Science.gov

Sample records for accelerated aging temperature

  1. Statistical analysis of accelerated temperature aging of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Johnson, W. A.; Milles, M. F.

    1981-05-01

    A number of semiconductor devices taken from a distribution were operated at several elevated temperatures to induce failure in all devices within a reasonable time. Assuming general characteristics of the device failure probability density function (pdf) and its temperature dependence, the expected cumulative failure function (cff) for devices in normal operation were estimated based on statistical inference, taking the average probability of a random device (from the same distribution but operated at a normal temperature) failing as a function of time. A review of the mathematical formalism employed in semiconductor reliability discussions is included. Three failure pdf's at particular usefulness to this analysis--exponential, normal, and lognormal - are discussed. The cff, at times orders of magnitude loss then, at times comparable to the desired system useful, life (*10 to the 4th power to 10 to the 5th power hr) is considered. A review of accelerated temperature aging is presented, and the assumption concerning the general characteristics of the failure pdf, which are fundamental to this analysis, are emphasized.

  2. Cerebrolysin Accelerates Metamorphosis and Attenuates Aging-Accelerating Effect of High Temperature in Drosophila Melanogaster

    PubMed Central

    Navrotskaya, V.; Vorobyova, L.; Sharma, H.; Muresanu, D.; Summergrad, P.

    2015-01-01

    Cerebrolysin® (CBL) is a neuroprotective drug used for the treatment of neurodegenerative diseases. CBL’s mechanisms of action remain unclear. Involvement of tryptophan (TRP)–kynurenine (KYN) pathway in neuroprotective effect of CBL might be suggested considering that modulation of KYN pathway of TRP metabolism by CBL, and protection against eclosion defect and prolongation of life span of Drosophila melanogaster with pharmacologically or genetically-induced down-regulation of TRP conversion into KYN. To investigate possible involvement of TRP–KYN pathway in mechanisms of neuroprotective effect of CBL, we evaluated CBL effects on metamorphosis and life span of Drosophila melanogaster maintained at 23 °C and 28 °C ambient temperature. CBL accelerated metamorphosis, exerted strong tendency (p = 0.04) to prolong life span in female but not in male flies, and attenuated aging-accelerating effect of high (28 °C) ambient temperature in both female and male flies. Further research of CBL effects on metamorphosis and resistance to aging-accelerating effect of high temperature might offer new insights in mechanisms of its neuroprotective action and expand its clinical applications. PMID:25798213

  3. On the Use of Accelerated Aging Methods for Screening High Temperature Polymeric Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Grayson, Michael A.

    1999-01-01

    A rational approach to the problem of accelerated testing of high temperature polymeric composites is discussed. The methods provided are considered tools useful in the screening of new materials systems for long-term application to extreme environments that include elevated temperature, moisture, oxygen, and mechanical load. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for specific aging mechanisms.

  4. Evaluation of oxidative behavior of polyolefin geosynthetics utilizing accelerated aging tests based on temperature and pressure

    NASA Astrophysics Data System (ADS)

    Li, Mengjia

    Polyolefin geosynthetics are susceptible to oxidation, which eventually leads to the reduction in their engineering properties. In the application of polyolefin geosynthetics, a major issue is an estimate of the materials durability (i.e. service lifetime) under various aging conditions. Antioxidant packages are added to the polyolefin products to extend the induction time, during which antioxidants are gradually depleted and polymer oxidation reactions are prevented. In this PhD study, an improved laboratory accelerating aging method under elevated and high pressure environments was applied to evaluate the combined effect of temperature and pressure on the depletion of the antioxidants and the oxidation of polymers. Four types of commercial polyolefn geosynthetic materials selected for aging tests included HDPE geogrid, polypropylene woven and nonwoven geotextiles. A total of 33 different temperature/pressure aging conditions were used, with the incubation duration up to 24 months. The applied oven temperature ranged from 35°C to 105°C and the partial oxygen pressure ranged from 0.005 MPa to 6.3 MPa. Using the Oxidative Induction Time (OIT) test, the antioxidant depletion, which is correlated to the decrease of the OIT value, was found to follow apparent first-order decay. The OIT data also showed that, the antioxidant depletion rate increased with temperature according to the Arrhenius equation, while under constant temperatures, the rate increased exponentially with the partial pressure of oxygen. A modified Arrhenius model was developed to fit the antioxidant depletion rate as a function of temperature and pressure and to predict the antioxidant lifetime under various field conditions. This study has developed new temperature/pressure incubation aging test method with lifetime prediction models. Using this new technique, the antioxidant lifetime prediction results are close to regular temperature aging data while the aging duration can be reduced considerably

  5. Menopause accelerates biological aging.

    PubMed

    Levine, Morgan E; Lu, Ake T; Chen, Brian H; Hernandez, Dena G; Singleton, Andrew B; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E; Quach, Austin; Kusters, Cynthia D J; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E; Widschwendter, Martin; Ritz, Beate R; Absher, Devin; Assimes, Themistocles L; Horvath, Steve

    2016-08-16

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the "epigenetic clock"), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  6. Cable aging phenomena under accelerated aging conditions

    SciTech Connect

    Behera, A.K.; Beck, C.E.; Alsammarae, A.

    1996-06-01

    A test program was conducted to determine the impact of accelerated (temperature and radiation) aging on the insulation of power cables. The intent was to develop a more realistic model for cable degradation mechanisms, and a more realistic technique for determining a cable`s qualified life. Samples of new cables and samples of cables obtained from an operating plant were subjected to a series of tests. The test showed that the order of imposing the harsh conditions, the presence of oxygen, and the use of a compressive measurement technique each had a significant impact on the results. This paper discusses the test methodology and test samples, the order of imposing artificial aging, and the results. Also presented are issues planned to be addressed in future testing.

  7. PETN Coarsening - Predictions from Accelerated Aging Data

    SciTech Connect

    Maiti, Amitesh; Gee, Richard H.

    2011-03-30

    Ensuring good ignition properties over long periods of time necessitates maintaining a good level of porosity in powders of initiator materials and preventing particle coarsening. To simulate porosity changes of such powder materials over long periods of time a common strategy is to perform accelerated aging experiments over shorter time spans at elevated temperatures. In this paper we examine historical accelerated-aging data on powders of Pentaerythritol Tetranitrate (PETN), an important energetic material, and make predictions for long-term aging under ambient conditions. Lastly, we develop an evaporation-condensation- based model to provide some mechanistic understanding of the coarsening process.

  8. Accelerated step-temperature aging of Al/x/Ga/1-x/As heterojunction laser diodes

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Ettenberg, M.; Ladany, I.

    1978-01-01

    Double-heterojunction A2(0.3)Ga(0.7)As/Al(0.08)Ga(0.92)As lasers (oxide-striped and Al2O3 facet coated) were subjected to step-temperature aging from 60 to 100 C. The change in threshold current and spontaneous output was monitored at 22 C. The average time required for a 20% pulsed threshold current increase ranges from about 500 h, when operating at 100 C, to about 5000 h at a 70 C ambience. At 22 C, the extrapolated time is about 1 million h. The time needed for a 50% spontaneous emission reduction is of the same order of magnitude. The resulting activation energies are approximately 0.95 eV for laser degradation and approximately 1.1 eV for the spontaneous output decrease

  9. Testing of biomaterials, accelerated ageing.

    PubMed

    Prodinger, A; Krausler, S; Schima, H; Thoma, H; Wolner, E; Schneider, W

    1985-01-01

    The residual elongation is a critical property of materials used for manufacturing diaphragms of artificial hearts. It is therefore important to check goods received or to control manufactured diaphragms, whether their creep properties are within the required limits. Ordinary creep tests take at least several months, while the release of goods received or diaphragms manufactured should be possible within a few days. Acceleration of the creep test by increasing the test temperature permits an estimation whether the creep properties of a material are within the required limits within a week. PMID:3870605

  10. Insights into accelerated aging of SSL luminaires

    DOE PAGESBeta

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; Shepherd, Sarah; Yaga, Robert; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy

    2013-09-30

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6” downlights in environments of 85oC and 85% relative humiditymore » (RH) and 75oC and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.« less

  11. Insights into accelerated aging of SSL luminaires

    SciTech Connect

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; Shepherd, Sarah; Yaga, Robert; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy

    2013-09-30

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6” downlights in environments of 85oC and 85% relative humidity (RH) and 75oC and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.

  12. Insights into accelerated aging of SSL luminaires

    NASA Astrophysics Data System (ADS)

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; Shepherd, Sarah; Yaga, Robert; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy

    2013-09-01

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6" downlights in environments of 85°C and 85% relative humidity (RH) and 75°C and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.

  13. Accelerated Aging of Lead-Free Propellant

    NASA Technical Reports Server (NTRS)

    Furrow, Keith W.; Jervey, David D.

    2000-01-01

    Following higher than expected 2-NDPA depletion rates in a lead-free doublebase formulation (RPD-422), an accelerated aging study was conducted to verify the depletion rates. A test plan was prepared to compare the aging characteristics of lead-free propellant and NOSIH-AA2. The study was also designed to determine which lead-free ballistic modifiers accelerated 2-NDPA depletion. The increased depletion rate occurred in propellants containing monobasic copper salicylate. Four lead-free propellants were then formulated to improved aging characteristics over previous lead-free propellant formulations. The new formulations reduced or replaced the monobasic copper salicylate. The new formulations had improved aging characteristics. Their burn rates, however, were unacceptable for use in a 2.75 inch rocket. To compare aging characteristics, stabilizer depletion rates of RPD-422, AA2, M28, and RLC 470/6A were measured or taken from the literature. The data were fit to a kinetic model. The model contained first and zero order terms which allowed the stabilizer concentration to go to zero. In the model, only the concentration of the primary stabilizer was considered. Derivatives beyond the first nitrated or nitroso derivative of 2-NPDA were not considered. The rate constants were fit to the Arrhenius equation and extrapolated to lower temperatures. The time to complete stabilizer depletion was estimated using the kinetic model. The four propellants were compared and the RPD-422 depleted faster at 45 C than both A22 and M28. These types of predictions depend on the validity of the model and on confidence in the Arrhenius relationship holding at lower temperatures. At 45 C, the zero order portion of the model dominates the depletion rate.

  14. Is schizophrenia a syndrome of accelerated aging?

    PubMed

    Kirkpatrick, Brian; Messias, Erick; Harvey, Philip D; Fernandez-Egea, Emilio; Bowie, Christopher R

    2008-11-01

    Schizophrenia is associated with a number of anatomical and physiological abnormalities outside of the brain, as well as with a decrease in average life span estimated at 20% in the United States. Some studies suggest that this increased mortality is not entirely due to associated causes such as suicide and the use of psychotropic medications. In this article, in order to focus greater attention on the increased mortality associated with schizophrenia, we present a special case of the hypothesis that physiological abnormalities associated with schizophrenia make a contribution to the increased mortality of schizophrenia: specifically, the hypothesis that schizophrenia is a syndrome of accelerated aging. Evidence consistent with this hypothesis comes from several areas. The biological plausibility of the hypothesis is supported by the existence of established syndromes of accelerated aging and by the sharing of risk factors between schizophrenia and other age-related conditions. We propose methods for testing the hypothesis. PMID:18156637

  15. Accelerated Aging of the M119 Simulator

    NASA Technical Reports Server (NTRS)

    Bixon, Eric R.

    2000-01-01

    This paper addresses the storage requirement, shelf life, and the reliability of M119 Whistling Simulator. Experimental conditions have been determined and the data analysis has been completed for the accelerated testing of the system. A general methodology to evaluate the shelf life of the system as a function of the storage time, temperature, and relative humidity is discussed.

  16. Sandia LSI accelerated aging and data acquisition techniques

    SciTech Connect

    Walker, J.E.

    1980-04-01

    The purpose of the Microelectronic Evaluation Laboratory at Sandia is to develop a program for evaluating CMOS LSI (complementary metal oxide silicon - large scale integrated) technology devices which are being used for the first time in a weapon system. These evaluations are based on accelerated aging studies and electrical tests to determine the reliability and life of the devices. In accelerated aging, specific, controlled stresses are applied to the device to accelerate time-to-failure. Data are used tin mathematical models to estimate life in acutal use. The stresses used for this technology are temperature and voltage. The devices are stored at temperatures with or without voltage applied (steady-state or cyclical) and periodically tested until at least 50% failures are encountered. Since most current technologies use epoxy-die-attachment, aging temperatures must be under 200/sup 0/C. This delays device failure, and a 16% failure level is used when this extrapolation is considered valid. Statistical analysis is performed on the resultant data to predict reliability with time. The equipment and procedures used for accelerated aging tests are described in detail. The data acquisition system and its use are discussed. All devices, after functional failure has occurred, are given to the failure analysis group for failure evaluations. In order to improve reliability predictions, failure analysis is most concerned with the separation of freak and main life mechanisms. Through these evaluations, higher reliability and longer device life have become a milestone of the future. (LCL)

  17. Accelerated aging of wood-composite members

    SciTech Connect

    Sonti, S.S.; GangaRao, H.V.S.; Talakanti, D.R.

    1996-12-31

    This paper discusses the longterm performance of various adhesives under accelerated aging conditions, where the intended application of the adhesives is bonding wood member to composite fabric wraps. Northern Red Oak was used as the core and two types of composite fabrics were used (glass and carbon) as external reinforcements. The adhesives used for bonding include: Epoxy, Polyurethane, Isopolyester, Resorcinol Formaldehyde, and Phenolic based Resorcinol Formaldehyde. Results from the shear strength evaluations show that a primer/resin combination provided a better bond compared to the bond developed by resin system only. Also, it was observed that phenolic-based resins had higher retention of shear strength after being subjected to aging conditions.

  18. Accelerated aging test results for aerospace wire insulation constructions

    NASA Technical Reports Server (NTRS)

    Dunbar, William G.

    1995-01-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  19. Accelerated Aging in Electrolytic Capacitors for Prognostics

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan; Saha, Sankalita; Biswas, Gautam; Goebel, Kai Frank

    2012-01-01

    The focus of this work is the analysis of different degradation phenomena based on thermal overstress and electrical overstress accelerated aging systems and the use of accelerated aging techniques for prognostics algorithm development. Results on thermal overstress and electrical overstress experiments are presented. In addition, preliminary results toward the development of physics-based degradation models are presented focusing on the electrolyte evaporation failure mechanism. An empirical degradation model based on percentage capacitance loss under electrical overstress is presented and used in: (i) a Bayesian-based implementation of model-based prognostics using a discrete Kalman filter for health state estimation, and (ii) a dynamic system representation of the degradation model for forecasting and remaining useful life (RUL) estimation. A leave-one-out validation methodology is used to assess the validity of the methodology under the small sample size constrain. The results observed on the RUL estimation are consistent through the validation tests comparing relative accuracy and prediction error. It has been observed that the inaccuracy of the model to represent the change in degradation behavior observed at the end of the test data is consistent throughout the validation tests, indicating the need of a more detailed degradation model or the use of an algorithm that could estimate model parameters on-line. Based on the observed degradation process under different stress intensity with rest periods, the need for more sophisticated degradation models is further supported. The current degradation model does not represent the capacitance recovery over rest periods following an accelerated aging stress period.

  20. Degradation mechanisms and accelerated aging test design

    SciTech Connect

    Clough, R L; Gillen, K T

    1985-01-01

    The fundamental mechanisms underlying the chemical degradation of polymers can change as a function of environmental stress level. When this occurs, it greatly complicates any attempt to use accelerated tests for predicting long-term material degradation behaviors. Understanding how degradation mechanisms can change at different stress levels facilitates both the design and the interpretation of aging tests. Oxidative degradation is a predominant mechanism for many polymers exposed to a variety of different environments in the presence of air, and there are two mechanistic considerations which are widely applicable to material oxidation. One involves a physical process, oxygen diffusion, as a rate-limiting step. This mechanism can predominate at high stress levels. The second is a chemical process, the time-dependent decomposition of peroxide species. This leads to chain branching and can become a rate-controlling factor at lower stress levels involving time-scales applicable to use environments. The authors describe methods for identifying the operation of these mechanisms and illustrate the dramatic influence they can have on the degradation behaviors of a number of polymer types. Several commonly used approaches to accelerated aging tests are discussed in light of the behaviors which result from changes in degradation mechanisms. 9 references, 4 figures.

  1. US Particle Accelerators at Age 50.

    ERIC Educational Resources Information Center

    Wilson, R. R.

    1981-01-01

    Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)

  2. Premature and accelerated aging: HIV or HAART?

    PubMed

    Smith, Reuben L; de Boer, Richard; Brul, Stanley; Budovskaya, Yelena; van Spek, Hans

    2012-01-01

    Highly active antiretroviral therapy (HAART) has significantly increased life expectancy of the human immunodeficiency virus (HIV)-positive population. Nevertheless, the average lifespan of HIV-patients remains shorter compared to uninfected individuals. Immunosenescence, a current explanation for this difference invokes heavily on viral stimulus despite HAART efficiency in viral suppression. We propose here that the premature and accelerated aging of HIV-patients can also be caused by adverse effects of antiretroviral drugs, specifically those that affect the mitochondria. The nucleoside reverse transcriptase inhibitor (NRTI) antiretroviral drug class for instance, is known to cause depletion of mitochondrial DNA via inhibition of the mitochondrial specific DNA polymerase-γ. Besides NRTIs, other antiretroviral drug classes such as protease inhibitors also cause severe mitochondrial damage by increasing oxidative stress and diminishing mitochondrial function. We also discuss important areas for future research and argue in favor of the use of Caenorhabditis elegans as a novel model system for studying these effects. PMID:23372574

  3. Accelerated Aging of Polymer Composite Bridge Materials

    SciTech Connect

    J. G. Rodriguez; L. G. Blackwood; L. L. Torres; N. M. Carlson; T. S. Yoder

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  4. Premature and accelerated aging: HIV or HAART?

    PubMed Central

    Smith, Reuben L.; de Boer, Richard; Brul, Stanley; Budovskaya, Yelena; van Spek, Hans

    2013-01-01

    Highly active antiretroviral therapy (HAART) has significantly increased life expectancy of the human immunodeficiency virus (HIV)-positive population. Nevertheless, the average lifespan of HIV-patients remains shorter compared to uninfected individuals. Immunosenescence, a current explanation for this difference invokes heavily on viral stimulus despite HAART efficiency in viral suppression. We propose here that the premature and accelerated aging of HIV-patients can also be caused by adverse effects of antiretroviral drugs, specifically those that affect the mitochondria. The nucleoside reverse transcriptase inhibitor (NRTI) antiretroviral drug class for instance, is known to cause depletion of mitochondrial DNA via inhibition of the mitochondrial specific DNA polymerase-γ. Besides NRTIs, other antiretroviral drug classes such as protease inhibitors also cause severe mitochondrial damage by increasing oxidative stress and diminishing mitochondrial function. We also discuss important areas for future research and argue in favor of the use of Caenorhabditis elegans as a novel model system for studying these effects. PMID:23372574

  5. The Modern Temperature-Accelerated Dynamics Approach.

    PubMed

    Zamora, Richard J; Uberuaga, Blas P; Perez, Danny; Voter, Arthur F

    2016-06-01

    Accelerated molecular dynamics (AMD) is a class of MD-based methods used to simulate atomistic systems in which the metastable state-to-state evolution is slow compared with thermal vibrations. Temperature-accelerated dynamics (TAD) is a particularly efficient AMD procedure in which the predicted evolution is hastened by elevating the temperature of the system and then recovering the correct state-to-state dynamics at the temperature of interest. TAD has been used to study various materials applications, often revealing surprising behavior beyond the reach of direct MD. This success has inspired several algorithmic performance enhancements, as well as the analysis of its mathematical framework. Recently, these enhancements have leveraged parallel programming techniques to enhance both the spatial and temporal scaling of the traditional approach. We review the ongoing evolution of the modern TAD method and introduce the latest development: speculatively parallel TAD. PMID:26979413

  6. Deactivation of Accelerated Engine-Aged and Field-Aged Fe-Zeolite SCR Catalysts

    SciTech Connect

    Toops, Todd J; Nguyen, Ke; Foster, Adam; Bunting, Bruce G; Hagaman, Edward {Ed} W; Jiao, Jian

    2010-01-01

    A single-cylinder diesel engine with an emissions control system - diesel oxidation catalyst (DOC), Fe-zeolite selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF) - was used to perform accelerated thermal aging of the SCR catalyst. Cyclic aging is performed at SCR inlet temperatures of 650, 750 and 850 degrees C for up to 50 aging cycles. To assess the validity of the implemented accelerated thermal aging protocol, a field-aged SCR catalyst of similar formulation was also evaluated. The monoliths were cut into sections and evaluated for NO{sub x} performance in a bench-flow reactor. While the rear section of both the field-aged and the accelerated engine-aged SCR catalysts maintained high NO{sub x}conversion, 75-80% at 400 degrees C, the front section exhibited a drastic decrease to only 20-35% at 400 degrees C. This two-tiered deactivation was also observed for field-aged samples that were analyzed in this study. To understand the observed performance changes, thorough materials characterization was performed which revealed two primary degradation mechanisms. The first mechanism is a general Fe-zeolite deterioration which led to surface area losses, dealumination of the zeolite, and Fe{sub 2}O{sub 3} crystal growth. This degradation accelerated above 750 degrees C, and the effects were generally more severe in the front of the catalyst. The second deactivation mechanism is linked to trace levels of Pt that are suspected to be volatizing from the DOC and depositing on the front section of the SCR catalyst. Chemical evidence of this can be seen in the high levels of NH{sub 3} oxidation (80% conversion at 400 degrees C), which coincides with the decrease in performance.

  7. Acceleration of the aging process by oxygen

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Lunderen, P. R.; Bensch, K. G.

    1975-01-01

    Tissue changes induced by hyperoxia have been compared with those of normal aging. Results of investigations using male flies prompt conclusion that normal aging, radiation syndrome, and hyperoxic injury share at least one common feature--lipid peroxidation damage to all mambranes resulting in accumulation of age pigment.

  8. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  9. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  10. 'Accelerated aging': a primrose path to insight?

    PubMed

    Miller, Richard A

    2004-04-01

    Organism envy afflicts most researchers who work on aging in mice; how frustrating it is to see the worm and fly biologists nail down milestone after milestone, citation after citation! Surely genetic trickery can produce mice that age in a comparable jiffy? Alas, our near-total ignorance of what times the aging process makes it hard to guess what genes to tweak, if indeed aging can be mimicked a presto. Building a case that a given short-lived mutant ages quickly is a steep and thorny path, requiring more than just plucking a symptom here and there from a list of things that sometimes go wrong in old people or old mice. The hallmark of aging is that a lot goes wrong more or less at the same time, in 2-year-old mice, 10-year-old dogs and 70-year-old people. Finding ways to damage one or two systems in a 6-week or 6-month-old mouse is not too hard to do, but the implications of such studies for improved understanding of aging per se are at best indirect and at worst imaginary and distracting. PMID:15038817

  11. Pathology of Mouse Models of Accelerated Aging.

    PubMed

    Harkema, L; Youssef, S A; de Bruin, A

    2016-03-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data. PMID:26864891

  12. Accelerated food source location in aging Drosophila.

    PubMed

    Egenriether, Sada M; Chow, Eileen S; Krauth, Nathalie; Giebultowicz, Jadwiga M

    2015-10-01

    Adequate energy stores are essential for survival, and sophisticated neuroendocrine mechanisms evolved to stimulate foraging in response to nutrient deprivation. Food search behavior is usually investigated in young animals, and it is not known how aging alters this behavior. To address this question in Drosophila melanogaster, we compared the ability to locate food by olfaction in young and old flies using a food-filled trap. As aging is associated with a decline in motor functions, learning, and memory, we expected that aged flies would take longer to enter the food trap than their young counterparts. Surprisingly, old flies located food with significantly shorter latency than young ones. Robust food search behavior was associated with significantly lower fat reserves and lower starvation resistance in old flies. Food-finding latency (FFL) was shortened in young wild-type flies that were starved until their fat was depleted but also in heterozygous chico mutants with reduced insulin receptor activity and higher fat deposits. Conversely, food trap entry was delayed in old flies with increased insulin signaling. Our results suggest that the difference in FFL between young and old flies is linked to age-dependent differences in metabolic status and may be mediated by reduced insulin signaling. PMID:26102220

  13. Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.

    2011-01-01

    Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics

  14. Nylon 6.6 accelerated aging studies : thermal-oxidative degradation and its interaction with hydrolysis.

    SciTech Connect

    Bernstein, Robert; Derzon, Dora Kay; Gillen, Kenneth T.

    2004-06-01

    Accelerated aging of Nylon 6.6 fibers used in parachutes has been conducted by following the tensile strength loss under both thermal-oxidative and 100% relative humidity conditions. Thermal-oxidative studies (air circulating ovens) were performed for time periods of weeks to years at temperatures ranging from 37 C to 138 C. Accelerated aging humidity experiments (100% RH) were performed under both an argon atmosphere to examine the 'pure' hydrolysis pathway, and under an oxygen atmosphere (oxygen partial pressure close to that occurring in air) to mimic true aging conditions. As expected the results indicated that degradation caused by humidity is much more important than thermal-oxidative degradation. Surprisingly when both oxygen and humidity were present the rate of degradation was dramatically enhanced relative to humidity aging in the absence of oxygen. This significant and previously unknown phenomena underscores the importance of careful accelerated aging that truly mimics real world storage conditions.

  15. Accelerated thermal and radiative ageing of hydrogenated NBR for DRC

    SciTech Connect

    Mares, G.; Notingher, P.

    1996-12-31

    The accelerated thermal and gamma radiation ageing of HNBR carbon black-T80 has been studied by measuring the residual deformation under constant deflection -- DRC, in air, using a relevant equation for the relaxation phenomena. The residual deformation under constant deflection during the process of accelerated ageing is increasing but the structure of polymer answers in the proper manner to the mechanical stress. The degradation equations were obtained, using Alfrey model for the relaxation polymer subject to compression and an Arrhenius dependence for the chemical reaction rate. The inverted relaxation time for the thermal degradation is depending on the chemical reaction rate and the dose rate of gamma radiation.

  16. Considerations on Temperature, Longevity and Aging

    PubMed Central

    Conti, Bruno

    2008-01-01

    A modest reduction in body temperature prolongs longevity and possibly retards aging in both poikilotherm and homeotherm animals. Some of the possible mechanisms mediating these effects are considered here with respect to major aging models and theories. PMID:18425417

  17. Interaction of accelerated aging and p-coumaric acid on crimson clover seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several phenolic acids, including p-coumaric acid, have been described as allelochemicals that may inhibit seed germination or seedling growth. Accelerated seed aging (high temperature (41 C) and high humidity (100%)) reduces germination and seedling vigor, and provides some indication as to seed g...

  18. Effects of accelerated aging and p-coumaric on crimson clover (Trifolium incarnatium L.) seed germination.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several phenolic acids, including p-coumaric acid, have been described as allelochemicals that may inhibit seed germination or seedling growth. Whether these effects are exacerbated in forage species by environmental stressors is unknown. Accelerated seed aging (high temperature (41 C) and high hum...

  19. Temperature, Humidity, And Polymer Aging

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.

    1988-01-01

    Report presents analysis of experimental data on electrical resistivity of polymer (polyvinyl butyral) as function of temperature and relative humidity. Resulting theoretical expression for electrical resistivity resembles generally accepted empirical law for the corrosion rate.

  20. Effects of Accelerated Aging on Fiber Damage Thresholds

    SciTech Connect

    Setchell, R.E.

    1999-02-15

    Laser-induced damage mechanisms that can occur during high-intensity fiber transmission have been under study for a number of years. Our particular interest in laser initiation of explosives has led us to examine damage processes associated with the transmission of Q-switched, Nd:YAG pulses at 1.06 {micro}m through step-index, multimode, fused silica fiber. Laser breakdown at the fiber entrance face is often the first process to limit fiber transmission but catastrophic damage can also occur at either fiber end face, within the initial entry segment of the fiber, and at other internal sites along the fiber path. Past studies have examined how these various damage mechanisms depend upon fiber end-face preparation, fiber fixturing and routing, laser characteristics, and laser-to-fiber injection optics. In some applications of interest, however, a fiber transmission system may spend years in storage before it is used. Consequently, an important additional issue for these applications is whether or not there are aging processes that can result in lower damage thresholds over time. Fiber end-face contamination would certainly lower breakdown and damage thresholds at these surfaces, but careful design of hermetic seals in connectors and other end-face fixtures can minimize this possibility. A more subtle possibility would be a process for the slow growth of internal defects that could lead to lower thresholds for internal damage. In the current study, two approaches to stimulating the growth of internal defects were used in an attempt to produce observable changes in internal damage thresholds. In the first approach test fibers were subjected to a very high tensile stress for a time sufficient for some fraction to fail from static fatigue. In the second approach, test fibers were subjected to a combination of high tensile stress and large, cyclic temperature variations. Both of these approaches were rather arbitrary due to the lack of an established growth mechanism for

  1. Accelerated aging of GaAs concentrator solar cells

    SciTech Connect

    Gregory, P.E.

    1982-04-01

    An accelerated aging study of AlGaAs/GaAs solar cells has been completed. The purpose of the study was to identify the possible degradation mechanisms of AlGaAs/GaAs solar cells in terrestrial applications. Thermal storage tests and accelerated AlGaAs corrosion studies were performed to provide an experimental basis for a statistical analysis of the estimated lifetime. Results of this study suggest that a properly designed and fabricated AlGaAs/GaAs solar cell can be mechanically rugged and environmentally stable with projected lifetimes exceeding 100 years.

  2. Hawking Temperature of an Arbitrarily Accelerating Black Hole

    NASA Astrophysics Data System (ADS)

    Pan, Wei-Zhen; Liu, Wei

    2014-09-01

    Hawking temperature of an arbitrarily accelerating black hole with electric and magnetic charges are obtained based on the Klein-Gordon equation with a correct-dimension new tortoise coordinate transformation.

  3. Invited review: aging and human temperature regulation.

    PubMed

    Kenney, W Larry; Munce, Thayne A

    2003-12-01

    This mini-review focuses on the effects of aging on human temperature regulation. Although comprehensive reviews have been published on this topic (Kenney WL. Exercise and Sport Sciences Reviews, Baltimore: Williams & Wilkins, 1997, p. 41-76; Pandolf KB. Exp Aging Res 17: 189-204, 1991; Van Someren EJ, Raymann RJ, Scherder EJ, Daanen HA, and Swaab DF. Ageing Res Rev 1: 721-778, 2002; and Young AJ. Exp Aging Res 17: 205-213, 1991), this mini-review concisely summarizes the present state of knowledge about human temperature regulation and aging in thermoneutral conditions, as well as during hypo- and hyperthermic challenges. First, we discuss age-related effects on baseline body core temperature and phasing rhythms of the circadian temperature cycle. We then examine the altered physiological responses to cold stress that result from aging, including attenuated peripheral vasoconstriction and reduced cold-induced metabolic heat production. Finally, we present the age-related changes in sweating and cardiovascular function associated with heat stress. Although epidemiological evidence of increased mortality among older adults from hypo- and hyperthermia exists, this outcome does not reflect an inability to thermoregulate with advanced age. In fact, studies that have attempted to separate the effects of chronological age from concurrent factors, such as fitness level, body composition, and the effects of chronic disease, have shown that thermal tolerance appears to be minimally compromised by age. PMID:14600165

  4. Aging accelerates memory extinction and impairs memory restoration in Drosophila.

    PubMed

    Chen, Nannan; Guo, Aike; Li, Yan

    2015-05-15

    Age-related memory impairment (AMI) is a phenomenon observed from invertebrates to human. Memory extinction is proposed to be an active inhibitory modification of memory, however, whether extinction is affected in aging animals remains to be elucidated. Employing a modified paradigm for studying memory extinction in fruit flies, we found that only the stable, but not the labile memory component was suppressed by extinction, thus effectively resulting in higher memory loss in aging flies. Strikingly, young flies were able to fully restore the stable memory component 3 h post extinction, while aging flies failed to do so. In conclusion, our findings reveal that both accelerated extinction and impaired restoration contribute to memory impairment in aging animals. PMID:25842205

  5. Cognitive deterioration in adult epilepsy: Does accelerated cognitive ageing exist?

    PubMed

    Breuer, L E M; Boon, P; Bergmans, J W M; Mess, W H; Besseling, R M H; de Louw, A; Tijhuis, A G; Zinger, S; Bernas, A; Klooster, D C W; Aldenkamp, A P

    2016-05-01

    A long-standing concern has been whether epilepsy contributes to cognitive decline or so-called 'epileptic dementia'. Although global cognitive decline is generally reported in the context of chronic refractory epilepsy, it is largely unknown what percentage of patients is at risk for decline. This review is focused on the identification of risk factors and characterization of aberrant cognitive trajectories in epilepsy. Evidence is found that the cognitive trajectory of patients with epilepsy over time differs from processes of cognitive ageing in healthy people, especially in adulthood-onset epilepsy. Cognitive deterioration in these patients seems to develop in a 'second hit model' and occurs when epilepsy hits on a brain that is already vulnerable or vice versa when comorbid problems develop in a person with epilepsy. Processes of ageing may be accelerated due to loss of brain plasticity and cognitive reserve capacity for which we coin the term 'accelerated cognitive ageing'. We believe that the concept of accelerated cognitive ageing can be helpful in providing a framework understanding global cognitive deterioration in epilepsy. PMID:26900650

  6. Progranulin Knockout Accelerates Intervertebral Disc Degeneration in Aging Mice

    PubMed Central

    Zhao, Yun-peng; Tian, Qing-yun; Liu, Ben; Cuellar, Jason; Richbourgh, Brendon; Jia, Tang-hong; Liu, Chuan-ju

    2015-01-01

    Intervertebral disc (IVD) degeneration is a common degenerative disease, yet much is unknown about the mechanisms during its pathogenesis. Herein we investigated whether progranulin (PGRN), a chondroprotective growth factor, is associated with IVD degeneration. PGRN was detectable in both human and murine IVD. The levels of PGRN were upregulated in murine IVD tissue during aging process. Loss of PGRN resulted in an early onset of degenerative changes in the IVD tissue and altered expressions of the degeneration-associated molecules in the mouse IVD tissue. Moreover, PGRN knockout mice exhibited accelerated IVD matrix degeneration, abnormal bone formation and exaggerated bone resorption in vertebra with aging. The acceleration of IVD degeneration observed in PGRN null mice was probably due to the enhanced activation of NF-κB signaling and β-catenin signaling. Taken together, PGRN may play a critical role in homeostasis of IVD, and may serve as a potential molecular target for prevention and treatment of disc degenerative diseases. PMID:25777988

  7. Mechanisms of aging in senescence-accelerated mice

    PubMed Central

    Carter, Todd A; Greenhall, Jennifer A; Yoshida, Shigeo; Fuchs, Sebastian; Helton, Robert; Swaroop, Anand; Lockhart, David J; Barlow, Carrolee

    2005-01-01

    Background Progressive neurological dysfunction is a key aspect of human aging. Because of underlying differences in the aging of mice and humans, useful mouse models have been difficult to obtain and study. We have used gene-expression analysis and polymorphism screening to study molecular senescence of the retina and hippocampus in two rare inbred mouse models of accelerated neurological senescence (SAMP8 and SAMP10) that closely mimic human neurological aging, and in a related normal strain (SAMR1) and an unrelated normal strain (C57BL/6J). Results The majority of age-related gene expression changes were strain-specific, with only a few common pathways found for normal and accelerated neurological aging. Polymorphism screening led to the identification of mutations that could have a direct impact on important disease processes, including a mutation in a fibroblast growth factor gene, Fgf1, and a mutation in and ectopic expression of the gene for the chemokine CCL19, which is involved in the inflammatory response. Conclusion We show that combining the study of inbred mouse strains with interesting traits and gene-expression profiling can lead to the discovery of genes important for complex phenotypes. Furthermore, full-genome polymorphism detection, sequencing and gene-expression profiling of inbred mouse strains with interesting phenotypic differences may provide unique insights into the molecular genetics of late-manifesting complex diseases. PMID:15960800

  8. Tracking accelerated aging of composites with ultrasonic attenuation measurements

    SciTech Connect

    Chinn, D.J.; Durbin, P.F.; Thomas, G.H.; Groves, S.E.

