were grouped by haplotype and age, as well as sex and race/ethnicity, and compared for PROP thresholds. Subjects with the same haplotype were similar in bitter threshold regardless of race/ethnicity (all ages) or sex (children and adolescents; all p-values > 0.05) but age was a modifier of the genotype-phenotype relationship. Specifically, AVI/PAV heterozygous children could perceive a bitter taste at lower PROP concentrations than could heterozygous adults, with the thresholds of heterozygous adolescents being intermediate (p < 0.001). Similar age effects were not observed for subjects with the PAV/PAV or AVI/AVI homozygous haplotypes (p > 0.05) perhaps because there is less variation in taste perception among these homozygotes. Conclusions These data imply that the change in PROP bitter sensitivity which occurs over the lifespan (from bitter sensitive to less so) is more common in people with a particular haplotype combination, i.e., AVI/PAV heterozygotes. PMID:20594349

  9. Ontogenetic loss of phenotypic plasticity of age at metamorphosis in tadpoles

    SciTech Connect

    Hensley, F.R. )

    1993-12-01

    Amphibian larvae exhibit phenotypic plasticity in size at metamorphosis and duration of the larval period. I used Pseudacris crucifer tadpoles to test two models for predicting tadpole age and size at metamorphosis under changing environmental conditions. The Wilbur-Collins model states that metamorphosis is initiated as a function of a tadpole's size and relative growth rate, and predicts that changes in growth rate throughout the larval period affect age and size at metamorphosis. An alternative model, the fixed-rate model, states that age at metamorphosis is fixed early in larval life, and subsequent changes in growth rate will have no effect on the length of the larval period. My results confirm that food supplies affect both age and size at metamorphosis, but developmental rates became fixed at approximately Gosner (1960) stages 35-37. Neither model completely predicted these results. I suggest that the generally accepted Wilbur-Collins model is improved by incorporating a point of fixed developmental timing. Growth trajectories predicted from this modified model fit the results of this study better than trajectories based on either of the original models. The results of this study suggests a constraint that limits the simultaneous optimization of age and size at metamorphosis. 32 refs., 5 figs., 1 tab.

  10. Interlaboratory reproducibility of standard accelerated aging methods for oxidation of UHMWPE.

    PubMed

    Kurtz, S M; Muratoglu, O K; Buchanan, F; Currier, B; Gsell, R; Greer, K; Gualtieri, G; Johnson, R; Schaffner, S; Sevo, K; Spiegelberg, S; Shen, F W; Yau, S S

    2001-07-01

    During accelerating aging, experimental uncertainty may arise due to variability in the oxidation process, or due to limitations in the technique that is ultimately used to measure oxidation. The purpose of the present interlaboratory study was to quantify the repeatability and reproducibility of standard accelerated aging methods for ultra-high molecular weight polyethylene (UHMWPE). Sections (200 microm thick) were microtomed from the center of an extruded rod of GUR 4150 HP, gamma irradiated in air or nitrogen, and circulated to 12 institutions in the United States and Europe for characterization of oxidation before and after accelerated aging. Specimens were aged for 3 weeks at 80 degrees C in an air circulating oven or for 2 weeks at 70 degrees C in an oxygen bomb (maintained at 503 kPa (5 atm.) of O2) in accordance with the two standard protocols described in ASTM F 2003-00. FTIR spectra were collected from each specimen within 24 h of the start and finish of accelerated aging, and oxidation indices were calculated by normalizing the peak area of the carbonyl region by the reference peak areas at 1370 or 2022 cm(-1). The mean relative interlaboratory uncertainty of the oxidation data was 78.5% after oven aging and 129.1% after bomb aging. The oxidation index measurement technique was not found to be a significant factor in the reproducibility. Comparable relative intrainstitutional uncertainty was observed after oven aging and bomb aging. For both aging methods, institutions successfully discriminated between air-irradiated and control specimens. However, the large interinstitutional variation suggests that absolute performance standards for the oxidation index of UHMWPE after accelerated aging may not be practical at the present time.

  11. Traumatic stress, oxidative stress and posttraumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis

    PubMed Central

    Miller, Mark W.; Sadeh, Naomi

    2014-01-01

    Posttraumatic stress disorder (PTSD) is associated with elevated risk for a variety of age-related diseases and neurodegeneration. In this paper, we review evidence relevant to the hypothesis that chronic PTSD constitutes a form of persistent life stress that potentiates oxidative stress (OXS) and accelerates cellular aging. We provide an overview of empirical studies that have examined the effects of psychological stress on OXS, discuss the stress-perpetuating characteristics of PTSD, and then identify mechanisms by which PTSD might promote OXS and accelerated aging. We review studies on OXS-related genes and the role that they may play in moderating the effects of PTSD on neural integrity and conclude with a discussion of directions for future research on antioxidant treatments and biomarkers of accelerated aging in PTSD. PMID:25245500

  12. Physical Property Changes in Plutonium from Accelerated Aging using Pu-238 Enrichment

    SciTech Connect

    Chung, B W; Choi, B W; Saw, C K; Thompson, S R; Woods, C H; Hopkins, D J; Ebbinghaus, B B

    2006-12-20

    We present changes in volume, immersion density, and tensile properties observed from accelerated aged plutonium alloys. Accelerated alloys (or spiked alloys) are plutonium alloys enriched with approximately 7.5 weight percent of the faster-decaying {sup 238}Pu to accelerate the aging process by approximately 17 times the rate of unaged weapons-grade plutonium. After sixty equivalent years of aging on spiked alloys, the dilatometry shows the samples at 35 C have swelled in volume by 0.15 to 0.17 % and now exhibit a near linear volume increase due to helium in-growth. The immersion density of spiked alloys shows a decrease in density, similar normalized volumetric changes (expansion) for spiked alloys. Tensile tests show increasing yield and engineering ultimate strength as spiked alloys are aged.

  13. Accelerated thermal aging of petroleum-based ferrofluids

    NASA Astrophysics Data System (ADS)

    Segal, V.; Nattrass, D.; Raj, K.; Leonard, D.

    1999-07-01

    The effect of elevated temperature on the physical and insulating properties of ferrofluid specifically developed for use as a liquid dielectric (D-fluid) for power transformers has been investigated. The D-fluid was produced as a colloidal mix of a specifically synthesized ferrofluid with a conventional mineral oil, and it was subjected to thermal aging conditions modeled after a typical power transformer where the insulation fluid is expected to retain its dielectric performance for about 40 years of continuous service in a sealed tank. The well-known Arrhenius relationship was employed to model "life in service" for up to 40 years at 105°C which corresponded to holding the samples in sealed jars for 10 weeks at 185°C. Another set of small ampules (5 ml) was prepared to test the main physical properties after even longer aging. D-fluid tested after a period of 34 and 50 weeks at 185°C showed no degradation of thermal or colloid stability. The dielectric colloid was also subjected to a 21 day-long test at 110°C in a sealed jar in the presence of typical transformer materials: copper, cellulose, and silicon steel (so-called "bomb" test). Finally, the ferrofluid went through an oxidation stability test (ASTM D2440). Test results show that the newly developed dielectric colloid satisfies the long-term service requirements the transformer users typically apply to conventional mineral oils.

  14. Fluorescence intensity of resin composites and dental tissues before and after accelerated aging: a comparative study.

    PubMed

    Takahashi, Marcos Kenzo; Vieira, Sergio; Rached, Rodrigo Nunes; de Almeida, Janaina Bertoncelo; Aguiar, Marcelo; de Souza, Evelise Machado

    2008-01-01

    This study quantitatively evaluated the fluorescence intensity of resin composites with different opacities and translucencies and determined changes in fluorescence after accelerated aging, using human enamel and dentin as controls. Six microhybrid and nanofilled composites, each in three different shades, were tested. Ten sound human incisors were used to obtain enamel and dentin specimens separately. Fluorescence measurements were obtained with a fluorescence spectrophotometer before (baseline) and after accelerated aging at 150 kJ energy for 120 hours. One-way analysis of variance (ANOVA) and Games-Howell multiple comparison tests were performed at a significance level of 0.05. Student's t-test was also used for comparison before and after aging. At baseline, there was no statistically significant difference (p>0.05) between the fluorescence intensity of dentin and any of the shades of Charisma or Opallis, Esthet-X dentin shade or Vit-l-escence enamel, or the translucent shades. After accelerated aging, all shades of the 4 Seasons, enamel and the translucent shades of Esthet-X had fluorescence intensities statistically similar to that of aged dentin (p>0.05). A significant reduction in fluorescence after aging (p<0.05) was observed for all the materials, except for human enamel and translucent Filtek Supreme XT. Accelerated aging reduced fluorescence in most of the composites evaluated.

  15. Are Anxiety Disorders Associated with Accelerated Aging? A Focus on Neuroprogression

    PubMed Central

    Perna, Giampaolo; Iannone, Giuseppe; Alciati, Alessandra; Caldirola, Daniela

    2016-01-01

    Anxiety disorders (AnxDs) are highly prevalent throughout the lifespan, with detrimental effects on daily-life functioning, somatic health, and quality of life. An emerging perspective suggested that AnxDs may be associated with accelerated aging. In this paper, we explored the association between AnxDs and hallmarks of accelerated aging, with a specific focus on neuroprogression. We reviewed animal and human findings that suggest an overlap between processes of impaired neurogenesis, neurodegeneration, structural, functional, molecular, and cellular modifications in AnxDs, and aging. Although this research is at an early stage, our review suggests a link between anxiety and accelerated aging across multiple processes involved in neuroprogression. Brain structural and functional changes that accompany normal aging were more pronounced in subjects with AnxDs than in coevals without AnxDs, including reduced grey matter density, white matter alterations, impaired functional connectivity of large-scale brain networks, and poorer cognitive performance. Similarly, molecular correlates of brain aging, including telomere shortening, Aβ accumulation, and immune-inflammatory and oxidative/nitrosative stress, were overrepresented in anxious subjects. No conclusions about causality or directionality between anxiety and accelerated aging can be drawn. Potential mechanisms of this association, limitations of the current research, and implications for treatments and future studies are discussed. PMID:26881136

  16. Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age.

    PubMed

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-03-09

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors.

  17. Combined effects of aging and inflammation on renin-angiotensin system mediate mitochondrial dysfunction and phenotypic changes in cardiomyopathies

    PubMed Central

    Burks, Tyesha N.; Marx, Ruth; Powell, Laura; Rucker, Jasma; Bedja, Djahida; Heacock, Elisa; Smith, Barbara J.; Foster, D. Brian; Kass, David; O'Rourke, Brian; Walston, Jeremy D.; Abadir, Peter M.

    2015-01-01

    Although the effects of aging and inflammation on the health of the cardiac muscle are well documented, the combined effects of aging and chronic inflammation on cardiac muscle are largely unknown. The renin-angiotensin system (RAS) has been linked independently to both aging and inflammation, but is understudied in the context of their collective effect. Thus, we investigated localized cardiac angiotensin II type I and type II receptors (AT1R, AT2R), downstream effectors, and phenotypic outcomes using mouse models of the combination of aging and inflammation and compared it to a model of aging and a model of inflammation. We show molecular distinction in the combined effect of aging and inflammation as compared to each independently. The combination maintained an increased AT1R:AT2R and expression of Nox2 and exhibited the lowest activity of antioxidants. Despite signaling pathway differences, the combined effect shared phenotypic similarities with aging including oxidative damage, fibrosis, and hypertrophy. These phenotypic similarities have dubbed inflammatory conditions as premature aging, but they are, in fact, molecularly distinct. Moreover, treatment with an AT1R blocker, losartan, selectively reversed the signaling changes and ameliorated adverse phenotypic effects in the combination of aging and inflammation as well as each independently. PMID:26221650

  18. Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy.

    PubMed

    Buford, Thomas W; Anton, Stephen D; Judge, Andrew R; Marzetti, Emanuele; Wohlgemuth, Stephanie E; Carter, Christy S; Leeuwenburgh, Christiaan; Pahor, Marco; Manini, Todd M

    2010-10-01

    Sarcopenia, the age-related loss of skeletal muscle mass, is a significant public health concern that continues to grow in relevance as the population ages. Certain conditions have the strong potential to coincide with sarcopenia to accelerate the progression of muscle atrophy in older adults. Among these conditions are co-morbid diseases common to older individuals such as cancer, kidney disease, diabetes, and peripheral artery disease. Furthermore, behaviors such as poor nutrition and physical inactivity are well-known to contribute to sarcopenia development. However, we argue that these behaviors are not inherent to the development of sarcopenia but rather accelerate its progression. In the present review, we discuss how these factors affect systemic and cellular mechanisms that contribute to skeletal muscle atrophy. In addition, we describe gaps in the literature concerning the role of these factors in accelerating sarcopenia progression. Elucidating biochemical pathways related to accelerated muscle atrophy may allow for improved discovery of therapeutic treatments related to sarcopenia.

  19. Phenotypic abnormalities observed in aged cloned mice from embryonic stem cells after long-term maintenance.

    PubMed

    Shimozawa, Nobuhiro; Sotomaru, Yusuke; Eguchi, Natsuko; Suzuki, Shuzo; Hioki, Kyoji; Usui, Toshimi; Kono, Tomohiro; Ito, Mamoru

    2006-09-01

    Somatic/embryonic stem cell cloning has made it possible to produce an individual genomically identical to another individual. However, the cloned animals have a variety of abnormalities caused by the aberrant gene modification, with insufficient reprogramming in cloning. We previously reported abnormalities in cloned mice at birth. In this study, we examined what abnormalities could be seen in cloned mice after long-term maintenance. The aged cloned mice showed multiple abnormalities: increase of body weight, some phenotypic abnormalities in the kidneys, testes and thymus, and lower urea nitrogen in their serum biochemical values. The kidneys of all cloned mice were hypertrophied, with a metamorphic or whitish appearance. The multiple lesions, including the enlarged renal pelvis and distension of the renal veins in histology, might be the result of urine accumulation by urinary tract obstruction. The testes of the cloned mice were atrophied, and showed no sperm formation in histology. In contrast, the thymus was rather hypertrophied, and a comparably increased number of lymphocytes were observed in the medulla, consisting mainly of T cells. By conducting a progeny test between the cloned mice, it was confirmed that these abnormalities in the aged cloned mice were not transmitted to their offspring, indicating that the incomplete reprogramming in clones might be in part responsible for the abnormalities detected in aged clones. These results indicate that the postnatal abnormalities observed in aged cloned mice are varied and can be restored through the germ line. PMID:16940284

  20. Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain.

    PubMed

    Poon, H F; Castegna, A; Farr, S A; Thongboonkerd, V; Lynn, B C; Banks, W A; Morley, J E; Klein, J B; Butterfield, D A

    2004-01-01

    The senescence-accelerated mouse (SAM) is a murine model of accelerated senescence that was established using phenotypic selection. The SAMP series includes nine substrains, each of which exhibits characteristic disorders. SAMP8 is known to exhibit age-dependent learning and memory deficits. In our previous study, we reported that brains from 12-month-old SAMP8 have greater protein oxidation, as well as lipid peroxidation, compared with brains from 4-month-old SAMP8 mice. In order to investigate the relation between age-associated oxidative stress on specific protein oxidation and age-related learning and memory deficits in SAMP8, we used proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. We report here that in 12 month SAMP8 mice brains the expressions of neurofilament triplet L protein, lactate dehydrogenase 2 (LDH-2), heat shock protein 86, and alpha-spectrin are significantly decreased, while the expression of triosephosphate isomerase (TPI) is increased compared with 4-month-old SAMP8 brains. We also report that the specific protein carbonyl levels of LDH-2, dihydropyrimidinase-like protein 2, alpha-spectrin and creatine kinase, are significantly increased in the brain of 12-month-old SAMP8 mice when compared with the 4-month-old SAMP8 brain. These findings are discussed in reference to the effect of specific protein oxidation and changes of expression on potential mechanisms of abnormal alterations in metabolism and neurochemicals, as well as to the learning and memory deficits in aged SAMP8 mice.

  1. Accelerated aging and flashover tests on 138 kV nonceramic line post insulators

    SciTech Connect

    Schneider, H.M.; Guidi, W.W. ); Burnham, J.T. ); Gorur, R.S. ); Hall, J.F. )

    1993-01-01

    The behavior of 138 kV nonceramic line post insulators is investigated by means of clean fog tests conducted before and after aging in a specially designed accelerated aging chamber. The laboratory aging cycles are justified on the basis of actual weather in the coastal regions of Florida. Analytical measurements quantifying the degree of artificial aging are discussed and comparisons of artificial aging with service experience are presented. Observations of audible noise and radio influence voltage during the clean fog tests are reported.

  2. Phenotypic plasticity in age at first reproduction of female northern sea otters (Enhydra lutris kenyoni)

    USGS Publications Warehouse

    Von Biela, V.R.; Gill, V.A.; Bodkin, J.L.; Burns, Jennifer M.

    2009-01-01

    Life-history theory predicts that within a species, reproduction and survival rates will differ among populations that differ in resource availability or predation rates through phenotypic plasticity. When populations are near carrying capacity (K) or when they are declining due to reduced prey resources, the average age at 1st reproduction (average AFR) is predicted to be older than in populations below K. Differences between the trajectories of northern sea otter (Enhydra lutris kenyoni) populations in Alaska provides an opportunity to examine phenotypic plasticity. Using premolar teeth or reproductive tracts, we estimated average AFR from demographically distinct populations of sea otters in Alaska. We obtained samples from 2 populations near K, Prince William Sound (PWS) and the Aleutian Archipelago (archived samples), and from 2populations below K, the Kodiak Archipelago and Sitka. The average AFR was lower in populations below K (3.60 years ??0.16 SD)compared to those near K (4.21 ?? 0.13 years, P <0.001), and differed among all populations, with the Aleutian population possessing the oldest average AFR (4.29 ?? 0.09 years) followed by PWS (4.05 ?? 0.24 years), Sitka (3.80 ?? 0.21 years), and Kodiak (3.19 ?? 0.37 years). The difference in average AFR among populations supports life-history theory and provides evidence of phenotypic plasticity in sea otters. Our findings highlight the value of using average AFR as a tool for monitoring mammalian populations. ?? 2009 American Society of Mammalogists.

  3. Premature Aging Phenotype in Mice Lacking High-Affinity Nicotinic Receptors: Region-Specific Changes in Layer V Pyramidal Cell Morphology.

    PubMed

    Konsolaki, Eleni; Skaliora, Irini

    2015-08-01

    The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons.

  4. Degradation of mechanical behavior in UHMWPE after natural and accelerated aging.

    PubMed

    Edidin, A A; Jewett, C W; Kalinowski, A; Kwarteng, K; Kurtz, S M

    2000-07-01

    Ultra-high molecular weight polyethylene (UHMWPE) is known to degrade during natural (shelf) aging following gamma irradiation in air, but the mechanical signature of degradation remains poorly understood. Accelerated aging methods have been developed to reproduce the natural aging process as well as to precondition total joint replacement components prior to joint simulator wear testing. In this study, we compared the mechanical behavior of naturally (shelf) aged and accelerated aged tibial inserts using a previously validated miniature specimen testing technique known as the small punch test. Tibial inserts made-of GUR 1120 and sterilized with 25 to 40 kGy of gamma radiation (in air) in 1988, 1993, and 1997 were obtained; a subset of the 1997 implants were subjected to 4 weeks of accelerated aging in air at 80 degrees C. To determine the spatial variation of mechanical properties within each insert, miniature disk shaped specimens were machined from the surface and subsurface regions of the inserts. Analysis of variance of the test data showed that aging significantly affected the small punch test measures of elastic modulus, initial load, ultimate load, ultimate displacement, and work to failure. The accelerated aging protocol was unable to reproduce the spatial mechanical profile seen in shelf aged components, but it did mechanically degrade the surface of GUR 1120 tibial components to an extent comparable to that seen after 10 years of natural aging. Test specimens showed a fracture morphology consistent with the decreased ductility and toughness which was corroborated by the small punch test metrics of this study. Our data support the hypothesis that UHMWPE undergoes a spatially nonuniform change towards a less ductile (more brittle) mechanical behavior after gamma irradiation in air and shelf aging.

  5. Accelerated epigenetic aging in brain is associated with pre-mortem HIV-associated neurocognitive disorders.

    PubMed

    Levine, Andrew J; Quach, Austin; Moore, David J; Achim, Cristian L; Soontornniyomkij, Virawudh; Masliah, Eliezer; Singer, Elyse J; Gelman, Benjamin; Nemanim, Natasha; Horvath, Steve

    2016-06-01

    HIV infection leads to age-related conditions in relatively young persons. HIV-associated neurocognitive disorders (HAND) are considered among the most prevalent of these conditions. To study the mechanisms underlying this disorder, researchers need an accurate method for measuring biological aging. Here, we apply a recently developed measure of biological aging, based on DNA methylation, to the study of biological aging in HIV+ brains. Retrospective analysis of tissue bank specimens and pre-mortem data was carried out. Fifty-eight HIV+ adults underwent a medical and neurocognitive evaluation within 1 year of death. DNA was obtained from occipital cortex and analyzed with the Illumina Infinium Human Methylation 450K platform. Biological age determined via the epigenetic clock was contrasted with chronological age to obtain a measure of age acceleration, which was then compared between those with HAND and neurocognitively normal individuals. The HAND and neurocognitively normal groups did not differ with regard to demographic, histologic, neuropathologic, or virologic variables. HAND was associated with accelerated aging relative to neurocognitively normal individuals, with average relative acceleration of 3.5 years. Age acceleration did not correlate with pre-mortem neurocognitive functioning or HAND severity. This is the first study to demonstrate that the epigenetic age of occipital cortex samples is associated with HAND status in HIV+ individuals pre-mortem. While these results suggest that the increased risk of a neurocognitive disorder due to HIV might be mediated by an epigenetic aging mechanism, future studies will be needed to validate the findings and dissect causal relationships and downstream effects. PMID:26689571

  6. Effects of fibers on the color change and stability of resin composites after accelerated aging.

    PubMed

    Tuncdemir, Ali Riza; Aykent, Filiz

    2012-01-01

    Composite resins were reinforced with glass and polyethylene fibers in this study, and the effect of fiber reinforcement on the color change of composite resins was investigated. After accelerated aging, the effect of fiber reinforcement on the color stability of composite resins was also examined. There were three experimental groups (n=12 disks per group): non-fiber-reinforced composite (non-FRC control), polyethylene fiber (Ribbond-THM)-reinforced composite, and glass fiber (everstick NET)-reinforced composite. According to the critical remarks of color change of National Bureau of Standarts (NSB), glass fiber-reinforced anterior composites showed trace color change and polyethylene-fiber reinforced composites showed slight color change before accelerated aging. After accelerated aging, both control and fiber-reinforced composite groups showed noticeable color change. It was concluded that both the types of fiber reinforcement and composite resin influenced the color change of fiber-reinforced composite resins.

  7. Different Phenotypic and Genotypic Presentations in Alcohol Dependence: Age at Onset Matters*

    PubMed Central

    Chen, Yu-Chu; Prescott, Carol A.; Walsh, Dermot; Patterson, Diana G.; Riley, Brien P.; Kendler, Kenneth S.; Kuo, Po-Hsiu

    2011-01-01

    Objective: Several theoretical typology models have been proposed to classify alcoholism into more homogeneous subtypes using various criteria, for which age at onset of alcohol dependence is shared across many models. We investigated the evidence for the distinction between early- versus late-onset alcoholism by examining relevant phenotypic and genotypic variables. Method: Data are from 1,248 individuals with alcohol dependence, who were interviewed to collect detailed clinical information. Early versus late onset of alcohol dependence was defined by the age at onset of 22 years. Odds ratio (OR) and Cohen's d were calculated as effect size for comparisons of clinical features between the two groups. We adjusted interviewed age and gender in logistic regression models. Case-control genetic analyses were conducted for the association between HTR1B, SLC6A4, DRD2, and OPRμ1 genes and subgroups of alcohol dependence using a sample of 530 controls screened for alcohol problems. Results: Early-onset alcoholism exhibited significantly (p < .01) different clinical characteristics from late-onset alcoholism, including higher severity in alcohol dependence symptoms (d = 0.22) and maximum drinking quantity within 24 hours (d = 0.40), more rapid progression from regular drinking to meet alcohol dependence diagnosis (d = 1.73), higher expectancies for alcohol (d = 0.22−0.47), more comorbidity with externalizing disorders (ORs = 2.8−2.9), and greater prevalence of family alcohol use problems (d = 0.26−0.43). In addition, markers in the HTR1B and OPRμ1 genes showed genetic associations with subgroups of alcohol dependence (ORs = 1.5−2.4). Conclusions: Our findings support that subgroups of alcohol dependence defined by onset age have phenotypic and genetic differences. The early-onset subgroup had more severe features for almost every aspect we examined. Coupled with genetic association findings, age at onset of alcohol dependence may serve as a simple but important

  8. Accelerated ageing and renal dysfunction links lower socioeconomic status and dietary phosphate intake

    PubMed Central

    McClelland, Ruth; Christensen, Kelly; Mohammed, Suhaib; McGuinness, Dagmara; Cooney, Josephine; Bakshi, Andisheh; Demou, Evangelia; MacDonald, Ewan; Caslake, Muriel; Stenvinkel, Peter; Shiels, Paul G.

    2016-01-01

    Background We have sought to explore the impact of dietary Pi intake on human age related health in the pSoBid cohort (n=666) to explain the disparity between health and deprivation status in this cohort. As hyperphosphataemia is a driver of accelerated ageing in rodent models of progeria we tested whether variation in Pi levels in man associate with measures of biological ageing and health. Results We observed significant relationships between serum Pi levels and markers of biological age (telomere length (p=0.040) and DNA methylation content (p=0.028), gender and chronological age (p=0.032). When analyses were adjusted for socio-economic status and nutritional factors, associations were observed between accelerated biological ageing (telomere length, genomic methylation content) and dietary derived Pi levels among the most deprived males, directly related to the frequency of red meat consumption. Conclusions Accelerated ageing is associated with high serum Pi levels and frequency of red meat consumption. Our data provide evidence for a mechanistic link between high intake of Pi and age-related morbidities tied to socio-economic status. PMID:27132985

  9. [Frequency of phenotypes and genes of the polymorphic blood systems in a population as dependent on the age factor].

    PubMed

    Mozalevskiĭ, A F; Iushchenko, G K; Dudina, E A

    1989-01-01

    The frequency of blood groups ABO, Rh, MNS, P, haptoglobin as well as distribution of phenotypic combinations of two different loci are compared in groups of children and adults. The frequency of phenotype O, Rh-negative and P-positive people is revealed to increase in adults, that testifies to the influence of the age factor on the distribution of the human polymorphic blood systems.

  10. Pathway-Based Factor Analysis of Gene Expression Data Produces Highly Heritable Phenotypes That Associate with Age

    PubMed Central

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-01-01

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824

  11. Evolution of morphology in UHMWPE following accelerated aging: the effect of heating rates.

    PubMed

    Kurtz, S M; Pruitt, L A; Crane, D J; Edidin, A A

    1999-07-01

    Accelerated aging methods are used to evaluate the oxidative stability of UHMWPE components for total joint replacements. In this study, we traced the evolution of the crystalline morphology during accelerated thermal aging of UHMWPE in air with the intent of explaining previous, counterintuitive heating rate effects. GUR4150HP extruded rod stock material was machined into miniature (0.5 mm thick) specimens that were either gamma irradiated in air or in nitrogen (27 +/- 3 kGy) or left unirradiated (control). Accelerated aging in an air furnace (at 80 degrees C, atmospheric pressure) was performed on half of the test samples at a heating rate of 0.1 degrees C/min and at 5 degrees C/min for the remaining half. Although the initial heating rate, as measured by changes in density, did influence the absolute degradation rate by up to 214%, the heating rate effect did not appear to influence the relative ranking of UHMWPE in terms of its oxidative stability. The heating rate effect is more consistent with a kinetic mechanism of the oxidation process than it is with a previously hypothesized diffusion mechanism. UHMWPE morphology, as characterized using a transmission electron microscope (TEM), demonstrated considerable rearrangement of the crystalline regions as a result of the accelerated aging. The stacking of the lamellae observed after accelerated aging was not consistent with the morphology of naturally aged UHMWPE components. The observed differences in crystalline morphology likely result from the enhanced mobility of the polymer chains due to thermal aging and may be analogous to an annealing process.

  12. Seismic-fragility tests of new and accelerated-aged Class 1E battery cells

    SciTech Connect

    Bonzon, L.L.; Janis, W.J.; Black, D.A.; Paulsen, G.A.

    1987-01-01

    The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components.

  13. A methodology for examining the plausibility of accelerated aging protocols for UHMWPE components.

    PubMed

    Lewis, G; Nyman, J S; Trieu, H H

    1998-01-01

    In light of the time-intensive nature of using real-time shelf-aged specimens in research into property changes of ultra-high-molecular-weight polyethylene (UHMWPE), accelerated thermal diffusion oxidative aging (usually referred to as accelerated aging) is frequently resorted to. A number of such aging protocols have been reported in the literature, with various claims for their producing changes in the properties of the polymer being the same as or similar to those seen in real-time shelf-aged samples. The thrust of the present work is the presentation of a methodology for examining such claims. The methodology is applied to six properties (% crystallinity, melting temperature, oxidation index, ultimate tensile strength, ultimate tensile elongation, and tensile toughness) of 4150HP UHMWPE grade, sterilized using six different methods, prior to and following the use of a specific accelerated aging protocol (oxygen gas at 70 degrees C and 507 kPa pressure; 14 d.). These six properties have been identified in the literature as being strongly correlated with the clinical wear of UHMWPE articular components. It is shown that the claim for the protocol used in the present work (in terms of the simulated equivalent shelf aging time) is plausible. It needs to be emphasized, however, that this conclusion is tentative given the paucity of the relevant literature results that are currently available and which are vital to the application of the methodology.

  14. Towards Accelerated Aging Methodologies and Health Management of Power MOSFETs (Technical Brief)

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Patil, Nishad; Saha, Sankalita; Wysocki, Phil; Goebel, Kai

    2009-01-01

    Understanding aging mechanisms of electronic components is of extreme importance in the aerospace domain where they are part of numerous critical subsystems including avionics. In particular, power MOSFETs are of special interest as they are involved in high voltage switching circuits such as drivers for electrical motors. With increased use of electronics in aircraft control, it becomes more important to understand the degradation of these components in aircraft specific environments. In this paper, we present an accelerated aging methodology for power MOSFETs that subject the devices to indirect thermal overstress during high voltage switching. During this accelerated aging process, two major modes of failure were observed - latch-up and die attach degradation. In this paper we present the details of our aging methodology along with details of experiments and analysis of the results.

  15. Effect of an accelerated aging protocol on viscoelastic properties of UHMWPE.

    PubMed

    Lewis, Gladius

    2002-01-01

    The values of two viscoelastic properties (storage modulus and loss angle) of four sets of ultra-high-molecular-weight polyethylene specimens were obtained. Two sets comprised specimens that had been sterilized (using gamma radiation in air or ethylene oxide gas) while the other two sets comprised specimens that were sterilized and then exposed to an accelerated aging protocol that, in the literature, has been proposed as simulating 5 years of real-time shelf aging. An analysis of the present results from the four specimen sets and those obtained, in a previous study by the present author, on specimens machined from real-time shelf aged tibial inserts suggests that the claim made for the accelerated aging protocol may be conservative.

  16. Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes.

    PubMed

    Nabeshima, Yoko; Washida, Miwa; Tamura, Masaru; Maeno, Akiteru; Ohnishi, Mutsuko; Shiroishi, Toshihiko; Imura, Akihiro; Razzaque, M Shawkat; Nabeshima, Yo-ichi

    2014-08-01

    Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho(-/-) (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl(-/-) mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl(-/-) mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis.

  17. Whole exome sequencing of extreme age-related macular degeneration phenotypes

    PubMed Central

    Sardell, Rebecca J.; Bailey, Jessica N Cooke; Courtenay, Monique D.; Whitehead, Patrice; Laux, Reneé A.; Adams, Larry D.; Fortun, Jorge A.; Brantley, Milam A.; Kovach, Jaclyn L.; Schwartz, Stephen G.; Agarwal, Anita; Scott, William K.; Haines, Jonathan L.

    2016-01-01

    Purpose Demographic, environmental, and genetic risk factors for age-related macular degeneration (AMD) have been identified; however, a substantial portion of the variance in AMD disease risk and heritability remains unexplained. To identify AMD risk variants and generate hypotheses for future studies, we performed whole exome sequencing for 75 individuals whose phenotype was not well predicted by their genotype at known risk loci. We hypothesized that these phenotypically extreme individuals were more likely to carry rare risk or protective variants with large effect sizes. Methods A genetic risk score was calculated in a case–control set of 864 individuals (467 AMD cases, 397 controls) based on 19 common (≥1% minor allele frequency, MAF) single nucleotide variants previously associated with the risk of advanced AMD in a large meta-analysis of advanced cases and controls. We then selected for sequencing 39 cases with bilateral choroidal neovascularization with the lowest genetic risk scores to detect risk variants and 36 unaffected controls with the highest genetic risk score to detect protective variants. After minimizing the influence of 19 common genetic risk loci on case-control status, we targeted single variants of large effect and the aggregate effect of weaker variants within genes and pathways. Single variant tests were conducted on all variants, while gene-based and pathway analyses were conducted on three subsets of data: 1) rare (≤1% MAF in the European population) stop, splice, or damaging missense variants, 2) all rare variants, and 3) all variants. All analyses controlled for the effects of age and sex. Results No variant, gene, or pathway outside regions known to be associated with risk for advanced AMD reached genome-wide significance. However, we identified several variants with substantial differences in allele frequency between cases and controls with strong additive effects on affection status after controlling for age and sex

  18. Whole exome sequencing of extreme age-related macular degeneration phenotypes

    PubMed Central

    Sardell, Rebecca J.; Bailey, Jessica N Cooke; Courtenay, Monique D.; Whitehead, Patrice; Laux, Reneé A.; Adams, Larry D.; Fortun, Jorge A.; Brantley, Milam A.; Kovach, Jaclyn L.; Schwartz, Stephen G.; Agarwal, Anita; Scott, William K.; Haines, Jonathan L.

    2016-01-01

    Purpose Demographic, environmental, and genetic risk factors for age-related macular degeneration (AMD) have been identified; however, a substantial portion of the variance in AMD disease risk and heritability remains unexplained. To identify AMD risk variants and generate hypotheses for future studies, we performed whole exome sequencing for 75 individuals whose phenotype was not well predicted by their genotype at known risk loci. We hypothesized that these phenotypically extreme individuals were more likely to carry rare risk or protective variants with large effect sizes. Methods A genetic risk score was calculated in a case–control set of 864 individuals (467 AMD cases, 397 controls) based on 19 common (≥1% minor allele frequency, MAF) single nucleotide variants previously associated with the risk of advanced AMD in a large meta-analysis of advanced cases and controls. We then selected for sequencing 39 cases with bilateral choroidal neovascularization with the lowest genetic risk scores to detect risk variants and 36 unaffected controls with the highest genetic risk score to detect protective variants. After minimizing the influence of 19 common genetic risk loci on case-control status, we targeted single variants of large effect and the aggregate effect of weaker variants within genes and pathways. Single variant tests were conducted on all variants, while gene-based and pathway analyses were conducted on three subsets of data: 1) rare (≤1% MAF in the European population) stop, splice, or damaging missense variants, 2) all rare variants, and 3) all variants. All analyses controlled for the effects of age and sex. Results No variant, gene, or pathway outside regions known to be associated with risk for advanced AMD reached genome-wide significance. However, we identified several variants with substantial differences in allele frequency between cases and controls with strong additive effects on affection status after controlling for age and sex

  19. PPARβ/δ selectively regulates phenotypic features of age-related macular degeneration

    PubMed Central

    Choudhary, Mayur; Ding, Jin-dong; Qi, Xiaoping; Boulton, Michael E.; Yao, Pei-Li; Peters, Jeffrey M.; Malek, Goldis

    2016-01-01

    Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) is a nuclear receptor that regulates differentiation, inflammation, lipid metabolism, extracellular matrix remodeling, and angiogenesis in multiple tissues. These pathways are also central to the pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss globally. With the goal of identifying signaling pathways that may be important in the development of AMD, we investigated the impact of PPARβ/δ activation on ocular tissues affected in the disease. PPARβ/δ is expressed and can be activated in AMD vulnerable cells, including retinal pigment epithelial (RPE) and choroidal endothelial cells. Further, PPARβ/δ knockdown modulates AMD-related pathways selectively. Specifically, genetic ablation of Pparβ/δ in aged mice resulted in exacerbation of several phenotypic features of early dry AMD, but attenuation of experimentally induced choroidal neovascular (CNV) lesions. Antagonizing PPARβ/δ in both in vitro angiogenesis assays and in the in vivo experimentally induced CNV model, inhibited angiogenesis and angiogenic pathways, while ligand activation of PPARβ/δ, in vitro, decreased RPE lipid accumulation, characteristic of dry AMD. This study demonstrates for the first time, selective regulation of a nuclear receptor in the eye and establishes that selective targeting of PPARβ/δ may be a suitable strategy for treatment of different clinical sub-types of AMD. PMID:27622388

  20. Exposure to light at night accelerates aging and spontaneous uterine carcinogenesis in female 129/Sv mice

    PubMed Central

    Popovich, Irina G.; Zabezhinski, Mark A.; Panchenko, Andrei V.; Piskunova, Tatiana S.; Semenchenko, Anna V.; Tyndyk, Maragriata L.; Yurova, Maria N.; Anisimov, Vladimir N.

    2013-01-01

    The effect of the constant illumination on the development of spontaneous tumors in female 129/Sv mice was investigated. Forty-six female 129/Sv mice starting from the age of 2 mo were kept under standard light/dark regimen [12 h light (70 lx):12hr dark; LD, control group], and 46 of 129/Sv mice were kept under constant illumination (24 h a day, 2,500 lx, LL) from the age of 5 mo until to natural death. The exposure to the LL regimen significantly accelerated body weight gain, increased body temperature as well as acceleration of age-related disturbances in estrous function, followed by significant acceleration of the development of the spontaneous uterine tumors in female 129/Sv mice. Total tumor incidence as well as a total number of total or malignant tumors was similar in LL and LD group (p > 0.05). The mice from the LL groups survived less than those from the LD group (χ2 = 8.5; p = 0.00351, log-rank test). According to the estimated parameters of the Cox’s regression model, constant light regimen increased the relative risk of death in female mice compared with the control (LD) group (p = 0.0041). The data demonstrate in the first time that the exposure to constant illumination was followed by the acceleration of aging and spontaneous uterine tumorigenesis in female 129/Sv mice. PMID:23656779

  1. Effect ofartificial accelerated aging on color stability and surface roughness of indirect composites.

    PubMed

    Zanin, Fabíola Rejane; Garcia, Lucas da Fonseca Roberti; Casemiro, Luciana Assirati; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2008-03-01

    Direct and indirect composite resins have different forms of polymerization. Some materials require a post-cure system associating light and heat enhancing clinical properties. This study assessed the changes in color and surface roughness of three indirect composite resins after accelerated aging. Twelve specimens (15 x 2 mm) were obtained for each tested material. Subsequently, the first measurements for roughness tests and colorimetric spectrophotometry (CIE L*a*b* scale) were performed. Specimens were subject to accelerated aging for 384 hours. New measurements were then performed to evaluate the resulting change. Accelerated aging produced color change and increased surface roughness in all composite resins. Solidex resin showed color changes above the clinically accepted value (DeltaE = 4.31 +/- 0.22), and roughness values (Ra = 0.088 +/- 0.008 microm) statistically lower than that of Artglass (Ra = 0.141 +/- 0.026 microm) and Targis (Ra = 0.124 +/- 0.02 microm) (p<0.001). All the indirect resins tested showed color change and increased roughness after accelerated aging. Solidex showed color stability above a quantitative level considered clinically acceptable and lower roughness values compared to the other resins.

  2. Minimal impact of age and housing temperature on the metabolic phenotype of Acc2-/- mice.

    PubMed

    Brandon, Amanda E; Stuart, Ella; Leslie, Simon J; Hoehn, Kyle L; James, David E; Kraegen, Edward W; Turner, Nigel; Cooney, Gregory J

    2016-03-01

    An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12-16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42-54 weeks of age, male WT and Acc2(-/-) mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2(-/-) mice, aged Acc2(-/-) mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2(-/-) mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic-euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2(-/-) mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action. PMID:26668208

  3. Minimal impact of age and housing temperature on the metabolic phenotype of Acc2-/- mice.

    PubMed

    Brandon, Amanda E; Stuart, Ella; Leslie, Simon J; Hoehn, Kyle L; James, David E; Kraegen, Edward W; Turner, Nigel; Cooney, Gregory J

    2016-03-01

    An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12-16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42-54 weeks of age, male WT and Acc2(-/-) mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2(-/-) mice, aged Acc2(-/-) mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2(-/-) mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic-euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2(-/-) mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action.

  4. Prediction of brain age suggests accelerated atrophy after traumatic brain injury

    PubMed Central

    Cole, James H; Leech, Robert; Sharp, David J

    2015-01-01

    Objective The long-term effects of traumatic brain injury (TBI) can resemble observed in normal ageing, suggesting that TBI may accelerate the ageing process. We investigate this using a neuroimaging model that predicts brain age in healthy individuals and then apply it to TBI patients. We define individuals' differences in chronological and predicted structural "brain age," and test whether TBI produces progressive atrophy and how this relates to cognitive function. Methods A predictive model of normal ageing was defined using machine learning in 1,537 healthy individuals, based on magnetic resonance imaging–derived estimates of gray matter (GM) and white matter (WM). This ageing model was then applied to test 99 TBI patients and 113 healthy controls to estimate brain age. Results The initial model accurately predicted age in healthy individuals (r * 0.92). TBI brains were estimated to be "older," with a mean predicted age difference (PAD) between chronological and estimated brain age of 4.66 years (±10.8) for GM and 5.97 years (±11.22) for WM. This PAD predicted cognitive impairment and correlated strongly with the time since TBI, indicating that brain tissue loss increases throughout the chronic postinjury phase. Interpretation TBI patients' brains were estimated to be older than their chronological age. This discrepancy increases with time since injury, suggesting that TBI accelerates the rate of brain atrophy. This may be an important factor in the increased susceptibility in TBI patients for dementia and other age-associated conditions, motivating further research into the age-like effects of brain injury and other neurological diseases. PMID:25623048

  5. Compatibility and accelerated aging study for Li(Si)/FeS/sub 2 thermally activated batteries

    NASA Astrophysics Data System (ADS)

    Mead, J. W.; Searcy, J. Q.; Neiswander, P. N.; Poole, R. L.

    1983-12-01

    Thermally activated batteries using the lithium (silicon) iron disulfide (Li(Si)/FeS2) electrochemical system are used in weapons having a required storage life of 25 years and high reliability. A review of known data revealed no information on the compatibility of Li(Si)/FeS2 with the organic materials used in the system. The compatibility question is studied. Accelerated-aging data on pairs of materials were produced. In addition, a group of production batteries was aged and tested. Three aging temperatures were used during the one-year study. Gas analyses, electrical tests and mechanical tests were compared for control and aged samples. Two results, the depletion of oxygen and an increase in hydrogen in the compatibility and accelerated-aging samples, stimulated additional studies. No unexpected or significant changes were observed in the electrical or mechanical properties of the organic materials. Calorific output and chloride ion content of heat pellets indicated no degradation with aging. Ignition sensitivity and burn rate measurements suggested no heat pellet degradation. Oxygen content in aged lithium (silicon) anodes remained within acceptable limits. Single-cell tests and battery test results showed no degradation with aging.

  6. The role of oxidative and nitrosative stress in accelerated aging and major depressive disorder.

    PubMed

    Maurya, Pawan Kumar; Noto, Cristiano; Rizzo, Lucas B; Rios, Adiel C; Nunes, Sandra O V; Barbosa, Décio Sabbatini; Sethi, Sumit; Zeni, Maiara; Mansur, Rodrigo B; Maes, Michael; Brietzke, Elisa

    2016-02-01

    Major depressive disorder (MDD) affects millions of individuals and is highly comorbid with many age associated diseases such as diabetes mellitus, immune-inflammatory dysregulation and cardiovascular diseases. Oxidative/nitrosative stress plays a fundamental role in aging, as well as in the pathogenesis of neurodegenerative/neuropsychiatric disorders including MDD. In this review, we critically review the evidence for an involvement of oxidative/nitrosative stress in acceleration of aging process in MDD. There are evidence of the association between MDD and changes in molecular mechanisms involved in aging. There is a significant association between telomere length, enzymatic antioxidant activities (SOD, CAT, GPx), glutathione (GSH), lipid peroxidation (MDA), nuclear factor κB, inflammatory cytokines with MDD. Major depression also is characterized by significantly lower concentration of antioxidants (zinc, coenzyme Q10, PON1). Since, aging and MDD share a common biological base in their pathophysiology, the potential therapeutic use of antioxidants and anti-aging molecules in MDD could be promising.

  7. Effect of accelerated aging on the microhardness and color stability of flexible resins for dentures.

    PubMed

    Goiato, Marcelo Coelho; Santos, Daniela Micheline dos; Haddad, Marcela Filie; Pesqueira, Aldiéris Alves

    2010-01-01

    Acrylic resins have been widely used due to their acceptable esthetics and desirable characteristics such as easy handling, good thermal conductivity, low permeability to oral fluids and color stability. Flexible resins were introduced on the market as an alternative to the use of conventional acrylic resins in the construction of complete and partial removable dentures. Although these resins present advantages in terms of esthetics and comfort, studies assessing chromatic and microhardness alterations of these materials are still scarce in the related literature. The aim of this study was to evaluate the chromatic and microhardness alterations of two commercial brands of flexible resins in comparison to the conventional resin Triplex when submitted to accelerated aging. The resins were manipulated according to manufacturers' instructions and inserted into a silicone matrix to obtain 21 specimens divided into 3 groups: Triplex, Ppflex and Valplast. Triplex presented the highest microhardness value (p < 0.05) for all the aging periods, which was significantly different from that of the other resins, followed by the values of Valplast and Ppflex. Comparison between the flexible resins (Ppflex and Valplast) revealed a statistically significant difference (p < 0.05) as regards color. The flexible resin Ppflex and the conventional resin Triplex presented no statistically significant difference (p < 0.05) as regards aging. The accelerated aging significantly increased the microhardness values of the resins, with the highest values being observed for Triplex. Valplast presented the greatest chromatic alteration after accelerated aging. PMID:20339724

  8. In vitro cytotoxicity of maxillofacial silicone elastomers: effect of accelerated aging.

    PubMed

    Bal, Bilge Turhan; Yilmaz, Handan; Aydin, Cemal; Karakoca, Seçil; Yilmaz, Sükran

    2009-04-01

    The purpose of this in vitro study was to evaluate the cytotoxicity of three maxillofacial silicone elastomers at 24, 48, and 72 h on L-929 cells and to determine the effect of accelerated aging on the cytotoxicity of these silicone elastomers. Disc-shaped test samples of maxillofacial silicone elastomers (Cosmesil, Episil, Multisil) were fabricated according to manufacturers' instructions under aseptic conditions. Samples were then divided into three groups: (1) not aged; (2) aged for 150 h with an accelerated weathering tester; and (3) aged for 300 h. Then the samples were placed in Dulbecco's Modified Eagle Medium/Ham's F12 (DMEM/F12) for 24, 48, and 72 h. After the incubation periods, cytotoxicity of the extracts to cultured fibroblasts (L-929) was measured by MTT assay. The degree of cytotoxicity of each sample was determined according to the reference value represented by the cells with a control (culture without sample). Statistical significance was determined by repeated measurement ANOVA (p < 0.01) followed by Duncan's test (p < 0.05). All test materials in each group demonstrated high survival rates in MTT assay (Episil; 93.84%, Multisil; 88.30%, Cosmesil; 87.50%, respectively); however, in all groups, Episil material demonstrated significantly higher cell survival rate after each of the experimental incubation periods (p < 0.05). Accelerated aging for 150 and 300 h had no significant effect on the biocompatibility of maxillofacial silicone elastomers tested (p > 0.05).

  9. Evidence of accelerated aging among African Americans and its implications for mortality.

    PubMed

    Levine, M E; Crimmins, E M

    2014-10-01

    Blacks experience morbidity and mortality earlier in the life course compared to whites. Such premature declines in health may be indicative of an acceleration of the aging process. The current study uses data on 7644 black and white participants, ages 30 and above, from the third National Health and Nutrition Examination Survey, to compare the biological ages of blacks and whites as indicated from a combination of ten biomarkers and to determine if such differences in biological age relative to chronological age account for racial disparities in mortality. At a specified chronological age, blacks are approximately 3 years older biologically than whites. Differences in biological age between blacks and whites appear to increase up until ages 60-65 and then decline, presumably due to mortality selection. Finally, differences in biological age were found to completely account for higher levels of all-cause, cardiovascular and cancer mortality among blacks. Overall, these results suggest that being black is associated with significantly higher biological age at a given chronological age and that this is a pathway to early death both overall and from the major age-related diseases.

  10. Acceleration factors for oxidative aging of polymeric materials by oxygen detection.

    SciTech Connect

    Assink, Roger Alan; Celina, Mathias Christopher; Skutnik, Julie Michelle

    2005-01-01

    Three methods that were used to measure the chemical changes associated with oxidative degradation of polymeric materials are presented. The first method is based on the nuclear activation of {sup 18}O in an elastomer that was thermally aged in an {sup 18}O{sub 2} atmosphere. Second, the alcohol groups in a thermally aged elastomer were derivatized with trifluoroacetic anhydride and their concentration measured via {sup 19}F NMR spectroscopy. Finally, a respirometer was used to directly measure the oxidative rates of a polyurethane foam as a function of aging temperature. The measurement of the oxidation rates enabled acceleration factors for oxidative degradation of these materials to be calculated.

  11. Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype

    PubMed Central

    Lasher, Richard A; Pahnke, Aric Q; Johnson, Jeffrey M; Sachse, Frank B

    2012-01-01

    Quantifying structural features of native myocardium in engineered tissue is essential for creating functional tissue that can serve as a surrogate for in vitro testing or the eventual replacement of diseased or injured myocardium. We applied three-dimensional confocal imaging and image analysis to quantitatively describe the features of native and engineered cardiac tissue. Quantitative analysis methods were developed and applied to test the hypothesis that environmental cues direct engineered tissue toward a phenotype resembling that of age-matched native myocardium. The analytical approach was applied to engineered cardiac tissue with and without the application of electrical stimulation as well as to age-matched and adult native tissue. Individual myocytes were segmented from confocal image stacks and assigned a coordinate system from which measures of cell geometry and connexin-43 spatial distribution were calculated. The data were collected from 9 nonstimulated and 12 electrically stimulated engineered tissue constructs and 5 postnatal day 12 and 7 adult hearts. The myocyte volume fraction was nearly double in stimulated engineered tissue compared to nonstimulated engineered tissue (0.34 ± 0.14 vs 0.18 ± 0.06) but less than half of the native postnatal day 12 (0.90 ± 0.06) and adult (0.91 ± 0.04) myocardium. The myocytes under electrical stimulation were more elongated compared to nonstimulated myocytes and exhibited similar lengths, widths, and heights as in age-matched myocardium. Furthermore, the percentage of connexin-43-positive membrane staining was similar in the electrically stimulated, postnatal day 12, and adult myocytes, whereas it was significantly lower in the nonstimulated myocytes. Connexin-43 was found to be primarily located at cell ends for adult myocytes and irregularly but densely clustered over the membranes of nonstimulated, stimulated, and postnatal day 12 myocytes. These findings support our hypothesis and reveal that the

  12. XPD Helicase Structures and Activities: Insights into the Cancer and Aging Phenotypes from XPD Mutations

    SciTech Connect

    Tainer, John; Fan, Li; Fuss, Jill O.; Cheng, Quen J.; Arvai, Andrew S.; Hammel, Michal; Roberts, Victoria A.; Cooper, Priscilla K.; Tainer, John A.