    1996-10-01

    Composite materials are steadily replacing traditional materials in many industries. For many carbon composite materials, particularly in aerospace applications, durability is a critical design parameter which must be accurately characterized. Lawrence Livermore National Laboratory (LLNL) and Boeing Commercial Airplane Group have established a cooperative research and development agreement (CRADA) to assist in the high speed research program at Boeing. LLNL`s expertise in fiber composites, computer modeling, mechanical testing, chemical analysis and nondestructive evaluation (ND) will contribute to the study of advanced composite materials in commercial aerospace applications. Through thermo-mechanical experiments with periodic chemical analysis and nondestructive evaluation, the aging mechanisms in several continuous fiber polymer composites will be studied. Several measurement techniques are being studied for their correlation with aging. This paper describes through-transmission ultrasonic attenuation measurements of isothermally aged composite materials and their use as a tracking parameter for accelerated aging.

  9. Ageing under Shear: Effect of Stress and Temperature Field

    NASA Astrophysics Data System (ADS)

    Shukla, Asheesh; Joshi, Yogesh M.

    2008-07-01

    In this work we studied the effect of oscillatory stress and temperature on the ageing dynamics of aqueous suspension of laponite. At the higher magnitude of stress, elastic and viscous moduli of the system underwent a sharp rise with the ageing time. The age at the onset of rise and the sharpness of the same increased with the magnitude of stress. We propose that at the beginning of ageing, the strain associated with the oscillatory stress field affects the lower modes in the relaxation time distribution. The higher modes, which are not significantly affected by the deformation field, continue to grow increasing the viscosity of the system thereby lowering the magnitude of the deformation field. Progressive decrease in the later reduces the range of relaxation modes affected by it. This dynamics eventually leads to an auto-catalytic increase in the elastic and viscous moduli. An increase in temperature accelerates the ageing process by shifting the ageing dynamics to a lower ageing time. This is due the microscopic relaxation dynamics, which causes ageing, becomes faster with increase in the temperature.

  10. Impact of temperature on the aging mechanisms of arsenic in soils: fractionation and bioaccessibility.

    PubMed

    Huang, Guanxing; Chen, Zongyu; Wang, Jia; Hou, Qinxuan; Zhang, Ying

    2016-03-01

    The present study focused on the influence of temperature variation on the aging mechanisms of arsenic in soils. The results showed that higher temperature aggravated the decrease of more mobilizable fractions and the increase of less mobilizable or immobilizable fractions in soils over time. During the aging process, the redistribution of both carbonate-bound fraction and specifically sorbed and organic-bound fraction in soils occurred at various temperatures, and the higher temperature accelerated the redistribution of specifically sorbed and organic-bound fraction. The aging processes of arsenic in soils at different temperatures were characterized by several stages, and the aging processes were not complete within 180 days. Arsenic bioaccessibility in soils decreased significantly by the aging, and the decrease was intensified by the higher temperature. In terms of arsenic bioaccessibility, higher temperature accelerated the aging process of arsenic in soils remarkably. PMID:26520097

  11. Acceleration factors for oxidative aging of polymeric materials by oxygen detection.

    SciTech Connect

    Assink, Roger Alan; Celina, Mathias Christopher; Skutnik, Julie Michelle

    2005-01-01

    Three methods that were used to measure the chemical changes associated with oxidative degradation of polymeric materials are presented. The first method is based on the nuclear activation of {sup 18}O in an elastomer that was thermally aged in an {sup 18}O{sub 2} atmosphere. Second, the alcohol groups in a thermally aged elastomer were derivatized with trifluoroacetic anhydride and their concentration measured via {sup 19}F NMR spectroscopy. Finally, a respirometer was used to directly measure the oxidative rates of a polyurethane foam as a function of aging temperature. The measurement of the oxidation rates enabled acceleration factors for oxidative degradation of these materials to be calculated.

  12. Accelerated aging of outdoor insulation under acid rain conditions

    NASA Astrophysics Data System (ADS)

    Frost, Nancy Ellen

    2000-11-01

    Outdoor insulation has evolved from glass to ceramics to epoxy in the past decades, and more recently into the area of polymer composites. Accelerated aging must be performed to examine the effectiveness of materials prior to use under actual service conditions. Traditionally this aging has been performed with sodium chloride as the conductive component in the high humidity and wet tests. This approach does not necessarily represent actual service conditions, as globally the precipitation is acidic in nature and contains many constituents in addition to sodium and chloride. The main focus of this work was to examine the effect of acid precipitation on materials used in outdoor insulation applications. This was achieved through the use of a rotating tracking wheel and a controlled high humidity chamber with the application of a synthetic acid rain solution. The analysis techniques utilized to examine the results of the accelerated aging were leakage current monitoring, evaluation of changes in dielectric properties as well as electron microscopy. In addition, changes in hydrophobicity were quantified. Based on experimental observations, a first order life prediction model was developed to investigate the usefulness of the acid rain aging technique. This model was founded on the results of a series of tests conducted with varying solution conductivity, while maintaining constant acid content. This model permits the prediction of the life of a material at normal precipitation conductivity levels.

  13. Electrochemical migration technique to accelerate ageing of cementitious materials

    NASA Astrophysics Data System (ADS)

    Babaahmadi, A.; Tang, L.; Abbas, Z.

    2013-07-01

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen's micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  14. Infection susceptibility and immune senescence with advancing age replicated in accelerated aging Lmna(Dhe) mice.

    PubMed

    Xin, Lijun; Jiang, Tony T; Kinder, Jeremy M; Ertelt, James M; Way, Sing Sing

    2015-12-01

    Aging confers increased susceptibility to common pathogens including influenza A virus. Despite shared vulnerability to infection with advancing age in humans and rodents, the relatively long time required for immune senescence to take hold practically restricts the use of naturally aged mice to investigate aging-induced immunological shifts. Here, we show accelerated aging Lmna(Dhe) mice with spontaneous mutation in the nuclear scaffolding protein, lamin A, replicate infection susceptibility, and substantial immune cell shifts that occur with advancing age. Naturally aged (≥ 20 month) and 2- to 3-month-old Lmna(Dhe) mice share near identically increased influenza A susceptibility compared with age-matched Lmna(WT) control mice. Increased mortality and higher viral burden after influenza infection in Lmna(Dhe) mice parallel reduced accumulation of lung alveolar macrophage cells, systemic expansion of immune suppressive Foxp3⁺ regulatory T cells, and skewed immune dominance among viral-specific CD8⁺T cells similar to the immunological phenotype of naturally aged mice. Thus, aging-induced infection susceptibility and immune senescence are replicated in accelerated aging Lmna(Dhe) mice. PMID:26248606

  15. In vitro accelerated aging of composites and a sealant.

    PubMed

    Powers, J M; Fan, P L; Marcotte, M

    1981-09-01

    The in vitro accelerated aging of conventional and microfilled composite restorative materials and a sealant was studied. Volume loss/surface area ranged from 2.0 x 10(-3) mm3/mm2 for I to 7.3 x 10(-3) mm3/mm2 for SF after 900 h of aging. Surface morphology of the conventional composites was characterized by crazing and exposure of filler particles. The surfaces of the microfilled composites also showed crazing. The surface morphology of the sealant appeared unchanged. Comparisons of infrared ATR spectra between zero and 900 h of aging showed that slight chemical changes occurred at the surface of AR but not SF. PMID:6943161

  16. Accelerated aging tests of liners for uranium mill tailings disposal

    SciTech Connect

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing.

  17. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  18. Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing.

    PubMed

    Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James

    2015-01-01

    Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials. PMID:24810790

  19. Free energies for rare events: Temperature accelerated MD and MC

    NASA Astrophysics Data System (ADS)

    Meloni, S.; Ciccotti, G.

    2015-09-01

    In this article we review a set of methods for exploring the space of a set of collective variables, and to reconstruct the associated Landau free energy in presence of metastabilities: Temperature Accelerated Molecular Dynamics (TAMD), its extension, Temperature Accelerate Monte Carlo (TAMC), and the Single Sweep Method (SSM). TAMD and TAMC can be used for both exploring and reconstructing the Landau free energy landscape. However, SSM is more efficient at accomplishing this last task. We illustrate the use of these methods by presenting their application to the nucleation of a Lennard-Jones crystal from its melt, and the H-vacancy migration in an NaAlH6 crystal.

  20. Spiked Alloy Production for Accelerated Aging of Plutonium

    SciTech Connect

    Wilk, P A; McNeese, J A; Dodson, K E; Williams, W L; Krikorian, O H; Blau, M S; Schmitz, J E; Bajao, F G; Mew, D A; Matz, T E; Torres, R A; Holck, D M; Moody, K J; Kenneally, J M

    2009-07-10

    The accelerated aging effects on weapons grade plutonium alloys are being studied using {sup 238}Pu-enriched plutonium metal to increase the rate of formation of defect structures. Pyrochemical processing methods have been used to produce two {sup 238}Pu-spiked plutonium alloys with nominal compositions of 7.5 wt% {sup 238}Pu. Processes used in the preparation of the alloys include direct oxide reduction of PuO{sub 2} with calcium and electrorefining. Rolled disks were prepared from the spiked alloys for sampling. Test specimens were cut out of the disks for physical property measurements.

  1. Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer

    SciTech Connect

    Xu, G.; McGrath, P.B.; Burns, C.W.

    1996-12-31

    Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some of the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.

  2. Dust accelerators and their applications in high-temperature plasmas

    SciTech Connect

    Wang, Zhehui; Ticos, Catakin M

    2010-01-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Much effort has been devoted to gening rid of the dust nuisance. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  3. Dust Accelerators And Their Applications In High-Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Ticoş, Cǎtǎlin M.; Wang, Zhehui

    2011-06-01

    The perennial presence of dust in high-temperature plasma and fusion devices has been firmly established. Dust inventory must be controlled, in particular in the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and potentially interfere with fusion energy production. Although much effort has been devoted to getting rid of the dust nuisance, there are instances where a controlled use of dust can be beneficial. We have recognized a number of dust-accelerators applications in magnetic fusion, including in plasma diagnostics, in studying dust-plasma interactions, and more recently in edge localized mode (ELM)'s pacing. With the applications in mind, we will compare various acceleration methods, including electrostatic, gas-drag, and plasma-drag acceleration. We will also describe laboratory experiments and results on dust acceleration.

  4. Compatibility and accelerated aging study for Li(Si)/FeS/sub 2 thermally activated batteries

    NASA Astrophysics Data System (ADS)

    Mead, J. W.; Searcy, J. Q.; Neiswander, P. N.; Poole, R. L.

    1983-12-01

    Thermally activated batteries using the lithium (silicon) iron disulfide (Li(Si)/FeS2) electrochemical system are used in weapons having a required storage life of 25 years and high reliability. A review of known data revealed no information on the compatibility of Li(Si)/FeS2 with the organic materials used in the system. The compatibility question is studied. Accelerated-aging data on pairs of materials were produced. In addition, a group of production batteries was aged and tested. Three aging temperatures were used during the one-year study. Gas analyses, electrical tests and mechanical tests were compared for control and aged samples. Two results, the depletion of oxygen and an increase in hydrogen in the compatibility and accelerated-aging samples, stimulated additional studies. No unexpected or significant changes were observed in the electrical or mechanical properties of the organic materials. Calorific output and chloride ion content of heat pellets indicated no degradation with aging. Ignition sensitivity and burn rate measurements suggested no heat pellet degradation. Oxygen content in aged lithium (silicon) anodes remained within acceptable limits. Single-cell tests and battery test results showed no degradation with aging.

  5. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  6. Parasite infection accelerates age polyethism in young honey bees

    PubMed Central

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  7. Gamma radiation and magnetic field mediated delay in effect of accelerated ageing of soybean.

    PubMed

    Kumar, Mahesh; Singh, Bhupinder; Ahuja, Sumedha; Dahuja, Anil; Anand, Anjali

    2015-08-01

    Soybean seeds were exposed to gamma radiation (0.5, 1, 3 and 5 kGy), static magnetic field (50, 100 and 200 mT) and a combination of gamma radiation and magnetic energy (0.5 kGy + 200 mT and 5 kGy + 50 mT) and stored at room temperature for six months. These seeds were later subjected to accelerated ageing treatment at 42 °C temperature and 95-100 % relative humidity and were compared for various physical and biochemical characteristics between the untreated and the energized treatments. Energy treatment protected the quality of stored seeds in terms of its protein and oil content . Accelerated aging conditions, however, affected the oil and protein quantity and quality of seed negatively. Antioxidant enzymes exhibited a decline in their activity during aging while the LOX activity, which reflects the rate of lipid peroxidation, in general, increased during the aging. Gamma irradiated (3 and 5 kGy) and magnetic field treated seeds (100 and 200 mT) maintained a higher catalase and ascorbate peroxidase activity which may help in efficient scavenging of deleterious free radical produced during the aging. Aging caused peroxidative changes to lipids, which could be contributed to the loss of oil quality. Among the electromagnetic energy treatments, a dose of 1-5 kGy of gamma and 100 mT, 200 mT magnetic field effectively slowed the rate of biochemical degradation and loss of cellular integrity in seeds stored under conditions of accelerated aging and thus, protected the deterioration of seed quality. Energy combination treatments did not yield any additional protection advantage. PMID:26243899

  8. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice

    PubMed Central

    Jurk, Diana; Wilson, Caroline; Passos, João F.; Oakley, Fiona; Correia-Melo, Clara; Greaves, Laura; Saretzki, Gabriele; Fox, Chris; Lawless, Conor; Anderson, Rhys; Hewitt, Graeme; Pender, Sylvia LF; Fullard, Nicola; Nelson, Glyn; Mann, Jelena; van de Sluis, Bart; Mann, Derek A.; von Zglinicki, Thomas

    2014-01-01

    Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-κB induces premature ageing in mice. We also show that these mice have reduced regeneration in liver and gut. nfkb1−/− fibroblasts exhibit aggravated cell senescence because of an enhanced autocrine and paracrine feedback through NF-κB, COX-2 and ROS, which stabilizes DNA damage. Preferential accumulation of telomere-dysfunctional senescent cells in nfkb1−/− tissues is blocked by anti-inflammatory or antioxidant treatment of mice, and this rescues tissue regenerative potential. Frequencies of senescent cells in liver and intestinal crypts quantitatively predict mean and maximum lifespan in both short- and long-lived mice cohorts. These data indicate that systemic chronic inflammation can accelerate ageing via ROS-mediated exacerbation of telomere dysfunction and cell senescence in the absence of any other genetic or environmental factor. PMID:24960204

  9. Status of high temperature superconductor development for accelerator magnets

    NASA Technical Reports Server (NTRS)

    Hirabayashi, H.

    1995-01-01

    High temperature superconductors are still under development for various applications. As far as conductors for magnets are concerned, the development has just been started. Small coils wound by silver sheathed Bi-2212 and Bi-2223 oxide conductors have been reported by a few authors. Essential properties of high T(sub c) superconductors like pinning force, coherent length, intergrain coupling, weak link, thermal property, AC loss and mechanical strength are still not sufficiently understandable. In this talk, a review is given with comparison between the present achievement and the final requirement for high T(sub c) superconductors, which could be particularly used in accelerator magnets. Discussions on how to develop high T(sub c) superconductors for accelerator magnets are included with key parameters of essential properties. A proposal of how to make a prototype accelerator magnet with high T(sub c) superconductors with prospect for future development is also given.

  10. Temperature-independent fiber Bragg grating acceleration sensor

    NASA Astrophysics Data System (ADS)

    Li, Lan; Dong, Xinyong; Zhou, Wenjun; Jin, Yongxing; Sun, Yiling

    2009-08-01

    An acceleration sensor based on measurement of the reflection bandwidth of a single fiber Bragg grating (FBG) is presented. The FBG is glued in a slanted direction onto the lateral surface at the center of the beam. Two weights were fixed respectively on the upper and lower surfaces in the middle of the beam to sense the variation of the acceleration in the vertical direction. Preliminary experimental results indicate that when the acceleration was increased, the 3-dB bandwidth of the FBG responded linearly from zero to 8 g, with very low temperature dependence. The measurement sensitivity and resolution are 0.4 nm/g and 0.05 g, respectively.

  11. Gradient Limitations in Room Temperature and Superconducting Acceleration Structures

    SciTech Connect

    Solyak, N. A.

    2009-01-22

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx}10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R and D program.

  12. Gradient limitations in room temperature and superconducting acceleration structures

    SciTech Connect

    Solyak, N.A.; /Fermilab

    2008-10-01

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx} 10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R&D program.

  13. Accelerated aging studies and environmental stability of prototype tamper tapes

    SciTech Connect

    Wright, B.W.; Wright, C.W.; Bunk, A.R.

    1995-05-01

    This report describes the results of accelerated aging experiments (weathering) conducted on prototype tamper tapes bonded to a variety of surface materials. The prototype tamper tapes were based on the patented Confirm{reg_sign} tamper-indicating technology developed and produced by 3M Company. Tamper tapes bonded to surfaces using pressure sensitive adhesive (PSA) and four rapid-set adhesives were evaluated. The configurations of the PSA-bonded tamper tapes were 1.27-cm-wide Confirm{reg_sign} 1700 windows with vinyl underlay and 2.54-cm-wide Confirm{reg_sign} 1700 windows with vinyl and polyester underlays. The configurations of the rapid-set adhesive-bonded tamper tapes were 2.54-cm-wide Confirm{reg_sign} (1700, 1500 with and without primer, and 1300) windows with vinyl underlay. Surfaces used for bonding included aluminum, steel, stainless steel, Kevlar{reg_sign}, brass, copper, fiberglass/resin with and without gel coat, polyurethane-painted steel, acrylonitrile:butadiene:styrene plastic, polyester fiberglass board, Lexan polycarbonate, and cedar wood. Weathering conditions included a QUV cabinet (ultraviolet light at 60{degrees}C, condensing humidity at 40{degrees}C), a thermal cycling cabinet (-18{degrees}C to 46{degrees}C), a Weather-O-Meter (Xenon lamp), and exposure outdoors in Daytona Beach, Florida. Environmental aging exposures lasted from 7 weeks to 5 months. After exposure, the tamper tapes were visually examined and tested for transfer resistance. Tamper tapes were also exposed to a variety of chemical liquids (including organic solvents, acids, bases, and oxidizing liquids) to determine chemical resistance and to sand to determine abrasion resistance.

  14. High Temperature μSR Experiments for Accelerator Developments

    NASA Astrophysics Data System (ADS)

    Ohmori, Chihiro; Koda, Akihiro; Miyake, Yasuhiro; Nishiyama, Kusuo; Shimomura, Koichiro; Schnase, Alexander; Ezura, Eiji; Hara, Keigo; Hasegawa, Katsushi; Nomura, Masahiro; Shimada, Taihei; Takata, Koji; Tamura, Fumihiko; Toda, Makoto; Yamamoto, Masanobu; Yoshii, Masahito

    High temperature μSR is a powerful technique to study magnetic materials. In J-PARC accelerator synchrotrons, the Rapid Cycling Synchrotron (RCS) and Main Ring (MR), a unique magnetic alloy-loaded cavity is used for the beam acceleration and much higher field gradient has been achieved. Such high field gradient cavities made a compact RCS possible by reducing the length for beam acceleration. Now, further upgrades of the J-PARC, RF cavities with higher RF voltage and less power loss in the magnetic core are needed for the MR. For the improvements of the magnetic property of magnetic alloy core, the high temperature μSR (muon Spin Rotation/Relaxation) was used to investigate the crystallization process of the material. Based on the measurement results, the test production of the large ring cores of a magnetic alloy, FT3L, was tried. The FT3L is the magnetic alloy which has two times better performance than the present one, FT3M. For the FT3L production, the magnetic annealing is needed to control the easy-magnetized axis of the crystalline. After the success of the test production, a mass production was started in the industry to replace all existing cavities in the MR. The first 5-cell FT3L cavity is assembled for the bench test before the installation in the accelerator tunnel. By the new cavities, the total RF voltage of J-PARC MR will be doubled to increase the beam power for neutrino experiment. In future, the cavities will be also used for the RCS to increase the beam power beyond 1 MW.

  15. Passive absolute age and temperature history sensor

    SciTech Connect

    Robinson, Alex; Vianco, Paul T.

    2015-11-10

    A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.

  16. Low temperature-induced circulating triiodothyronine accelerates seasonal testicular regression.

    PubMed

    Ikegami, Keisuke; Atsumi, Yusuke; Yorinaga, Eriko; Ono, Hiroko; Murayama, Itaru; Nakane, Yusuke; Ota, Wataru; Arai, Natsumi; Tega, Akinori; Iigo, Masayuki; Darras, Veerle M; Tsutsui, Kazuyoshi; Hayashi, Yoshitaka; Yoshida, Shosei; Yoshimura, Takashi

    2015-02-01

    In temperate zones, animals restrict breeding to specific seasons to maximize the survival of their offspring. Birds have evolved highly sophisticated mechanisms of seasonal regulation, and their testicular mass can change 100-fold within a few weeks. Recent studies on Japanese quail revealed that seasonal gonadal development is regulated by central thyroid hormone activation within the hypothalamus, depending on the photoperiodic changes. By contrast, the mechanisms underlying seasonal testicular regression remain unclear. Here we show the effects of short day and low temperature on testicular regression in quail. Low temperature stimulus accelerated short day-induced testicular regression by shutting down the hypothalamus-pituitary-gonadal axis and inducing meiotic arrest and germ cell apoptosis. Induction of T3 coincided with the climax of testicular regression. Temporal gene expression analysis over the course of apoptosis revealed the suppression of LH response genes and activation of T3 response genes involved in amphibian metamorphosis within the testis. Daily ip administration of T3 mimicked the effects of low temperature stimulus on germ cell apoptosis and testicular mass. Although type 2 deiodinase, a thyroid hormone-activating enzyme, in the brown adipose tissue generates circulating T3 under low-temperature conditions in mammals, there is no distinct brown adipose tissue in birds. In birds, type 2 deiodinase is induced by low temperature exclusively in the liver, which appears to be caused by increased food consumption. We conclude that birds use low temperature-induced circulating T3 not only for adaptive thermoregulation but also to trigger apoptosis to accelerate seasonal testicular regression. PMID:25406020

  17. Color stability of repaired composite submitted to accelerated artificial aging.

    PubMed

    Souza, Ana Beatriz Silva; Silame, Francisca Daniele Jardilino; Alandia-Roman, Carla Cecilia; Cruvinel, Diogo Rodrigues; Garcia, Lucas da Fonseca Roberti; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2012-01-01

    The aim of this study was to evaluate the color stability (ΔE) of nanoparticulate composite, with consideration for the type of surface treatment performed before repair. A Teflon matrix was used to fabricate 50 test specimens from composite. After initial color readout, the specimens were submitted to 100 hours of accelerated artificial aging (AAA). The samples were divided into five groups (n = 10), according to the surface treatment performed: sandblasting with aluminum oxide powder, phosphoric acid, and an adhesive system (Group 1); sandblasting with aluminum oxide powder, phosphoric acid, and a flowable composite (Group 2); abrasion with a diamond bur, phosphoric acid, and an adhesive system (Group 3); abrasion with a diamond bur, phosphoric acid, and a nanoparticulate composite (Group 4); and a control group (Group 5). After repair, a new color readout was taken, the test specimens were submitted to a new AAA cycle (300 hours), and the final color readout was taken. Comparison of the ΔE means (one-way ANOVA and Tukey tests, p < 0.05) demonstrated no statistically significant differences among the groups (p > 0.05) after 100 hours of AAA. After repair, Group 1 (4.61 ± 2.03) presented the highest color alteration with a statistically significant difference compared with the other groups (p < 0.05). After 300 hours, Group 4 specimens (13.84 ± 0.71) presented the lowest color alteration in comparison with the other groups, with a statistically significant difference (p < 0.05). It was concluded that the repair performed in Group 4 provided greater esthetic recovery, made possible by the regression in the ΔE values of the restorations after repair, and less color alteration of the restorations over the course of time. PMID:23032241

  18. Accelerated thermal aging of petroleum-based ferrofluids

    NASA Astrophysics Data System (ADS)

    Segal, V.; Nattrass, D.; Raj, K.; Leonard, D.

    1999-07-01

    The effect of elevated temperature on the physical and insulating properties of ferrofluid specifically developed for use as a liquid dielectric (D-fluid) for power transformers has been investigated. The D-fluid was produced as a colloidal mix of a specifically synthesized ferrofluid with a conventional mineral oil, and it was subjected to thermal aging conditions modeled after a typical power transformer where the insulation fluid is expected to retain its dielectric performance for about 40 years of continuous service in a sealed tank. The well-known Arrhenius relationship was employed to model "life in service" for up to 40 years at 105°C which corresponded to holding the samples in sealed jars for 10 weeks at 185°C. Another set of small ampules (5 ml) was prepared to test the main physical properties after even longer aging. D-fluid tested after a period of 34 and 50 weeks at 185°C showed no degradation of thermal or colloid stability. The dielectric colloid was also subjected to a 21 day-long test at 110°C in a sealed jar in the presence of typical transformer materials: copper, cellulose, and silicon steel (so-called "bomb" test). Finally, the ferrofluid went through an oxidation stability test (ASTM D2440). Test results show that the newly developed dielectric colloid satisfies the long-term service requirements the transformer users typically apply to conventional mineral oils.

  19. Temperature accelerated dynamics : introduction and application to crystal growth.

    SciTech Connect

    Montalenti, F.

    2002-01-01

    Temperature accelerated dynamics (TAD) simulations allow one to reach long time scales without needing any a priori information on the system dynamics. As a consequence, TAD is a powerful method for simulating complex phenomena where the dynamics is highly unpredictable and the time scale is longer than the one reachable by standard molecular dynamics (ns-ps) . In this paper, we shall focus our attention on crystal growth. We give an overview of the TAD method, and we demonstrate that at low temperatures a TAD simulation can be faster than a standard molecular dynamics simulation by several orders of magnitude, allowing one to match typical experimental time scales of seconds or longer. Moreover, we explicitely show how critical it is to match the experimental time scale, in order to predict the correct geometry of the growing surface.

  20. The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber

    SciTech Connect

    Gorur, R.S.; Cherney, E.A.; Hackam, R. ); Orbeck, T. )

    1988-07-01

    A comparative study of the ac (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low conductivity (250 ..mu..S/cm) fog, silicone rubber performed better than EPDM samples whereas in high conductivity (1000 ..mu..S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (Electron Spectroscopy for Chemical Analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low molecular weight polymer chains and/or mobile fluids, such as silicone oil.

  1. Temperature of the Vacuum Accelerated by External Fields

    NASA Astrophysics Data System (ADS)

    Labun, Lance; Rafelski, Johann

    2012-03-01

    Using the result of M"uller et al. [1], we show that in a constant electric field E, the electron fluctuations <ψψ> display a thermal Bose spectrum with temperature T=eE/mπ=a/π. This result contrasts with the Fermi spectrum and Hawking-Unruh temperature THU=a/2π expected from viewing the vacuum fluctuations of the electrons as accelerated [2,3]. We consider the temperature in the electric field as a function of magnetic moment g. We find that the temperature in the electric field arises from the Dirac spinor nature of the electron with g=2 and, setting arbitrarily g=1, we recover the Hawking-Unruh THU=a/2π with a Fermi spectrum. [4pt] [1] B. Muller, W. Greiner, and J. Rafelski, Phys. Lett. A63, 181 (1977).[0pt] [2] L.C.B. Crispino, A. Higuchi, George E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008).[0pt] [3] W.-Y. Pauchy Hwang and S. P. Kim, Phys.Rev. D80, 065004 (2009).

  2. Temperature accelerated dynamics in glass-forming materials.

    PubMed

    Tsalikis, Dimitrios G; Lempesis, Nikolaos; Boulougouris, Georgios C; Theodorou, Doros N

    2010-06-17

    In this work we propose a methodology for improving dynamical sampling in molecular simulations via temperature acceleration. The proposed approach combines the novel methods of Voter for temperature-accelerated dynamics with the multiple histogram reweighting method of Ferrenberg and Swendsen, its dynamical extension by Nieto-Draghi et al., and with hazard plot analysis, allowing optimal sampling with small computational cost over time scales inaccessible to classical molecular dynamics simulations by utilizing the "inherent structure" idea. The time evolution of the system is viewed as a succession of transitions between "basins" in its potential energy landscape, each basin containing a local minimum of the energy (inherent structure). Applying the proposed algorithm to a glass-forming material consisting of a mixture of spherical atoms interacting via Lennard-Jones potentials, we show that it is possible to perform an exhaustive search and evaluate rate constants for basin-to-basin transitions that cover several orders of magnitude on the time scale, far beyond the abilities of any competitive dynamical study, revealing an extreme ruggedness of the potential energy landscape in the vicinity of the glass transition temperature. By analyzing the network of inherent structures, we find that there are characteristic distances and rate constants related to the dynamical entrapment of the system in a neighborhood of basins (a metabasin), whereas evidence to support a random energy model is provided. The multidimensional configurational space displays a self-similar character depicted by a fractal dimension around 2.7 (+/-0.5) for the set of sampled inherent structures. Only transitions with small Euclidean measure can be considered as localized. PMID:20491458

  3. On the finite-temperature quantum electrodynamics of gravitational acceleration

    NASA Astrophysics Data System (ADS)

    Barton, G.

    1989-12-01

    The temperature-dependent quantum-electrodynamic corrections to the Helmholtz free energy F of a particle at rest, and to its inertial mass minert, are the same: ΔF=Δminert=πe2(kT)2/3m. By contrast, the correction to the total energy U=F+TS is ΔU=-ΔF. Donoghue, Holstein, and Robinett have pointed out that if (as the equivalence principle appears to imply) weight is proportional to total energy, then the gravitational acceleration of a particle inside a blackbody cavity becomes g(m+ΔU)/(m+ΔF)~=g(1-2ΔF/m)acceleration g.

  4. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri.

    PubMed

    Valenzano, Dario R; Terzibasi, Eva; Cattaneo, Antonino; Domenici, Luciano; Cellerino, Alessandro

    2006-06-01

    Temperature variations are known to modulate aging and life-history traits in poikilotherms as different as worms, flies and fish. In invertebrates, temperature affects lifespan by modulating the slope of age-dependent acceleration in death rate, which is thought to reflect the rate of age-related damage accumulation. Here, we studied the effects of temperature on aging kinetics, aging-related behavioural deficits, and age-associated histological markers of senescence in the short-lived fish Nothobranchius furzeri. This species shows a maximum captive lifespan of only 3 months, which is tied with acceleration in growth and expression of aging biomarkers. These biological peculiarities make it a very convenient animal model for testing the effects of experimental manipulations on life-history traits in vertebrates. Here, we show that (i) lowering temperature from 25 degrees C to 22 degrees C increases both median and maximum lifespan; (ii) life extension is due to reduction in the slope of the age-dependent acceleration in death rate; (iii) lowering temperature from 25 degrees C to 22 degrees C retards the onset of age-related locomotor and learning deficits; and (iv) lowering temperature from 25 degrees C to 22 degrees C reduces the accumulation of the age-related marker lipofuscin. We conclude that lowering water temperature is a simple experimental manipulation which retards the rate of age-related damage accumulation in this short-lived species. PMID:16842500

  5. Comparison of mice with accelerated aging caused by distinct mechanisms.

    PubMed

    Gurkar, Aditi U; Niedernhofer, Laura J

    2015-08-01

    Aging is the primary risk factor for numerous chronic, debilitating diseases. These diseases impact quality of life of the elderly and consume a large portion of health care costs. The cost of age-related diseases will only increase as the world's population continues to live longer. Thus it would be advantageous to consider aging itself as a therapeutic target, potentially stemming multiple age-related diseases simultaneously. While logical, this is extremely challenging as the molecular mechanisms that drive aging are still unknown. Furthermore, clinical trials to treat aging are impractical. Even in preclinical models, testing interventions to extend healthspan in old age are lengthy and therefore costly. One approach to expedite aging studies is to take advantage of mouse strains that are engineered to age rapidly. These strains are genetically and phenotypically quite diverse. This review aims to offer a comparison of several of these strains to highlight their relative strengths and weaknesses as models of mammalian and more specifically human aging. Additionally, careful identification of commonalities among the strains may lead to the identification of fundamental pathways of aging. PMID:25617508

  6. GPU-Accelerated Molecular Modeling Coming Of Age

    PubMed Central

    Stone, John E.; Hardy, David J.; Ufimtsev, Ivan S.

    2010-01-01

    Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualization of molecular structures and animation of trajectories resulting from molecular dynamics simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be exploited to accelerate many scientific computations, typically providing about one order of magnitude speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper surveys the development of molecular modeling algorithms that leverage GPU computing, the advances already made and remaining issues to be resolved, and the continuing evolution of GPU technology that promises to become even more useful to molecular modeling. Hardware acceleration with commodity GPUs is expected to benefit the overall computational biology community by bringing teraflops performance to desktop workstations and in some cases potentially changing what were formerly batch-mode computational jobs into interactive tasks. PMID:20675161

  7. Comparison of online and offline tests in LED accelerated reliability tests under temperature stress.

    PubMed

    Ke, Hong-Liang; Jing, Lei; Gao, Qun; Wang, Yao; Hao, Jian; Sun, Qiang; Xu, Zhi-Jun

    2015-11-20

    Accelerated aging tests are the main method used in the evaluation of LED reliability, and can be performed in either online or offline modes. The goal of this study is to provide the difference between the two test modes. In the experiments, the sample is attached to different heat sinks to acquire the optical parameters under different junction temperatures of LEDs. By measuring the junction temperature in the aging process (Tj1), and the junction temperature in the testing process (Tj2), we achieve consistency with an online test of Tj1 and Tj2 and a difference with an offline test of Tj1 and Tj2. Experimental results show that the degradation rate of the luminous flux rises as Tj2 increases, which yields a difference of projected life L(70%) of 8% to 13%. For color shifts over 5000 h of aging, the online test shows a larger variation of the distance from the Planckian locus, about 40% to 50% more than the normal test at an ambient temperature of 25°C. PMID:26836556

  8. Aging and sleep in Williams syndrome: accelerated sleep deterioration and decelerated slow wave sleep decrement.

    PubMed

    Bódizs, Róbert; Gombos, Ferenc; Gerván, Patrícia; Szőcs, Katalin; Réthelyi, János M; Kovács, Ilona

    2014-12-01

    Specific developmental and aging trajectories characterize sleep electroencephalogram (EEG) of typically developing (TD) subjects. Williams syndrome (WS) is marked by sleep alterations and accelerated aging of several anatomo-functional and cognitive measures. Here we test the hypothesis of a premature aging of sleep in WS. Age-related changes of home recorded sleep EEG of 42 subjects (21 WS, 21 age- and gender matched TD subjects, age: 6-29 years) were tested by Pearson correlations and homogeneity-of-slopes analysis. Typical developmental/aging effects of sleep EEGs were observed in TD subjects. Accelerated aging in WS was confirmed by overall sleep/wake measures. Specifically, premature aging was evident in accelerated age-dependent declines in WS subjects' sleep efficiency, as well as in steeper age-related rises in wakefulness and wake after sleep onset (WASO) of the WS group. In contrast, NREM sleep-related measures indicated atypical decelerations of the developmental trends of WS subjects, characterized by the slowing down of the age-related slow wave sleep (SWS) declines mirrored by the lack of age-dependent increase in Stage 2 (S2) sleep. Age-effects in sleep EEG power spectra were not different among the groups. Objectively measured sleep disruption of subjects with WS is age-dependent and increasing with age. Moreover, these data suggest atypical pre- and postpubertal neural development in WS, with sleep/wake balance and REM sleep time indicating accelerated aging while NREM sleep composition revealing signs of an as yet unidentified, perhaps compensatory developmental delay. PMID:25178705

  9. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels.

    PubMed

    Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F; Eszes, Marika; Faull, Richard L M; Curtis, Maurice A; Waldvogel, Henry J; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V; Coppola, Giovanni; Yang, X William

    2016-07-01

    Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=-0.41, p=5.5×10-8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels. PMID:27479945

  10. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels

    PubMed Central

    Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F.; Eszes, Marika; Faull, Richard L.M.; Curtis, Maurice A.; Waldvogel, Henry J.; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V.; Coppola, Giovanni; Yang, X. William

    2016-01-01

    Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=−0.41, p=5.5×10−8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels. PMID:27479945

  11. Accelerated aging of solid lubricants for the W76-1 TSL : effects of polymer outgassing.

    SciTech Connect

    Dugger, Michael Thomas; Wallace, William O.; Huffman, Elizabeth M.

    2006-09-01

    The behavior of MoS{sub 2} lubricants intended for the W76-1 TSL was evaluated after 17 and 82 thermal cycles, each lasting seven days and including a low temperature of -35 C and a high temperature of 93 C, in a sealed container containing organic materials. The MoS{sub 2} was applied by tumbling with MoS{sub 2} powder and steel pins (harperized), or by spraying with a resin binder (AS Mix). Surface composition measurements indicated an uptake of carbon and silicon on the lubricant surfaces after aging. Oxidation of the MoS{sub 2} on harperized coupons, where enough MoS{sub 2} was present at the surface to result in significant Mo and S concentrations, was found to be minimal for the thermal cycles in an atmosphere of primarily nitrogen. Bare steel surfaces showed a reduction in friction for exposed coupons compared to control coupons stored in nitrogen, at least for the initial cycles of sliding until the adsorbed contaminants were worn away. Lubricated surfaces showed no more than a ten percent increase in steady-state friction coefficient after exposure. Initial coefficient of friction was up to 250 percent higher than steady-state for AS Mix films on H950 coupons after 82 thermal cycles. However, the friction coefficient exhibited by lubricated coupons was never greater than 0.25, and more often less than 0.15, even after the accelerated aging exposures.

  12. Piezoelectric nonlinear nanomechanical temperature and acceleration insensitive clocks

    NASA Astrophysics Data System (ADS)

    Tazzoli, A.; Piazza, G.; Rinaldi, M.; Segovia, J.; Cassella, C.; Otis, B.; Shi, J.; Turner, K.; Burgner, C.; McNaul, K.; Bail, D.; Felmetsger, V.

    2012-06-01

    This work presents the development of high frequency mechanical oscillators based on non-linear laterally vibrating aluminum nitride (AlN) piezoelectric resonators. Our efforts are focused on harnessing non-linear dynamics in resonant mechanical devices to devise frequency sources operating around 1 GHz and capable of outperforming state-of-the-art oscillators in terms of phase noise and size. To this extent, we have identified the thermal and mechanical origin of non-linearities in micro and nanomechanical AlN resonators and developed a theory that describes the optimal operating point for non-linear oscillators. Based on these considerations, we have devised 1 GHz oscillators that exhibit phase noise of < -90 dBc/Hz at 1 kHz offset and < -160 dBc/Hz at 10 MHz offset. In order to attain thermally stable oscillators showing few ppm shifts from - 40 to + 85 °C, we have implemented an embedded ovenization technique that consumes only few mW of power. By means of simple microfabrication techniques, we have included a serpentine heater in the body of the resonator and exploited it to heat it and monitor its temperature without degrading its electromechanical performance. The ovenized devices have resulted in high frequency stability with just few ppm of shift over the temperature range of interest. Finally, few of these oscillators were tested according to military standards for acceleration sensitivity and exhibited a frequency sensitivity lower than 30 ppb/G. These ultra stable oscillators with low jitter and phase noise will ultimately benefit military as well as commercial communication systems.

  13. Improved scaling of temperature-accelerated dynamics using localization.

    PubMed

    Shim, Yunsic; Amar, Jacques G

    2016-07-01

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N(3) where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary "bottlenecks" to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N(1/2). Some additional possible methods to improve the scaling of TAD are also discussed. PMID:27394097

  14. Improved scaling of temperature-accelerated dynamics using localization

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques G.

    2016-07-01

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N3 where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary "bottlenecks" to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N1/2. Some additional possible methods to improve the scaling of TAD are also discussed.

  15. Accelerator-based fusion with a low temperature target

    SciTech Connect

    Phillips, R. E.; Ordonez, C. A.

    2013-04-19

    Neutron generators are in use in a number of scientific and commercial endeavors. They function by triggering fusion reactions between accelerated ions (usually deuterons) and a stationary cold target (e.g., containing tritium). This setup has the potential to generate energy. It has been shown that if the energy transfer between injected ions and target electrons is sufficiently small, net energy gain can be achieved. Three possible avenues are: (a) a hot target with high electron temperature, (b) a cold non-neutral target with an electron deficiency, or (c) a cold target with a high Fermi energy. A study of the third possibility is reported in light of recent research that points to a new phase of hydrogen, which is hypothesized to be related to metallic hydrogen. As such, the target is considered to be composed of nuclei and delocalized electrons. The electrons are treated as conduction electrons, with the average minimum excitation energy being approximately equal to 40% of the Fermi energy. The Fermi energy is directly related to the electron density. Preliminary results indicate that if the claimed electron densities in the new phase of hydrogen were achieved in a target, the energy transfer to electrons would be small enough to allow net energy gain.

  16. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    PubMed

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures. PMID:27059404

  17. Age specific fecundity of Lygus hesperus in high, fluctuating temperatures.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have simulated hourly temperatures to examine Lygus response to hot summers in the San Joaquin Valley. Constant temperature of 33C quickly killed Lygus and SJV temperatures routinely surpass this level. Average hourly temperatures were tested for the months May, July, and September. Age specific ...

  18. Solder joint aging characteristics from the MC2918 firing set of a B61 accelerated aging unit (AAU)

    SciTech Connect

    Vianco, P.T.; Rejent, J.A.

    1997-10-01

    The B61 accelerated aging unit (AAU) provided a unique opportunity to document the effects of a controlled, long-term thermal cycling environment on the aging of materials used in the device. This experiment was of particular interest to solder technologists because thermal cycling environments are a predominant source of solder joint failures in electronic assemblies. Observations of through hole solder joints in the MC2918 Firing Set from the B61 AAU did not reveal signs of catastrophic failure. Quantitative analyses of the microstructural metrics of intermetallic compound layer thickness and Pb-rich phase particle distributions indicated solder joint aging that was commensurate with the accelerated aging environment. The effects of stress-enhanced coarsening of the Pb-rich phase were also documented.

  19. Accelerated ageing in testing bricks used in the conservation of historic buildings

    NASA Astrophysics Data System (ADS)

    Pavlendová, Gabriela; Podoba, Rudolf; Baník, Ivan

    2014-11-01

    The effect of accelerated climate ageing on historical bricks in the laboratory is investigated in the paper. Differences in thermal properties are experimentally determined and studied before and after bricks exposure to climate ageing, which consists of 60 freeze-thaw cycles. For measuring thermal conductivity, diffusivity and specific heat, pulse method is used.

  20. Traumatic stress, oxidative stress and posttraumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis

    PubMed Central

    Miller, Mark W.; Sadeh, Naomi

    2014-01-01

    Posttraumatic stress disorder (PTSD) is associated with elevated risk for a variety of age-related diseases and neurodegeneration. In this paper, we review evidence relevant to the hypothesis that chronic PTSD constitutes a form of persistent life stress that potentiates oxidative stress (OXS) and accelerates cellular aging. We provide an overview of empirical studies that have examined the effects of psychological stress on OXS, discuss the stress-perpetuating characteristics of PTSD, and then identify mechanisms by which PTSD might promote OXS and accelerated aging. We review studies on OXS-related genes and the role that they may play in moderating the effects of PTSD on neural integrity and conclude with a discussion of directions for future research on antioxidant treatments and biomarkers of accelerated aging in PTSD. PMID:25245500

  1. Analysis of junction temperature and modification of luminous flux degradation for white LEDs in a thermal accelerated reliability test.

    PubMed

    Ke, Hong-Liang; Jing, Lei; Hao, Jian; Gao, Qun; Wang, Yao; Wang, Xiao-Xun; Sun, Qiang; Xu, Zhi-Jun

    2016-08-01

    An accelerated aging test is the main method in evaluation of the reliability of light-emitting diodes (LEDs), and the first goal of this study is to investigate how the junction temperature (Tj) of the LED varies during accelerated aging. The Tj measured by the forward voltage method shows an upward trend over the aging time, which gives a variation about 6°C-8°C after 3,000 h of aging under an ambient temperature of 80°C. The second goal is to investigate how the variation of Tj affects the lifetime estimation. It is verified that at a certain aging stage, as Tj increases, the normalized luminous flux linearly decreases with variation rate of microns (μ) (1/°C). Then, we propose a method to modify the luminous flux degradation with the Tj and μ to meet the requirements of a constant degradation rate in the data fitting. The experimental results show that with the proposed method, the accelerated lifetimes of samples are bigger than that of the current method with increment values from 8.8% to 21.4% in this research. PMID:27505370

  2. Are Anxiety Disorders Associated with Accelerated Aging? A Focus on Neuroprogression

    PubMed Central

    Perna, Giampaolo; Iannone, Giuseppe; Alciati, Alessandra; Caldirola, Daniela

    2016-01-01

    Anxiety disorders (AnxDs) are highly prevalent throughout the lifespan, with detrimental effects on daily-life functioning, somatic health, and quality of life. An emerging perspective suggested that AnxDs may be associated with accelerated aging. In this paper, we explored the association between AnxDs and hallmarks of accelerated aging, with a specific focus on neuroprogression. We reviewed animal and human findings that suggest an overlap between processes of impaired neurogenesis, neurodegeneration, structural, functional, molecular, and cellular modifications in AnxDs, and aging. Although this research is at an early stage, our review suggests a link between anxiety and accelerated aging across multiple processes involved in neuroprogression. Brain structural and functional changes that accompany normal aging were more pronounced in subjects with AnxDs than in coevals without AnxDs, including reduced grey matter density, white matter alterations, impaired functional connectivity of large-scale brain networks, and poorer cognitive performance. Similarly, molecular correlates of brain aging, including telomere shortening, Aβ accumulation, and immune-inflammatory and oxidative/nitrosative stress, were overrepresented in anxious subjects. No conclusions about causality or directionality between anxiety and accelerated aging can be drawn. Potential mechanisms of this association, limitations of the current research, and implications for treatments and future studies are discussed. PMID:26881136

  3. Fine-pore aeration diffusers: accelerated membrane ageing studies.

    PubMed

    Kaliman, An; Rosso, Diego; Leu, Shao-Yuan; Stenstrom, Michael K

    2008-01-01

    Polymeric membranes are widely used in aeration systems for biological treatment. These membranes may degrade over time and are sensitive to fouling and scaling. Membrane degradation is reflected in a decline in operating performance and higher headloss, resulting in increased energy costs. Mechanical property parameters, such as membrane hardness, Young's modulus, and orifice creep, were used to characterize the performance of membranes over time in operation and to predict their failure. Used diffusers from municipal wastewater treatment plants were collected and tested for efficiency and headloss, and then dissected to facilitate measurements of Young's modulus, hardness, and orifice creep. Higher degree of membrane fouling corresponded consistently with larger orifice creep. A lab-scale membrane ageing simulation was performed with polyurethane and four different ethylene-propylene-diene (EPDM) membrane diffusers by subjecting them to chemical ageing cycles and periodic testing. The results confirmed full-scale plant results and showed the superiority of orifice creep over Young's modulus and hardness in predicting diffuser deterioration. PMID:17706264

  4. Accelerated aging and flashover tests on 138 kV nonceramic line post insulators

    SciTech Connect

    Schneider, H.M.; Guidi, W.W. ); Burnham, J.T. ); Gorur, R.S. ); Hall, J.F. )

    1993-01-01

    The behavior of 138 kV nonceramic line post insulators is investigated by means of clean fog tests conducted before and after aging in a specially designed accelerated aging chamber. The laboratory aging cycles are justified on the basis of actual weather in the coastal regions of Florida. Analytical measurements quantifying the degree of artificial aging are discussed and comparisons of artificial aging with service experience are presented. Observations of audible noise and radio influence voltage during the clean fog tests are reported.

  5. Senescence-accelerated mouse (SAM): a biogerontological resource in aging research.

    PubMed

    Takeda, T

    1999-01-01

    The senescence-accelerated mouse (SAM), consisting of 14 senescence-prone inbred strains (SAMP) and 4 senescence-resistant inbred strains (SAMR) has been under development since 1970 through the selective inbreeding of AKR/J strain mice donated by the Jackson laboratory in 1968, based on the data of the grading score of senescence, life span, and pathologic phenotypes. The characteristic feature of aging common to all SAMP and SAMR mice is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains manifest various pathobiological phenotypes which include such neurobiological phenotypes as deficits in learning and memory, emotional disorders, abnormal circadian rhythms, brain atrophy, hearing impairment, etc., and are often characteristic enough to differentiate the strains. Various efforts are currently being made using the SAM model to clarify the underlying mechanisms in accelerated senescence as well as the etiopathogenic mechanisms in age-associated pathobiologies. Genetic background and significance of SAM development are discussed. PMID:10537019

  6. Accelerated ageing and renal dysfunction links lower socioeconomic status and dietary phosphate intake

    PubMed Central

    McClelland, Ruth; Christensen, Kelly; Mohammed, Suhaib; McGuinness, Dagmara; Cooney, Josephine; Bakshi, Andisheh; Demou, Evangelia; MacDonald, Ewan; Caslake, Muriel; Stenvinkel, Peter; Shiels, Paul G.

    2016-01-01

    Background We have sought to explore the impact of dietary Pi intake on human age related health in the pSoBid cohort (n=666) to explain the disparity between health and deprivation status in this cohort. As hyperphosphataemia is a driver of accelerated ageing in rodent models of progeria we tested whether variation in Pi levels in man associate with measures of biological ageing and health. Results We observed significant relationships between serum Pi levels and markers of biological age (telomere length (p=0.040) and DNA methylation content (p=0.028), gender and chronological age (p=0.032). When analyses were adjusted for socio-economic status and nutritional factors, associations were observed between accelerated biological ageing (telomere length, genomic methylation content) and dietary derived Pi levels among the most deprived males, directly related to the frequency of red meat consumption. Conclusions Accelerated ageing is associated with high serum Pi levels and frequency of red meat consumption. Our data provide evidence for a mechanistic link between high intake of Pi and age-related morbidities tied to socio-economic status. PMID:27132985

  7. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 2; Temperature Stability

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Taril; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. LHP's are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that in stationary tests the LHP operating temperature is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled. Results of this test program indicate that any change in the accelerating force will result in a chance in the LHP operating temperature through its influence on the fluid distribution in the evaporator, condenser and compensation chamber. However, the effect is not universal, rather it is a function of other test conditions. A steady, constant acceleration may result in an increase or decrease of the operating temperature, while a periodic spin will lead to a quasi-steady operating temperature over a sufficient time interval. In addition, an accelerating force may lead to temperature hysteresis and changes in the temperature oscillation. In spite of all these effects, the LHP continued to operate without any problems in all tests.

  8. p63 deficiency activates a program of cellular senescence and leads to accelerated aging

    PubMed Central

    Keyes, William M.; Wu, Ying; Vogel, Hannes; Guo, Xuecui; Lowe, Scott W.; Mills, Alea A.

    2005-01-01

    The p53 tumor suppressor plays a key role in organismal aging. A cellular mechanism postulated to drive the aging process is cellular senescence, mediated in part by p53. Although senescent cells accumulate in elderly individuals, most studies have relied on correlating in vitro senescence assays with in vivo phenotypes of aging. Here, using two different mouse models in which the p53-related protein p63 is compromised, we demonstrate that cellular senescence and organismal aging are intimately linked and that these processes are mediated by p63 loss. We found that p63+/- mice have a shortened life span and display features of accelerated aging. Both germline and somatically induced p63 deficiency activates widespread cellular senescence with enhanced expression of senescent markers SA-β-gal, PML, and p16INK4a. Using an inducible tissue-specific p63 conditional model, we further show that p63 deficiency induces cellular senescence and causes accelerated aging phenotypes in the adult. Our results thus suggest a causative link between cellular senescence and aging in vivo, and demonstrate that p63 deficiency accelerates this process. PMID:16107615

  9. Seismic-fragility tests of new and accelerated-aged Class 1E battery cells

    SciTech Connect

    Bonzon, L.L.; Janis, W.J.; Black, D.A.; Paulsen, G.A.

    1987-01-01

    The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components.

  10. Coenzyme Q10 prevents accelerated cardiac aging in a rat model of poor maternal nutrition and accelerated postnatal growth.

    PubMed

    Tarry-Adkins, Jane L; Blackmore, Heather L; Martin-Gronert, Malgorzata S; Fernandez-Twinn, Denise S; McConnell, Josie M; Hargreaves, Iain P; Giussani, Dino A; Ozanne, Susan E

    2013-01-01

    Studies in human and animals have demonstrated that nutritionally induced low birth-weight followed by rapid postnatal growth increases the risk of metabolic syndrome and cardiovascular disease. Although the mechanisms underlying such nutritional programming are not clearly defined, increased oxidative-stress leading to accelerated cellular aging has been proposed to play an important role. Using an established rodent model of low birth-weight and catch-up growth, we show here that post-weaning dietary supplementation with coenzyme Q10, a key component of the electron transport chain and a potent antioxidant rescued many of the detrimental effects of nutritional programming on cardiac aging. This included a reduction in nitrosative and oxidative-stress, telomere shortening, DNA damage, cellular senescence and apoptosis. These findings demonstrate the potential for postnatal antioxidant intervention to reverse deleterious phenotypes of developmental programming and therefore provide insight into a potential translatable therapy to prevent cardiovascular disease in at risk humans. PMID:24327963

  11. Parallel circuits control temperature preference in Drosophila during ageing

    PubMed Central

    Shih, Hsiang-Wen; Wu, Chia-Lin; Chang, Sue-Wei; Liu, Tsung-Ho; Sih-Yu Lai, Jason; Fu, Tsai-Feng; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-01-01

    The detection of environmental temperature and regulation of body temperature are integral determinants of behaviour for all animals. These functions become less efficient in aged animals, particularly during exposure to cold environments, yet the cellular and molecular mechanisms are not well understood. Here, we identify an age-related change in the temperature preference of adult fruit flies that results from a shift in the relative contributions of two parallel mushroom body (MB) circuits—the β′- and β-systems. The β′-circuit primarily controls cold avoidance through dopamine signalling in young flies, whereas the β-circuit increasingly contributes to cold avoidance as adult flies age. Elevating dopamine levels in β′-afferent neurons of aged flies restores cold sensitivity, suggesting that the alteration of cold avoidance behaviour with ageing is functionally reversible. These results provide a framework for investigating how molecules and individual neural circuits modulate homeostatic alterations during the course of senescence. PMID:26178754

  12. Parallel circuits control temperature preference in Drosophila during ageing.

    PubMed

    Shih, Hsiang-Wen; Wu, Chia-Lin; Chang, Sue-Wei; Liu, Tsung-Ho; Lai, Jason Sih-Yu; Fu, Tsai-Feng; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-01-01

    The detection of environmental temperature and regulation of body temperature are integral determinants of behaviour for all animals. These functions become less efficient in aged animals, particularly during exposure to cold environments, yet the cellular and molecular mechanisms are not well understood. Here, we identify an age-related change in the temperature preference of adult fruit flies that results from a shift in the relative contributions of two parallel mushroom body (MB) circuits—the β'- and β-systems. The β'-circuit primarily controls cold avoidance through dopamine signalling in young flies, whereas the β-circuit increasingly contributes to cold avoidance as adult flies age. Elevating dopamine levels in β'-afferent neurons of aged flies restores cold sensitivity, suggesting that the alteration of cold avoidance behaviour with ageing is functionally reversible. These results provide a framework for investigating how molecules and individual neural circuits modulate homeostatic alterations during the course of senescence. PMID:26178754

  13. Towards Accelerated Aging Methodologies and Health Management of Power MOSFETs (Technical Brief)

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Patil, Nishad; Saha, Sankalita; Wysocki, Phil; Goebel, Kai

    2009-01-01

    Understanding aging mechanisms of electronic components is of extreme importance in the aerospace domain where they are part of numerous critical subsystems including avionics. In particular, power MOSFETs are of special interest as they are involved in high voltage switching circuits such as drivers for electrical motors. With increased use of electronics in aircraft control, it becomes more important to understand the degradation of these components in aircraft specific environments. In this paper, we present an accelerated aging methodology for power MOSFETs that subject the devices to indirect thermal overstress during high voltage switching. During this accelerated aging process, two major modes of failure were observed - latch-up and die attach degradation. In this paper we present the details of our aging methodology along with details of experiments and analysis of the results.

  14. Survivability of integrated PVDF film sensors to accelerated ageing conditions in aeronautical/aerospace structures

    NASA Astrophysics Data System (ADS)

    Guzman, E.; Cugnoni, J.; Gmür, T.; Bonhôte, P.; Schorderet, A.

    2013-06-01

    This work validates the use of integrated polyvinylidene fluoride (PVDF) film sensors for dynamic testing, even after being subjected to UV-thermo-hygro-mechanical accelerated ageing conditions. The verification of PVDF sensors’ survivability in these environmental conditions, typically confronted by civil and military aircraft, is the main concern of the study. The evaluation of survivability is made by a comparison of dynamic testing results provided by the PVDF patch sensors subjected to an accelerated ageing protocol, and those provided by neutral non-aged sensors (accelerometers). The available measurements are the time-domain response signals issued from a modal analysis procedure, and the corresponding frequency response functions (FRF). These are in turn used to identify the constitutive properties of the samples by extraction of the modal parameters, in particular the natural frequencies. The composite specimens in this study undergo different accelerated ageing processes. After several weeks of experimentation, the samples exhibit a loss of stiffness, represented by a decrease in the elastic moduli down to 10%. Despite the ageing, the integrated PVDF sensors, subjected to the same ageing conditions, are still capable of providing reliable data to carry out a close followup of these changes. This survivability is a determinant asset in order to use integrated PVDF sensors to perform structural health monitoring (SHM) in the future of full-scale composite aeronautical structures.

  15. Being cool: how body temperature influences ageing and longevity.

    PubMed

    Keil, Gerald; Cummings, Elizabeth; de Magalhães, João Pedro

    2015-08-01

    Temperature is a basic and essential property of any physical system, including living systems. Even modest variations in temperature can have profound effects on organisms, and it has long been thought that as metabolism increases at higher temperatures so should rates of ageing. Here, we review the literature on how temperature affects longevity, ageing and life history traits. From poikilotherms to homeotherms, there is a clear trend for lower temperature being associated with longer lifespans both in wild populations and in laboratory conditions. Many life-extending manipulations in rodents, such as caloric restriction, also decrease core body temperature. Nonetheless, an inverse relationship between temperature and lifespan can be obscured or reversed, especially when the range of body temperatures is small as in homeotherms. An example is observed in humans: women appear to have a slightly higher body temperature and yet live longer than men. The mechanisms involved in the relationship between temperature and longevity also appear to be less direct than once thought with neuroendocrine processes possibly mediating complex physiological responses to temperature changes. Lastly, we discuss species differences in longevity in mammals and how this relates to body temperature and argue that the low temperature of the long-lived naked mole-rat possibly contributes to its exceptional longevity. PMID:25832892

  16. Low-Temperature Aging Mechanisms in U-6wt% Nb

    SciTech Connect

    Hsiung, L L

    2004-12-07

    Phase stability and aging mechanisms in a water-quenched (WQ) U-6wt% Nb (U-14at% Nb) alloy artificially aged at 200 C and naturally aged at ambient temperature for 15 years have been investigated and studied using Vickers-hardness measurement, X-ray diffraction (XRD) analysis, and transmission electron microscopy (TEM) techniques. Age hardening/softening phenomenon is recorded from the artificially aged samples based upon the microhardness measurement. The age hardening can be readily rationalized by the occurrence of fine-scaled Nb segregation, or spinodal decomposition, within the {alpha}'' domains, which results in the formation of a modulated structure containing nano-scaled Nb-rich and Nb-lean domains. Prolonged aging leads to age softening of the alloy by coarsening of the modulated structure. Chemical ordering, or disorder-order phase transformation, is found within the naturally aged alloy according to TEM observations of antiphase domain boundaries (APBs) and superlattice diffraction patterns. A possible superlattice structure for the ordered {alpha}'' phase observed in the naturally aged sample and underlying low-temperature aging mechanisms are proposed.

  17. Accelerated Vascular Aging as a Paradigm for Hypertensive Vascular Disease: Prevention and Therapy.

    PubMed

    Barton, Matthias; Husmann, Marc; Meyer, Matthias R

    2016-05-01

    Aging is considered the most important nonmodifiable risk factor for cardiovascular disease and death after age 28 years. Because of demographic changes the world population is expected to increase to 9 billion by the year 2050 and up to 12 billion by 2100, with several-fold increases among those 65 years of age and older. Healthy aging and prevention of aging-related diseases and associated health costs have become part of political agendas of governments around the world. Atherosclerotic vascular burden increases with age; accordingly, patients with progeria (premature aging) syndromes die from myocardial infarctions or stroke as teenagers or young adults. The incidence and prevalence of arterial hypertension also increases with age. Arterial hypertension-like diabetes and chronic renal failure-shares numerous pathologies and underlying mechanisms with the vascular aging process. In this article, we review how arterial hypertension resembles premature vascular aging, including the mechanisms by which arterial hypertension (as well as other risk factors such as diabetes mellitus, dyslipidemia, or chronic renal failure) accelerates the vascular aging process. We will also address the importance of cardiovascular risk factor control-including antihypertensive therapy-as a powerful intervention to interfere with premature vascular aging to reduce the age-associated prevalence of diseases such as myocardial infarction, heart failure, hypertensive nephropathy, and vascular dementia due to cerebrovascular disease. Finally, we will discuss the implementation of endothelial therapy, which aims at active patient participation to improve primary and secondary prevention of cardiovascular disease. PMID:27118295

  18. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    NASA Technical Reports Server (NTRS)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  19. TEMPERATURE AND MOISTURE CONTROL OF SEED AGING IN RYE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interactions between temperature and moisture that regulate seed aging were measured using rye seeds. Experiments include a number of long term storage studies under conditions of varying relative humidity (RH), water content and temperature. Decrease in germination percentage and radicle leng...

  20. Deficiency in Poly(ADP-ribose) Polymerase-1 (PARP-1) Accelerates Aging and Spontaneous Carcinogenesis in Mice

    PubMed Central

    Piskunova, Tatiana S.; Yurova, Maria N.; Ovsyannikov, Anton I.; Semenchenko, Anna V.; Zabezhinski, Mark A.; Popovich, Irina G.; Wang, Zhao-Qi; Anisimov, Vladimir N.

    2008-01-01

    Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosyl)ation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosyl)ation and PARP-1 may also play an important role in aging. Here we show that PARP-1−/− mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP-1−/− mice. The incidence of spontaneous tumors in both PARP-1−/− and PARP-1+/+ groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP-1−/− mice than PARP-1+/+ mice (72% and 49%, resp.; P < .05). In addition, spontaneous tumors appear earlier in PARP-1−/− mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis. PMID:19415146

  1. Down syndrome as a model of DNA polymerase beta haploinsufficiency and accelerated aging.

    PubMed

    Patterson, David; Cabelof, Diane C

    2012-04-01

    Down syndrome is a condition of intellectual disability characterized by accelerated aging. As with other aging syndromes, evidence accumulated over the past several decades points to a DNA repair defect inherent in Down syndrome. This evidence has led us to suggest that Down syndrome results in reduced DNA base excision repair (BER) capacity, and that this contributes to the genomic instability and the aging phenotype of Down syndrome. We propose important roles for microRNA and/or folate metabolism and oxidative stress in the dysregulation of BER in Down syndrome. Further, we suggest these pathways are involved in the leukemogenesis of Down syndrome. We have reviewed the role of BER in the processing of oxidative stress, and the impact of folate depletion on BER capacity. Further, we have reviewed the role that loss of BER, specifically DNA polymerase beta, plays in accelerating the rate of aging. Like that seen in the DNA polymerase beta heterozygous mouse, the aging phenotype of Down syndrome is subtle, unlike the aging phenotypes seen in the classical progeroid syndromes and mouse models of aging. As such, Down syndrome may provide a model for elucidating some of the basic mechanisms of aging. PMID:22019846

  2. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Takmakov, Pavel; Ruda, Kiersten; Phillips, K. Scott; Isayeva, Irada S.; Krauthamer, Victor; Welle, Cristin G.

    2015-04-01

    Objective. A challenge for implementing high bandwidth cortical brain-machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. Approach. Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 °C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz-1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. Main results. RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies <10 Hz, and smallest at frequencies 1 kHz and above. Though electrode performance is traditionally characterized by impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. Significance. ROS, which are known to be present in vivo, can create

  3. Analysis of tetragonal to monoclinic phase transformation caused by accelerated artificial aging and the effects of microstructure in stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas J.

    This investigation addresses the issue that yttria stabilized zirconia is being used as a dental biomaterial without substantial evidence of its long-term viability. Furthermore, stabilized zirconia (SZ) undergoes low temperature degradation (LTD), which can lead to roughening of the surface. A rougher exterior can lead to increased wear of the antagonist in the oral environment. Despite the LTD concerns, SZ is now widely used in restorative dentistry, including full contour crowns. A comparison of aging methods to determine the role of artificial aging on inducing the transformation has not been extensively studied. Therefore, simulations of the transformation process were investigated by comparing different methods of accelerated aging. The rejected null hypothesis is that the temperature of aging treatment will not affect the time required to cause measurable monoclinic transformation of yttria stabilized zirconia. The transformation of SZ starts at the surface and progresses inward; however, it is unclear whether the progression is constant for different aging conditions. This investigation analyzed the depth of transformation as a function of aging conditions for stabilized zirconia in the top 5-6 mum from the surface. The rejected null hypothesis is that the transformation amount is constant throughout the first six micrometers from the surface. The effects of grain size on the amount of monoclinic transformation were also investigated. This study aimed to determine if the grain size of partially stabilized zirconia affects the amount of monoclinic transformation, surface roughness, and property degradation due to aging. The rejected null hypothesis is that the grain size will not affect the amount of monoclinic transformation, thus have no effect on surface roughening or property degradation. The final part of this study addresses the wear of enamel when opposing zirconia by observing how grain size and aging affected the wear rate of an enamel antagonist

  4. Comparison of clinical explants and accelerated hydrolytic aging to improve biostability assessment of silicone-based polyurethanes.

    PubMed

    Cosgriff-Hernandez, Elizabeth; Tkatchouk, Ekaterina; Touchet, Tyler; Sears, Nick; Kishan, Alysha; Jenney, Christopher; Padsalgikar, Ajay D; Chen, Emily

    2016-07-01

    Although silicone-based polyurethanes have demonstrated increased oxidative stability, there have been conflicting reports of the long-term hydrolytic stability of Optim™ and PurSil(®) 35 based on recent temperature-accelerated hydrolysis studies. The goal of the current study was to identify in vitro-in vivo correlations to determine the relevance of this accelerated in vitro model for predicting clinical outcomes. Temperature-accelerated hydrolytic aging of three commonly used cardiac lead insulation materials, Optim™, Elasthane™ 55D, Elasthane™ 80A, and a related silicone-polyurethane, PurSil(®) 35, was performed. After 1 year at 85°C, similar losses in Mn and Mz were observed for the poly(ether urethanes), but an increase in Mz loss as compared to Mn loss was observed for the silicone-based polyurethanes. A similar trend of increased Mz loss as compared to Mn loss was observed in explanted Optim™ leads after 2-3 years; however, no statistically significant Mn loss was detected between 2-3 and 7-8 years of implantation. Given this preferential loss of high molecular weight chains, it was hypothesized that the observed differences between the polyurethanes were due to allophanate dissociation rather than backbone chain scission. Following full dissociation of the small percentage of allophanates in vivo, the observed molecular weight stability and proven clinical performance of Optim™ was attributed to the well-documented stability of the urethane bond under physiological conditions. This allophanate dissociation reaction is incompatible with the first order mechanism proposed in previous temperature-accelerated hydrolysis studies and may be the reason for the model's inaccurate prediction of significant and progressive molecular weight loss in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1805-1816, 2016. PMID:26990709

  5. [Anti-aging studies on the senescence accelerated mouse (SAM) strains].

    PubMed

    Takahashi, Ryoya

    2010-01-01

    Senescence accelerated mouse (SAM), a murine model of accelerated senescence, was established by Toshio Takeda and colleagues. SAM consists of series of SAMP (prone) and SAMR (resistant) lines. All SAMP lines (from SAMP1 to SAMP11) are characterized by accelerated accumulation of senile features, earlier onset and faster progress of age-associated pathological phenotypes, such as amyloidosis, impaired immune response, senile osteoporosis and deficits in learning and memory. These SAMP lines are useful for evaluation of putative anti-aging therapies. For example, SAMP1 line is used to study the anti-aging effect of the antioxidant containing foods and various anti-oxidants, such as coenzyme Q10, vitamin C, lycopene. SAMP8 line exhibiting an early onset of impaired learning and memory is often used for test strategies for therapeutic intervention of dementia of early onset. SAMP6 is used as an animal model for developing new strategies for the treatment of osteoporosis in humans. Various lines of SAM (P1, P6, P8, P10 and R1) are now commercially available for research. In this review, I will briefly introduce various usages of SAM in anti-aging research. PMID:20046059

  6. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice

    PubMed Central

    Zhang, Yiqiang; Fischer, Kathleen E.; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B.