    2008-06-02

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  13. XPD Helicase Structures And Activities: Insights Into the Cancer And Aging Phenotypes From XPD Mutations

    SciTech Connect

    Fan, L.; Fuss, J.O.; Cheng, Q.J.; Arvai, A.S.; Hammel, M.; Roberts, V.A.; Cooper, P.K.; Tainer, J.A.

    2009-05-18

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  14. Gamma radiation and magnetic field mediated delay in effect of accelerated ageing of soybean.

    PubMed

    Kumar, Mahesh; Singh, Bhupinder; Ahuja, Sumedha; Dahuja, Anil; Anand, Anjali

    2015-08-01

    Soybean seeds were exposed to gamma radiation (0.5, 1, 3 and 5 kGy), static magnetic field (50, 100 and 200 mT) and a combination of gamma radiation and magnetic energy (0.5 kGy + 200 mT and 5 kGy + 50 mT) and stored at room temperature for six months. These seeds were later subjected to accelerated ageing treatment at 42 °C temperature and 95-100 % relative humidity and were compared for various physical and biochemical characteristics between the untreated and the energized treatments. Energy treatment protected the quality of stored seeds in terms of its protein and oil content . Accelerated aging conditions, however, affected the oil and protein quantity and quality of seed negatively. Antioxidant enzymes exhibited a decline in their activity during aging while the LOX activity, which reflects the rate of lipid peroxidation, in general, increased during the aging. Gamma irradiated (3 and 5 kGy) and magnetic field treated seeds (100 and 200 mT) maintained a higher catalase and ascorbate peroxidase activity which may help in efficient scavenging of deleterious free radical produced during the aging. Aging caused peroxidative changes to lipids, which could be contributed to the loss of oil quality. Among the electromagnetic energy treatments, a dose of 1-5 kGy of gamma and 100 mT, 200 mT magnetic field effectively slowed the rate of biochemical degradation and loss of cellular integrity in seeds stored under conditions of accelerated aging and thus, protected the deterioration of seed quality. Energy combination treatments did not yield any additional protection advantage. PMID:26243899

  15. Phenotypic and Functional Characterization of Lymphocytes from Different Age Groups of Bolivian Squirrel Monkeys (Saimiri boliviensis boliviensis)

    PubMed Central

    Nehete, Pramod N.; Hanley, Patrick W.; Nehete, Bharti P.; Yang, Guojun; Ruiz, Julio C.; Williams, Lawrence; Abee, Christian R.; Sastry, K. Jagannadha

    2013-01-01

    Due to many physiological and genetic characteristic similarities to humans, squirrel monkeys provide an ideal animal model specifically for studying malaria, and transmissible spongiform encephalopathies (Creutzfeldt-Jacob disease). While squirrel monkeys three years and older are generally considered adult subjects suitable for use in medical research studies, little is known about the functional properties of lymphocytes in relation to the age of these animals, which could significantly impact the quality and quantity of innate and adaptive immune responses. In this study, we investigated differences in the phenotype and function of lymphocytes subsets of young (3–4 years), adult (8–10 years) and aged (16–19 years) squirrel monkeys. In general, animals in all three age groups exhibited comparable numbers of different lymphocyte subsets except for CD20+ B cells that were significantly lower in aged relative to young animals and T cells subsets expressing both CD4 and CD8 (double positive) were significantly higher in aged relative to young animals. With increasing age, phenotypic differences in central and effector memory T cells subsets were observed, that were more pronounced for the CD8+ T cells. Despite equal proportions of CD3+ T cells among the three age groups, responses of peripheral blood mononuclear cells to T cell mitogens PHA and Con A showed lower IFN-γ producing cells in the aged group than that in the young group. Furthermore, aged animals showed significantly higher plasma levels of inflammatory cytokines IL-6, IFN-γ, TNF-α, IL-10 and IL-12. These findings suggest that while the squirrel monkeys in general share phenotypic and functional similarities of lymphocyte subsets with humans in relation to age, specific differences exist in immune function of lymphocytes between young and old animals that could potentially impact experimental outcomes for which the measurement of immunologic endpoints are critical. PMID:24282512

  16. Colour stability of temporary restorations with different thicknesses submitted to artificial accelerated aging.

    PubMed

    Silame, F D J; Tonani, R; Alandia-Roman, C C; Chinelatti, M; Panzeri, H; Pires-de-Souza, F C P

    2013-12-01

    This study evaluated the colour stability of temporary prosthetic restorations with different thicknesses submitted to artificial accelerated aging. The occlusal surfaces of 40 molars were grinded to obtain flat enamel surfaces. Twenty acrylic resin specimens [Polymethyl methacrylate (Duralay) and Bis-methyl acrylate (Luxatemp)] were made with two different thicknesses, 0.5 mm and 1.0 mm. Temporary restorations were fixed on enamel and CIE L*a*b* colour parameters of each specimen were assessed before and after artificial accelerated aging. All groups showed colour alterations above the clinically acceptable limit. Luxatemp showed the lowest colour alteration regardless its thickness and Duralay showed the greatest alteration with 0.5 mm. PMID:24479216

  17. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats

    PubMed Central

    Vinogradova, Irina A.; Anisimov, Vladimir N.; Bukalev, Andrey V.; Semenchenko, Anna V.; Zabezhinski, Mark A.

    2009-01-01

    We evaluated the effect of various light/dark regimens on the survival, life span and tumorigenesis in rats. Two hundred eight male and 203 females LIO rats were subdivided into 4 groups and kept at various light/dark regimens: standard 12:12 light/dark (LD); natural lighting of the North-West of Russia (NL); constant light (LL), and constant darkness (DD) since the age of 25 days until natural death. We found that exposure to NL and LL regimens accelerated development of metabolic syndrome and spontaneous tumorigenesis, shortened life span both in male and females rats as compared to the standard LD regimen. We conclude that circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. This observation supports the conclusion of the International Agency Research on Cancer that shift-work that involves circadian disruption is probably carcinogenic to humans. PMID:20157558

  18. Colour stability of temporary restorations with different thicknesses submitted to artificial accelerated aging.

    PubMed

    Silame, F D J; Tonani, R; Alandia-Roman, C C; Chinelatti, M; Panzeri, H; Pires-de-Souza, F C P

    2013-12-01

    This study evaluated the colour stability of temporary prosthetic restorations with different thicknesses submitted to artificial accelerated aging. The occlusal surfaces of 40 molars were grinded to obtain flat enamel surfaces. Twenty acrylic resin specimens [Polymethyl methacrylate (Duralay) and Bis-methyl acrylate (Luxatemp)] were made with two different thicknesses, 0.5 mm and 1.0 mm. Temporary restorations were fixed on enamel and CIE L*a*b* colour parameters of each specimen were assessed before and after artificial accelerated aging. All groups showed colour alterations above the clinically acceptable limit. Luxatemp showed the lowest colour alteration regardless its thickness and Duralay showed the greatest alteration with 0.5 mm.

  19. Correlating outdoor exposure with accelerated aging tests for aluminum solar reflectors

    NASA Astrophysics Data System (ADS)

    Wette, Johannes; Sutter, Florian; Fernández-García, Aránzazu

    2016-05-01

    Guaranteeing the durability of concentrated solar power (CSP) components is crucial for the success of the technology. The reflectors of the solar field are a key component of CSP plants, requiring reliable methods for service lifetime prediction. So far, no proven correlations exist to relate accelerated aging test results in climate chambers with relevant CSP exposure sites. In this work, correlations have been derived for selected testing conditions that excite the same degradation mechanisms as for outdoor exposure. Those testing conditions have been identified by performing an extensive microscopic comparison of the appearing degradation mechanisms on reference samples that have been weathered outdoors with samples that underwent a high variety of accelerated aging experiments. The herein developed methodology is derived for aluminum reflectors and future work will study its applicability to silvered-glass mirrors.

  20. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes

    PubMed Central

    Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M.; Batista, Claudia Maria de Castro; Mattson, Mark P.; de Mello Coelho, Valeria

    2016-01-01

    We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN+ LLC. Some cortical NeuN+ neurons, GFAP+ glia limitans astrocytes, Iba-1+ microglia and S100β+ ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes. PMID:27029648

  1. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes.

    PubMed

    Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M; Batista, Claudia Maria de Castro; Mattson, Mark P; Mello Coelho, Valeria de

    2016-01-01

    We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN(+) LLC. Some cortical NeuN(+) neurons, GFAP(+) glia limitans astrocytes, Iba-1(+) microglia and S100β(+) ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes. PMID:27029648

  2. Dynamic changes of DNA epigenetic marks in mouse oocytes during natural and accelerated aging.

    PubMed

    Qian, Yan; Tu, Jiajie; Tang, Nelson Leung Sang; Kong, Grace Wing Shan; Chung, Jacqueline Pui Wah; Chan, Wai-Yee; Lee, Tin-Lap

    2015-10-01

    Aging is a complex time-dependent biological process that takes place in every cell and organ, eventually leading to degenerative changes that affect normal biological functions. In the past decades, the number of older parents has increased significantly. While it is widely recognized that oocyte aging poses higher birth and reproductive risk, the exact molecular mechanisms remain largely elusive. DNA methylation of 5-cytosine (5mC) and histone modifications are among the key epigenetic mechanisms involved in critical developmental processes and have been linked to aging. However, the impact of oocyte aging on DNA demethylation pathways has not been examined. The recent discovery of Ten-Eleven-Translocation (TET) family proteins, thymine DNA glycosylase (TDG) and the demethylation intermediates 5hmC, 5fC and 5caC has provided novel clues to delineate the molecular mechanisms in DNA demethylation. In this study, we examined the cellular level of modified cytosines (5mC, 5hmC, 5fC and 5caC) and Tet/Tdg expression in oocytes obtained from natural and accelerated oocyte aging conditions. Here we show all the DNA demethylation marks are dynamically regulated in both aging conditions, which are associated with Tet3 over-expression and Tdg repression. Such an aberrant expression pattern was more profound in accelerated aging condition. The results suggest that DNA demethylation may be actively involved in oocyte aging and have implications for development of potential drug targets to rejuvenate aging oocytes. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.

  3. Does cyclic stress and accelerated ageing influence the wear behavior of highly crosslinked polyethylene?

    PubMed

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-06-01

    First-generation (irradiated and remelted or annealed) and second-generation (irradiated and vitamin E blended or doped) highly crosslinked polyethylenes were introduced in the last decade to solve the problems of wear and osteolysis. In this study, the influence of the Vitamin-E addition on crosslinked polyethylene (XLPE_VE) was evaluated by comparing the in vitro wear behavior of crosslinked polyethylene (XLPE) versus Vitamin-E blended polyethylene XLPE and conventional ultra-high molecular weight polyethylene (STD_PE) acetabular cups, after accelerated ageing according to ASTM F2003-02 (70.0±0.1°C, pure oxygen at 5bar for 14 days). The test was performed using a hip joint simulator run for two millions cycles, under bovine calf serum as lubricant. Mass loss was found to decrease along the series XLPE_VE>STD_PE>XLPE, although no statistically significant differences were found between the mass losses of the three sets of cups. Micro-Raman spectroscopy was used to investigate at a molecular level the morphology changes induced by wear. The spectroscopic analyses showed that the accelerated ageing determined different wear mechanisms and molecular rearrangements during testing with regards to the changes in both the chain orientation and the distribution of the all-trans sequences within the orthorhombic, amorphous and third phases. The results of the present study showed that the addition of vitamin E was not effective to improve the gravimetric wear of PE after accelerated ageing. However, from a molecular point of view, the XLPE_VE acetabular cups tested after accelerated ageing appeared definitely less damaged than the STD_PE ones and comparable to XLPE samples. PMID:26970299

  4. On the Use of Accelerated Aging Methods for Screening High Temperature Polymeric Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Grayson, Michael A.

    1999-01-01

    A rational approach to the problem of accelerated testing of high temperature polymeric composites is discussed. The methods provided are considered tools useful in the screening of new materials systems for long-term application to extreme environments that include elevated temperature, moisture, oxygen, and mechanical load. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for specific aging mechanisms.

  5. Colour stability of denture teeth submitted to different cleaning protocols and accelerated artificial aging.

    PubMed

    Freire, T S; Aguilar, F G; Garcia, L da Fonseca Roberti; Pires-de-Souza, F de Carvalho Panzeri

    2014-03-01

    Acrylic resin is widely used for artificial teeth manufacturing due to several important characteristics; however, this material do not present acceptable colour stability over the course of time. This study evaluated the effect of different cleaning protocols and accelerated artificial aging on colour stability of denture teeth made of acrylic resin. Sixty denture teeth in dark and light shades were used, and separated according to the treatment to which they were submitted. Results demonstrated that colour stability of artificial teeth is influenced by the cleaning solution and artificial aging, being dark teeth more susceptible to colour alteration than lighter ones.

  6. Proposition of an Accelerated Ageing Method for Natural Fibre/Polylactic Acid Composite

    NASA Astrophysics Data System (ADS)

    Zandvliet, Clio; Bandyopadhyay, N. R.; Ray, Dipa

    2015-10-01

    Natural fibre composite based on polylactic acid (PLA) composite is of special interest because it is entirely from renewable resources and biodegradable. Some samples of jute/PLA composite and PLA alone made 6 years ago and kept in tropical climate on a shelf shows too fast ageing degradation. In this work, an accelerated ageing method for natural fibres/PLA composite is proposed and tested. Experiment was carried out with jute and flax fibre/PLA composite. The method was compared with the standard ISO 1037-06a. The residual flexural strength after ageing test was compared with the one of common wood-based panels and of real aged samples prepared 6 years ago.

  7. Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging

    NASA Astrophysics Data System (ADS)

    Vilar, G.; Fernández-Rosas, E.; Puntes, V.; Jamier, V.; Aubouy, L.; Vázquez-Campos, S.

    2013-04-01

    The incorporation of small amounts of nanoadditives in polymeric compounds can introduce new mechanical, physical, electrical, magnetic, thermal and/or optical properties. The properties of these advanced materials have enabled new applications in several industrial sectors (electronics, automotive, textile...). In particular, for the nanomaterials (NM) described in this work, multi-walled carbon nanotubes (MWCNT) and silicon dioxide nanoparticles (SiO2 NP), the following properties have been described: MWCNT act as nucleating agents in thermoplastics, and change viscosity, affecting dispersion, orientation, and therefore mechanical, thermal, and electrical properties; and SiO2 NP act as flame retardant and display improved electrical and mechanical properties. The work described here is focused on the evaluation of the migration and transformation of NM included in polymer nanocomposites (NC) during accelerated climatic ageing. To this aim, we generated polyamide 6 (PA6) NC with different degree of compatibility between the NM and the polymeric matrix. These NC were submitted to accelerated aging conditions to simulate outdoor conditions (simulation of the use phase of the polymeric NC). The NC contain as nanofillers MWCNT and SiO2 NP with different surface properties to influence the compatibility with the polymeric matrix. The generated NC were evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) with Energy-dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and differential scanning calorimetry (DSC) before and after the aging process, to monitor the compatibility of the NM with the matrix: dispersion within the matrix, migration during aging, and modification of the polymer properties. The dispersion of SiO2 NP in the NC depended on their compatibility with the matrix. However, independently of their compatibility with the matrix, SiO2 NP were aggregated at the end of the accelerated aging process. In addition

  8. Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study.

    PubMed

    Sexton, Claire E; Walhovd, Kristine B; Storsve, Andreas B; Tamnes, Christian K; Westlye, Lars T; Johansen-Berg, Heidi; Fjell, Anders M

    2014-11-12

    It is well established that human brain white matter structure changes with aging, but the timescale and spatial distribution of this change remain uncertain. Cross-sectional diffusion tensor imaging (DTI) studies indicate that, after a period of relative stability during adulthood, there is an accelerated decline in anisotropy and increase in diffusivity values during senescence; and, spatially, results have been discussed within the context of several anatomical frameworks. However, inferring trajectories of change from cross-sectional data can be challenging; and, as yet, there have been no longitudinal reports of the timescale and spatial distribution of age-related white matter change in healthy adults across the adult lifespan. In a longitudinal DTI study of 203 adults between 20 and 84 years of age, we used tract-based spatial statistics to characterize the pattern of annual change in fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffusivity and examined whether there was an acceleration of change with age. We found extensive and overlapping significant annual decreases in fractional anisotropy, and increases in axial diffusivity, radial diffusivity, and mean diffusivity. Spatially, results were consistent with inferior-to-superior gradients of lesser-to-greater vulnerability. Annual change increased with age, particularly within superior regions, with age-related decline estimated to begin in the fifth decade. Charting white matter microstructural changes in healthy aging provides essential context to clinical studies, and future studies should compare age trajectories between healthy participants and at-risk populations and also explore the relationship between DTI rates of change and cognitive decline.

  9. Tooth loss early in life accelerates age-related bone deterioration in mice.

    PubMed

    Kurahashi, Minori; Kondo, Hiroko; Iinuma, Mitsuo; Tamura, Yasuo; Chen, Huayue; Kubo, Kin-ya

    2015-01-01

    Both osteoporosis and tooth loss are health concerns that affect many older people. Osteoporosis is a common skeletal disease of the elderly, characterized by low bone mass and microstructural deterioration of bone tissue. Chronic mild stress is a risk factor for osteoporosis. Many studies showed that tooth loss induced neurological alterations through activation of a stress hormone, corticosterone, in mice. In this study, we tested the hypothesis that tooth loss early in life may accelerate age-related bone deterioration using a mouse model. Male senescence-accelerated mouse strain P8 (SAMP8) mice were randomly divided into control and toothless groups. Removal of the upper molar teeth was performed at one month of age. Bone response was evaluated at 2, 5 and 9 months of age. Tooth loss early in life caused a significant increase in circulating corticosterone level with age. Osteoblast bone formation was suppressed and osteoclast bone resorption was activated in the toothless mice. Trabecular bone volume fraction of the vertebra and femur was decreased in the toothless mice with age. The bone quality was reduced in the toothless mice at 5 and 9 months of age, compared with the age-matched control mice. These findings indicate that tooth loss early in life impairs the dynamic homeostasis of the bone formation and bone resorption, leading to reduced bone strength with age. Long-term tooth loss may have a cumulative detrimental effect on bone health. It is important to take appropriate measures to treat tooth loss in older people for preventing and/or treating senile osteoporosis.

  10. The influence of the accelerated ageing on the black screen element of the Electroink prints

    NASA Astrophysics Data System (ADS)

    Majnaric, I.; Bolanca, Z.; Bolanca Mirkovic, I.

    2010-06-01

    Printing material and prints undergo changes during ageing which can be recognized in deterioration in the physical, chemical and optical properties. The aim of this work is to determine the optical changes of the prints caused by ageing of the printing material and of the prints obtained by the application of the indirect electrophotography. The change of the screen elements in lighter halftone areas, which was obtained by the usage of the microscopic image analysis, has been discussed in the article. For the preparation of samples the following papers were used: fine art paper, recycled paper and offset paper as well as black Electroink. Three sample series were observed: prints on nonaged paper and ElectroInk, prints on aged paper and ElectroInk and prints on aged paper and nonaged ElectroInk. The investigation results show that by ageing of the uncoated printing substrates the decrease of the dots on prints can be expected, while the printing on the aged paper results in the increased reproduction of the halftone dots. The obtained results are the contribution to the explanation of the influence of the accelerated ageing process of papers which are used for printing and the aged prints on the halftone dot changes. Except the mentioned determined scientific contribution the results are applicable in the area of the printing product quality as well as in the forensic science.

  11. "Accelerating aging" chemotherapy on aged animals: protective effect from nutraceutical modulation.

    PubMed

    Marotta, Francesco; Harada, Masatoshi; Minelli, Emilio; Ono-Nita, Suzanne K; Marandola, Paulo

    2008-04-01

    The aim of this study was to test a novel phytocompound in an experimental model of antitumor-induced immunosuppression. Five groups of mice were considered: young (Y) and aged (A) that were given intraperitoneally 10 doses of cyclophosphamide (CPX, 25mg/kg/bw) or CPX plus (150 mg/kg/bw) of the nutraceutical DTS (Denshichi-Tochiu-Sen), and control. After sacrifice, macrophage chemotaxis and serum levels of IFN-gamma, IL-2, and GM-CSF were determined. Liver and urinary bladder were examined histologically, as were the liver and kidney for redox enzymes. CPX significantly decreased macrophage chemotaxis and all cytokines (p < 0.05, A > Y). DTS restored macrophage function and cytokine concentration (p < 0.001) and partly improved the necro-inflammatory score and substance P receptor expression in the bladder and the redox status in liver and kidney (p < 0.05). Such data suggest that DTS effectively prevents CPX-induced immune suppression and oxidative-inflammatory damage, which are particularly enhanced in aged organisms.

  12. Effect of energy density on color stability in dental resin composites under accelerated aging.

    PubMed

    Zamarripa, Eliezer; Ancona, Adriana L; D'Accorso, Norma B; Macchi, Ricardo L; Abate, Pablo F

    2008-01-01

    The effects of the energy density that is used for polymerization on properties of dental resin composites are well known. However, few studies relate color stability to this factor. The aim of this study was to assess color changes (deltaE*), in vitro, in terms of accelerated aging under UV exposure of specimens prepared with different energy densities. Four commercial dental resin composites were included in the study. Thirty six specimens were prepared for each one of them, following the procedure established by ISO 4049 Standard, and assigned to three groups: A (3.75 J/cm2), B (9 J/cm2), C (24 J/cm2). Each group was further subdivided into four subgroups: 1 (no aging), 2 (500 hours aging), 3 (1000 hours aging) and 4 (1500 hours aging). The results were analyzed by means of ANOVA and Tukey's test (alpha = 0.05) to determine the effect of the factors. Correlation was performed in order to determine the possible relationship among variables. Energy density is not a significant factor in color stability. However aging is directly proportional to color changes. deltaE* depends on filler size; hybrid material presented deltaE* of 2.1(0.5), 2.4(0.6) and 3.3(0.3) at 500, 1000 and 1500 hours of accelerated aging respectively, and nanofilled material showed deltaE* of 3.0(0.6), 4.5(1.2) and 5.9(0.6) at the same times respectively. It can be concluded that deltaE* does not depend on energy density; however other factors are involved in color change. Further studies in this area are warranted.

  13. Accelerated long-term forgetting in aging and intra-sleep awakenings

    PubMed Central

    Mary, Alison; Schreiner, Svenia; Peigneux, Philippe

    2013-01-01

    The architecture of sleep and the functional neuroanatomical networks subtending memory consolidation processes are both modified with aging, possibly leading to accelerated forgetting in long-term memory. We investigated associative learning and declarative memory consolidation processes in 16 young (18–30 years) and 16 older (65–75 years) healthy adults. Performance was tested using a cued recall procedure at the end of learning (immediate recall), and 30 min and 7 days later. A delayed recognition test was also administered on day 7. Daily sleep diaries were completed during the entire experiment. Results revealed a similar percentage of correct responses at immediate and 30-min recall in young and older participants. However, recall was significantly decreased 7 days later, with an increased forgetting in older participants. Additionally, intra-sleep awakenings were more frequent in older participants than young adults during the seven nights, and were negatively correlated with delayed recall performance on day 7 in the older group. Altogether, our results suggest a decline in verbal declarative memory consolidation processes with aging, eventually leading to accelerated long-term forgetting indicating that increased sleep fragmentation due to more frequent intra-sleep awakenings in older participants contribute to the reported age-related decline in long-term memory retrieval. Our results highlight the sensitivity of long-term forgetting measures to evidence consolidation deficits in healthy aging. PMID:24137151

  14. Effects of different polishing methods on color stability of resin composites after accelerated aging.

    PubMed

    Sirin Karaarslan, Emine; Bulbul, Mehmet; Yildiz, Esma; Secilmis, Asli; Sari, Fatih; Usumez, Aslihan

    2013-01-01

    The purpose of this study was to evaluate the effect of polishing procedures on the color stability of different types of composites after aging. Forty disk-shaped specimens (Ø10×2 mm) were prepared for each composite resin type (an ormocer, a packable, a nanohybrid, and a microhybrid) for a total of 160 specimens. Each composite group was divided into four subgroups according to polishing method (n=10): control (no finishing and polishing), polishing disk, polishing wheel, and glaze material. Color parameters (L*, a*, and b*) and surface roughness were measured before and after accelerated aging. Of the polishing methods, glazed specimens showed the lowest color change (∆E*), ∆L*, and ∆b* values (p<0.05). Of the composite resins, the microhybrid composite showed the lowest ∆E* value, whereas the ormocer showed the highest (p<0.05). For all composite types, the surface roughness of their control groups decreased after aging (p<0.05). In conclusion, all composite resins showed color changes after accelerated aging, with the use of glaze material resulting in the lowest color change.

  15. Hardness evaluation of prosthetic silicones containing opacifiers following chemical disinfection and accelerated aging.

    PubMed

    Goiato, Marcelo Coelho; Haddad, Marcela Filié; Santos, Daniela Micheline dos; Pesqueira, Aldiéris Alves; Moreno, Amália

    2010-01-01

    We evaluated the effects of disinfection and aging on the hardness of silicones containing opacifiers and intended for use in facial prosthetics. A total of 90 samples were produced using a cylindrical metal mold 3 mm in height and 30 mm in diameter. The samples were fabricated from Silastic MDX 4-4210 silicone in three groups: GI contained no opacifier, GII contained barium sulfate (Ba), and GIII contained titanium dioxide (Ti). The samples were disinfected using effervescent tablets (Ef), neutral soap (Ns), or 4% chlorhexidine (Cl) 3 times a week for 60 days. After this period the samples underwent 1,008 hours of accelerated aging. The hardness was measured using a durometer immediately following the disinfection period and after 252, 504, and 1,008 hours of aging. The data were statistically analyzed using 3-way ANOVA and the Tukey test (p < .05). The GIII group exhibited the greatest variation in hardness regardless of elapsed time. All groups displayed greater hardness after 1,008 hours of accelerated aging independent of disinfectant type. All of the hardness values were within the clinically acceptable range.

  16. Accelerated Aging of Intervertebral Discs in a Mouse Model of Progeria

    PubMed Central

    Vo, Nam; Seo, Hyoung-Yeon; Robinson, Andria; Sowa, Gwendolyn; Bentley, Douglas; Taylor, Lauren; Studer, Rebecca; Usas, Arvydas; Huard, Johnny; Alber, Sean; Watkins, Simon C.; Lee, Joon; Coehlo, Paulo; Wang, Dong; Loppini, Mattia; Robbins, Paul D.; Niedernhofer, Laura J.; Kang, James

    2012-01-01

    Intervertebral disc degeneration (IDD) is a common and debilitating disorder that results in reduced flexibility of the spine, pain, and reduced mobility. Risk factors for IDD include age, genetic predisposition, injury, and other environmental factors such as smoking. Loss of proteoglycans (PGs) contributes to IDD with advancing age. Currently there is a lack of a model for rapid investigation of disc aging and evaluation of therapeutic interventions. Here we examined progression of disc aging in a murine model of a human progeroid syndrome caused by deficiency of the DNA repair endonuclease, ERCC1–XPF (Ercc1−/Δ mice). The ERCC1-deficient mice showed loss of disc height and degenerative structural changes in their vertebral bodies similar to those reported for old rodents. Compared to their wild-type littermates, Ercc1−/Δ mice also exhibit other age-related IDD characteristics, including premature loss of disc PG, reduced matrix PG synthesis, and enhanced apoptosis and cell senescence. Finally, the onset of age-associated disc pathologies was further accelerated in Ercc1−/Δ mice following chronic treatment with the chemotherapeutic agent mechlorethamine. These results demonstrate that Ercc1−/Δ mice represent an accurate and rapid model of disc aging and provide novel evidence that DNA damage negatively impacts PG synthesis. PMID:20973062

  17. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin.

    PubMed

    Velarde, Michael C; Flynn, James M; Day, Nicholas U; Melov, Simon; Campisi, Judith

    2012-01-01

    Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypesin vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo.

  18. Colour stability, opacity and cross-link density of composites submitted to accelerated artificial aging.

    PubMed

    Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Garcia, Lucas da Fonseca Roberti; Consani, Simonides

    2010-06-01

    The study evaluated the influence of accelerated artificial aging on colour stability, opacity and cross-link density of resin-based composites (RBCs). Seven specimens were obtained of five RBCs (Heliomolar, 4 Seasons, Tetric Evo Ceram, SR Adoro), which were submitted to colour stability and opacity analysis and cross-link density evaluation. All tests were performed before and after aging. After statistical analysis (one-way ANOVA; Tukey; p<0.05), it was observed that QuiXfil and SR Adoro presented colour alteration values above those that are clinically acceptable (deltaE=5.77 and 4.34 respectively) and the variation in opacity was lowest for SR Adoro. There was an increase in the cross-link density of all studied materials after aging.

  19. The effect of accelerated aging on color stability of denture liners.

    PubMed

    Anil, N; Hekimoglu, C; Sahin, S

    1998-09-01

    The objective of the present study was to determine the color changes resulting from the aging process in two cold and three hot curing soft liners and two hard liners. Seven samples were fabricated for each material. The initial color measurements were made with a UV-Visible Recording Spectrophotometer. The samples were then placed in an accelerated aging chamber to simulate the aging process. The color of the samples was then measured again with a colorimeter, and the color changes (delta E) were calculated. The critical mark of color change (delta E) has been quantified by the NBS. It was concluded that cold curing soft liners were not color-stable, and that hot curing soft liners and hard liners had similar color durability. These results suggest that colorants used in cold curing soft liners must be reinforced.

  20. Anticedants and natural prevention of environmental toxicants induced accelerated aging of skin.

    PubMed

    Tanuja Yadav; Mishra, Shivangi; Das, Shefali; Aggarwal, Shikha; Rani, Vibha

    2015-01-01

    Skin is frequently exposed to a variety of environmental and chemical agents that accelerate ageing. External stress such as UV radiations (UVR) and environmental pollutants majorly deteriorate the skin morphology, by activating certain intrinsic factors such as Reactive Oxygen Species (ROS) which trigger the activation of Matrix Metalloproteinases (MMPs) and inflammatory responses hence damaging the extracellular matrix (ECM) components. To counter this, an exogenous supply of anti-oxidants, is required since the endogenous anti-oxidant system cannot alone suffice the need. Bio-prospecting of natural resources for anti-oxidants has hence been intensified. Immense research is being carried out to identify potential plants with potent anti-oxidant activity against skin ageing. This review summarizes the major factors responsible for premature skin ageing and the plants being targeted to lessen the impact of those. PMID:25555260

  1. Anticedants and natural prevention of environmental toxicants induced accelerated aging of skin.

    PubMed

    Tanuja Yadav; Mishra, Shivangi; Das, Shefali; Aggarwal, Shikha; Rani, Vibha

    2015-01-01

    Skin is frequently exposed to a variety of environmental and chemical agents that accelerate ageing. External stress such as UV radiations (UVR) and environmental pollutants majorly deteriorate the skin morphology, by activating certain intrinsic factors such as Reactive Oxygen Species (ROS) which trigger the activation of Matrix Metalloproteinases (MMPs) and inflammatory responses hence damaging the extracellular matrix (ECM) components. To counter this, an exogenous supply of anti-oxidants, is required since the endogenous anti-oxidant system cannot alone suffice the need. Bio-prospecting of natural resources for anti-oxidants has hence been intensified. Immense research is being carried out to identify potential plants with potent anti-oxidant activity against skin ageing. This review summarizes the major factors responsible for premature skin ageing and the plants being targeted to lessen the impact of those.

  2. Assessment of the contribution of APOE gene variants to metabolic phenotypes associated with familial longevity at middle age

    PubMed Central

    Noordam, Raymond; Oudt, Charlotte H.; Deelen, Joris; Slagboom, P. Eline; Beekman, Marian; van Heemst, Diana

    2016-01-01

    Offspring of long-lived families are characterized by beneficial metabolic phenotypes in glucose and lipid metabolism and low 25-hydroxyvitamin D. Although the genetic basis for human longevity remains largely unclear, the contribution of variation at the APOE locus has been repeatedly demonstrated. We aimed to assess whether ApoE isoforms mark the familial longevity status in middle age and subsequently to test to what extend this association is mediated by the metabolic characteristics marking this status. From the Leiden Longevity Study (LLS), we included offspring from nonagenarian siblings and partners as controls. Using the metabolic phenotypes of familial longevity as mediators, we investigated how APOE gene variants associated with LLS offspring/control status (in 1,515 LLS offspring and 715 controls). Within the LLS (mean age = 59.2 years), ApoE ε4 was not associated with a lower likelihood of being an LLS offspring, whereas ApoE ɛ2 was significantly associated with a higher likelihood of being an LLS offspring (odds ratio = 1.43), but this difference was not mediated (p-values>0.05) by any of the investigated metabolic phenotypes (e.g., diabetes and glucose). Therefore, variation at the APOE locus may not influence familial longevity status in middle age significantly through any of the metabolic mechanisms investigated. PMID:27540764

  3. Assessment of the contribution of APOE gene variants to metabolic phenotypes associated with familial longevity at middle age.

    PubMed

    Noordam, Raymond; Oudt, Charlotte H; Deelen, Joris; Slagboom, P Eline; Beekman, Marian; van Heemst, Diana

    2016-08-01

    Offspring of long-lived families are characterized by beneficial metabolic phenotypes in glucose and lipid metabolism and low 25-hydroxyvitamin D. Although the genetic basis for human longevity remains largely unclear, the contribution of variation at the APOE locus has been repeatedly demonstrated. We aimed to assess whether ApoE isoforms mark the familial longevity status in middle age and subsequently to test to what extend this association is mediated by the metabolic characteristics marking this status. From the Leiden Longevity Study (LLS), we included offspring from nonagenarian siblings and partners as controls. Using the metabolic phenotypes of familial longevity as mediators, we investigated how APOE gene variants associated with LLS offspring/control status (in 1,515 LLS offspring and 715 controls). Within the LLS (mean age = 59.2 years), ApoE ε4 was not associated with a lower likelihood of being an LLS offspring, whereas ApoE ɛ2 was significantly associated with a higher likelihood of being an LLS offspring (odds ratio = 1.43), but this difference was not mediated (p-values>0.05) by any of the investigated metabolic phenotypes (e.g., diabetes and glucose). Therefore, variation at the APOE locus may not influence familial longevity status in middle age significantly through any of the metabolic mechanisms investigated. PMID:27540764

  4. Acceleration of age-associated methylation patterns in HIV-1-infected adults.

    PubMed

    Rickabaugh, Tammy M; Baxter, Ruth M; Sehl, Mary; Sinsheimer, Janet S; Hultin, Patricia M; Hultin, Lance E; Quach, Austin; Martínez-Maza, Otoniel; Horvath, Steve; Vilain, Eric; Jamieson, Beth D

    2015-01-01

    Patients with treated HIV-1-infection experience earlier occurrence of aging-associated diseases, raising speculation that HIV-1-infection, or antiretroviral treatment, may accelerate aging. We recently described an age-related co-methylation module comprised of hundreds of CpGs; however, it is unknown whether aging and HIV-1-infection exert negative health effects through similar, or disparate, mechanisms. We investigated whether HIV-1-infection would induce age-associated methylation changes. We evaluated DNA methylation levels at >450,000 CpG sites in peripheral blood mononuclear cells (PBMC) of young (20-35) and older (36-56) adults in two separate groups of participants. Each age group for each data set consisted of 12 HIV-1-infected and 12 age-matched HIV-1-uninfected samples for a total of 96 samples. The effects of age and HIV-1 infection on methylation at each CpG revealed a strong correlation of 0.49, p<1 x 10(-200) and 0.47, p<1 x 10(-200). Weighted gene correlation network analysis (WGCNA) identified 17 co-methylation modules; module 3 (ME3) was significantly correlated with age (cor=0.70) and HIV-1 status (cor=0.31). Older HIV-1+ individuals had a greater number of hypermethylated CpGs across ME3 (p=0.015). In a multivariate model, ME3 was significantly associated with age and HIV status (Data set 1: βage=0.007088, p=2.08 x 10(-9); βHIV=0.099574, p=0.0011; Data set 2: βage=0.008762, p=1.27 x 10(-5); βHIV=0.128649, p=0.0001). Using this model, we estimate that HIV-1 infection accelerates age-related methylation by approximately 13.7 years in data set 1 and 14.7 years in data set 2. The genes related to CpGs in ME3 are enriched for polycomb group target genes known to be involved in cell renewal and aging. The overlap between ME3 and an aging methylation module found in solid tissues is also highly significant (Fisher-exact p=5.6 x 10(-6), odds ratio=1.91). These data demonstrate that HIV-1 infection is associated with methylation patterns that are

  5. Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts

    PubMed Central

    Waldera-Lupa, Daniel M.; Kalfalah, Faiza; Florea, Ana-Maria; Sass, Steffen; Kruse, Fabian; Rieder, Vera; Tigges, Julia; Fritsche, Ellen; Krutmann, Jean; Busch, Hauke; Boerries, Melanie; Meyer, Helmut E.; Boege, Fritz; Theis, Fabian

    2014-01-01

    We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts’ aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77% of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging. PMID:25411231

  6. Time dependent diffusive shock acceleration and its application to middle aged supernova remnants

    NASA Astrophysics Data System (ADS)

    Tang, Xiaping; Chevalier, Roger A.

    2016-06-01

    Recent gamma-ray observations show that middle aged supernova remnants (SNRs) interacting with molecular clouds (MCs) can be sources of both GeV and TeV emission. Based on the MC association, two scenarios have been proposed to explain the observed gamma-ray emission. In one, energetic cosmic ray (CR) particles escape from the SNR and then illuminate nearby MCs, producing gamma-ray emission, while the other involves direct interaction between the SNR and MC. In the direct interaction scenario, re-acceleration of pre-existing CRs in the ambient medium is investigated while particles injected from the thermal pool are neglected in view of the slow shock speeds in middle aged SNRs. However, standard diffusive shock acceleration (DSA) theory produces a steady state particle spectrum that is too flat compared to observations, which suggests that the high energy part of the observed spectrum has not yet reached a steady state. We derive a time dependent DSA solution in the test particle limit for re-acceleration of pre-existing CRs case and show that it is capable of reproducing the observed gamma-ray emission in SNRs like IC 443 and W44, in the context of a MC interaction model. We also provide a simple physical picture to understand the time dependent DSA spectrum. A spatially averaged diffusion coefficient around the SNR can be estimated through fitting the gamma-ray spectrum. The spatially averaged diffusion coefficient in middle aged SNRs like IC 443 and W44 is estimated to be ~10^(25) cm^2/s at ~ 1GeV, which is between the Bohm limit and interstellar value.

  7. Length velocity acceleration at 9 months of age in a representative birth cohort of Dutch infants.

    PubMed

    Van den Broeck, J; Brand, R; Massa, G; Herngreen, W P; Wit, J M

    2000-01-01

    According to the ICP (infancy-childhood-puberty) growth model, statural growth can be divided into three partially superimposed components assumed to represent different physiologic mechanisms. This model predicts a sudden acceleration of length velocity (LV) at the onset of the childhood component around 9 months. The existence of such an infancy-childhood growth spurt has not yet been firmly corroborated by epidemiological studies. In the present study length measurements were made at the target ages of 1, 3, 6, 9, 12, 15, 18 and 24 months in a birth cohort of 2034 infants. In order to check whether length growth showed a continuous smooth pattern, different mathematical models were fitted to the individual growth curves. The models included Count and Guo functions, 5th order polynomial and combinations of 5th order polynomial with the logarithmic term of the Count function and the square root term of the Guo function. We showed that in boys and girls there is a small but systematic lack of fit of the mathematical modeling, due to a sudden acceleration of LV around 9 months. In addition there was an increase in variation of attained length at this age. Comparison of unbalanced ANOVA models with and without addition of dummy variables for the target ages confirmed that there was an acceleration around 9 months that, if corrected for, leads to a significantly improved model fit (likelihood ratio test p < 0.0001). In absolute terms of LV, the misfit at 9 months was not greater than 0.5 cm/year on average. We conclude that the results of this study support the existence of a late infancy growth spurt. In our opinion, however, the magnitude of the phenomenon does not legitimate construction and use of discontinuous growth references such as the ICP reference.

  8. Functionality, growth and accelerated aging of tissue engineered living autologous vascular grafts.

    PubMed

    Kelm, Jens M; Emmert, Maximilian Y; Zürcher, Armin; Schmidt, Dörthe; Begus Nahrmann, Yvonne; Rudolph, Karl L; Weber, Benedikt; Brokopp, Chad E; Frauenfelder, Thomas; Leschka, Sebastian; Odermatt, Bernhard; Jenni, Rolf; Falk, Volkmar; Zünd, Gregor; Hoerstrup, Simon P

    2012-11-01

    Living autologous tissue engineered vascular-grafts (TEVGs) with growth-capacity may overcome the limitations of contemporary artificial-prostheses. However, the multi-step in vitro production of TEVGs requires extensive ex vivo cell-manipulations with unknown effects on functionality and quality of TEVGs due to an accelerated biological age of the cells. Here, the impact of biological cell-age and tissue-remodeling capacity of TEVGs in relation to their clinical long-term functionality are investigated. TEVGs were implanted as pulmonary-artery (PA) replacements in juvenile sheep and followed for up to 240 weeks (∼4.5years). Telomere length and telomerase activity were compared amongst TEVGs and adjacent native tissue. Telomerase-activity of in vitro expanded autologous vascular-cells prior to seeding was <5% as compared to a leukemic cell line, indicating biological-aging associated with decreasing telomere-length with each cellular-doubling. Up to 100 weeks, the cells in the TEVGs had consistently shorter telomeres compared to the native counterpart, whereas no significant differences were detectable at 240 weeks. Computed tomography (CT) analysis demonstrated physiological wall-pressures, shear-stresses, and flow-pattern comparable to the native PA. There were no signs of degeneration detectable and continuous native-analogous growth was confirmed by vessel-volumetry. TEVGs exhibit a higher biological age compared to their native counterparts. However, despite of this tissue engineering technology related accelerated biological-aging, growth-capacity and long-term functionality was not compromised. To the contrary, extensive in-vivo remodeling processes with substantial endogenous cellular turnover appears to result in "TEVG rejuvenation" and excellent clinical performance. As these large-animal results can be extrapolated to approximately 20 human years, this study suggests long-term clinical-safety of cardiovascular in vitro tissue engineering and may

  9. Accelerated fibrosis and apoptosis with ageing and in atrial fibrillation: Adaptive responses with maladaptive consequences

    PubMed Central

    XU, GUO-JUN; GAN, TIAN-YI; TANG, BAO-PENG; CHEN, ZU-HENG; MAHEMUTI, AILIMAN; JIANG, TAO; SONG, JIAN-GUO; GUO, XIA; LI, YAO-DONG; MIAO, HAI-JUN; ZHOU, XIAN-HUI; ZHANG, YU; LI, JIN-XIN

    2013-01-01

    The aim of this study was to investigate whether abnormal expression of matrix metalloproteinase (MMP)-9/tissue inhibitors of MMPs (TIMP)-1 and B cell lymphoma 2 (BCL-2)/BCL-2-associated X protein (BAX) are correlated with the characteristic accelerated fibrosis and apoptosis during ageing and in atrial fibrillation (AF). Four groups of dogs were studied: adult dogs in sinus rhythm (SR), aged dogs in SR, adult dogs with AF induced by rapid atrial pacing and aged dogs with AF induced by rapid atrial pacing. The mRNA and protein expression levels of the target gene in the left atrium were measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. Pathohistological and ultrastructural changes were assessed by light and electron microscopy. The apoptotic indices of myocytes were detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL). The mRNA and protein expression levels of MMP-9 and BAX and those of TIMP-1 and BCL-2 were significantly upregulated and down-regulated, respectively, in the aged groups compared with the adult groups. Compared with the control groups, the adult and aged groups with AF exhibited significantly increased mRNA and protein expression levels of MMP-9 and BAX and decreased expression levels of TIMP-1 and BCL-2. Samples of atrial tissue demonstrated abnormal pathohistological and ultrastructural changes, accelerated fibrosis and apoptosis. MMP-9/TIMP-1 and BCL-2/BAX hold potential for use as substrates conducive to AF and their abnormal expression plays a major role in structural remodeling of the atrium. PMID:23403858

  10. Psychiatric Disorders, Morbidity, and Mortality: Tracing Mechanistic Pathways to Accelerated Aging.

    PubMed

    Kiecolt-Glaser, Janice K; Wilson, Stephanie J

    2016-09-01

    A meta-analysis published in this issue of Psychosomatic Medicine provides convincing evidence that certain psychiatric populations have shorter telomeres than nonpsychiatric controls, in accord with the strong evidence linking psychiatric disorders with premature mortality. After addressing the clinical significance of shorter telomeres, this editorial describes mechanistic pathways that lead to telomere shortening. Additionally, two other novel methods for measuring biological markers of accelerated aging are briefly discussed: DNA methylation and cellular senescence based on p16. These innovative approaches could be used to confirm and extend our understanding of psychiatric patients' increased health and mortality risks.

  11. Holocene age of the Yuha burial: Direct radiocarbon determinations by accelerator mass spectrometry

    USGS Publications Warehouse

    Stafford, Thomas W.; Jull, A.J.T.; Zabel, T.H.; Donahue, D.J.; Duhamel, R.C.; Brendel, K.; Haynes, C.V.; Bischoff, J.L.; Payen, L.A.; Taylor, R.E.

    1984-01-01

    The view that human populations may not have arrived in the Western Hemisphere before about 12,000 radiocarbon yr BP1,2 has been challenged by claims of much greater antiquity for a small number of archaeological sites and human skeleton samples. One such site is the Homo sapiens sapiens cairn burial excavated in 1971 from the Yuha desert, Imperial County, California3-5. Radiocarbon analysis of caliche coating one of the bones of the skeleton yielded a radiocarbon age of 21,500??1,000 yr BP4, while radiocarbon and uranium series analyses of caliche coating a cairn boulder yielded ages of 22,125??400 and 19,000??3,000 yr BP, respectively5. The late Pleistocene age assignment to the Yuha burial has been challenged by comparing the cultural context of the burial with other cairn burials in the same region6, on the basis of the site's geomorphological context and from radiocarbon analyses of soil caliches. 7,8 In rebuttal, arguments in defence of the original age assignment have been presented9,10 as well as an amino acid racemization analysis on the Yuha skeleton indicating an age of 23,600??2,600 yr BP11. The tandem accelerator mass spectrometer at the University of Arizona has now been used to measure the ratio of 14C/13C in several organic and inorganic fractions of post-cranial bone from the Yuha H. sapiens sapiens skeleton. Isotope ratios from six chemical fractions all yielded radiocarbon ages for the skeleton of less than 4,000 yr BP. These results indicate that the Yuha skeleton is of Holocene age, in agreement with the cultural context of the burial, and in disagreement with the previously assigned Pleistocene age of 19,000-23,000 yr. ?? 1984 Nature Publishing Group.

  12. Improving Bone Microarchitecture in Aging with Diosgenin Treatment: A Study in Senescence-Accelerated OXYS Rats.

    PubMed

    Tikhonova, Maria A; Ting, Che-Hao; Kolosova, Nataliya G; Hsu, Chao-Yu; Chen, Jian-Horng; Huang, Chi-Wen; Tseng, Ging-Ting; Hung, Ching-Sui; Kao, Pan-Fu; Amstislavskaya, Tamara G; Ho, Ying-Jui

    2015-10-31

    Osteoporosis is a major disease associated with aging. We have previously demonstrated that diosgenin prevents osteoporosis in both menopause and D-galactose-induced aging rats. OXYS rats reveal an accelerated senescence and are used as a suitable model of osteoporosis. The aim of the present study was to analyze microarchitecture and morphological changes in femur of OXYS rats using morphological tests and microcomputed tomography scanning, and to evaluate the effects of oral administration of diosgenin at 10 and 50 mg/kg/day on femur in OXYS rats. The result showed that, compared with age-matched Wistar rats, the femur of OXYS rats revealed lower bone length, bone weight, bone volume, frame volume, frame density, void volume, porosity, external and internal diameters, cortical bone area, BV/TV, Tb.N, and Tb.Th, but higher Tb.Sp. Eight weeks of diosgenin treatment decreased porosity and Tb.Sp, but increased BV/TV, cortical bone area, Tb.N and bone mineral density, compared with OXYS rats treated with vehicle. These data reveal that microarchitecture and morphological changes in femur of OXYS rats showed osteoporotic aging features and suggest that diosgenin may have beneficial effects on aging-induced osteoporosis. PMID:26387656

  13. The signaling pathways by which the Fas/FasL system accelerates oocyte aging

    PubMed Central

    Zhu, Jiang; Lin, Fei-Hu; Zhang, Jie; Lin, Juan; Li, Hong; Li, You-Wei; Tan, Xiu-Wen; Tan, Jing-He

    2016-01-01

    In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+ releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis. PMID:26869336

  14. Skeletal Involution by Age-associated Oxidative Stress and Its Acceleration by Loss of Sex Steroids*

    PubMed Central

    Almeida, Maria; Han, Li; Martin-Millan, Marta; Plotkin, Lilian I.; Stewart, Scott A.; Roberson, Paula K.; Kousteni, Stavroula; O’Brien, Charles A.; Bellido, Teresita; Parfitt, A. Michael; Weinstein, Robert S.; Jilka, Robert L.; Manolagas, Stavros C.