    2015-01-01

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality leading some to suggest this represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased in high fat-fed mice as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. PMID:25558793

  7. Body Acceleration as Indicator for Walking Economy in an Ageing Population

    PubMed Central

    Valenti, Giulio; Bonomi, Alberto G.; Westerterp, Klaas R.

    2015-01-01

    Background In adults, walking economy declines with increasing age and negatively influences walking speed. This study aims at detecting determinants of walking economy from body acceleration during walking in an ageing population. Methods 35 healthy elderly (18 males, age 51 to 83 y, BMI 25.5±2.4 kg/m2) walked on a treadmill. Energy expenditure was measured with indirect calorimetry while body acceleration was sampled at 60Hz with a tri-axial accelerometer (GT3X+, ActiGraph), positioned on the lower back. Walking economy was measured as lowest energy needed to displace one kilogram of body mass for one meter while walking (WCostmin, J/m/kg). Gait features were extracted from the acceleration signal and included in a model to predict WCostmin. Results On average WCostmin was 2.43±0.42 J/m/kg and correlated significantly with gait rate (r2 = 0.21, p<0.01) and regularity along the frontal (anteroposterior) and lateral (mediolateral) axes (r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively). Together, the three variables explained 46% of the inter-subject variance (p<0.001) with a standard error of estimate of 0.30 J/m/kg. WCostmin and regularity along the frontal and lateral axes were related to age (WCostmin: r2 = 0.44, p<0.001; regularity: r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively frontal and lateral). Conclusions The age associated decline in walking economy is induced by the adoption of an increased gait rate and by irregular body acceleration in the horizontal plane. PMID:26512982

  8. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders.

    PubMed

    Koutsouleris, Nikolaos; Davatzikos, Christos; Borgwardt, Stefan; Gaser, Christian; Bottlender, Ronald; Frodl, Thomas; Falkai, Peter; Riecher-Rössler, Anita; Möller, Hans-Jürgen; Reiser, Maximilian; Pantelis, Christos; Meisenzahl, Eva

    2014-09-01

    Structural brain abnormalities are central to schizophrenia (SZ), but it remains unknown whether they are linked to dysmaturational processes crossing diagnostic boundaries, aggravating across disease stages, and driving the neurodiagnostic signature of the illness. Therefore, we investigated whether patients with SZ (N = 141), major depression (MD; N = 104), borderline personality disorder (BPD; N = 57), and individuals in at-risk mental states for psychosis (ARMS; N = 89) deviated from the trajectory of normal brain maturation. This deviation was measured as difference between chronological and the neuroanatomical age (brain age gap estimation [BrainAGE]). Neuroanatomical age was determined by a machine learning system trained to individually estimate age from the structural magnetic resonance imagings of 800 healthy controls. Group-level analyses showed that BrainAGE was highest in SZ (+5.5 y) group, followed by MD (+4.0), BPD (+3.1), and the ARMS (+1.7) groups. Earlier disease onset in MD and BPD groups correlated with more pronounced BrainAGE, reaching effect sizes of the SZ group. Second, BrainAGE increased across at-risk, recent onset, and recurrent states of SZ. Finally, BrainAGE predicted both patient status as well as negative and disorganized symptoms. These findings suggest that an individually quantifiable "accelerated aging" effect may particularly impact on the neuroanatomical signature of SZ but may extend also to other mental disorders. PMID:24126515

  9. Arsenite exposure accelerates aging process regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans.

    PubMed

    Yu, Chan-Wei; How, Chun Ming; Liao, Vivian Hsiu-Chuan

    2016-05-01

    Arsenic is a known human carcinogen and high levels of arsenic contamination in food, soils, water, and air are of toxicology concerns. Nowadays, arsenic is still a contaminant of emerging interest, yet the effects of arsenic on aging process have received little attention. In this study, we investigated the effects and the underlying mechanisms of chronic arsenite exposure on the aging process in Caenorhabditis elegans. The results showed that prolonged arsenite exposure caused significantly decreased lifespan compared to non-exposed ones. In addition, arsenite exposure (100 μM) caused significant changes of age-dependent biomarkers, including a decrease of defecation frequency, accumulations of intestinal lipofuscin and lipid peroxidation in an age-dependent manner in C. elegans. Further evidence revealed that intracellular reactive oxygen species (ROS) level was significantly increased in an age-dependent manner upon 100 μM arsenite exposure. Moreover, the mRNA levels of transcriptional makers of aging (hsp-16.1, hsp-16.49, and hsp-70) were increased in aged worms under arsenite exposure (100 μM). Finally, we showed that daf-16 mutant worms were more sensitive to arsenite exposure (100 μM) on lifespan and failed to induce the expression of its target gene sod-3 in aged daf-16 mutant under arsenite exposure (100 μM). Our study demonstrated that chronic arsenite exposure resulted in accelerated aging process in C. elegans. The overproduction of intracellular ROS and the transcription factor DAF-16/FOXO play roles in mediating the accelerated aging process by arsenite exposure in C. elegans. This study implicates a potential ecotoxicological and health risk of arsenic in the environment. PMID:26796881

  10. Investigating the feasibility of temperature-controlled accelerated drug release testing for an intravaginal ring.

    PubMed

    Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra

    2013-11-01

    The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non

  11. An acceleration transducer based on optical fiber Bragging grating with temperature self-compensating function

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Lu, Qiyu; Ou, Jinping

    2013-04-01

    Along with the maturity and development of Optical Fiber Bragg Grating (OFBG) sensing technology, OFBG sensors with different functions have been developed and applied in large-scale engineering structure health monitoring and construction monitoring. In this paper, an acceleration transducer with a characteristic of temperature self-compensating is introduced. It is a cantilever structure model with equal strength beam, fixed with a mass block at the end of the beam, and two consecutive OFBGs are pasted on the upper and lower surface axis of the beam at the corresponding places. Because of the two OFBGs are near to each other, the wavelength changes caused by the environment temperature is the same. According to the temperature self-compensating principle and acceleration measurement principle developed in this paper, we can achieve the temperature self-compensating function of real acceleration measurement by simply calculating the test results. The experimental results show that this type of acceleration transducer has high sensitivity and stability and its measuring range can also be changed according to the practical requirements. This type of acceleration transducer is suitable for engineering structure acceleration measurement in different environment conditions.

  12. Models of Accelerated Sarcopenia: Critical Pieces for Solving the Puzzle of Age-Related Muscle Atrophy

    PubMed Central

    Buford, Thomas W.; Anton, Stephen D.; Judge, Andrew R.; Marzetti, Emanuele; Wohlgemuth, Stephanie E; Carter, Christy S.; Leeuwenburgh, Christiaan; Pahor, Marco; Manini, Todd M.

    2013-01-01

    Sarcopenia, the age-related loss of skeletal muscle mass, is a significant public health concern that continues to grow in relevance as the population ages. Certain conditions have the strong potential to coincide with sarcopenia to accelerate the progression of muscle atrophy in older adults. Among these conditions are co-morbid diseases common to older individuals such as cancer, kidney disease, diabetes, and peripheral artery disease. Furthermore, behaviors such as poor nutrition and physical inactivity are well-known to contribute to sarcopenia development. However, we argue that these behaviors are not inherent to the development of sarcopenia but rather accelerate its progression. In the present review, we discuss how these factors affect systemic and cellular mechanisms that contribute to skeletal muscle atrophy. In addition, we describe gaps in the literature concerning the role of these factors in accelerating sarcopenia progression. Elucidating biochemical pathways related to accelerated muscle atrophy may allow for improved discovery of therapeutic treatments related to sarcopenia. PMID:20438881

  13. Colour stability of temporary restorations with different thicknesses submitted to artificial accelerated aging.

    PubMed

    Silame, F D J; Tonani, R; Alandia-Roman, C C; Chinelatti, M; Panzeri, H; Pires-de-Souza, F C P

    2013-12-01

    This study evaluated the colour stability of temporary prosthetic restorations with different thicknesses submitted to artificial accelerated aging. The occlusal surfaces of 40 molars were grinded to obtain flat enamel surfaces. Twenty acrylic resin specimens [Polymethyl methacrylate (Duralay) and Bis-methyl acrylate (Luxatemp)] were made with two different thicknesses, 0.5 mm and 1.0 mm. Temporary restorations were fixed on enamel and CIE L*a*b* colour parameters of each specimen were assessed before and after artificial accelerated aging. All groups showed colour alterations above the clinically acceptable limit. Luxatemp showed the lowest colour alteration regardless its thickness and Duralay showed the greatest alteration with 0.5 mm. PMID:24479216

  14. Correlating outdoor exposure with accelerated aging tests for aluminum solar reflectors

    NASA Astrophysics Data System (ADS)

    Wette, Johannes; Sutter, Florian; Fernández-García, Aránzazu

    2016-05-01

    Guaranteeing the durability of concentrated solar power (CSP) components is crucial for the success of the technology. The reflectors of the solar field are a key component of CSP plants, requiring reliable methods for service lifetime prediction. So far, no proven correlations exist to relate accelerated aging test results in climate chambers with relevant CSP exposure sites. In this work, correlations have been derived for selected testing conditions that excite the same degradation mechanisms as for outdoor exposure. Those testing conditions have been identified by performing an extensive microscopic comparison of the appearing degradation mechanisms on reference samples that have been weathered outdoors with samples that underwent a high variety of accelerated aging experiments. The herein developed methodology is derived for aluminum reflectors and future work will study its applicability to silvered-glass mirrors.

  15. Accelerated Brain Aging in Schizophrenia and Beyond: A Neuroanatomical Marker of Psychiatric Disorders

    PubMed Central

    Koutsouleris, Nikolaos; Davatzikos, Christos; Borgwardt, Stefan; Gaser, Christian; Bottlender, Ronald; Frodl, Thomas; Falkai, Peter; Riecher-Rössler, Anita; Möller, Hans-Jürgen; Reiser, Maximilian; Pantelis, Christos; Meisenzahl, Eva

    2014-01-01

    Structural brain abnormalities are central to schizophrenia (SZ), but it remains unknown whether they are linked to dysmaturational processes crossing diagnostic boundaries, aggravating across disease stages, and driving the neurodiagnostic signature of the illness. Therefore, we investigated whether patients with SZ (N = 141), major depression (MD; N = 104), borderline personality disorder (BPD; N = 57), and individuals in at-risk mental states for psychosis (ARMS; N = 89) deviated from the trajectory of normal brain maturation. This deviation was measured as difference between chronological and the neuroanatomical age (brain age gap estimation [BrainAGE]). Neuroanatomical age was determined by a machine learning system trained to individually estimate age from the structural magnetic resonance imagings of 800 healthy controls. Group-level analyses showed that BrainAGE was highest in SZ (+5.5 y) group, followed by MD (+4.0), BPD (+3.1), and the ARMS (+1.7) groups. Earlier disease onset in MD and BPD groups correlated with more pronounced BrainAGE, reaching effect sizes of the SZ group. Second, BrainAGE increased across at-risk, recent onset, and recurrent states of SZ. Finally, BrainAGE predicted both patient status as well as negative and disorganized symptoms. These findings suggest that an individually quantifiable “accelerated aging” effect may particularly impact on the neuroanatomical signature of SZ but may extend also to other mental disorders. PMID:24126515

  16. Influence of the humidity on leakage current under accelerated aging of polymer insulating materials

    SciTech Connect

    Otsubo, M.; Shimono, Y.; Hikami, T.; Honda, C.

    1996-12-31

    This paper describes the experimental results of accelerated aging tests conducted on three different types of polymer materials. Salt fog chamber tests were used to study the surface degradation modes for all materials. The work presented here was performed using a newly constructed fog chamber system that was able to control both chamber humidity and UV radiation. The changes in the surface morphology, material structure and leakage current were examined to study the influence of environmental humidity.

  17. Does cyclic stress and accelerated ageing influence the wear behavior of highly crosslinked polyethylene?

    PubMed

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-06-01

    First-generation (irradiated and remelted or annealed) and second-generation (irradiated and vitamin E blended or doped) highly crosslinked polyethylenes were introduced in the last decade to solve the problems of wear and osteolysis. In this study, the influence of the Vitamin-E addition on crosslinked polyethylene (XLPE_VE) was evaluated by comparing the in vitro wear behavior of crosslinked polyethylene (XLPE) versus Vitamin-E blended polyethylene XLPE and conventional ultra-high molecular weight polyethylene (STD_PE) acetabular cups, after accelerated ageing according to ASTM F2003-02 (70.0±0.1°C, pure oxygen at 5bar for 14 days). The test was performed using a hip joint simulator run for two millions cycles, under bovine calf serum as lubricant. Mass loss was found to decrease along the series XLPE_VE>STD_PE>XLPE, although no statistically significant differences were found between the mass losses of the three sets of cups. Micro-Raman spectroscopy was used to investigate at a molecular level the morphology changes induced by wear. The spectroscopic analyses showed that the accelerated ageing determined different wear mechanisms and molecular rearrangements during testing with regards to the changes in both the chain orientation and the distribution of the all-trans sequences within the orthorhombic, amorphous and third phases. The results of the present study showed that the addition of vitamin E was not effective to improve the gravimetric wear of PE after accelerated ageing. However, from a molecular point of view, the XLPE_VE acetabular cups tested after accelerated ageing appeared definitely less damaged than the STD_PE ones and comparable to XLPE samples. PMID:26970299

  18. Intrauterine growth restriction programs an accelerated age-related increase in cardiovascular risk in male offspring.

    PubMed

    Dasinger, John Henry; Intapad, Suttira; Backstrom, Miles A; Carter, Anthony J; Alexander, Barbara T

    2016-08-01

    Placental insufficiency programs an increase in blood pressure associated with a twofold increase in serum testosterone in male growth-restricted offspring at 4 mo of age. Population studies indicate that the inverse relationship between birth weight and blood pressure is amplified with age. Thus, we tested the hypothesis that intrauterine growth restriction programs an age-related increase in blood pressure in male offspring. Growth-restricted offspring retained a significantly higher blood pressure at 12 but not at 18 mo of age compared with age-matched controls. Blood pressure was significantly increased in control offspring at 18 mo of age relative to control counterparts at 12 mo; however, blood pressure was not increased in growth-restricted at 18 mo relative to growth-restricted counterparts at 12 mo. Serum testosterone levels were not elevated in growth-restricted offspring relative to control at 12 mo of age. Thus, male growth-restricted offspring no longer exhibited a positive association between blood pressure and testosterone at 12 mo of age. Unlike hypertension in male growth-restricted offspring at 4 mo of age, inhibition of the renin-angiotensin system with enalapril (250 mg/l for 2 wk) did not abolish the difference in blood pressure in growth-restricted offspring relative to control counterparts at 12 mo of age. Therefore, these data suggest that intrauterine growth restriction programs an accelerated age-related increase in blood pressure in growth-restricted offspring. Furthermore, this study suggests that the etiology of increased blood pressure in male growth-restricted offspring at 12 mo of age differs from that at 4 mo of age. PMID:27147668

  19. Colour stability of denture teeth submitted to different cleaning protocols and accelerated artificial aging.

    PubMed

    Freire, T S; Aguilar, F G; Garcia, L da Fonseca Roberti; Pires-de-Souza, F de Carvalho Panzeri

    2014-03-01

    Acrylic resin is widely used for artificial teeth manufacturing due to several important characteristics; however, this material do not present acceptable colour stability over the course of time. This study evaluated the effect of different cleaning protocols and accelerated artificial aging on colour stability of denture teeth made of acrylic resin. Sixty denture teeth in dark and light shades were used, and separated according to the treatment to which they were submitted. Results demonstrated that colour stability of artificial teeth is influenced by the cleaning solution and artificial aging, being dark teeth more susceptible to colour alteration than lighter ones. PMID:24922996

  20. Temperature-Insensitive Fibre-Optic Acceleration Sensor Based on Intensity-Referenced Fibre Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Sun, Li-Qun; Dong, Bo; Wang, Yong-Xin; Evan, LALLY; Wang, An-Bo

    2008-10-01

    A temperature-insensitive acceleration sensor using two fibre Bragg gratings (FBGs), based on reflection spectrum intensity modulation and optical power detection, is proposed and demonstrated. A cantilever beam is used to generate acceleration-induced axial strain along two sensing gratings, which are glued on the two opposite surfaces of the beam. Because the two gratings operate within the linear spectral range of a light source, formed by a thermally-tunable extrinsic Fabry-Perot optical filter, the intensity difference of the two reflections from the gratings is proportional to the acceleration applied. This eliminates the need for sophisticated wavelength interrogation of the gratings, and it also endows the sensor with immunity to temperature variation. Compared with a commercial micromachined accelerometer, the sensor is proven to be capable of accurately detecting acceleration.

  1. Chromatic stability of acrylic resins of artificial eyes submitted to accelerated aging and polishing

    PubMed Central

    GOIATO, Marcelo Coelho; dos SANTOS, Daniela Micheline; SOUZA, Josiene Firmino; MORENO, Amália; PESQUEIRA, Aldiéris Alves

    2010-01-01

    Esthetics and durability of materials used to fabricate artificial eyes has been an important eissue since artificial eyes are essential to restore esthetics and function, protect the remaining tissues and help with patients' psychological therapy. However, these materials are submitted to degrading effects of environmental agents on the physical properties of the acrylic resin. Objective This study assessed the color stability of acrylic resins used to fabricate sclera in three basic shades (N1, N2 and N3) when subjected to accelerated aging, mechanical and chemical polishing. Material and methods Specimens of each resin were fabricated and submitted to mechanical and chemical polishing. Chromatic analysis was performed before and after accelerated aging through ultraviolet reflection spectrophotometry. Results All specimens revealed color alteration following polishing and accelerated aging. The resins presented statistically significant chromatic alteration (p<0.01) between the periods of 252 and 1008 h. Conclusions Both polishing methods presented no significant difference between the values of color derivatives of resins. PMID:21308298

  2. Do US Black Women Experience Stress-Related Accelerated Biological Aging?

    PubMed Central

    Hicken, Margaret T.; Pearson, Jay A.; Seashols, Sarah J.; Brown, Kelly L.; Cruz, Tracey Dawson

    2010-01-01

    We hypothesize that black women experience accelerated biological aging in response to repeated or prolonged adaptation to subjective and objective stressors. Drawing on stress physiology and ethnographic, social science, and public health literature, we lay out the rationale for this hypothesis. We also perform a first population-based test of its plausibility, focusing on telomere length, a biomeasure of aging that may be shortened by stressors. Analyzing data from the Study of Women's Health Across the Nation (SWAN), we estimate that at ages 49–55, black women are 7.5 years biologically “older” than white women. Indicators of perceived stress and poverty account for 27% of this difference. Data limitations preclude assessing objective stressors and also result in imprecise estimates, limiting our ability to draw firm inferences. Further investigation of black-white differences in telomere length using large-population-based samples of broad age range and with detailed measures of environmental stressors is merited. PMID:20436780

  3. Proposition of an Accelerated Ageing Method for Natural Fibre/Polylactic Acid Composite

    NASA Astrophysics Data System (ADS)

    Zandvliet, Clio; Bandyopadhyay, N. R.; Ray, Dipa

    2015-10-01

    Natural fibre composite based on polylactic acid (PLA) composite is of special interest because it is entirely from renewable resources and biodegradable. Some samples of jute/PLA composite and PLA alone made 6 years ago and kept in tropical climate on a shelf shows too fast ageing degradation. In this work, an accelerated ageing method for natural fibres/PLA composite is proposed and tested. Experiment was carried out with jute and flax fibre/PLA composite. The method was compared with the standard ISO 1037-06a. The residual flexural strength after ageing test was compared with the one of common wood-based panels and of real aged samples prepared 6 years ago.

  4. Accelerated Aging of BKC 44306-10 Rigid Polyurethane Foam: FT-IR Spectroscopy, Dimensional Analysis, and Micro Computed Tomography

    SciTech Connect

    Gilbertson, Robert D.; Patterson, Brian M.; Smith, Zachary

    2014-01-02

    An accelerated aging study of BKC 44306-10 rigid polyurethane foam was carried out. Foam samples were aged in a nitrogen atmosphere at three different temperatures: 50 °C, 65 °C, and 80 °C. Foam samples were periodically removed from the aging canisters at 1, 3, 6, 9, 12, and 15 month intervals when FT-IR spectroscopy, dimensional analysis, and mechanical testing experiments were performed. Micro Computed Tomography imaging was also employed to study the morphology of the foams. Over the course of the aging study the foams the decreased in size by a magnitude of 0.001 inches per inch of foam. Micro CT showed the heterogeneous nature of the foam structure likely resulting from flow effects during the molding process. The effect of aging on the compression and tensile strength of the foam was minor and no cause for concern. FT-IR spectroscopy was used to follow the foam chemistry. However, it was difficult to draw definitive conclusions about the changes in chemical nature of the materials due to large variability throughout the samples.

  5. Near-term acceleration in the rate of temperature change

    NASA Astrophysics Data System (ADS)

    Smith, Steven J.; Edmonds, James; Hartin, Corinne A.; Mundra, Anupriya; Calvin, Katherine

    2015-04-01

    Anthropogenically driven climate changes, which are expected to impact human and natural systems, are often expressed in terms of global-mean temperature. The rate of climate change over multi-decadal scales is also important, with faster rates of change resulting in less time for human and natural systems to adapt. We find that present trends in greenhouse-gas and aerosol emissions are now moving the Earth system into a regime in terms of multi-decadal rates of change that are unprecedented for at least the past 1,000 years. The rate of global-mean temperature increase in the CMIP5 (ref. ) archive over 40-year periods increases to 0.25 +/- 0.05 °C (1σ) per decade by 2020, an average greater than peak rates of change during the previous one to two millennia. Regional rates of change in Europe, North America and the Arctic are higher than the global average. Research on the impacts of such near-term rates of change is urgently needed.

  6. Near-Term Acceleration In The Rate of Temperature Change

    SciTech Connect

    Smith, Steven J.; Edmonds, James A.; Hartin, Corinne A.; Mundra, Anupriya; Calvin, Katherine V.

    2015-03-09

    Anthropogenically-driven climate changes, which are expected to impact human and natural systems, are often expressed in terms of global-mean temperature . The rate of climate change over multi-decadal scales is also important, with faster rates of change resulting in less time for human and natural systems to adapt . We find that current trends in greenhouse gas and aerosol emissions are now moving the Earth system into a regime in terms of multi-decadal rates of change that are unprecedented for at least the last 1000 years. The rate of global-mean temperature increase in the CMIP5 archive over 40-year periods increases to 0.25±0.05 (1σ) °C per decade by 2020, an average greater than peak rates of change during the previous 1-2 millennia. Regional rates of change in Europe, North America and the Arctic are higher than the global average. Research on the impacts of such near-term rates of change is urgently needed.

  7. Lamin Mutations Accelerate Aging via Defective Export of Mitochondrial mRNAs through Nuclear Envelope Budding.

    PubMed

    Li, Yihang; Hassinger, Linda; Thomson, Travis; Ding, Baojin; Ashley, James; Hassinger, William; Budnik, Vivian

    2016-08-01

    Defective RNA metabolism and transport are implicated in aging and degeneration [1, 2], but the underlying mechanisms remain poorly understood. A prevalent feature of aging is mitochondrial deterioration [3]. Here, we link a novel mechanism for RNA export through nuclear envelope (NE) budding [4, 5] that requires A-type lamin, an inner nuclear membrane-associated protein, to accelerated aging observed in Drosophila LaminC (LamC) mutations. These LamC mutations were modeled after A-lamin (LMNA) mutations causing progeroid syndromes (PSs) in humans. We identified mitochondrial assembly regulatory factor (Marf), a mitochondrial fusion factor (mitofusin), as well as other transcripts required for mitochondrial integrity and function, in a screen for RNAs that exit the nucleus through NE budding. PS-modeled LamC mutations induced premature aging in adult flight muscles, including decreased levels of specific mitochondrial protein transcripts (RNA) and progressive mitochondrial degradation. PS-modeled LamC mutations also induced the accelerated appearance of other phenotypes associated with aging, including a progressive accumulation of polyubiquitin aggregates [6, 7] and myofibril disorganization [8, 9]. Consistent with these observations, the mutants had progressive jumping and flight defects. Downregulating marf alone induced the above aging defects. Nevertheless, restoring marf was insufficient for rescuing the aging phenotypes in PS-modeled LamC mutations, as other mitochondrial RNAs are affected by inhibition of NE budding. Analysis of NE budding in dominant and recessive PS-modeled LamC mutations suggests a mechanism by which abnormal lamina organization prevents the egress of these RNAs via NE budding. These studies connect defects in RNA export through NE budding to progressive loss of mitochondrial integrity and premature aging. PMID:27451905

  8. Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging

    NASA Astrophysics Data System (ADS)

    Vilar, G.; Fernández-Rosas, E.; Puntes, V.; Jamier, V.; Aubouy, L.; Vázquez-Campos, S.

    2013-04-01

    The incorporation of small amounts of nanoadditives in polymeric compounds can introduce new mechanical, physical, electrical, magnetic, thermal and/or optical properties. The properties of these advanced materials have enabled new applications in several industrial sectors (electronics, automotive, textile...). In particular, for the nanomaterials (NM) described in this work, multi-walled carbon nanotubes (MWCNT) and silicon dioxide nanoparticles (SiO2 NP), the following properties have been described: MWCNT act as nucleating agents in thermoplastics, and change viscosity, affecting dispersion, orientation, and therefore mechanical, thermal, and electrical properties; and SiO2 NP act as flame retardant and display improved electrical and mechanical properties. The work described here is focused on the evaluation of the migration and transformation of NM included in polymer nanocomposites (NC) during accelerated climatic ageing. To this aim, we generated polyamide 6 (PA6) NC with different degree of compatibility between the NM and the polymeric matrix. These NC were submitted to accelerated aging conditions to simulate outdoor conditions (simulation of the use phase of the polymeric NC). The NC contain as nanofillers MWCNT and SiO2 NP with different surface properties to influence the compatibility with the polymeric matrix. The generated NC were evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) with Energy-dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and differential scanning calorimetry (DSC) before and after the aging process, to monitor the compatibility of the NM with the matrix: dispersion within the matrix, migration during aging, and modification of the polymer properties. The dispersion of SiO2 NP in the NC depended on their compatibility with the matrix. However, independently of their compatibility with the matrix, SiO2 NP were aggregated at the end of the accelerated aging process. In addition

  9. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    DOE PAGESBeta

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheldmore » LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.« less

  10. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    SciTech Connect

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheld LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.

  11. The influence of the accelerated ageing on the black screen element of the Electroink prints

    NASA Astrophysics Data System (ADS)

    Majnaric, I.; Bolanca, Z.; Bolanca Mirkovic, I.

    2010-06-01

    Printing material and prints undergo changes during ageing which can be recognized in deterioration in the physical, chemical and optical properties. The aim of this work is to determine the optical changes of the prints caused by ageing of the printing material and of the prints obtained by the application of the indirect electrophotography. The change of the screen elements in lighter halftone areas, which was obtained by the usage of the microscopic image analysis, has been discussed in the article. For the preparation of samples the following papers were used: fine art paper, recycled paper and offset paper as well as black Electroink. Three sample series were observed: prints on nonaged paper and ElectroInk, prints on aged paper and ElectroInk and prints on aged paper and nonaged ElectroInk. The investigation results show that by ageing of the uncoated printing substrates the decrease of the dots on prints can be expected, while the printing on the aged paper results in the increased reproduction of the halftone dots. The obtained results are the contribution to the explanation of the influence of the accelerated ageing process of papers which are used for printing and the aged prints on the halftone dot changes. Except the mentioned determined scientific contribution the results are applicable in the area of the printing product quality as well as in the forensic science.

  12. Investigation of temperature dependence of development and aging

    NASA Technical Reports Server (NTRS)

    Sacher, G. A.

    1969-01-01

    Temperature dependence of maturation and metabolic rates in insects, and the failure of vital processes during development were investigated. The paper presented advances the general hypothesis that aging in biological systems is a consequence of the production of entropy concomitant with metabolic activity.

  13. Modeling sugarcane growth in response to age, insolation, and temperature

    SciTech Connect

    How, K.T.S.

    1986-01-01

    Modeling sugarcane growth in response to age of cane, insolation and air temperature using first-order multiple regression analysis and a nonlinear approach is investigated. Data are restricted to one variety from irrigated fields to eliminate the impact of varietal response and rainfall. Ten first-order models are investigated. The predictant is cane yield from 600 field tests. The predictors are cumulative values of insolation, maximum temperature, and minimum temperature for 3, 6, 12, and 18 months, or for each crop period derived from weather observations near the test plots. The low R-square values indicate that the selected predictor variables could not account for a substantial proportion of the variations of cane yield and the models have limited predictive values. The nonlinear model is based on known functional relationships between growth and age, growth and insolation, and growth and maximum temperature. A mathematical expression that integrates the effect of age, insolation and maximum temperature is developed. The constant terms and coefficients of the equation are determined from the requirement that the model must produce results that are reasonable when compared with observed monthly elongation data. The nonlinear model is validated and tested using another set of data.

  14. Heart Rates in Hospitalized Children by Age and Body Temperature

    PubMed Central

    Bonafide, Christopher P.; Brady, Patrick W.

    2015-01-01

    BACKGROUND AND OBJECTIVES: Heart rate (HR) is frequently used by clinicians in the hospital to assess a patient’s severity of illness and make treatment decisions. We sought to develop percentiles that characterize the relationship of expected HR by age and body temperature in hospitalized children and to compare these percentiles with published references in both primary care and emergency department (ED) settings. METHODS: Vital sign data were extracted from electronic health records of inpatients <18 years of age at 2 large freestanding children’s hospitals from July 2011 to June 2012. We selected up to 10 HR-temperature measurement pairs from each admission. Measurements from 60% of patients were used to derive the percentile curves, with the remainder used for validation. We compared our upper percentiles with published references in primary care and ED settings. RESULTS: We used 60 863 observations to derive the percentiles. Overall, an increase in body temperature of 1°C was associated with an increase of ∼10 beats per minute in HR, although there were variations across age and temperature ranges. For infants and young children, our upper percentiles were lower than in primary care and ED settings. For school-age children, our upper percentiles were higher. CONCLUSIONS: We characterized expected HR by age and body temperature in hospitalized children. These percentiles differed from references in primary care and ED settings. Additional research is needed to evaluate the performance of these percentiles for the identification of children who would benefit from further evaluation or intervention for tachycardia. PMID:25917984

  15. Atherosclerosis in ancient humans, accelerated aging syndromes and normal aging: is lamin a protein a common link?

    PubMed

    Miyamoto, Michael I; Djabali, Karima; Gordon, Leslie B

    2014-06-01

    Imaging studies of ancient human mummies have demonstrated the presence of vascular calcification that is consistent with the presence of atherosclerosis. These findings have stimulated interest in the underlying biological processes that might impart to humans an inherent predisposition to the development of atherosclerosis. Clues to these processes may possibly be found in accelerated aging syndromes, such as Hutchinson-Gilford progeria syndrome (HGPS), an ultra-rare disorder characterized by premature aging phenotypes, including very aggressive forms of atherosclerosis, occurring in childhood. The genetic defect in HGPS eventuates in the production of a mutant form of the nuclear structural protein lamin A, called progerin, which is thought to interfere with normal nuclear functioning. Progerin appears to be expressed in vascular cells, resulting in vessel wall cell loss and replacement by fibrous tissue, reducing vessel compliance and promoting calcification, leading to the vascular dysfunction and atherosclerosis seen in HGPS. Interestingly, vascular progerin is detectable in lower levels, in an age-related manner, in the general population, providing the basis for further study of the potential role of abnormal forms of lamin A in the atherosclerotic process of normal aging. PMID:25667091

  16. Increased Oxidative and Nitrative Stress Accelerates Aging of the Retinal Vasculature in the Diabetic Retina

    PubMed Central

    Lamoke, Folami; Shaw, Sean; Yuan, Jianghe; Ananth, Sudha; Duncan, Michael; Martin, Pamela; Bartoli, Manuela

    2015-01-01

    Hyperglycemia-induced retinal oxidative and nitrative stress can accelerate vascular cell aging, which may lead to vascular dysfunction as seen in diabetes. There is no information on whether this may contribute to the progression of diabetic retinopathy (DR). In this study, we have assessed the occurrence of senescence-associated markers in retinas of streptozotocin-induced diabetic rats at 8 and 12 weeks of hyperglycemia as compared to normoglycemic aging (12 and 14 months) and adult (4.5 months) rat retinas. We have found that in the diabetic retinas there was an up-regulation of senescence-associated markers SA-β-Gal, p16INK4a and miR34a, which correlated with decreased expression of SIRT1, a target of miR34a. Expression of senescence-associated factors primarily found in retinal microvasculature of diabetic rats exceeded levels measured in adult and aging rat retinas. In aging rats, retinal expression of senescence associated-factors was mainly localized at the level of the retinal pigmented epithelium and only minimally in the retinal microvasculature. The expression of oxidative/nitrative stress markers such as 4-hydroxynonenal and nitrotyrosine was more pronounced in the retinal vasculature of diabetic rats as compared to normoglycemic aging and adult rat retinas. Treatments of STZ-rats with the anti-nitrating drug FeTPPS (10mg/Kg/day) significantly reduced the appearance of senescence markers in the retinal microvasculature. Our results demonstrate that hyperglycemia accelerates retinal microvascular cell aging whereas physiological aging affects primarily cells of the retinal pigmented epithelium. In conclusion, hyperglycemia-induced retinal vessel dysfunction and DR progression involve vascular cell senescence due to increased oxidative/nitrative stress. PMID:26466127

  17. Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging?

    PubMed

    Shalev, Idan; Belsky, Jay

    2016-05-01

    Two seemingly independent bodies of research suggest a two-hit model of accelerated aging, one highlighting early-life stress and the other reproduction. The first, informed by developmental models of early-life stress, highlights reduced longevity effects of early adversity on telomere erosion, whereas the second, informed by evolutionary theories of aging, highlights such effects with regard to reproductive cost (in females). The fact that both early-life adversity and reproductive effort are associated with shorter telomeres and increased oxidative stress raises the prospect, consistent with life-history theory, that these two theoretical frameworks currently informing much research are tapping into the same evolutionary-developmental process of increased senescence and reduced longevity. Here we propose a mechanistic view of a two-hit model of accelerated aging in human females through (a) early-life adversity and (b) early reproduction, via a process of telomere erosion, while highlighting mediating biological embedding mechanisms that might link these two developmental aging processes. PMID:27063083

  18. Accelerated Aging during Chronic Oxidative Stress: A Role for PARP-1

    PubMed Central

    Boesten, Daniëlle M. P. H. J.; de Vos-Houben, Joyce M. J.; Timmermans, Leen; den Hartog, Gertjan J. M.; Bast, Aalt; Hageman, Geja J.

    2013-01-01

    Oxidative stress plays a major role in the pathophysiology of chronic inflammatory disease and it has also been linked to accelerated telomere shortening. Telomeres are specialized structures at the ends of linear chromosomes that protect these ends from degradation and fusion. Telomeres shorten with each cell division eventually leading to cellular senescence. Research has shown that poly(ADP-ribose) polymerase-1 (PARP-1) and subtelomeric methylation play a role in telomere stability. We hypothesized that PARP-1 plays a role in accelerated aging in chronic inflammatory diseases due to its role as coactivator of NF-κb and AP-1. Therefore we evaluated the effect of chronic PARP-1 inhibition (by fisetin and minocycline) in human fibroblasts (HF) cultured under normal conditions and under conditions of chronic oxidative stress, induced by tert-butyl hydroperoxide (t-BHP). Results showed that PARP-1 inhibition under normal culturing conditions accelerated the rate of telomere shortening. However, under conditions of chronic oxidative stress, PARP-1 inhibition did not show accelerated telomere shortening. We also observed a strong correlation between telomere length and subtelomeric methylation status of HF cells. We conclude that chronic PARP-1 inhibition appears to be beneficial in conditions of chronic oxidative stress but may be detrimental under relatively normal conditions. PMID:24319532

  19. Age-accelerated atherosclerosis correlates with failure to upregulate antioxidant genes.

    PubMed

    Collins, Alan R; Lyon, Christopher J; Xia, Xuefeng; Liu, Joey Z; Tangirala, Rajendra K; Yin, Fen; Boyadjian, Rima; Bikineyeva, Alfiya; Praticò, Domenico; Harrison, David G; Hsueh, Willa A

    2009-03-27

    Excess food intake leads to obesity and diabetes, both of which are well-known independent risk factors for atherosclerosis, and both of which are growing epidemics in an aging population. We hypothesized that aging enhances the metabolic and vascular effects of high fat diet (HFD) and therefore examined the effect of age on atherosclerosis and insulin resistance in lipoprotein receptor knockout (LDLR(-/-)) mice. We found that 12-month-old (middle-aged) LDLR(-/-) mice developed substantially worse metabolic syndrome, diabetes, and atherosclerosis than 3-month-old (young) LDLR(-/-) mice when both were fed HFD for 3 months, despite similar elevations in total cholesterol levels. Microarray analyses were performed to analyze the mechanism responsible for the marked acceleration of atherosclerosis in middle-aged mice. Chow-fed middle-aged mice had greater aortic expression of multiple antioxidant genes than chow-fed young mice, including glutathione peroxidase-1 and -4, catalase, superoxide dismutase-2, and uncoupling protein-2. Aortic expression of these enzymes markedly increased in young mice fed HFD but decreased or only modestly increased in middle-aged mice fed HFD, despite the fact that systemic oxidative stress and vascular reactive oxygen species generation, measured by plasma F2alpha isoprostane concentration (systemic) and dihydroethidium conversion and p47phox expression (vascular), were greater in middle-aged mice fed HFD. Thus, the mechanism for the accelerated vascular injury in older LDLR(-/-) mice was likely the profound inability to mount an antioxidant response. This effect was related to a decrease in vascular expression of 2 key transcriptional pathways regulating the antioxidant response, DJ-1 and forkhead box, subgroup O family (FOXOs). Treatment of middle-aged mice fed HFD with the antioxidant apocynin attenuated atherosclerosis, whereas treatment with the insulin sensitizer rosiglitazone attenuated both metabolic syndrome and atherosclerosis

  20. Anticedants and natural prevention of environmental toxicants induced accelerated aging of skin.

    PubMed

    Tanuja Yadav; Mishra, Shivangi; Das, Shefali; Aggarwal, Shikha; Rani, Vibha

    2015-01-01

    Skin is frequently exposed to a variety of environmental and chemical agents that accelerate ageing. External stress such as UV radiations (UVR) and environmental pollutants majorly deteriorate the skin morphology, by activating certain intrinsic factors such as Reactive Oxygen Species (ROS) which trigger the activation of Matrix Metalloproteinases (MMPs) and inflammatory responses hence damaging the extracellular matrix (ECM) components. To counter this, an exogenous supply of anti-oxidants, is required since the endogenous anti-oxidant system cannot alone suffice the need. Bio-prospecting of natural resources for anti-oxidants has hence been intensified. Immense research is being carried out to identify potential plants with potent anti-oxidant activity against skin ageing. This review summarizes the major factors responsible for premature skin ageing and the plants being targeted to lessen the impact of those. PMID:25555260

  1. Acceleration of age-associated methylation patterns in HIV-1-infected adults.

    PubMed

    Rickabaugh, Tammy M; Baxter, Ruth M; Sehl, Mary; Sinsheimer, Janet S; Hultin, Patricia M; Hultin, Lance E; Quach, Austin; Martínez-Maza, Otoniel; Horvath, Steve; Vilain, Eric; Jamieson, Beth D

    2015-01-01

    Patients with treated HIV-1-infection experience earlier occurrence of aging-associated diseases, raising speculation that HIV-1-infection, or antiretroviral treatment, may accelerate aging. We recently described an age-related co-methylation module comprised of hundreds of CpGs; however, it is unknown whether aging and HIV-1-infection exert negative health effects through similar, or disparate, mechanisms. We investigated whether HIV-1-infection would induce age-associated methylation changes. We evaluated DNA methylation levels at >450,000 CpG sites in peripheral blood mononuclear cells (PBMC) of young (20-35) and older (36-56) adults in two separate groups of participants. Each age group for each data set consisted of 12 HIV-1-infected and 12 age-matched HIV-1-uninfected samples for a total of 96 samples. The effects of age and HIV-1 infection on methylation at each CpG revealed a strong correlation of 0.49, p<1 x 10(-200) and 0.47, p<1 x 10(-200). Weighted gene correlation network analysis (WGCNA) identified 17 co-methylation modules; module 3 (ME3) was significantly correlated with age (cor=0.70) and HIV-1 status (cor=0.31). Older HIV-1+ individuals had a greater number of hypermethylated CpGs across ME3 (p=0.015). In a multivariate model, ME3 was significantly associated with age and HIV status (Data set 1: βage=0.007088, p=2.08 x 10(-9); βHIV=0.099574, p=0.0011; Data set 2: βage=0.008762, p=1.27 x 10(-5); βHIV=0.128649, p=0.0001). Using this model, we estimate that HIV-1 infection accelerates age-related methylation by approximately 13.7 years in data set 1 and 14.7 years in data set 2. The genes related to CpGs in ME3 are enriched for polycomb group target genes known to be involved in cell renewal and aging. The overlap between ME3 and an aging methylation module found in solid tissues is also highly significant (Fisher-exact p=5.6 x 10(-6), odds ratio=1.91). These data demonstrate that HIV-1 infection is associated with methylation patterns that are

  2. Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears.

    PubMed

    Fernandez, Katharine A; Jeffers, Penelope W C; Lall, Kumud; Liberman, M Charles; Kujawa, Sharon G

    2015-05-13

    Cochlear synaptic loss, rather than hair cell death, is the earliest sign of damage in both noise- and age-related hearing impairment (Kujawa and Liberman, 2009; Sergeyenko et al., 2013). Here, we compare cochlear aging after two types of noise exposure: one producing permanent synaptic damage without hair cell loss and another producing neither synaptopathy nor hair cell loss. Adult mice were exposed (8-16 kHz, 100 or 91 dB SPL for 2 h) and then evaluated from 1 h to ∼ 20 months after exposure. Cochlear function was assessed via distortion product otoacoustic emissions and auditory brainstem responses (ABRs). Cochlear whole mounts and plastic sections were studied to quantify hair cells, cochlear neurons, and the synapses connecting them. The synaptopathic noise (100 dB) caused 35-50 dB threshold shifts at 24 h. By 2 weeks, thresholds had recovered, but synaptic counts and ABR amplitudes at high frequencies were reduced by up to ∼ 45%. As exposed animals aged, synaptopathy was exacerbated compared with controls and spread to lower frequencies. Proportional ganglion cell losses followed. Threshold shifts first appeared >1 year after exposure and, by ∼ 20 months, were up to 18 dB greater in the synaptopathic noise group. Outer hair cell losses were exacerbated in the same time frame (∼ 10% at 32 kHz). In contrast, the 91 dB exposure, producing transient threshold shift without acute synaptopathy, showed no acceleration of synaptic loss or cochlear dysfunction as animals aged, at least to ∼ 1 year after exposure. Therefore, interactions between noise and aging may require an acute synaptopathy, but a single synaptopathic exposure can accelerate cochlear aging. PMID:25972177

  3. Aging after Noise Exposure: Acceleration of Cochlear Synaptopathy in “Recovered” Ears

    PubMed Central

    Fernandez, Katharine A.; Jeffers, Penelope W.C.; Lall, Kumud; Liberman, M. Charles

    2015-01-01

    Cochlear synaptic loss, rather than hair cell death, is the earliest sign of damage in both noise- and age-related hearing impairment (Kujawa and Liberman, 2009; Sergeyenko et al., 2013). Here, we compare cochlear aging after two types of noise exposure: one producing permanent synaptic damage without hair cell loss and another producing neither synaptopathy nor hair cell loss. Adult mice were exposed (8–16 kHz, 100 or 91 dB SPL for 2 h) and then evaluated from 1 h to ∼20 months after exposure. Cochlear function was assessed via distortion product otoacoustic emissions and auditory brainstem responses (ABRs). Cochlear whole mounts and plastic sections were studied to quantify hair cells, cochlear neurons, and the synapses connecting them. The synaptopathic noise (100 dB) caused 35–50 dB threshold shifts at 24 h. By 2 weeks, thresholds had recovered, but synaptic counts and ABR amplitudes at high frequencies were reduced by up to ∼45%. As exposed animals aged, synaptopathy was exacerbated compared with controls and spread to lower frequencies. Proportional ganglion cell losses followed. Threshold shifts first appeared >1 year after exposure and, by ∼20 months, were up to 18 dB greater in the synaptopathic noise group. Outer hair cell losses were exacerbated in the same time frame (∼10% at 32 kHz). In contrast, the 91 dB exposure, producing transient threshold shift without acute synaptopathy, showed no acceleration of synaptic loss or cochlear dysfunction as animals aged, at least to ∼1 year after exposure. Therefore, interactions between noise and aging may require an acute synaptopathy, but a single synaptopathic exposure can accelerate cochlear aging. PMID:25972177

  4. Temperature dependent ageing mechanisms in Lithium-ion batteries - A Post-Mortem study

    NASA Astrophysics Data System (ADS)

    Waldmann, Thomas; Wilka, Marcel; Kasper, Michael; Fleischhammer, Meike; Wohlfahrt-Mehrens, Margret

    2014-09-01

    The effects of temperatures in the range of -20 °C to 70 °C on the ageing behaviour of cycled Lithium-ion batteries are investigated quantitatively by electrochemical methods and Post-Mortem analysis. Commercial 18650-type high-power cells with a LixNi1/3Mn1/3Co1/3O2/LiyMn2O4 blend cathode and graphite/carbon anode were used as test system. The cells were cycled at a rate of 1 C until the discharge capacity falls below 80% of the initial capacity. Interestingly, an Arrhenius plot indicates two different ageing mechanisms for the ranges of -20 °C to 25 °C and 25 °C to 70 °C. Below 25 °C, the ageing rates increase with decreasing temperature, while above 25 °C ageing is accelerated with increasing temperature. The aged 18650 cells are inspected via scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), inductively coupled plasma (ICP), measurements of electrode thickness and X-ray diffraction (XRD) after disassembly to learn more about the chemical reasons of the degradation. The effect of different temperatures on the electrode polarizations are evaluated by assembling electrodes in pouch cells with reference electrode as a model system. We find that the dominating ageing mechanism for T < 25 °C is Lithium plating, while for T > 25 °C the cathodes show degeneration and the anodes will be increasingly covered by SEI layers.

  5. The aging correlation (RH + t): Relative humidity (%) + temperature (deg C)

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1986-01-01

    An aging correlation between corrosion lifetime, and relative humidity RH (%) and temperature t (C) has been reported in the literature. This aging correlation is a semi-log plot of corrosion lifetime on the log scale versus the interesting summation term RH(%) + t(C) on the linear scale. This empirical correlation was derived from observation of experimental data trends and has been referred to as an experimental law. Using electrical resistivity data of polyvinyl butyral (PVB) measured as a function of relative humidity and temperature, it was found that the electrical resistivity could be expressed as a function of the term RH(%) t(C). Thus, if corrosion is related to leakage current through an organic insulator, which, in turn, is a function of RH and t, then some partial theoretical validity for the correlation is indicated. This article describes the derivation of the term RH(%) t(C) from PVB electrical resistivity data.

  6. Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing

    DOEpatents

    Hull, John R.

    2000-01-01

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operating temperature at or below 77K, whereby cooling may be accomplished with liquid nitrogen.

  7. Method and Apparatus for measuring Gravitational Acceleration Utilizing a high Temperature Superconducting Bearing

    SciTech Connect

    Hull, John R.

    1998-11-06

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operative temperature at or below 77K, whereby cooling maybe accomplished with liquid nitrogen.

  8. Accelerated fibrosis and apoptosis with ageing and in atrial fibrillation: Adaptive responses with maladaptive consequences.

    PubMed

    Xu, Guo-Jun; Gan, Tian-Yi; Tang, Bao-Peng; Chen, Zu-Heng; Mahemuti, Ailiman; Jiang, Tao; Song, Jian-Guo; Guo, Xia; Li, Yao-Dong; Miao, Hai-Jun; Zhou, Xian-Hui; Zhang, Yu; Li, Jin-Xin

    2013-03-01

    The aim of this study was to investigate whether abnormal expression of matrix metalloproteinase (MMP)-9/tissue inhibitors of MMPs (TIMP)-1 and B cell lymphoma 2 (BCL-2)/BCL-2-associated X protein (BAX) are correlated with the characteristic accelerated fibrosis and apoptosis during ageing and in atrial fibrillation (AF). Four groups of dogs were studied: adult dogs in sinus rhythm (SR), aged dogs in SR, adult dogs with AF induced by rapid atrial pacing and aged dogs with AF induced by rapid atrial pacing. The mRNA and protein expression levels of the target gene in the left atrium were measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. Pathohistological and ultrastructural changes were assessed by light and electron microscopy. The apoptotic indices of myocytes were detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL). The mRNA and protein expression levels of MMP-9 and BAX and those of TIMP-1 and BCL-2 were significantly upregulated and down-regulated, respectively, in the aged groups compared with the adult groups. Compared with the control groups, the adult and aged groups with AF exhibited significantly increased mRNA and protein expression levels of MMP-9 and BAX and decreased expression levels of TIMP-1 and BCL-2. Samples of atrial tissue demonstrated abnormal pathohistological and ultrastructural changes, accelerated fibrosis and apoptosis. MMP-9/TIMP-1 and BCL-2/BAX hold potential for use as substrates conducive to AF and their abnormal expression plays a major role in structural remodeling of the atrium. PMID:23403858

  9. Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe?

    PubMed Central

    Nunn, Alistair VW; Bell, Jimmy D; Guy, Geoffrey W

    2009-01-01

    determines functional longevity, a rather more descriptive term for the metabolic syndrome is the 'lifestyle-induced metabolic inflexibility and accelerated ageing syndrome'. Ultimately, thriftiness is good for us as long as we have hormetic stimuli; unfortunately, mankind is attempting to remove all hormetic (stressful) stimuli from his environment. PMID:19371409

  10. Holocene age of the Yuha burial: Direct radiocarbon determinations by accelerator mass spectrometry

    USGS Publications Warehouse

    Stafford, Thomas W., Jr.; Jull, A.J.T.; Zabel, T.H.; Donahue, D.J.; Duhamel, R.C.; Brendel, K.; Haynes, C.V., Jr.; Bischoff, J.L.; Payen, L.A.; Taylor, R.E.

    1984-01-01

    The view that human populations may not have arrived in the Western Hemisphere before about 12,000 radiocarbon yr BP1,2 has been challenged by claims of much greater antiquity for a small number of archaeological sites and human skeleton samples. One such site is the Homo sapiens sapiens cairn burial excavated in 1971 from the Yuha desert, Imperial County, California3-5. Radiocarbon analysis of caliche coating one of the bones of the skeleton yielded a radiocarbon age of 21,500??1,000 yr BP4, while radiocarbon and uranium series analyses of caliche coating a cairn boulder yielded ages of 22,125??400 and 19,000??3,000 yr BP, respectively5. The late Pleistocene age assignment to the Yuha burial has been challenged by comparing the cultural context of the burial with other cairn burials in the same region6, on the basis of the site's geomorphological context and from radiocarbon analyses of soil caliches. 7,8 In rebuttal, arguments in defence of the original age assignment have been presented9,10 as well as an amino acid racemization analysis on the Yuha skeleton indicating an age of 23,600??2,600 yr BP11. The tandem accelerator mass spectrometer at the University of Arizona has now been used to measure the ratio of 14C/13C in several organic and inorganic fractions of post-cranial bone from the Yuha H. sapiens sapiens skeleton. Isotope ratios from six chemical fractions all yielded radiocarbon ages for the skeleton of less than 4,000 yr BP. These results indicate that the Yuha skeleton is of Holocene age, in agreement with the cultural context of the burial, and in disagreement with the previously assigned Pleistocene age of 19,000-23,000 yr. ?? 1984 Nature Publishing Group.

  11. The signaling pathways by which the Fas/FasL system accelerates oocyte aging.

    PubMed

    Zhu, Jiang; Lin, Fei-Hu; Zhang, Jie; Lin, Juan; Li, Hong; Li, You-Wei; Tan, Xiu-Wen; Tan, Jing-He

    2016-02-01

    In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis. PMID:26869336

  12. Improving Bone Microarchitecture in Aging with Diosgenin Treatment: A Study in Senescence-Accelerated OXYS Rats.

    PubMed

    Tikhonova, Maria A; Ting, Che-Hao; Kolosova, Nataliya G; Hsu, Chao-Yu; Chen, Jian-Horng; Huang, Chi-Wen; Tseng, Ging-Ting; Hung, Ching-Sui; Kao, Pan-Fu; Amstislavskaya, Tamara G; Ho, Ying-Jui

    2015-10-31

    Osteoporosis is a major disease associated with aging. We have previously demonstrated that diosgenin prevents osteoporosis in both menopause and D-galactose-induced aging rats. OXYS rats reveal an accelerated senescence and are used as a suitable model of osteoporosis. The aim of the present study was to analyze microarchitecture and morphological changes in femur of OXYS rats using morphological tests and microcomputed tomography scanning, and to evaluate the effects of oral administration of diosgenin at 10 and 50 mg/kg/day on femur in OXYS rats. The result showed that, compared with age-matched Wistar rats, the femur of OXYS rats revealed lower bone length, bone weight, bone volume, frame volume, frame density, void volume, porosity, external and internal diameters, cortical bone area, BV/TV, Tb.N, and Tb.Th, but higher Tb.Sp. Eight weeks of diosgenin treatment decreased porosity and Tb.Sp, but increased BV/TV, cortical bone area, Tb.N and bone mineral density, compared with OXYS rats treated with vehicle. These data reveal that microarchitecture and morphological changes in femur of OXYS rats showed osteoporotic aging features and suggest that diosgenin may have beneficial effects on aging-induced osteoporosis. PMID:26387656

  13. The signaling pathways by which the Fas/FasL system accelerates oocyte aging

    PubMed Central

    Zhu, Jiang; Lin, Fei-Hu; Zhang, Jie; Lin, Juan; Li, Hong; Li, You-Wei; Tan, Xiu-Wen; Tan, Jing-He

    2016-01-01

    In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+ releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis. PMID:26869336

  14. Effects of Age on Temperature Responses During Exposure to Hypergravity

    NASA Technical Reports Server (NTRS)

    Fung, C.K.; Baer, L. A.; Moran, M. M.; Wang, T. J.; Yuan, F.; Daunton, N. G.; Corcoran, M. L.; Wade, C. E.; Dalfan, Bonnie P. (Technical Monitor)

    2001-01-01

    Rats subjected to centrifugation show a marked decrease in body temperature relating to gravity level. Several studies have indicated, that an initial response to centrifugation is followed by acclimation. To test for differences between young (Y; 2 months) and mature (M; 8 months) rats in their response in temperature, both groups were exposed to hypergravity induced by centrifugation. Thirty-six male rats were divided into four groups according to age and G-load (control (1.0G-Y and 1.0G-M), 2.0G-Y or 2.0G-M) and were housed in pairs in standard vivarium cages. During the 7-day period of centrifugation, temperature was measured every five minutes by surgically implanted telemeters. Body mass was measured daily. We found that initial body temperature in 2.0G-M was less than that of 2.0G-Y. Both hypergravity groups (2.0G-Y and 2.0G-M) showed a decrease in temperature at the onset of centrifugation, and the change in temperature (Delta = 0.5 C) remained the same between the groups. Significant differences persisted with 2.0G-Y recovering to control values in four days and 2.0G-M recovering in five days. These results indicate that the mature animals have a similar response as the younger animals, but take longer to acclimate.

  15. Measurements of the Influence of Acceleration and Temperature of Bodies on their Weight

    SciTech Connect

    Dmitriev, Alexander L.

    2008-01-21

    A brief review of experimental research of the influence of acceleration and temperatures of test mass upon gravitation force, executed between the 1990s and the beginning of 2000 at the St.-Petersburg State University of Information Technologies, Mechanics and Optics in cooperation with D. I. Mendeleev's Institute of Metrology is provided. According to a phenomenological notion, the acceleration of a test mass caused by external action, for example electromagnetic forces, results in changes of the gravitational properties of this mass. Consequences are a dependence upon gravity on the size and sign of test mass acceleration, and also on its absolute temperature. Results of weighing a rotor of a mechanical gyroscope with a horizontal axis, an anisotropic crystal with the big difference of the speed of longitudinal acoustic waves, measurements of temperature dependence of weight of metal bars of nonmagnetic materials, and also measurement of restitution coefficients at quasi-elastic impact of a steel ball about a massive plate are given. In particular, a reduction of apparent mass of a horizontal rotor with relative size 3.10{sup -6} at a speed of rotation of 18.6 thousand rev/min was observed. A negative temperature dependence of the weight of a brass core with relative size near 5.10{sup -4} K{sup -1} at room temperature was measured; this temperature factor was found to be a maximum for light and elastic metals. All observably experimental effects, have probably a general physical reason connected with the weight change dependent upon acceleration of a body or at thermal movement of its microparticles. The reduction of mass at high temperatures is of particular interest for propulsion applications.

  16. Measurements of the Influence of Acceleration and Temperature of Bodies on their Weight

    NASA Astrophysics Data System (ADS)

    Dmitriev, Alexander L.

    2008-01-01

    A brief review of experimental research of the influence of acceleration and temperatures of test mass upon gravitation force, executed between the 1990s and the beginning of 2000 at the St.-Petersburg State University of Information Technologies, Mechanics and Optics in cooperation with D. I. Mendeleev's Institute of Metrology is provided. According to a phenomenological notion, the acceleration of a test mass caused by external action, for example electromagnetic forces, results in changes of the gravitational properties of this mass. Consequences are a dependence upon gravity on the size and sign of test mass acceleration, and also on its absolute temperature. Results of weighing a rotor of a mechanical gyroscope with a horizontal axis, an anisotropic crystal with the big difference of the speed of longitudinal acoustic waves, measurements of temperature dependence of weight of metal bars of nonmagnetic materials, and also measurement of restitution coefficients at quasi-elastic impact of a steel ball about a massive plate are given. In particular, a reduction of apparent mass of a horizontal rotor with relative size 3.10-6 at a speed of rotation of 18.6 thousand rev/min was observed. A negative temperature dependence of the weight of a brass core with relative size near 5.10-4 K-1 at room temperature was measured; this temperature factor was found to be a maximum for light and elastic metals. All observably experimental effects, have probably a general physical reason connected with the weight change dependent upon acceleration of a body or at thermal movement of its microparticles. The reduction of mass at high temperatures is of particular interest for propulsion applications.

  17. Impact absorption of four processed soft denture liners as influenced by accelerated aging.

    PubMed

    Kawano, F; Koran, A; Nuryanti, A; Inoue, S

    1997-01-01

    The cushioning effect of soft denture liners was evaluated by using a free drop test with an accelerometer. Materials tested included SuperSoft (Coe Laboratories, Chicago, IL), Kurepeet-Dough (Kreha Chemical, Tokyo), Molteno Soft (Molten, Hiroshima, Japan), and Molloplast-B (Molloplast Regneri, Karlsruhe, Germany). All materials were found to reduce the impact force when compared to acrylic denture base resin. A 2.4-mm layer of soft denture material demonstrated good impact absorption, and Molloplast-B and Molteno had excellent impact absorption. When the soft denture liner was kept in an accelerated aging chamber for 900 hours, the damping effect recorded increased for all materials tested. Aging of all materials also affected the cushioning effect. PMID:9484071

  18. High sensitivity to autoxidation in neonatal calf erythrocytes: possible mechanism of accelerated cell aging.

    PubMed

    Imre, S; Csornai, M; Balazs, M

    2001-01-01

    The suspension viscosity, formation of methaemoglobin and production of malondialdehyde (MDA) associated with the non-enzymatic oxidation of polyunsaturated fatty acids during auto-oxidation conditions in vitro have been compared in erythrocytes from young calves (2, 4 and 6 weeks of age) and mature cattle. The autoxidation conditions were designed to simulate the oxidative stress to which neonatal erythrocytes are exposed in vivo. Characterisation of lipid peroxidation was also undertaken by a combination of lipid fluorescent measurements and quantification of the superoxide dismutase (SOD) activities of the erythrocytes. The results demonstrated that high SOD activities in the erythrocytes of the neonatal calf was insufficient to afford protection against the increased autoxidation of haemoglobin and subsequent accumulation of lipid peroxidation products. High levels of methaemoglobin formation and lipid peroxidation were able to provide an explanation for an observed reduction in rheological adaptability (increased suspension viscosity) and an accelerated aging of the neonatal cells under in vivo conditions. PMID:11163624

  19. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Kulkarni, Chetan; Biswas, Gautam; Saha, Sankalita; Goebel, Kai

    2011-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  20. Physical property comparison of 11 soft denture lining materials as a function of accelerated aging.

    PubMed

    Dootz, E R; Koran, A; Craig, R G

    1993-01-01

    Soft denture-lining materials are an important treatment option for patients who have chronic soreness associated with dental prostheses. Three distinctly different types of materials are generally used. These are plasticized polymers or copolymers, silicones, or polyphosphazene fluoroelastomer. The acceptance of these materials by patients and dentists is variable. The objective of this study is to compare the tensile strength, percent elongation, hardness, tear strength, and tear energy of eight plasticized polymers or copolymers, two silicones, and one polyphosphazene fluoroelastomer. Tests were run at 24 hours after specimen preparation and repeated after 900 hours of accelerated aging in a Weather-Ometer device. The data indicated a wide range of physical properties for soft denture-lining materials and showed that accelerated aging dramatically affected the physical and mechanical properties of many of the elastomers. No soft denture liner proved to be superior to all others. The data obtained should provide clinicians with useful information for selecting soft denture lining materials for patients. PMID:8455156

  1. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  2. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. I. Fluoropolymer binders

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1981-01-01

    The dynamic mechanical properties and molecular weight distribution of two polymer bonded explosives, LX-10-1 and PBX-9502, maintained at 23, 60, and 74/sup 0/C for 3 years were studied. LX-10-1 is 94.5% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane explosive bonded together with 5.5% Viton A fluoropolymer. PBX-9502 is 95% triaminotrinitrobenzene explosive bonded with 5% Kel-F-800 fluoropolymer. There are two mechanical relaxations in the LX-10-1 in the military temperature range. The relaxation at -10/sup 0/C is associated with the glass transition temperature of the Viton A binder. A second weak relaxation occurs at about 30/sup 0/C in all LX-10-1 samples tested. This relaxation is probably associated with small amounts of crystallinity in the binder although this has not been demonstrated. There is a slight increase in modulus of the LX-10-1 with accelerated aging temperature. Changes in the dynamic mechanical properties of PBX-9502 are ascribed to crystallization of the chlorotrifluoroethylene component of the Kel-F-800 binder. The molecular weight of the Viton A binder decreased slight with increasing aging temperature. Using the kinetics of random scission the activation energy for polymer degradation in the presence of the explosive was 1.19 kcal/mole. The Arrhenius preexponential term and activation energy predict an expected use-life in excess of 60 years for LX-10-1. The Kel-F-800 in PBX-9502 is also extremely stable.

  3. The senescence-accelerated mouse (SAM): a higher oxidative stress and age-dependent degenerative diseases model.

    PubMed

    Chiba, Yoichi; Shimada, Atsuyoshi; Kumagai, Naoko; Yoshikawa, Keisuke; Ishii, Sanae; Furukawa, Ayako; Takei, Shiro; Sakura, Masaaki; Kawamura, Noriko; Hosokawa, Masanori

    2009-04-01

    The SAM strain of mice is actually a group of related inbred strains consisting of a series of SAMP (accelerated senescence-prone) and SAMR (accelerated senescence-resistant) strains. Compared with the SAMR strains, the SAMP strains show a more accelerated senescence process, a shorter lifespan, and an earlier onset and more rapid progress of age-associated pathological phenotypes similar to human geriatric disorders. The higher oxidative stress status observed in SAMP mice is partly caused by mitochondrial dysfunction, and may be a cause of this senescence acceleration and age-dependent alterations in cell structure and function. Based on our recent observations, we discuss a possible mechanism for mitochondrial dysfunction resulting in the excessive production of reactive oxygen species, and a role for the hyperoxidative stress status in neurodegeneration in SAMP mice. These SAM strains can serve as a useful tool to understand the cellular mechanisms of age-dependent degeneration, and to develop clinical interventions. PMID:18688709

  4. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing.

    PubMed

    Scaffidi, Paola; Misteli, Tom

    2008-04-01

    The premature-ageing disease Hutchinson-Gilford Progeria Syndrome (HGPS) is caused by constitutive production of progerin, a mutant form of the nuclear architectural protein lamin A. Progerin is also expressed sporadically in wild-type cells and has been linked to physiological ageing. Cells from HGPS patients exhibit extensive nuclear defects, including abnormal chromatin structure and increased DNA damage. At the organismal level, HGPS affects several tissues, particularly those of mesenchymal origin. How the cellular defects of HGPS cells lead to the organismal defects has been unclear. Here, we provide evidence that progerin interferes with the function of human mesenchymal stem cells (hMSCs). We find that expression of progerin activates major downstream effectors of the Notch signalling pathway. Induction of progerin in hMSCs changes their molecular identity and differentiation potential. Our results support a model in which accelerated ageing in HGPS patients, and possibly also physiological ageing, is the result of adult stem cell dysfunction and progressive deterioration of tissue functions. PMID:18311132

  5. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  6. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice.

    PubMed

    Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A

    2016-06-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  7. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature

    NASA Astrophysics Data System (ADS)

    Leng, Feng; Tan, Cher Ming; Pecht, Michael

    2015-08-01

    Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

  8. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature

    PubMed Central

    Leng, Feng; Tan, Cher Ming; Pecht, Michael

    2015-01-01

    Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work. PMID:26245922

  9. Interface degradation in CAS/Nicalon during elevated temperature aging

    SciTech Connect

    Plucknett, K.P.; Cain, R.L.; Lewis, M.H.

    1995-03-01

    A CaO-Al{sub 2}O{sub 3}-SiO{sub 2} (CAS)/Nicalon glass-ceramic matrix composite has been subjected to elevated temperature oxidation heat-treatments between 375 and 1200{degrees}C, for up to 100 hours. Micro- and macro-mechanical properties have been determined by fiber push-down, using a mechanical properties microprobe, and flexure testing, respectively. Aging between 450 and 800{degrees}C results in significant property degradation, with reduced bending modulus and flexure strength, increased fiber sliding stress, and a transition to a purely brittle failure mode. Aging degradation is due to oxidative removal of the carbon interlayer, with the subsequent formation of a silica bond between fiber and matrix. At higher temperatures, carbon is retained due to the formation of a protective silica plug at exposed fiber ends, with the subsequent retention of composite properties. Short duration pre-treatment schedules, at 1000 or 1100{degrees}C, were developed to prevent intermediate temperature property degradation.

  10. Accelerated aging and human immunodeficiency virus infection: emerging challenges of growing older in the era of successful antiretroviral therapy.

    PubMed

    Bhatia, Ramona; Ryscavage, Patrick; Taiwo, Babafemi

    2012-08-01

    HIV-infected patients are living longer as a result of potent antiretroviral therapy. Immuno-inflammatory phenomena implicated in the normal aging process, including immune senescence, depreciation of the adaptive immune system, and heightened systemic inflammation are also pathophysiologic sequelae of HIV infection, suggesting HIV infection can potentiate the biological mechanisms of aging. Aging HIV-infected patients manifest many comorbidities at earlier ages, and sometimes with more aggressive phenotypes compared to seronegative counterparts. In this review, we describe relevant biologic changes shared by normal aging and HIV infection and explore the growing spectrum of clinical manifestations associated with the accelerated aging phenotype in HIV-infected individuals. PMID:22205585

  11. The influence of initial temperature on flame acceleration and deflagration-to-detonation transition

    SciTech Connect

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.

    1996-07-01

    The influence of initial mixture temperature on deflagration-to-detonation transition (DDT) has been investigated experimentally. The experiments were carried out in a 27-cm-inner diameter, 21.3-meter-long heated detonation tube, which was equipped with periodic orifice plates to promote flame acceleration. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in transition to detonation corresponded to the mixture whose detonation cell size, {lambda}, was approximately equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}{approximately}1). The only exception was in dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 m/s and then decelerated to below 2 m/s. This observation indicates that the d/{lambda} = 1 DDT limit criterion provides a necessary condition but not a sufficient one for the onset of DDT in obstacle-laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the onset of detonation was a function of both the hydrogen mole fraction and the mixture initial temperature. For example, decreasing the hydrogen mole fraction or increasing the initial mixture temperature resulted in longer transition distances.

  12. A facility for studying irradiation accelerated corrosion in high temperature water

    NASA Astrophysics Data System (ADS)

    Raiman, Stephen S.; Flick, Alexander; Toader, Ovidiu; Wang, Peng; Samad, Nassim A.; Jiao, Zhijie; Was, Gary S.

    2014-08-01

    A facility for the study of irradiation accelerated corrosion in high temperature water using in situ proton irradiation has been developed and validated. A specially designed beamline and flowing-water corrosion cell added to the 1.7 MV tandem accelerator at the Michigan Ion Beam Laboratory provide the capability to study the simultaneous effects of displacement damage and radiolysis on corrosion. A thin sample serves as both a “window” into the corrosion cell through which the proton beam passes completely, and the sample for assessing irradiation accelerated corrosion. The facility was tested by irradiating stainless steel samples at beam current densities between 0.5 and 10 μA/cm2 in 130 °C and 320 °C deaerated water, and 320 °C water with 3 wppm H2. Increases in the conductivity and dissolved oxygen content of the water varied with the proton beam current, suggesting that proton irradiation was accelerating the corrosion of the sample. Conductivity increases were greatest at 320 °C, while DO increases were highest at 130 °C. The addition of 3 wppm H2 suppressed DO below detectable levels. The facility will enable future studies into the effect of irradiation on corrosion in high temperature water with in situ proton irradiation.