    2011-01-01

    Both aging and loss of sex steroids have adverse effects on skeletal homeostasis, but whether and how they may influence each others negative impact on bone remains unknown. We report herein that both female and male C57BL/6 mice progressively lost strength (as determined by load-to-failure measurements) and bone mineral density in the spine and femur between the ages of 4 and 31 months. These changes were temporally associated with decreased rate of remodeling as evidenced by decreased osteoblast and osteoclast numbers and decreased bone formation rate; as well as increased osteoblast and osteocyte apoptosis, increased reactive oxygen species levels, and decreased glutathione reductase activity and a corresponding increase in the phosphorylation of p53 and p66shc, two key components of a signaling cascade that are activated by reactive oxygen species and influences apoptosis and lifespan. Exactly the same changes in oxidative stress were acutely reproduced by gonadectomy in 5-month-old females or males and reversed by estrogens or androgens in vivo as well as in vitro.We conclude that the oxidative stress that underlies physiologic organismal aging in mice may be a pivotal pathogenetic mechanism of the age-related bone loss and strength. Loss of estrogens or androgens accelerates the effects of aging on bone by decreasing defense against oxidative stress. PMID:17623659

  15. Impact absorption of four processed soft denture liners as influenced by accelerated aging.

    PubMed

    Kawano, F; Koran, A; Nuryanti, A; Inoue, S

    1997-01-01

    The cushioning effect of soft denture liners was evaluated by using a free drop test with an accelerometer. Materials tested included SuperSoft (Coe Laboratories, Chicago, IL), Kurepeet-Dough (Kreha Chemical, Tokyo), Molteno Soft (Molten, Hiroshima, Japan), and Molloplast-B (Molloplast Regneri, Karlsruhe, Germany). All materials were found to reduce the impact force when compared to acrylic denture base resin. A 2.4-mm layer of soft denture material demonstrated good impact absorption, and Molloplast-B and Molteno had excellent impact absorption. When the soft denture liner was kept in an accelerated aging chamber for 900 hours, the damping effect recorded increased for all materials tested. Aging of all materials also affected the cushioning effect.

  16. Impulse noise exposure in early adulthood accelerates age-related hearing loss.

    PubMed

    Xiong, Min; Yang, Chuanhong; Lai, Huangwen; Wang, Jian

    2014-06-01

    The aim of this study was to investigate the influence of impulse noise on age-related hearing loss. The study consisted of two groups. Each group contained 109 men. Group I comprised veterans with normal hearing at the end of 1979 sino-vietnamese war. All these veterans were randomly selected from Guangzhou Military Command. Group II were men with no military experience randomly chosen from the health examination center of Guangzhou General Hospital of Guangzhou Military Command. Pure-tone thresholds of these two groups were measured and compared. The pure-tone thresholds of Group I were poorer than those of Group II at the frequencies of 4, 6 and 8 kHz. Thus, impulse noise accelerates age-related hearing loss.

  17. The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber

    SciTech Connect

    Gorur, R.S.; Cherney, E.A.; Hackam, R. ); Orbeck, T. )

    1988-07-01

    A comparative study of the ac (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low conductivity (250 ..mu..S/cm) fog, silicone rubber performed better than EPDM samples whereas in high conductivity (1000 ..mu..S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (Electron Spectroscopy for Chemical Analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low molecular weight polymer chains and/or mobile fluids, such as silicone oil.

  18. A Phenotyping Regimen for Genetically Modified Mice Used to Study Genes Implicated in Human Diseases of Aging.

    PubMed

    Patterson, Victoria L; Thompson, Brian S; Cherry, Catherine; Wang, Shao-Bin; Chen, Bo; Hoh, Josephine

    2016-01-01

    Age-related diseases are becoming increasingly prevalent and the burden continues to grow as our population ages. Effective treatments are necessary to lessen the impact of debilitating conditions but remain elusive in many cases. Only by understanding the causes and pathology of diseases associated with aging, can scientists begin to identify potential therapeutic targets and develop strategies for intervention. The most common age-related conditions are neurodegenerative disorders such as Parkinson's disease and blindness. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Genome wide association studies have previously identified loci that are associated with increased susceptibility to this disease and identified two regions of interest: complement factor H (CFH) and the 10q26 locus, where the age-related maculopathy susceptibility 2 (ARMS2) and high-temperature requirement factor A1 (HtrA1) genes are located. CFH acts as a negative regulator of the alternative pathway (AP) of the complement system while HtrA1 is an extracellular serine protease. ARMS2 is located upstream of HtrA1 in the primate genome, although the gene is absent in mice. To study the effects of these genes, humanized knock-in mouse lines of Cfh and ARMS2, knockouts of Cfh, HtrA1, HtrA2, HtrA3 and HtrA4 as well as a conditional neural deletion of HtrA2 were generated. Of all the genetically engineered mice produced only mice lacking HtrA2, either systemically or in neural tissues, displayed clear phenotypes. In order to examine these mice thoroughly and systematically, an initial phenotyping schedule was established, consisting of a series of tests related to two main diseases of interest: AMD and Parkinson's. Genetically modified mice can be subjected to appropriate experiments to identify phenotypes that may be related to the associated diseases in humans. A phenotyping regimen with a mitochondrial focus is presented here alongside representative results

  19. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Kulkarni, Chetan; Biswas, Gautam; Saha, Sankalita; Goebel, Kai

    2011-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  20. Physical property comparison of 11 soft denture lining materials as a function of accelerated aging.

    PubMed

    Dootz, E R; Koran, A; Craig, R G

    1993-01-01

    Soft denture-lining materials are an important treatment option for patients who have chronic soreness associated with dental prostheses. Three distinctly different types of materials are generally used. These are plasticized polymers or copolymers, silicones, or polyphosphazene fluoroelastomer. The acceptance of these materials by patients and dentists is variable. The objective of this study is to compare the tensile strength, percent elongation, hardness, tear strength, and tear energy of eight plasticized polymers or copolymers, two silicones, and one polyphosphazene fluoroelastomer. Tests were run at 24 hours after specimen preparation and repeated after 900 hours of accelerated aging in a Weather-Ometer device. The data indicated a wide range of physical properties for soft denture-lining materials and showed that accelerated aging dramatically affected the physical and mechanical properties of many of the elastomers. No soft denture liner proved to be superior to all others. The data obtained should provide clinicians with useful information for selecting soft denture lining materials for patients.

  1. Macrophage Response to UHMWPE Submitted to Accelerated Ageing in Hydrogen Peroxide.

    PubMed

    Rocha, Magda F G; Mansur, Alexandra A P; Martins, Camila P S; Barbosa-Stancioli, Edel F; Mansur, Herman S

    2010-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important properties to extend the longevity of knee prostheses. The present study investigated the accelerated ageing of UHMWPE in hydrogen peroxide highly oxidative chemical environment. The sliced samples of UHMWPE were oxidized in a hydrogen peroxide solution for 120 days with their total level of oxidation (Iox) characterized by Fourier Transformed Infrared Spectroscopy (FTIR). The potential inflammatory response, cell viability and biocompatibility of such oxidized UHMWPE systems were assessed by a novel biological in vitro assay based on the secretion of nitric oxide (NO) by activated murine macrophages with gamma interferon (IFN-gamma) cytokine and lipopolysaccharide (LPS). Furthermore, macrophage morphologies in contact with UHMWPE oxidized surfaces were analyzed by cell spreading-adhesion procedure using scanning electron microscopy (SEM). The results have given significant evidence that the longer the period of accelerated aging of UHMWPE the higher was the macrophage inflammatory equivalent response based on NO secretion analysis.

  2. Validation of accelerated ageing of Thales rotary Stirling cryocoolers for the estimation of MTTF

    NASA Astrophysics Data System (ADS)

    Seguineau, C.,; Cauquil, J.-M.; Martin, J.-Y.; Benschop, T.

    2016-05-01

    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. The current market needs tend to reliability figures higher than 15,000hrs in "standard conditions". Field returns are hardly useable mostly because of the uncertain environmental conditions of use, or the differences in user profiles. A previous paper explains how Thales Cryogenics has developed an approach based on accelerated ageing and statistical analysis [1]. The aim of the current paper is to compare results obtained on accelerated ageing on one side, and on the other side, specific field returns where the conditions of use are well known. The comparison between prediction and effective failure rate is discussed. Moreover, a specific focus is done on how some new applications of cryocoolers (continuous operation at a specific temperature) can increase the MTTF. Some assumptions are also exposed on how the failure modes, effects and criticality analysis evolves for continuous operation at a specific temperature and compared to experimental data.

  3. Vegetable Intake in College-Aged Adults Is Explained by Oral Sensory Phenotypes and TAS2R38 Genotype

    PubMed Central

    Hayes, John E.; Davidson, Andrew C.; Kidd, Judith R.; Kidd, Kenneth K.; Bartoshuk, Linda M.

    2010-01-01

    Taste and oral sensations vary in humans. Some of this variation has a genetic basis, and two commonly measured phenotypes are the bitterness of propylthiouracil (PROP) and the number of fungiform papillae on the anterior tongue. While the genetic control of fungiform papilla is unclear, PROP bitterness associates with allelic variation in the taste receptor gene, TAS2R38. The two common alleles are AVI and PAV (proline, alanine, valine, and isoleucine); AVI/AVI homozygotes taste PROP as less bitter than heterozygous or homozygous PAV carriers. In this laboratory-based study, we determined whether taste of a bitter probe (quinine) and vegetable intake varied by taste phenotypes and TAS2R38 genotype in healthy adults (mean age=26 years). Vegetable intake was assessed via two validated, complementary methods: food records (Food Pyramid servings standardized to energy intake) and food frequency questionnaire (general intake question and composite vegetable groups). Quinine bitterness varied with phenotypes but not TAS2R38; quinine was more bitter to those who tasted PROP as more bitter or had more papillae. Nontasters by phenotype or genotype reported greater consumption of vegetables, regardless of type (i.e., the effect generalized to all vegetables and was not restricted to those typically thought of as being bitter). Furthermore, nontasters with more papillae reported greater vegetable consumption than nontasters with fewer papillae, suggesting that when bitterness does not predominate, more papillae enhance vegetable liking. These findings suggest that genetic variation in taste, measured by multiple phenotypes or TAS2R38 genotype, can explain differences in overall consumption of vegetables, and this was not restricted to vegetables that are predominantly bitter. PMID:21157576

  4. Bisphenol A exposure accelerated the aging process in the nematode Caenorhabditis elegans.

    PubMed

    Tan, Ling; Wang, Shunchang; Wang, Yun; He, Mei; Liu, Dahai

    2015-06-01

    Bisphenol A (BPA) is a well-known environmental estrogenic disruptor that causes adverse effects. Recent studies have found that chronic exposure to BPA is associated with a high incidence of several age-related diseases. Aging is characterized by progressive function decline, which affects quality of life. However, the effects of BPA on the aging process are largely unknown. In the present study, by using the nematode Caenorhabditis elegans as a model, we investigated the influence of BPA exposure on the aging process. The decrease in body length, fecundity, and population size and the increased egg laying defection suggested that BPA exposure resulted in fitness loss and reproduction aging in this animal. Lifetime exposure of worms to BPA shortened the lifespan in a dose-dependant manner. Moreover, prolonged BPA exposure resulted in age-related behavior degeneration and the accumulation of lipofuscin and lipid peroxide products. The expression of mitochondria-specific HSP-6 and endoplasmic reticulum (ER)-related HSP-70 exhibited hormetic decrease. The expression of ER-related HSP-4 decreased significantly while HSP-16.2 showed a dose-dependent increase. The decreased expression of GCS-1 and GST-4 implicated the reduced antioxidant ability under BPA exposure, and the increase in SOD-3 expression might be caused by elevated levels of reactive oxygen species (ROS) production. Finally, BPA exposure increased the generation of hydrogen peroxide-related ROS and superoxide anions. Our results suggest that BPA exposure resulted in an accelerated aging process in C. elegans mediated by the induction of oxidative stress.

  5. Loss of Rad-GTPase produces a novel adaptive cardiac phenotype resistant to systolic decline with aging

    PubMed Central

    Manning, Janet R.; Withers, Catherine N.; Levitan, Bryana; Smith, Jeffrey D.; Andres, Douglas A.

    2015-01-01

    Rad-GTPase is a regulator of L-type calcium current (LTCC), with increased calcium current observed in Rad knockout models. While mouse models that result in elevated LTCC have been associated with heart failure, our laboratory and others observe a hypercontractile phenotype with enhanced calcium homeostasis in Rad−/−. It is currently unclear whether this observation represents an early time point in a decompensatory progression towards heart failure or whether Rad loss drives a novel phenotype with stable enhanced function. We test the hypothesis that Rad−/− drives a stable nonfailing hypercontractile phenotype in adult hearts, and we examine compensatory regulation of sarcoplasmic reticulum (SR) loading and protein changes. Heart function was measured in vivo with echocardiography. In vivo heart function was significantly improved in adult Rad−/− hearts compared with wild type. Heart wall dimensions were significantly increased, while heart size was decreased, and cardiac output was not changed. Cardiac function was maintained through 18 mo of age with no decompensation. SR releasable Ca2+ was increased in isolated Rad−/− ventricular myocytes. Higher Ca2+ load was accompanied by sarco/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) protein elevation as determined by immunoblotting and a rightward shift in the thapsigargan inhibitor-response curve. Rad−/− promotes morphological changes accompanied by a stable increase in contractility with aging and preserved cardiac output. The Rad−/− phenotype is marked by enhanced systolic and diastolic function with increased SR uptake, which is consistent with a model that does not progress into heart failure. PMID:26371164

  6. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  7. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice.

    PubMed

    Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A

    2016-06-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  8. Energy excess is the main cause of accelerated aging of mammals

    PubMed Central

    Biliński, Tomasz; Paszkiewicz, Tadeusz; Zadrag-Tecza, Renata

    2015-01-01

    The analysis of cases of unusually high longevity of naked mole rats and an alternative explanation of the phenomenon of calorie restriction effects in monkeys allowed for postulating that any factor preventing an excess of energy consumed, leads to increased lifespan, both in evolutionary and an individual lifetime scale. It is postulated that in mammals the most destructive processes resulting in shortening of life are not restricted to the phenomena explained by the hyperfunction theory of Mikhail Blagosklonny. Hyperfunction, understood as unnecessary or even adverse syntheses of cell components, can be to some extent prevented by lowered intake of nutrients when body growth ceases. We postulate also the contribution of glyco/lipotoxicity to aging, resulting from the excess of energy. Besides two other factors seem to participate in aging. One of them is lack of telomerase activity in some somatic cells. The second factor concerns epigenetic phenomena. Excessive activity of epigenetic maintenance system probably turns off some crucial organismal functions. Another epigenetic factor playing important role could be the micro RNA system deciding on expression of numerous age-related diseases. However, low extrinsic mortality from predation is a conditio sine qua non of the expression of all longevity phenotypes in animals. Among all long-lived animals, naked mole rats are unique in the elimination of neoplasia, which is accompanied by delayed functional symptoms of senescence. The question whether simultaneous disappearance of neoplasia and delayed senescence is accidental or not remains open. PMID:26079722

  9. Caveolin-1 and Accelerated Host Aging in the Breast Tumor Microenvironment

    PubMed Central

    Mercier, Isabelle; Camacho, Jeanette; Titchen, Kanani; Gonzales, Donna M.; Quann, Kevin; Bryant, Kelly G.; Molchansky, Alexander; Milliman, Janet N.; Whitaker-Menezes, Diana; Sotgia, Federica; Jasmin, Jean-François; Schwarting, Roland; Pestell, Richard G.; Blagosklonny, Mikhail V.; Lisanti, Michael P.

    2013-01-01

    Increasing chronological age is the most significant risk factor for human cancer development. To examine the effects of host aging on mammary tumor growth, we used caveolin (Cav)-1 knockout mice as a bona fide model of accelerated host aging. Mammary tumor cells were orthotopically implanted into these distinct microenvironments (Cav-1+/+ versus Cav-1−/− age-matched young female mice). Mammary tumors grown in a Cav-1–deficient tumor microenvironment have an increased stromal content, with vimentin-positive myofibroblasts (a marker associated with oxidative stress) that are also positive for S6-kinase activation (a marker associated with aging). Mammary tumors grown in a Cav-1–deficient tumor microenvironment were more than fivefold larger than tumors grown in a wild-type microenvironment. Thus, a Cav-1–deficient tumor microenvironment provides a fertile soil for breast cancer tumor growth. Interestingly, the mammary tumor-promoting effects of a Cav-1–deficient microenvironment were estrogen and progesterone independent. In this context, chemoprevention was achieved by using the mammalian target of rapamycin (mTOR) inhibitor and anti-aging drug, rapamycin. Systemic rapamycin treatment of mammary tumors grown in a Cav-1–deficient microenvironment significantly inhibited their tumor growth, decreased their stromal content, and reduced the levels of both vimentin and phospho-S6 in Cav-1–deficient cancer-associated fibroblasts. Since stromal loss of Cav-1 is a marker of a lethal tumor microenvironment in breast tumors, these high-risk patients might benefit from treatment with mTOR inhibitors, such as rapamycin or other rapamycin-related compounds (rapalogues). PMID:22698676

  10. Effects of paternal phenotype and environmental variability on age and size at maturity in a male dimorphic mite

    NASA Astrophysics Data System (ADS)

    Smallegange, Isabel M.

    2011-04-01

    Investigating how the environment affects age and size at maturity of individuals is crucial to understanding how changes in the environment affect population dynamics through the biology of a species. Paternal phenotype, maternal, and offspring environment may crucially influence these traits, but to my knowledge, their combined effects have not yet been tested. Here, I found that in bulb mites ( Rhizoglyphus robini), maternal nutrition, offspring nutrition, and paternal phenotype (males are fighters, able to kill other mites, or benign scramblers) interactively affected offspring age and size at maturity. The largest effect occurred when both maternal and offspring nutrition was poor: in that case offspring from fighter sires required a significantly longer development time than offspring from scrambler sires. Investigating parental effects on the relationship between age and size at maturity revealed no paternal effects, and only for females was its shape influenced by maternal nutrition. Overall, this reaction norm was nonlinear. These non-genetic intergenerational effects may play a complex, yet unexplored role in influencing population fluctuations—possibly explaining why results from field studies often do not match theoretical predictions on maternal effects on population dynamics.

  11. Uncoupling between Phenotypic Senescence and Cell Cycle Arrest in Aging p21-Deficient Fibroblasts

    PubMed Central

    Dulić, Vjekoslav; Beney, Georges-Edouard; Frebourg, Guillaume; Drullinger, Linda F.; Stein, Gretchen H.

    2000-01-01

    Irreversible G1 arrest in senescent human fibroblasts is mediated by two inhibitors of cyclin-dependent kinases (Cdks), p21Cip1/SDI1/WAF1 and p16Ink4A. To determine the physiological and molecular events that specifically require p21, we studied senescence in human diploid fibroblasts expressing the human papillomavirus type 16 E6 oncogene, which confers low p21 levels via enhanced p53 degradation. We show that in late-passage E6 cells, high Cdk activity drives the cell cycle, but population expansion is slowed down by crisis-like events, probably owing to defective cell cycle checkpoints. At the end of lifespan, terminal-passage E6 cells exhibited several aspects of the senescent phenotype and accumulated unphosphorylated pRb and p16. However, both replication and cyclin-Cdk2 kinase activity were still not blocked, demonstrating that phenotypic and replicative senescence are uncoupled in the absence of normal p21 levels. At this stage, E6 cells also failed to upregulate p27 and inactivate cyclin-Cdk complexes in response to serum deprivation. Eventually, irreversible G1 arrest occurred coincident with inactivation of cyclin E-Cdk2 owing to association with p21. Similarly, when p21−/− mouse embryo fibroblasts reached the end of their lifespan, they had the appearance of senescent cells yet, in contrast to their wild-type counterparts, they were deficient in downregulating bromodeoxyuridine incorporation, cyclin E- and cyclin A-Cdk2 activity, and inhibiting pRb hyperphosphorylation. These data support the model that the critical event ensuring G1 arrest in senescence is p21-dependent Cdk inactivation, while other aspects of senescent phenotype appear to occur independently of p21. PMID:10958672

  12. Evaluation of oxidative behavior of polyolefin geosynthetics utilizing accelerated aging tests based on temperature and pressure

    NASA Astrophysics Data System (ADS)

    Li, Mengjia

    Polyolefin geosynthetics are susceptible to oxidation, which eventually leads to the reduction in their engineering properties. In the application of polyolefin geosynthetics, a major issue is an estimate of the materials durability (i.e. service lifetime) under various aging conditions. Antioxidant packages are added to the polyolefin products to extend the induction time, during which antioxidants are gradually depleted and polymer oxidation reactions are prevented. In this PhD study, an improved laboratory accelerating aging method under elevated and high pressure environments was applied to evaluate the combined effect of temperature and pressure on the depletion of the antioxidants and the oxidation of polymers. Four types of commercial polyolefn geosynthetic materials selected for aging tests included HDPE geogrid, polypropylene woven and nonwoven geotextiles. A total of 33 different temperature/pressure aging conditions were used, with the incubation duration up to 24 months. The applied oven temperature ranged from 35°C to 105°C and the partial oxygen pressure ranged from 0.005 MPa to 6.3 MPa. Using the Oxidative Induction Time (OIT) test, the antioxidant depletion, which is correlated to the decrease of the OIT value, was found to follow apparent first-order decay. The OIT data also showed that, the antioxidant depletion rate increased with temperature according to the Arrhenius equation, while under constant temperatures, the rate increased exponentially with the partial pressure of oxygen. A modified Arrhenius model was developed to fit the antioxidant depletion rate as a function of temperature and pressure and to predict the antioxidant lifetime under various field conditions. This study has developed new temperature/pressure incubation aging test method with lifetime prediction models. Using this new technique, the antioxidant lifetime prediction results are close to regular temperature aging data while the aging duration can be reduced considerably

  13. Accelerated aging of extruded dielectric power cables. Part 2; Life testing of 15 kV XLPE-insulated cables

    SciTech Connect

    Bernstein, B.S.; Thue, W.A. ); Walton, M.D.; Smith J.T. III )

    1992-04-01

    Attempts to successfully use accelerated aging tests to quantify the life of medium voltage power cables in service have been elusive. This paper describes preliminary results in which 15 kV XLPE cables were subjected to accelerated aging tests under a variety of controlled voltage stress and thermal load cycle conditions, with loss of life being calculated for each set of conditions in terms of the geometric mean time to failure (GMTF). In this paper the relative influence of voltage stress and load cycle temperature are discussed. This work is part of a broad effort that also involves studies with EPR-insulated cables, accelerated aging of cables from the same manufacturing run that are direct buried at the manufacturer's site, and also aging of these cables under normal operating conditions at four United States utilities.

  14. Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice.

    PubMed

    Roos, Carolyn M; Hagler, Michael; Zhang, Bin; Oehler, Elise A; Arghami, Arman; Miller, Jordan D

    2013-11-15

    The purpose of this study was to characterize changes in antioxidant and age-related gene expression in aorta and aortic valve with aging, and test the hypothesis that increased mitochondrial oxidative stress accelerates age-related endothelial and aortic valve dysfunction. Wild-type (MnSOD(+/+)) and manganese SOD heterozygous haploinsufficient (MnSOD(+/-)) mice were studied at 3 and 18 mo of age. In aorta from wild-type mice, antioxidant expression was preserved, although there were age-associated increases in Nox2 expression. Haploinsufficiency of MnSOD did not alter antioxidant expression in aorta, but increased expression of Nox2. When compared with that of aorta, age-associated reductions in antioxidant expression were larger in aortic valves from wild-type and MnSOD haploinsufficient mice, although Nox2 expression was unchanged. Similarly, sirtuin expression was relatively well-preserved in aorta from both genotypes, whereas expression of SIRT1, SIRT2, SIRT3, SIRT4, and SIRT6 were significantly reduced in the aortic valve. Expression of p16(ink4a), a marker of cellular senescence, was profoundly increased in both aorta and aortic valve from MnSOD(+/+) and MnSOD(+/-) mice. Functionally, we observed comparable age-associated reductions in endothelial function in aorta from both MnSOD(+/+) and MnSOD(+/-) mice. Interestingly, inhibition of NAD(P)H oxidase with apocynin or gp91ds-tat improved endothelial function in MnSOD(+/+) mice but significantly impaired endothelial function in MnSOD(+/-) mice at both ages. Aortic valve function was not impaired by aging or MnSOD haploinsufficiency. Changes in antioxidant and sirtuin gene expression with aging differ dramatically between aorta and aortic valve. Furthermore, although MnSOD does not result in overt cardiovascular dysfunction with aging, compensatory transcriptional responses to MnSOD deficiency appear to be tissue specific. PMID:23997094

  15. Advanced aging phenotype is revealed by epigenetic modifications in rat liver after in utero malnutrition.

    PubMed

    Heo, Hye J; Tozour, Jessica N; Delahaye, Fabien; Zhao, Yongmei; Cui, Lingguang; Barzilai, Nir; Einstein, Francine Hughes

    2016-10-01

    Adverse environmental exposures of mothers during fetal period predispose offspring to a range of age-related diseases earlier in life. Here, we set to determine whether a deregulated epigenetic pattern is similar in young animals whose mothers' nutrition was modulated during fetal growth to that acquired during normal aging in animals. Using a rodent model of maternal undernutrition (UN) or overnutrition (ON), we examined cytosine methylation profiles of liver from young female offspring and compared them to age-matched young controls and aged (20-month-old) animals. HELP-tagging, a genomewide restriction enzyme and sequencing assay demonstrates that fetal exposure to two different maternal diets is associated with nonrandom dysregulation of methylation levels with profiles similar to those seen in normal aging animals and occur in regions mapped to genes relevant to metabolic diseases and aging. Functional consequences were assessed by gene expression at 9 weeks old with more significant changes at 6 months of age. Early developmental exposures to unfavorable maternal diets result in altered methylation profiles and transcriptional dysregulation in Prkcb, Pc, Ncor2, and Smad3 that is also seen with normal aging. These Notch pathway and lipogenesis genes may be useful for prediction of later susceptibility to chronic disease.

  16. Advanced aging phenotype is revealed by epigenetic modifications in rat liver after in utero malnutrition.

    PubMed

    Heo, Hye J; Tozour, Jessica N; Delahaye, Fabien; Zhao, Yongmei; Cui, Lingguang; Barzilai, Nir; Einstein, Francine Hughes

    2016-10-01

    Adverse environmental exposures of mothers during fetal period predispose offspring to a range of age-related diseases earlier in life. Here, we set to determine whether a deregulated epigenetic pattern is similar in young animals whose mothers' nutrition was modulated during fetal growth to that acquired during normal aging in animals. Using a rodent model of maternal undernutrition (UN) or overnutrition (ON), we examined cytosine methylation profiles of liver from young female offspring and compared them to age-matched young controls and aged (20-month-old) animals. HELP-tagging, a genomewide restriction enzyme and sequencing assay demonstrates that fetal exposure to two different maternal diets is associated with nonrandom dysregulation of methylation levels with profiles similar to those seen in normal aging animals and occur in regions mapped to genes relevant to metabolic diseases and aging. Functional consequences were assessed by gene expression at 9 weeks old with more significant changes at 6 months of age. Early developmental exposures to unfavorable maternal diets result in altered methylation profiles and transcriptional dysregulation in Prkcb, Pc, Ncor2, and Smad3 that is also seen with normal aging. These Notch pathway and lipogenesis genes may be useful for prediction of later susceptibility to chronic disease. PMID:27470058

  17. Modeling the Phenotypic Architecture of Autism Symptoms from Time of Diagnosis to Age 6

    ERIC Educational Resources Information Center

    Georgiades, Stelios; Boyle, Michael; Szatmari, Peter; Hanna, Steven; Duku, Eric; Zwaigenbaum, Lonnie; Bryson, Susan; Fombonne, Eric; Volden, Joanne; Mirenda, Pat; Smith, Isabel; Roberts, Wendy; Vaillancourt, Tracy; Waddell, Charlotte; Bennett, Teresa; Elsabbagh, Mayada; Thompson, Ann

    2014-01-01

    The latent class structure of autism symptoms from the time of diagnosis to age 6 years was examined in a sample of 280 children with autism spectrum disorder. Factor mixture modeling was performed on 26 algorithm items from the Autism Diagnostic Interview-Revised at diagnosis (Time 1) and again at age 6 (Time 2). At Time 1, a…

  18. Brief Report: Phenotypic Differences and Their Relationship to Paternal Age and Gender in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Vierck, Esther; Silverman, Jeremy M.

    2015-01-01

    Two modes of inheritance have been proposed in autism spectrum disorder, transmission though pre-existing variants and de novo mutations. Different modes may lead to different symptom expressions in affected individuals. De novo mutations become more likely with advancing paternal age suggesting that paternal age may predict phenotypic…

  19. Ablations of ghrelin and ghrelin receptor exhibit differential metabolic phenotypes and thermogenic capacity during aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is a hallmark of aging in many Western societies, and is a precursor to numerous serious age-related diseases. Ghrelin ("Ghrl"), via its receptor (growth hormone secretagogue receptor, GHS-R), is shown to stimulate GH secretion and appetite. Surprisingly, our previous studies showed that "Gh...

  20. Aged keratinocyte phenotyping: morphology, biochemical markers and effects of Dead Sea minerals.

    PubMed

    Soroka, Yoram; Ma'or, Zeev; Leshem, Yael; Verochovsky, Lilian; Neuman, Rami; Brégégère, François Menahem; Milner, Yoram

    2008-10-01

    The aging process and its characterization in keratinocytes have not been studied in depth until now. We have assessed the cellular and molecular characteristics of aged epidermal keratinocytes in monolayer cultures and in skin by measuring their morphological, fluorometric and biochemical properties. Light and electron microscopy, as well as flow cytometry, revealed increase in cell size, changes in cell shape, alterations in mitochondrial structure and cytoplasmic content with aging. We showed that the expression of 16 biochemical markers was altered in aged cultured cells and in tissues, including caspases 1 and 3 and beta-galactosidase activities, immunoreactivities of p16, Ki67, 20S proteasome and effectors of the Fas-dependent apoptotic pathway. Aged cells diversity, and individual variability of aging markers, call for a multifunctional assessment of the aging phenomenon, and of its modulation by drugs. As a test case, we have measured the effects of Dead Sea minerals on keratinocyte cultures and human skin, and found that they stimulate proliferation and mitochondrial activity, decrease the expression of some aging markers, and limit apoptotic damage after UVB irradiation.

  1. Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries.

    PubMed

    Wang, Mingyi; Shah, Ajay M

    2015-06-01

    The aging population is increasing dramatically. Aging-associated stress simultaneously drives proinflammatory remodeling, involving angiotensin II and other factors, in both the heart and large arteries. The structural remodeling and functional changes that occur with aging include cardiac and vascular wall stiffening, systolic hypertension and suboptimal ventricular-arterial coupling, features that are often clinically silent and thus termed a silent syndrome. These age-related effects are the result of responses initiated by cardiovascular proinflammatory cells. Local proinflammatory signals are coupled between the heart and arteries due to common mechanical and humoral messengers within a closed circulating system. Thus, targeting proinflammatory signaling molecules would be a promising approach to improve age-associated suboptimal ventricular-arterial coupling, a major predisposing factor for the pathogenesis of clinical cardiovascular events such as heart failure.

  2. Density Changes in Plutonium Observed from Accelerated Aging using Pu-238 Enrichment

    SciTech Connect

    Chung, B W; Thompson, S R; Woods, C H; Hopkins, D J; Gourdin, W H; Ebbinghaus, B B

    2003-12-19

    Plutonium, because of its radioactive nature, ages from the ''inside out'' by means of self-irradiation damage and thus produces Frankel-type defects (vacancies and self-interstitial atoms) and defect clusters. The self-irradiation damage in Plutonium-239 occurs mainly by {alpha}-particle decay, where most of the damage comes from the U-235 recoil nucleus. The defects resulting from the residual lattice damage and helium in-growth could result in microstructural and physical property changes. Because these self-irradiation effects would normally require decades to measure, with a fraction (7.5 wt%) of Pu-238 is added to the reference plutonium alloy thus accelerating the aging process by approximately 18 times the normal rate. By monitoring the properties of the Pu-238 spiked alloy over a period of about 3.5 years, the properties of plutonium in storage can be projected for periods up to about 60 years. This paper presents density and volume changes observed from the immersion density and dilatometry measurements equivalent to aging the reference plutonium alloys to nine years.

  3. Disparity between online and offline tests in accelerated aging tests of LED lamps under electric stress.

    PubMed

    Wang, Yao; Jing, Lei; Ke, Hong-Liang; Hao, Jian; Gao, Qun; Wang, Xiao-Xun; Sun, Qiang; Xu, Zhi-Jun

    2016-09-20

    The accelerated aging tests under electric stress for one type of LED lamp are conducted, and the differences between online and offline tests of the degradation of luminous flux are studied in this paper. The transformation of the two test modes is achieved with an adjustable AC voltage stabilized power source. Experimental results show that the exponential fitting of the luminous flux degradation in online tests possesses a higher fitting degree for most lamps, and the degradation rate of the luminous flux by online tests is always lower than that by offline tests. Bayes estimation and Weibull distribution are used to calculate the failure probabilities under the accelerated voltages, and then the reliability of the lamps under rated voltage of 220 V is estimated by use of the inverse power law model. Results show that the relative error of the lifetime estimation by offline tests increases as the failure probability decreases, and it cannot be neglected when the failure probability is less than 1%. The relative errors of lifetime estimation are 7.9%, 5.8%, 4.2%, and 3.5%, at the failure probabilities of 0.1%, 1%, 5%, and 10%, respectively. PMID:27661576

  4. Accelerated age-related olfactory decline among type 1 Usher patients

    PubMed Central

    Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D.

    2016-01-01

    Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin’ Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome. PMID:27329700

  5. ACCELERATED-AGING OF SHIPPING PACKAGE O-RINGS FOR PU STORAGE

    SciTech Connect

    Hoffman, E

    2008-01-10

    The Savannah River Site (SRS) is storing surplus plutonium (Pu) materials in the K-Area Materials Storage (KAMS) facility. The Pu materials are packaged per the DOE 3013 Standard. The nested, welded 300 series stainless steel 3013 containers are transported to KAMS in Type B shipping packages and subsequently stored in the same packages. These type B shipping packages consist of double containment vessels sealed with dual O-rings. The O-ring compound is Parker Seals V0835-75, based on Viton{reg_sign} GLT fluoroelastomer. This work evaluates the performance of the V0835-75 O-rings at accelerated-aging conditions. The results will be used to develop a lifetime prediction model for O-rings in KAMS.

  6. Evaluation of Experimental Parameters in the Accelerated Aging of Closed-Cell Foam Insulation

    SciTech Connect

    Stovall, Therese K; Vanderlan, Michael; Atchley, Jerald Allen

    2012-12-01

    The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C1303 standard test method led to the ruggedness test described here. This test program included the aging of full size insulation specimens for time periods of five years for direct comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. The test protocol has been completed and this report provides a detailed evaluation of the impact of the test parameters on the accuracy of the 5-year thermal conductivity prediction.

  7. Comparative Study on Accelerated Thermal Ageing of Vegetable Insulating Oil-paperboard and Mineral Oil-paperboard

    NASA Astrophysics Data System (ADS)

    Zhou, Zhu-Jun; Hu, Ting; Cheng, Lin; Tian, Kai; Yang, Jun; Wang, Xuan; Fang, Fu-Xin; Kong, Hai-Yang; Qian, Hang

    2016-05-01

    To comparatively study the insulation ageing life of vegetable insulating oil-paperboard and mineral oil-paperboard, we conducted accelerated thermal ageing experiments at 170°C. Then according to the temperature rise of vegetable insulating oil transformer, we conducted accelerated thermal ageing experiments at 150°C for vegetable insulating oil-paperboard and at 140°C for mineral oil-paperboard. The appearance, polymerization degree, and SEM microstructure of the paperboard after different ageing experiments were comparative analyzed. The results show that after the oil-paperboard system is accelerated ageing for 1 000 h at 170°C, that is equivalent to 20 years natural ageing, the structure of paperboard in vegetable insulating oil is damaged severely, which indicates that the lifetime of transformer are in the late stage; while the structure of paperboard in mineral oil maintain complete, and the polymerization degree is still above 500, which indicate that the lifetime of transformer are in the middle stage. The accelerated ageing rate of the vegetable insulating oil-paperboard system at 150°C is slower than that of the mineral oil-paperboard system, which indicates that the lifetime of the vegetable insulating oil-paperboard is longer than that of the mineral oil-paperboard.

  8. Effect of disinfection and accelerated ageing on dimensional stability and detail reproduction of a facial silicone with nanoparticles.

    PubMed

    Pesqueira, A A; Goiato, M C; Dos Santos, D M; Haddad, M F; Moreno, A

    2012-05-01

    The aim of the present study was to evaluate the effect of disinfection and accelerated ageing on the dimensional stability and detail reproduction of a facial silicone with different types of nanoparticle. A total of 60 specimens were fabricated with Silastic MDX 4-4210 silicone and they were divided into three groups: colourless and pigmented with nanoparticles (make-up powder and ceramic powder). Half of the specimens of each group were disinfected with Efferdent tablets and half with neutral soap for 60 days. Afterwards, all specimens were subjected to accelerated ageing. Both dimensional stability and detail reproduction tests were performed after specimen fabrication (initial period), after chemical disinfection, and after accelerated ageing periods (252, 504 and 1008 hours). The dimensional stability test was conducted using AutoCAD software, while detail reproduction was analysed using a stereoscope magnifying glass. Dimensional stability values were statistically evaluated by analysis of variance (ANOVA) followed by Tukey's test (p < 0.01). Detail reproduction results were compared using a score. Chemical disinfection and also accelerated ageing affected the dimensional stability of the facial silicone with statistically significant results. The silicone's detail reproduction was not affected by these two factors regardless of nanoparticle type, disinfection and accelerated ageing.

  9. Effect of disinfection and accelerated ageing on dimensional stability and detail reproduction of a facial silicone with nanoparticles.

    PubMed

    Pesqueira, A A; Goiato, M C; Dos Santos, D M; Haddad, M F; Moreno, A

    2012-05-01

    The aim of the present study was to evaluate the effect of disinfection and accelerated ageing on the dimensional stability and detail reproduction of a facial silicone with different types of nanoparticle. A total of 60 specimens were fabricated with Silastic MDX 4-4210 silicone and they were divided into three groups: colourless and pigmented with nanoparticles (make-up powder and ceramic powder). Half of the specimens of each group were disinfected with Efferdent tablets and half with neutral soap for 60 days. Afterwards, all specimens were subjected to accelerated ageing. Both dimensional stability and detail reproduction tests were performed after specimen fabrication (initial period), after chemical disinfection, and after accelerated ageing periods (252, 504 and 1008 hours). The dimensional stability test was conducted using AutoCAD software, while detail reproduction was analysed using a stereoscope magnifying glass. Dimensional stability values were statistically evaluated by analysis of variance (ANOVA) followed by Tukey's test (p < 0.01). Detail reproduction results were compared using a score. Chemical disinfection and also accelerated ageing affected the dimensional stability of the facial silicone with statistically significant results. The silicone's detail reproduction was not affected by these two factors regardless of nanoparticle type, disinfection and accelerated ageing. PMID:22428808

  10. Modulation of cell-phenotype during in vitro aging. Glycosaminoglycan biosynthesis by skin fibroblasts and corneal keratocytes.

    PubMed

    Isnard, N; Fodil, I; Robert, L; Renard, G

    2002-12-01

    The aim of this study was to compare keratocyte and fibroblast phenotypes during in vitro aging by comparing their biosynthesis of glycosaminoglycans using explant and cell cultures. Human skin and corneal explant cultures were realised with Dulbecco Modified Eagle's medium containing 3H glucosamine. Sequential cell cultures were studied at different passages for GAGs biosynthesis by 3H glucosamine incorporation followed by selective degradation with specific hydrolases. Radioactivity was determined and each GAG fraction evaluated. KS and DS are the major components synthesised by corneal explant culture. During in vitro aging, keratocytes synthesised 41% less KS between passages 4-9 with a decrease by 26% of the proportion of DS observed in the same conditions. In skin explant cultures, as expected the major components are CS and hyaluronan (HA). In the first cell passage studied compared with skin organ cultures we could notice a strong decrease of the proportions of DS and KS compensated by an increase of the proportion of HA. During the successive passages of fibroblasts, the proportions of DS and HS decreased (-30 and -62%, respectively) and those of KS increased (+90%). These results indicate that there remain measurable differences between keratocyte and fibroblast phenotypes as far as GAG-synthesis is concerned all though the successive passages, starting from explant cultures and up to the limits of in vitro cell passages.

  11. Age-related differences in acceleration, maximum running speed, and repeated-sprint performance in young soccer players.

    PubMed

    Mendez-Villanueva, Alberto; Buchheit, Martin; Kuitunen, Sami; Douglas, Andrew; Peltola, Esa; Bourdon, Pitre

    2011-03-01

    We investigated age-related differences in the relationships among acceleration, maximum running speed, and repeated-sprint performance in 61 highly trained young male soccer players (Under 14, n = 14; Under 16, n = 22; Under 18, n = 25). We also examined the possible influence of anthropometry (stature, body mass, fat-free mass) and biological maturation (age at peak height velocity) on performance in those three sprint-running qualities. Players were tested for 10-m sprint (acceleration), flying 20-m sprint (maximum running speed), and 10 × 30-m sprint (repeated-sprint performance) times. Correlations between acceleration, maximum running speed, and repeated-sprint performance were positive and large to almost perfect (r = 0.55-0.96), irrespective of age group. There were age-based differences both in absolute performance in the three sprint-running qualities (Under 18 > Under 16 > Under 14; P < 0.001) and when body mass and fat-free mass were statistically controlled (P < 0.05). In contrast, all between-group differences disappeared after adjustment for age at peak height velocity (P > 0.05). The large correlations among acceleration, maximum running speed, and repeated-sprint performance in all age groups, as well as the disappearance of between-group differences when adjusted for estimated biological maturity, suggest that these physical qualities in young highly trained soccer players might be considered as a general quality, which is likely to be related to qualitative adaptations that accompany maturation.

  12. Nrf2 Signaling and the Slowed Aging Phenotype: Evidence from Long-Lived Models

    PubMed Central

    Bruns, Danielle R.; Drake, Joshua C.; Biela, Laurie M.; Peelor, Frederick F.; Miller, Benjamin F.; Hamilton, Karyn L.

    2015-01-01

    Studying long-lived animals provides novel insight into shared characteristics of aging and represents a unique model to elucidate approaches to prevent chronic disease. Oxidant stress underlies many chronic diseases and resistance to stress is a potential mechanism governing slowed aging. The transcription factor nuclear factor (erythroid-derived 2)-like 2 is the “master regulator” of cellular antioxidant defenses. Nrf2 is upregulated by some longevity promoting interventions and may play a role in regulating species longevity. However, Nrf2 expression and activity in long-lived models have not been well described. Here, we review evidence for altered Nrf2 signaling in a variety of slowed aging models that accomplish lifespan extension via pharmacological, nutritional, evolutionary, genetic, and presumably epigenetic means. PMID:26583062

  13. Accelerated aging of solid lubricants for the W76-1 TSL : effects of polymer outgassing.

    SciTech Connect

    Dugger, Michael Thomas; Wallace, William O.; Huffman, Elizabeth M.

    2006-09-01

    The behavior of MoS{sub 2} lubricants intended for the W76-1 TSL was evaluated after 17 and 82 thermal cycles, each lasting seven days and including a low temperature of -35 C and a high temperature of 93 C, in a sealed container containing organic materials. The MoS{sub 2} was applied by tumbling with MoS{sub 2} powder and steel pins (harperized), or by spraying with a resin binder (AS Mix). Surface composition measurements indicated an uptake of carbon and silicon on the lubricant surfaces after aging. Oxidation of the MoS{sub 2} on harperized coupons, where enough MoS{sub 2} was present at the surface to result in significant Mo and S concentrations, was found to be minimal for the thermal cycles in an atmosphere of primarily nitrogen. Bare steel surfaces showed a reduction in friction for exposed coupons compared to control coupons stored in nitrogen, at least for the initial cycles of sliding until the adsorbed contaminants were worn away. Lubricated surfaces showed no more than a ten percent increase in steady-state friction coefficient after exposure. Initial coefficient of friction was up to 250 percent higher than steady-state for AS Mix films on H950 coupons after 82 thermal cycles. However, the friction coefficient exhibited by lubricated coupons was never greater than 0.25, and more often less than 0.15, even after the accelerated aging exposures.

  14. Color stability of modern composites subjected to different periods of accelerated artificial aging.

    PubMed

    Drubi-Filho, Brahim; Garcia, Lucas da Fonseca Roberti; Cruvinel, Diogo Rodrigues; Sousa, Ana Beatriz Silva; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2012-01-01

    The aim of this study was to evaluate the color stability of composites subjected to different periods of accelerated artificial aging (AAA). A polytetrafluorethylene matrix (10 x 2 mm) was used to fabricate 24 test specimens of three different composites (n=8): Tetric Ceram (Ivoclar/Vivadent); Filtek P90 and Z250 (3M ESPE), shade A3. After light activation for 20 s (FlashLite 1401), polishing and initial color readout (Spectrophotometer PCB 687; BYK Gardner), the test specimens were subjected to AAA (C-UV; Comexim), in 8-h cycles: 4 h exposure to UV-B rays at 50°C and 4 h condensation at 50°C. At the end of each cycle, color readouts were taken and the test ended when the mean value of ΔE attained a level ≥3.30. Tetric Ceram presented alteration in ΔE equal to 3.33 in the first aging cycle. For Filtek P90 and Z250, two (ΔE=3.60) and four (ΔE=3.42) AAA cycles were necessary. After each cycle, there was a reduction of luminosity in all the samples (ΔL). It was concluded that a short period of AAA was sufficient to promote clinically unacceptable color alteration in composites, and that this alteration was material-dependent. PMID:23306237

  15. The effect of accelerated ageing on performance properties of addition type silicone biomaterials.

    PubMed

    Stathi, K; Tarantili, P A; Polyzois, G

    2010-05-01

    The UV-protection provided to addition type silicone elastomers by various colorants, such as conventional dry earth pigments, as well as the so called "functional or reactive" pigments, was investigated. Moreover, the effect of a UV light absorber and a silica filler was also explored. Under the experimental parameters of this work, the exposure of silicone to UV radiation resulted in some changes of the IR absorbance, thermal decomposition after 400 degrees C, T(g) and tensile properties, whereas the storage modulus of samples was not affected. The obtained spectroscopic data, as well as the results of TGA and storage modulus, were interpreted by assuming that chain scission takes place during aging, whereas the improvement of tensile strength allows the hypothesis of a post-curing process, initiated by UV radiation. Therefore, the increase of T(g) could partly be due to the above reason and, furthermore, to the contribution of a rearrangement of chain fragments within the free volume of the elastomeric material. Regarding the evaluation of various coloring agents used in this work, the obtained results show that dry pigments are more sensitive to accelerated ageing conditions in comparison with functional liquid pigments. Moreover, the hydrophobic character of silicone matrix is enhanced, with the addition of this type pigments because of the vinyl functional silanes groups present in their chemical structure. Finally, it should be noted that the incorporation of silica nanofiller did not seem to prevent the silicone elastomer from degradation upon UV irradiation, but showed a significant reinforcing effect.

  16. Color stability of modern composites subjected to different periods of accelerated artificial aging.

    PubMed

    Drubi-Filho, Brahim; Garcia, Lucas da Fonseca Roberti; Cruvinel, Diogo Rodrigues; Sousa, Ana Beatriz Silva; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2012-01-01

    The aim of this study was to evaluate the color stability of composites subjected to different periods of accelerated artificial aging (AAA). A polytetrafluorethylene matrix (10 x 2 mm) was used to fabricate 24 test specimens of three different composites (n=8): Tetric Ceram (Ivoclar/Vivadent); Filtek P90 and Z250 (3M ESPE), shade A3. After light activation for 20 s (FlashLite 1401), polishing and initial color readout (Spectrophotometer PCB 687; BYK Gardner), the test specimens were subjected to AAA (C-UV; Comexim), in 8-h cycles: 4 h exposure to UV-B rays at 50°C and 4 h condensation at 50°C. At the end of each cycle, color readouts were taken and the test ended when the mean value of ΔE attained a level ≥3.30. Tetric Ceram presented alteration in ΔE equal to 3.33 in the first aging cycle. For Filtek P90 and Z250, two (ΔE=3.60) and four (ΔE=3.42) AAA cycles were necessary. After each cycle, there was a reduction of luminosity in all the samples (ΔL). It was concluded that a short period of AAA was sufficient to promote clinically unacceptable color alteration in composites, and that this alteration was material-dependent.

  17. Density Changes in Plutonium Observed from Accelerated Aging Using Pu-238 Enrichment

    SciTech Connect

    Chung, B W; Thompson, S R; Woods, C H; Hopkins, D J; Gourdin, W H; Ebbinghaus, B B

    2005-10-19

    In support of Stockpile Stewardship activities, accelerated aging tests on a plutonium alloy enriched with 7.3 atomic percentage of {sup 238}Pu is underway using dilatometry at 35, 50, and 65 C and immersion density measurements of material stored at 50 C. Changes in density are expected from radiation damage in the lattice and helium in-growth. After twenty-five equivalent years of aging, the dilatometry data shows that the alloys at 35 C have expanded in volume by 0.11% to 0.12% and have started to exhibit a near linear expansion behavior primarily caused by the helium accumulation. The average He-to-vacancy ratio from tested specimens was determined to be around 2.3. The model for the lattice damage and helium in-growth accurately represents the volume swelling at 35 C. The density converted from the dilatometry corresponds well to the decreasing density trend of reference plutonium alloys as a function of time.

  18. Density changes in plutonium observed from accelerated aging using Pu-238 enrichment

    NASA Astrophysics Data System (ADS)

    Chung, B. W.; Thompson, S. R.; Woods, C. H.; Hopkins, D. J.; Gourdin, W. H.; Ebbinghaus, B. B.

    2006-09-01

    In support of Stockpile Stewardship activities, accelerated aging tests on a plutonium alloy enriched with 7.3 at.% of 238Pu is underway using dilatometry at 35, 50, and 65 °C and immersion density measurements of materials stored at 50 °C. Changes in density are expected from radiation damage in the lattice and helium in-growth. After 25 equivalent years of aging, the dilatometry data shows that the alloys at 35 °C have expanded in volume by 0.11-0.12% and have started to exhibit a near linear expansion behavior primarily caused by the helium accumulation. The average He-to-vacancy ratio from tested specimens was determined to be around 2.55. The model for the lattice damage and helium in-growth accurately represents the volume swelling at 35 °C. The density converted from the dilatometry corresponds well to the decreasing density trend of reference plutonium alloys as a function of time.

  19. [Proteoglycan in Bruch's membrane of senescence accelerated mouse: localization and age-related changes].