  13. Conformational Changes in Acetylcholine Binding Protein Investigated by Temperature Accelerated Molecular Dynamics

    PubMed Central

    Mohammad Hosseini Naveh, Zeynab; Malliavin, Therese E.; Maragliano, Luca; Cottone, Grazia; Ciccotti, Giovanni

    2014-01-01

    Despite the large number of studies available on nicotinic acetylcholine receptors, a complete account of the mechanistic aspects of their gating transition in response to ligand binding still remains elusive. As a first step toward dissecting the transition mechanism by accelerated sampling techniques, we study the ligand-induced conformational changes of the acetylcholine binding protein (AChBP), a widely accepted model for the full receptor extracellular domain. Using unbiased Molecular Dynamics (MD) and Temperature Accelerated Molecular Dynamics (TAMD) simulations we investigate the AChBP transition between the apo and the agonist-bound state. In long standard MD simulations, both conformations of the native protein are stable, while the agonist-bound structure evolves toward the apo one if the orientation of few key sidechains in the orthosteric cavity is modified. Conversely, TAMD simulations initiated from the native conformations are able to produce the spontaneous transition. With respect to the modified conformations, TAMD accelerates the transition by at least a factor 10. The analysis of some specific residue-residue interactions points out that the transition mechanism is based on the disruption/formation of few key hydrogen bonds. Finally, while early events of ligand dissociation are observed already in standard MD, TAMD accelerates the ligand detachment and, at the highest TAMD effective temperature, it is able to produce a complete dissociation path in one AChBP subunit. PMID:24551117

  14. A drug-induced accelerated senescence (DIAS) is a possibility to study aging in time lapse.

    PubMed

    Alili, Lirija; Diekmann, Johanna; Giesen, Melanie; Holtkötter, Olaf; Brenneisen, Peter

    2014-06-01

    Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. Accordingly, a stress-induced senescence-like phenotype of human dermal fibroblasts can be induced in vitro by the exposure of human diploid fibroblasts to subcytotoxic concentrations of hydrogen peroxide. However, several biomarkers of replicative senescence e.g. cell cycle arrest and enlarged morphology are abrogated 14 days after treatment, indicating that reactive oxygen species (ROS) rather acts as a trigger for short-term senescence (1-3 days) than being responsible for the maintenance of the senescence-like phenotype. Further, DNA-damaging factors are discussed resulting in a permanent senescent cell type. To induce long-term premature senescence and to understand the molecular alterations occurring during the aging process, we analyzed mitomycin C (MMC) as an alkylating DNA-damaging agent and ROS producer. Human dermal fibroblasts (HDF), used as model for skin aging, were exposed to non-cytotoxic concentrations of MMC and analyzed for potential markers of cellular aging, for example enlarged morphology, activity of senescence-associated-ß-galactosidase, cell cycle arrest, increased ROS production and MMP1-activity, which are well-documented for HDF in replicative senescence. Our data show that mitomycin C treatment results in a drug-induced accelerated senescence (DIAS) with long-term expression of senescence markers, demonstrating that a combination of different susceptibility factors, here ROS and DNA alkylation, are necessary to induce a permanent senescent cell type. PMID:24833306

  15. A scientific and statistical analysis of accelerated aging for pharmaceuticals. Part 1: accuracy of fitting methods.

    PubMed

    Waterman, Kenneth C; Swanson, Jon T; Lippold, Blake L

    2014-10-01

    Three competing mathematical fitting models (a point-by-point estimation method, a linear fit method, and an isoconversion method) of chemical stability (related substance growth) when using high temperature data to predict room temperature shelf-life were employed in a detailed comparison. In each case, complex degradant formation behavior was analyzed by both exponential and linear forms of the Arrhenius equation. A hypothetical reaction was used where a drug (A) degrades to a primary degradant (B), which in turn degrades to a secondary degradation product (C). Calculated data with the fitting models were compared with the projected room-temperature shelf-lives of B and C, using one to four time points (in addition to the origin) for each of three accelerated temperatures. Isoconversion methods were found to provide more accurate estimates of shelf-life at ambient conditions. Of the methods for estimating isoconversion, bracketing the specification limit at each condition produced the best estimates and was considerably more accurate than when extrapolation was required. Good estimates of isoconversion produced similar shelf-life estimates fitting either linear or nonlinear forms of the Arrhenius equation, whereas poor isoconversion estimates favored one method or the other depending on which condition was most in error. PMID:25043838

  16. Cantilever-based FBG sensor for temperature-independent acceleration measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjun; Dong, Xinyong; Jin, Yongxing; Zhao, Chun-Liu

    2009-11-01

    A novel accelerometer based on a strain-chirped optical fiber Bragg grating (FBG) is proposed. The FBG is glued in a slanted direction onto the lateral side of a right-angled triangle cantilever beam with a mass bonded on its free end. Vertical acceleration applied to the cantilever beam leads to a uniform bending along the beam length. As a result, the FBG is chirped and its reflection bandwidth changes linearly with the applied acceleration. A high sensitivity of 0.679 nm/g has been achieved in the experiment. The experimental results of the sensor are compared with the results of a conventional accelerometer for the dynamic measurements. This sensor is temperature insensitive, owning to the temperature-independence nature of reflection bandwidth of the FBG.

  17. Ocular Surface Temperature in Age-Related Macular Degeneration

    PubMed Central

    Sodi, Andrea; Giacomelli, Giovanni; Corvi, Andrea; Menchini, Ugo

    2014-01-01

    Background. The aim of this study is to investigate the ocular thermographic profiles in age-related macular degeneration (AMD) eyes and age-matched controls to detect possible hemodynamic abnormalities, which could be involved in the pathogenesis of the disease. Methods. 32 eyes with early AMD, 37 eyes with atrophic AMD, 30 eyes affected by untreated neovascular AMD, and 43 eyes with fibrotic AMD were included. The control group consisted of 44 healthy eyes. Exclusion criteria were represented by any other ocular diseases other than AMD, tear film abnormalities, systemic cardiovascular abnormalities, diabetes mellitus, and a body temperature higher than 37.5°C. A total of 186 eyes without pupil dilation were investigated by infrared thermography (FLIR A320). The ocular surface temperature (OST) of three ocular points was calculated by means of an image processing technique from the infrared images. Two-sample t-test and one-way analysis of variance (ANOVA) test were used for statistical analyses. Results. ANOVA analyses showed no significant differences among AMD groups (P value >0.272). OST in AMD patients was significantly lower than in controls (P > 0.05). Conclusions. Considering the possible relationship between ocular blood flow and OST, these findings might support the central role of ischemia in the pathogenesis of AMD. PMID:25436140

  18. Ocular surface temperature in age-related macular degeneration.

    PubMed

    Sodi, Andrea; Matteoli, Sara; Giacomelli, Giovanni; Finocchio, Lucia; Corvi, Andrea; Menchini, Ugo

    2014-01-01

    Background. The aim of this study is to investigate the ocular thermographic profiles in age-related macular degeneration (AMD) eyes and age-matched controls to detect possible hemodynamic abnormalities, which could be involved in the pathogenesis of the disease. Methods. 32 eyes with early AMD, 37 eyes with atrophic AMD, 30 eyes affected by untreated neovascular AMD, and 43 eyes with fibrotic AMD were included. The control group consisted of 44 healthy eyes. Exclusion criteria were represented by any other ocular diseases other than AMD, tear film abnormalities, systemic cardiovascular abnormalities, diabetes mellitus, and a body temperature higher than 37.5°C. A total of 186 eyes without pupil dilation were investigated by infrared thermography (FLIR A320). The ocular surface temperature (OST) of three ocular points was calculated by means of an image processing technique from the infrared images. Two-sample t-test and one-way analysis of variance (ANOVA) test were used for statistical analyses. Results. ANOVA analyses showed no significant differences among AMD groups (P value >0.272). OST in AMD patients was significantly lower than in controls (P > 0.05). Conclusions. Considering the possible relationship between ocular blood flow and OST, these findings might support the central role of ischemia in the pathogenesis of AMD. PMID:25436140

  19. Accelerated Testing Of Photothermal Degradation Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  20. From randomly accelerated particles to Lévy walks: non-ergodic behavior and aging

    NASA Astrophysics Data System (ADS)

    Radons, Guenter; Albers, Tony; Institute of Physics, Complex Systems; Nonlinear Dynamics Team

    For randomly accelerated particles we detected, and were able to analyze in detail (PRL 113, 184101 (2014)), the phenomenon of weak-ergodicity breaking (WEB), i.e. the inequivalence of ensemble- and time-averaged mean-squared displacements (MSD). These results, including their aging time dependence, are relevant for anomalous chaotic diffusion in Hamiltonian systems, for passive tracer transport in turbulent flows, and many other systems showing momentum diffusion. There are, however, several related models, such as the integrated random excursion model, or, space-time correlated Lévy walks and flights, with similar statistical behavior. We compare the WEB related properties of these models and find surprising differences although, for equivalent parameters, all of them are supposed to lead to the same ensemble-averaged MSD. Our findings are relevant for distinguishing possible models for the anomalous diffusion occurring in experimental situations.

  1. Evaluation of Experimental Parameters in the Accelerated Aging of Closed-Cell Foam Insulation

    SciTech Connect

    Stovall, Therese K; Vanderlan, Michael; Atchley, Jerald Allen

    2012-12-01

    The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C1303 standard test method led to the ruggedness test described here. This test program included the aging of full size insulation specimens for time periods of five years for direct comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. The test protocol has been completed and this report provides a detailed evaluation of the impact of the test parameters on the accuracy of the 5-year thermal conductivity prediction.

  2. Effect of disinfection and accelerated ageing on dimensional stability and detail reproduction of a facial silicone with nanoparticles.

    PubMed

    Pesqueira, A A; Goiato, M C; Dos Santos, D M; Haddad, M F; Moreno, A

    2012-05-01

    The aim of the present study was to evaluate the effect of disinfection and accelerated ageing on the dimensional stability and detail reproduction of a facial silicone with different types of nanoparticle. A total of 60 specimens were fabricated with Silastic MDX 4-4210 silicone and they were divided into three groups: colourless and pigmented with nanoparticles (make-up powder and ceramic powder). Half of the specimens of each group were disinfected with Efferdent tablets and half with neutral soap for 60 days. Afterwards, all specimens were subjected to accelerated ageing. Both dimensional stability and detail reproduction tests were performed after specimen fabrication (initial period), after chemical disinfection, and after accelerated ageing periods (252, 504 and 1008 hours). The dimensional stability test was conducted using AutoCAD software, while detail reproduction was analysed using a stereoscope magnifying glass. Dimensional stability values were statistically evaluated by analysis of variance (ANOVA) followed by Tukey's test (p < 0.01). Detail reproduction results were compared using a score. Chemical disinfection and also accelerated ageing affected the dimensional stability of the facial silicone with statistically significant results. The silicone's detail reproduction was not affected by these two factors regardless of nanoparticle type, disinfection and accelerated ageing. PMID:22428808

  3. Influence of artificially accelerated ageing on the adhesive joint of plasma treated polymer materials

    NASA Astrophysics Data System (ADS)

    Lehocký, M.; Lapčik, L.; Dlabaja, R.; Rachünek, L.; Stoch, J.

    2004-03-01

    An influence of simulated ageing on the adhesive joint of plasma treated polyethylene (PE) and polypropylene (PP) was tested. Plasma surface treatment was performed in the rf-plasma reactor operating at 13,56 MHz. The simulated ageing of prepared specimens for following tensile testing was carried out under conditions given by Volkswagen standard P-VW 1200. Temperature of ageing was regularly oscillating between -40°C and 80°C (relative humidity 80%) for required time. The mechanical tensile properties of adhesive joint were measured according to the standard ISO 527. Surface analysis of treated polymer substrates was characterized by XPS measurement. The observation of surface structure and morphology was obtained using SEM. We used convenient cyanoacrylate adhesive Loctite E 406 for PE and PP joints. Tested adhesive joints were prepared in compliance with the standard ISO 4587.

  4. [Senescence-accelerated mouse (SAM): with special reference to age-associated pathologies and their modulation].

    PubMed

    Takeda, T

    1996-07-01

    The senescence-accelerated mouse (SAM) has been under development by our research team at Kyoto University since 1970 through selective inbreeding of the AKR/J strain of mice donated by the Jackson Laboratory in 1968, based on the data of the grading score of senescence, life span, and pathologic phenotypes. At present, there are 12 lines of SAM; the 9 senescence-prone inbred strains (SAMP) include SAMP1, SAMP2, SAMP3, SAMP6, SAMP7, SAMP8, SAMP9, SAMP10 and SAMP11, and the 3 senescence-resistant inbred strains (SAMR) SAMR1, SANR4 and SAMR5. Data from survival curves, the Gompertzian function and the grading score of senescence, together with growth patterns of body weight of these SAMP and SAMR mice revealed that the characteristic feature of aging common to all SAMP mice is "accelerated senescence": early onset and irreversible advance of senescence manifested by several signs and gross lesions such as the loss of normal behavior, various skin lesions, increased lordokyphosis, etc., after a period of normal development. Routine postmortem examinations and the pathobiological features revealed by systematically designed studies have shown several pathologic phenotypes, which are often characteristic enough to differentiate among the various SAM strains: senile amyloidosis in SAMP1, -P2, -P7, -P9, -P10 and -P11, secondary amyloidosis in SAMP2 and -P6, contracted kidney in SAMP1, -P2, -P10, -P11, immunoblastic lymphoma in SAMR1 and -R4, histiocytic sarcoma in SAMR1 and -R4, ovarian cysts in SAMR1, impaired immune response in SAMP1, -P2 and -P8, hyperinflation of the lungs in SAMP1, hearing impairment in SAMP1, degenerative temporomandibular joint disease in SAMP3, senile osteoporosis in SAMP6, deficits in learning and memory in SAMP8 and -P10, emotional disorders in SAMP8 and -P10, cataracts in SAMP9, and brain atrophy in SAMP10. These are all age-associated pathologies, the incidence and severity of which increase with advancing age. The SAM model in which these

  5. Long-term storage life of light source modules by temperature cycling accelerated life test

    NASA Astrophysics Data System (ADS)

    Ningning, Sun; Manqing, Tan; Ping, Li; Jian, Jiao; Xiaofeng, Guo; Wentao, Guo

    2014-05-01

    Light source modules are the most crucial and fragile devices that affect the life and reliability of the interferometric fiber optic gyroscope (IFOG). While the light emitting chips were stable in most cases, the module packaging proved to be less satisfactory. In long-term storage or the working environment, the ambient temperature changes constantly and thus the packaging and coupling performance of light source modules are more likely to degrade slowly due to different materials with different coefficients of thermal expansion in the bonding interface. A constant temperature accelerated life test cannot evaluate the impact of temperature variation on the performance of a module package, so the temperature cycling accelerated life test was studied. The main failure mechanism affecting light source modules is package failure due to solder fatigue failure including a fiber coupling shift, loss of cooling efficiency and thermal resistor degradation, so the Norris-Landzberg model was used to model solder fatigue life and determine the activation energy related to solder fatigue failure mechanism. By analyzing the test data, activation energy was determined and then the mean life of light source modules in different storage environments with a continuously changing temperature was simulated, which has provided direct reference data for the storage life prediction of IFOG.

  6. Accelerated aging tests on ENEA-ASE solar coating for receiver tube suitable to operate up to 550 °C

    NASA Astrophysics Data System (ADS)

    Antonaia, A.; D'Angelo, A.; Esposito, S.; Addonizio, M. L.; Castaldo, A.; Ferrara, M.; Guglielmo, A.; Maccari, A.

    2016-05-01

    A patented solar coating for evacuated receiver, based on innovative graded WN-AlN cermet layer, has been optically designed and optimized to operate at high temperature with high performance and high thermal stability. This solar coating, being designed to operate in solar field with molten salt as heat transfer fluid, has to be thermally stable up to the maximum temperature of 550 °C. With the aim of determining degradation behaviour and lifetime prediction of the solar coating, we chose to monitor the variation of the solar absorptance αs after each thermal annealing cycle carried out at accelerated temperatures under vacuum. This prediction method was coupled with a preliminary Differential Thermal Analysis (DTA) in order to give evidence for any chemical-physical coating modification in the temperature range of interest before performing accelerated aging tests. In the accelerated aging tests we assumed that the temperature dependence of the degradation processes could be described by Arrhenius behaviour and we hypothesized that a linear correlation occurs between optical parameter variation rate (specifically, Δαs/Δt) and degradation process rate. Starting from Δαs/Δt values evaluated at 650 and 690 °C, Arrhenius plot gave an activation energy of 325 kJ mol-1 for the degradation phenomenon, where the prediction on the coating degradation gave a solar absorptance decrease of only 1.65 % after 25 years at 550 °C. This very low αs decrease gave evidence for an excellent stability of our solar coating, also when employed at the maximum temperature (550 °C) of a solar field operating with molten salt as heat transfer fluid.

  7. A higher oxidative status accelerates senescence and aggravates age-dependent disorders in SAMP strains of mice.

    PubMed

    Hosokawa, Masanori

    2002-11-01

    The SAM strain of mice is actually a group of related inbred strains consisting of series of SAMP (accelerated senescence-prone, short-lived) and SAMR (accelerated senescence-resistant, longer-lived) strains. Comparing with the SAMR strains, the SAMP strains of mice show a more accelerated senescence process, shorter lifespan, and an earlier onset and more rapid progress of age-associated pathological phenotypes similar to several geriatric disorders observed in humans, including senile osteoporosis, degenerative joint disease, age-related deficits in learning and memory, olfactory bulb and forebrain atrophy, presbycusis and retinal atrophy, senile amyloidosis, immunosenescence, senile lungs, and diffuse medial thickening of the aorta. The higher oxidative stress observed in the SAMP strains of mice are partly caused by mitochondrial dysfunction, and may be one cause of the senescence acceleration and age-dependent alterations in cell structure and function, including neuronal cell degeneration. This senescence acceleration is also observed during senescence/crisis in cultures of isolated fibroblast-like cells from SAMP strains of mice, and was associated with a hyperoxidative status. These observations suggest that the SAM strains are useful tools in the attempt to understand the mechanisms of age-dependent degeneration of cells and tissues, and their aggravation, and to develop clinical interventions. PMID:12470893

  8. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10.

    PubMed

    Miyamoto, M

    1997-01-01

    Senescence-Accelerated Mouse (SAM), a murine model of accelerated senescence, has been established by Takeda et al. (1981). SAM consists of senescence-accelerated-prone mouse (SAMP) and senescence-accelerated-resistant mouse (SAMR), the latter of which shows normal aging characteristics. In 1991 there were eight different substrains in the P-series, which commonly exhibited accelerated aging with a shortened life span (Takeda et al., 1991). Among the P-series, we have found that SAMP8 mice show significant impairments in a variety of learning tasks when compared with SAMR1 mice (Miyamoto et al., 1986). Further studies suggest that SAMP8 exhibits an age-related emotional disorder characterized by reduced anxiety-like behavior (Miyamoto et al., 1992). On the other hand, it has been shown that SAMP10 exhibits brain atrophy and learning impairments in an avoidance task (Shimada et al., 1992, 1993). Here, characteristics of age-related deficits in learning and memory, changes in emotional behavior, and abnormality of circadian rhythms in SAMP8 and SAMP10 mice are described. In the experiments, SAMP8/Ta (SAMP8), SAMP10/(/)Ta (SAMP10) and SAMR1TA (SAMR1) reared under specific pathogen-free conditions at Takeda Chemical Industries were used. PMID:9088911

  9. Accelerating neuronal aging in in vitro model brain disorders: a focus on reactive oxygen species

    PubMed Central

    Campos, Priscila Britto; Paulsen, Bruna S.; Rehen, Stevens K.

    2014-01-01

    In this review, we discuss insights gained through the use of stem cell preparations regarding the modeling of neurological diseases, the need for aging neurons derived from pluripotent stem cells to further advance the study of late-onset adult neurological diseases, and the extent to which mechanisms linked to the mismanagement of reactive oxygen species (ROS). The context of these issues can be revealed using the three disease states of Parkinson’s (PD), Alzheimer’s (AD), and schizophrenia, as considerable insights have been gained into these conditions through the use of stem cells in terms of disease etiologies and the role of oxidative stress. The latter subject is a primary area of interest of our group. After discussing the molecular models of accelerated aging, we highlight the role of ROS for the three diseases explored here. Importantly, we do not seek to provide an extensive account of all genetic mutations for each of the three disorders discussed in this review, but we aim instead to provide a conceptual framework that could maximize the gains from merging the approaches of stem cell microsystems and the study of oxidative stress in disease in order to optimize therapeutics and determine new molecular targets against oxidative stress that spare stem cell proliferation and development. PMID:25386139

  10. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles

    NASA Astrophysics Data System (ADS)

    Ouyang, Minggao; Chu, Zhengyu; Lu, Languang; Li, Jianqiu; Han, Xuebing; Feng, Xuning; Liu, Guangming

    2015-07-01

    Charging procedures at low temperatures severely shorten the cycle life of lithium ion batteries due to lithium deposition on the negative electrode. In this paper, cycle life tests are conducted to reveal the influence of the charging current rate and the cut-off voltage limit on the aging mechanisms of a large format LiFePO4 battery at a low temperature (-10 °C). The capacity degradation rates accelerate rapidly after the charging current reaches 0.25 C or the cut-off voltage reaches 3.55 V. Therefore the scheduled current and voltage during low-temperature charging should be reconsidered to avoid capacity degradation. Lithium deposition contributes to low-temperature aging mechanisms, as something needle-like which might be deposited lithium is observed on the surface of the negative electrode after disassembling the aged battery cell. To confirm our explanation, incremental capacity analysis (ICA) is performed to identify the characteristics of the lithium deposition induced battery aging mechanisms. Furthermore, the aging mechanism is quantified using a mechanistic model, whose parameters are estimated with the particle swarm optimization algorithm (PSO). The loss of reversible lithium originating from secondary SEI formation and dead lithium is confirmed as the cause of the aging.

  11. Tables of phase functions, opacities, albedos, equilibrium temperatures, and radiative accelerations of dust grains in exoplanets

    NASA Astrophysics Data System (ADS)

    Budaj, J.; Kocifaj, M.; Salmeron, R.; Hubeny, I.

    2015-11-01

    There has been growing observational evidence for the presence of condensates in the atmospheres and/or comet-like tails of extrasolar planets. As a result, systematic and homogeneous tables of dust properties are useful in order to facilitate further observational and theoretical studies. In this paper we present calculations and analysis of non-isotropic phase functions, asymmetry parameter (mean cosine of the scattering angle), absorption and scattering opacities, single scattering albedos, equilibrium temperatures, and radiative accelerations of dust grains relevant for extrasolar planets. Our assumptions include spherical grain shape, Deirmendjian particle size distribution, and Mie theory. We consider several species: corundum/alumina, perovskite, olivines with 0 and 50 per cent iron content, pyroxenes with 0, 20, and 60 per cent iron content, pure iron, carbon at two different temperatures, water ice, liquid water, and ammonia. The presented tables cover the wavelength range of 0.2-500 μm and modal particle radii from 0.01 to 100 μm. Equilibrium temperatures and radiative accelerations assume irradiation by a non-blackbody source of light with temperatures from 7000 to 700 K seen at solid angles from 2π to 10-6 sr. The tables are provided to the community together with a simple code which allows for an optional, finite, angular dimension of the source of light (star) in the phase function.

  12. A Time-Temperature Transistor - An Application of Aging Dynamics

    NASA Astrophysics Data System (ADS)

    Kenning, Gregory

    Aging dynamics occur as systems far from thermodynamic equilibrium evolve towards equilibrium. We have produced a magnetic nanoparticle system composed of Co nanoparticles, which self-assemble during Co deposition on Sb. At a particular time in the formation of the nanoparticles, they are encased in a layer of Sb producing a system far from equilibrium. Magnetization vs. temperature measurements as well as Magnetic Force Microscopy (MFM) indicates that the nanoparticles initially have a large magnetic moment. We observe, as a function of time, an approximately 80% decay in the sample magnetization and an approximately 50% decay in the DC electrical resistivity. MFM suggests that the magnetization decay proceeds from the magnetic nanoparticles losing their net moments possibly due to spin rearrangement. Evidence also suggests that the initial magnetic moments, drive the Sb layer semiconducting. As the net moments of the magnetic nanoparticles decrease, the Sb reverts back to its semi-metal behavior with the accompanying decrease in the electrical resistivity. The magnetization and resistance decays follow the same Arrhenius type behavior. By varying the Co layer thickness, the Arrhenius parameters can be tuned. We have been able to tune the parameters making these materials excellent candidates for sensors for electronically monitoring the age and lifetime of perishable foods.

  13. A comparison of the effect of temperature and moisture on the solid dispersions: aging and crystallization.

    PubMed

    Tian, Bin; Zhang, Ling; Pan, Zhendong; Gou, Jingxin; Zhang, Yu; Tang, Xing

    2014-11-20

    The purpose of this work was to compare the effect of temperature and relative humidity (RH) on the physical stability and dissolution of solid dispersions. Cinnarizine-Soluplus(®) solid dispersions (SDs) at three different drug loadings (10, 20 and 35 wt%) were prepared by hot melt extrusion and exposed to stress conditions: high temperatures (40 and 60 °C), high relative humidities (75% and 94% RH) and accelerated conditions (40 °C/75% RH) for 30 days, or stored at 25 °C for up to 5 months. Changes in solid state and dissolution of SDs were investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and dissolution testing. For samples under stress conditions, the results showed a reduced dissolution and a recrystallization of the drug with an increased crystallinity in the order of 40 °C/75% RH, >60 °C/0% RH, >25 °C/94% RH, >40 °C/0% RH, >25 °C/75% RH. For samples stored at 25 °C, nonlinear physical aging was observed and the dissolution also decreased although the SDs were still amorphous. The results indicated that temperature and humidity seemed to have comparable effects on the crystallization of cinnarizine-Soluplus(®) SDs. It is not reasonable to regard recrystallization as a sign of reduced dissolution, and glass transition temperature (Tg) may be a good indicator of the changes in dissolution. PMID:25218489

  14. The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon

    SciTech Connect

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Tagawa, H.; Malliakos, A.

    1998-05-01

    The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, {lambda}, was equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/{lambda}=4.2). This observation indicates that the d/{lambda}=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction

  15. The (RH+t) aging correlation. Electrical resistivity of PVB at various temperatures and relative humidities

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1985-01-01

    Electrical products having organic materials functioning as pottants, encapsulants, and insulation coatings are commonly exposed to elevated conditions of temperature and humidity. In order to assess service life potential from this method of accelerated aging, it was empirically observed that service life seems proportional to an aging correlation which is the sum of temperature in degrees Celsius (t), and the relative humidity (RH) expressed in percent. Specifically, the correlation involves a plot of time-to-failure on a log scale versus the variable RH + T plotted on a linear scale. A theoretical foundation is provided for this empirically observed correlation by pointing out that the correlation actually involves a relationship between the electrical resistivity (or conductivity) of the organic material, and the variable RH + t. If time-to-failure is a result of total number of coulombs conducted through the organic material, then the correlation of resistivity versus RH + t is synonymous with the empirical correlation of time-to-failure versus RH + t.

  16. Accelerated ageing of an EAF black slag by carbonation and percolation for long-term behaviour assessment.

    PubMed

    Gurtubay, L; Gallastegui, G; Elias, A; Rojo, N; Barona, A

    2014-07-01

    The efficient reuse of industrial by-products, such as the electric arc furnace (EAF) black slag, is still hindered by concern over their long-term behaviour in outdoor environments. The aim of this study was to develop an accelerated ageing method to simulate the long-term natural carbonation of EAF slag exposed to the elements. The degree of carbonation achieved in a freshly produced slag after accelerated ageing and in a slag used on a fifteen-year-old unpaved road was very similar. The influence of particle size on accelerated carbonation was assessed, with it being concluded that the slag sample with a particle size bigger than 5-6 mm underwent slight carbonation over time when it was exposed to CO2. The accelerated ageing procedure based on percolating a previously carbonated water solution through the slag column allowed gradual leaching with simulated acid rain, as well as providing information about the gradual and total chemical release from the slag. Three classification groups were established according to the release rate of the determined elements. The joint use of the accelerated carbonation method and the percolation test is proposed as a useful tool for environmental risk assessment concerning the long-term air exposure of EAF black slag. PMID:24726964

  17. DNA damage drives accelerated bone aging via an NF-κB-dependent mechanism

    PubMed Central

    Chen, Qian; Liu, Kai; Robinson, Andria R.; Clauson, Cheryl L.; Blair, Harry C.; Robbins, Paul D.; Niedernhofer, Laura J.; Ouyang, Hongjiao

    2013-01-01

    Advanced age is one of the most important risk factors for osteoporosis. Accumulation of oxidative DNA damage has been proposed to contribute to age-related deregulation of osteoblastic and osteoclastic cells. ERCC1 (Excision Repair Cross Complementary group 1)-XPF (Xeroderma Pigmentosum Group F) is an evolutionarily conserved structure-specific endonuclease that is required for multiple DNA repair pathways. Inherited mutations affecting expression of ERCC1-XPF cause a severe progeroid syndrome in humans, including early onset of osteopenia and osteoporosis, or anomalies in skeletal development. Herein, we used progeroid ERCC1-XPF deficient mice, including Ercc1-null (Ercc1−/−) and hypomorphic (Ercc1−/Δ) mice, to investigate the mechanism by which DNA damage leads to accelerated bone aging. Compared to their wild-type littermates, both Ercc1−/− and Ercc1−/Δ mice display severe, progressive osteoporosis caused by reduced bone formation and enhanced osteoclastogenesis. ERCC1 deficiency leads to atrophy of osteoblastic progenitors in the bone marrow stromal cell (BMSC) population. There is increased cellular senescence of BMSCs and osteoblastic cells, as characterized by reduced proliferation, accumulation of DNA damage and a senescence-associated secretory phenotype (SASP). This leads to enhanced secretion of inflammatory cytokines known to drive osteoclastogenesis, such as IL-6, TNFα, and RANKL and thereby induces an inflammatory bone microenvironment favoring osteoclastogenesis. Furthermore, we found that the transcription factor NF-κB is activated in osteoblastic and osteoclastic cells of the Ercc1 mutant mice. Importantly, we demonstrated that haploinsufficiency of the p65 NF-κB subunit partially rescued the osteoporosis phenotype of Ercc1−/Δ mice. Finally, pharmacological inhibition of the NF-κB signaling via an IKK inhibitor reversed cellular senescence and SASP in Ercc1−/Δ BMSCs. These results demonstrate that DNA damage drives

  18. Accelerated path integral methods for atomistic simulations at ultra-low temperatures

    NASA Astrophysics Data System (ADS)

    Uhl, Felix; Marx, Dominik; Ceriotti, Michele

    2016-08-01

    Path integral methods provide a rigorous and systematically convergent framework to include the quantum mechanical nature of atomic nuclei in the evaluation of the equilibrium properties of molecules, liquids, or solids at finite temperature. Such nuclear quantum effects are often significant for light nuclei already at room temperature, but become crucial at cryogenic temperatures such as those provided by superfluid helium as a solvent. Unfortunately, the cost of converged path integral simulations increases significantly upon lowering the temperature so that the computational burden of simulating matter at the typical superfluid helium temperatures becomes prohibitive. Here we investigate how accelerated path integral techniques based on colored noise generalized Langevin equations, in particular the so-called path integral generalized Langevin equation thermostat (PIGLET) variant, perform in this extreme quantum regime using as an example the quasi-rigid methane molecule and its highly fluxional protonated cousin, CH5+. We show that the PIGLET technique gives a speedup of two orders of magnitude in the evaluation of structural observables and quantum kinetic energy at ultralow temperatures. Moreover, we computed the spatial spread of the quantum nuclei in CH4 to illustrate the limits of using such colored noise thermostats close to the many body quantum ground state.

  19. Accelerated path integral methods for atomistic simulations at ultra-low temperatures.

    PubMed

    Uhl, Felix; Marx, Dominik; Ceriotti, Michele

    2016-08-01

    Path integral methods provide a rigorous and systematically convergent framework to include the quantum mechanical nature of atomic nuclei in the evaluation of the equilibrium properties of molecules, liquids, or solids at finite temperature. Such nuclear quantum effects are often significant for light nuclei already at room temperature, but become crucial at cryogenic temperatures such as those provided by superfluid helium as a solvent. Unfortunately, the cost of converged path integral simulations increases significantly upon lowering the temperature so that the computational burden of simulating matter at the typical superfluid helium temperatures becomes prohibitive. Here we investigate how accelerated path integral techniques based on colored noise generalized Langevin equations, in particular the so-called path integral generalized Langevin equation thermostat (PIGLET) variant, perform in this extreme quantum regime using as an example the quasi-rigid methane molecule and its highly fluxional protonated cousin, CH5 (+). We show that the PIGLET technique gives a speedup of two orders of magnitude in the evaluation of structural observables and quantum kinetic energy at ultralow temperatures. Moreover, we computed the spatial spread of the quantum nuclei in CH4 to illustrate the limits of using such colored noise thermostats close to the many body quantum ground state. PMID:27497533

  20. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fleischhammer, Meike; Waldmann, Thomas; Bisle, Gunther; Hogg, Björn-Ingo; Wohlfahrt-Mehrens, Margret

    2015-01-01

    The differences in the safety behaviour between un-aged and aged high-power 18650 lithium-ion cells were investigated at the cell and material level by Accelerating Rate Calorimetry (ARC) and Simultaneous Thermal Analysis (STA). Commercial cells containing a LixNi1/3Mn1/3Co1/3O2/LiyMn2O4 blend cathode, a carbon/graphite anode and a PP/PE/PP trilayer separator were aged by high-rate and low temperature cycling, leading to (i) mechanical deformation of the jelly roll and (ii) lithium plating on the anode. The results show a strong influence of the ageing history on the safety behaviour. While cycling at high current does not have a strong influence on the cell safety, lithium plating leads to a significant increase of heat formation during thermal runaway and thus to a higher hazard of safety.

  1. Accelerated aging of 28 Gb s-1 850 nm vertical-cavity surface-emitting laser with multiple thick oxide apertures

    NASA Astrophysics Data System (ADS)

    Kropp, J. R.; Steinle, G.; Schäfer, G.; Shchukin, V. A.; Ledentsov, N. N.; Turkiewicz, J. P.; Zoldak, M.

    2015-04-01

    850 nm vertical-cavity surface-emitting lasers with multiple thick oxide apertures suitable for temperature-insensitive error free transmission at 28 Gb s-1 are subjected to accelerated aging at high current densities and chip temperatures. The devices withstand a 20% power change test at a high current density (18 kA c{{m}-2}) at an ambient temperature of 120 {}^\\circ C for 2500 h. At 90-95 {}^\\circ C at this current density no degradation was observed up to 5000 h. We performed the studies at further elevated current densities and temperatures and define the acceleration factor as AF={{({{J}stress}/{{J}use})}8}exp [(1.3 eV/{{k}B})(1/{{T}use}-1/{{T}stress})]. The extrapolated lifetime for 20% power drop is estimated as 20 thousand years at 300 K at current density of 18 kA c{{m}-2} which is sufficient for 28 Gb s-1 error-free temperature-insensitive data transmission.