    PubMed

    Takada, Y; Ohkuma, H; Ogata, N; Matsushima, M; Sugasawa, K; Uyama, M

    1994-05-01

    We demonstrated the distribution of sulfated proteoglycans in Bruch's membrane of Senescence Accelerated Mouse histochemically and ultrastructurally using cuprolinic blue in conjunction with specific enzyme treatments and nitrous acid digestion. Two kinds of proteoglycan filaments were observed in the inner and outer collagenous layers, i.e., small collagen fibril-associated filaments (11 nm in average length), and large filaments (32 nm in average length). Intermediate size filaments (25 nm in average length) were seen in the basement membranes of the retinal pigment epithelium and choriocapillaris. Chondroitinase AC treatment eliminated the staining of filaments in the collagenous layers (chondroitin sulfate). Chondroitinase ABC treatment also eliminated the staining of filaments in the collagenous layers (chondroitin sulfate and dermatan sulfate). Nitrous acid eliminated the staining of filaments in both basement membranes (heparan sulfate). Proteoglycans containing chondroitin sulfate and dermatan sulfate were associated uniquely with collagen fibrils. Heparan sulfate proteoglycans were associated with the basement membranes of the pigment epithelium and choriocapillaris. With aging, the thickness of the basement membrane of the choriocapillaris and the staining of the filaments in the basement membranes of the pigment epithelium and choriocapillaris (heparan sulfate proteoglycans) increased. Collagen fibers became disarranged and the staining of both filaments in the collagenous layers decreased. The results of the staining characteristics probably reflect the aging of Bruch's membrane.

  20. Accelerating neuronal aging in in vitro model brain disorders: a focus on reactive oxygen species

    PubMed Central

    Campos, Priscila Britto; Paulsen, Bruna S.; Rehen, Stevens K.

    2014-01-01

    In this review, we discuss insights gained through the use of stem cell preparations regarding the modeling of neurological diseases, the need for aging neurons derived from pluripotent stem cells to further advance the study of late-onset adult neurological diseases, and the extent to which mechanisms linked to the mismanagement of reactive oxygen species (ROS). The context of these issues can be revealed using the three disease states of Parkinson’s (PD), Alzheimer’s (AD), and schizophrenia, as considerable insights have been gained into these conditions through the use of stem cells in terms of disease etiologies and the role of oxidative stress. The latter subject is a primary area of interest of our group. After discussing the molecular models of accelerated aging, we highlight the role of ROS for the three diseases explored here. Importantly, we do not seek to provide an extensive account of all genetic mutations for each of the three disorders discussed in this review, but we aim instead to provide a conceptual framework that could maximize the gains from merging the approaches of stem cell microsystems and the study of oxidative stress in disease in order to optimize therapeutics and determine new molecular targets against oxidative stress that spare stem cell proliferation and development. PMID:25386139

  1. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10.

    PubMed

    Miyamoto, M

    1997-01-01

    Senescence-Accelerated Mouse (SAM), a murine model of accelerated senescence, has been established by Takeda et al. (1981). SAM consists of senescence-accelerated-prone mouse (SAMP) and senescence-accelerated-resistant mouse (SAMR), the latter of which shows normal aging characteristics. In 1991 there were eight different substrains in the P-series, which commonly exhibited accelerated aging with a shortened life span (Takeda et al., 1991). Among the P-series, we have found that SAMP8 mice show significant impairments in a variety of learning tasks when compared with SAMR1 mice (Miyamoto et al., 1986). Further studies suggest that SAMP8 exhibits an age-related emotional disorder characterized by reduced anxiety-like behavior (Miyamoto et al., 1992). On the other hand, it has been shown that SAMP10 exhibits brain atrophy and learning impairments in an avoidance task (Shimada et al., 1992, 1993). Here, characteristics of age-related deficits in learning and memory, changes in emotional behavior, and abnormality of circadian rhythms in SAMP8 and SAMP10 mice are described. In the experiments, SAMP8/Ta (SAMP8), SAMP10/(/)Ta (SAMP10) and SAMR1TA (SAMR1) reared under specific pathogen-free conditions at Takeda Chemical Industries were used. PMID:9088911

  2. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in young but not in old rats

    PubMed Central

    Vinogradova, Irina A.; Anisimov, Vladimir N.; Bukalev, Andrey V.; Ilyukha, Viktor A.; Khizhkin, Evgeniy A.; Lotosh, Tatiana A.; Semenchenko, Anna V.; Zabezhinski, Mark A.

    2010-01-01

    We evaluated the effect of exposure to constant light started at the age of 1 month and at the age of 14 months on the survival, life span, tumorigenesis and age-related dynamics of antioxidant enzymes activity in various organs in comparison to the rats maintained at the standard (12:12 light/dark) light/dark regimen. We found that exposure to constant light started at the age of 1 month accelerated spontaneous tumorigenesis and shortened life span both in male and female rats as compared to the standard regimen. At the same time, the exposure to constant light started at the age of 14 months failed to influence survival of male and female rats. While delaying tumors in males, constant light accelerated tumors in females. We conclude that circadian disruption induced by light-at-night started at the age of 1 month accelerates aging and promotes tumorigenesis in rats, however failed affect survival when started at the age of 14 months. PMID:20354269

  3. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process.

    PubMed

    Razzaque, Mohammed S; Sitara, Despina; Taguchi, Takashi; St-Arnaud, René; Lanske, Beate

    2006-04-01

    Fibroblast growth factor 23 null mice (Fgf-23-/-) have a short lifespan and show numerous biochemical and morphological features consistent with premature aging-like phenotypes, including kyphosis, severe muscle wasting, hypogonadism, osteopenia, emphysema, uncoordinated movement, T cell dysregulation, and atrophy of the intestinal villi, skin, thymus, and spleen. Furthermore, increased vitamin D activities in homozygous mutants are associated with severe atherosclerosis and widespread soft tissue calcifications; ablation of vitamin D activity from Fgf-23-/- mice, by genetically deleting the 1alpha(OH)ase gene, eliminates atherosclerosis and ectopic calcifications and significantly rescues premature aging-like features of Fgf-23-/- mice, resulting in prolonged survival of Fgf-23-/-/1alpha(OH)ase-/- double mutants. Our results indicate a novel role of Fgf-23 in developing premature aging-like features through regulating vitamin D homeostasis. Finally, our data support a new model of interactions among Fgf-23, vitamin D, and klotho, a gene described as being associated with premature aging process.

  4. The phenotype of a knockout mouse identifies flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing

    PubMed Central

    Gonzalez Malagon, Sandra G.; Melidoni, Anna N.; Hernandez, Diana; Omar, Bilal A.; Houseman, Lyndsey; Veeravalli, Sunil; Scott, Flora; Varshavi, Dorsa; Everett, Jeremy; Tsuchiya, Yugo; Timms, John F.; Phillips, Ian R.; Shephard, Elizabeth A.

    2015-01-01

    We report the production and metabolic phenotype of a mouse line in which the Fmo5 gene is disrupted. In comparison with wild-type (WT) mice, Fmo5−/− mice exhibit a lean phenotype, which is age-related, becoming apparent after 20 weeks of age. Despite greater food intake, Fmo5−/− mice weigh less, store less fat in white adipose tissue (WAT), have lower plasma glucose and cholesterol concentrations and enhanced whole-body energy expenditure, due mostly to increased resting energy expenditure, with no increase in physical activity. An increase in respiratory exchange ratio during the dark phase, the period in which the mice are active, indicates a switch from fat to carbohydrate oxidation. In comparison with WT mice, the rate of fatty acid oxidation in Fmo5−/− mice is higher in WAT, which would contribute to depletion of lipid stores in this tissue, and lower in skeletal muscle. Five proteins were down regulated in the liver of Fmo5−/− mice: aldolase B, ketohexokinase and cytosolic glycerol 3-phosphate dehydrogenase (GPD1) are involved in glucose or fructose metabolism and GPD1 also in production of glycerol 3-phosphate, a precursor of triglyceride biosynthesis; HMG-CoA synthase 1 is involved in cholesterol biosynthesis; and malic enzyme 1 catalyzes the oxidative decarboxylation of malate to pyruvate, in the process producing NADPH for use in lipid and cholesterol biosynthesis. Down regulation of these proteins provides a potential explanation for the reduced fat deposits and lower plasma cholesterol characteristic of Fmo5−/− mice. Our results indicate that disruption of the Fmo5 gene slows metabolic ageing via pleiotropic effects. PMID:26049045

  5. Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females

    PubMed Central

    van der Heiden, Marieke; van Zelm, Menno C.; Bartol, Sophinus J. W.; de Rond, Lia G. H.; Berbers, Guy A. M.; Boots, Annemieke M. H.; Buisman, Anne-Marie

    2016-01-01

    The elderly population is more susceptible to infections as a result of an altered immune response, commonly referred to as immunosenescence. Cytomegalovirus (CMV)-infection associated changes in blood lymphocytes are known to impact this process, but the interaction with gender remains unclear. Therefore, we analysed the effects and interaction of gender and CMV on the absolute numbers of a comprehensive set of naive and memory T- and B-cell subsets in people between 50 and 65 years of age. Enumeration and characterisation of lymphocyte subsets by flow cytometry was performed on fresh whole blood samples from 255 middle-aged persons. CMV-IgG serostatus was determined by ELISA. Gender was a major factor affecting immune cell numbers. CMV infection was mainly associated with an expansion of late-differentiated T-cell subsets. CMV+ males carried lower numbers of total CD4+, CD4+ central memory (CM) and follicular helper T-cells than females and CMV− males. Moreover, CMV+ males had significantly lower numbers of regulatory T (Treg)-cells and memory B-cells than CMV+ females. We here demonstrate an interaction between the effects of CMV infection and gender on T- and B-cells in middle-aged individuals. These differential effects on adaptive immunity between males and females may have implications for vaccination strategies at middle-age. PMID:27243552

  6. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.

    PubMed

    Butterfield, D Allan; Poon, H Fai

    2005-10-01

    The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels. PMID:16026957

  7. The evolution of aging phenotypes in snakes: a review and synthesis with new data

    PubMed Central

    2008-01-01

    Reptiles are underutilized vertebrate models in the study of the evolution and persistence of senescence. Their unique physiology, indeterminate growth, and increasing fecundity across the adult female lifespan motivate the study of how physiology at the mechanistic level, life history at the organismal level, and natural selection at the evolutionary timescale define lifespan in this diverse taxonomic group. Reviewed here are, first, comparative results of cellular metabolic studies conducted across a range of colubrid snake species with variable lifespan. New results on the efficiency of DNA repair in these species are synthesized with the cellular studies. Second, detailed studies of the ecology, life history, and cellular physiology are reviewed for one colubrid species with either short or long lifespan (Thamnophis elegans). New results on the rate of telomere shortening with age in this species are synthesized with previous research. The comparative and intraspecific studies both yield results that species with longer lifespans have underlying cellular physiologies support the free-radical/repair mechanistic hypothesis for aging. As well, both underscore the importance of mortality environment for the evolution of aging rate. PMID:19424866

  8. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging

    PubMed Central

    Bell, Robert D.; Winkler, Ethan A.; Sagare, Abhay P.; Singh, Itender; LaRue, Barb; Deane, Rashid; Zlokovic, Berislav V.

    2010-01-01

    SUMMARY Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow and cerebral blood flow responses to brain activation which ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericytes loss results in a progressive age-dependent vascular-mediated neurodegeneration. PMID:21040844

  9. Accelerated ageing of an EAF black slag by carbonation and percolation for long-term behaviour assessment.

    PubMed

    Gurtubay, L; Gallastegui, G; Elias, A; Rojo, N; Barona, A

    2014-07-01

    The efficient reuse of industrial by-products, such as the electric arc furnace (EAF) black slag, is still hindered by concern over their long-term behaviour in outdoor environments. The aim of this study was to develop an accelerated ageing method to simulate the long-term natural carbonation of EAF slag exposed to the elements. The degree of carbonation achieved in a freshly produced slag after accelerated ageing and in a slag used on a fifteen-year-old unpaved road was very similar. The influence of particle size on accelerated carbonation was assessed, with it being concluded that the slag sample with a particle size bigger than 5-6 mm underwent slight carbonation over time when it was exposed to CO2. The accelerated ageing procedure based on percolating a previously carbonated water solution through the slag column allowed gradual leaching with simulated acid rain, as well as providing information about the gradual and total chemical release from the slag. Three classification groups were established according to the release rate of the determined elements. The joint use of the accelerated carbonation method and the percolation test is proposed as a useful tool for environmental risk assessment concerning the long-term air exposure of EAF black slag.

  10. Ursolic acid ameliorates aging-metabolic phenotype through promoting of skeletal muscle rejuvenation.

    PubMed

    Bakhtiari, Nuredin; Hosseinkhani, Saman; Tashakor, Amin; Hemmati, Roohullah

    2015-07-01

    Ursolic acid (UA) is a lipophilic compound, which highly found in apple peels. UA has some certain features, of the most important is its anabolic effects on skeletal muscles, which in turn plays a prominent role in the aging process, encouraged us to evaluate skeletal muscle rejuvenation. This study seeks to address the two following questions: primarily, we wonder to know if UA increases anti-aging biomarkers (SIRT1 and PGC-1α) in the isolated satellite cells, to pave the way for satellite cells proliferation. The results revealed that UA elevated the expression of SIRT1 (∼ 35 folds) and PGC-1α (∼ 175 folds) genes. The other question that needs to be asked, however, is to understand whether it is possible to generalize the in vitro findings to in vivo. For this, a study was designed to investigate the effects of UA on the cellular energy status in the animal models (C57BL/6 mice). We found that UA decreased cellular energy charges such as ATP (∼ 3 times) and ADP (∼ 18 times). With respect to the role of UA in energy expenditure and as an anti-aging biomarker, one might wonder to elucidate skeletal muscle rejuvenation as well as satellite cells proliferation and neomyogenesis. The results illustrated that UA boosted neomyogenesis through enhancing the number of satellite cells. In addition, rejuvenation effects of UA on the skeletal muscle promptly encouraged us to reexamine the performance of skeletal muscles. The results indicated that UA through increasing myoglobin expression (∼ 2 folds) accompanied with transforming of glycolytic to fast oxidative status chiefly and slow-twitch muscle fibers. To the best of our knowledge, it seems that UA might be considered as a potential candidate for treatment of pathological conditions associated with muscular atrophy and dysfunction, including skeletal muscle atrophy, amyotrophic lateral sclerosis (ALS), sarcopenia and metabolic diseases of the muscles.

  11. Theory of Mind Indexes the Broader Autism Phenotype in Siblings of Children with Autism at School Age

    PubMed Central

    Tsang, Tawny; Gillespie-Lynch, Kristen; Hutman, Ted

    2016-01-01

    Subclinical variants of the social-communicative challenges and rigidity that define autism spectrum disorder (ASD) are known as the broader autism phenotype (BAP). The BAP has been conceptualized categorically (as specific to a subset of relatives of individuals with ASD) and dimensionally (as continuously distributed within the general population). The current study examined the compatibility of these two approaches by assessing associations among autism symptoms and social-communicative skills in young school-age children with ASD, children who have a sibling with ASD, and children without a sibling with ASD. Autism symptoms were associated with reduced Theory of Mind (ToM), adaptive skills, cognitive empathy, and language skills across the full sample. Reduced ToM was a core aspect of the BAP in the current sample regardless of whether the BAP was defined categorically (in terms of siblings of children with ASD who exhibited atypical developmental) or dimensionally (in terms of associations with autism symptoms across the entire sample). Early language skills predicted school-age ToM. Findings support the compatibility of categorical and dimensional approaches to the BAP, highlight reduced ToM as a core aspect of the school-age BAP, and suggest that narrative-based approaches to promoting ToM may be beneficial for siblings of children with ASD. PMID:26881074

  12. Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status.

    PubMed

    Tomás-Barberán, Francisco A; García-Villalba, Rocío; González-Sarrías, Antonio; Selma, María V; Espín, Juan C

    2014-07-16

    Three phenotypes for urolithin production after ellagitannin and ellagic acid intake are consistently observed in different human intervention trials. Subjects can be stratified into three urolithin-producing groups. "Phenotype A" produced only urolithin A conjugates, which included between 25 and 80% of the volunteers in the different trials. "Phenotype B" produced isourolithin A and/or urolithin B in addition to urolithin A, this being the second relevant group (10-50%). "Phenotype 0" (5-25%) was that in which these urolithins were not detected. The three phenotypes were observed independently of the volunteers' health status and demographic characteristics (age, gender, body mass index (BMI)) and of the amount or type of ellagitannin food source ingested (walnuts and other nuts, strawberries, raspberries, and other berries or pomegranates). Interestingly, a higher percentage of phenotype B was observed in those volunteers with chronic illness (metabolic syndrome or colorectal cancer) associated with gut microbial imbalance (dysbiosis). These urolithin phenotypes could show differences in the human gut microbiota and should be considered in intervention trials dealing with health benefits of ellagitannins or ellagic acid. Whether this phenotypic variation could be a biomarker related to differential health benefits or illness predisposition deserves further research.

  13. Resin composite characterizations following a simplified protocol of accelerated aging as a function of the expiration date.

    PubMed

    D'Alpino, Paulo Henrique Perlatti; Vismara, Marcus Vinícius Gonçalves; Mello, Luciano Marcelo de Medeiros; Di Hipólito, Vinicius; González, Alejandra Hortencia Miranda; Graeff, Carlos Frederico de Oliveira

    2014-07-01

    This study evaluated the mechanical, thermal, and morphological characteristics of different classifications of dental composites as a function of the material condition (new, aged and expired). Specimens were obtained according to these factors: Composites: Filtek P60, Filtek Z250, Filtek Z350XT, and Filtek Silorane; and Material conditions: new, aged, and expired. The syringe composites underwent an accelerated aging protocol (Arrhenius model). The flexural strength (FS) and flexural modulus (E) were obtained. The thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also performed and the glass transition temperature (Tg) and the weight loss calculated. Topographic analysis of the composites was performed under SEM. The material conditions influenced the mechanical properties of the composites. The silorane composite exhibited a characteristic thermal behavior different from that of the methacrylates. In general, the Tg increased after the accelerated aging protocol and decreased for expired ones, compared to the new composites. A significant increase in FS of Filtek Z350XT after aging was accompanied by an increase in the Tg. The filler packings were in accordance with the manufacture׳s information. The topographic aspects of the composites were modified as a function of the material condition. The mechanical properties of the composites following a simplified protocol of accelerated aging varied as a function of the expiration date. The silorane composite presented a characteristic thermal behavior. Although the dental manufacturers may not be able to control variables as storage temperature and transportation conditions, these effects on the composite clinical performance can be minimized if properly considered.

  14. Coffee Silverskin Extract Protects against Accelerated Aging Caused by Oxidative Agents.

    PubMed

    Iriondo-DeHond, Amaia; Martorell, Patricia; Genovés, Salvador; Ramón, Daniel; Stamatakis, Konstantinos; Fresno, Manuel; Molina, Antonio; Del Castillo, Maria Dolores

    2016-01-01

    Nowadays, coffee beans are almost exclusively used for the preparation of the beverage. The sustainability of coffee production can be achieved introducing new applications for the valorization of coffee by-products. Coffee silverskin is the by-product generated during roasting, and because of its powerful antioxidant capacity, coffee silverskin aqueous extract (CSE) may be used for other applications, such as antiaging cosmetics and dermaceutics. This study aims to contribute to the coffee sector's sustainability through the application of CSE to preserve skin health. Preclinical data regarding the antiaging properties of CSE employing human keratinocytes and Caenorhabditis elegans are collected during the present study. Accelerated aging was induced by tert-butyl hydroperoxide (t-BOOH) in HaCaT cells and by ultraviolet radiation C (UVC) in C. elegans. Results suggest that the tested concentrations of coffee extracts were not cytotoxic, and CSE 1 mg/mL gave resistance to skin cells when oxidative damage was induced by t-BOOH. On the other hand, nematodes treated with CSE (1 mg/mL) showed a significant increased longevity compared to those cultured on a standard diet. In conclusion, our results support the antiaging properties of the CSE and its great potential for improving skin health due to its antioxidant character associated with phenols among other bioactive compounds present in the botanical material. PMID:27258247

  15. Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests

    NASA Astrophysics Data System (ADS)

    Guan, Ting; Zuo, Pengjian; Sun, Shun; Du, Chunyu; Zhang, Lingling; Cui, Yingzhi; Yang, Lijie; Gao, Yunzhi; Yin, Geping; Wang, Fuping

    2014-12-01

    A series of LiCoO2/mesocarbon microbeads (MCMB) commercial cells cycled at different rates (0.6C, 1.2C, 1.5C, 1.8C, 2.4C and 3.0C) are disassembled and the capacity fade mechanism is proposed by analyzing the structure, morphology and electrochemical performance evolution at the capacity retention of 95%, 90%, 85%, 80%. The capacity deterioration of the commercial cell is mainly caused by the decay of the reversible capacity of LiCoO2 cathode, the irreversible loss of active lithium and the lithium remaining in anode. The proportions of effects by the above three factors are calculated accurately. The consumption of the active lithium leads to a cell imbalance between the anode and the cathode. The electrochemical test results indicate that the capacity fade of the active materials at the low rate is more obvious than that at the high rate. The influence of the active lithium is gradually increscent with the increasing rate. The rate of 1.5C is the optimal value to accelerate the aging of the full cell by comparing the testing results at different capacity retentions in the specific condition of low charge/discharge rate and shallow depth of discharge.

  16. Composites Associated with Pulp-Protection Material: Color-Stability Analysis after Accelerated Artificial Aging

    PubMed Central

    Cruvinel, Diogo Rodrigues; Garcia, Lucas da Fonseca Roberti; Consani, Simonides; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2010-01-01

    Objectives: This study assessed the color stability of two composites associated with two pulp protectors submitted to accelerated artificial aging (AAA). Methods: 60 test specimens were made with 0.5 mm of protection material (calcium hydroxide - CH or glass ionomer cement - GIC) and 2.5 mm of restoration material (Concept or QuixFil) and divided into 3 groups (n=10) according to the type of protection material/composite, and the control group (no protection). After polishing, color readings were obtained with a spectrophotometer (PCB 6807 Byk Gardner) before and after AAA for 384 hours, and L*, a*, and b* coordinates and total color variation (ΔE) were analyzed (2-way ANOVA, Bonferroni, α=05). Results: Composites placed on CH presented lower L* levels than those on GIC, which presented higher L* values than the control group and lower b* values than those of the CH group. The Concept composite presented higher ΔE levels for all groups, differing statistically from QuixFil, except when placed on GIC. Conclusions: It was concluded that the protection material could affect the color stability and AAA is a factor that enhances this effect, depending on the type of composite used. PMID:20046473

  17. Microstructure and mechanical properties of composite resins subjected to accelerated artificial aging.

    PubMed

    dos Reis, Andréa Cândido; de Castro, Denise Tornavoi; Schiavon, Marco Antônio; da Silva, Leandro Jardel; Agnelli, José Augusto Marcondes

    2013-01-01

    The aim of this study was to investigate the influence of accelerated artificial aging (AAA) on the microstructure and mechanical properties of the Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma and Filtek Z100. composite resins. The composites were characterized by Fourier-transform Infrared spectroscopy (FTIR) and thermal analyses (Differential Scanning Calorimetry - DSC and Thermogravimetry - TG). The microstructure of the materials was examined by scanning electron microscopy. Surface hardness and compressive strength data of the resins were recorded and the mean values were analyzed statistically by ANOVA and Tukey's test (α=0.05). The results showed significant differences among the commercial brands for surface hardness (F=86.74, p<0.0001) and compressive strength (F=40.31, p<0.0001), but AAA did not affect the properties (surface hardness: F=0.39, p=0.53; compressive strength: F=2.82, p=0.09) of any of the composite resins. FTIR, DSC and TG analyses showed that resin polymerization was complete, and there were no differences between the spectra and thermal curve profiles of the materials obtained before and after AAA. TG confirmed the absence of volatile compounds and evidenced good thermal stability up to 200 °C, and similar amounts of residues were found in all resins evaluated before and after AAA. The AAA treatment did not significantly affect resin surface. Therefore, regardless of the resin brand, AAA did not influence the microstructure or the mechanical properties.

  18. Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests

    NASA Astrophysics Data System (ADS)

    Molina, E.; Cultrone, G.; Sebastián, E.; Alonso, F. J.

    2013-06-01

    The durability of a rock when exposed to decay agents is an important criterion when assessing its quality as a building material. Our study focuses on six varieties of natural stone (two limestones, one dolostone, one travertine and two sandstones) that are widely used in both new and historical buildings. In order to assess their quality, we measured and characterized their dynamic elastic properties using ultrasounds, we measured their compressive strength using the uniaxial compression test and we evaluated their durability by means of accelerated aging tests (freeze-thaw and salt crystallization). In order to get a full picture of the decay suffered by the different stones, we determined the composition and amount of the clay fraction of the six stones. We also observed small fragments subjected to the salt crystallization test under an environmental scanning electron microscope to study any textural change and measured the changes of colour on the surface with a spectrophotometer. Finally, we analysed the pore system of the stones before and after their deterioration using mercury injection porosimetry. We then compared the results for the different stones and found that dolostone obtained the best results, while the two limestones proved to be the least durable and had the lowest compressive strength.

  19. Coffee Silverskin Extract Protects against Accelerated Aging Caused by Oxidative Agents.

    PubMed

    Iriondo-DeHond, Amaia; Martorell, Patricia; Genovés, Salvador; Ramón, Daniel; Stamatakis, Konstantinos; Fresno, Manuel; Molina, Antonio; Del Castillo, Maria Dolores

    2016-01-01

    Nowadays, coffee beans are almost exclusively used for the preparation of the beverage. The sustainability of coffee production can be achieved introducing new applications for the valorization of coffee by-products. Coffee silverskin is the by-product generated during roasting, and because of its powerful antioxidant capacity, coffee silverskin aqueous extract (CSE) may be used for other applications, such as antiaging cosmetics and dermaceutics. This study aims to contribute to the coffee sector's sustainability through the application of CSE to preserve skin health. Preclinical data regarding the antiaging properties of CSE employing human keratinocytes and Caenorhabditis elegans are collected during the present study. Accelerated aging was induced by tert-butyl hydroperoxide (t-BOOH) in HaCaT cells and by ultraviolet radiation C (UVC) in C. elegans. Results suggest that the tested concentrations of coffee extracts were not cytotoxic, and CSE 1 mg/mL gave resistance to skin cells when oxidative damage was induced by t-BOOH. On the other hand, nematodes treated with CSE (1 mg/mL) showed a significant increased longevity compared to those cultured on a standard diet. In conclusion, our results support the antiaging properties of the CSE and its great potential for improving skin health due to its antioxidant character associated with phenols among other bioactive compounds present in the botanical material.

  20. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai Frank; Larrosa, Cecilia C.; Janapati, Vishnuvardhan; Roy, Surajit; Chang, Fu-Kuo

    2011-01-01

    Composite structures are gaining importance for use in the aerospace industry. Compared to metallic structures their behavior is less well understood. This lack of understanding may pose constraints on their use. One possible way to deal with some of the risks associated with potential failure is to perform in-situ monitoring to detect precursors of failures. Prognostic algorithms can be used to predict impending failures. They require large amounts of training data to build and tune damage model for making useful predictions. One of the key aspects is to get confirmatory feedback from data as damage progresses. These kinds of data are rarely available from actual systems. The next possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to stress carbon-carbon composite coupons with various layups. Piezoelectric disc sensors were used to periodically interrogate the system. Analysis showed distinct differences in the signatures of growing failures between data collected at conditions. Periodic X-radiographs were taken to assess the damage ground truth. Results after signal processing showed clear trends of damage growth that were correlated to damage assessed from the X-ray images.

  1. Flow Cytometry Analysis of NK Cell Phenotype and Function in Aging.

    PubMed

    Tarazona, Raquel; Campos, Carmen; Pera, Alejandra; Sanchez-Correa, Beatriz; Solana, Rafael

    2015-01-01

    Natural killer (NK) cells represent a subpopulation of lymphocytes involved in innate immunity, defined recently as group 1 of innate lymphoid cells (ILCs). NK cells are cytotoxic lymphocytes with a relevant role in the destruction of transformed cells as virus-infected or tumor cells, as well as the regulation of the immune response through cytokine and chemokine production that activates other cellular components of innate and adaptive immunity. In humans, NK cell subsets have been defined according to the level of expression of CD56. Aging differentially affects NK cell subsets and NK cell function. Here, we describe protocols for the delineation of NK cell subsets and the analysis of their functional capacity using multiparametric flow cytometry.

  2. Systems medicine approaches for the definition of complex phenotypes in chronic diseases and ageing. From concept to implementation and policies.

    PubMed

    Bousquet, Jean; Jorgensen, Christian; Dauzat, Michel; Cesario, Alfredo; Camuzat, Thierry; Bourret, Rodolphe; Best, Nicolas; Anto, Josep M; Abecassis, Frederic; Aubas, Pierre; Avignon, Antoine; Badin, Melanie; Bedbrook, Anna; Blain, Hubert; Bourdin, Arnaud; Bringer, Jacques; Camu, William; Cayla, Guilhaume; Costa, David J; Courtet, Philippe; Cristol, Jean-Paul; Demoly, Pascal; de la Coussaye, Jean-Emmanuel; Fesler, Pierre; Gouzi, Fares; Gris, Jean-Christophe; Guillot, Bernard; Hayot, Maurice; Jeandel, Claude; Jonquet, Olivier; Journot, Laurent; Lehmann, Sylvain; Mathieu, Gwenaelle; Morel, Jacques; Ninot, Gregory; Pelissier, Jacques; Picot, Marie-Christine; Radier-Pontal, Francoise; Robine, Jean-Marie; Rodier, Michel; Roubille, Francois; Sultan, Ariane; Wojtusciszyn, Anne; Auffray, Charles; Balling, Rudi; Barbara, Cristina; Cambon-Thomsen, Anne; Chavannes, Niels H; Chuchalin, Alexander; Crooks, George; Dedeu, Antoni; Fabbri, Leonardo M; Garcia-Aymerich, Judith; Hajjam, Jawad; Melo Gomes, Elisabete; Palkonen, Susana; Piette, Francois; Pison, Christophe; Price, David; Samolinski, Boleslaw; Schunemann, Holger J; Sterk, Peter J; Yiallouros, Panayiotis; Roca, Josep; Van de Perre, Philippe; Mercier, Jacques

    2014-01-01

    Chronic diseases are diseases of long duration and slow progression. Major NCDs (cardiovascular diseases, cancer, chronic respiratory diseases, diabetes, rheumatologic diseases and mental health) represent the predominant health problem of the Century. The prevention and control of NCDs are the priority of the World Health Organization 2008 Action Plan, the United Nations 2010 Resolution and the European Union 2010 Council. The novel trend for the management of NCDs is evolving towards integrative, holistic approaches. NCDs are intertwined with ageing. The European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) has prioritised NCDs. To tackle them in their totality in order to reduce their burden and societal impact, it is proposed that NCDs should be considered as a single expression of disease with different risk factors and entities. An innovative integrated health system built around systems medicine and strategic partnerships is proposed to combat NCDs. It includes (i) understanding the social, economic, environmental, genetic determinants, as well as the molecular and cellular mechanisms underlying NCDs; (ii) primary care and practice-based interprofessional collaboration; (iii) carefully phenotyped patients; (iv) development of unbiased and accurate biomarkers for comorbidities, severity and follow up of patients; (v) socio-economic science; (vi) development of guidelines; (vii) training; and (viii) policy decisions. The results could be applicable to all countries and adapted to local needs, economy and health systems. This paper reviews the complexity of NCDs intertwined with ageing. It gives an overview of the problem and proposes two practical examples of systems medicine (MeDALL) applied to allergy and to NCD co-morbidities (MACVIA-LR, Reference Site of the European Innovation Partnership on Active and Healthy Ageing).

  3. Systems medicine approaches for the definition of complex phenotypes in chronic diseases and ageing. From concept to implementation and policies.

    PubMed

    Bousquet, Jean; Jorgensen, Christian; Dauzat, Michel; Cesario, Alfredo; Camuzat, Thierry; Bourret, Rodolphe; Best, Nicolas; Anto, Josep M; Abecassis, Frederic; Aubas, Pierre; Avignon, Antoine; Badin, Melanie; Bedbrook, Anna; Blain, Hubert; Bourdin, Arnaud; Bringer, Jacques; Camu, William; Cayla, Guilhaume; Costa, David J; Courtet, Philippe; Cristol, Jean-Paul; Demoly, Pascal; de la Coussaye, Jean-Emmanuel; Fesler, Pierre; Gouzi, Fares; Gris, Jean-Christophe; Guillot, Bernard; Hayot, Maurice; Jeandel, Claude; Jonquet, Olivier; Journot, Laurent; Lehmann, Sylvain; Mathieu, Gwenaelle; Morel, Jacques; Ninot, Gregory; Pelissier, Jacques; Picot, Marie-Christine; Radier-Pontal, Francoise; Robine, Jean-Marie; Rodier, Michel; Roubille, Francois; Sultan, Ariane; Wojtusciszyn, Anne; Auffray, Charles; Balling, Rudi; Barbara, Cristina; Cambon-Thomsen, Anne; Chavannes, Niels H; Chuchalin, Alexander; Crooks, George; Dedeu, Antoni; Fabbri, Leonardo M; Garcia-Aymerich, Judith; Hajjam, Jawad; Melo Gomes, Elisabete; Palkonen, Susana; Piette, Francois; Pison, Christophe; Price, David; Samolinski, Boleslaw; Schunemann, Holger J; Sterk, Peter J; Yiallouros, Panayiotis; Roca, Josep; Van de Perre, Philippe; Mercier, Jacques

    2014-01-01

    Chronic diseases are diseases of long duration and slow progression. Major NCDs (cardiovascular diseases, cancer, chronic respiratory diseases, diabetes, rheumatologic diseases and mental health) represent the predominant health problem of the Century. The prevention and control of NCDs are the priority of the World Health Organization 2008 Action Plan, the United Nations 2010 Resolution and the European Union 2010 Council. The novel trend for the management of NCDs is evolving towards integrative, holistic approaches. NCDs are intertwined with ageing. The European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) has prioritised NCDs. To tackle them in their totality in order to reduce their burden and societal impact, it is proposed that NCDs should be considered as a single expression of disease with different risk factors and entities. An innovative integrated health system built around systems medicine and strategic partnerships is proposed to combat NCDs. It includes (i) understanding the social, economic, environmental, genetic determinants, as well as the molecular and cellular mechanisms underlying NCDs; (ii) primary care and practice-based interprofessional collaboration; (iii) carefully phenotyped patients; (iv) development of unbiased and accurate biomarkers for comorbidities, severity and follow up of patients; (v) socio-economic science; (vi) development of guidelines; (vii) training; and (viii) policy decisions. The results could be applicable to all countries and adapted to local needs, economy and health systems. This paper reviews the complexity of NCDs intertwined with ageing. It gives an overview of the problem and proposes two practical examples of systems medicine (MeDALL) applied to allergy and to NCD co-morbidities (MACVIA-LR, Reference Site of the European Innovation Partnership on Active and Healthy Ageing). PMID:24641234

  4. Melanocortin 1 Receptor-Signaling Deficiency Results in an Articular Cartilage Phenotype and Accelerates Pathogenesis of Surgically Induced Murine Osteoarthritis

    PubMed Central

    Hackmayer, Gerit; Greth, Carina; Bauer, Richard J.; Kleinschmidt, Kerstin; Bettenworth, Dominik; Böhm, Markus; Grifka, Joachim; Grässel, Susanne

    2014-01-01

    Proopiomelanocortin-derived peptides exert pleiotropic effects via binding to melanocortin receptors (MCR). MCR-subtypes have been detected in cartilage and bone and mediate an increasing number of effects in diathrodial joints. This study aims to determine the role of MC1-receptors (MC1) in joint physiology and pathogenesis of osteoarthritis (OA) using MC1-signaling deficient mice (Mc1re/e). OA was surgically induced in Mc1re/e and wild-type (WT) mice by transection of the medial meniscotibial ligament. Histomorphometry of Safranin O stained articular cartilage was performed with non-operated controls (11 weeks and 6 months) and 4/8 weeks past surgery. µCT–analysis for assessing epiphyseal bone architecture was performed as a longitudinal study at 4/8 weeks after OA-induction. Collagen II, ICAM-1 and MC1 expression was analysed by immunohistochemistry. Mc1re/e mice display less Safranin O and collagen II stained articular cartilage area compared to WT prior to OA-induction without signs of spontaneous cartilage surface erosion. This MC1-signaling deficiency related cartilage phenotype persisted in 6 month animals. At 4/8 weeks after OA-induction cartilage erosions were increased in Mc1re/e knees paralleled by weaker collagen II staining. Prior to OA-induction, Mc1re/e mice do not differ from WT with respect to bone parameters. During OA, Mc1re/e mice developed more osteophytes and had higher epiphyseal bone density and mass. Trabecular thickness was increased while concomitantly trabecular separation was decreased in Mc1re/e mice. Numbers of ICAM-positive chondrocytes were equal in non-operated 11 weeks Mc1re/e and WT whereas number of positive chondrocytes decreased during OA-progression. Unchallenged Mc1re/e mice display smaller articular cartilage covered area without OA-related surface erosions indicating that MC1-signaling is critical for proper cartilage matrix integrity and formation. When challenged with OA, Mc1re/e mice develop a more severe OA

  5. Lithium prevents parkinsonian behavioral and striatal phenotypes in an aged parkin mutant transgenic mouse model.

    PubMed

    Lieu, Christopher A; Dewey, Colleen M; Chinta, Shankar J; Rane, Anand; Rajagopalan, Subramanian; Batir, Sean; Kim, Yong-Hwan; Andersen, Julie K

    2014-12-01

    Lithium has long been used as a treatment for the psychiatric disease bipolar disorder. However, previous studies suggest that lithium provides neuroprotective effects in neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease. The exact mechanism by which lithium exerts these effects still remains unclear. In the present study, we evaluated the effects of low-dose lithium treatment in an aged mouse model expressing a parkin mutation within dopaminergic neurons. We found that low-dose lithium treatment prevented motor impairment as demonstrated by the open field test, pole test, and rearing behavior. Furthermore, lithium prevented dopaminergic striatal degeneration in parkin animals. We also found that parkin-induced striatal astrogliosis and microglial activation were prevented by lithium treatment. Our results further corroborate the use of this parkin mutant transgenic mouse line as a model for PD for testing novel therapeutics. The findings of the present study also provide further validation that lithium could be re-purposed as a therapy for PD and suggest that anti-inflammatory effects may contribute to its neuroprotective mechanisms.

  6. Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype.

    PubMed

    Luc, Sidinh; Huang, Jialiang; McEldoon, Jennifer L; Somuncular, Ece; Li, Dan; Rhodes, Claire; Mamoor, Shahan; Hou, Serena; Xu, Jian; Orkin, Stuart H

    2016-09-20

    B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A. PMID:27653684

  7. Age-dependent changes in lipid peroxide levels in peripheral organs, but not in brain, in senescence-accelerated mice.

    PubMed

    Matsugo, S; Kitagawa, T; Minami, S; Esashi, Y; Oomura, Y; Tokumaru, S; Kojo, S; Matsushima, K; Sasaki, K

    2000-01-01

    The tissue concentration of lipid peroxides was determined in the brain, heart, liver, lung and kidney of accelerated senescence-prone (SAMP-8) and -resistant (SAMR-1) mice at 3, 6 and 9 months of age by a method involving chemical derivatization and high performance liquid chromatography. The level of lipid peroxides in the brain did not show an age-dependent change, but at each age the brain level of lipid peroxides was significantly higher in SAMP-8 than in SAMR-1. In contrast, the lipid peroxide levels in the peripheral organs showed increases with aging in both strains, and they were significantly higher in SAMP-8 than in SAMR-1 at both 3 and 6 months of age (except at 3 months of age in the kidney). These results suggest that increased oxidative stress in the brain and peripheral organs is a cause of the senescence-related degeneration and impairments seen in SAMP-8. PMID:10643812

  8. Nox-2-Mediated Phenotype Loss of Hippocampal Parvalbumin Interneurons Might Contribute to Postoperative Cognitive Decline in Aging Mice

    PubMed Central

    Qiu, Li-Li; Luo, Dan; Zhang, Hui; Shi, Yun S.; Li, Yan-Jun; Wu, Dan; Chen, Jiang; Ji, Mu-Huo; Yang, Jian-Jun

    2016-01-01

    Postoperative cognitive decline (POCD) is a common complication following anesthesia and surgery, especially in elderly patients; however, the precise mechanisms of POCD remain unclear. Here, we investigated whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mediated-abnormalities in parvalbumin (PV) interneurons play an important role in the pathophysiology of POCD. The animal model was established using isoflurane anesthesia and exploratory laparotomy in 16-month-old male C57BL/6 mice. For interventional experiments, mice were chronically treated with the NADPH oxidase inhibitor apocynin (APO). Open field and fear conditioning behavioral tests were performed on day 6 and 7 post-surgery, respectively. In a separate experiment, brain tissue was harvested and subjected to biochemical analysis. Primary hippocampal neurons challenged with lipopolysaccharide (LPS) in vitro were used to investigate the mechanisms underlying the oxidative stress-induced abnormalities in PV interneurons. Our results showed that anesthesia and surgery induced significant hippocampus-dependent memory impairment, which was accompanied by PV interneuron phenotype loss and increased expression of interleukin-1β (IL-1β), markers of oxidative stress and NADPH oxidase 2 (Nox2) in the hippocampus. In addition, LPS exposure increased Nox2 level and decreased the expression of PV and the number of excitatory synapses onto PV interneurons in the primary hippocampal neurons. Notably, treatment with APO reversed these abnormalities. Our study suggests that Nox2-derived reactive oxygen species (ROS) production triggers, at least in part, anesthesia- and surgery-induced hippocampal PV interneuron phenotype loss and consequent cognitive impairment in aging mice. PMID:27790135

  9. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality.

    PubMed

    Koren, Netta; Simsa-Maziel, Stav; Shahar, Ron; Schwartz, Betty; Monsonego-Ornan, Efrat

    2014-06-01

    Omega-3 fatty acids (FAs) are essential nutritional components that must be obtained from foods. Increasing evidence validate that omega-3 FAs are beneficial for bone health, and several mechanisms have been suggested to mediate their effects on bone, including alterations in calcium absorption and urinary calcium loss, prostaglandin synthesis, lipid oxidation, osteoblast formation and inhibition of osteoclastogenesis. However, to date, there is scant information regarding the effect of omega-3 FAs on the developing skeleton during the rapid growth phase. In this study we aim to evaluate the effect of exposure to high levels of omega-3 FAs on bone development and quality during prenatal and early postnatal period. For this purpose, we used the fat-1 transgenic mice that have the ability to convert omega-6 to omega-3 fatty acids and the ATDC5 chondrogenic cell line as models. We show that exposure to high concentrations of omega-3 FAs at a young age accelerates bone growth through alterations of the growth plate, associated with increased chondrocyte proliferation and differentiation. We further propose that those effects are mediated by the receptors G-protein coupled receptor 120 (GPR120) and hepatic nuclear factor 4α, which are expressed by chondrocytes in culture. Additionally, using a combined study on the structural and mechanical bone parameters, we show that high omega-3 levels contribute to superior trabecular and cortical structure, as well as to stiffer bones and improved bone quality. Most interestingly, the fat-1 model allowed us to demonstrate the role of maternal high omega-3 concentration on bone growth during the gestation and postnatal period.

  10. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss.

    PubMed

    Turner, Russell T; Dube, Michael; Branscum, Adam J; Wong, Carmen P; Olson, Dawn A; Zhong, Xiaoying; Kweh, Mercedes F; Larkin, Iske V; Wronski, Thomas J; Rosen, Clifford J; Kalra, Satya P; Iwaniec, Urszula T

    2015-12-01

    Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover.

  11. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Takmakov, Pavel; Ruda, Kiersten; Phillips, K. Scott; Isayeva, Irada S.; Krauthamer, Victor; Welle, Cristin G.

    2015-04-01

    Objective. A challenge for implementing high bandwidth cortical brain-machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. Approach. Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 °C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz-1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. Main results. RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies <10 Hz, and smallest at frequencies 1 kHz and above. Though electrode performance is traditionally characterized by impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. Significance. ROS, which are known to be present in vivo, can create

  12. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

    PubMed

    Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B

    2014-01-01

    Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.

  13. Experimental Induction of Type 2 Diabetes in Aging-Accelerated Mice Triggered Alzheimer-Like Pathology and Memory Deficits

    PubMed Central

    Mehla, Jogender; Chauhan, Balwantsinh C.; Chauhan, Neelima B.

    2014-01-01

    Alzheimer’s disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD. PMID:24121970

  14. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities.

    PubMed

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Germline mutations in genes encoding different members of the PIG family result in diverse conditions with (severe) developmental delay, (neonatal) seizures, hypotonia, CNS abnormalities, growth abnormalities, and congenital abnormalities as hallmark features. The variability of clinical features resembles the typical diversity of other glycosylation pathway deficiencies such as the congenital disorders of glycosylation. Here, we report the first germline missense mutation in the PIGA gene associated with accelerated linear growth, obesity, central hypotonia, severe refractory epilepsy, cardiac anomalies, mild facial dysmorphic features, mildly elevated alkaline phosphatase levels, and CNS anomalies consisting of progressive cerebral atrophy, insufficient myelinization, and cortical MRI signal abnormalities. X-exome sequencing in the proband identified a c.278C>T (p.Pro93Leu) mutation in the PIGA gene. The mother and maternal grandmother were unaffected carriers and the mother showed 100% skewing of the X-chromosome harboring the mutation. These results together with the clinical similarity of the patient reported here and the previously reported patients with a germline nonsense mutation in PIGA support the determination that this mutation caused the phenotype in this family.

  15. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities.

    PubMed

    van der Crabben, Saskia N; Harakalova, Magdalena; Brilstra, Eva H; van Berkestijn, Frédérique M C; Hofstede, Floris C; van Vught, Adrianus J; Cuppen, Edwin; Kloosterman, Wigard; Ploos van Amstel, Hans Kristian; van Haaften, Gijs; van Haelst, Mieke M

    2014-01-01

    Phosphatidyl inositol glycan (PIG) enzyme subclasses are involved in distinct steps of glycosyl phosphatidyl inositol anchor protein biosynthesis. Glycolsyl phosphatidyl inositol-anchored proteins have heterogeneous functions; they can function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Germline mutations in genes encoding different members of the PIG family result in diverse conditions with (severe) developmental delay, (neonatal) seizures, hypotonia, CNS abnormalities, growth abnormalities, and congenital abnormalities as hallmark features. The variability of clinical features resembles the typical diversity of other glycosylation pathway deficiencies such as the congenital disorders of glycosylation. Here, we report the first germline missense mutation in the PIGA gene associated with accelerated linear growth, obesity, central hypotonia, severe refractory epilepsy, cardiac anomalies, mild facial dysmorphic features, mildly elevated alkaline phosphatase levels, and CNS anomalies consisting of progressive cerebral atrophy, insufficient myelinization, and cortical MRI signal abnormalities. X-exome sequencing in the proband identified a c.278C>T (p.Pro93Leu) mutation in the PIGA gene. The mother and maternal grandmother were unaffected carriers and the mother showed 100% skewing of the X-chromosome harboring the mutation. These results together with the clinical similarity of the patient reported here and the previously reported patients with a germline nonsense mutation in PIGA support the determination that this mutation caused the phenotype in this family. PMID:24259184

  16. Progeria, rapamycin and normal aging: recent breakthrough.

    PubMed

    Blagosklonny, Mikhail V

    2011-07-01

    A recent discovery that rapamycin suppresses a pro-senescent phenotype in progeric cells not only suggests a non-toxic therapy for progeria but also implies its similarity with normal aging. For one, rapamycin is also known to suppress aging of regular human cells. Here I discuss four potential scenarios, comparing progeria with both normal and accelerated aging. This reveals further indications of rapamycin both for accelerated aging in obese and for progeria.

  17. Multi-Directional Sprinting and Acceleration Phase in Basketball and Handball Players Aged 14 and 15 Years.

    PubMed

    Popowczak, Marek; Rokita, Andrzej; Struzik, Artur; Cichy, Ireneusz; Dudkowski, Andrzej; Chmura, Paweł

    2016-10-01

    An important role in handball and basketball is played by ability to accelerate and ability to repeat multiple sprints. The aim of the study was to assess level of ability in multi-directional sprinting and running time over the first 5 m of the 30 m sprint in 93 basketball and handball players (46 boys and 47 girls) aged 14 to 15 years. The attempts were also made to find the relationships between the time of a 5-m run to evaluate initial acceleration phase and multi-directional sprinting evaluated using Five-Time Shuttle Run To Gates Test Statistical analysis revealed no important differences in times of 5-m runs and times of multi-directional sprinting between groups with different ages, genders, and sports specialties. Furthermore, no significant correlations were found based on Spearman's rank correlation coefficient between times of 5-m run and multi-directional sprinting in the most of subgroups studied.

  18. The morphologic and neurochemical basis of dementia: aging, hierarchical patterns of lesion distribution and vulnerable neuronal phenotype.

    PubMed

    Hof, P R; Giannakopoulos, P; Vickers, J C; Bouras, C; Morrison, J H

    1995-01-01

    Alzheimer's disease is the most common form of dementia in elderly individuals. Approximately 11% of the population older than 65, and up to 50% of individuals over 85 qualify as having "probable Alzheimer's disease" on the basis of clinical evaluation. Since the early description of the clinical symptoms and neuropathologic features of Alzheimer's disease, there has been an extraordinary growth in the knowledge of the morphologic and molecular characteristics of Alzheimer's disease. Although the pathogenetic events that lead to dementia are not yet fully understood, several hypotheses regarding the formation of the hallmark pathologic structures of Alzheimer's disease have been proposed. In this context, the use of specific histochemical techniques in the primate brain has greatly expanded our understanding of neuron typology, connectivity and circuit distribution in relation to neurochemical identity. In this respect, very specific subsets of cortical neurons and cortical afferents can be identified by their particular content of certain neurotransmitters and structural proteins. In this article, we discuss the possible relationships between the distribution of pathologic changes in aging, Alzheimer's disease, and possibly related dementing conditions, in the context of the specific elements of the cortical circuitry that are affected by these alterations. Also, evidence for links between the neurochemical phenotype of a given neuron and its relative vulnerability or resistance to the degenerative process are presented in order to correlate the distribution of cellular pathologic changes, neurochemical characteristics related to vulnerability, and affected cortical circuits.

  19. Secular trend of the age at menarche of Japanese girls with special regard to the secular acceleration of the age at peak height velocity.

    PubMed

    Hoshi, H; Kouchi, M

    1981-12-01

    An attempt is made to clarify the special characteristics of the secular trend of the menarchial age in Japan. The relationships with the precocious appearance of the age at peak high velocity, another exemplification of the maturity acceleration, is also reviewed. This research on menarche was conducted in 1979-1980 on 284 school girls born between 1961 and 1966. The girls were healthy, of middle socioeconomic class, and grew up and lived in Tokyo and its outskirts. A questionnaire was given to each subject who was requested to answer after referring to her diary, mother's or sister's records, or any other writing about her menarche. If none of these was available, they were asked to provide an event which occurred soon before or after the menarche. The arithmetic mean of the age at menarche was 12.40 years with a range of 9.63 to 15.44 years. In 1958 research was conducted on the menarche of 309 girls in the same school, and the mean menarchial age was reported to be 13.27 years with a range of 10.83 to 16.92 years. The rate of acceleration during these 21 years was 4.4 months/decade. Mean menarchial ages obtained in 157 studies ever reported in Japan were plotted against the year of publication. No definite tendency was apparent until a gradual change toward earlier menstruation began in about 1920. In the next 20 years the average decreased from 15.0 to 14.2 years of age. The rate of decrease during the 1920-1940 period was about 4 months/decade. Due to World War 2, a retardation of menarche began in 1941 and reached a peak of about 15.0 years of age in 1950-1952, after which the trend changed into one of rapid acceleration. It is believed that the age at peak height velocity (PHV) is highly correlated with menarche age. The correlation coefficient is reported to be 0.71 by Nicholson and Hanly (1953), 0.93 by Deming (1957) and 0.77 by the author's of this study based on the present subjects. Thus it can be reasonably assumed that the secular trend of menarche

  20. Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe?