  2. Effect of dietary, social, and lifestyle determinants of accelerated aging and its common clinical presentation: A survey study.

    PubMed

    Samarakoon, S M S; Chandola, H M; Ravishankar, B

    2011-07-01

    Aging is unavoidable and natural phenomenon of life. Modern gerontologists are realizing the fact that aging is a disease, which Ayurveda had accepted as natural disease since long. Rate of aging is determined by one's biological, social, lifestyle, and psychological conditions and adversity of which leads to accelerated form of aging (Akalaja jara or premature aging). The aim of this study is to identify potential factors that may accelerate aging in the context of dietry factors, lifestyle and mental makeup. The 120 diagnosed subjects of premature-ageing of 30-60 years were randomly selected in the survey study. Premature ageing was common among females (75.83%), in 30-40 age group (70%), 86.67% were married, had secondary level of education (36.66%), house-views (61.67%), belongs top middle class (58.33%) and engaged in occupations that dominating physical labour (88.33%). The maximum patients are constipated (60%), had mandagni (80%), vata-kapha prakriti (48.33%), rajasika prakriti (58.33%), madhyama vyayama shakti (73.33%), and madhyama jarana shakti (85.83%). Collectively, 43.33% patients were above normal BMI. The more patients had anushna (38.33%) and vishamasana dietary pattern (25.83%), consumed Lavana (88.33%) and Amla rasa (78.33%) in excess on regular basis. Some patients had addicted to tobacco (11.67%) and beetle chewing (5.83%). The maximum patients had no any exercise (79.17%) and specific hobby (79.17%) in their leisure times. Analyzing Hamilton Anxiety and Depression Rating Scales revealed that 39.80%, 37.86%, 33.98%, 24.27% and 18.44% patients had insomnia, depression, tension, GIT symptoms and anxious mood respectively. These data suggest that certain social, dietary and lifestyle factors contribute towards accelerated ageing among young individuals. PMID:22529643

  3. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD

    PubMed Central

    Ferenbach, David A.; Bonventre, Joseph V.

    2015-01-01

    Acute kidney injury is an increasingly common complication of hospital admission and is associated with high levels of morbidity and mortality. A hypotensive, septic, or toxic insult can initiate a cascade of events, resulting in impaired microcirculation, activation of inflammatory pathways and tubular cell injury or death. These processes ultimately result in acutely impaired kidney function and initiation of a repair response. This Review explores the various mechanisms responsible for the initiation and propagation of acute kidney injury, the prototypic mechanisms by which a substantially damaged kidney can regenerate its normal architecture, and how the adaptive processes of repair can become maladaptive. These mechanisms, which include G2/M cell-cycle arrest, cell senescence, profibrogenic cytokine production, and activation of pericytes and interstitial myofibroblasts, contribute to the development of progressive fibrotic kidney disease. The end result is a state that mimics accelerated kidney ageing. These mechanisms present important opportunities for the design of targeted therapeutic strategies to promote adaptive renal recovery and minimize progressive fibrosis and chronic kidney disease after acute insults. PMID:25643664

  4. Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests

    NASA Astrophysics Data System (ADS)

    Molina, E.; Cultrone, G.; Sebastián, E.; Alonso, F. J.

    2013-06-01

    The durability of a rock when exposed to decay agents is an important criterion when assessing its quality as a building material. Our study focuses on six varieties of natural stone (two limestones, one dolostone, one travertine and two sandstones) that are widely used in both new and historical buildings. In order to assess their quality, we measured and characterized their dynamic elastic properties using ultrasounds, we measured their compressive strength using the uniaxial compression test and we evaluated their durability by means of accelerated aging tests (freeze-thaw and salt crystallization). In order to get a full picture of the decay suffered by the different stones, we determined the composition and amount of the clay fraction of the six stones. We also observed small fragments subjected to the salt crystallization test under an environmental scanning electron microscope to study any textural change and measured the changes of colour on the surface with a spectrophotometer. Finally, we analysed the pore system of the stones before and after their deterioration using mercury injection porosimetry. We then compared the results for the different stones and found that dolostone obtained the best results, while the two limestones proved to be the least durable and had the lowest compressive strength.

  5. Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests

    NASA Astrophysics Data System (ADS)

    Guan, Ting; Zuo, Pengjian; Sun, Shun; Du, Chunyu; Zhang, Lingling; Cui, Yingzhi; Yang, Lijie; Gao, Yunzhi; Yin, Geping; Wang, Fuping

    2014-12-01

    A series of LiCoO2/mesocarbon microbeads (MCMB) commercial cells cycled at different rates (0.6C, 1.2C, 1.5C, 1.8C, 2.4C and 3.0C) are disassembled and the capacity fade mechanism is proposed by analyzing the structure, morphology and electrochemical performance evolution at the capacity retention of 95%, 90%, 85%, 80%. The capacity deterioration of the commercial cell is mainly caused by the decay of the reversible capacity of LiCoO2 cathode, the irreversible loss of active lithium and the lithium remaining in anode. The proportions of effects by the above three factors are calculated accurately. The consumption of the active lithium leads to a cell imbalance between the anode and the cathode. The electrochemical test results indicate that the capacity fade of the active materials at the low rate is more obvious than that at the high rate. The influence of the active lithium is gradually increscent with the increasing rate. The rate of 1.5C is the optimal value to accelerate the aging of the full cell by comparing the testing results at different capacity retentions in the specific condition of low charge/discharge rate and shallow depth of discharge.

  6. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai Frank; Larrosa, Cecilia C.; Janapati, Vishnuvardhan; Roy, Surajit; Chang, Fu-Kuo

    2011-01-01

    Composite structures are gaining importance for use in the aerospace industry. Compared to metallic structures their behavior is less well understood. This lack of understanding may pose constraints on their use. One possible way to deal with some of the risks associated with potential failure is to perform in-situ monitoring to detect precursors of failures. Prognostic algorithms can be used to predict impending failures. They require large amounts of training data to build and tune damage model for making useful predictions. One of the key aspects is to get confirmatory feedback from data as damage progresses. These kinds of data are rarely available from actual systems. The next possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to stress carbon-carbon composite coupons with various layups. Piezoelectric disc sensors were used to periodically interrogate the system. Analysis showed distinct differences in the signatures of growing failures between data collected at conditions. Periodic X-radiographs were taken to assess the damage ground truth. Results after signal processing showed clear trends of damage growth that were correlated to damage assessed from the X-ray images.

  7. Sox4 Links Tumor Suppression to Accelerated Aging in Mice by Modulating Stem Cell Activation

    PubMed Central

    Foronda, Miguel; Martínez, Paula; Schoeftner, Stefan; Gómez-López, Gonzalo; Schneider, Ralph; Flores, Juana M.; Pisano, David G.; Blasco, Maria A.

    2016-01-01

    Summary Sox4 expression is restricted in mammals to embryonic structures and some adult tissues, such as lymphoid organs, pancreas, intestine, and skin. During embryogenesis, Sox4 regulates mesenchymal and neural progenitor survival, as well as lymphocyte and myeloid differentiation, and contributes to pancreas, bone, and heart development. Aberrant Sox4 expression is linked to malignant transformation and metastasis in several types of cancer. To understand the role of Sox4 in the adult organism, we first generated mice with reduced whole-body Sox4 expression. These mice display accelerated aging and reduced cancer incidence. To specifically address a role for Sox4 in adult stem cells, we conditionally deleted Sox4 (Sox4cKO) in stratified epithelia. Sox4cKO mice show increased skin stem cell quiescence and resistance to chemical carcinogenesis concomitantly with downregulation of cell cycle, DNA repair, and activated hair follicle stem cell pathways. Altogether, these findings highlight the importance of Sox4 in regulating adult tissue homeostasis and cancer. PMID:25043184

  8. Coffee Silverskin Extract Protects against Accelerated Aging Caused by Oxidative Agents.

    PubMed

    Iriondo-DeHond, Amaia; Martorell, Patricia; Genovés, Salvador; Ramón, Daniel; Stamatakis, Konstantinos; Fresno, Manuel; Molina, Antonio; Del Castillo, Maria Dolores

    2016-01-01

    Nowadays, coffee beans are almost exclusively used for the preparation of the beverage. The sustainability of coffee production can be achieved introducing new applications for the valorization of coffee by-products. Coffee silverskin is the by-product generated during roasting, and because of its powerful antioxidant capacity, coffee silverskin aqueous extract (CSE) may be used for other applications, such as antiaging cosmetics and dermaceutics. This study aims to contribute to the coffee sector's sustainability through the application of CSE to preserve skin health. Preclinical data regarding the antiaging properties of CSE employing human keratinocytes and Caenorhabditis elegans are collected during the present study. Accelerated aging was induced by tert-butyl hydroperoxide (t-BOOH) in HaCaT cells and by ultraviolet radiation C (UVC) in C. elegans. Results suggest that the tested concentrations of coffee extracts were not cytotoxic, and CSE 1 mg/mL gave resistance to skin cells when oxidative damage was induced by t-BOOH. On the other hand, nematodes treated with CSE (1 mg/mL) showed a significant increased longevity compared to those cultured on a standard diet. In conclusion, our results support the antiaging properties of the CSE and its great potential for improving skin health due to its antioxidant character associated with phenols among other bioactive compounds present in the botanical material. PMID:27258247

  9. Translucent tissue defect in potato (Solanum tuberosum L.) tubers is associated with oxidative stress accompanying an accelerated aging phenotype.

    PubMed

    Zommick, Daniel H; Kumar, G N Mohan; Knowles, Lisa O; Knowles, N Richard

    2013-12-01

    Translucent tissue defect (TTD) is an undesirable postharvest disorder of potato tubers characterized by the development of random pockets of semi-transparent tissue containing high concentrations of reducing sugars. Translucent areas turn dark during frying due to the Maillard reaction. The newly released cultivar, Premier Russet, is highly resistant to low temperature sweetening, but susceptible to TTD. Symptoms appeared as early as 170 days after harvest and worsened with time in storage (4-9 °C, 95 % RH). In addition to higher concentrations of glucose, fructose and sucrose, TTD resulted in lower dry matter, higher specific activities of starch phosphorylase and glc-6-phosphate dehydrogenase, higher protease activity, loss of protein, and increased concentrations of free amino acids (esp. asparagine and glutamine). The mechanism of TTD is unknown; however, the disorder has similarities with the irreversible senescent sweetening that occurs in tubers during long-term storage, where much of the decline in quality is a consequence of progressive increases in oxidative stress with advancing age. The respiration rate of non-TTD 'Premier Russet' tubers was inherently higher (ca. 40 %) than that of 'Russet Burbank' tubers (a non-TTD cultivar). Moreover, translucent tissue from 'Premier Russet' tubers had a 1.9-fold higher respiration rate than the average of non-translucent tissue and tissue from non-TTD tubers. Peroxidation of membrane lipids during TTD development resulted in increased levels of malondialdehyde and likely contributed to a measurable increase in membrane permeability. Superoxide dismutase and catalase activities and the ratio of oxidized to total glutathione were substantially higher in translucent tissue. TTD tubers also contained twofold less ascorbate than non-TTD tubers. TTD appears to be a consequence of oxidative stress associated with accelerated aging of 'Premier Russet' tubers. PMID:24037414

  10. [Bathing in bed accelerates the recovery of skin temperature after ethanol-loading].

    PubMed

    Okumura, Y; Asakawa, K; Ogasahara, Y; Muramatu, A; Wada, S; Tamaru, S; Nagai, M

    1994-01-01

    Bathing in bed (BB) is an essential nursing technique applied to patients with restricted physical abilities. The aim of this technique is to keep the functions of the skin as an external barrier and to prevent the patients from infection and decubitus. However, the effect of BB on the blood circulation of the skin has not yet been identified, and the data observed are controversial. We have evaluated the effects of BB on the blood circulation of the skin by use of thermography. BB was applied on the right side of the back (RB) in 6 healthy female subjects who exposed both sides of their back (RB and LB) at room temperature. Ethanol was applied on the 5 x 5 cm area of RB and LB after BB, and recovery of the skin temperature was observed. After BB, the average temperature of RB was significantly lower than that of LB. This shows that BB decreases temperature of the skin exposed in the air probably due to the supply of water by washcloth. Recovery of the skin temperature after the ethanol-loading was accelerated on RB. This indicates that BB facilitates the response of the blood vessels in the skin. PMID:8129834

  11. Age-dependent changes in lipid peroxide levels in peripheral organs, but not in brain, in senescence-accelerated mice.

    PubMed

    Matsugo, S; Kitagawa, T; Minami, S; Esashi, Y; Oomura, Y; Tokumaru, S; Kojo, S; Matsushima, K; Sasaki, K

    2000-01-01

    The tissue concentration of lipid peroxides was determined in the brain, heart, liver, lung and kidney of accelerated senescence-prone (SAMP-8) and -resistant (SAMR-1) mice at 3, 6 and 9 months of age by a method involving chemical derivatization and high performance liquid chromatography. The level of lipid peroxides in the brain did not show an age-dependent change, but at each age the brain level of lipid peroxides was significantly higher in SAMP-8 than in SAMR-1. In contrast, the lipid peroxide levels in the peripheral organs showed increases with aging in both strains, and they were significantly higher in SAMP-8 than in SAMR-1 at both 3 and 6 months of age (except at 3 months of age in the kidney). These results suggest that increased oxidative stress in the brain and peripheral organs is a cause of the senescence-related degeneration and impairments seen in SAMP-8. PMID:10643812

  12. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss.

    PubMed

    Turner, Russell T; Dube, Michael; Branscum, Adam J; Wong, Carmen P; Olson, Dawn A; Zhong, Xiaoying; Kweh, Mercedes F; Larkin, Iske V; Wronski, Thomas J; Rosen, Clifford J; Kalra, Satya P; Iwaniec, Urszula T

    2015-12-01

    Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover. PMID:26487675

  13. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    SciTech Connect

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley E.; Quelen, Sarah; Marlot, Lea; Preble, Chelsea V.; Chen, Sharon; Montalbano, Amandine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  14. Flux trapping in superconducting accelerating cavities during cooling down with a spatial temperature gradient

    NASA Astrophysics Data System (ADS)

    Kubo, Takayuki

    2016-05-01

    During the cool-down of a superconducting accelerating cavity, a magnetic flux is trapped as quantized vortices, which yield additional dissipation and contribute to the residual resistance. Recently, cooling down with a large spatial temperature gradient has attracted much attention for successfully reducing the number of trapped vortices. The purpose of the present paper is to propose a model to explain the observed efficient flux expulsions and the role of spatial temperature gradient during the cool-down of the cavity. In the vicinity of a region with a temperature close to the critical temperature T_c, the critical fields are strongly suppressed and can be smaller than the ambient magnetic field. A region with a lower critical field smaller than the ambient field is in the vortex state. As the material is cooled down, a region with a temperature close to T_c associated with the vortex state domain sweeps and passes through the material. In this process, vortices contained in the vortex state domain are trapped by pinning centers that randomly distribute in the material. The number of trapped vortices can be naively estimated by analogy with a beam-target collision event. Based on this result, the residual resistance is evaluated. We find that the number of trapped vortices and the residual resistance are proportional to the strength of the ambient magnetic field and the inverse of the temperature gradient. The residual resistance obtained agrees well with experimental results. A material property dependence of the number of trapped vortices is also discussed.

  15. The effects of free and bonded sulfur both in the presence and absence of vulcanization accelerators on the rheological, technological, aging, and thermal stability of asphalts

    SciTech Connect

    Onabajo, A.; Kopsch, H.

    1987-01-01

    Rheological and technological experiments have been carried out on sulfur-modified asphalts in the temperature range of 353 K to 453 K over a wide range of shear rates (0-4800 sec/sup -1/). The results indicated that the activation energy of the viscous flow increased with increasing amount of bonded sulfur. The irreversible shear degradation observed in sulfur-modified asphalts is caused by the high shear forces which rupture the aggregated molecules. Thermogravimetric analysis and aging experiments on asphalts and their sulfurized products, containing varying amounts of free sulfur (0-5.5 wt.-%) and vulcanization accelerators (0.5-2.5 wt.-%), have shown that mixes containing vulcanization accelerators have higher thermal stabilities and are more resistant to thermal and non-thermal aging than the unaccelerated asphalt-sulfur mixed prepared at the same or higher temperatures. The changes in the rheological and physical properties of the mixes with time is not only explained by the changes in the physical state of unreacted free sulfur, that is, from plastic to crystalline state (physical process), but also attributable to the effect of chemical reactions.

  16. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

    PubMed

    Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B

    2014-01-01

    Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD. PMID:24121970

  17. Experimental Induction of Type 2 Diabetes in Aging-Accelerated Mice Triggered Alzheimer-Like Pathology and Memory Deficits

    PubMed Central

    Mehla, Jogender; Chauhan, Balwantsinh C.; Chauhan, Neelima B.

    2014-01-01

    Alzheimer’s disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD. PMID:24121970

  18. Effect of Blade Tenderization, Aging Time and Aging Temperature on Tenderness of Beef Longissimus Lumborum and Gluteus Medius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to evaluate the effects of blade tenderization, aging time, and aging temperature on the tenderness of longissimus lumborum (LL) and gluteus medius (GM) steaks. Beef strip loins (n = 300) and top sirloin butts (n = 300) were selected from a large beef processor and transported...

  19. Stabilization of Fe-C Martensitic Phase by Low-Temperature Ageing

    SciTech Connect

    Dabrowski, L.; Winek, T.; Neov, S.

    2007-04-23

    Martensite containing 0.87 wt.% carbon was aged at liquid nitrogen temperature during 30 days. X-ray diffraction measurements showed that ageing does not lead to the phase transition {alpha} {yields} {kappa} up to 800 K.

  20. Stabilization of Fe-C Martensitic Phase by Low-Temperature Ageing

    NASA Astrophysics Data System (ADS)

    Dabrowski, L.; Neov, S.; Winek, T.

    2007-04-01

    Martensite containing 0.87 wt.% carbon was aged at liquid nitrogen temperature during 30 days. X-ray diffraction measurements showed that ageing does not lead to the phase transition α ==> κ up to 800 K.

  1. Effect of gravitational acceleration on temperature wave propagation in a critical fluid

    SciTech Connect

    Ishii, K.; Maekawa, T.; Azuma, H.; Yoshihara, S.; Onishi, M.

    1998-01-01

    Temperature propagation near the critical point of a classical fluid is investigated theoretically. The governing equations of thermal energy transfer near the critical point are introduced and a linear analysis is carried out. The dispersion relation between the angular frequency and the wave number is obtained and the wave characteristics are discussed. The effect of gravitational acceleration on the temperature wave propagation is made clear. Through this analysis, the following results were obtained; (1) The propagation speed of temperature waves is {radical} ({gamma}/({rho}{sub 0}{kappa}{sub T})) ,where {gamma}, {rho}{sub 0}, and {kappa}{sub T} are, respectively, the ratio of specific heats, the density, and the isothermal compressibility, with or without gravity if the wavelength is larger than 10{sup {minus}3}.(2) The amplitude of wave increases with time in the antigravitational direction and decreases in the gravitational direction but the decay time is long if the wave number is small. (3) Waves decay quickly if the wave number is larger than 10{sup 4}. {copyright} {ital 1998 American Institute of Physics.}

  2. On-the-fly transition search and applications to temperature-accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques

    2015-03-01

    Temperature-accelerated dynamics (TAD) is a powerful method to study non-equilibrium processes and has been providing surprising insights for a variety of systems. While serial TAD simulations have been limited by the roughly N3 increase in the computational cost as a function of the number of atoms N in the system, recently we have shown that by carrying out parallel TAD simulations which combine spatial decomposition with our semi-rigorous synchronous sublattice algorithm, significantly improved scaling is possible. However, in this approach the size of activated events is limited by the processor size while the dynamics is not exact. Here we discuss progress in improving the scaling of serial TAD by combining the use of on-the-fly transition searching with our previously developed localized saddle-point method. We demonstrate improved performance for the cases of Ag/Ag(100) annealing and Cu/Cu(100) growth. Supported by NSF DMR-1410840.

  3. Monitoring of pigmented and wooden surfaces in accelerated ageing processes by FT-Raman spectroscopy and multivariate control charts.

    PubMed

    Marengo, Emilio; Robotti, Elisa; Liparota, Maria Cristina; Gennaro, Maria Carla

    2004-07-01

    Two of the most suitable analytical techniques used in the field of cultural heritage are NIR (near-infrared) and Raman spectroscopy. FT-Raman spectroscopy coupled to multivariate control charts is applied here for the development of a new method for monitoring the conservation state of pigmented and wooden surfaces. These materials were exposed to different accelerated ageing processes in order to evaluate the effect of the applied treatments on the goods surfaces. In this work, a new approach based on the principles of statistical process control (SPC) to the monitoring of cultural heritage, has been developed: the conservation state of samples simulating works-of-art has been treated like an industrial process, monitored with multivariate control charts, owing to the complexity of the spectroscopic data collected. The Raman spectra were analysed by principal component analysis (PCA) and the relevant principal components (PCs) were used for constructing multivariate Shewhart and cumulative sum (CUSUM) control charts. These tools were successfully applied for the identification of the presence of relevant modifications occurring on the surfaces. CUSUM charts however proved to be more effective in the identification of the exact beginning of the applied treatment. In the case of wooden boards, where a sufficient number of PCs were available, simultaneous scores monitoring and residuals tracking (SMART) charts were also investigated. The exposure to a basic attack and to high temperatures produced deep changes on the wooden samples, clearly identified by the multivariate Shewhart, CUSUM and SMART charts. A change on the pigment surface was detected after exposure to an acidic solution and to the UV light, while no effect was identified on the painted surface after the exposure to natural atmospheric events. PMID:18969526

  4. Effect of low temperature baking on the RF properties of niobium superconducting cavities for particle accelerators

    SciTech Connect

    Gianluigi Ciovati

    2004-03-01

    Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some ''anomalous'' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low temperature (100 C-150 C) ''in situ'' bake under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from ''anomalous'' losses (so-called ''Q-drop'') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37 K-280 K and resonant frequency shift between 6 K-9.3 K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with Nuclear Reaction Analysis (NRA). The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal conductivity and Kapitza resistance and the data are compared with different models

  5. Nitrogen compounds in wine during its biological aging by two flor film yeasts: An approach to accelerated biological aging of dry sherry-type wines.

    PubMed

    Mauricio, J C; Ortega, J M

    1997-01-20

    Urea, ammonium, and free amino acid contents were quantified in biological aging of a young wine under two flor film forming yeast strains, Saccharomyces cerevisiae race capensis and S. cerevisiae race bayanus, and compared. Cell viability in the film was different for the two yeast strains. Thus, capensis maintained a much greater number of viable cells per surface area than bayanus and hence used greater amount of nitrogen compounds. The main source of nitrogen for the yeasts during the biological aging process was L-proline. The two yeast strains also differed in the amounts of assimilable nitrogen they utilized, in their preferences for amino acid consumption, and kinetics. To accelerate the aging process, the effect of controlled monthly aeration of the wine aged with capensis strain was investigated. The results revealed that short aeration did not appreciably increase the overall consumption of assimilable nitrogen, but consumption of some nitrogen compounds was accelerated (particularly L-proline, L-tryptophan, L-glutamic acid, ammonium ion, L-lysine, and L-arginine); the use of L-ornithine was inhibited; and GABA, L-methionine, and urea were depletes. Probably the aeration increases the aroma compounds, thereby producing wines with improved sensory properties. (c) 1997 John Wiley & Sons, Inc. PMID:18633960

  6. 500,000-year temperature record challenges ice age theory

    USGS Publications Warehouse

    Snow, K. Mitchell

    1994-01-01

    Just outside the searing heat of Death Valley lies Devils Hole (fig. 1), a fault-created cave that harbors two remnants of the Earth's great ice ages. The endangered desert pupfish (Cyprinodon diabolis) has long made its home in the cave. A 500,000-year record of the planet's climate that challenges a widely accepted theory explaining the ice ages also has been preserved in Devils Hole.

  7. ISSLS PRIZE WINNER: INHIBITION OF NF-κB ACTIVITY AMELIORATES AGE-ASSOCIATED DISC DEGENERATION IN A MOUSE MODEL OF ACCELERATED AGING

    PubMed Central

    Nasto, Luigi A.; Seo, Hyoung-Yeon; Robinson, Andria R.; Tilstra, Jeremy S.; Clauson, Cheryl L.; Sowa, Gwendolyn A.; Ngo, Kevin; Dong, Qing; Pola, Enrico; Lee, Joon Y.; Niedernhofer, Laura J.; Kang, James D.; Robbins, Paul D.; Vo, Nam V.

    2012-01-01

    Study Design NF-κB activity was pharmacologically and genetically blocked in an accelerated aging mouse model to mitigate age-related disc degenerative changes. Objective To study the mediatory role of NF-κB signaling pathway in age-dependent intervertebral disc degeneration. Summary of Background Data Aging is a major contributor to intervertebral disc degeneration (IDD), but the molecular mechanism behind this process is poorly understood. NF-κB is a family of transcription factors which play a central role in mediating cellular response to damage, stress, and inflammation. Growing evidence implicates chronic NF-κB activation as a culprit in many aging-related diseases, but its role in aging-related IDD has not been adequately explored. We studied the effects of NF-κB inhibition on IDD using a DNA repair-deficient mouse model of accelerated aging (Ercc1-/Δ mice) previously been reported to exhibit age-related IDD. Methods Systemic inhibition of NF-κB activation was achieved either genetically by deletion of one allele of the NF-κB subunit p65 (Ercc1-/Δp65+/- mice) or pharmacologically by chronic intra-peritoneal administration of the Nemo Binding Domain (8K-NBD) peptide to block the formation of the upstream activator of NF-κB, IκB Inducible Kinase (IKK), in Ercc1-/Δ mice. Disc cellularity, total proteoglycan content and proteoglycan synthesis of treated mice and untreated controls were assessed. Results Decreased disc matrix proteoglycan content, a hallmark feature of IDD, and elevated disc NF-κB activity were observed in discs of progeroid Ercc1-/Δ mice and naturally aged wild-type compared to young WT mice. Systemic inhibition of NF-κB by the 8K-NBD peptide in Ercc1-/Δ mice increased disc proteoglycan synthesis and ameriolated loss disc cellularity and matrix proteoglycan. These results were confirmed genetically by using the p65 haploinsufficient Ercc1-/Δp65+/- mice. Conclusion These findings demonstrate that the IKK/NF-κB signaling pathway

  8. Associations between accelerated glacier mass wastage and increased summer temperature in coastal regions

    USGS Publications Warehouse

    Dyurgerov, M.; McCabe, G.J.

    2006-01-01

    Low-elevation glaciers in coastal regions of Alaska, the Canadian Arctic, individual ice caps around the Greenland ice sheet, and the Patagonia Ice Fields have an aggregate glacier area of about 332 ?? 103 km 2 and account for approximately 42% of all the glacier area outside the Greenland and Antarctic ice sheets. They have shown volume loss, especially since the end of the 1980s, increasing from about 45% in the 1960s to nearly 67% in 2003 of the total wastage from all glaciers on Earth outside those two largest ice sheets. Thus, a disproportionally large contribution of coastal glacier ablation to sea level rise is evident. We examine cumulative standardized departures (1961-2000 reference period) of glacier mass balances and air temperature data in these four coastal regions. Analyses indicate a strong association between increases in glacier volume losses and summer air temperature at regional and global scales. Increases in glacier volume losses in the coastal regions also coincide with an accelerated rate of ice discharge from outlet glaciers draining the Greenland and West Antarctic ice sheets. These processes imply further increases in sea level rise. ?? 2006 Regents of the University of Colorado.

  9. The Master Equation for Two-Level Accelerated Systems at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Tomazelli, J. L.; Cunha, R. O.

    2016-07-01

    In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.

  10. Methodology for designing accelerated aging tests for predicting life of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Derringer, G. C.; Kistler, C. W.; Bigg, D. M.; Carmichael, D. C.

    1977-01-01

    A methodology for designing aging tests in which life prediction was paramount was developed. The methodology builds upon experience with regard to aging behavior in those material classes which are expected to be utilized as encapsulant elements, viz., glasses and polymers, and upon experience with the design of aging tests. The experiences were reviewed, and results are discussed in detail.

  11. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. II. A poly(ester-urethane) binder

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1981-01-01

    The molecular weight distribution and dynamic mechanical properties of an experimental polymer-bonded explosive, X-0282, maintained at 23, 60, and 74/sup 0/C for 3.75 y were examined, X-0282 is 95.5% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclo-octane explosive and 4.5% Estane 5703, a segmented poly(ester-urethane). Two mechanical relaxations at about -24 and 42/sup 0/C were found in the X-0282 aged at room temperature for 3.75 years. A third relaxation at about 85/sup 0/C was found in X-0282 aged at 60 and 74/sup 0/C. The relaxation at -24/sup 0/C is associated with the soft segment glass transition of the binder. The relaxation at 42/sup 0/C is associated with the soft segment melting and may also contain a component due to the hard segment glass transition. The relaxation at 85/sup 0/C is probably associated with improved soft segment crystallite perfection. The molecular weight of the poly(ester-urethane) binder decreased significantly with increasing accelerated aging temperature. A simple random chain scission model of the urethane degradation kinetics in the presence of explosive yields an activation energy of 11.6 kcal/mole. This model predicts a use life of about 17.5 years under the worst military operating conditions (continuous operation at 74/sup 0/C).

  12. When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies.

    PubMed

    Fjell, Anders M; Walhovd, Kristine B; Westlye, Lars T; Østby, Ylva; Tamnes, Christian K; Jernigan, Terry L; Gamst, Anthony; Dale, Anders M

    2010-05-01

    Many brain structures show a complex, non-linear pattern of maturation and age-related change. Often, quadratic models (beta(0) + beta(1)age + beta(2)age(2) + epsilon) are used to describe such relationships. Here, we demonstrate that the fitting of quadratic models is substantially affected by seemingly irrelevant factors, such as the age-range sampled. Hippocampal volume was measured in 434 healthy participants between 8 and 85 years of age, and quadratic models were fit to subsets of the sample with different age-ranges. It was found that as the bottom of the age-range increased, the age at which volumes appeared to peak was moved upwards and the estimated decline in the last part of the age-span became larger. Thus, whether children were included or not affected the estimated decline between 60 and 85 years. We conclude that caution should be exerted in inferring age-trajectories from global fit models, e.g. the quadratic model. A nonparametric local smoothing technique (the smoothing spline) was found to be more robust to the effects of different starting ages. The results were replicated in an independent sample of 309 participants. PMID:20109562

  13. WATER CONTENT-TEMPERATURE INTERACTIONS REGULATE SEED AGING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water content and temperature are important factors that influence the duration of seed survival in storage. The interacting effect of these two factors and the consequences on seed longevity is rarely recognized. An experiment to quantify the interaction was begun in 1994, using lettuce (Lactuca s...

  14. TWO-STEP ACCELERATION MODEL OF COSMIC RAYS AT MIDDLE-AGED SUPERNOVA REMNANTS: UNIVERSALITY IN SECONDARY SHOCKS

    SciTech Connect

    Inoue, Tsuyoshi; Yamazaki, Ryo; Inutsuka, Shu-ichiro

    2010-11-01

    Recent gamma-ray observations of middle-aged supernova remnants revealed a mysterious broken power-law spectrum. Using three-dimensional magnetohydrodynamic simulations, we show that the interaction between a supernova blast wave and interstellar clouds formed by thermal instability generates multiple reflected shocks. The typical Mach numbers of the reflected shocks are shown to be M{approx_equal} 2 depending on the density contrast between the diffuse intercloud gas and clouds. These secondary shocks can further energize cosmic-ray particles originally accelerated at the blast-wave shock. This 'two-step' acceleration scenario reproduces the observed gamma-ray spectrum and predicts the high-energy spectral index ranging approximately from 3 to 4.

  15. Two-step Acceleration Model of Cosmic Rays at Middle-aged Supernova Remnants: Universality in Secondary Shocks

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Yamazaki, Ryo; Inutsuka, Shu-ichiro

    2010-11-01

    Recent gamma-ray observations of middle-aged supernova remnants revealed a mysterious broken power-law spectrum. Using three-dimensional magnetohydrodynamic simulations, we show that the interaction between a supernova blast wave and interstellar clouds formed by thermal instability generates multiple reflected shocks. The typical Mach numbers of the reflected shocks are shown to be Msime 2 depending on the density contrast between the diffuse intercloud gas and clouds. These secondary shocks can further energize cosmic-ray particles originally accelerated at the blast-wave shock. This "two-step" acceleration scenario reproduces the observed gamma-ray spectrum and predicts the high-energy spectral index ranging approximately from 3 to 4.

  16. Glutamate Cysteine Ligase Modifier Subunit (Gclm) Null Mice Have Increased Ovarian Oxidative Stress and Accelerated Age-Related Ovarian Failure.

    PubMed

    Lim, Jinhwan; Nakamura, Brooke N; Mohar, Isaac; Kavanagh, Terrance J; Luderer, Ulrike

    2015-09-01

    Glutathione (GSH) is the one of the most abundant intracellular antioxidants. Mice lacking the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH. Our prior work showed that GSH plays antiapoptotic roles in ovarian follicles. We hypothesized that Gclm(-/-) mice have accelerated ovarian aging due to ovarian oxidative stress. We found significantly decreased ovarian GSH concentrations and oxidized GSH/oxidized glutathione redox potential in Gclm(-/-) vs Gclm(+/+) ovaries. Prepubertal Gclm(-/-) and Gclm(+/+) mice had similar numbers of ovarian follicles, and as expected, the total number of ovarian follicles declined with age in both genotypes. However, the rate of decline in follicles was significantly more rapid in Gclm(-/-) mice, and this was driven by accelerated declines in primordial follicles, which constitute the ovarian reserve. We found significantly increased 4-hydroxynonenal immunostaining (oxidative lipid damage marker) and significantly increased nitrotyrosine immunostaining (oxidative protein damage marker) in prepubertal and adult Gclm(-/-) ovaries compared with controls. The percentage of small ovarian follicles with increased granulosa cell proliferation was significantly higher in prepubertal and 2-month-old Gclm(-/-) vs Gclm(+/+) ovaries, indicating accelerated recruitment of primordial follicles into the growing pool. The percentages of growing follicles with apoptotic granulosa cells were increased in young adult ovaries. Our results demonstrate increased ovarian oxidative stress and oxidative damage in young Gclm(-/-) mice, associated with an accelerated decline in ovarian follicles that appears to be mediated by increased recruitment of follicles into the growing pool, followed by apoptosis at later stages of follicular development. PMID:26083875

  17. Temperature control system for the study of single event effects in integrated circuits using a cyclotron accelerator

    NASA Astrophysics Data System (ADS)

    Bakerenkov, A. S.; Belyakov, V. V.; Kozyukov, A. E.; Pershenkov, V. S.; Solomatin, A. V.; Shurenkov, V. V.