    PubMed Central

    Nunn, Alistair VW; Bell, Jimmy D; Guy, Geoffrey W

    2009-01-01

    determines functional longevity, a rather more descriptive term for the metabolic syndrome is the 'lifestyle-induced metabolic inflexibility and accelerated ageing syndrome'. Ultimately, thriftiness is good for us as long as we have hormetic stimuli; unfortunately, mankind is attempting to remove all hormetic (stressful) stimuli from his environment. PMID:19371409

  1. U. S. -French Cooperative Research Program: U. S. test results for cable insulation and jacket materials at the completion of accelerated aging

    SciTech Connect

    Bustard, L.D.

    1984-01-01

    Eight different U.S. insulation and jacket products have been accelerated aged at Sandia. The experimental variables included: (1) sequential versus simultaneous accelerated aging exposures; (2) the order of the sequential exposures; and (3) ambient versus 70/sup 0/C irradiation temperatures during sequential aging exposures. We observed that the irradiation temperature (70/sup 0/C or ambient) was secondary in importance to the choice of sequence for thermal and radiation aging. For most materials studied (except TEFZEL) the irradiation then thermal aging sequence was as severe or more severe than the thermal then irradiation aging sequence.

  2. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    PubMed

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures. PMID:27059404

  3. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    PubMed

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures.

  4. ISSLS PRIZE WINNER: INHIBITION OF NF-κB ACTIVITY AMELIORATES AGE-ASSOCIATED DISC DEGENERATION IN A MOUSE MODEL OF ACCELERATED AGING

    PubMed Central

    Nasto, Luigi A.; Seo, Hyoung-Yeon; Robinson, Andria R.; Tilstra, Jeremy S.; Clauson, Cheryl L.; Sowa, Gwendolyn A.; Ngo, Kevin; Dong, Qing; Pola, Enrico; Lee, Joon Y.; Niedernhofer, Laura J.; Kang, James D.; Robbins, Paul D.; Vo, Nam V.

    2012-01-01

    Study Design NF-κB activity was pharmacologically and genetically blocked in an accelerated aging mouse model to mitigate age-related disc degenerative changes. Objective To study the mediatory role of NF-κB signaling pathway in age-dependent intervertebral disc degeneration. Summary of Background Data Aging is a major contributor to intervertebral disc degeneration (IDD), but the molecular mechanism behind this process is poorly understood. NF-κB is a family of transcription factors which play a central role in mediating cellular response to damage, stress, and inflammation. Growing evidence implicates chronic NF-κB activation as a culprit in many aging-related diseases, but its role in aging-related IDD has not been adequately explored. We studied the effects of NF-κB inhibition on IDD using a DNA repair-deficient mouse model of accelerated aging (Ercc1-/Δ mice) previously been reported to exhibit age-related IDD. Methods Systemic inhibition of NF-κB activation was achieved either genetically by deletion of one allele of the NF-κB subunit p65 (Ercc1-/Δp65+/- mice) or pharmacologically by chronic intra-peritoneal administration of the Nemo Binding Domain (8K-NBD) peptide to block the formation of the upstream activator of NF-κB, IκB Inducible Kinase (IKK), in Ercc1-/Δ mice. Disc cellularity, total proteoglycan content and proteoglycan synthesis of treated mice and untreated controls were assessed. Results Decreased disc matrix proteoglycan content, a hallmark feature of IDD, and elevated disc NF-κB activity were observed in discs of progeroid Ercc1-/Δ mice and naturally aged wild-type compared to young WT mice. Systemic inhibition of NF-κB by the 8K-NBD peptide in Ercc1-/Δ mice increased disc proteoglycan synthesis and ameriolated loss disc cellularity and matrix proteoglycan. These results were confirmed genetically by using the p65 haploinsufficient Ercc1-/Δp65+/- mice. Conclusion These findings demonstrate that the IKK/NF-κB signaling pathway

  5. Curcumin Mitigates Accelerated Aging after Irradiation in Drosophila by Reducing Oxidative Stress

    PubMed Central

    Yu, Mira; Park, Sunhoo; Jin, Young Woo; Min, Kyung-Jin

    2015-01-01

    Curcumin, belonging to a class of natural phenol compounds, has been extensively studied due to its antioxidative, anticancer, anti-inflammatory, and antineurodegenerative effects. Recently, it has been shown to exert dual activities after irradiation, radioprotection, and radiosensitization. Here, we investigated the protective effect of curcumin against radiation damage using D. melanogaster. Pretreatment with curcumin (100 μM) recovered the shortened lifespan caused by irradiation and increased eclosion rate. Flies subjected to high-dose irradiation showed a mutant phenotype of outstretched wings, whereas curcumin pretreatment reduced incidence of the mutant phenotype. Protein carbonylation and formation of γH2Ax foci both increased following high-dose irradiation most likely due to generation of reactive oxygen species. Curcumin pretreatment reduced the amount of protein carbonylation as well as formation of γH2Ax foci. Therefore, we suggest that curcumin acts as an oxidative stress reducer as well as an effective protective agent against radiation damage. PMID:25815315

  6. Methodology for designing accelerated aging tests for predicting life of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Derringer, G. C.; Kistler, C. W.; Bigg, D. M.; Carmichael, D. C.

    1977-01-01

    A methodology for designing aging tests in which life prediction was paramount was developed. The methodology builds upon experience with regard to aging behavior in those material classes which are expected to be utilized as encapsulant elements, viz., glasses and polymers, and upon experience with the design of aging tests. The experiences were reviewed, and results are discussed in detail.

  7. Deficiency in Poly(ADP-ribose) Polymerase-1 (PARP-1) Accelerates Aging and Spontaneous Carcinogenesis in Mice

    PubMed Central

    Piskunova, Tatiana S.; Yurova, Maria N.; Ovsyannikov, Anton I.; Semenchenko, Anna V.; Zabezhinski, Mark A.; Popovich, Irina G.; Wang, Zhao-Qi; Anisimov, Vladimir N.

    2008-01-01

    Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosyl)ation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosyl)ation and PARP-1 may also play an important role in aging. Here we show that PARP-1−/− mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP-1−/− mice. The incidence of spontaneous tumors in both PARP-1−/− and PARP-1+/+ groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP-1−/− mice than PARP-1+/+ mice (72% and 49%, resp.; P < .05). In addition, spontaneous tumors appear earlier in PARP-1−/− mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis. PMID:19415146

  8. Age-related acceleration of endothelial dysfunction and subclinical atherosclerosis in subjects with coronary artery lesions after Kawasaki disease.

    PubMed

    Noto, Nobutaka; Okada, Tomoo; Karasawa, Kensuke; Ayusawa, Mamoru; Sumitomo, Naokata; Harada, Kensuke; Mugishima, Hideo

    2009-04-01

    The objective of this study was to test the hypothesis that accelerated endothelial dysfunction and the development of premature atherosclerosis are associated with age in subjects with coronary artery lesions after Kawasaki disease (KD). A case-control study was performed at a university hospital that included 35 post-KD subjects across a wide age range (range, 8-42 years) without traditional cardiovascular risk factors and 35 age- and sex-matched healthy control subjects (Cont). Flow-mediated dilatation (FMD) of the brachial artery-induced by reactive hyperemia, intima media thickness (IMT), and elastic modulus (Ep) of the common carotid artery were compared between KD and Cont subjects assessed against age. KD subjects had slightly higher levels of body mass index, lipid profile, and HbA1c than Cont subjects, but the differences were not significant. The mean IMT (p < 0.001), age-adjusted percentage normal IMT (%N IMT; p < 0.0001), and Ep (p < 0.001) were significantly higher in KD than Cont subjects, and the peak FMD% (p < 0.01) was significantly lower in KD than Cont subjects. There were significant correlations between FMD% and age (r = -0.51 p < 0.0001), IMT and age (r = 0.68, p < 0.001), and Ep and age (r = 0.58, p < 0.01) in KD but not Cont subjects. When the difference in FMD% between KD and matched Cont subjects (DeltaFMD%) was plotted against age, no significant relationship was found, although significant correlations between DeltaIMT and age (r = 0.52, p < 0.01) as well as between DeltaEp and age (r = 0.46, p < 0.05) were observed. When we defined values that were +2.0 SD over the mean control values (i.e., %N IMT >or= 120% and/or Ep >or= 50 kPa) as markers of subclinical atherosclerosis, 15 subjects met the criteria. Subjects over the age of 22 years were more likely to have (OR = 16.54, p = 0.0001) subclinical atherosclerosis in this cohort. Our results suggest that endothelial dysfunction and the development of premature atherosclerosis were

  9. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    SciTech Connect

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheld LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.

  10. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    DOE PAGES

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheldmore » LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.« less

  11. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data

    NASA Astrophysics Data System (ADS)

    Ecker, Madeleine; Gerschler, Jochen B.; Vogel, Jan; Käbitz, Stefan; Hust, Friedrich; Dechent, Philipp; Sauer, Dirk Uwe

    2012-10-01

    Battery lifetime prognosis is a key requirement for successful market introduction of electric and hybrid vehicles. This work aims at the development of a lifetime prediction approach based on an aging model for lithium-ion batteries. A multivariable analysis of a detailed series of accelerated lifetime experiments representing typical operating conditions in hybrid electric vehicle is presented. The impact of temperature and state of charge on impedance rise and capacity loss is quantified. The investigations are based on a high-power NMC/graphite lithium-ion battery with good cycle lifetime. The resulting mathematical functions are physically motivated by the occurring aging effects and are used for the parameterization of a semi-empirical aging model. An impedance-based electric-thermal model is coupled to the aging model to simulate the dynamic interaction between aging of the battery and the thermal as well as electric behavior. Based on these models different drive cycles and management strategies can be analyzed with regard to their impact on lifetime. It is an important tool for vehicle designers and for the implementation of business models. A key contribution of the paper is the parameterization of the aging model by experimental data, while aging simulation in the literature usually lacks a robust empirical foundation.

  12. Increasing phenotypic and genetic variations in hyperactivity/inattention problems from age 3 to 13 years: a cross-sectional twin study.

    PubMed

    Hur, Yoon-Mi

    2014-12-01

    A twin design was used to examine the developmental nature of genetic, environmental, and phenotypic variations in hyperactivity and inattention problems (HIP). Mothers of 662 complete pairs of twins (273 monozygotic [MZ] pairs and 389 dizygotic [DZ] pairs) aged from 3 to 13 years (mean [SD] age = 8.3 [2.9] years) responded to the items of the HIP scale of the Strengths and Difficulties questionnaire via a telephone interview. Maximum likelihood MZ and DZ twin correlations in the total sample were 0.47 (95% CI: 0.37-0.55) and -0.01 (95% CI: -0.11-0.09). A standard univariate model incorporating age as a modifier was applied to the raw data. Results of model-fitting analyses showed that the phenotypic variation of HIP monotonically increased from age 3 to age 12 and that this increase was completely due to an increase in genetic variance, suggesting that it is genes that expand individual difference in ADHD symptoms with age during childhood. Child-specific environmental variance was constant during this age period. In terms of relative influences, total genetic factors increased from 33% (95% CI: 27-44%) at age 3 to 51% (95% CI: 28-71%) at age 13 and this increase was accompanied by a decrease in relative influences of child-specific environmental factors from 67% (95% CI: 56-73%) at age 3 to 49% (95% CI: 29-72%) at age 13. These estimates of genetic influences were somewhat lower than those found in most twin studies of ADHD symptoms. However, the increasing trend of genetic influences with age during childhood was consistent with the results of a recent meta-analysis of ADHD symptoms.

  13. Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF.

    PubMed

    Park, Chan J; Clark, Sherrie G; Lichtensteiger, Carol A; Jamison, Russell D; Johnson, Amy J Wagoner

    2009-07-01

    Pressure ulcers are a significant healthcare concern, especially for elderly populations. Our work served to ameliorate the chronicity of these ulcers by addressing ischemia-reperfusion injury mediated by neutrophils and the concomitant loss of vasculature in these wounds. To this end, chitosan scaffolds loaded with basic fibroblast growth factor (bFGF) contained in gelatin microparticles were developed and tested for clinical relevance in an aged mouse model. Pressure ulcers were induced in aged mice, and efficacy of treatment was assessed. On days 3 and 7, both chitosan and chitosan-bFGF scaffolds significantly accelerated wound closure compared to gauze control. By day 10, all wounds achieved similar closure. Delivery and angiogenic function of bFGF was verified through ELISA and histology. Elevated neutrophil levels were observed in chitosan and chitosan-bFGF groups. Since neutrophil elastase contributes to the proteolytic environments of pressure ulcers, the effect of chitosan on elastase was assessed. In vitro, chitosan inhibited elastase activity. In vivo, elastase protein levels in wounds were reduced with chitosan-bFGF scaffolds by day 10. These results suggest that chitosan is an effective material for growth factor delivery and can help to heal chronic ulcers. Collectively, our data show that chitosan-bFGF scaffolds are effective in accelerating wound closure of pressure ulcers in aged animals.

  14. Analysis of tetragonal to monoclinic phase transformation caused by accelerated artificial aging and the effects of microstructure in stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas J.

    This investigation addresses the issue that yttria stabilized zirconia is being used as a dental biomaterial without substantial evidence of its long-term viability. Furthermore, stabilized zirconia (SZ) undergoes low temperature degradation (LTD), which can lead to roughening of the surface. A rougher exterior can lead to increased wear of the antagonist in the oral environment. Despite the LTD concerns, SZ is now widely used in restorative dentistry, including full contour crowns. A comparison of aging methods to determine the role of artificial aging on inducing the transformation has not been extensively studied. Therefore, simulations of the transformation process were investigated by comparing different methods of accelerated aging. The rejected null hypothesis is that the temperature of aging treatment will not affect the time required to cause measurable monoclinic transformation of yttria stabilized zirconia. The transformation of SZ starts at the surface and progresses inward; however, it is unclear whether the progression is constant for different aging conditions. This investigation analyzed the depth of transformation as a function of aging conditions for stabilized zirconia in the top 5-6 mum from the surface. The rejected null hypothesis is that the transformation amount is constant throughout the first six micrometers from the surface. The effects of grain size on the amount of monoclinic transformation were also investigated. This study aimed to determine if the grain size of partially stabilized zirconia affects the amount of monoclinic transformation, surface roughness, and property degradation due to aging. The rejected null hypothesis is that the grain size will not affect the amount of monoclinic transformation, thus have no effect on surface roughening or property degradation. The final part of this study addresses the wear of enamel when opposing zirconia by observing how grain size and aging affected the wear rate of an enamel antagonist

  15. Fractography evolution in accelerated aging of UHMWPE after gamma irradiation in air.

    PubMed

    Medel, F; Gómez-Barrena, E; García-Alvarez, F; Ríos, R; Gracia-Villa, L; Puértolas, J A

    2004-01-01

    We studied the fracture surface evolution of ultra high molecular weight polyethylene (UHMWPE) specimens, manufactured from GUR 1050 compression moulded sheets, after gamma sterilisation in air followed by different aging times after thermal treatment at 120 degrees C. Degradation profiles were obtained by FTIR and DSC measurements after 0, 7, 14, 24 and 36h aging. We observed by SEM the morphology patterns at these aging times, in surface fractographies after uniaxial tensile test of standardised samples. The results pointed out clear differences between short and long aging times. At shorter times, 7h, the behaviour was similar to non-degraded UHMWPE, exhibiting ductile behaviour. At longer times, 24-36h, this thermal protocol provided a highly degraded zone in the subsurface, similar to the white band found after gamma irradiation in air followed by natural aging, although closer to the surface, at 150-200mum. The microstructure of this oxidation zone, similarly found in gamma irradiated samples shelf-aged for 6-7 years, although with different distribution of microvoids, was formed by fibrils, associated with embrittlement of the oxidised UHMWPE. In addition, the evolution of the oxidation index, the enthalpy content, the mechanical parameters, and the depth of the oxidation front deduced from the fractographies versus aging time showed that a changing behaviour in the degradation rate appeared at intermediate aging times.

  16. The Associative Changes in Scutellum Nuclear Content and Morphology with Viability Loss of Naturally Aged and Accelerated Aging Wheat (Triticum aestivum) Seeds

    PubMed Central

    Ahmed, Zaheer; Yang, Hui; Fu, Yong-Bi

    2016-01-01

    Timely prediction of seed viability loss over long-term storage represents a challenge in management and conservation of ex situ plant genetic resources. However, little attention has been paid to study the process of seed deterioration and seed aging signals under storage. An attempt was made here to investigate morphological and molecular changes in the scutellum and aleurone sections of naturally or artificially aged wheat seeds using TUNEL assay and DAPI staining. Twelve wheat genotypes or samples exposed to natural ageing (NA) or accelerated ageing (AA) were assayed and these samples had germination rates ranging from 11 to 93%. The assayed samples showed substantial changes in scutellum, but not aleurone. The nuclei observed in the majority of the scutellum cells of the NA seed samples of lower germination rates were longer in size and less visible, while the scutellum cell morphology or arrangement remained unchanged. In contrast, longer AA treatments resulted in the loss of scutellum cell structure, collapse of cell layers, and disappearance of honey comb arrangements. These nuclei and structural changes were consistent with the DNA assessments of nuclear alternations for the selected wheat samples. Interestingly, the sample seed germination loss was found to be associated with the reductions in the scutellum nuclear content and with the increases in the scutellum nuclei length to width ratio. These findings are significant for understanding the process of wheat seed deterioration and are also useful for searching for sensitive seed aging signals for developing tools to monitor seed viability under storage. PMID:27729925

  17. Microstructural modifications induced by accelerated aging and lipid absorption in remelted and annealed UHMWPEs for total hip arthroplasty.

    PubMed

    Puppulin, Leonardo; Zhu, Wenliang; Sugano, Nobuhiko; Pezzotti, Giuseppe

    2015-01-01

    Three types of commercially available ultra-high molecular weight polyethylene (UHMWPE) acetabular cups currently used in total hip arthroplasty have been studied by means of Raman micro-spectroscopy to unfold the microstructural modification induced by the oxidative degradation after accelerated aging with and without lipid absorption. The three investigated materials were produced by three different manufacturing procedures, as follows: irradiation followed by remelting, one-step irradiation followed by annealing, 3-step irradiation and annealing. Clear microstructural differences were observed in terms of phase contents (i.e. amorphous, crystalline and intermediate phase fraction). The three-step annealed material showed the highest crystallinity fraction in the bulk, while the remelted polyethylene is clearly characterized by the lowest content of crystalline phase and the highest content of amorphous phase. After accelerated aging either with or without lipids, the amount of amorphous phase decreased in all the samples as a consequence of the oxidation-induced recrystallization. The most remarkable variations of phase contents were detected in the remelted and in the single-step annealed materials. The presence of lipids triggered oxidative degradation especially in the remelted polyethylene. Such experimental evidence might be explained by the highest amount of amorphous phase in which lipids can be absorbed prior to accelerated aging. The results of these spectroscopic characterizations help to rationalize the complex effect of different irradiation and post-irradiation treatments on the UHMWPE microstructure and gives useful information on how significantly any single step of the manufacturing procedures might affect the oxidative degradation of the polymer.

  18. Reduced quality and accelerated follicle loss with female reproductive aging - does decline in theca dehydroepiandrosterone (DHEA) underlie the problem?

    PubMed Central

    2013-01-01

    Infertility, spontaneous abortion and conception of trisomic offspring increase exponentially with age in mammals but in women there is an apparent acceleration in the rate from about age 37. The problems mostly commonly occur when the ovarian pool of follicles is depleted to a critical level with age but are also found in low follicular reserve of other etiologies. Since recent clinical studies have indicated that dehydroepiandrosterone (DHEA) supplementation may reverse the problem of oocyte quality, this review of the literature was undertaken in an attempt to find an explanation of why this is effective? In affected ovaries, oxygenation of follicular fluid is low, ultrastructural disturbances especially of mitochondria, occur in granulosa cells and oocytes, and considerable disturbances of meiosis occur. There is, however, no evidence to date that primordial follicles are compromised. In females with normal fertility, pre-antral ovarian theca cells respond to stimulation by inhibin B to provide androgen-based support for the developing follicle. With depletion of follicle numbers, inhibin B is reduced with consequent reduction in theca DHEA. Theca cells are the sole ovarian site of synthesis of DHEA, which is both a precursor of androstenedione and an essential ligand for peroxisome proliferator-activated receptor alpha (PPARα), the key promoter of genes affecting fatty acid metabolism and fat transport and genes critical to mitochondrial function. As well as inducing a plethora of deleterious changes in follicular cytoplasmic structure and function, the omega 9 palmitate/oleate ratio is increased by lowered activity of PPARα. This provides conditions for increased ceramide synthesis and follicular loss through ceramide-induced apoptosis is accelerated. In humans critical theca DHEA synthesis occurs at about 70 days prior to ovulation thus effective supplementation needs to be undertaken about four months prior to intended conception; timing which is also

  19. Genetic and pharmacological evidence that G2019S LRRK2 confers a hyperkinetic phenotype, resistant to motor decline associated with aging

    PubMed Central

    Longo, Francesco; Russo, Isabella; Shimshek, Derya R.; Greggio, Elisa; Morari, Michele

    2014-01-01

    The leucine-rich repeat kinase 2 mutation G2019S in the kinase-domain is the most common genetic cause of Parkinson's disease. To investigate the impact of the G2019S mutation on motor activity in vivo, a longitudinal phenotyping approach was developed in knock-in (KI) mice bearing this kinase-enhancing mutation. Two cohorts of G2019S KI mice and wild-type littermates (WT) were subjected to behavioral tests, specific for akinesia, bradykinesia and overall gait ability, at different ages (3, 6, 10, 15 and 19 months). The motor performance of G2019S KI mice remained stable up to the age of 19 months and did not show the typical age-related decline in immobility time and stepping activity of WT. Several lines of evidence suggest that enhanced LRRK2 kinase activity is the main contributor to the observed hyperkinetic phenotype of G2019S KI mice: i) KI mice carrying a LRRK2 kinase-dead mutation (D1994S KD) showed a similar progressive motor decline as WT; ii) two LRRK2 kinase inhibitors, H-1152 and Nov-LRRK2-11, acutely reversed the hyperkinetic phenotype of G2019S KI mice, while being ineffective in WT or D1994S KD animals. LRRK2 target engagement in vivo was further substantiated by reduction of LRRK2 phosphorylation at Ser935 in the striatum and cortex at efficacious doses of Nov-LRRK2-11, and in the striatum at efficacious doses of H-1152. In summary, expression of the G2019S mutation in the mouse LRRK2 gene confers a hyperkinetic phenotype that is resistant to age-related motor decline, likely via enhancement of LRRK2 kinase activity. This study provides an in vivo model to investigate the effects of LRRK2 inhibitors on motor function. PMID:25107341

  20. Accelerated aging studies of UHMWPE. II. Virgin UHMWPE is not immune to oxidative degradation.

    PubMed

    Edidin, A A; Villarraga, M L; Herr, M P; Muth, J; Yau, S S; Kurtz, S M

    2002-08-01

    In Part I of this series, we showed that aging at elevated oxygen pressure is more successful at increasing the depth to which degradation occurs although it, too, generally causes greater degradation at the surface than at the subsurface. Therefore we hypothesized that thermal degradation alone, in the absence of free radicals, could be sufficient to artificially age UHMWPE in a manner analogous to natural aging. In the present study, virgin and air-irradiated UHMWPE (extruded GUR 1050 and compression-molded 1900) were aged up to 4 weeks at elevated oxygen pressure, and the mechanical behavior at the surface and subsurface was examined. All the materials were substantially degraded following 4 weeks of aging, but the spatial variations in the nonirradiated materials more closely mimicked the previously observed subsurface peak of degradation seen in naturally aged UHMWPE following irradiation in air. This aged material could provide a more realistic model for subsurface mechanical degradation, making it suitable for further mechanical testing in venues such as wear simulation.

  1. Oxidative stress and age-related changes in T cells: is thalassemia a model of accelerated immune system aging?

    PubMed Central

    Ghatreh-Samani, Mahdi; Esmaeili, Nafiseh; Soleimani, Masoud; Asadi-Samani, Majid; Ghatreh-Samani, Keihan

    2016-01-01

    Iron overload in β-thalassemia major occurs mainly due to blood transfusion, an essential treatment for β-thalassemia major patients, which results in oxidative stress. It has been thought that oxidative stress causes elevation of immune system senescent cells. Under this condition, cells normally enhance in aging, which is referred to as premature immunosenescence. Because there is no animal model for immunosenescence, most knowledge on the immunosenescence pattern is based on induction of immunosenescence. In this review, we describe iron overload and oxidative stress in β-thalassemia major patients and how they make these patients a suitable human model for immunosenescence. We also consider oxidative stress in some kinds of chronic virus infections, which induce changes in the immune system similar to β-thalassemia major. In conclusion, a therapeutic approach used to improve the immune system in such chronic virus diseases, may change the immunosenescence state and make life conditions better for β-thalassemia major patients. PMID:27095931

  2. Oxidative stress and age-related changes in T cells: is thalassemia a model of accelerated immune system aging?

    PubMed

    Ghatreh-Samani, Mahdi; Esmaeili, Nafiseh; Soleimani, Masoud; Asadi-Samani, Majid; Ghatreh-Samani, Keihan; Shirzad, Hedayatolah

    2016-01-01

    Iron overload in β-thalassemia major occurs mainly due to blood transfusion, an essential treatment for β-thalassemia major patients, which results in oxidative stress. It has been thought that oxidative stress causes elevation of immune system senescent cells. Under this condition, cells normally enhance in aging, which is referred to as premature immunosenescence. Because there is no animal model for immunosenescence, most knowledge on the immunosenescence pattern is based on induction of immunosenescence. In this review, we describe iron overload and oxidative stress in β-thalassemia major patients and how they make these patients a suitable human model for immunosenescence. We also consider oxidative stress in some kinds of chronic virus infections, which induce changes in the immune system similar to β-thalassemia major. In conclusion, a therapeutic approach used to improve the immune system in such chronic virus diseases, may change the immunosenescence state and make life conditions better for β-thalassemia major patients.

  3. Analysis of Density Changes in Plutonium Observed from Accelerated Aging Using Pu-238 Enrichment

    SciTech Connect

    Chung, B W; Saw, C K; Thompson, S R; Quick, T M; Woods, C H; Hopkins, D J; Ebbinghaus, B B

    2006-07-11

    We present dimensional and density changes in an aging plutonium alloy enriched with 7.3 at.% of {sup 238}Pu and reference alloys of various ages. After 45 equivalent years of aging, the enriched alloys at 35 C have swelled in volume by 0.14 to 0.16% and now exhibit a near linear volume increase, without void swelling. Based on X-ray diffraction measurements, the lattice expansion by self-irradiation appears to be the primary cause for dimensional changes during the initial 2-3 years of aging. Following the initial transient, the density change is primarily cause by a constant helium in-growth rate as a result of {alpha}-particle decay.

  4. Ethylene propylene cable degradation during LOCA research tests: tensile properties at the completion of accelerated aging

    SciTech Connect

    Bustard, L.D.

    1982-05-01

    Six ethylene-propylene rubber (EPR) insulation materials were aged at elevated temperature and radiation stress exposures common in cable LOCA qualification tests. Material samples were subjected to various simultaneous and sequential aging simulations in preparation for accident environmental exposures. Tensile properties subsequent to the aging exposure sequences are reported. The tensile properties of some, but not all, specimens were sensitive to the order of radiation and elevated temperature stress exposure. Other specimens showed more severe degradation when simultaneously exposed to radiation and elevated temperature as opposed to the sequential exposure to the same stresses. Results illustrate the difficulty in defining a single test procedure for nuclear safety-related qualification of EPR elastomers. A common worst-case sequential aging sequence could not be identified.

  5. Accelerated Aging of BKC 44306-10 Rigid Polyurethane Foam: FT-IR Spectroscopy, Dimensional Analysis, and Micro Computed Tomography

    SciTech Connect

    Gilbertson, Robert D.; Patterson, Brian M.; Smith, Zachary

    2014-01-02

    An accelerated aging study of BKC 44306-10 rigid polyurethane foam was carried out. Foam samples were aged in a nitrogen atmosphere at three different temperatures: 50 °C, 65 °C, and 80 °C. Foam samples were periodically removed from the aging canisters at 1, 3, 6, 9, 12, and 15 month intervals when FT-IR spectroscopy, dimensional analysis, and mechanical testing experiments were performed. Micro Computed Tomography imaging was also employed to study the morphology of the foams. Over the course of the aging study the foams the decreased in size by a magnitude of 0.001 inches per inch of foam. Micro CT showed the heterogeneous nature of the foam structure likely resulting from flow effects during the molding process. The effect of aging on the compression and tensile strength of the foam was minor and no cause for concern. FT-IR spectroscopy was used to follow the foam chemistry. However, it was difficult to draw definitive conclusions about the changes in chemical nature of the materials due to large variability throughout the samples.

  6. Free radical entrapment and crystallinity of resin composites after accelerated aging as a function of the expiration date.

    PubMed

    D'Alpino, Paulo Henrique Perlatti; Vismara, Marcos Vinícius Gonçalves; González, Alejandra Hortencia Miranda; Graeff, Carlos Frederico de Oliveira

    2014-08-01

    This study evaluated the spin concentration and the crystallinity in different classifications of dental composites as a function of the material condition (new, aged and expired). Specimens were obtained according to the factors: composites: Filtek P60, Filtek Z250, Filtek Z350XT, and Filtek Silorane; and material conditions: new, aged, and expired. The syringe composites underwent an accelerated aging protocol (Arrhenius model). The magnetic properties of the composites were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) was calculated. The crystallinity of the composites tested was characterized with X-ray diffraction (XRD). Filtek P60 and Filtek Z250 presented similarities in terms of spin concentration and crystallinity, irrespective of the material condition. The aging protocol influenced the composite Filtek Z350XT that exhibited a significant increase in the spin concentration. Besides, lower intensity peaks of the organic matrix and amorphous silica were also observed for both aged and expired Filtek Z350XT. Although a significant lower spin concentration was observed for the silorane composite in comparison to that of the methacrylates, a decrease in the relative intensity of peaks of the amorphous region related to the organic components in the diffractograms was observed. The material conditions tested influence the crystallinity and the magnetic properties of the composites evaluated.

  7. GeneYenta: a phenotype-based rare disease case matching tool based on online dating algorithms for the acceleration of exome interpretation.

    PubMed

    Gottlieb, Michael M; Arenillas, David J; Maithripala, Savanie; Maurer, Zachary D; Tarailo Graovac, Maja; Armstrong, Linlea; Patel, Millan; van Karnebeek, Clara; Wasserman, Wyeth W

    2015-04-01

    Advances in next-generation sequencing (NGS) technologies have helped reveal causal variants for genetic diseases. In order to establish causality, it is often necessary to compare genomes of unrelated individuals with similar disease phenotypes to identify common disrupted genes. When working with cases of rare genetic disorders, finding similar individuals can be extremely difficult. We introduce a web tool, GeneYenta, which facilitates the matchmaking process, allowing clinicians to coordinate detailed comparisons for phenotypically similar cases. Importantly, the system is focused on phenotype annotation, with explicit limitations on highly confidential data that create barriers to participation. The procedure for matching of patient phenotypes, inspired by online dating services, uses an ontology-based semantic case matching algorithm with attribute weighting. We evaluate the capacity of the system using a curated reference data set and 19 clinician entered cases comparing four matching algorithms. We find that the inclusion of clinician weights can augment phenotype matching. PMID:25703386

  8. GeneYenta: a phenotype-based rare disease case matching tool based on online dating algorithms for the acceleration of exome interpretation.

    PubMed

    Gottlieb, Michael M; Arenillas, David J; Maithripala, Savanie; Maurer, Zachary D; Tarailo Graovac, Maja; Armstrong, Linlea; Patel, Millan; van Karnebeek, Clara; Wasserman, Wyeth W

    2015-04-01

    Advances in next-generation sequencing (NGS) technologies have helped reveal causal variants for genetic diseases. In order to establish causality, it is often necessary to compare genomes of unrelated individuals with similar disease phenotypes to identify common disrupted genes. When working with cases of rare genetic disorders, finding similar individuals can be extremely difficult. We introduce a web tool, GeneYenta, which facilitates the matchmaking process, allowing clinicians to coordinate detailed comparisons for phenotypically similar cases. Importantly, the system is focused on phenotype annotation, with explicit limitations on highly confidential data that create barriers to participation. The procedure for matching of patient phenotypes, inspired by online dating services, uses an ontology-based semantic case matching algorithm with attribute weighting. We evaluate the capacity of the system using a curated reference data set and 19 clinician entered cases comparing four matching algorithms. We find that the inclusion of clinician weights can augment phenotype matching.

  9. Modulation of the phenolic composition and colour of red wines subjected to accelerated ageing by controlling process variables.

    PubMed

    González-Sáiz, J M; Esteban-Díez, I; Rodríguez-Tecedor, S; Pérez-Del-Notario, N; Arenzana-Rámila, I; Pizarro, C

    2014-12-15

    The aim of the present work was to evaluate the effect of the main factors conditioning accelerated ageing processes (oxygen dose, chip dose, wood origin, toasting degree and maceration time) on the phenolic and chromatic profiles of red wines by using a multivariate strategy based on experimental design methodology. The results obtained revealed that the concentrations of monomeric anthocyanins and flavan-3-ols could be modified through the application of particular experimental conditions. This fact was particularly remarkable since changes in phenolic profile were closely linked to changes observed in chromatic parameters. The main strength of this study lies in the possibility of using its conclusions as a basis to make wines with specific colour properties based on quality criteria. To our knowledge, the influence of such a large number of alternative ageing parameters on wine phenolic composition and chromatic attributes has not been studied previously using a comprehensive experimental design methodology.

  10. Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis

    PubMed Central

    Romero-Suarez, Sandra; Shen, Jinhua; Brotto, Leticia; Hall, Todd; Mo, ChengLin; Valdivia, Héctor H.; Andresen, Jon; Wacker, Michael; Nosek, Thomas M.; Qu, Cheng-Kui; Brotto, Marco

    2010-01-01

    We have recently reported that a novel muscle-specific inositide phosphatase (MIP/MTMR14) plays a critical role in [Ca2+]i homeostasis through dephosphorylation of sn-1-stearoyl-2-arachidonoyl phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2). Loss of function mutations in MIP have been identified in human centronuclear myopathy. We developed a MIP knockout (MIPKO) animal model and found that MIPKO mice were more susceptible to exercise-induced muscle damage, a trademark of muscle functional changes in older subjects. We used wild-type (Wt) mice and MIPKO mice to elucidate the roles of MIP in muscle function during aging. We found MIP mRNA expression, MIP protein levels, and MIP phosphatase activity significantly decreased in old Wt mice. The mature MIPKO mice displayed phenotypes that closely resembled those seen in old Wt mice: i) decreased walking speed, ii) decreased treadmill activity, iii) decreased contractile force, and iv) decreased power generation, classical features of sarcopenia in rodents and humans. Defective Ca2+ homeostasis is also present in mature MIPKO and old Wt mice, suggesting a putative role of MIP in the decline of muscle function during aging. Our studies offer a new avenue for the investigation of MIP roles in skeletal muscle function and as a potential therapeutic target to treat aging sarcopenia. PMID:20817957

  11. Towards A Model-Based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan S.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  12. Mice deficient in Rbm38, a target of the p53 family, are susceptible to accelerated aging and spontaneous tumors

    PubMed Central

    Zhang, Jin; Xu, Enshun; Ren, Cong; Yan, Wensheng; Zhang, Min; Chen, Mingyi; Cardiff, Robert D.; Imai, Denise M.; Wisner, Erik; Chen, Xinbin

    2014-01-01

    RNA-binding motif protein 38 (Rbm38), also called RNPC1 [RNA-binding region (RNP1, RRM) containing 1], is a target of the p53 family and modulates p53 expression via mRNA translation. To investigate the biological function of Rbm38 in vivo, we generated an Rbm38-null mouse model. We showed that mice deficient in Rbm38 exhibit signs of accelerated aging and are prone to hematopoietic defects and spontaneous tumors. To determine the biological significance of the p53-Rbm38 loop, we showed that Rbm38 deficiency enhances accumulation of p53 induced by ionizing radiation (IR) and sensitizes mice to IR-induced lethality in a p53-dependent manner. Most importantly, Rbm38 deficiency markedly decreases the tumor penetrance in mice heterozygous for p53 via enhanced p53 expression. Interestingly, we found that Rbm38 deficiency shortens the life span of, and promotes lymphomagenesis in, mice deficient in p53. These results provide genetic evidence that Rbm38 is necessary for normal hematopoiesis and for suppressing accelerated aging and tumorigenesis. Thus, the p53-Rbm38 axis might be explored for extending longevity and for tumor suppression. PMID:25512531

  13. Multi-Directional Sprinting and Acceleration Phase in Basketball and Handball Players Aged 14 and 15 Years.

    PubMed

    Popowczak, Marek; Rokita, Andrzej; Struzik, Artur; Cichy, Ireneusz; Dudkowski, Andrzej; Chmura, Paweł

    2016-10-01

    An important role in handball and basketball is played by ability to accelerate and ability to repeat multiple sprints. The aim of the study was to assess level of ability in multi-directional sprinting and running time over the first 5 m of the 30 m sprint in 93 basketball and handball players (46 boys and 47 girls) aged 14 to 15 years. The attempts were also made to find the relationships between the time of a 5-m run to evaluate initial acceleration phase and multi-directional sprinting evaluated using Five-Time Shuttle Run To Gates Test Statistical analysis revealed no important differences in times of 5-m runs and times of multi-directional sprinting between groups with different ages, genders, and sports specialties. Furthermore, no significant correlations were found based on Spearman's rank correlation coefficient between times of 5-m run and multi-directional sprinting in the most of subgroups studied. PMID:27565172

  14. In silico analysis of gene expression profiles in the olfactory mucosae of aging senescence-accelerated mice.

    PubMed

    Getchell, Thomas V; Peng, Xuejun; Green, C Paul; Stromberg, Arnold J; Chen, Kuey-Chu; Mattson, Mark P; Getchell, Marilyn L

    2004-08-01

    We utilized high-density Affymetrix oligonucleotide arrays to investigate gene expression in the olfactory mucosae of near age-matched aging senescence-accelerated mice (SAM). The senescence-prone (SAMP) strain has a significantly shorter lifespan than does the senescence-resistant (SAMR) strain. To analyze our data, we applied biostatistical methods that included a correlation analysis to evaluate sources of methodologic and biological variability; a two-sided t-test to identify a subpopulation of Present genes with a biologically relevant P-value <0.05; and a false discovery rate (FDR) analysis adjusted to a stringent 5% level that yielded 127 genes with a P-value of <0.001 that were differentially regulated in near age-matched SAMPs (SAMP-Os; 13.75 months) compared to SAMRs (SAMR-Os, 12.5 months). Volcano plots related the variability in the mean hybridization signals as determined by the two-sided t-test to fold changes in gene expression. The genes were categorized into the six functional groups used previously in gene profiling experiments to identify candidate genes that may be relevant for senescence at the genomic and cellular levels in the aging mouse brain (Lee et al. [2000] Nat Genet 25:294-297) and in the olfactory mucosa (Getchell et al. [2003] Ageing Res Rev 2:211-243), which serves several functions that include chemosensory detection, immune barrier function, xenobiotic metabolism, and neurogenesis. Because SAMR-Os and SAMP-Os have substantially different median lifespans, we related the rate constant alpha in the Gompertz equation on aging to intrinsic as opposed to environmental mechanisms of senescence based on our analysis of genes modulated during aging in the olfactory mucosa. PMID:15248299

  15. Accelerated aging studies of UHMWPE. I. Effect of resin, processing, and radiation environment on resistance to mechanical degradation.

    PubMed

    Edidin, A A; Herr, M P; Villarraga, M L; Muth, J; Yau, S S; Kurtz, S M

    2002-08-01

    The resin and processing route have been identified as potential variables influencing the mechanical behavior, and hence the clinical performance, of ultra-high molecular weight polyethylene (UHMWPE) orthopedic components. Researchers have reported that components fabricated from 1900 resin may oxidize to a lesser extent than components fabricated from GUR resin during shelf aging after gamma sterilization in air. Conflicting reports on the oxidation resistance for 1900 raise the question of whether resin or manufacturing method, or an interaction between resin and manufacturing method, influences the mechanical behavior of UHMWPE. We conducted a series of accelerated aging studies (no aging, aging in oxygen or in nitrogen) to systematically examine the influence of resin (GUR or 1900), manufacturing method (bulk compression molding or extrusion), and sterilization method (none, in air, or in nitrogen) on the mechanical behavior of UHMWPE. The small punch testing technique was used to evaluate the mechanical behavior of the materials, and Fourier transform infrared spectroscopy was used to characterize the oxidation in selected samples. Our study showed that the sterilization environment, aging condition, and specimen location (surface or subsurface) significantly affected the mechanical behavior of UHMWPE. Each of the three polyethylenes evaluated seem to degrade according to a similar pathway after artificial aging in oxygen and gamma irradiation in air. The initial ability of the materials to exhibit post-yield strain hardening was significantly compromised by degradation. In general, there were only minor differences in the aging behavior of molded and extruded GUR 1050, whereas the molded 1900 material seemed to degrade slightly faster than either of the 1050 materials.

  16. Accelerating aging of zirconia femoral head implants: change of surface structure and mechanical properties.

    PubMed

    Chowdhury, S; Vohra, Yogesh K; Lemons, Jack E; Ueno, Masaru; Ikeda, Junji

    2007-05-01

    Recently, alternations of zirconia ceramic femoral heads of total hip prostheses during in vivo conditions have caused concern in the medical disciplines regarding phase transformation of zirconia prosthetic components. In this paper, we have investigated the mechanical and structural properties of different laboratory aged zirconia femoral heads and correlated changes in mechanical properties with the phase compositions of the sample. From laser microscope observation, cross-sectional Scanning electron microscopy imaging, and X-ray diffraction analysis on the surface of the zirconia femoral heads, we found monoclinic to tetragonal phase transformation in zirconia prostheses over time during the aging process in the laboratory. Mechanical properties, mainly hardness (H) and Young's modulus (E) values, were measured by nanoindentation technique on the surface of these implants. The results showed that both H and E values decreased with increased monoclinic phase in zirconia, thus confirming a phase transformation over time during aging.

  17. Influence of artificially accelerated ageing on the adhesive joint of plasma treated polymer materials

    NASA Astrophysics Data System (ADS)

    Lehocký, M.; Lapčik, L.; Dlabaja, R.; Rachünek, L.; Stoch, J.

    2004-03-01

    An influence of simulated ageing on the adhesive joint of plasma treated polyethylene (PE) and polypropylene (PP) was tested. Plasma surface treatment was performed in the rf-plasma reactor operating at 13,56 MHz. The simulated ageing of prepared specimens for following tensile testing was carried out under conditions given by Volkswagen standard P-VW 1200. Temperature of ageing was regularly oscillating between -40°C and 80°C (relative humidity 80%) for required time. The mechanical tensile properties of adhesive joint were measured according to the standard ISO 527. Surface analysis of treated polymer substrates was characterized by XPS measurement. The observation of surface structure and morphology was obtained using SEM. We used convenient cyanoacrylate adhesive Loctite E 406 for PE and PP joints. Tested adhesive joints were prepared in compliance with the standard ISO 4587.

  18. Physical properties of three maxillofacial materials as a function of accelerated aging.

    PubMed

    Dootz, E R; Koran, A; Craig, R G

    1994-04-01

    This study compares the tensile strength, elongation, Shore-A hardness, and tear resistance of three silicone maxillofacial materials before and after aging to provide comparative data for evaluation of new or experimental elastomers. The materials evaluated were MDX-4-4210, Factor II (A-2186), and Cosmesil. Tests were conducted 24 hours after specimen preparation and were repeated after aging for 900 hours in a Weather-Ometer device. Five samples were made for each material under all test conditions. After testing, mean values were calculated for all materials under all test conditions and were compared by two-way analysis of variance and Tukey intervals at p < or = 0.05.

  19. Exposure to radiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Carey, A.; Rabin, B. M.; Joseph, J. A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles), produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism; oxidative stress damage to the central nervous system caused by an increased release of reactive oxygen species is likely responsible for the deficits seen in aging and following irradiation. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a "map" provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by NASA Grants NAG9-1190 and NAG9-1529

  20. Age-related trends in gene expression in the chemosensory-nasal mucosae of senescence-accelerated mice.

    PubMed

    Getchell, Thomas V; Peng, Xuejun; Stromberg, Arnold J; Chen, Kuey-Chu; Paul Green, C; Subhedar, Nishikant K; Shah, Dharmen S; Mattson, Mark P; Getchell, Marilyn L

    2003-04-01

    We have utilized high-density GeneChip oligonucleotide arrays to investigate the use of the senescence-accelerated mouse (SAM) as a biogerontological resource to identify patterns of gene expression in the chemosensory-nasal mucosa. Gene profiling in chronologically young and old mice of the senescence-resistant (SAMR) and senescence-prone (SAMP) strains revealed 133 known genes that were modulated by a three-fold or greater change either in one strain or the other or in both strains during aging. We also identified known genes in our study which based on their encoded proteins were identified as aging-related genes in the aging neocortex and cerebellum of mice as reported by Lee et al. (2000) [Nat. Genet. 25 (2000) 294]. Changes in gene profiles for chemosensory-related genes including olfactory and vomeronasal receptors, sensory transduction-associated proteins, and odor and pheromone transport molecules in the young SAMR and SAMP were compared with age-matched C57BL/6J mice. An analysis of known gene expression profiles suggests that changes in the expression of immune factor genes and genes associated with cell cycle progression and cell death were particularly prominent in the old SAM strains. A preliminary cellular validation study supported the dysregulation of cell cycle-related genes in the old SAM strains. The results of our initial study indicated that the use of the SAM models of aging could provide substantive information leading to a more fundamental understanding of the aging process in the chemosensory-nasal mucosa at the genomic, molecular, and cellular levels. PMID:12605961

  1. Target disruption of ribosomal protein pNO40 accelerates aging and impairs osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Lin, Yen-Ming; Wu, Chih-Ching; Chang, Yu-Chen; Wu, Chu-Han; Ho, Hsien Li; Hu, Ji Wei; Chang, Ren-Chi; Wang, Chung-Ta; Ouyang, Pin

    2016-01-22

    pNO40/PS1D, a novel nucleolar protein, has been characterized as a core protein of eukaryotic 60S ribosome and at least two splicing forms of pNO40 mRNAs with alternative starting sites have been identified. Through production of knockout (ko) mice with either exon 2 (△E2), exon 4 (△E4) or △E2+E4 targeted disruption we identified a cryptic splicing product occurring in the ko tissues examined which in general cannot be observed in regular RT-PCR detection of wild-type (wt) animals. Among ko animals, △E4 null embryos exhibited prominent senescence-associated β-galactosidase (SA-β-gal) staining, a marker for senescent cells, in notochord, forelimbs and heart while bone marrow-derived mesenchymal stem cells (MSCs) from △E4 null mice developed accelerated aging and osteogenic differentiation defects compared to those from wt and other isoform mutant mice. Examination of the causal relationship between pNO40 deficiency and MSC-accelerated aging revealed △E4 null disruption in MSCs elicits high levels of ROS and elevated expression levels of p16 and Rb but not p53. Further analysis with iTraq identified CYP1B1, a component of the cytochrome p450 system, as a potential molecule mediating ROS generation in pNO40 deficient MSCs. We herein established a mouse model of MSC aging through pNO40-targeted depletion and demonstrated the effects of loss of pNO40 on bone homeostasis.

  2. Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saxena, Abhinav; Wysocki, Philip; Saha, Sankalita; Goebel, Kai

    2010-01-01

    This paper presents research results dealing with power MOSFETs (metal oxide semiconductor field effect transistor) within the prognostics and health management of electronics. Experimental results are presented for the identification of the on-resistance as a precursor to failure of devices with die-attach degradation as a failure mechanism. Devices are aged under power cycling in order to trigger die-attach damage. In situ measurements of key electrical and thermal parameters are collected throughout the aging process and further used for analysis and computation of the on-resistance parameter. Experimental results show that the devices experience die-attach damage and that the on-resistance captures the degradation process in such a way that it could be used for the development of prognostics algorithms (data-driven or physics-based).

  3. Inflammatory insult during pregnancy accelerates age-related behavioral and neurobiochemical changes in CD-1 mice.

    PubMed

    Li, Xue-Yan; Wang, Fang; Chen, Gui-Hai; Li, Xue-Wei; Yang, Qi-Gang; Cao, Lei; Yan, Wen-Wen

    2016-06-01

    Data shows that inflammation during pregnancy significantly exerts a long-term influence on offspring, such as increasing the risk of adult cognition decline in animals. However, it is unclear whether gestational inflammation affects the neurobehavioral and neurobiochemical outcomes in the mother-self during aging. In this study, pregnant CD-1 mice intraperitoneally received lipopolysaccharide (LPS) in two doses (25 and 50 g/kg, respectively) or normal saline daily during gestational days 15-17. At the age of 15 months, a battery of behavioral tasks was employed to evaluate their species-typical behaviors, sensorimotor ability, anxiety levels, and spatial learning and memory abilities. An immunohistochemical method was utilized preliminarily to detect neurobiochemical indicators consisting of amyloid-β, phosphorylated tau, presynaptic proteins synaptotagmin-1 and syntaxin-1, glial fibrillary acidic protein (GFAP), and histone-4 acetylation on the K8 site (H4K8ac). The behavioral results showed that LPS exposure during pregnancy exacerbated a decline in 15-month-old CD-1 mice's abilities to nest, their sensorimotor and spatial learning and memory capabilities, and increased their anxiety levels. The neurobiochemical results indicated that gestational LPS exposure also intensified age-related hippocampal changes, including increased amyloid-β42, phosphorylated tau, synaptotagmin-1 and GFAP, and decreased syntaxin-1 and H4K8ac. Our results suggested that the inflammatory insult during pregnancy could be an important risk factor for the development of Alzheimer's disease, and the H4K8 acetylation might play an important role in the underlying mechanism. This study offers a perspective for improving strategies that support healthy development and successful aging.

  4. Use of organic solderability preservatives on solderability retention of copper after accelerated aging

    SciTech Connect

    Hernandez, C.L.; Sorensen, N.R.; Lucero, S.J.

    1997-02-01

    Organic solderability preservatives (OSP`s) have been used by the electronics industry for some time to maintain the solderability of circuit boards and components. Since solderability affects both manufacturing efficiency and product reliability, there is significant interest in maintaining good solder wettability. There is often a considerable time interval between the initial fabrication of a circuit board or component and its use at the assembly level. Parts are often stored under a variety of conditions, in many cases not well controlled. Solder wettability can deteriorate during storage, especially in harsh environments. This paper describes the ongoing efforts at Sandia National Laboratories to quantify solder watability on bare and aged copper surfaces. Benzotriazole and imidazole were applied to electronic grade copper to retard aging effects on solderability. The coupons were introduced into Sandia`s Facility for Atmospheric Corrosion Testing (FACT) to simulate aging in a typical indoor industrial environment. H{sub 2}S, NO{sub 2} and Cl{sub 2} mixed gas was introduced into the test cell and maintained at 35{degrees}C and 70% relative humidity for test periods of one day to two weeks. The OSP`s generally performed better than bare Cu, although solderability diminished with increasing exposure times.

  5. Phenotype and Age Differences in Blood Gas Characteristics, Electrolytes, Hemoglobin, Plasma Glucose and Cortisol in Female Squirrel Monkeys

    NASA Technical Reports Server (NTRS)

    Brizzee, K. R.; Ordy, J. M.; Dunlap, W. P.; Kendrick, R.; Wengenack, T. M.

    1988-01-01

    Due to its small size, lower cost, tractable nature, successful breeding in captivity and its status near the middle of the primate phylogenetic scale, the squirrel monkey has become an attractive primate model for basic and biomedical research. Although the squirrel monkey now is being used more extensively in many laboratories with diverse interests, only fragmentary reports have been published regarding basic physiological characteristics, or baseline blood reference values of different phenotypes, particularly blood gases, hematology and serum chemical constituents. It is becoming recognized increasingly that these baseline blood reference values are important not only in the care and maintenance of the squirrel monkey, but are critical for assessing normal physiological status, as well as the effects of various experimental treatments. The purpose of this study was to compare differences in blood gases, electrolytes, hematology, blood glucose and cortisol among young and old Bolivian (Roman type) and Colombian (Gothic type) phenotypes of the squirrel monkey.

  6. A compound heterozygote SLC26A2 mutation resulting in robin sequence, mild limbs shortness, accelerated carpal ossification, and multiple epiphysial dysplasia in two Brazilian sisters. A new intermediate phenotype between diastrophic dysplasia and recessive multiple epiphyseal dysplasia.

    PubMed

    Zechi-Ceide, Roseli Maria; Moura, Priscila Padilha; Raskin, Salmo; Richieri-Costa, Antonio; Guion-Almeida, Maria Leine

    2013-08-01

    Mutations in solute carrier family 26 (sulfate transporter), member 2 (SLC26A2) gene result in a spectrum of autosomal recessive chondrodysplasias that range from the mildest recessive form of multiple epiphysial dysplasia (rMED) through the most common diastrophic dysplasia (DTD) to lethal atelosteogenesis type II and achondrogenesis IB. The clinical variability has been ascribed to quantitative effect of mutations of the sulfate transporter activity. Here we describe two Brazilian sisters, born to healthy and non consanguineous parents, with Robin sequence, mild shortening of upper and lower limbs, brachymetacarpalia/tarsalia, additional and accelerated carpal ossification, marked genu valgum, and multiple epiphysial dysplasia. This phenotype was intermediate between DTD and rMED, and both girls have a compound heterozygous mutations for the SLC26A2, a Finnish founder mutation (c.-26 + 2T>C), and R279W. This combination of mutations has been observed in individuals with different phenotypes, including DTD, DTD variant, and rMED. The distinct phenotype of our cases reinforces the hypothesis that other factors may be influencing the phenotype as previously suggested. PMID:23840040

  7. Parkinson's disease accelerates age-related decline in haptic perception by altering somatosensory integration.

    PubMed

    Konczak, Jürgen; Sciutti, Alessandra; Avanzino, Laura; Squeri, Valentina; Gori, Monica; Masia, Lorenzo; Abbruzzese, Giovanni; Sandini, Giulio

    2012-11-01

    This study investigated how Parkinson's disease alters haptic perception and the underlying mechanisms of somatosensory and sensorimotor integration. Changes in haptic sensitivity and acuity (the abilities to detect and to discriminate between haptic stimuli) due to Parkinson's disease were systematically quantified and contrasted to the performance of healthy older and young adults. Using a robotic force environment, virtual contours of various curvatures were presented. Participants explored these contours with their hands and indicated verbally whether they could detect or discriminate between two contours. To understand what aspects of sensory or sensorimotor integration are altered by ageing and disease, we manipulated the sensorimotor aspect of the task: the robot either guided the hand along the contour or the participant actively moved the hand. Active exploration relies on multimodal sensory and sensorimotor integration, while passive guidance only requires sensory integration of proprioceptive and tactile information. The main findings of the study are as follows: first, a decline in haptic precision can already be observed in adults before the age of 70 years. Parkinson's disease may lead to an additional decrease in haptic sensitivity well beyond the levels typically seen in middle-aged and older adults. Second, the haptic deficit in Parkinson's disease is general in nature. It becomes manifest as a decrease in sensitivity and acuity (i.e. a smaller perceivable range and a diminished ability to discriminate between two perceivable haptic stimuli). Third, thresholds during both active and passive exploration are elevated, but not significantly different from each other. That is, active exploration did not enhance the haptic deficit when compared to passive hand motion. This implies that Parkinson's disease affects early stages of somatosensory integration that ultimately have an impact on processes of sensorimotor integration. Our results suggest that

  8. Deterioration of the Medial Olivocochlear Efferent System Accelerates Age-Related Hearing Loss in Pax2-Isl1 Transgenic Mice.

    PubMed

    Chumak, Tetyana; Bohuslavova, Romana; Macova, Iva; Dodd, Nicole; Buckiova, Daniela; Fritzsch, Bernd; Syka, Josef; Pavlinkova, Gabriela

    2016-05-01

    The development, maturation, and maintenance of the inner ear are governed by temporal and spatial expression cascades of transcription factors that form a gene regulatory network. ISLET1 (ISL1) may be one of the major players in this cascade, and in order to study its role in the regulation of inner ear development, we produced a transgenic mouse overexpressing Isl1 under the Pax2 promoter. Pax2-regulated ISL1 overexpression increases the embryonic ISL1(+) domain and induces accelerated nerve fiber extension and branching in E12.5 embryos. Despite these gains in early development, the overexpression of ISL1 impairs the maintenance and function of hair cells of the organ of Corti. Mutant mice exhibit hyperactivity, circling behavior, and progressive age-related decline in hearing functions, which is reflected in reduced otoacoustic emissions (DPOAEs) followed by elevated hearing thresholds. The reduction of the amplitude of DPOAEs in transgenic mice was first detected at 1 month of age. By 6-9 months of age, DPOAEs completely disappeared, suggesting a functional inefficiency of outer hair cells (OHCs). The timing of DPOAE reduction coincides with the onset of the deterioration of cochlear efferent terminals. In contrast to these effects on efferents, we only found a moderate loss of OHCs and spiral ganglion neurons. For the first time, our results show that the genetic alteration of the medial olivocochlear (MOC) efferent system induces an early onset of age-related hearing loss. Thus, the neurodegeneration of the MOC system could be a contributing factor to the pathology of age-related hearing loss.

  9. Mevastatin accelerates loss of synaptic proteins and neurite degeneration in aging cortical neurons in a heme-independent manner.

    PubMed

    Kannan, Madhuvanthi; Steinert, Joern R; Forsythe, Ian D; Smith, Andrew G; Chernova, Tatyana

    2010-09-01

    The therapeutic use of statins in reducing cholesterol requires careful assessment of potential neuroprotective and/or neurotoxic mechanisms. Chronic treatment with mevastatin (MV) exerts effects on cortical neuron morphology, protein expression and synaptic function in primary culture. MV impaired expression of synaptic proteins, reduced N-methyl-d-aspartate receptor (NMDAR) currents and accelerated neurodegeneration associated with aging. The down-regulating effect of MV on neuronal protein expression was additive with aging-associated decline in culture. Induction of Heme oxygenase-1 (HMOX1) by MV was superimposed on age-related up-regulation. Comparison of MV-treated and heme-deficient neurons showed that inhibition of heme synthesis (by succinyl acetone) had similar damaging effect on neurite integrity and MNDAR expression and function but not on expression of the receptor for neuropeptide Y1 (NPY1R). Replacement of heme in heme-deficient cultures restored protein expression but had no effect in those cultures co-treated with MV. Despite the dramatic induction of HMOX1, intracellular heme remained sufficient in MV-treated cultures, consistent with a heme-independent mechanism of MV-induced neurotoxicity and this was confirmed by analysing neurons with lentiviral over-expression of HMOX1. We conclude that MV exerts a neurotoxic effect in cultured neurons in a heme-independent manner.

  10. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries.

    PubMed

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-01-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries. PMID:25907411

  11. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-04-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries.

  12. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries

    PubMed Central

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-01-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries. PMID:25907411

  13. Color and opacity of composites protected with surface sealants and submitted to artificial accelerated aging

    PubMed Central

    Aguilar, Fabiano Gamero; Roberti Garcia, Lucas da Fonseca; Cruvinel, Diogo Rodrigues; Sousa, Ana Beatriz Silva; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2012-01-01

    Objectives: To evaluate the color similarity, stability and opacity of composites (TPH, Charisma, and Concept, shade A2) protected with surface sealants (Fortify Plus and Biscover) and cyanoacrylate (Super Bonder). Methods: Forty specimens of each composite were made and separated into 4 groups (n=10) according to the surface protection: GI - without sealant; GII - cyanoacrylate; GIII - Fortify Plus; GIV - Biscover. Color and opacity readings were taken before and after Artificial Acelerated Aging (AAA) and the values obtained for color stability were submitted to statistical analysis by 2-way ANOVA and Bonferroni’s test (P<.05). The values acquired for color similarity were submitted to 1-way ANOVA and Tukey’s test (P<.05). The specimen sufaces were compared before and after AAA using Scanning Electronic Microscopy (SEM). Results: Studied composites did not present the same values for the coordinates L*, a* and b * before AAA, indicating that there was no color similarity among them. All composites presented color alteration after AAA with clinically unacceptable values. Protected groups presented lower opacity variation after AAA, in comparison with the control goup. SEM evaluation demonstrated that AAA increased the surface irregularities in all of the studied groups. Conclusion: Surface sealants were not effective in maintaining composite color, but were able to maintain opacity. PMID:22229004

  14. Mitochondrial superoxide dismutase deficiency accelerates chronological aging in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Ogata, Toshiya; Senoo, Takanori; Kawano, Shinji; Ikeda, Shogo

    2016-01-01

    A mitochondrial superoxide dismutase (SOD2) is the first line of antioxidant defense against mitochondrial superoxide. Even though the involvement of SOD2 in lifespan has been studied extensively in several organisms, characterization of the aging process has not been performed for the sod2 mutant (sod2Δ) of a prominent model Schizosaccharomyces pombe. In this study, we measured the chronological lifespan of sod2Δ cells by their ability to survive in long-term culture. SOD2 deficiency drastically decreased cell viability in the stationary phase. The mutation frequency of nuclear DNA in sod2Δ was elevated in the stationary phase, and cellular proteins and nuclear DNA were extensively degraded, concurrent with cell death. The sod2 gene in wild-type cells could be induced by an increase in endogenous oxidative stresses, after which, SOD2 activity was substantially elevated during the stationary phase. Culture in a lower glucose concentration (calorie restriction) prominently extended the sod2Δ lifespan. Therefore, S. pombe SOD2 plays a critical role in longevity through its upregulation in the non-dividing phase.

  15. Linseed oil presents different patterns of oxidation in real-time and accelerated aging assays.

    PubMed

    Douny, Caroline; Razanakolona, Rina; Ribonnet, Laurence; Milet, Jérôme; Baeten, Vincent; Rogez, Hervé; Scippo, Marie-Louise; Larondelle, Yvan

    2016-10-01

    This study aimed at verifying if the hypothesis that one day at 60°C is equivalent to one month at 20°C could be confirmed during linseed oil aging for 6months at 20°C and 6days at 60°C using the "Schaal oven stability test". Tests were conducted with linseed oil supplemented or not with myricetin or butyl-hydroxytoluene as antioxidants. Oxidation was evaluated with the peroxide and p-anisidine values, as well as the content in conjugated dienes and aldehydes. All four indicators of oxidation showed very different kinetic behaviors at 20 and 60°C. The hypothesis is thus not verified for linseed oil, supplemented or not with antioxidant. In the control oil, the conjugated dienes and the peroxide value observed were respectively of 41.8±0.8 Absorbance Unit (AU)/g oil and 254.3±5.8meq.O2/kg oil after 6months at 20°C. These values were of 18.2±1.3AU/g oil and 65.2±20.3meq.O2/kg after 6days at 60°C.

  16. Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Rimmelé, Pauline; Bigarella, Carolina L.; Liang, Raymond; Izac, Brigitte; Dieguez-Gonzalez, Rebeca; Barbet, Gaetan; Donovan, Michael; Brugnara, Carlo; Blander, Julie M.; Sinclair, David A.; Ghaffari, Saghi

    2014-01-01

    Summary Aging hematopoietic stem cells (HSCs) exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT)1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging. PMID:25068121

  17. Effect of weaning age on hair sheep lamb and ewe production traits in an accelerated lambing system in the tropics.

    PubMed

    Godfrey, R W; Weis, A J

    2016-03-01

    This study was designed to evaluate the impact of weaning age on lamb and ewe productivity in an accelerated lambing system. St. Croix White (STX) and Dorper × St. Croix White (DRPX) lambs were assigned at birth based on breed, gender, and litter size to be weaned at 63 (Early-1; 106 lambs and 68 ewes) or 90 d of age (Late-1; 99 lambs and 60 ewes) in Exp.1 or at 63 (Early-2; 77 lambs and 57 ewes) or 120 d of age (Late-2; 75 lambs and 56 ewes) in Exp. 2. After weaning, lambs were weighed weekly and fed a concentrate ration (2% BW·lamb·d) while grazing guinea grass pastures. In Exp. 1, weaning weight was greater ( < 0.0001) for Late-1 lambs than for Early-1 lambs (14.6 ± 0.3 vs. 11.0 ± 0.3 kg, respectively) and greater ( < 0.008) for DRPX lambs than for STX lambs (13.9 ± 0.4 vs. 11.5 ± 0.4 kg, respectively). Litter weaning weight was greater ( < 0.004) for Late-1 ewes than for Early-1 ewes (20.9 ± 0.8 vs. 17.4 ± 0.8 kg, respectively). Ewe efficiency ([ewe BW at weaning/litter weaning weight] × 100) was greater ( < 0.004) for Late-1 ewes than for Early-1 ewes (50.7 ± 1.9 vs. 42.3 ± 1.8%, respectively). Lamb weight gain between 63 and 90 d of age was lower ( < 0.03) for Early-1 lambs than for Late-1 lambs (2.7 ± 0.2 vs. 3.6 ± 0.3 kg, respectively). In Exp. 2, weaning weight was greater ( < 0.0001) for Late-2 lambs than for Early-2 lambs (18.7 ± 0.4 vs. 11.8 ± 0.4 kg, respectively) and greater ( < 0.008) for DRPX lambs than for STX lambs (16.9 ± 0.5 vs. 13.3 ± 0.5 kg, respectively). Litter weaning weight was greater ( < 0.0001) in Late-2 ewes than in Early-2 ewes (27.2 ± 1.0 vs. 17.5 ± 0.9 kg, respectively). Ewe efficiency was greater ( < 0.0001) for Late-2 ewes than for Early-2 ewes (68.1 ± 2.2 vs. 41.9 ± 2.0%, respectively). Lamb weight gain between 63 and 120 d of age was not different ( > 0.06) between Early-2 and Late-2 lambs (5.1 ± 0.2 vs. 5.6 ± 0.3 kg, respectively). In Exp. 1 and 2, ewe BW at breeding and lambing and weaning and lambing

  18. Cigarette Smoking Accelerated Brain Aging and Induced Pre-Alzheimer-Like Neuropathology in Rats

    PubMed Central

    Ho, Yuen-Shan; Yang, Xifei; Yeung, Sze-Chun; Chiu, Kin; Lau, Chi-Fai; Tsang, Andrea Wing-Ting; Mak, Judith Choi-Wo; Chang, Raymond Chuen-Chung

    2012-01-01

    Cigarette smoking has been proposed as a major risk factor for aging-related pathological changes and Alzheimer's disease (AD). To date, little is known for how smoking can predispose our brains to dementia or cognitive impairment. This study aimed to investigate the cigarette smoke-induced pathological changes in brains. Male Sprague-Dawley (SD) rats were exposed to either sham air or 4% cigarette smoke 1 hour per day for 8 weeks in a ventilated smoking chamber to mimic the situation of chronic passive smoking. We found that the levels of oxidative stress were significantly increased in the hippocampus of the smoking group. Smoking also affected the synapse through reducing the expression of pre-synaptic proteins including synaptophysin and synapsin-1, while there were no changes in the expression of postsynaptic protein PSD95. Decreased levels of acetylated-tubulin and increased levels of phosphorylated-tau at 231, 205 and 404 epitopes were also observed in the hippocampus of the smoking rats. These results suggested that axonal transport machinery might be impaired, and the stability of cytoskeleton might be affected by smoking. Moreover, smoking affected amyloid precursor protein (APP) processing by increasing the production of sAPPβ and accumulation of β–amyloid peptide in the CA3 and dentate gyrus region. In summary, our data suggested that chronic cigarette smoking could induce synaptic changes and other neuropathological alterations. These changes might serve as evidence of early phases of neurodegeneration and may explain why smoking can predispose brains to AD and dementia. PMID:22606286

  19. Age effect on fatigue-induced limb acceleration as a consequence of high-level sustained submaximal contraction.

    PubMed

    Huang, Chien-Ting; Huang, Chien-Chun; Young, Ming-Shing; Hwang, Ing-Shiou

    2007-08-01

    In reference to electromyographic measurement, the study was conducted to reassess differences in the behavior of fatigue-related neuromuscular function between young and elderly humans with limb acceleration (LA). Fourteen young and fourteen elderly subjects performed sustained index abduction at 75% of their maximal voluntary contractions (MVC) until task failure. Measures of neuromuscular function, including temporal/spectral features of muscle activity of the first dorsal interosseous (FDI) and LA of the index and hand, were monitored. The results showed a manifest fatigue-induced increase in LA of the index in the elderly group, but not in the young group. In contrast, only the young group developed a significant increase in amplitude of the electromyography (EMG) until task failure. Spectral analyses of LA in the index reflected marked age-dependent reorganization following muscle fatigue, with a greater reduction of relative spectral amplitude of LA in the range of 20-40 Hz, but a lesser reduction in coherence between EMG and LA in the elderly group. In line with fatigue-associated restructuring of LA, the mechanical coupling of the metacarpophalangeal joint was more severely undermined in the elderly group than in the young group. The present study manifested an age-related difference in the relative contributions of neural versus mechanical factors to muscle fatigue. Subsequent to a high-level sustained submaximal isometric contraction, a predominant mechanical failure of the musculotendon complex in the elderly was featured with LA, whereas EMG measurement characterized prevailing impairment of neuromuscular propagation in the young.

  20. Prognostics of Power Mosfets Under Thermal Stress Accelerated Aging Using Data-Driven and Model-Based Methodologies

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Saxena, Abhinav; Saha, Sankalita; Goebel, Kai F.

    2011-01-01

    An approach for predicting remaining useful life of power MOSFETs (metal oxide field effect transistor) devices has been developed. Power MOSFETs are semiconductor switching devices that are instrumental in electronics equipment such as those used in operation and control of modern aircraft and spacecraft. The MOSFETs examined here were aged under thermal overstress in a controlled experiment and continuous performance degradation data were collected from the accelerated aging experiment. Dieattach degradation was determined to be the primary failure mode. The collected run-to-failure data were analyzed and it was revealed that ON-state resistance increased as die-attach degraded under high thermal stresses. Results from finite element simulation analysis support the observations from the experimental data. Data-driven and model based prognostics algorithms were investigated where ON-state resistance was used as the primary precursor of failure feature. A Gaussian process regression algorithm was explored as an example for a data-driven technique and an extended Kalman filter and a particle filter were used as examples for model-based techniques. Both methods were able to provide valid results. Prognostic performance metrics were employed to evaluate and compare the algorithms.

  1. Models of Metal-poor Stars with Gravitational Settling and Radiative Accelerations. II. The Age of the Oldest Stars

    NASA Astrophysics Data System (ADS)

    VandenBerg, Don A.; Richard, O.; Michaud, G.; Richer, J.

    2002-05-01

    Isochrones for ages between 12 and 18 Gyr have been derived from the evolutionary tracks presented in Paper I (Richard et al.) for masses from 0.5 to 1.0 Msolar and initial chemical abundances corresponding to (1) Y=0.2352, Z=1.69×10-4 ([Fe/H]=-2.31,[α/Fe]=0.3) and (2) Y=0.2370, Z=1.69×10-3 ([Fe/H=-1.31,[α/Fe]=0.3). These are the first models for Population II stars in which both gravitational settling and radiative accelerations have been taken into account. Allowance for these diffusive processes leads to a 10%-12% reduction in age at a given turnoff luminosity. However, in order for the diffusive models to satisfy the constraints from Li and Fe abundance data (see Paper I) and to reproduce the observed morphologies of globular cluster (GC) color-magnitude diagrams (CMDs) in a straightforward way, extra mixing just below the boundary of the convective envelope seems to be necessary. Indeed, when additional turbulent mixing is invoked, the resultant models are able to satisfy all of these constraints, as well as those provided by the CMDs of local subdwarfs, rather well. Moreover, they imply an age near 13.5 Gyr for M92, which is one of the most metal-deficient (and presumably one of the oldest) of the Galaxy's GCs, if the field subgiant HD 140283 is used to derive the cluster distance. Comparisons of field subdwarfs and subgiants with a recently published fiducial for M5 suggests that the cluster has [Fe/H]<~-1.4, in conflict with some estimates based on high-resolution spectroscopy, if the metallicities of the field stars are to be trusted. In addition, an age of ~11.5 Gyr is found for M5, irrespective of whether diffusive or nondiffusive isochrones are employed in the analysis. The implications of our results for the extragalactic distance scale and for the Hubble constant are briefly discussed in the context of the presently favored ΩM~0.35, ΩΛ~0.65 cosmological model.

  2. Impact of age, sex and CMV-infection on peripheral T cell phenotypes: results from the Berlin BASE-II Study.

    PubMed

    Di Benedetto, Svetlana; Derhovanessian, Evelyna; Steinhagen-Thiessen, Elisabeth; Goldeck, David; Müller, Ludmila; Pawelec, Graham

    2015-10-01

    Advancing age is characterized by functional and phenotypic alterations in the distribution of circulating T-cell subsets, some of which are exacerbated by a latent infection with the persistent herpesvirus, cytomegalovirus (CMV). The influence of age, sex and CMV-infection on T-cell subpopulations in the peripheral blood remains incompletely understood. Here, T cells from 157 participants of the Berlin Aging Study II (BASE-II) were characterized at 21-34 (n = 59) and 62-85 (n = 98) years of age. We found that the frequency of naïve CD8(+) T cells was significantly lower in the older group than in the young, and was different in men and women. Elderly men had a significantly lower proportion of naïve CD8(+) T cells than younger men, regardless of their CMV-status, but in older women, this was seen only in the CMV-seropositive group. Reciprocally, older men had a higher proportion of late-differentiated, potentially "senescent" CD57(+) T cells. Thus, T-cell senescence may be more pronounced in older men than women. Within the CD4(+) population, in the elderly of both sexes there was a significantly higher proportion of late-differentiated TEMRA cells (T effector memory cells re-expressing CD45RA), but these were present exclusively in CMV-positive subjects. Finally, for the first time, we examined the so-called TSCM cell (T-stem cell-like memory) subpopulations in both CD4(+) and CD8(+) subsets and found that neither CMV-seropositivity nor age or sex affected their frequencies. This study confirms significant cross-sectional age-associated differences of T-cell subset distribution in a representative German urban population and emphasizes the impact of both sex and CMV-infection on T-cell naïve and memory phenotypes, but unaffected frequencies of T-stem cell-like memory cells.

  3. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. I. Fluoropolymer binders

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1981-01-01

    The dynamic mechanical properties and molecular weight distribution of two polymer bonded explosives, LX-10-1 and PBX-9502, maintained at 23, 60, and 74/sup 0/C for 3 years were studied. LX-10-1 is 94.5% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane explosive bonded together with 5.5% Viton A fluoropolymer. PBX-9502 is 95% triaminotrinitrobenzene explosive bonded with 5% Kel-F-800 fluoropolymer. There are two mechanical relaxations in the LX-10-1 in the military temperature range. The relaxation at -10/sup 0/C is associated with the glass transition temperature of the Viton A binder. A second weak relaxation occurs at about 30/sup 0/C in all LX-10-1 samples tested. This relaxation is probably associated with small amounts of crystallinity in the binder although this has not been demonstrated. There is a slight increase in modulus of the LX-10-1 with accelerated aging temperature. Changes in the dynamic mechanical properties of PBX-9502 are ascribed to crystallization of the chlorotrifluoroethylene component of the Kel-F-800 binder. The molecular weight of the Viton A binder decreased slight with increasing aging temperature. Using the kinetics of random scission the activation energy for polymer degradation in the presence of the explosive was 1.19 kcal/mole. The Arrhenius preexponential term and activation energy predict an expected use-life in excess of 60 years for LX-10-1. The Kel-F-800 in PBX-9502 is also extremely stable.

  4. Endocrine and fluid metabolism in males and females of different ages after bedrest, acceleration and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Vernikos-Danellis, J.; Krauhs, J. M.; Sandler, H.

    1985-01-01

    Space shuttle flight simulations were conducted to determine the effects of weightlessness, lower body negative pressure (LBNP), and acceleration of fluid and electrolyte excretion and the hormones that control it. Measurements were made on male and female subjects of different ages before and after bedrest. After admission to a controlled environment, groups of 6 to 14 subjects in the age ranges 25 to 35, 35 to 45, 45 to 55 to 65 years were exposed to +3 G sub z for 15 minutes (G1) and to LBNP (LBNP1) on different days. On 3 days during this prebedrest period, no tests were conducted. Six days of bedrest followed, and the G sub z (G2) and LBNP (LBNP2) tests were run again. Hormones, electrolytes, and other parameters were measured in 24-hour urine pools throughout the experiment. During bedrest, cortisol and aldosterone excretion increased. Urine volume decreased, and specific gravity and osmolality increased. Urinary electrolytes were statistically unchanged from levels during the non-stress control period. During G2, cortisol increased significantly over its control and bedrest levels. Urine volume, sodium, and chloride were significantly lower; specific gravity and osmolality were higher during the control period or bedrest. The retention of fluids and electrolytes after +G sub z may at least partially explain decreased urine volume and increased osmolality observed during bedrest in this study. There were some who indicated that space flight would not affect the fluid and electrolyte metabolism of females or older males any more severely than it has affected that of male astronauts.

  5. High-fat diet intake accelerates aging, increases expression of Hsd11b1, and promotes lipid accumulation in liver of SAMP10 mouse.

    PubMed

    Honma, Taro; Shinohara, Nahoko; Ito, Junya; Kijima, Ryo; Sugawara, Soko; Arai, Tatsuya; Tsuduki, Tsuyoshi; Ikeda, Ikuo

    2012-04-01

    An understanding of the mechanisms of aging is important for prevention of age-related diseases. In this study, we examined age-dependent changes in lipid metabolism in the senescence-accelerated mouse (SAM)P10 fed a high-fat diet to investigate the effects of high-fat intake and aging. Tissue weights and biological parameters in plasma and liver were measured at 6 and 12 months old in SAMP10 mice fed a high-fat diet. These mice showed marked increases in liver triacylglycerol and plasma insulin levels with intake of a high-fat diet intake and aging. Lipid accumulation in hepatocytes and morphological aberrations and hypertrophy in pancreatic islets were also promoted by a high-fat diet and aging. To investigate the underlying mechanisms, the activities and mRNA levels for enzymes associated with lipid metabolism in liver were measured. The results indicated that the lipid metabolic system was activated by a high-fat diet and aging. Liver mRNA level for hydroxysteroid 11-beta dehydrogenase 1 (Hsd11b1), which exhibit age-dependent increases and promote insulin secretion, was also markedly increased. These results suggest that a high-fat diet accelerated aging in the liver of SAMP10 mice by increasing liver mRNA level for Hsd11b1, increasing insulin secretion, and promoting lipid accumulation in the liver.

  6. Menopause, Reproductive Life, Hormone Replacement Therapy, and Bone Phenotype at Age 60–64 Years: A British Birth Cohort

    PubMed Central

    Muthuri, S.; Cooper, R.; Moore, A.; Mackinnon, K.; Cooper, C.; Adams, J. E.; Hardy, R.; Ward, K. A.

    2016-01-01

    Context: Previous studies of menopausal age and length of reproductive life on bone are limited by retrospective reproductive histories, being cross-sectional, or lacking gold standard bone technologies or information on hormone replacement therapy (HRT) or surgical treatment. Objective: The objective of the study was to investigate age at menopause, length of reproductive life, and HRT use in relation to volumetric and areal bone mineral density (vBMD, aBMD), bone size, and strength in women aged 60–64 years. Design: This was a birth cohort study that followed up for 64 years with prospective measures of age at menarche and menopause and monthly HRT histories. Setting: The study was conducted in England, Scotland, and Wales. Participants: Participants included 848 women with a known type of menopause and bone measures at 60–64 years. Main Outcome Measures: Peripheral quantitative computed tomography measurements of the distal radius total and trabecular vBMD were measured. Diaphyseal radius total and medullary cross-sectional area, cortical vBMD, and polar strength strain index (SSI); dual-energy x-ray absorptiometry measurements of aBMD at the lumbar spine and total hip were also measured. Results: A 10-year increase in age at natural (but not surgical) menopause was associated with 8.2% (95% confidence interval [CI] 1.3%–15.1%, P = .02) greater trabecular vBMD and a 6.0% (95% CI 0.51%–11.5%, P = .03) greater total vBMD; findings were similar for length of reproductive life. A 10-year difference in HRT use was associated with a 6.0% (95% CI 2.6%–9.3%, P < .001) greater polar SSI and a 0.9% (95% CI 0.4%–1.5%, P = .001) greater cortical vBMD. These estimates changed little on adjustment. Estimates for aBMD were consistent with those for peripheral quantitative computed tomography. Conclusions: The positive effects on trabecular vBMD of later natural menopause and longer reproductive life persisted into early old age. HRT use was associated with greater

  7. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    PubMed

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness.

  8. Folate Acts in E. coli to Accelerate C. elegans Aging Independently of Bacterial Biosynthesis

    PubMed Central

    Virk, Bhupinder; Jia, Jie; Maynard, Claire A.; Raimundo, Adelaide; Lefebvre, Jolien; Richards, Shane A.; Chetina, Natalia; Liang, Yen; Helliwell, Noel; Cipinska, Marta; Weinkove, David

    2016-01-01

    Summary Folates are cofactors for biosynthetic enzymes in all eukaryotic and prokaryotic cells. Animals cannot synthesize folate and must acquire it from their diet or microbiota. Previously, we showed that inhibiting E. coli folate synthesis increases C. elegans lifespan. Here, we show that restriction or supplementation of C. elegans folate does not influence lifespan. Thus, folate is required in E. coli to shorten worm lifespan. Bacterial proliferation in the intestine has been proposed as a mechanism for the life-shortening influence of E. coli. However, we found no correlation between C. elegans survival and bacterial growth in a screen of 1,000+ E. coli deletion mutants. Nine mutants increased worm lifespan robustly, suggesting specific gene regulation is required for the life-shortening activity of E. coli. Disrupting the biosynthetic folate cycle did not increase lifespan. Thus, folate acts through a growth-independent route in E. coli to accelerate animal aging. PMID:26876180

  9. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    PubMed

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness. PMID:27007354

  10. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: a field-scale study.

    PubMed

    Chung, Jinwook; Kim, Seungjin; Baek, Seungcheon; Lee, Nam-Hoon; Park, Seongjun; Lee, Junghun; Lee, Heechang; Bae, Wookeun

    2015-03-21

    Leachate recirculation for rapid landfill stabilization can result in the accumulation of high-strength ammonium. An on-site sequencing batch reactor (SBR) was therefore, applied to oxidize the ammonium to nitrite, which was then recirculated to the landfill for denitrification to nitrogen gas. At relatively higher ammonium levels, nitrite accumulated well in the SBR; the nitrite was denitrified stably in the landfill, despite an insufficient biodegradable carbon source in the leachate. As the leachate was recirculated, the methane and carbon dioxide contents produced from the landfill fluctuated, implying that the organic acids and hydrogen produced in the acid production phase acted as the carbon source for denitrification in the landfill. Leachate recirculation combined with ex-situ partial nitrification of the leachate may enhance the biodegradation process by: (a) removing the nitrogen that is contained with the leachate, and (b) accelerating landfill stabilization, because the biodegradation efficiency of landfill waste is increased by supplying sufficient moisture and its byproducts are used as the carbon source for denitrification. In addition, partial nitrification using an SBR has advantages for complete denitrification in the landfill, since the available carbon source is in short supply in aged landfills.

  11. Folate Acts in E. coli to Accelerate C. elegans Aging Independently of Bacterial Biosynthesis.

    PubMed

    Virk, Bhupinder; Jia, Jie; Maynard, Claire A; Raimundo, Adelaide; Lefebvre, Jolien; Richards, Shane A; Chetina, Natalia; Liang, Yen; Helliwell, Noel; Cipinska, Marta; Weinkove, David

    2016-02-23

    Folates are cofactors for biosynthetic enzymes in all eukaryotic and prokaryotic cells. Animals cannot synthesize folate and must acquire it from their diet or microbiota. Previously, we showed that inhibiting E. coli folate synthesis increases C. elegans lifespan. Here, we show that restriction or supplementation of C. elegans folate does not influence lifespan. Thus, folate is required in E. coli to shorten worm lifespan. Bacterial proliferation in the intestine has been proposed as a mechanism for the life-shortening influence of E. coli. However, we found no correlation between C. elegans survival and bacterial growth in a screen of 1,000+ E. coli deletion mutants. Nine mutants increased worm lifespan robustly, suggesting specific gene regulation is required for the life-shortening activity of E. coli. Disrupting the biosynthetic folate cycle did not increase lifespan. Thus, folate acts through a growth-independent route in E. coli to accelerate animal aging.

  12. The Effects of Age and Latent Cytomegalovirus Infection on NK-Cell Phenotype and Exercise Responsiveness in Man.

    PubMed

    Bigley, Austin B; Spielmann, Guillaume; Agha, Nadia; Simpson, Richard J

    2015-01-01

    The redeployment of NK-cells in response to an acute bout of exercise is thought to be an integral component of the "fight-or-flight" response, preparing the body for potential injury or infection. We showed previously that CMV seropositivity impairs the redeployment of NK-cells with exercise in the young. In the current study, we examined the effect of aging on the redeployment of NK-cells with exercise in the context of CMV. We show here that CMV blunts the exercise-induced redeployment of NK-cells in both younger (23-39 yrs) and older (50-64 yrs) subjects with older CMV(neg) subjects showing the largest postexercise mobilization and 1 h postexercise egress of NK-cells. The blunted exercise response in CMV(pos) individuals was associated with a decreased relative redeployment of the CD158a+ and CD57+ NK-cell subsets in younger and older individuals. In addition, we show that aging is associated with a CMV-independent increase in the proportion of NK-cells expressing the terminal differentiation marker CD57, while CMV is associated with an age-dependent decrease in the proportion of NK-cells expressing the inhibitory receptors KLRG1 (in the younger group) and CD158a (in the older group). Collectively, these data suggest that CMV may decrease NK-cell mediated immunosurveillance after exercise in both younger and older individuals. PMID:26583066

  13. Aging and photo-aging DNA repair phenotype of skin cells-evidence toward an effect of chronic sun-exposure.

    PubMed

    Prunier, Chloé; Masson-Genteuil, Gwénaëlle; Ugolin, Nicolas; Sarrazy, Fanny; Sauvaigo, Sylvie

    2012-08-01

    Several studies have demonstrated the deleterious effect of aging on the capacity of cells to repair their DNA. However, current existing assays aimed at measuring DNA repair address only a specific repair step dedicated to the correction of a specific DNA lesion type. Consequently they provide no information regarding the repair pathways that handle other types of lesions. In addition to aging, consequences of photo-exposure on these repair processes remain elusive. In this study we evaluated the consequence of aging and of chronic and/or acute photo-exposure on DNA repair in human skin fibroblasts using a multiplexed approach, which provided detailed information on several repair pathways at the same time. The resulting data were analyzed with adapted statistics/bioinformatics tools. We showed that, irrespective of the repair pathway considered, excision/synthesis was less efficient in non-exposed cells from elderly compared to cells from young adults and that photo-exposure disrupted this very clear pattern. Moreover, it was evidenced that chronic sun-exposure induced changes in DNA repair properties. Finally, the identification of a specific signature at the level of the NER pathway in cells repeatedly exposed to sun revealed a cumulative effect of UVB exposure and chronic sun irradiation. The uses of bioinformatics tools in this study was essential to fully take advantage of the large sum of data obtained with our multiplexed DNA repair assay and unravel the effects of environmental exposure on DNA repair pathways.

  14. [EVALUETION OF THE CLINICAL EFFICACY OF SUSTAINED RELEASE THEOPHILLINE IN A COMPLEX BASIC THERAPY OF EOSINOPHILIC PHENOTYPE OF BRONCHIAL ASTHMA IN SCHOOL AGE CHILDREN].

    PubMed

    Ortemenka, Ye P

    2014-01-01

    Based on a complex examination of 11 school age children with eosinophilic phenotype of bronchial asthma, it has been demonstrated that combination of inhaled corticosteroids with oral sustained release theophillines were more effective as a basic anti-inflammatory asthma therapy, in comparison with monotherapy by inhaled corticosteroids. The usage of such combined anti-relapsing asthma treatment has been reduced both the relative risk (RR = 57%) and the attributable risk (AR = 36.3%) of insufficient control of bronchial asthma in children with eosinophilic type of airways inflammation. At the same time, the minimum number of patients, which have to be treated by such method with the object of preventing at least one case of poor asthma control, came to 3 children.

  15. In vitro analysis of different properties of acrylic resins for ocular prosthesis submitted to accelerated aging with or without photopolymerized glaze.

    PubMed

    Santos, Daniela Micheline Dos; Nagay, Bruna Egumi; da Silva, Emily Vivianne Freitas; Bonatto, Liliane da Rocha; Sonego, Mariana Vilela; Moreno, Amália; Rangel, Elidiane Cipriano; da Cruz, Nilson Cristino; Goiato, Marcelo Coelho

    2016-12-01

    The effect of a photopolymerized glaze on different properties of acrylic resin (AR) for ocular prostheses submitted to accelerated aging was investigated. Forty discs were divided into 4 groups: N1 AR without glaze (G1); colorless AR without glaze (G2); N1 AR with glaze (G3); and colorless AR with glaze (G4). All samples were polished with sandpaper (240, 600 and 800-grit). In G1 and G2, a 1200-grit sandpaper was also used. In G3 and G4, samples were coated with MegaSeal glaze. Property analysis of color stability, microhardness, roughness, and surface energy, and assays of atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy were performed before and after the accelerated aging (1008h). Data were submitted to the ANOVA and Tukey Test (p<0.05). Groups with glaze exhibited statistically higher color change and roughness after aging. The surface microhardness significantly decreased in groups with glaze and increased in groups without glaze. The surface energy increased after the aging, independent of the polishing procedure. All groups showed an increase of surface irregularities. Photopolymerized glaze is an inadequate surface treatment for AR for ocular prostheses and it affected the color stability, roughness, and microhardness. The accelerated aging interfered negatively with the properties of resins. PMID:27612795

  16. In vitro analysis of different properties of acrylic resins for ocular prosthesis submitted to accelerated aging with or without photopolymerized glaze.

    PubMed

    Santos, Daniela Micheline Dos; Nagay, Bruna Egumi; da Silva, Emily Vivianne Freitas; Bonatto, Liliane da Rocha; Sonego, Mariana Vilela; Moreno, Amália; Rangel, Elidiane Cipriano; da Cruz, Nilson Cristino; Goiato, Marcelo Coelho

    2016-12-01

    The effect of a photopolymerized glaze on different properties of acrylic resin (AR) for ocular prostheses submitted to accelerated aging was investigated. Forty discs were divided into 4 groups: N1 AR without glaze (G1); colorless AR without glaze (G2); N1 AR with glaze (G3); and colorless AR with glaze (G4). All samples were polished with sandpaper (240, 600 and 800-grit). In G1 and G2, a 1200-grit sandpaper was also used. In G3 and G4, samples were coated with MegaSeal glaze. Property analysis of color stability, microhardness, roughness, and surface energy, and assays of atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy were performed before and after the accelerated aging (1008h). Data were submitted to the ANOVA and Tukey Test (p<0.05). Groups with glaze exhibited statistically higher color change and roughness after aging. The surface microhardness significantly decreased in groups with glaze and increased in groups without glaze. The surface energy increased after the aging, independent of the polishing procedure. All groups showed an increase of surface irregularities. Photopolymerized glaze is an inadequate surface treatment for AR for ocular prostheses and it affected the color stability, roughness, and microhardness. The accelerated aging interfered negatively with the properties of resins.

  17. Differences in gait velocity and trunk acceleration during semicircular turning gait with and without bag in females of very advanced age.

    PubMed

    Shin, Sun-Shil; Yoo, Won-Gyu

    2016-08-01

    [Purpose] Gait velocity and trunk acceleration during semicircular turning gait with and without carrying a hand-held bag were compared in females of very advanced age. [Subjects and Methods] Ten female volunteers of very advanced age who could walk independently were recruited for this study. Gait velocity and trunk acceleration were measured using an accelerometer during semicircular turning gait with and without carrying a hand-held bag. [Results] Gait velocity during semicircular turning gait was greater with the bag than without the bag. [Conclusions] Trunk stability during semicircular turning gait was higher when the subjects carried a bag. Additional arm load could be considered during gait training in females of very advanced age. PMID:27630425

  18. Differences in gait velocity and trunk acceleration during semicircular turning gait with and without bag in females of very advanced age

    PubMed Central

    Shin, Sun-Shil; Yoo, Won-Gyu

    2016-01-01

    [Purpose] Gait velocity and trunk acceleration during semicircular turning gait with and without carrying a hand-held bag were compared in females of very advanced age. [Subjects and Methods] Ten female volunteers of very advanced age who could walk independently were recruited for this study. Gait velocity and trunk acceleration were measured using an accelerometer during semicircular turning gait with and without carrying a hand-held bag. [Results] Gait velocity during semicircular turning gait was greater with the bag than without the bag. [Conclusions] Trunk stability during semicircular turning gait was higher when the subjects carried a bag. Additional arm load could be considered during gait training in females of very advanced age. PMID:27630425

  19. Differences in gait velocity and trunk acceleration during semicircular turning gait with and without bag in females of very advanced age

    PubMed Central

    Shin, Sun-Shil; Yoo, Won-Gyu

    2016-01-01

    [Purpose] Gait velocity and trunk acceleration during semicircular turning gait with and without carrying a hand-held bag were compared in females of very advanced age. [Subjects and Methods] Ten female volunteers of very advanced age who could walk independently were recruited for this study. Gait velocity and trunk acceleration were measured using an accelerometer during semicircular turning gait with and without carrying a hand-held bag. [Results] Gait velocity during semicircular turning gait was greater with the bag than without the bag. [Conclusions] Trunk stability during semicircular turning gait was higher when the subjects carried a bag. Additional arm load could be considered during gait training in females of very advanced age.

  20. Accelerating Gene Discovery by Phenotyping Whole-Genome Sequenced Multi-mutation Strains and Using the Sequence Kernel Association Test (SKAT).

    PubMed

    Timbers, Tiffany A; Garland, Stephanie J; Mohan, Swetha; Flibotte, Stephane; Edgley, Mark; Muncaster, Quintin; Au, Vinci; Li-Leger, Erica; Rosell, Federico I; Cai, Jerry; Rademakers, Suzanne; Jansen, Gert; Moerman, Donald G; Leroux, Michel R

    2016-08-01

    Forward genetic screens represent powerful, unbiased approaches to uncover novel components in any biological process. Such screens suffer from a major bottleneck, however, namely the cloning of corresponding genes causing the phenotypic variation. Reverse genetic screens have been employed as a way to circumvent this issue, but can often be limited in scope. Here we demonstrate an innovative approach to gene discovery. Using C. elegans as a model system, we used a whole-genome sequenced multi-mutation library, from the Million Mutation Project, together with the Sequence Kernel Association Test (SKAT), to rapidly screen for and identify genes associated with a phenotype of interest, namely defects in dye-filling of ciliated sensory neurons. Such anomalies in dye-filling are often associated with the disruption of cilia, organelles which in humans are implicated in sensory physiology (including vision, smell and hearing), development and disease. Beyond identifying several well characterised dye-filling genes, our approach uncovered three genes not previously linked to ciliated sensory neuron development or function. From these putative novel dye-filling genes, we confirmed the involvement of BGNT-1.1 in ciliated sensory neuron function and morphogenesis. BGNT-1.1 functions at the trans-Golgi network of sheath cells (glia) to influence dye-filling and cilium length, in a cell non-autonomous manner. Notably, BGNT-1.1 is the orthologue of human B3GNT1/B4GAT1, a glycosyltransferase associated with Walker-Warburg syndrome (WWS). WWS is a multigenic disorder characterised by muscular dystrophy as well as brain and eye anomalies. Together, our work unveils an effective and innovative approach to gene discovery, and provides the first evidence that B3GNT1-associated Walker-Warburg syndrome may be considered a ciliopathy. PMID:27508411

  1. Accelerating Gene Discovery by Phenotyping Whole-Genome Sequenced Multi-mutation Strains and Using the Sequence Kernel Association Test (SKAT)

    PubMed Central

    Garland, Stephanie J.; Mohan, Swetha; Flibotte, Stephane; Muncaster, Quintin; Cai, Jerry; Rademakers, Suzanne; Moerman, Donald G.; Leroux, Michel R.

    2016-01-01

    Forward genetic screens represent powerful, unbiased approaches to uncover novel components in any biological process. Such screens suffer from a major bottleneck, however, namely the cloning of corresponding genes causing the phenotypic variation. Reverse genetic screens have been employed as a way to circumvent this issue, but can often be limited in scope. Here we demonstrate an innovative approach to gene discovery. Using C. elegans as a model system, we used a whole-genome sequenced multi-mutation library, from the Million Mutation Project, together with the Sequence Kernel Association Test (SKAT), to rapidly screen for and identify genes associated with a phenotype of interest, namely defects in dye-filling of ciliated sensory neurons. Such anomalies in dye-filling are often associated with the disruption of cilia, organelles which in humans are implicated in sensory physiology (including vision, smell and hearing), development and disease. Beyond identifying several well characterised dye-filling genes, our approach uncovered three genes not previously linked to ciliated sensory neuron development or function. From these putative novel dye-filling genes, we confirmed the involvement of BGNT-1.1 in ciliated sensory neuron function and morphogenesis. BGNT-1.1 functions at the trans-Golgi network of sheath cells (glia) to influence dye-filling and cilium length, in a cell non-autonomous manner. Notably, BGNT-1.1 is the orthologue of human B3GNT1/B4GAT1, a glycosyltransferase associated with Walker-Warburg syndrome (WWS). WWS is a multigenic disorder characterised by muscular dystrophy as well as brain and eye anomalies. Together, our work unveils an effective and innovative approach to gene discovery, and provides the first evidence that B3GNT1-associated Walker-Warburg syndrome may be considered a ciliopathy. PMID:27508411

  2. Effect of artificial accelerated aging on the optical properties and monomeric conversion of composites used after expiration date.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Mundim, Fabricio Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Puppin Rontani, Regina Maria; Consani, Simonides

    2013-01-01

    This study sought to evaluate how artificial accelerated aging (AAA) affected color stability (ΔE), opacity (ΔOP), and degree of conversion (DOC) for 3 composite materials (Tetric Ceram, Tetric Ceram HB, and Tetric Flow) used both 180 days before and 180 days after their expiration dates. To evaluate the materials' optical properties, 10 specimens of each composite-5 prior to expiration and 5 after the materials' expiration date-were made in a teflon matrix. After polishing, the specimens were submitted to initial color and opacity readings and submitted to AAA for 384 hours; at that point, new readings were taken to determine ΔE and ΔOP. To evaluate monomeric conversion evaluation, 6 specimens from each composite and expiration date-3 prior to AAA and 3 after-were submitted to DOC analysis. Results of the 2-way ANOVA and Bonferroni's tests (P < 0.05) demonstrated that all composites had ΔE values above the clinically acceptable level (ΔE ≥ 3.3). When expiration dates were compared, only Tetric Flow showed a statistically significant difference (P < 0.05). Regardless of the expiration date, ΔOP values for all composites increased after AAA, but not significantly (P > 0.05). The expired Tetric Flow had the highest DOC values (71.42% ± 4.21) before AAA, significantly different than that of the other composites (P > 0.05). It was concluded that both expiration date and AAA affected the properties of the composites tested.

  3. Effect of artificial accelerated aging on the optical properties and monomeric conversion of composites used after expiration date.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Mundim, Fabricio Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Puppin Rontani, Regina Maria; Consani, Simonides

    2013-01-01

    This study sought to evaluate how artificial accelerated aging (AAA) affected color stability (ΔE), opacity (ΔOP), and degree of conversion (DOC) for 3 composite materials (Tetric Ceram, Tetric Ceram HB, and Tetric Flow) used both 180 days before and 180 days after their expiration dates. To evaluate the materials' optical properties, 10 specimens of each composite-5 prior to expiration and 5 after the materials' expiration date-were made in a teflon matrix. After polishing, the specimens were submitted to initial color and opacity readings and submitted to AAA for 384 hours; at that point, new readings were taken to determine ΔE and ΔOP. To evaluate monomeric conversion evaluation, 6 specimens from each composite and expiration date-3 prior to AAA and 3 after-were submitted to DOC analysis. Results of the 2-way ANOVA and Bonferroni's tests (P < 0.05) demonstrated that all composites had ΔE values above the clinically acceptable level (ΔE ≥ 3.3). When expiration dates were compared, only Tetric Flow showed a statistically significant difference (P < 0.05). Regardless of the expiration date, ΔOP values for all composites increased after AAA, but not significantly (P > 0.05). The expired Tetric Flow had the highest DOC values (71.42% ± 4.21) before AAA, significantly different than that of the other composites (P > 0.05). It was concluded that both expiration date and AAA affected the properties of the composites tested. PMID:24192739

  4. Monitoring of pigmented and wooden surfaces in accelerated ageing processes by FT-Raman spectroscopy and multivariate control charts.

    PubMed

    Marengo, Emilio; Robotti, Elisa; Liparota, Maria Cristina; Gennaro, Maria Carla

    2004-07-01

    Two of the most suitable analytical techniques used in the field of cultural heritage are NIR (near-infrared) and Raman spectroscopy. FT-Raman spectroscopy coupled to multivariate control charts is applied here for the development of a new method for monitoring the conservation state of pigmented and wooden surfaces. These materials were exposed to different accelerated ageing processes in order to evaluate the effect of the applied treatments on the goods surfaces. In this work, a new approach based on the principles of statistical process control (SPC) to the monitoring of cultural heritage, has been developed: the conservation state of samples simulating works-of-art has been treated like an industrial process, monitored with multivariate control charts, owing to the complexity of the spectroscopic data collected. The Raman spectra were analysed by principal component analysis (PCA) and the relevant principal components (PCs) were used for constructing multivariate Shewhart and cumulative sum (CUSUM) control charts. These tools were successfully applied for the identification of the presence of relevant modifications occurring on the surfaces. CUSUM charts however proved to be more effective in the identification of the exact beginning of the applied treatment. In the case of wooden boards, where a sufficient number of PCs were available, simultaneous scores monitoring and residuals tracking (SMART) charts were also investigated. The exposure to a basic attack and to high temperatures produced deep changes on the wooden samples, clearly identified by the multivariate Shewhart, CUSUM and SMART charts. A change on the pigment surface was detected after exposure to an acidic solution and to the UV light, while no effect was identified on the painted surface after the exposure to natural atmospheric events. PMID:18969526

  5. Potato Tuber Blight Resistance Phenotypes Correlate with RB Transgene Transcript Levels in an Age-Dependent Manner.

    PubMed

    Millett, Benjamin P; Gao, Liangliang; Iorizzo, Massimo; Carputo, Domenico; Bradeen, James M

    2015-08-01

    Plants have evolved strategies and mechanisms to detect and respond to pathogen attack. Different organs of the same plant may be subjected to different environments (e.g., aboveground versus belowground) and pathogens with different lifestyles. Accordingly, plants commonly need to tailor defense strategies in an organ-specific manner. Phytophthora infestans, causal agent of potato late blight disease, infects both aboveground foliage and belowground tubers. We examined the efficacy of transgene RB (known for conferring foliar late blight resistance) in defending against tuber late blight disease. Our results indicate that the presence of the transgene has a positive yet only marginally significant effect on tuber disease resistance on average. However, a significant association between transgene transcript levels and tuber resistance was established for specific transformed lines in an age-dependent manner, with higher transcript levels indicating enhanced tuber resistance. Thus, RB has potential to function in both foliage and tuber to impart late blight resistance. Our data suggest that organ-specific resistance might result directly from transcriptional regulation of the resistance gene itself.

  6. Senescence-accelerated OXYS rats

    PubMed Central

    Stefanova, Natalia A; Kozhevnikova, Oyuna S; Vitovtov, Anton O; Maksimova, Kseniya Yi; Logvinov, Sergey V; Rudnitskaya, Ekaterina A; Korbolina, Elena E; Muraleva, Natalia A; Kolosova, Nataliya G

    2014-01-01

    Senescence-accelerated OXYS rats are an experimental model of accelerated aging that was established from Wistar stock via selection for susceptibility to cataractogenic effects of a galactose-rich diet and via subsequent inbreeding of highly susceptible rats. Currently, we have the 102nd generation of OXYS rats with spontaneously developing cataract and accelerated senescence syndrome, which means early development of a phenotype similar to human geriatric disorders, including accelerated brain aging. In recent years, our group found strong evidence that OXYS rats are a promising model for studies of the mechanisms of brain aging and neurodegenerative processes similar to those seen in Alzheimer disease (AD). The manifestation of behavioral alterations and learning and memory deficits develop since the fourth week of age, i.e., simultaneously with first signs of neurodegeneration detectable on magnetic resonance imaging and under a light microscope. In addition, impaired long-term potentiation has been demonstrated in OXYS rats by the age of 3 months. With age, neurodegenerative changes in the brain of OXYS rats become amplified. We have shown that this deterioration happens against the background of overproduction of amyloid precursor protein (AβPP), accumulation of β-amyloid (Aβ), and hyperphosphorylation of the tau protein in the hippocampus and cortex. The development of AMD-like retinopathy in OXYS rats is also accompanied by increased accumulation of Aβ in the retina. These published data suggest that the OXYS strain may serve as a spontaneous rat model of AD-like pathology and could help to decipher the pathogenesis of AD. PMID:24552807

  7. BENCHMARK ACCELERATED AGING OF HARVESTED HYPALON/EPR AND CSPE/XLPE POWER AND I&C CABLE IN NUCLEAR POWER PLANTS

    SciTech Connect

    Duckworth, Robert C; Fifield, Dr Leonard S

    2016-01-01

    As part of the Light Water Reactor and Sustainability (LWRS) program in the U.S. Department of Energy (DOE) Office of Nuclear Energy, material aging and degradation research is currently geared to support the long-term operation of existing nuclear power plants (NPPs) as they move beyond their initial 40 year licenses. The goal of this research is to provide information so that NPPs can develop aging management programs (AMPs) to address replacement and monitoring needs as they look to operate for 20 years, and in some cases 40 years, beyond their initial operating lifetimes. For cable insulation and jacket materials that support instrument, control, and safety systems, accelerated aging data are needed to determine priorities in cable aging management programs. Before accelerated thermal and radiation aging of harvested, representative cable insulation and jacket materials, the benchmark performance of a new test capability at Oak Ridge National Laboratory (ORNL) was evaluated for temperatures between 70 and 135 C, dose rates between 100 and 500 Gy/h, and accumulated doses up to 20 kGy, Samples that were characterized and are representative of current materials in use were harvested from the Callaway NPP near Fulton, Missouri, and the San Onofre NPP north of San Diego, California. From the Callaway NPP, a multiconductor control rod cable manufactured by Boston Insulated Wire (BIW), with a Hypalon/ chorolosulfonated polyethylene (CSPE) jacket and ethylene-propylene rubber (EPR) insulation, was harvested from the auxiliary space during a planned outage in 2013. This cable was placed into service when the plant was started in 1984. From the San Onofre NPP, a Rockbestos Firewall III (FRIII) cable with a Hypalon/ CSPE jacket with cross-linked polyethylene (XLPE) insulation was harvested from an on-site, climate-controlled storage area. This conductor, which was never placed into service, was procured around 2007 in anticipation of future operation that did not occur

  8. Evaluation of HVDC cables for the St. Lawrence crossing of Hydro-Quebec 500 kV DC Line. Part 1; Dielectric and accelerated aging tests on prototypes

    SciTech Connect

    Coudere, D.; Trinh, N.G.; Belec, M.; Chaaban, M.; Leduc, J.; Beausejour, Y. )

    1992-04-01

    This paper describes the dielectric and accelerated aging tests on prototype {plus minus}500 kV dc oil-filled self-contained cables. The extensive test program was required to evaluate the High-Voltage cables for the St. Lawrence river crossing of the {plus minus}500 kV Quebec-New England HVDC power transmission system. The paper relates the main elements of the test program. It describes the required insulation levels, the characteristics of the cables supplied by three different manufacturers, as well as the cables' installation for the type tests and accelerated aging tests. Details of the test program and procedures followed to carry out the tests are given. Findings of the tests are also reported.

  9. Brain calcification process and phenotypes according to age and sex: Lessons from SLC20A2, PDGFB, and PDGFRB mutation carriers.

    PubMed

    Nicolas, Gaël; Charbonnier, Camille; de Lemos, Roberta Rodrigues; Richard, Anne-Claire; Guillin, Olivier; Wallon, David; Legati, Andrea; Geschwind, Daniel; Coppola, Giovanni; Frebourg, Thierry; Campion, Dominique; de Oliveira, João Ricardo Mendes; Hannequin, Didier

    2015-10-01

    Primary Familial Brain Calcification (PFBC) is a dominantly inherited cerebral microvascular calcifying disorder with diverse neuropsychiatric expression. Three causative genes have been identified: SLC20A2, PDGFRB and, recently, PDGFB, whose associated phenotype has not yet been extensively studied. We included in the largest published case series of genetically confirmed PFBC, 19 PDGFB (including three new mutations), 24 SLC20A2 (including 4 new mutations), and 14 PDGFRB mutation carriers, from two countries (France and Brazil). We studied clinical features and applied our visual rating scale on all 49 available CT scans. Among the symptomatic mutation carriers (33/57, 58%), the three most frequently observed categories of clinical features were psychiatric signs (72.7%, 76.5%, and 80% for PDGFB, SLC20A2, and PDGFRB, respectively), movement disorders (45.5%, 76.5%, and 40%), and cognitive impairment (54.6%, 64.7%, and 40%). The median age of clinical onset was 31 years, 25% had an early onset (before 18) and 25% a later onset (after 53). Patients with an early clinical onset exhibited mostly isolated psychiatric or cognitive signs, while patients with a later onset exhibited mostly movement disorders, especially in association with other clinical features. CT scans rating allowed identifying four patterns of calcification. The total calcification score was best predicted by the combined effects of gene (SLC20A2 > PDGFB > PDGFRB mutations), sex (male), and (increasing) age, defining three risk classes, which correlated with the four patterns of calcification. These calcification patterns could reflect the natural history of the calcifying process, with distinct risk classes characterized by different age at onset or rate of progression.

  10. GPR30 decreases with vascular aging and promotes vascular smooth muscle cells maintaining differentiated phenotype and suppressing migration via activation of ERK1/2

    PubMed Central

    Huang, Fang; Yin, Jianguo; Li, Keyu; Li, Ying; Qi, Heng; Fang, Li; Yuan, Cong; Liu, Weiwei; Wang, Min; Li, Xiangping

    2016-01-01

    Estrogen receptors, including classic nuclear receptors ERα, ERβ, and membrane receptor GPR30, are expressed in vascular tissues and exert protective actions in vascular diseases. But the expression pattern and functional roles of GPR30 in vascular smooth muscle cells (VSMCs) remain unclear. In this study, we found that ERα, ERβ, and GPR30 were decreased with VSMCs passaging in vitro or growing in vivo and activation of GPR30 promoted ERα expression. Then, we validated that activation of GPR30 significantly decreased migratory capability of VSMCs and suppressed ERα, whereas PDGF-BB (20 ng/mL) treatment caused increase of migration. And activation of GPR30 led to reduction of osteopontin and cellular retinol binding protein 1, enhancement of calponin and 3F8, and upregulation of total and phosphorylated ERK1/2 expression in VSMCs knocked down by GPR30, ERα, and ERβ or treated with PDGF-BB. These data suggest that GPR30 promotes VSMCs reducing migration and maintaining differentiated phenotype via activation of ERK1/2 pathway. Our findings provide novel mechanisms of GPR30 protection of VSMCs as well as a new target for prevention of vascular aging. PMID:27354813

  11. Control of Viremia Enables Acquisition of Resting Memory B Cells with Age and Normalization of Activated B Cell Phenotypes in HIV-Infected Children

    PubMed Central

    Muema, Daniel M.; Macharia, Gladys N.; Hassan, Amin S.; Mwaringa, Shalton M.; Fegan, Greg W.; Berkley, James A.; Urban, Britta C.

    2015-01-01

    HIV affects the function of all lymphocyte populations, including B cells. Phenotypic and functional defects of B cells in HIV-infected adults have been well characterized, but defects in children have not been studied to the same extent. We determined the proportion of B cell subsets and frequencies of Ag-specific memory B cells in peripheral blood from HIV-infected children and healthy controls, using flow cytometry and B cell ELISPOT, respectively. In addition, we measured the quantities and avidities of plasma Abs against various Ags by ELISA. We also determined plasma levels of BAFF and expression of BAFF receptors on B cells. Children with high HIV viremia had increased proportions of activated mature B cells, tissue-like memory B cells and plasmablasts, and low proportions of naive B cells when compared with community controls and children with low HIV viremia, similar to adults infected with HIV. HIV-infected groups had lower proportions of resting memory B cells than did community controls. Notably, high HIV viremia prevented the age-dependent accumulation of class-switched resting memory B cells. HIV-infected children, regardless of the level of viremia, showed lower quantities and avidities of IgG and lower frequencies of memory B cells against Expanded Program on Immunization vaccines. The HIV-infected children had an altered BAFF profile that could have affected their B cell compartment. Therefore, B cell defects in HIV-infected children are similar to those seen in HIV-infected adults. However, control of HIV viremia is associated with normalization of activated B cell subsets and allows age-dependent accumulation of resting memory B cells. PMID:26116511

  12. Control of Viremia Enables Acquisition of Resting Memory B Cells with Age and Normalization of Activated B Cell Phenotypes in HIV-Infected Children.

    PubMed

    Muema, Daniel M; Macharia, Gladys N; Hassan, Amin S; Mwaringa, Shalton M; Fegan, Greg W; Berkley, James A; Nduati, Eunice W; Urban, Britta C

    2015-08-01

    HIV affects the function of all lymphocyte populations, including B cells. Phenotypic and functional defects of B cells in HIV-infected adults have been well characterized, but defects in children have not been studied to the same extent. We determined the proportion of B cell subsets and frequencies of Ag-specific memory B cells in peripheral blood from HIV-infected children and healthy controls, using flow cytometry and B cell ELISPOT, respectively. In addition, we measured the quantities and avidities of plasma Abs against various Ags by ELISA. We also determined plasma levels of BAFF and expression of BAFF receptors on B cells. Children with high HIV viremia had increased proportions of activated mature B cells, tissue-like memory B cells and plasmablasts, and low proportions of naive B cells when compared with community controls and children with low HIV viremia, similar to adults infected with HIV. HIV-infected groups had lower proportions of resting memory B cells than did community controls. Notably, high HIV viremia prevented the age-dependent accumulation of class-switched resting memory B cells. HIV-infected children, regardless of the level of viremia, showed lower quantities and avidities of IgG and lower frequencies of memory B cells against Expanded Program on Immunization vaccines. The HIV-infected children had an altered BAFF profile that could have affected their B cell compartment. Therefore, B cell defects in HIV-infected children are similar to those seen in HIV-infected adults. However, control of HIV viremia is associated with normalization of activated B cell subsets and allows age-dependent accumulation of resting memory B cells.

  13. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis.

    PubMed

    van der Heijden, Roel A; Bijzet, Johan; Meijers, Wouter C; Yakala, Gopala K; Kleemann, Robert; Nguyen, Tri Q; de Boer, Rudolf A; Schalkwijk, Casper G; Hazenberg, Bouke P C; Tietge, Uwe J F; Heeringa, Peter

    2015-11-13

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process.

  14. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    PubMed

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most

  15. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    SciTech Connect

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley E.; Quelen, Sarah; Marlot, Lea; Preble, Chelsea V.; Chen, Sharon; Montalbano, Amandine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  16. The anti-aging effects of LW-AFC via correcting immune dysfunctions in senescence accelerated mouse resistant 1 (SAMR1) strain

    PubMed Central

    Wang, Jianhui; Cheng, Xiaorui; Zhang, Xiaorui; Cheng, Junping; Xu, Yiran; Zeng, Ju; Zhou, Wenxia; Zhang, Yongxiang

    2016-01-01

    Although there were considerable advances in the anti-aging medical field, it is short of therapeutic drug for anti-aging. Mounting evidence indicates that the immunosenescence is the key physiopathological mechanism of aging. This study showed the treatment of LW-AFC, an herbal medicine, decreased the grading score of senescence, increased weight, prolonged average life span and ameliorated spatial memory impairment in 12- and 24-month-old senescence accelerated mouse resistant 1 (SAMR1) strain. And these anti-aging effects of LW-AFC were more excellent than melatonin. The administration of LW-AFC enhanced ConA- and LPS-induced splenocyte proliferation in aged SAMR1 mice. The treatment of LW-AFC not only reversed the decreased the proportions of helper T cells, suppressor T cells and B cells, the increased regulatory T cells in the peripheral blood of old SAMR1 mice, but also could modulate the abnormal secretion of IL-1β, IL-2, IL-6, IL-17, IL-23, GM-CSF, IFN-γ, TNF-α, TNF-β, RANTES, eotaxin, MCP-1, IL-4, IL-5, IL-10 and G-CSF. These data indicated that LW-AFC reversed the immunosenescence status by restoring immunodeficiency and decreasing chronic inflammation and suggested LW-AFC may be an effective anti-aging agent. PMID:27105505

  17. Association of GRM7 Variants with Different Phenotype Patterns of Age-Related Hearing Impairment in an Elderly Male Han Chinese Population

    PubMed Central

    Jin, Xiaojie; Pang, Xiuhong; Li, Jiping; Chai, Yongchuan; Li, Lei; Zhang, Yi; Zhang, Luping; Zhang, Zhihua; Wu, Wenjing; Zhang, Qin; Hu, Xianting; Sun, Jingwen; Jiang, Xuemei; Fan, Zhuping; Huang, Zhiwu; Wu, Hao

    2013-01-01

    Several single nucleotide polymorphisms (SNPs) of the Glutamate metabotrophic receptor 7 gene (GRM7) have recently been identified by the genome-wide association study (GWAS) as potentially playing a role in susceptibility to age-related hearing impairment (ARHI), however this has not been validated in the Han Chinese population. The aim of this study was to determine if these SNPs are also associated with ARHI in an elderly male Han Chinese population. In this case-control candidate genes association study, a total of 982 men with ARHI and 324 normal-hearing controls subjects were studied. Using K-means cluster analysis, four audiogram shape subtypes of ARHI were identified in the case group: ‘‘flat shape (FL)’’, ‘‘sloping shape (SL)’’, ‘‘2-4 kHz abrupt loss (AL) shape’’ and ‘‘8 kHz dip (8D) shape’’. Results suggested that the SNP rs11928865 (A>T) of GRM7 was significantly associated with ARHI after adjusting for non-genetic factors (p= 0.000472, OR= 1.599, 95%CI= 1.229~2.081). Furthermore, frequency of TT genotype (rs11928865) were significant higher in the SL subgroup and AL subgroup with compared to controls group (p= 9.41E-05, OR= 1.945, 95%CI= 1.393~2.715; p= 0.000109, OR= 1.915, 95%CI= 1.378~2.661 adjusted, respectively) after Bonferroni correction. However, there wasn’t significant difference in the frequency of the TT genotype between cases in the FL subgroup or the 8D subgroup with when compared with controls. Results of the current study suggest that, in an elderly male Han Chinese population, GRM7 SNP rs11928865 (TT) occurs more frequently in ARHI patients with SL and AL phenotype patterns. PMID:24146964

  18. The influence of chronological age on periods of accelerated adaptation of stretch-shortening cycle performance in pre and postpubescent boys.

    PubMed

    Lloyd, Rhodri S; Oliver, Jon L; Hughes, Michael G; Williams, Craig A

    2011-07-01

    Although it is suggested that periods of naturally occurring accelerated adaptation may exist for various physical parameters, it would appear that no such evidence exists for stretch-shortening cycle (SSC) development. Two hundred and fifty male youths aged 7-17 years were tested for squat (SJ) and countermovement jump (CMJ) height, reactive strength index (RSI), and leg stiffness, with analyses of variance used to establish any significant between-group differences. Additionally, to ascertain the existence of periods of accelerated adaptation, inferences were made about the magnitudes of change between consecutive chronological age groups in relation to the smallest worthwhile change. The largest mean differences (±90% confidence limits) occurred between age groups 10 and 11 (G10-G11) for squat jump (SJ) height (21.61 ± 12.08-31.94%), CMJ height (20.80 ± 11.1-44.1%), and RSI (26.51 ± 11.07-44.10%); and between G12 and G13 for SJ (15.31 ± 7.47-23.73%) and CMJ (16.09 ± 7.50-25.38%) height. Negative mean differences occurred between G11 and G12 for SJ height (-1.32 ± -9.30 to 7.37%), CMJ jump height (-7.68 ± -15.15 to 0.45%) and RSI (-11.48 ± -22.21 to 0.74%); and between G10 and G11 for leg stiffness (-8.87 ± -18.85 to 2.34%). It would appear almost certain that windows of accelerated adaptation may exist for SJ and CMJ height and RSI in male youths; however, leg stiffness results would suggest that fast-SSC function may follow a different developmental trend.

  19. The integrated phenotype.

    PubMed

    Murren, Courtney J

    2012-07-01

    Proper functioning of complex phenotypes requires that multiple traits work together. Examination of relationships among traits within and between complex characters and how they interact to function as a whole organism is critical to advancing our understanding of evolutionary developmental plasticity. Phenotypic integration refers to the relationships among multiple characters of a complex phenotype, and their relationships with other functional units (modules) in an organism. In this review, I summarize a brief history of the concept of phenotypic integration in plant and animal biology. Following an introduction of concepts, including modularity, I use an empirical case-study approach to highlight recent advance in clarifying the developmental and genomic basis of integration. I end by highlighting some novel approaches to genomic and epigenetic perturbations that offer promise in further addressing the role of phenotypic integration in evolutionary diversification. In the age of the phenotype, studies that examine the genomic and developmental changes in relationships of traits across environments will shape the next chapter in our quest for understanding the evolution of complex characters.

  20. ETHYLENE-INSENSITIVE3 Is a Senescence-Associated Gene That Accelerates Age-Dependent Leaf Senescence by Directly Repressing miR164 Transcription in Arabidopsis[C][W

    PubMed Central

    Li, Zhonghai; Peng, Jinying; Wen, Xing; Guo, Hongwei

    2013-01-01

    Numerous endogenous and environmental signals regulate the intricate and highly orchestrated process of plant senescence. Ethylene is a well-known inducer of senescence, including fruit ripening and flower and leaf senescence. However, the underlying molecular mechanism of ethylene-induced leaf senescence remains to be elucidated. Here, we examine ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor in ethylene signaling, and find that EIN3 is a functional senescence-associated gene. Constitutive overexpression or temporary activation of EIN3 is sufficient to accelerate leaf senescence symptoms. Conversely, loss of EIN3 and EIN3-Like1 (its close homolog) function leads to a delay in age-dependent and ethylene-, jasmonic acid-, or dark-induced leaf senescence. We further found that EIN3 acts downstream of ORESARA2 (ORE2)/ORE3/EIN2 to repress miR164 transcription and upregulate the transcript levels of ORE1/NAC2, a target gene of miR164. EIN3 directly binds to the promoters of microRNA164 (miR164), and this binding activity progressively increases during leaf ageing. Genetic analysis revealed that overexpression of miR164 or knockout of ORE1/NAC2 represses EIN3-induced early-senescence phenotypes. Collectively, our study defines a continuation of the signaling pathway involving EIN2-EIN3-miR164-NAC2 in regulating leaf senescence and provides a mechanistic insight into how ethylene promotes the progression of leaf senescence in Arabidopsis thaliana. PMID:24064769

  1. Evidence that glucose metabolism is decreased in the cerebrum of aged female senescence-accelerated mouse; possible involvement of a low hexokinase activity.

    PubMed

    Kurokawa, T; Sato, E; Inoue, A; Ishibashi, S

    1996-08-16

    d-Glucose metabolism in cerebral cells prepared from aged senescence-accelerated mouse (SAM), was investigated in consideration of a sex difference. The production of 14CO2 from 6-[14C]D-glucose was reduced in female senescence-accelerated-prone mouse (SAMP) 8, a prone substrain, in comparison with that in female senescence-accelerated-resistant mouse (SAMR) 2, a control substrain, whereas there was no difference in males. The 2-deoxy-D-glucose uptake into cerebral cells from female SAMP8 was also lower than that of control mice. But, the 3-O-methyl-D-glucose uptake in SAMP8 was higher than that of SAMR2, suggesting that the low hexokinase activity was involved in the decreased glucose metabolism in cerebrum of SAMP8 females irrespective of glucose transporter. This possibility was supported by the finding that the contents of glucose 6-phosphate produced from glucose added to cerebral cells from SAMP8 was lower than that in ICR mice. PMID:8873128

  2. Phenolic composition of vinegars over an accelerated aging process using different wood species (acacia, cherry, chestnut, and oak): effect of wood toasting.

    PubMed

    Cerezo, Ana B; Álvarez-Fernández, M Antonia; Hornedo-Ortega, Ruth; Troncoso, Ana M; García-Parrilla, M Carmen

    2014-05-14

    Wood shavings are widely employed in vinegar making to reduce aging time. Accordingly, this study aims to evaluate the effects of using shavings from different wood species (acacia, cherry, chestnut, and oak) and of toasting on the release of phenolic compounds into vinegar during the aging process. The study involved aging vinegars using previously toasted shavings and untoasted ones, at 0.5% and 1% (w/v), and collecting samples at 15 and 30 days. The phenolic compounds were analyzed by LC-DAD during the aging process. As a result, wood markers naringenin and kaempferol (cherry), robinetin and fustin (acacia), and isovanillin (oak) were identified for the first time in vinegars. The results also showed that toasting wood shavings decreases the concentration of most flavonoid wood markers (e.g., (+)-taxifolin, naringenin, and fustin) in vinegar, but that it is essential for the highest releases of aldehyde compounds (syringaldehyde, protocatechualdehyde, and vanillin). Remarkably, 15 days was sufficient to obtain the highest increases of most polyphenol compounds in the vinegar. Statistical analysis (linear discriminant analysis) proved that the phenolic compounds identified in vinegars are useful for discriminating vinegars regarding the wood species of the shavings used to accelerate aging.

  3. Aging and Tennis Playing in a Coincidence-Timing Task with an Accelerating Object: The Role of Visuomotor Delay

    ERIC Educational Resources Information Center

    Lobjois, Regis; Benguigui, Nicolas; Bertsch, Jean

    2005-01-01

    The purpose of the present study was to determine whether playing a specific ball sport, such as tennis, could maintain the coincidence-timing (CT) performance of older adults at a similar level to that of younger ones. To address this question, tennis players and nonplayers of three different age ranges (ages 20-30, 60-70, and 70-80 years)…

  4. The effects of free and bonded sulfur both in the presence and absence of vulcanization accelerators on the rheological, technological, aging, and thermal stability of asphalts

    SciTech Connect

    Onabajo, A.; Kopsch, H.

    1987-01-01

    Rheological and technological experiments have been carried out on sulfur-modified asphalts in the temperature range of 353 K to 453 K over a wide range of shear rates (0-4800 sec/sup -1/). The results indicated that the activation energy of the viscous flow increased with increasing amount of bonded sulfur. The irreversible shear degradation observed in sulfur-modified asphalts is caused by the high shear forces which rupture the aggregated molecules. Thermogravimetric analysis and aging experiments on asphalts and their sulfurized products, containing varying amounts of free sulfur (0-5.5 wt.-%) and vulcanization accelerators (0.5-2.5 wt.-%), have shown that mixes containing vulcanization accelerators have higher thermal stabilities and are more resistant to thermal and non-thermal aging than the unaccelerated asphalt-sulfur mixed prepared at the same or higher temperatures. The changes in the rheological and physical properties of the mixes with time is not only explained by the changes in the physical state of unreacted free sulfur, that is, from plastic to crystalline state (physical process), but also attributable to the effect of chemical reactions.

  5. Accelerated aging tests on ENEA-ASE solar coating for receiver tube suitable to operate up to 550 °C

    NASA Astrophysics Data System (ADS)

    Antonaia, A.; D'Angelo, A.; Esposito, S.; Addonizio, M. L.; Castaldo, A.; Ferrara, M.; Guglielmo, A.; Maccari, A.

    2016-05-01

    A patented solar coating for evacuated receiver, based on innovative graded WN-AlN cermet layer, has been optically designed and optimized to operate at high temperature with high performance and high thermal stability. This solar coating, being designed to operate in solar field with molten salt as heat transfer fluid, has to be thermally stable up to the maximum temperature of 550 °C. With the aim of determining degradation behaviour and lifetime prediction of the solar coating, we chose to monitor the variation of the solar absorptance αs after each thermal annealing cycle carried out at accelerated temperatures under vacuum. This prediction method was coupled with a preliminary Differential Thermal Analysis (DTA) in order to give evidence for any chemical-physical coating modification in the temperature range of interest before performing accelerated aging tests. In the accelerated aging tests we assumed that the temperature dependence of the degradation processes could be described by Arrhenius behaviour and we hypothesized that a linear correlation occurs between optical parameter variation rate (specifically, Δαs/Δt) and degradation process rate. Starting from Δαs/Δt values evaluated at 650 and 690 °C, Arrhenius plot gave an activation energy of 325 kJ mol-1 for the degradation phenomenon, where the prediction on the coating degradation gave a solar absorptance decrease of only 1.65 % after 25 years at 550 °C. This very low αs decrease gave evidence for an excellent stability of our solar coating, also when employed at the maximum temperature (550 °C) of a solar field operating with molten salt as heat transfer fluid.

  6. Defining the Toxicology of Aging

    PubMed Central

    Sorrentino, Jessica A.; Sanoff, Hanna K.; Sharpless, Norman E.

    2014-01-01

    Mammalian aging is complex and incompletely understood. While significant effort has been spent addressing the genetics or, more recently, the pharmacology of aging, the toxicology of aging has been relatively understudied. Just as an understanding of `carcinogens' has proven critical to modern cancer biology, an understanding of environmental toxicants that accelerate aging (`gerontogens') will inform gerontology. In this review, we discuss the evidence for the existence of mammalian gerontogens, as well as describe biomarkers needed to measure the age-promoting activity of a given toxicant. We focus on the effects of putative gerontogens on the in vivo accumulation of senescent cells, a characteristic feature of aging that plays a causal role in some age-associated phenotypes. PMID:24880613

  7. Dietary (-)-Epigallocatechin-3-gallate Supplementation Counteracts Aging-Associated Skeletal Muscle Insulin Resistance and Fatty Liver in Senescence-Accelerated Mouse.

    PubMed

    Liu, Hung-Wen; Chan, Yin-Ching; Wang, Ming-Fu; Wei, Chu-Chun; Chang, Sue-Joan

    2015-09-30

    Aging is accompanied by pathophysiological changes including insulin resistance and fatty liver. Dietary supplementation with (-)-epigallocatechin-3-gallate (EGCG) improves insulin sensitivity and attenuates fatty liver disease. We hypothesized that EGCG could effectively modulate aging-associated changes in glucose and lipid metabolism in senescence-accelerated mice (SAM) prone 8 (SAMP8). Higher levels of glucose, insulin, and free fatty acid, inhibited Akt activity, and decreased glucose transporter 4 (GLUT4) expression were observed in SAMP8 mice compared to the normal aging group, SAM resistant 1 mice. EGCG supplementation for 12 weeks successfully decreased blood glucose and insulin levels via restoring Akt activity and GLUT4 expression and stimulating AMPKα activation in skeletal muscle. EGCG up-regulated genes involved in mitochondrial biogenesis and subsequently restored mitochondrial DNA copy number in skeletal muscle of SAMP8 mice. Decreased adipose triglyceride lipase and increased sterol regulatory element binding proteins-1c (SREBP-1c) and carbohydrate responsive element binding protein at mRNA levels were observed in SAMP8 mice in accordance with hepatocellular ballooning and excess lipid accumulation. The pevention of hepatic lipid accumulation by EGCG was mainly attributed to down-regulation of mTOR and SREBP-1c-mediated lipid biosynthesis via suppression of the positive regulator, Akt, and activation of the negative regulator, AMPKα, in the liver. EGCG beneficially modulates glucose and lipid homeostasis in skeletal muscle and liver, leading to alleviation of aging-associated metabolic disorders.

  8. The Relationship Between Maillard Reaction Product Formation and the Strength of Griege Yarns Subjected to Accelerated Ageing Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work examining the effect of ageing on cotton fiber surface chemical and HVI properties, yarn processing performance, and yarn quality showed that cotton bales stored for extended periods exhibit significant changes in a number of these variables including primarily surface sugar content, H...

  9. Age-dependent capacity to accelerate protein synthesis dictates the extent of compensatory growth in skeletal muscle following undernutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In both humans and animals, impaired growth during early life compromises adult lean body mass and muscle strength despite skeletal muscle’s large regenerative capacity. To identify the significance of developmental age on skeletal muscle’s capacity for catch-up growth following an episode of under ...

  10. Exposure to 56Fe irradiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Casadesus, Gemma; Carey, Amanda N.; Rabin, Bernard M.; Joseph, James A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) such as 56Fe, produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism. For example, an increased release of reactive oxygen species, and the subsequent oxidative stress and inflammatory damage caused to the central nervous system, is likely responsible for the deficits seen in aging and following irradiation. Therefore, dietary antioxidants, such as those found in fruits and vegetables, could be used as countermeasures to prevent the behavioral changes seen in these conditions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment, and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a “map” provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts, particularly middle-aged ones, to perform critical tasks during long-term space travel beyond the magnetosphere.

  11. Shortened estrous cycle length, increased FSH levels, FSH variance, oocyte spindle aberrations, and early declining fertility in aging senescence-accelerated mouse prone-8 (SAMP8) mice: concomitant characteristics of human midlife female reproductive aging.

    PubMed

    Bernstein, Lori R; Mackenzie, Amelia C L; Kraemer, Duane C; Morley, John E; Farr, Susan; Chaffin, Charles L; Merchenthaler, István

    2014-06-01

    Women experience a series of specific transitions in their reproductive function with age. Shortening of the menstrual cycle begins in the mid to late 30s and is regarded as the first sign of reproductive aging. Other early changes include elevation and increased variance of serum FSH levels, increased incidences of oocyte spindle aberrations and aneuploidy, and declining fertility. The goal of this study was to investigate whether the mouse strain senescence-accelerated mouse-prone-8 (SAMP8) is a suitable model for the study of these midlife reproductive aging characteristics. Midlife SAMP8 mice aged 6.5-7.85 months (midlife SAMP8) exhibited shortened estrous cycles compared with SAMP8 mice aged 2-3 months (young SAMP8, P = .0040). Midlife SAMP8 mice had high FSH levels compared with young SAMP8 mice, and mice with a single day of high FSH exhibited statistically elevated FSH throughout the cycle, ranging from 1.8- to 3.6-fold elevation on the days of proestrus, estrus, metestrus, and diestrus (P < .05). Midlife SAMP8 mice displayed more variance in FSH than young SAMP8 mice (P = .01). Midlife SAMP8 ovulated fewer oocytes (P = .0155). SAMP8 oocytes stained with fluorescently labeled antitubulin antibodies and scored in fluorescence microscopy exhibited increased incidence of meiotic spindle aberrations with age, from 2/126 (1.59%) in young SAMP8 to 38/139 (27.3%) in midlife SAMP8 (17.2-fold increase, P < .0001). Finally, SAMP8 exhibited declining fertility from 8.9 pups/litter in young SAMP8 to 3.5 pups/litter in midlife SAMP8 mice (P < .0001). The age at which these changes occur is younger than for most mouse strains, and their simultaneous occurrence within a single strain has not been described previously. We propose that SAMP8 mice are a model of midlife human female reproductive aging.

  12. The effects of high energy electron beam irradiation in air on accelerated aging and on the structure property relationships of low density polyethylene

    NASA Astrophysics Data System (ADS)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2013-02-01

    The response of low density polyethylene (LDPE) to high energy electron beam irradiation in air (10 MeV) between 25 and 400 kGy was examined and compared to non-irradiated polyethylene in terms of the mechanical and structural properties. To quantify the degree of crosslinking, swelling studies were performed and from this it was observed that the crosslink density increased as the irradiation dose increased. Furthermore, a reduction was observed in the numerical data for molar mass between adjacent crosslinks and the number of monomeric units between adjacent crosslinks as the irradiation dose was conducted incrementally. Accelerated aging provided evidence that radicals became trapped in the polymer matrix of LDPE and this in turn initiated further reactions to transpire as time elapsed, leading to additional alteration in the structural properties. Fourier transform infrared spectroscopy (FTIR) was implemented to provide insight into this. This technique established that the aging process had increased the oxidative degradation products due to oxygen permeation into the polymer and double bonds within the material. Mechanical testing revealed an increase in the tensile strength and a decrease in the elongation at break. Accelerated aging caused additional modifications to occur in the mechanical properties which are further elucidated throughout this study. Dynamic frequency sweeps investigated the effects of irradiation on the structural properties of LDPE. The effect of varying the irradiation dose concentration was apparent as this controlled the level of crosslinking within the material. Maxwell and Kelvin or Voigt models were employed in this analytical technique to define the reaction procedure of the frequency sweep test with regards to non-crosslinked and crosslinked LDPE.

  13. An assessment of anti-Müllerian hormone in predicting mating outcomes in female hamsters that have undergone natural and chemically-accelerated reproductive aging.

    PubMed

    Roosa, Kristen A; Zysling, Devin A; Place, Ned J

    2015-04-01

    In mammals, female fertility declines with age due in part to a progressive loss of ovarian follicles. The rate of follicle decline varies among individuals making it difficult to predict the age of onset of reproductive senescence. Serum anti-Müllerian hormone (AMH) concentrations correlate with the numbers of ovarian follicles, and therefore, AMH could be a useful predictor of female fertility. In women and some production animals, AMH is used to identify which individuals will respond best to ovarian stimulation for assisted reproductive technologies. However, few studies have evaluated AMH's predictive value in unassisted reproduction, and they have yielded conflicting results. To assess the predictive value of AMH in the context of reproductive aging, we prospectively measured serum AMH in 9-month-old Siberian hamsters shortly before breeding them. Female Siberian hamsters experience substantial declines in fertility and fecundity by 9months of age. We also measured serum AMH in 5-month-old females treated with 4-vinylcyclohexene diepoxide (VCD), which selectively destroys ovarian follicles and functionally accelerates ovarian aging. Vehicle-treated 5-month-old females served as controls. AMH concentrations were significantly reduced in VCD-treated females yet many females with low AMH reproduced successfully. On average, both young and old hamsters that littered had higher AMH concentrations than females that did not. However, some females with relatively high AMH concentrations failed to litter, whereas several with low AMH succeeded. Our results suggest that mean AMH concentration can predict mating outcomes on a population or group level, but on an individual basis, a single AMH determination is less informative.

  14. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. II. A poly(ester-urethane) binder

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1981-01-01

    The molecular weight distribution and dynamic mechanical properties of an experimental polymer-bonded explosive, X-0282, maintained at 23, 60, and 74/sup 0/C for 3.75 y were examined, X-0282 is 95.5% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclo-octane explosive and 4.5% Estane 5703, a segmented poly(ester-urethane). Two mechanical relaxations at about -24 and 42/sup 0/C were found in the X-0282 aged at room temperature for 3.75 years. A third relaxation at about 85/sup 0/C was found in X-0282 aged at 60 and 74/sup 0/C. The relaxation at -24/sup 0/C is associated with the soft segment glass transition of the binder. The relaxation at 42/sup 0/C is associated with the soft segment melting and may also contain a component due to the hard segment glass transition. The relaxation at 85/sup 0/C is probably associated with improved soft segment crystallite perfection. The molecular weight of the poly(ester-urethane) binder decreased significantly with increasing accelerated aging temperature. A simple random chain scission model of the urethane degradation kinetics in the presence of explosive yields an activation energy of 11.6 kcal/mole. This model predicts a use life of about 17.5 years under the worst military operating conditions (continuous operation at 74/sup 0/C).

  15. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  16. Environmental aging in polycrystalline-Si photovoltaic modules: comparison of chamber-based accelerated degradation studies with field-test data

    NASA Astrophysics Data System (ADS)

    Lai, T.; Biggie, R.; Brooks, A.; Potter, B. G.; Simmons-Potter, K.

    2015-09-01

    Lifecycle degradation testing of photovoltaic (PV) modules in accelerated-degradation chambers can enable the prediction both of PV performance lifetimes and of return-on-investment for installations of PV systems. With degradation results strongly dependent on chamber test parameters, the validity of such studies relative to fielded, installed PV systems must be determined. In the present work, accelerated aging of a 250 W polycrystalline silicon module is compared to real-time performance degradation in a similar polycrystalline-silicon, fielded, PV technology that has been operating since October 2013. Investigation of environmental aging effects are performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability providing illumination uniformity of 98% over a 2 x 1.6 m area. Time-dependent, photovoltaic performance (J-V) is evaluated over a recurring, compressed night-day cycle providing representative local daily solar insolation for the southwestern United States, followed by dark (night) cycling. This cycle is synchronized with thermal and humidity environmental variations that are designed to mimic, as closely as possible, test-yard conditions specific to a 12 month weather profile for a fielded system in Tucson, AZ. Results confirm the impact of environmental conditions on the module long-term performance. While the effects of temperature de-rating can be clearly seen in the data, removal of these effects enables the clear interpretation of module efficiency degradation with time and environmental exposure. With the temperature-dependent effect removed, the normalized efficiency is computed and compared to performance results from another panel of similar technology that has previously experienced identical climate changes in the test yard. Analysis of relative PV module efficiency degradation for the chamber-tested system shows good comparison to the field-tested system with ~2.5% degradation following

  17. Morphometric age estimate of the last phase of accelerated uplift in the Kazdag area (Biga Peninsula, NW Turkey)

    NASA Astrophysics Data System (ADS)

    Demoulin, A.; Altin, T. Bayer; Beckers, A.

    2013-11-01

    While the Plio-Quaternary uplift of the Kazdag mountain range (Biga Peninsula, NW Turkey) is generally acknowledged, little is known about its detailed timing. Partly because of this lack of data, the cause of this uplift phase is also debated, being associated either to back-arc extension in the rear of the Hellenic subduction zone, to transpression along the northern edge of the west-moving Anatolian microplate, or to extension driven by gravitational collapse. Here, we perform a morphometric study of the fluvial landscape at the scale of the Biga Peninsula, coupling the recently developed R/SR analysis of the drainage network with concavity and steepness measures of a set of 29 rivers of all sizes. While the dependence of profile concavity on basin size confirms that the landscape of the peninsula is still in a transient state, the spatial distribution of profile steepness values characterized by higher values for streams flowing down from the Kazdag massif shows that the latter undergoes higher uplift rates than the rest of the peninsula. We obtain a SR value of 0.324 ± 0.035 that, according to the relation established by Demoulin (2012), yields an age range of 0.5-1.3 Ma and a most probable value of 0.8 Ma for the time of the last tectonic perturbation in the region. In agreement with the analysis of knickpoint migration in a subset of rivers, this suggests that a pulse of uplift occurred at that time and, corroborated by sparse published observations in the Bayramiç and Çanakkale depressions, that the peninsula was uplifted as a whole from that time. This uplift pulse might have been caused by transient compressive conditions in the Anatolian plate when the Eratosthenes seamount came to subduct beneath the Cyprus arc around the early-to-mid Pleistocene transition (Schattner, 2010).

  18. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration

    PubMed Central

    2013-01-01

    Background The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. Method The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. Results In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Conclusion Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G’ increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue

  19. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  20. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  1. Supplementation with Lactobacillus plantarum WCFS1 Prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1−/Δ7 Mice

    PubMed Central

    van Beek, Adriaan A.; Sovran, Bruno; Hugenholtz, Floor; Meijer, Ben; Hoogerland, Joanne A.; Mihailova, Violeta; van der Ploeg, Corine; Belzer, Clara; Boekschoten, Mark V.; Hoeijmakers, Jan H. J.; Vermeij, Wilbert P.; de Vos, Paul; Wells, Jerry M.; Leenen, Pieter J. M.; Nicoletti, Claudio; Hendriks, Rudi W.; Savelkoul, Huub F. J.

    2016-01-01

    Although it is clear that probiotics improve intestinal barrier function, little is known about the effects of probiotics on the aging intestine. We investigated effects of 10-week bacterial supplementation of Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, or Bifidobacterium breve DSM20213 on gut barrier and immunity in 16-week-old accelerated aging Ercc1−/Δ7 mice, which have a median lifespan of ~20 weeks, and their wild-type littermates. The colonic barrier in Ercc1−/Δ7 mice was characterized by a thin (< 10 μm) mucus layer. L. plantarum prevented this decline in mucus integrity in Ercc1−/Δ7 mice, whereas B. breve exacerbated it. Bacterial supplementations affected the expression of immune-related genes, including Toll-like receptor 4. Regulatory T cell frequencies were increased in the mesenteric lymph nodes of L. plantarum- and L. casei-treated Ercc1−/Δ7 mice. L. plantarum- and L. casei-treated Ercc1−/Δ7 mice showed increased specific antibody production in a T cell-dependent immune response in vivo. By contrast, the effects of bacterial supplementation on wild-type control mice were negligible. Thus, supplementation with L. plantarum – but not with L. casei and B. breve – prevented the decline in the mucus barrier in Ercc1−/Δ7 mice. Our data indicate that age is an important factor influencing beneficial or detrimental effects of candidate probiotics. These findings also highlight the need for caution in translating beneficial effects of probiotics observed in young animals or humans to the elderly. PMID:27774093

  2. Loss of epidermal hypoxia-inducible factor-1α accelerates epidermal aging and affects re-epithelialization in human and mouse.

    PubMed

    Rezvani, Hamid Reza; Ali, Nsrein; Serrano-Sanchez, Martin; Dubus, Pierre; Varon, Christine; Ged, Cécile; Pain, Catherine; Cario-André, Muriel; Seneschal, Julien; Taïeb, Alain; de Verneuil, Hubert; Mazurier, Frédéric

    2011-12-15

    In mouse and human skin, HIF-1α is constitutively expressed in the epidermis, mainly in the basal layer. HIF-1α has been shown to have crucial systemic functions: regulation of kidney erythropoietin production in mice with constitutive HIF-1α epidermal deletion, and hypervascularity following epidermal HIF-1α overexpression. However, its local role in keratinocyte physiology has not been clearly defined. To address the function of HIF-1α in the epidermis, we used the mouse model of HIF-1α knockout targeted to keratinocytes (K14-Cre/Hif1a(flox/flox)). These mice had a delayed skin phenotype characterized by skin atrophy and pruritic inflammation, partly mediated by basement membrane disturbances involving laminin-332 (Ln-332) and integrins. We also investigated the relevance of results of studies in mice to human skin using reconstructed epidermis and showed that HIF-1α knockdown in human keratinocytes impairs the formation of a viable reconstructed epidermis. A diminution of keratinocyte growth potential, following HIF-1α silencing, was associated with a decreased expression of Ln-322 and α6 integrin and β1 integrin. Overall, these results indicate a role of HIF-1α in skin homeostasis especially during epidermal aging.

  3. Expression of Phenotypic Astrocyte Marker Is Increased in a Transgenic Mouse Model of Alzheimer's Disease versus Age-Matched Controls: A Presymptomatic Stage Study

    PubMed Central

    Doméné, Aurélie; Cavanagh, Chelsea; Page, Guylène; Bodard, Sylvie; Klein, Christophe; Delarasse, Cécile; Chalon, Sylvie

    2016-01-01

    Recent mouse studies of the presymptomatic stage of Alzheimer's disease (AD) have suggested that proinflammatory changes, such as glial activation and cytokine induction, may occur already at this early stage through unknown mechanisms. Because TNFα contributes to increased Aβ production from the Aβ precursor protein (APP), we assessed a putative correlation between APP/Aβ and TNFα during the presymptomatic stage as well as early astrocyte activation in the hippocampus of 3-month-old APPswe/PS1dE9 mice. While Western blots revealed significant APP expression, Aβ was not detectable by Western blot or ELISA attesting that 3-month-old, APPswe/PS1dE9 mice are at a presymptomatic stage of AD-like pathology. Western blots were also used to show increased GFAP expression in transgenic mice that positively correlated with both TNFα and APP, which were also mutually correlated. Subregional immunohistochemical quantification of phenotypic (GFAP) and functional (TSPO) markers of astrocyte activation indicated a selective and significant increase in GFAP-immunoreactive (IR) cells in the dentate gyrus of APPswe/PS1dE9 mice. Our data suggest that subtle morphological and phenotypic alterations, compatible with the engagement of astrocyte along the activation pathway, occur in the hippocampus already at the presymptomatic stage of AD. PMID:27672476

  4. Expression of Phenotypic Astrocyte Marker Is Increased in a Transgenic Mouse Model of Alzheimer's Disease versus Age-Matched Controls: A Presymptomatic Stage Study

    PubMed Central

    Doméné, Aurélie; Cavanagh, Chelsea; Page, Guylène; Bodard, Sylvie; Klein, Christophe; Delarasse, Cécile; Chalon, Sylvie

    2016-01-01

    Recent mouse studies of the presymptomatic stage of Alzheimer's disease (AD) have suggested that proinflammatory changes, such as glial activation and cytokine induction, may occur already at this early stage through unknown mechanisms. Because TNFα contributes to increased Aβ production from the Aβ precursor protein (APP), we assessed a putative correlation between APP/Aβ and TNFα during the presymptomatic stage as well as early astrocyte activation in the hippocampus of 3-month-old APPswe/PS1dE9 mice. While Western blots revealed significant APP expression, Aβ was not detectable by Western blot or ELISA attesting that 3-month-old, APPswe/PS1dE9 mice are at a presymptomatic stage of AD-like pathology. Western blots were also used to show increased GFAP expression in transgenic mice that positively correlated with both TNFα and APP, which were also mutually correlated. Subregional immunohistochemical quantification of phenotypic (GFAP) and functional (TSPO) markers of astrocyte activation indicated a selective and significant increase in GFAP-immunoreactive (IR) cells in the dentate gyrus of APPswe/PS1dE9 mice. Our data suggest that subtle morphological and phenotypic alterations, compatible with the engagement of astrocyte along the activation pathway, occur in the hippocampus already at the presymptomatic stage of AD.

  5. Expression of Phenotypic Astrocyte Marker Is Increased in a Transgenic Mouse Model of Alzheimer's Disease versus Age-Matched Controls: A Presymptomatic Stage Study.

    PubMed

    Doméné, Aurélie; Cavanagh, Chelsea; Page, Guylène; Bodard, Sylvie; Klein, Christophe; Delarasse, Cécile; Chalon, Sylvie; Krantic, Slavica

    2016-01-01

    Recent mouse studies of the presymptomatic stage of Alzheimer's disease (AD) have suggested that proinflammatory changes, such as glial activation and cytokine induction, may occur already at this early stage through unknown mechanisms. Because TNFα contributes to increased Aβ production from the Aβ precursor protein (APP), we assessed a putative correlation between APP/Aβ and TNFα during the presymptomatic stage as well as early astrocyte activation in the hippocampus of 3-month-old APPswe/PS1dE9 mice. While Western blots revealed significant APP expression, Aβ was not detectable by Western blot or ELISA attesting that 3-month-old, APPswe/PS1dE9 mice are at a presymptomatic stage of AD-like pathology. Western blots were also used to show increased GFAP expression in transgenic mice that positively correlated with both TNFα and APP, which were also mutually correlated. Subregional immunohistochemical quantification of phenotypic (GFAP) and functional (TSPO) markers of astrocyte activation indicated a selective and significant increase in GFAP-immunoreactive (IR) cells in the dentate gyrus of APPswe/PS1dE9 mice. Our data suggest that subtle morphological and phenotypic alterations, compatible with the engagement of astrocyte along the activation pathway, occur in the hippocampus already at the presymptomatic stage of AD. PMID:27672476

  6. Age-related expression of sigma1 receptors and antidepressant efficacy of a selective agonist in the senescence-accelerated (SAM) mouse.

    PubMed

    Phan, Vân-Ly; Miyamoto, Yoshiaki; Nabeshima, Toshitaka; Maurice, Tangui

    2005-02-15

    The sigma1 receptor is a unique intracellular receptor whose activation results in an efficient modulation of several neurotransmitter responses. Its role as a target for the rapid nongenomic effects of neuro(active)steroids and the age-related diminutions in steroid levels suggested that targeting the sigma1 receptor might allow alleviation of age-related neuronal dysfunctions. We examined here the expression and behavioral efficacy of sigma1 receptors in the senescence-accelerated (SAM) mouse model. The sigma1 receptor mRNA expression was measured by using comparative RT-PCR in the olfactory bulb, hippocampus, hypothalamus, cortex, or cerebellum of senescence-prone SAMP/8 and senescence-resistant SAMR/1 control animals. No difference was observed between substrains in 6-, 9-, and 12-month-old (m.o.) mice. The sigma1 protein expression was analyzed by using immunohistochemical techniques. Labeling was intense in the olfactory bulb, hippocampus, hypothalamus, and midbrain of both SAMR/1 and SAMP/8 mice, and the distribution appeared unchanged in 6-, 9-, and 12-m.o. animals. The receptor's in vivo availability was examined by using in vivo [3H](+)-SKF-10,047 binding. No age-related difference was observed in the olfactory bulb, hippocampus, hypothalamus, cortex, cerebellum, and brainstem of 6- or 12-m.o. SAMR/1 or SAMP/8 mice. The antidepressant efficacy of the selective agonist igmesine was examined in the forced-swimming test. The compound decreased significantly the immobility duration at 60 mg/kg in 6- and 12-m.o. SAMR/1 and in 6-m.o. SAMP/8 mice. In 12-m.o. SAMP/8 mice, the drug efficacy was facilitated; a significant effect was measured at 30 mg/kg. Decreased neurosteroid levels, particularly of progesterone, were seen in 12-m.o. SAMP/8 mice that might explain the enhanced efficacy of igmesine. Preserved sigma1 receptor expression and enhanced behavioral efficacy of sigma1 agonists were measured in SAM animals, confirming the therapeutic opportunities for

  7. Evolution of phenotypic plasticity in colonizing species.

    PubMed

    Lande, Russell

    2015-05-01

    I elaborate an hypothesis to explain inconsistent empirical findings comparing phenotypic plasticity in colonizing populations or species with plasticity from their native or ancestral range. Quantitative genetic theory on the evolution of plasticity reveals that colonization of a novel environment can cause a transient increase in plasticity: a rapid initial increase in plasticity accelerates evolution of a new optimal phenotype, followed by slow genetic assimilation of the new phenotype and reduction of plasticity. An association of colonization with increased plasticity depends on the difference in the optimal phenotype between ancestral and colonized environments, the difference in mean, variance and predictability of the environment, the cost of plasticity, and the time elapsed since colonization. The relative importance of these parameters depends on whether a phenotypic character develops by one-shot plasticity to a constant adult phenotype or by labile plasticity involving continuous and reversible development throughout adult life.

  8. Confronting Twin Paradox Acceleration

    NASA Astrophysics Data System (ADS)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  9. Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson’s disease

    PubMed Central

    Chen, Pan; DeWitt, Margaret R.; Bornhost, Julia; Soares, Felix A.; Mukhopadhyay, Somshuvra; Bowman, Aaron B.; Aschner, Michael

    2015-01-01

    Parkinson’s Disease (PD) is the second most common neurodegenerative disease, yet its etiology and pathogenesis are poorly understood. PD is characterized by selective dopaminergic (DAergic) degeneration and progressive hypokinetic motor impairment. Mutations in dj-1 cause autosomal recessive early-onset PD. DJ-1 is thought to protect DAergic neurons via an antioxidant mechanism, but the precise basis of this protection has not yet been resolved. Aging and manganese (Mn) exposure are significant non-genetic risk factors for PD. Caenorhabditis elegans (C. elegans) is an optimal model for PD and aging studies because of its simple nervous system, conserved DAergic machinery, and short 20-day lifespan. Here we tested the hypothesis that C. elegans DJ-1 homologues were protective against Mn-induced DAergic toxicity in an age-dependent manner. We showed that the deletion of C. elegans DJ-1 related (djr) genes, djr-1.2, decreased survival after Mn exposure. djr-1.2, the DJ-1 homologue was expressed in DAergic neurons and its deletion decreased lifespan and dopamine (DA)-dependent dauer movement behavior after Mn exposure. We also tested the role of DAF-16 as a regulator of dj-1.2 interaction with Mn toxicity. Lifespan defects resulting from djr-1.2 deletion could be restored to normal by overexpression of either DJR-1.2 or DAF-16. Furthermore, dauer movement alterations after djr-1.2 deletion were abolished by constitutive activation of DAF-16 through mutation of its inhibitor, DAF-2 insulin receptor. Taken together, our results reveal PD-relevant interactions between aging, the PD environmental risk factor manganese, and homologues of the established PD genetic risk factor DJ-1. Our data demonstrate a novel role for the DJ-1 homologue, djr-1.2, in mitigating Mn-dependent lifespan reduction and DA signaling alterations, involving DAF-2/DAF-16 signaling. PMID:25531510

  10. Data on the optimization of behavioral tasks for senescence-accelerated mouse prone 8 (SAMP8).

    PubMed

    Yanai, Shuichi; Endo, Shogo

    2016-09-01

    This data article contains the supporting information for the research article entitled "Early onset of behavioral alterations in senescence-accelerated mouse prone 8 (SAMP8)" [1]. Senescence-accelerated mouse prone 8 (SAMP8), which originally developed from AKR/J mice, shows learning and memory impairments at the age of 8-12 months. However, little information is still available on phenotypical characteristics of younger SAMP8. To fully understand the phenotype of younger SAMP8, we optimized two behavioral tasks for SAMP8. In the object recognition task, 4-month-old SAMP8 made significantly more contacts with the familiar objects compared to age-matched SAMR1, however, distance traveled for both strains of mice were comparable. In the fear conditioning task, conventionally-used CS-US combination failed to induce robust conditioned fear in both strains of mice. PMID:27331099

  11. Antisense directed against PS-1 gene decreases brain oxidative markers in aged senescence accelerated mice (SAMP8) and reverses learning and memory impairment: a proteomics study.

    PubMed

    Fiorini, Ada; Sultana, Rukhsana; Förster, Sarah; Perluigi, Marzia; Cenini, Giovanna; Cini, Chiara; Cai, Jian; Klein, Jon B; Farr, Susan A; Niehoff, Michael L; Morley, John E; Kumar, Vijaya B; Allan Butterfield, D

    2013-12-01

    Amyloid β-peptide (Aβ) plays a central role in the pathophysiology of Alzheimer's disease (AD) through the induction of oxidative stress. This peptide is produced by proteolytic cleavage of amyloid precursor protein (APP) by the action of β- and γ-secretases. Previous studies demonstrated that reduction of Aβ, using an antisense oligonucleotide (AO) directed against the Aβ region of APP, reduced oxidative stress-mediated damage and prevented or reverted cognitive deficits in senescence-accelerated prone mice (SAMP8), a useful animal model for investigating the events related to Aβ pathology and possibly to the early phase of AD. In the current study, aged SAMP8 were treated by AO directed against PS-1, a component of the γ-secretase complex, and tested for learning and memory in T-maze foot shock avoidance and novel object recognition. Brain tissue was collected to identify the decrease of oxidative stress and to evaluate the proteins that are differently expressed and oxidized after the reduction in free radical levels induced by Aβ. We used both expression proteomics and redox proteomics approaches. In brain of AO-treated mice a decrease of oxidative stress markers was found, and the proteins identified by proteomics as expressed differently or nitrated are involved in processes known to be impaired in AD. Our results suggest that the treatment with AO directed against PS-1 in old SAMP8 mice reverses learning and memory deficits and reduces Aβ-mediated oxidative stress with restoration to the normal condition and identifies possible pharmacological targets to combat this devastating dementing disease.

  12. Accelerated Telomere Shortening and Replicative Senescence in Human Fibroblasts Overexpressing Mutant and Wild Type Lamin A

    PubMed Central

    Huang, Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectible WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes. PMID:17870066

  13. Genetic characterization of senescence-accelerated mouse (SAM).

    PubMed

    Higuchi, K

    1997-01-01

    The Senescence-Accelerated Mouse (SAM) strains are unique and appropriate models for genetic studies on aging because the SAMP strains have an "accelerated senescence" phenotype for which the SAMR strains are controls, and each SAMP strain has a strain-specific age-associated disorder. Furthermore, because they have gone through sufficient generations of sister-brother mating, they can be considered inbred strains, which can be analyzed genetically. There are now 11 SAMP strains and 3 SAMR strains descended from the progenitor litters. Analysis with the Gompertz function shows that the SAMP strains have the same initial mortality rate (IMR) as the SAMR strains but a shorter mortality rate doubling time (MRDT), presumably due to genes that accelerated the rate of senescence in the SAMP strains. This accelerated senescence may also occur in cultured fibroblast-like cells. We performed molecular genetic characterization of all the SAM strains to acquire a base of genetic information from which we could develop hypotheses on the mechanism of development of SAM strains and genetic factors that contribute to accelerated senescence. PMID:9088910

  14. Lipoprotein(A) with An Intact Lysine Binding Site Protects the Retina From an Age-Related Macular Degeneration Phenotype in Mice (An American Ophthalmological Society Thesis)

    PubMed Central

    Handa, James T.; Tagami, Mizuki; Ebrahimi, Katayoon; Leibundgut, Gregor; Janiak, Anna; Witztum, Joseph L.; Tsimikas, Sotirios

    2015-01-01

    Purpose: To test the hypothesis that the accumulation of oxidized phospholipids (OxPL) in the macula is toxic to the retina unless neutralized by a variety of mechanisms, including binding by lipoprotein(a) [Lp(a)], which is composed of apolipoprotein(a) [apo(a)] and apolipoprotein B-100 (apoB). Methods: Human maculas and eyes from two Lp(a) transgenic murine models were subjected to morphologic, ultrastructural, and immunohistochemical analysis. “Wild-type Lp(a)” mice, which express human apoB-100 and apo(a) that contains oxidized phospholipid, and “mutant LBS− Lp(a)” mice with a defective apo(a) lysine binding site (LBS) for oxidized phospholipid binding, were fed a chow or high-fat diet for 2 to 12 months. Oxidized phospholipid–containing lipoproteins were detected by immunoreactivity to E06, a murine monoclonal antibody binding to the phosphocholine headgroup of oxidized, but not native, phospholipids. Results: Oxidized phospholipids, apo(a), and apoB accumulate in maculas, including drusen, of age-related macular degeneration (AMD) samples and age-matched controls. Lp(a) mice fed a high-fat diet developed age-related changes. However, mutant LBS− Lp(a) mice fed a high-fat diet developed retinal pigment epithelial cell degeneration and drusen. These changes were associated with increased OxPL, decreased antioxidant defenses, increased complement, and decreased complement regulators. Conclusions: Human maculas accumulate Lp(a) and OxPL. Mutant LBS− Lp(a) mice, lacking the ability to bind E06-detectable oxidized phospholipid, develop AMD-like changes. The ability of Lp(a) to bind E06-detectable OxPL may play a protective role in AMD. PMID:26538774

  15. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  16. The Influence of Insecticide Resistance, Age, Sex, and Blood Feeding Frequency on Thermal Tolerance of Wild and Laboratory Phenotypes of Anopheles funestus (Diptera: Culicidae).

    PubMed

    Lyons, C L; Oliver, S V; Hunt, R H; Coetzee, M

    2016-03-01

    Resistance to insecticides is a global phenomenon and is increasing at an unprecedented rate. How resistant and susceptible strains of malaria vectors might differ in terms of life history and basic biology is often overlooked, despite the potential importance of such information in light of changing climates. Here, we investigated the upper thermal limits (ULT50) of wild and laboratory strains of Anopheles funestus Giles mosquitoes, including resistance status, sex, age, and blood feeding status as potential factors influencing ULT50. No significant differences in ULT50 were observed between strains displaying different resistance patterns, nor was there a significant difference between wild and laboratory strains. In some instances, strains showed a senescence response, displaying decreased ULT50 with an increase in age, and differences between males and females (females displaying higher ULT50 than males). Blood feeding did not seem to influence ULT50 in any way. For An. funestus, it seems evident that there is no cost to resistance despite what is displayed in other anopheline species. This could have significant impacts for vector control, with resistant populations of An. funestus performing just as well, if not better, than susceptible strains, especially under changing environmental conditions such as those expected to occur with climate change.

  17. The Influence of Insecticide Resistance, Age, Sex, and Blood Feeding Frequency on Thermal Tolerance of Wild and Laboratory Phenotypes of Anopheles funestus (Diptera: Culicidae).

    PubMed

    Lyons, C L; Oliver, S V; Hunt, R H; Coetzee, M

    2016-03-01

    Resistance to insecticides is a global phenomenon and is increasing at an unprecedented rate. How resistant and susceptible strains of malaria vectors might differ in terms of life history and basic biology is often overlooked, despite the potential importance of such information in light of changing climates. Here, we investigated the upper thermal limits (ULT50) of wild and laboratory strains of Anopheles funestus Giles mosquitoes, including resistance status, sex, age, and blood feeding status as potential factors influencing ULT50. No significant differences in ULT50 were observed between strains displaying different resistance patterns, nor was there a significant difference between wild and laboratory strains. In some instances, strains showed a senescence response, displaying decreased ULT50 with an increase in age, and differences between males and females (females displaying higher ULT50 than males). Blood feeding did not seem to influence ULT50 in any way. For An. funestus, it seems evident that there is no cost to resistance despite what is displayed in other anopheline species. This could have significant impacts for vector control, with resistant populations of An. funestus performing just as well, if not better, than susceptible strains, especially under changing environmental conditions such as those expected to occur with climate change. PMID:26718714

  18. Chronic kidney disease and premature ageing.

    PubMed

    Kooman, Jeroen P; Kotanko, Peter; Schols, Annemie M W J; Shiels, Paul G; Stenvinkel, Peter

    2014-12-01

    Chronic kidney disease (CKD) shares many phenotypic similarities with other chronic diseases, including heart failure, chronic obstructive pulmonary disease, HIV infection and rheumatoid arthritis. The most apparent similarity is premature ageing, involving accelerated vascular disease and muscle wasting. We propose that in addition to a sedentary lifestyle and psychosocial and socioeconomic determinants, four major disease-induced mechanisms underlie premature ageing in CKD: an increase in allostatic load, activation of the 'stress resistance response', activation of age-promoting mechanisms and impairment of anti-ageing pathways. The most effective current interventions to modulate premature ageing-treatment of the underlying disease, optimal nutrition, correction of the internal environment and exercise training-reduce systemic inflammation and oxidative stress and induce muscle anabolism. Deeper mechanistic insight into the phenomena of premature ageing as well as early diagnosis of CKD might improve the application and efficacy of these interventions and provide novel leads to combat muscle wasting and vascular impairment in chronic diseases.

  19. Associations of Polymorphisms in MTHFR Gene with the Risk of Age-Related Cataract in Chinese Han Population: A Genotype-Phenotype Analysis

    PubMed Central

    Wei, Li; Han, Ya-di; Cui, Ning-hua; Huang, Zhu-liang; Li, Zu-hua; Zheng, Fang; Yan, Ming

    2015-01-01

    Homocysteine (Hcy) is a potential risk factor for age-related cataract (ARC). Methylenetetrahydrofolate reductase (MTHFR) is the key enzyme for Hcy metabolism, and variants of MTHFR may affect MTHFR enzyme activity. This study mainly evaluated the associations between variants in MTHFR gene, plasma MTHFR enzyme activity, total Hcy (tHcy) levels and ARC risk in Chinese population. Four single nucleotide polymorphisms (SNPs) in MTHFR gene were genotyped using the high-resolution melting (HRM) method in 502 ARC patients (mean age, 70.2 [SD, 9.0], 46.0% male) and 890 healthy controls (mean age, 67.1 [SD, 11.1], 47.6% male). The plasma MTHFR activity, folic acid (FA), vitamins B12 and B6 levels were detected by enzyme-linked immunosorbent assays (ELISA). The plasma tHcy levels were measured by an automated enzymatic assay. After the Bonferroni correction, the minor allele T of SNP rs1801133 showed a significant association with an increased risk of overall ARC (OR = 1.26, P = 0.003). Consistent association was also found between SNP rs1801133 and cortical ARC risk (OR = 1.44, P = 0.003). Haplotype analyses revealed an adverse effect of the haplotype "C-A-T-C" (alleles in order of SNPs rs3737967, rs1801131, rs1801133 and rs9651118) on ARC risk (OR = 1.55, P = 0.003). Moreover, in a joint analysis of SNPs rs9651118 and rs1801133, subjects with two unfavorable genotypes had a 1.76-fold increased risk of ARC compared with the reference group, and a statistically significant dose-response trend (Ptrend = 0.001) was also observed. Further, in healthy controls and patients with cortical ARC, the allele T of SNP rs1801133 and the increasing number of unfavorable genotypes were significantly correlated with decreased MTHFR activity as well as increased tHcy levels. However, there was no significant association between FA, vitamins B12, B6 levels and MTHFR variants. Our data indicated that variants in MTHFR gene might individually and jointly influence susceptibility to ARC by

  20. Differences in phenotype and gene expression of prostate stromal cells from patients of varying ages and their influence on tumour formation by prostate epithelial cells

    PubMed Central

    Wang, Yong-Chuan; Yu, Sheng-Qiang; Wang, Xiao-Hai; Han, Bang-Min; Zhao, Fu-Jun; Zhu, Guang-Hui; Hong, Yan; Xia, Shu-Jie

    2011-01-01

    Prostate cancer (PCa) is an age-related disease, and the stromal microenvironment plays an important role in prostatic malignant progression. However, the differences in prostate stromal cells present in young and old tissue are still obscure. We established primary cultured stromal cells from normal prostatic peripheral zone (PZ) of donors of varying ages and found that cultured stromal cells from old donors (PZ-old) were more enlarged and polygonal than those from young donors (PZ-young). Furthermore, based on immunocytochemical and ultrastructural analysis, the components of stromal cells changed from a majority of fibroblasts to a mixture of fibroblasts and myofibroblasts with increasing donor age. Using a three-dimensional in vitro culture system, we found that PZ-old stromal cells could enhance the proliferation, migration and invasion of cocultured benign BPH-1 and PC-3 cells. Using an in vivo tissue recombination system, we also found that PZ-old stromal cells are more effective than PZ-young cells in promoting tumour formation by BPH-1 cells of high passage(>100) and PC-3 cells. To probe the possible mechanism of these effects, we performed cDNA microarray analysis and profiled 509 upregulated genes and 188 downregulated genes in PZ-old cells. Among the changed genes, we found genes coding for a subset of paracrine factors that are capable of influencing adjacent epithelial cells; these include hepatocyte growth factor (HGF), fibroblast growth factor 5 (FGF5), insulin-like growth factor 2 (IGF2), insulin-like growth factor-binding protein 4 (IGFBP4), IGFBP5 and matrix metallopeptidase 1 (MMP1). Changes in the expression of these genes were further confirmed by quantitative real-time polymerase chain reaction (PCR), Western blotting and enzyme-linked immunosorbent assays. Overall, our findings indicate that stromal cells from prostate PZ of old donors are more active than similar cells from young donors in promoting the malignant process of adjacent

  1. Segmental and age differences in the elastin network, collagen, and smooth muscle phenotype in the tunica media of the porcine aorta.

    PubMed

    Tonar, Zbyněk; Kubíková, Tereza; Prior, Claudia; Demjén, Erna; Liška, Václav; Králíčková, Milena; Witter, Kirsti

    2015-09-01

    The porcine aorta is often used in studies on morphology, pathology, transplantation surgery, vascular and endovascular surgery, and biomechanics of the large arteries. Using quantitative histology and stereology, we estimated the area fraction of elastin, collagen, alpha-smooth muscle actin, vimentin, and desmin within the tunica media in 123 tissue samples collected from five segments (thoracic ascending aorta; aortic arch; thoracic descending aorta; suprarenal abdominal aorta; and infrarenal abdominal aorta) of porcine aortae from growing domestic pigs (n=25), ranging in age from 0 to 230 days. The descending thoracic aorta had the greatest elastin fraction, which decreased proximally toward the aortic arch as well as distally toward the abdominal aorta. Abdominal aortic segments had the highest fraction of actin, desmin, and vimentin positivity and all of these vascular smooth muscle markers were lower in the thoracic aortic segments. No quantitative differences were found when comparing the suprarenal abdominal segments with the infrarenal abdominal segments. The area fraction of actin within the media was comparable in all age groups and it was proportional to the postnatal growth. Thicker aortic segments had more elastin and collagen with fewer contractile cells. The collagen fraction decreased from ascending aorta and aortic arch toward the descending aorta. By revealing the variability of the quantitative composition of the porcine aorta, the results are suitable for planning experiments with the porcine aorta as a model, i.e. power test analyses and estimating the number of samples necessary to achieving a desirable level of precision. The complete primary morphometric data, in the form of continuous variables, are made publicly available for biomechanical modeling of site-dependent distensibility and compliance of the porcine aorta. PMID:26232584

  2. Conceptual Models of Frailty: The Sarcopenia Phenotype.

    PubMed

    Afilalo, Jonathan

    2016-09-01

    Population aging has redefined cardiovascular medicine toward multifaceted patient-oriented care, with frailty emerging as a fundamental concept. The definition of frailty is ardently debated between opposing constructs: phenotypic criteria and accumulated deficits. Phenotypic criteria revolve around age-related loss of muscle mass and strength, known as sarcopenia. Skeletal muscle is crucial for functioning, mobility, energetics, and is the body's primary reservoir for amino acids. Sarcopenia can be assessed objectively, serving as an incremental predictor of adverse health outcomes and a therapeutic target for muscle-building interventions. Thus, the sarcopenia phenotype should be the central focus of frailty assessment and intervention. PMID:27568870

  3. [Mitochondria, oxidative stress and aging].

    PubMed

    Szarka, András; Bánhegyi, Gábor; Sümegi, Balázs

    2014-03-23

    The free radical theory of aging was defined in the 1950s. On the base of this theory, the reactive oxygen species formed in the metabolic pathways can play pivotal role in ageing. The theory was modified by defining the mitochondrial respiration as the major cellular source of reactive oxygen species and got the new name mitochondrial theory of aging. Later on the existence of a "vicious cycle" was proposed, in which the reactive oxygen species formed in the mitochondrial respiration impair the mitochondrial DNA and its functions. The formation of reactive oxygen species are elevated due to mitochondrial dysfunction. The formation of mitochondrial DNA mutations can be accelerated by this "vicious cycle", which can lead to accelerated aging. The exonuclease activity of DNA polymerase γ, the polymerase responsible for the replication of mitochondrial DNA was impaired in mtDNA mutator mouse recently. The rate of somatic mutations in mitochondrial DNA was elevated and an aging phenotype could have been observed in these mice. Surprisingly, no oxidative impairment neither elevated reactive oxygen species formation could have been observed in the mtDNA mutator mice, which may question the existence of the "vicious cycle".

  4. [Mitochondria, oxidative stress and aging].

    PubMed

    Szarka, András; Bánhegyi, Gábor; Sümegi, Balázs

    2014-03-23

    The free radical theory of aging was defined in the 1950s. On the base of this theory, the reactive oxygen species formed in the metabolic pathways can play pivotal role in ageing. The theory was modified by defining the mitochondrial respiration as the major cellular source of reactive oxygen species and got the new name mitochondrial theory of aging. Later on the existence of a "vicious cycle" was proposed, in which the reactive oxygen species formed in the mitochondrial respiration impair the mitochondrial DNA and its functions. The formation of reactive oxygen species are elevated due to mitochondrial dysfunction. The formation of mitochondrial DNA mutations can be accelerated by this "vicious cycle", which can lead to accelerated aging. The exonuclease activity of DNA polymerase γ, the polymerase responsible for the replication of mitochondrial DNA was impaired in mtDNA mutator mouse recently. The rate of somatic mutations in mitochondrial DNA was elevated and an aging phenotype could have been observed in these mice. Surprisingly, no oxidative impairment neither elevated reactive oxygen species formation could have been observed in the mtDNA mutator mice, which may question the existence of the "vicious cycle". PMID:24631932

  5. Use of senescence-accelerated mouse model in bleomycin-induced lung injury suggests that bone marrow-derived cells can alter the outcome of lung injury in aged mice.

    PubMed

    Xu, Jianguo; Gonzalez, Edilson T; Iyer, Smita S; Mac, Valerie; Mora, Ana L; Sutliff, Roy L; Reed, Alana; Brigham, Kenneth L; Kelly, Patricia; Rojas, Mauricio

    2009-07-01

    The incidence of pulmonary fibrosis increases with age. Studies from our group have implicated circulating progenitor cells, termed fibrocytes, in lung fibrosis. In this study, we investigate whether the preceding determinants of inflammation and fibrosis were augmented with aging. We compared responses to intratracheal bleomycin in senescence-accelerated prone mice (SAMP), with responses in age-matched control senescence-accelerated resistant mice (SAMR). SAMP mice demonstrated an exaggerated inflammatory response as evidenced by lung histology. Bleomycin-induced fibrosis was significantly higher in SAMP mice compared with SAMR controls. Consistent with fibrotic changes in the lung, SAMP mice expressed higher levels of transforming growth factor-beta1 in the lung. Furthermore, SAMP mice showed higher numbers of fibrocytes and higher levels of stromal cell-derived factor-1 in the peripheral blood. This study provides the novel observation that apart from increases in inflammatory and fibrotic factors in response to injury, the increased mobilization of fibrocytes may be involved in age-related susceptibility to lung fibrosis. PMID:19359440

  6. Accelerating the translation of research into practice in long term services and supports: a critical need for federal infrastructure at the nexus of aging and disability.

    PubMed

    Washko, Michelle M; Campbell, Margaret; Tilly, Jane

    2012-01-01

    The nexus of aging and disability, characterized by the phenomenon of aging with a disability, will become more visible as the population ages and the number of people with disabilities surviving to midlife increases. This article addresses 3 interrelated issues critical to the fields of aging and disability: increasing demand for community-based long-term services and supports, a paucity of evidence-based programs demonstrating effectiveness in facilitating independence for those aging with a disability, and lack of a federal infrastructure to support coordinated investments in research-to-practice for this population. Suggestions for federal interagency collaborations are given, along with roles for key stakeholders.

  7. The Chinese traditional medicine 'Bushen Yinao Pian' increased the level of ageing-related gene LRPAP-1 expression in the cerebral tissue of accelerated senescence-prone mouse 8/Ta.

    PubMed

    Zhang, Chong; Yang, Ting; Wang, Jingang; Liu, Guisheng; Chen, Qingxuan

    2005-04-01

    The molecular mechanism of the Chinese traditional medicine 'Bushen Yinao Pian' (a complex prescription used for clinical anti-ageing in China for over 20 years) is elusive. In this study, the cDNA of low-density lipoprotein related-receptor associated protein-1 (LRPAP-1), an ageing-related gene, which functions as a chaperon or escort protein in the intracellular transport of low-density lipoprotein related-receptor, a transporter of amyloid beta protein (AbetaP), had been cloned by screening cDNA library based on analyzing the gene expression in cerebral tissue between the test and the control accelerated senescence-prone mouse 8/Ta (SAMP8/Ta). The result shows that this complex prescription increased the expression level of LRPAP-1. It indicated that the Chinese traditional medicine 'Bushen Yinao Pian' plays an important role in anti-ageing by increasing LRPAP-1 expression level. PMID:15763364

  8. Radioisotope Dating with Accelerators.

    ERIC Educational Resources Information Center

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  9. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A

    SciTech Connect

    Huang Shurong; Risques, Rosa Ana; Martin, George M.; Rabinovitch, Peter S.; Oshima, Junko

    2008-01-01

    LMNA mutations are responsible for a variety of genetic disorders, including muscular dystrophy, lipodystrophy, and certain progeroid syndromes, notably Hutchinson-Gilford Progeria. Although a number of clinical features of these disorders are suggestive of accelerated aging, it is not known whether cells derived from these patients exhibit cellular phenotypes associated with accelerated aging. We examined a series of isogenic skin fibroblast lines transfected with LMNA constructs bearing known pathogenic point mutations or deletion mutations found in progeroid syndromes. Fibroblasts overexpressing mutant lamin A exhibited accelerated rates of loss of telomeres and shortened replicative lifespans, in addition to abnormal nuclear morphology. To our surprise, these abnormalities were also observed in lines overexpressing wild-type lamin A. Copy number variants are common in human populations; those involving LMNA, whether arising meiotically or mitotically, might lead to progeroid phenotypes. In an initial pilot study of 23 progeroid cases without detectable WRN or LMNA mutations, however, no cases of altered LMNA copy number were detected. Nevertheless, our findings raise a hypothesis that changes in lamina organization may cause accelerated telomere attrition, with different kinetics for overexpession of wild-type and mutant lamin A, which leads to rapid replicative senescence and progroid phenotypes.

  10. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  11. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  12. Carotid Intima-Media Thickness at Age 30, Birth Weight, Accelerated Growth during Infancy and Breastfeeding: A Birth Cohort Study in Southern Brazil

    PubMed Central

    Linhares, Rogério da Silva; Gigante, Denise Petrucci; de Barros, Fernando Celso Lopes Fernandes; Horta, Bernardo Lessa

    2015-01-01

    Objective To examine the relationship between carotid intima-media thickness (IMT) at age 30 and birth characteristics, growth during infancy, and breastfeeding duration, among subjects who have been prospectively followed since birth. Methods and Results In 1982, all births in the city of Pelotas, southern Brazil, were identified and those children (n = 5,914) whose families lived in the urban area of the city have been followed and evaluated at several time points. The cohort participants were evaluated in 2012–13, and IMT was measured at the posterior wall of the right and left common carotid arteries in longitudinal planes using ultrasound imaging. We obtained valid IMT measurements for 3,188 individuals. Weight-for-age z-score (WAZ) at age 2 years, weight-for-height z-score (WHZ) at age 4, height-for-age z-score (HAZ) at 4 years, WAZ at age 4 and relative conditional weight at 4 years were positively associated with IMT, even after controlling for confounding variables. The beta-coefficient associated with ≥1 s.d. WAZ at age 2 (compared to those with a <–1 s.d.) was 3.62 μm (95% CI 0.86 to 6.38). The beta-coefficient associated with ≥1 s.d. WHZ at 4 (in relation to <–1 s.d) was 3.83 μm (95% CI 0.24 to 7.42). For HAZ at 4, the beta-coefficient for ≥1 s.d. in relation to <–1 s.d. was 4.19 μm (95% CI 1.14 to 7.25). For WAZ at 4, the beta-coefficient associated with ≥1 s.d. in relation to <–1 s.d. was 4.28 μm (95% CI 1.59 to 6.97). The beta-coefficient associated with conditional weight gain at age 2–4 was 1.26 μm (95% CI 0.49 to 2.02). Conclusion IMT at age 30 was positively associated with WAZ at age 2 years, WHZ at age 4, HAZ at age 4, WAZ at age 4 and conditional weight gain at age 4 years. PMID:25611747

  13. Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis.

    PubMed

    Jaudal, Mauren; Zhang, Lulu; Che, Chong; Putterill, Joanna

    2015-01-01

    The timing of the transition to flowering is carefully controlled by plants in order to optimize sexual reproduction and the ensuing production of seeds, grains, and fruits. The genetic networks that regulate floral induction are best characterized in the temperate eudicot Arabidopsis in which the florigen gene FT plays a major role in promoting the transition to flowering. Legumes are an important plant group, but less is known about the regulation of their flowering time. In the model legume Medicago truncatula (Medicago), a temperate annual plant like Arabidopsis, flowering is induced by prolonged cold (vernalization) followed by long day lengths (LD). Recent molecular-genetic experiments have revealed that a FT-like gene, MtFTa1, is a central regulator of flowering time in Medicago. Here, we characterize the three Medicago FRUITFULL (FUL) MADS transcription factors, MtFULa, MtFULb, and MtFULc using phylogenetic analyses, gene expression profiling through developmental time courses, and functional analyses in transgenic plants. MtFULa and MtFULb have similarity in sequence and expression profiles under inductive environmental conditions during both vegetative and reproductive development while MtFULc is only up regulated in the apex after flowering in LD conditions. Sustained up regulation of MtFULs requires functional MtFTa1 but their transcript levels are not affected during cold treatment. Overexpression of MtFULa and MtFULb promotes flowering in transgenic Arabidopsis plants with an additional terminal flower phenotype on some 35S:MtFULb plants. An increase in transcript levels of the MtFULs was also observed in Medicago plants overexpressing MtFTa1. Our results suggest that the MtFULs are targets of MtFTa1. Overall, this work highlights the conserved functions of FUL-like genes in promoting flowering and other roles in plant development and thus contributes to our understanding of the genetic control of the flowering process in Medicago.

  14. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  15. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  16. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  17. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  18. Down regulation of miR-124 in both Werner syndrome DNA helicase mutant mice and mutant Caenorhabditis elegans wrn-1 reveals the importance of this microRNA in accelerated aging.

    PubMed

    Dallaire, Alexandra; Garand, Chantal; Paquel, Eric R; Mitchell, Sarah J; de Cabo, Rafael; Simard, Martin J; Lebel, Michel

    2012-09-01

    Small non-coding microRNAs are believed to be involved in the mechanism of aging but nothing is known on the impact of microRNAs in the progeroid disorder Werner syndrome (WS). WS is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN ortholog exhibit many phenotypic features of WS, including a pro-oxidant status and a shorter mean life span.Caenorhabditis elegans (C. elegans) with a nonfunctional wrn-1 DNA helicase also exhibit a shorter life span. Thus, both models are relevant to study the expression of microRNAs involved in WS. In this study, we show that miR-124 expression is lost in the liver of Wrn helicase mutant mice. Interestingly, the expression of this conserved miR-124 in whole wrn-1 mutant worms is also significantly reduced. The loss of mir-124 in C. elegans increases reactive oxygen species formation and accumulation of the aging marker lipofuscin, reduces whole body ATP levels and results in a reduction in life span. Finally, supplementation of vitamin C normalizes the median life span of wrn-1 and mir-124 mutant worms. These results suggest that biological pathways involving WRN and miR-124 are conserved in the aging process across different species.

  19. Acupuncture regulates the aging-related changes in gene profile expression of the hippocampus in senescence-accelerated mouse (SAMP10).

    PubMed

    Ding, Xiaorong; Yu, Jianchun; Yu, Tao; Fu, Yu; Han, Jingxian

    2006-05-15

    To examine molecular events in hippocampus associated with aging and acupuncture effect, we employed cDNA arrays providing data of 588 genes to define transcriptional patterns. Male 8-month-old SAMP10 and its homologous SAMRl were selected and randomly divided into four groups: R1 control group (Rc), P10 control group (Pc), P10 acupuncture group (Pa) and P10 non-acupoint group (Pn). The points consisted Shanzhong (CV17), Zhongwan (CV12), Qihai (CV6), Zusanli (ST36) and Xuehai (SP10). In Pa, we found that points stimuli could completely or partly reverse some genes expression profiles in hippocampus with aging. Simultaneously, some genes not related with brain aging were affected by acupuncture as well. Meanwhile, non-acupoint had some effect on aging-unrelated genes expression and little or negative effect on aging-related genes. We verified array results with RT-PCR and Northern blotting for three genes which are related to oxidative damage closely, including Hsp84, Hsp86 and YB-1. In conclusion, acupuncture could be a potential intervention to retard molecular events with aging in mammals. PMID:16516385

  20. [Intermediate phenotype of schizophrenia].

    PubMed

    Hashimoto, Ryota

    2013-04-01

    Genes are major contributors to schizophrenia. The intermediate phenotype concept represents a strategy for identifying risk genes for schizophrenia and for characterizing the neural systems affected by risk gene variants to elucidate quantitative, mechanistic aspects of brain function implicated in schizophrenia. Intermediate phenotypes are defined by being heritable, being able to measure quantitatively; being related to the disorder and its symptoms in the general population; being stable over time; showing increased expression in unaffected relatives of probands; and cosegregation with the disorder in families. Intermediate phenotypes in schizophrenia are neurocognition, neuroimaging, neurophysiology, etc. In this review, we present concept, recent work, and future perspective of intermediate phenotype.

  1. Normocalcaemic pseudohypoparathyroidism with unusual phenotype.

    PubMed

    Gertner, J M; Tomlinson, S; Gonzalez-Macias, J

    1978-04-01

    We describe a boy who presented at 4 years of age with radiological hyperparathyroidism, osteosclerosis, and necrosis of the femoral heads. Plasma biochemistry was normal but the parathyroid hormone (PTH) level was very high. He was deaf and had an unusual facies but did not have the phenotype of Albright's hereditary osteodystrophy. Plasma and urine cyclic AMP reponses to bovine PTH were markedly subnormal. Vitamin D produced sustained hypercalcaemia and a fall in plasma phosphorus. After four hyperplastic parathyroid glands were removed he became hypocalcaemic and plasma phosphorus rose. After operation he remained unresponsive to exogenous PTH; We suggest that he had a form of pseudohypoparathyroidism without the phenotype of Albright's hereditary osteodystrophy and with some residual skeletal and renal responsiveness to PTH. PMID:646442

  2. Mosaic aging

    PubMed Central

    Walker, Lary C.; Herndon, James G.

    2010-01-01

    Summary Although all multicellular organisms undergo structural and functional deterioration with age, senescence is not a uniform process. Rather, each organism experiences a constellation of changes that reflect the heterogeneous effects of age on molecules, cells, organs and systems, an idiosyncratic pattern that we refer to as mosaic aging. Varying genetic, epigenetic and environmental factors (local and extrinsic) contribute to the aging phenotype in a given individual, and these agents influence the type and rate of functional decline, as well as the likelihood of developing age-associated afflictions such as cardiovascular disease, arthritis, cancer, and neurodegenerative disorders. Identifying key factors that drive aging, clarifying their activities in different systems, and in particular understanding how they interact will enhance our comprehension of the aging process, and could yield insights into the permissive role that senescence plays in the emergence of acute and chronic diseases of the elderly. PMID:20110150

  3. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging.

    PubMed

    Zhang, Teng; Zhou, Yang; Li, Li; Wang, Hong-Hui; Ma, Xue-Shan; Qian, Wei-Ping; Shen, Wei; Schatten, Heide; Sun, Qing-Yuan

    2016-04-01

    The quality of metaphase II oocytes will undergo a time-dependent deterioration following ovulation as the result of the oocyte aging process. In this study, we determined that the expression of sirtuin family members (SIRT1, 2, 3) was dramatically reduced in mouse oocytes aged in vivo or in vitro. Increased intracellular ROS was observed when SIRT1, 2, 3 activity was inhibited. Increased frequency of spindle defects and disturbed distribution of mitochondria were also observed in MII oocytes aged in vitro after treatment with Nicotinamide (NAM), indicating that inhibition of SIRT1, 2, 3 may accelerate postovulatory oocyte aging. Interestingly, when MII oocytes were exposed to caffeine, the decline of SIRT1, 2, 3 mRNA levels was delayed and the aging-associated defective phenotypes could be improved. The results suggest that the SIRT1, 2, 3 pathway may play a potential protective role against postovulatory oocyte aging by controlling ROS generation. PMID:26974211

  4. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging

    PubMed Central

    Zhang, Teng; Zhou, Yang; Li, Li; Wang, Hong-Hui; Ma, Xue-Shan; Qian, Wei-Ping; Shen, Wei; Schatten, Heide; Sun, Qing-Yuan

    2016-01-01

    The quality of metaphase II oocytes will undergo a time-dependent deterioration following ovulation as the result of the oocyte aging process. In this study, we determined that the expression of sirtuin family members (SIRT1, 2, 3) was dramatically reduced in mouse oocytes aged in vivo or in vitro. Increased intracellular ROS was observed when SIRT1, 2, 3 activity was inhibited. Increased frequency of spindle defects and disturbed distribution of mitochondria were also observed in MII oocytes aged in vitro after treatment with Nicotinamide (NAM), indicating that inhibition of SIRT1, 2, 3 may accelerate postovulatory oocyte aging. Interestingly, when MII oocytes were exposed to caffeine, the decline of SIRT1, 2, 3 mRNA levels was delayed and the aging-associated defective phenotypes could be improved. The results suggest that the SIRT1, 2, 3 pathway may play a potential protective role against postovulatory oocyte aging by controlling ROS generation. PMID:26974211

  5. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging?

    PubMed

    Salmon, Adam B; Richardson, Arlan; Pérez, Viviana I

    2010-03-01

    The oxidative stress theory of aging predicts that manipulations that alter oxidative stress/damage will alter aging. The gold standard for determining whether aging is altered is life span, i.e., does altering oxidative stress/damage change life span? Mice with genetic manipulations in their antioxidant defense system designed to directly address this prediction have, with few exceptions, shown no change in life span. However, when these transgenic/knockout mice are tested using models that develop various types of age-related pathology, they show alterations in progression and/or severity of pathology as predicted by the oxidative stress theory: increased oxidative stress accelerates pathology and reduced oxidative stress retards pathology. These contradictory observations might mean that (a) oxidative stress plays a very limited, if any, role in aging but a major role in health span and/or (b) the role that oxidative stress plays in aging depends on environment. In environments with minimal stress, as expected under optimal husbandry, oxidative damage plays little role in aging. However, under chronic stress, including pathological phenotypes that diminish optimal health, oxidative stress/damage plays a major role in aging. Under these conditions, enhanced antioxidant defenses exert an "antiaging" action, leading to changes in life span, age-related pathology, and physiological function as predicted by the oxidative stress theory of aging.

  6. In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice.

    PubMed

    Logan, Angela; Shabalina, Irina G; Prime, Tracy A; Rogatti, Sebastian; Kalinovich, Anastasia V; Hartley, Richard C; Budd, Ralph C; Cannon, Barbara; Murphy, Michael P

    2014-08-01

    In mtDNA mutator mice, mtDNA mutations accumulate leading to a rapidly aging phenotype. However, there is little evidence of oxidative damage to tissues, and when analyzed ex vivo, no change in production of the reactive oxygen species (ROS) superoxide and hydrogen peroxide by mitochondria has been reported, undermining the mitochondrial oxidative damage theory of aging. Paradoxically, interventions that decrease mitochondrial ROS levels in vivo delay onset of aging. To reconcile these findings, we used the mitochondria-targeted mass spectrometry probe MitoB to measure hydrogen peroxide within mitochondria of living mice. Mitochondrial hydrogen peroxide was the same in young mutator and control mice, but as the mutator mice aged, hydrogen peroxide increased. This suggests that the prolonged presence of mtDNA mutations in vivo increases hydrogen peroxide that contributes to an accelerated aging phenotype, perhaps through the activation of pro-apoptotic and pro-inflammatory redox signaling pathways.

  7. Premature ovarian failure (POF): discordance between somatic and reproductive aging.

    PubMed

    Pal, Lubna; Santoro, Nanette

    2002-06-01

    Premature ovarian failure (POF) is a unique example of isolated organ senescence, with a population prevalence of approximately 1%. Though the phenotypic expression of POF is similar to that of age-appropriate natural menopause, the underlying pathophysiological mechanisms are diverse and not entirely clear. The impact of POF on the patient is profound, with myriad ramifications, ranging from psychological devastation to multi-system implications of estrogen deprivation and its sequelae. The hastening of degenerative changes noted in these patients however, are not entirely ameliorated with estrogen replacement and POF may indeed represent an acceleration of the aging process.

  8. What Makes a Student Non-Traditional? A Comparison of Students over and under Age 25 in Online, Accelerated Psychology Courses

    ERIC Educational Resources Information Center

    Tilley, Brian P.

    2014-01-01

    The growing proportion of non-traditional students, very commonly defined as students over the age of 25 (though other features vary from study to study) necessitates more studies with this increasingly relevant group participating. Recently, the growth of non-traditional universities such as those offering predominantly online, accelerated…

  9. Phenotype definition in epilepsy.

    PubMed

    Winawer, Melodie R

    2006-05-01

    Phenotype definition consists of the use of epidemiologic, biological, molecular, or computational methods to systematically select features of a disorder that might result from distinct genetic influences. By carefully defining the target phenotype, or dividing the sample by phenotypic characteristics, we can hope to narrow the range of genes that influence risk for the trait in the study population, thereby increasing the likelihood of finding them. In this article, fundamental issues that arise in phenotyping in epilepsy and other disorders are reviewed, and factors complicating genotype-phenotype correlation are discussed. Methods of data collection, analysis, and interpretation are addressed, focusing on epidemiologic studies. With this foundation in place, the epilepsy subtypes and clinical features that appear to have a genetic basis are described, and the epidemiologic studies that have provided evidence for the heritability of these phenotypic characteristics, supporting their use in future genetic investigations, are reviewed. Finally, several molecular approaches to phenotype definition are discussed, in which the molecular defect, rather than the clinical phenotype, is used as a starting point.

  10. Accelerated life testing of spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  11. The Phenotype of Spontaneous Preterm Birth: Application of a Clinical Phenotyping Tool

    PubMed Central

    Manuck, Tracy A.; Esplin, M. Sean; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Varner, Michael W.; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M.; Ilekis, John

    2015-01-01

    Objective Spontaneous preterm birth (SPTB) is a complex condition that is likely a final common pathway with multiple possible etiologies. We hypothesized that a comprehensive classification system could appropriately group women with similar STPB etiologies, and provide an explanation, at least in part, for the disparities in SPTB associated with race and gestational age at delivery. Study Design Planned analysis of a multicenter, prospective study of singleton SPTB. Women with SPTB < 34 weeks were included. We defined 9 potential SPTB phenotypes based on clinical data, including infection/inflammation, maternal stress, decidual hemorrhage, uterine distention, cervical insufficiency, placental dysfunction, premature rupture of the membranes, maternal comorbidities, and familial factors. Each woman was evaluated for each phenotype. Delivery gestational age was compared between those with and without each phenotype. Phenotype profiles were also compared between women with very early (20.0–27.9 weeks) SPTB vs. those with early SPTB (28.0–34.0 weeks), and between African-American and Caucasian women. Statistical analysis was by t-test and chi-square as appropriate. Results The phenotyping tool was applied to 1025 women with SPTB who delivered at a mean 30.0 (+/− 3.2) weeks gestation. Of these, 800 (78%) had ≥2 phenotypes. Only 43 (4.2%) had no phenotypes. The 281 women with early SPTB were more likely to have infection/inflammation, decidual hemorrhage, and cervical insufficiency phenotypes (all p≤0.001). African-American women had more maternal stress and cervical insufficiency but less decidual hemorrhage and placental dysfunction compared to Caucasian women (all p<0.05). Gestational age at delivery decreased as the number of phenotypes present increased. Conclusions Precise SPTB phenotyping classifies women with SPTB and identifies specific differences between very early and early SPTB and between African-Americans and Caucasians. PMID:25687564

  12. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  13. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  14. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  15. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  16. Accelerated ageing experiments with crosslinked and conventional ultra-high molecular weight polyethylene (UHMW-PE) stabilised with alpha-tocopherol for total joint arthroplasty.

    PubMed

    Wolf, C; Macho, C; Lederer, K

    2006-12-01

    Samples of untreated ultra-high molecular weight polyethylene (UHMW-PE), UHMW-PE sterilized with gamma-rays in nitrogen atmosphere (conventional UHMW-PE, widely used for articulating surfaces in endoprostheses) and UHMW-PE, which has been crosslinked by electron beam irradiation and annealed subsequently, were stabilized with alpha-tocopherol and aged in air at 120 degrees C as well as in 10% aqueous hydrogenperoxide with 0.04 mg/ml FeCl3 as catalyst at 50 degrees C. The oxidative degradation was monitored with the help of infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), solubility measurements and size exclusion chromatography (SEC) and were compared to unstabilized samples. When aged in air at 120 degrees C, the crosslinked UHMW-PE showed a slightly slower increase of the carbonyl (CO)-number (according to DIN 53383) in FTIR than conventional UHMW-PE. A stabilisation with 0.4% w/w alpha-tocopherol resulted in an increase of lifetime by a factor of approx. 40 for all samples. Ageing in 10% aqueous H2O2 at 50 degrees C yielded similar results for all three unstabilised samples. The addition of the natural antioxidant alpha-tocopherol led to a prolongation of lifetime by a factor of approx. 2.5. A linear loss of alpha-tocopherol was detected during ageing. An increase of crystallinity as well as lamella thickness during ageing was observed with the help of DSC. The two-phase structure of crosslinked UHMW-PE with two melting endotherms at 114 degrees C and 137 degrees C was replaced very quickly by a single melting point at 130 degrees C. This effect was delayed with the stabilized samples. In the solubility and SEC measurements, a severe molecular degradation and drop of molar mass of all materials could be observed after ageing in H2O2, leading to a complete destruction and, in case of crosslinked UHMW-PE, to a serious damage of the molecular network, respectively. PMID:17143765

  17. Smokeless tobacco use accelerates age-related loss of bone mineral density among older women in a multi-ethnic rural community.

    PubMed

    Quandt, Sara A; Spangler, John G; Case, L Douglas; Bell, Ronny A; Belflower, Amy E

    2005-06-01

    Cigarette smoking is a recognized risk factor for low bone mineral density (BMD) and osteoporosis. Despite the prevalence of smokeless tobacco (ST) use by women in some areas of the United States, minority groups in the United Kingdom, and populations in South Asia and Africa, no data exist to evaluate its effect on bone health. The objective of the study is to identify risk factors for low BMD among older women in a multi-ethnic population, with particular attention to smoking and ST use. Data were collected in Robeson County, North Carolina. ST use from childhood is common among women in this community. Two hundred-forty women aged 60 years and older (approximately equal numbers of African Americans, Native Americans and whites) were recruited at a variety of community events to obtain a cross-section of the demographic composition of the county. The main outcome was BMD measured in the heel using a portable dual energy x-ray absorptiometry. Twenty-nine percent of women were current or former smokers, and 26% current or former ST users. Increased BMD was predicted by greater body mass index, estrogen use in the past year, and African American and Native American ethnicity. There was a significant interaction between ST use and age, and between smoking and nutritional supplement use. BMD declined with age; the decline with age was greater for women who were current or former ST users than for those who never used ST. Women who formerly smoked and did not use supplements had a decreased BMD. ST should be considered as an additional risk factor for osteoporosis in populations where its use is prevalent. PMID:16917747

  18. Association between different risk factors and vascular accelerated ageing (EVA study): study protocol for a cross-sectional, descriptive observational study

    PubMed Central

    Go