    2015-02-01

    The temperature control system for the study of single event disruptions produced by hard ion impacts in integrated circuits is described. Heating and cooling of the irradiated device are achieved using thermoelectric modules (Peltier modules). The thermodynamic performance of the system is estimated. The technique for the numerical estimation of the main parameters of the temperature control system for cooling and heating is considered. The results of a test of the system in a vacuum cell of an accelerator are presented.

  18. Generating relevant kinetic Monte Carlo catalogs using temperature accelerated dynamics with control over the accuracy

    SciTech Connect

    Chatterjee, Abhijit; Voter, Arthur

    2009-01-01

    We develop a variation of the temperature accelerated dynamics (TAD) method, called the p-TAD method, that efficiently generates an on-the-fly kinetic Monte Carlo (KMC) process catalog with control over the accuracy of the catalog. It is assumed that transition state theory is valid. The p-TAD method guarantees that processes relevant at the timescales of interest to the simulation are present in the catalog with a chosen confidence. A confidence measure associated with the process catalog is derived. The dynamics is then studied using the process catalog with the KMC method. Effective accuracy of a p-TAD calculation is derived when a KMC catalog is reused for conditions different from those the catalog was originally generated for. Different KMC catalog generation strategies that exploit the features of the p-TAD method and ensure higher accuracy and/or computational efficiency are presented. The accuracy and the computational requirements of the p-TAD method are assessed. Comparisons to the original TAD method are made. As an example, we study dynamics in sub-monolayer Ag/Cu(110) at the time scale of seconds using the p-TAD method. It is demonstrated that the p-TAD method overcomes several challenges plaguing the conventional KMC method.

  19. Reduced quality and accelerated follicle loss with female reproductive aging - does decline in theca dehydroepiandrosterone (DHEA) underlie the problem?

    PubMed

    Ford, Judith H

    2013-01-01

    Infertility, spontaneous abortion and conception of trisomic offspring increase exponentially with age in mammals but in women there is an apparent acceleration in the rate from about age 37. The problems mostly commonly occur when the ovarian pool of follicles is depleted to a critical level with age but are also found in low follicular reserve of other etiologies. Since recent clinical studies have indicated that dehydroepiandrosterone (DHEA) supplementation may reverse the problem of oocyte quality, this review of the literature was undertaken in an attempt to find an explanation of why this is effective? In affected ovaries, oxygenation of follicular fluid is low, ultrastructural disturbances especially of mitochondria, occur in granulosa cells and oocytes, and considerable disturbances of meiosis occur. There is, however, no evidence to date that primordial follicles are compromised. In females with normal fertility, pre-antral ovarian theca cells respond to stimulation by inhibin B to provide androgen-based support for the developing follicle. With depletion of follicle numbers, inhibin B is reduced with consequent reduction in theca DHEA. Theca cells are the sole ovarian site of synthesis of DHEA, which is both a precursor of androstenedione and an essential ligand for peroxisome proliferator-activated receptor alpha (PPARα), the key promoter of genes affecting fatty acid metabolism and fat transport and genes critical to mitochondrial function. As well as inducing a plethora of deleterious changes in follicular cytoplasmic structure and function, the omega 9 palmitate/oleate ratio is increased by lowered activity of PPARα. This provides conditions for increased ceramide synthesis and follicular loss through ceramide-induced apoptosis is accelerated. In humans critical theca DHEA synthesis occurs at about 70 days prior to ovulation thus effective supplementation needs to be undertaken about four months prior to intended conception; timing which is also

  20. Oxidative stress and age-related changes in T cells: is thalassemia a model of accelerated immune system aging?

    PubMed Central

    Ghatreh-Samani, Mahdi; Esmaeili, Nafiseh; Soleimani, Masoud; Asadi-Samani, Majid; Ghatreh-Samani, Keihan

    2016-01-01

    Iron overload in β-thalassemia major occurs mainly due to blood transfusion, an essential treatment for β-thalassemia major patients, which results in oxidative stress. It has been thought that oxidative stress causes elevation of immune system senescent cells. Under this condition, cells normally enhance in aging, which is referred to as premature immunosenescence. Because there is no animal model for immunosenescence, most knowledge on the immunosenescence pattern is based on induction of immunosenescence. In this review, we describe iron overload and oxidative stress in β-thalassemia major patients and how they make these patients a suitable human model for immunosenescence. We also consider oxidative stress in some kinds of chronic virus infections, which induce changes in the immune system similar to β-thalassemia major. In conclusion, a therapeutic approach used to improve the immune system in such chronic virus diseases, may change the immunosenescence state and make life conditions better for β-thalassemia major patients. PMID:27095931

  1. Understanding and controlling low-temperature aging of nanocrystalline materials.

    SciTech Connect

    Battaile, Corbett Chandler; Boyce, Brad Lee; Brons, Justin G.; Foiles, Stephen Martin; Hattar, Khalid Mikhiel; Holm, Elizabeth Ann; Padilla, Henry A.,; Sharon, John Anthony; Thompson, Gregory B.

    2013-10-01

    Nanocrystalline copper lms were created by both repetitive high-energy pulsed power, to produce material without internal nanotwins; and pulsed laser deposition, to produce nan- otwins. Samples of these lms were indented at ambient (298K) and cryogenic temperatures by immersion in liquid nitrogen (77K) and helium (4K). The indented samples were sectioned through the indented regions and imaged in a scanning electron microscope. Extensive grain growth was observed in the lms that contained nanotwins and were indented cryogenically. The lms that either lacked twins, or were indented under ambient conditions, were found to exhibit no substantial grain growth by visual inspection. Precession transmission elec- tron microscopy was used to con rm these ndings quantitatively, and show that 3 and 7 boundaries proliferate during grain growth, implying that these interface types play a key role in governing the extensive grain growth observed here. Molecular dynamics sim- ulations of the motion of individual grain boundaries demonstrate that speci c classes of boundaries - notably 3 and 7 - exhibit anti- or a-thermal migration, meaning that their mobilities either increase or do not change signi cantly with decreasing temperature. An in-situ cryogenic indentation capability was developed and implemented in a transmission electron microscope. Preliminary results do not show extensive cryogenic grain growth in indented copper lms. This discrepancy could arise from the signi cant di erences in con g- uration and loading of the specimen between the two approaches, and further research and development of this capability is needed.

  2. Effect of Blade Tenderization, Aging Time, and Aging Temperature on Tenderness of Beef Longissimus Lumborum and Gluteus Medius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purveyors are concerned about the food safety risk of non-intact meat products and are seeking strategies to ensure adequate meat tenderness without blade tenderization. This study was conducted to determine the effects of blade tenderization and time and temperature of aging on beef longissimus lu...

  3. Environmental aging in polycrystalline-Si photovoltaic modules: comparison of chamber-based accelerated degradation studies with field-test data

    NASA Astrophysics Data System (ADS)

    Lai, T.; Biggie, R.; Brooks, A.; Potter, B. G.; Simmons-Potter, K.

    2015-09-01

    Lifecycle degradation testing of photovoltaic (PV) modules in accelerated-degradation chambers can enable the prediction both of PV performance lifetimes and of return-on-investment for installations of PV systems. With degradation results strongly dependent on chamber test parameters, the validity of such studies relative to fielded, installed PV systems must be determined. In the present work, accelerated aging of a 250 W polycrystalline silicon module is compared to real-time performance degradation in a similar polycrystalline-silicon, fielded, PV technology that has been operating since October 2013. Investigation of environmental aging effects are performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability providing illumination uniformity of 98% over a 2 x 1.6 m area. Time-dependent, photovoltaic performance (J-V) is evaluated over a recurring, compressed night-day cycle providing representative local daily solar insolation for the southwestern United States, followed by dark (night) cycling. This cycle is synchronized with thermal and humidity environmental variations that are designed to mimic, as closely as possible, test-yard conditions specific to a 12 month weather profile for a fielded system in Tucson, AZ. Results confirm the impact of environmental conditions on the module long-term performance. While the effects of temperature de-rating can be clearly seen in the data, removal of these effects enables the clear interpretation of module efficiency degradation with time and environmental exposure. With the temperature-dependent effect removed, the normalized efficiency is computed and compared to performance results from another panel of similar technology that has previously experienced identical climate changes in the test yard. Analysis of relative PV module efficiency degradation for the chamber-tested system shows good comparison to the field-tested system with ~2.5% degradation following

  4. Room Temperature Aging Study of Butyl O-rings

    SciTech Connect

    Mark Wilson

    2009-08-07

    During testing under the Enhanced Surveillance Campaign in 2001, preliminary data detected a previously unknown and potentially serious concern with recently procured butyl o-rings. All butyl o-rings molded from a proprietary formulation throughout the period circa 1999 through 2001 had less than a full cure. Tests showed that sealing force values for these suspect o-rings were much lower than expected and their physical properties were very sensitive to further post curing at elevated temperatures. Further testing confirmed that these o-rings were approximately 50% cured versus the typical industry standard of > 90% cured. Despite this condition, all suspect o-rings fully conformed to their QC acceptance requirements, including their individual product drawing requirements.

  5. Leukocyte Telomere Length in Young Adults Born Preterm: Support for Accelerated Biological Ageing

    PubMed Central

    Smeets, Carolina C. J.; Codd, Veryan; Samani, Nilesh J.; Hokken-Koelega, Anita C. S.

    2015-01-01

    Background Subjects born preterm have an increased risk for age-associated diseases, such as cardiovascular disease in later life, but the underlying causes are largely unknown. Shorter leukocyte telomere length (LTL), a marker of biological age, is associated with increased risk of cardiovascular disease. Objectives To compare LTL between subjects born preterm and at term and to assess if LTL is associated with other putative cardiovascular risk factors at young adult age. Methods We measured mean LTL in 470 young adults. LTL was measured using a quantitative PCR assay and expressed as T/S ratio. We analyzed the influence of gestational age on LTL and compared LTL between subjects born preterm (n = 186) and at term (n = 284). Additionally, we analyzed the correlation between LTL and potential risk factors of cardiovascular disease. Results Gestational age was positively associated with LTL (r = 0.11, p = 0.02). Subjects born preterm had shorter LTL (mean (SD) T/S ratio = 3.12 (0.44)) than subjects born at term (mean (SD) T/S ratio = 3.25 (0.46)), p = 0.003). The difference remained significant after adjustment for gender and size at birth (p = 0.001). There was no association of LTL with any one of the putative risk factors analyzed. Conclusions Young adults born preterm have shorter LTL than young adults born at term. Although we found no correlation between LTL and risk for CVD at this young adult age, this biological ageing indicator may contribute to CVD and other adult onset diseases at a later age in those born preterm. PMID:26619005

  6. Effects of high temperature aging in an impure helium environment on low temperature embrittlement of Alloy 617 and Haynes 230

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Sah, Injin; Jang, Changheui

    2010-10-01

    The effects of high temperature environmental damage on low temperature embrittlement of wrought nickel-base superalloys, Alloy 617 and Haynes 230 were evaluated. They were aged in an impure helium environment at 1000 °C for up to 500 h before tensile tested at room temperature. The tensile test results showed that the loss of ductility was associated with the increase in the inter-granular fracture with aging time. For Alloy 617, inter-granular oxidation and coarsening of grain boundary carbides contributed to the embrittlement. The significant loss of ductility in Haynes 230 was only observed after 500 h of aging when the globular intermetallic precipitates were extensively formed and brittle inter-granular cracking began to occur.

  7. Effect of blade tenderization, aging time, and aging temperature on tenderness of beef longissimus lumborum and gluteus medius.

    PubMed

    King, D A; Wheeler, T L; Shackelford, S D; Pfeiffer, K D; Nickelson, R; Koohmaraie, M

    2009-09-01

    Purveyors are concerned about the potential food safety risk of nonintact meat products and are seeking strategies to ensure adequate meat tenderness without blade tenderization. This study was conducted to determine the effects of blade tenderization and time and temperature of aging on beef longissimus lumborum (LL) and gluteus medius (GM) tenderness. Beef strip loins (n = 300) and top sirloin butts (n = 300) were assigned to storage at -0.5 or 3.3 degrees C for 12, 26, or 40 d. Cuts were blade tenderized (BT) or not blade tenderized (NBT) before steak cutting. One 2.54-cm steak from each subprimal was used for slice shear force determination and Western blotting of desmin. Desmin degradation was less (P < 0.05) in LL stored at -0.5 degrees C than LL stored at 3.3 degrees C (57 and 65%, respectively). Aging from 12 to 26 d increased (P < 0.05) proteolysis (50 to 65%) in LL. Regardless of aging time, BT reduced (P < 0.05) LL slice shear force values. Aging time did not affect (P > 0.05) slice shear force values of BT LL steaks (10.4, 9.9, and 9.4 kg for 12, 26, and 40 d aging, respectively), but reduced (P < 0.05) NBT steak slice shear force values (15.1, 13.8, and 12.3 kg for 12, 26, and 40 d aging, respectively). Greater temperature did not affect (P > 0.05) slice shear force values of BT LL steaks (10.2 and 9.6 kg for steaks aged at -0.5 and 3.3 degrees C, respectively), but improved (P < 0.05) slice shear force of NBT LL steaks (15.1 and 12.4, respectively). Aging at 3.3 degrees C increased (P < 0.05) proteolysis in GM steaks (43 and 54% for -0.5 and 3.3 degrees C, respectively). Longer aging times increased (P < 0.05) proteolysis (40, 46, and 60% for 12, 26, and 40 d aging, respectively) in GM steaks. Blade-tenderized GM steaks had dramatically less (P < 0.05) slice shear force values than NBT steaks (13.7 and 19.9 kg, respectively). Raising aging temperature from -0.5 to 3.3 degrees C reduced (17.6 vs. 16.0 kg; P < 0.05) and increasing aging time from 12 d

  8. In silico analysis of gene expression profiles in the olfactory mucosae of aging senescence-accelerated mice.

    PubMed

    Getchell, Thomas V; Peng, Xuejun; Green, C Paul; Stromberg, Arnold J; Chen, Kuey-Chu; Mattson, Mark P; Getchell, Marilyn L

    2004-08-01

    We utilized high-density Affymetrix oligonucleotide arrays to investigate gene expression in the olfactory mucosae of near age-matched aging senescence-accelerated mice (SAM). The senescence-prone (SAMP) strain has a significantly shorter lifespan than does the senescence-resistant (SAMR) strain. To analyze our data, we applied biostatistical methods that included a correlation analysis to evaluate sources of methodologic and biological variability; a two-sided t-test to identify a subpopulation of Present genes with a biologically relevant P-value <0.05; and a false discovery rate (FDR) analysis adjusted to a stringent 5% level that yielded 127 genes with a P-value of <0.001 that were differentially regulated in near age-matched SAMPs (SAMP-Os; 13.75 months) compared to SAMRs (SAMR-Os, 12.5 months). Volcano plots related the variability in the mean hybridization signals as determined by the two-sided t-test to fold changes in gene expression. The genes were categorized into the six functional groups used previously in gene profiling experiments to identify candidate genes that may be relevant for senescence at the genomic and cellular levels in the aging mouse brain (Lee et al. [2000] Nat Genet 25:294-297) and in the olfactory mucosa (Getchell et al. [2003] Ageing Res Rev 2:211-243), which serves several functions that include chemosensory detection, immune barrier function, xenobiotic metabolism, and neurogenesis. Because SAMR-Os and SAMP-Os have substantially different median lifespans, we related the rate constant alpha in the Gompertz equation on aging to intrinsic as opposed to environmental mechanisms of senescence based on our analysis of genes modulated during aging in the olfactory mucosa. PMID:15248299

  9. Mice deficient in Rbm38, a target of the p53 family, are susceptible to accelerated aging and spontaneous tumors

    PubMed Central

    Zhang, Jin; Xu, Enshun; Ren, Cong; Yan, Wensheng; Zhang, Min; Chen, Mingyi; Cardiff, Robert D.; Imai, Denise M.; Wisner, Erik; Chen, Xinbin

    2014-01-01

    RNA-binding motif protein 38 (Rbm38), also called RNPC1 [RNA-binding region (RNP1, RRM) containing 1], is a target of the p53 family and modulates p53 expression via mRNA translation. To investigate the biological function of Rbm38 in vivo, we generated an Rbm38-null mouse model. We showed that mice deficient in Rbm38 exhibit signs of accelerated aging and are prone to hematopoietic defects and spontaneous tumors. To determine the biological significance of the p53-Rbm38 loop, we showed that Rbm38 deficiency enhances accumulation of p53 induced by ionizing radiation (IR) and sensitizes mice to IR-induced lethality in a p53-dependent manner. Most importantly, Rbm38 deficiency markedly decreases the tumor penetrance in mice heterozygous for p53 via enhanced p53 expression. Interestingly, we found that Rbm38 deficiency shortens the life span of, and promotes lymphomagenesis in, mice deficient in p53. These results provide genetic evidence that Rbm38 is necessary for normal hematopoiesis and for suppressing accelerated aging and tumorigenesis. Thus, the p53-Rbm38 axis might be explored for extending longevity and for tumor suppression. PMID:25512531

  10. Multi-Directional Sprinting and Acceleration Phase in Basketball and Handball Players Aged 14 and 15 Years.

    PubMed

    Popowczak, Marek; Rokita, Andrzej; Struzik, Artur; Cichy, Ireneusz; Dudkowski, Andrzej; Chmura, Paweł

    2016-10-01

    An important role in handball and basketball is played by ability to accelerate and ability to repeat multiple sprints. The aim of the study was to assess level of ability in multi-directional sprinting and running time over the first 5 m of the 30 m sprint in 93 basketball and handball players (46 boys and 47 girls) aged 14 to 15 years. The attempts were also made to find the relationships between the time of a 5-m run to evaluate initial acceleration phase and multi-directional sprinting evaluated using Five-Time Shuttle Run To Gates Test Statistical analysis revealed no important differences in times of 5-m runs and times of multi-directional sprinting between groups with different ages, genders, and sports specialties. Furthermore, no significant correlations were found based on Spearman's rank correlation coefficient between times of 5-m run and multi-directional sprinting in the most of subgroups studied. PMID:27565172

  11. Towards A Model-Based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan S.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  12. Active immunization of broiler breeder cockerels against chicken inhibin accelerates puberty and prevents age-induced testicular involution.

    PubMed

    Satterlee, D G; Castille, S A; Fioretti, W C

    2006-06-01

    Injection of quail and breeder hens with a recombinant protein antigen (MBP-cINA521)--a fusion of the bacterical maltose-binding protein (MBP) and a fragment of the alpha-subunit of chicken inhibin (cINA521)--accelerates puberty and enhances lay. Herein, the effects of this immunogen on reproductive responses in broiler breeder males were assessed. Cockerels were subcutaneously injected with 0 (vehicular controls), 1, 3, or 5 mg of MBP-cINA521 at 13 wk of age and with one-half of these dosages (boosters) at 18 wk. Bird subsamples were weighed, blood sampled, and killed at 24, 28, and 39 wk of age to assess age and vaccination effects on BW, testes weight (TWT), TWT relative to BW (RTWT), TWT > or = 20 g (TWT20; theoretical threshold TWT for maximum fertility), and plasma testosterone. Breeder males are sexually developing, reach peak sexual activity, and show age-related reproductive decline at these ages. Because vaccine gonadal effects at 24 wk appeared to be dramatic, the size of the left testis was also scored to see if size differences could be detected by mere visual inspection. Male fighting increasingly reduced sample sizes beyond 24 wk. Because mortality was unrelated to the treatments and to insure meaningful statistical comparisons, MBP-cINA521 data were pooled. Body weight (P < 0.04), testis score (P < 0.02), TWT (P < 0.03), RTWT (P = 0.06), and plasma testosterone (P = 0.08) were elevated in immunogen-treated males at 24 wk of age, and more (P < 0.05) MBP-cINA521-treated birds than controls achieved a TWT20 at this time. These variables did not differ by treatment at 28 wk. However, by 39 wk, treatment effects reemerged as follows: TWT (P < 0.04), RTWT (P = 0.06), and TWT20 (P < 0.01) were increased in vaccinated males who also showed nearly 3-fold higher levels of plasma testosterone. We conclude that immunoneutralization of inhibin accelerates puberty and retards age-related sexual senescence that typically occurs in broiler breeder males. PMID

  13. The theory of bipolar disorder as an illness of accelerated aging: implications for clinical care and research.

    PubMed

    Rizzo, Lucas Bortolotto; Costa, Leonardo Gazzi; Mansur, Rodrigo B; Swardfager, Walter; Belangero, Síntia Iole; Grassi-Oliveira, Rodrigo; McIntyre, Roger S; Bauer, Moisés E; Brietzke, Elisa

    2014-05-01

    Bipolar Disorder (BD) has been conceptualized as both a cyclic and a progressive disorder. Mechanisms involved in neuroprogression in BD remain largely unknown although several non-mutually exclusive models have been proposed as explanatory frameworks. In the present paper, we propose that the pathophysiological changes observed in BD (e.g. brain structural alterations, cognitive deficits, oxidative stress imbalance, amyloid metabolism, immunological deregulation, immunosenescence, neurotrophic deficiencies and telomere shortening) converge on a model of accelerated aging (AA). Aging can be understood as a multidimensional process involving physical, neuropsychological, and social changes, which can be highly variable between individuals. Determinants of successful aging (e.g environmental and genetic factors), may also confer differential vulnerability to components of BD pathophysiology and contribute to the clinical presentation of BD. Herein we discuss how the understanding of aging and senescence can contribute to the search for new and promising molecular targets to explain and ameliorate neuroprogression in BD. We also present the strengths and limitations of this concept. PMID:24548785

  14. Exposure to radiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Carey, A.; Rabin, B. M.; Joseph, J. A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles), produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism; oxidative stress damage to the central nervous system caused by an increased release of reactive oxygen species is likely responsible for the deficits seen in aging and following irradiation. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a "map" provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by NASA Grants NAG9-1190 and NAG9-1529

  15. Age-related trends in gene expression in the chemosensory-nasal mucosae of senescence-accelerated mice.

    PubMed

    Getchell, Thomas V; Peng, Xuejun; Stromberg, Arnold J; Chen, Kuey-Chu; Paul Green, C; Subhedar, Nishikant K; Shah, Dharmen S; Mattson, Mark P; Getchell, Marilyn L

    2003-04-01

    We have utilized high-density GeneChip oligonucleotide arrays to investigate the use of the senescence-accelerated mouse (SAM) as a biogerontological resource to identify patterns of gene expression in the chemosensory-nasal mucosa. Gene profiling in chronologically young and old mice of the senescence-resistant (SAMR) and senescence-prone (SAMP) strains revealed 133 known genes that were modulated by a three-fold or greater change either in one strain or the other or in both strains during aging. We also identified known genes in our study which based on their encoded proteins were identified as aging-related genes in the aging neocortex and cerebellum of mice as reported by Lee et al. (2000) [Nat. Genet. 25 (2000) 294]. Changes in gene profiles for chemosensory-related genes including olfactory and vomeronasal receptors, sensory transduction-associated proteins, and odor and pheromone transport molecules in the young SAMR and SAMP were compared with age-matched C57BL/6J mice. An analysis of known gene expression profiles suggests that changes in the expression of immune factor genes and genes associated with cell cycle progression and cell death were particularly prominent in the old SAM strains. A preliminary cellular validation study supported the dysregulation of cell cycle-related genes in the old SAM strains. The results of our initial study indicated that the use of the SAM models of aging could provide substantive information leading to a more fundamental understanding of the aging process in the chemosensory-nasal mucosa at the genomic, molecular, and cellular levels. PMID:12605961

  16. Target disruption of ribosomal protein pNO40 accelerates aging and impairs osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Lin, Yen-Ming; Wu, Chih-Ching; Chang, Yu-Chen; Wu, Chu-Han; Ho, Hsien Li; Hu, Ji Wei; Chang, Ren-Chi; Wang, Chung-Ta; Ouyang, Pin

    2016-01-22

    pNO40/PS1D, a novel nucleolar protein, has been characterized as a core protein of eukaryotic 60S ribosome and at least two splicing forms of pNO40 mRNAs with alternative starting sites have been identified. Through production of knockout (ko) mice with either exon 2 (△E2), exon 4 (△E4) or △E2+E4 targeted disruption we identified a cryptic splicing product occurring in the ko tissues examined which in general cannot be observed in regular RT-PCR detection of wild-type (wt) animals. Among ko animals, △E4 null embryos exhibited prominent senescence-associated β-galactosidase (SA-β-gal) staining, a marker for senescent cells, in notochord, forelimbs and heart while bone marrow-derived mesenchymal stem cells (MSCs) from △E4 null mice developed accelerated aging and osteogenic differentiation defects compared to those from wt and other isoform mutant mice. Examination of the causal relationship between pNO40 deficiency and MSC-accelerated aging revealed △E4 null disruption in MSCs elicits high levels of ROS and elevated expression levels of p16 and Rb but not p53. Further analysis with iTraq identified CYP1B1, a component of the cytochrome p450 system, as a potential molecule mediating ROS generation in pNO40 deficient MSCs. We herein established a mouse model of MSC aging through pNO40-targeted depletion and demonstrated the effects of loss of pNO40 on bone homeostasis. PMID:26721440

  17. Extended temperature-accelerated dynamics: Enabling long-time full-scale modeling of large rare-event systems

    SciTech Connect

    Bochenkov, Vladimir; Suetin, Nikolay; Shankar, Sadasivan

    2014-09-07

    A new method, the Extended Temperature-Accelerated Dynamics (XTAD), is introduced for modeling long-timescale evolution of large rare-event systems. The method is based on the Temperature-Accelerated Dynamics approach [M. Sørensen and A. Voter, J. Chem. Phys. 112, 9599 (2000)], but uses full-scale parallel molecular dynamics simulations to probe a potential energy surface of an entire system, combined with the adaptive on-the-fly system decomposition for analyzing the energetics of rare events. The method removes limitations on a feasible system size and enables to handle simultaneous diffusion events, including both large-scale concerted and local transitions. Due to the intrinsically parallel algorithm, XTAD not only allows studies of various diffusion mechanisms in solid state physics, but also opens the avenue for atomistic simulations of a range of technologically relevant processes in material science, such as thin film growth on nano- and microstructured surfaces.

  18. Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saxena, Abhinav; Wysocki, Philip; Saha, Sankalita; Goebel, Kai

    2010-01-01

    This paper presents research results dealing with power MOSFETs (metal oxide semiconductor field effect transistor) within the prognostics and health management of electronics. Experimental results are presented for the identification of the on-resistance as a precursor to failure of devices with die-attach degradation as a failure mechanism. Devices are aged under power cycling in order to trigger die-attach damage. In situ measurements of key electrical and thermal parameters are collected throughout the aging process and further used for analysis and computation of the on-resistance parameter. Experimental results show that the devices experience die-attach damage and that the on-resistance captures the degradation process in such a way that it could be used for the development of prognostics algorithms (data-driven or physics-based).

  19. Physical properties of three maxillofacial materials as a function of accelerated aging.

    PubMed

    Dootz, E R; Koran, A; Craig, R G

    1994-04-01

    This study compares the tensile strength, elongation, Shore-A hardness, and tear resistance of three silicone maxillofacial materials before and after aging to provide comparative data for evaluation of new or experimental elastomers. The materials evaluated were MDX-4-4210, Factor II (A-2186), and Cosmesil. Tests were conducted 24 hours after specimen preparation and were repeated after aging for 900 hours in a Weather-Ometer device. Five samples were made for each material under all test conditions. After testing, mean values were calculated for all materials under all test conditions and were compared by two-way analysis of variance and Tukey intervals at p < or = 0.05. PMID:8196002

  20. Inflammatory insult during pregnancy accelerates age-related behavioral and neurobiochemical changes in CD-1 mice.

    PubMed

    Li, Xue-Yan; Wang, Fang; Chen, Gui-Hai; Li, Xue-Wei; Yang, Qi-Gang; Cao, Lei; Yan, Wen-Wen

    2016-06-01

    Data shows that inflammation during pregnancy significantly exerts a long-term influence on offspring, such as increasing the risk of adult cognition decline in animals. However, it is unclear whether gestational inflammation affects the neurobehavioral and neurobiochemical outcomes in the mother-self during aging. In this study, pregnant CD-1 mice intraperitoneally received lipopolysaccharide (LPS) in two doses (25 and 50 g/kg, respectively) or normal saline daily during gestational days 15-17. At the age of 15 months, a battery of behavioral tasks was employed to evaluate their species-typical behaviors, sensorimotor ability, anxiety levels, and spatial learning and memory abilities. An immunohistochemical method was utilized preliminarily to detect neurobiochemical indicators consisting of amyloid-β, phosphorylated tau, presynaptic proteins synaptotagmin-1 and syntaxin-1, glial fibrillary acidic protein (GFAP), and histone-4 acetylation on the K8 site (H4K8ac). The behavioral results showed that LPS exposure during pregnancy exacerbated a decline in 15-month-old CD-1 mice's abilities to nest, their sensorimotor and spatial learning and memory capabilities, and increased their anxiety levels. The neurobiochemical results indicated that gestational LPS exposure also intensified age-related hippocampal changes, including increased amyloid-β42, phosphorylated tau, synaptotagmin-1 and GFAP, and decreased syntaxin-1 and H4K8ac. Our results suggested that the inflammatory insult during pregnancy could be an important risk factor for the development of Alzheimer's disease, and the H4K8 acetylation might play an important role in the underlying mechanism. This study offers a perspective for improving strategies that support healthy development and successful aging. PMID:27194408

  1. Use of organic solderability preservatives on solderability retention of copper after accelerated aging

    SciTech Connect

    Hernandez, C.L.; Sorensen, N.R.; Lucero, S.J.

    1997-02-01

    Organic solderability preservatives (OSP`s) have been used by the electronics industry for some time to maintain the solderability of circuit boards and components. Since solderability affects both manufacturing efficiency and product reliability, there is significant interest in maintaining good solder wettability. There is often a considerable time interval between the initial fabrication of a circuit board or component and its use at the assembly level. Parts are often stored under a variety of conditions, in many cases not well controlled. Solder wettability can deteriorate during storage, especially in harsh environments. This paper describes the ongoing efforts at Sandia National Laboratories to quantify solder watability on bare and aged copper surfaces. Benzotriazole and imidazole were applied to electronic grade copper to retard aging effects on solderability. The coupons were introduced into Sandia`s Facility for Atmospheric Corrosion Testing (FACT) to simulate aging in a typical indoor industrial environment. H{sub 2}S, NO{sub 2} and Cl{sub 2} mixed gas was introduced into the test cell and maintained at 35{degrees}C and 70% relative humidity for test periods of one day to two weeks. The OSP`s generally performed better than bare Cu, although solderability diminished with increasing exposure times.

  2. Energy excess is the main cause of accelerated aging of mammals

    PubMed Central

    Biliński, Tomasz; Paszkiewicz, Tadeusz; Zadrag-Tecza, Renata

    2015-01-01

    The analysis of cases of unusually high longevity of naked mole rats and an alternative explanation of the phenomenon of calorie restriction effects in monkeys allowed for postulating that any factor preventing an excess of energy consumed, leads to increased lifespan, both in evolutionary and an individual lifetime scale. It is postulated that in mammals the most destructive processes resulting in shortening of life are not restricted to the phenomena explained by the hyperfunction theory of Mikhail Blagosklonny. Hyperfunction, understood as unnecessary or even adverse syntheses of cell components, can be to some extent prevented by lowered intake of nutrients when body growth ceases. We postulate also the contribution of glyco/lipotoxicity to aging, resulting from the excess of energy. Besides two other factors seem to participate in aging. One of them is lack of telomerase activity in some somatic cells. The second factor concerns epigenetic phenomena. Excessive activity of epigenetic maintenance system probably turns off some crucial organismal functions. Another epigenetic factor playing important role could be the micro RNA system deciding on expression of numerous age-related diseases. However, low extrinsic mortality from predation is a conditio sine qua non of the expression of all longevity phenotypes in animals. Among all long-lived animals, naked mole rats are unique in the elimination of neoplasia, which is accompanied by delayed functional symptoms of senescence. The question whether simultaneous disappearance of neoplasia and delayed senescence is accidental or not remains open. PMID:26079722

  3. Energy excess is the main cause of accelerated aging of mammals.

    PubMed

    Biliński, Tomasz; Paszkiewicz, Tadeusz; Zadrag-Tecza, Renata

    2015-05-30

    The analysis of cases of unusually high longevity of naked mole rats and an alternative explanation of the phenomenon of calorie restriction effects in monkeys allowed for postulating that any factor preventing an excess of energy consumed, leads to increased lifespan, both in evolutionary and an individual lifetime scale. It is postulated that in mammals the most destructive processes resulting in shortening of life are not restricted to the phenomena explained by the hyperfunction theory of Mikhail Blagosklonny. Hyperfunction, understood as unnecessary or even adverse syntheses of cell components, can be to some extent prevented by lowered intake of nutrients when body growth ceases. We postulate also the contribution of glyco/lipotoxicity to aging, resulting from the excess of energy. Besides two other factors seem to participate in aging. One of them is lack of telomerase activity in some somatic cells. The second factor concerns epigenetic phenomena. Excessive activity of epigenetic maintenance system probably turns off some crucial organismal functions. Another epigenetic factor playing important role could be the micro RNA system deciding on expression of numerous age-related diseases. However, low extrinsic mortality from predation is a conditio sine qua non of the expression of all longevity phenotypes in animals. Among all long-lived animals, naked mole rats are unique in the elimination of neoplasia, which is accompanied by delayed functional symptoms of senescence. The question whether simultaneous disappearance of neoplasia and delayed senescence is accidental or not remains open. PMID:26079722

  4. Lattice Changes in Shape Memory CuZnAl Alloys on Aging at Room Temperature

    NASA Astrophysics Data System (ADS)

    Çakmak, Seyfettýn; Artunç, Ekrem; Kayali, Nejdet; Adigüzel, Osman

    2001-09-01

    The aging behavior of CuZnAl martensites (Cu-21.62 wt.% Zn-5.68 wt.% Al and Cu-24.98 wt.% Zn-4.43 wt.% Al) at about 297 K was studied by analyzing diffraction line profiles obtained by X-ray diffractometry. For the alloys, the change of the lattice parameters and the tetragonality associated with the aging time at room temperature were investigated. The habit planes versus the aging time at room temperature were calculated using the De Vos-Aernoundt-Delaey model, based on the crystallographic theory of Wechsler-Lieberman-Read(WLR), and from the DO3→ 18R martensite transformation theory.

  5. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    PubMed

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo. PMID:23871543

  6. Influence of temperature on carbon and nitrogen dynamics during in situ aeration of aged waste in simulated landfill bioreactors.

    PubMed

    Tong, Huanhuan; Yin, Ke; Giannis, Apostolos; Ge, Liya; Wang, Jing-Yuan

    2015-09-01

    The effect of temperature on carbon and nitrogen compounds during in situ aeration of aged waste was investigated in lab-scale simulated landfill bioreactors at 35, 45 and 55 °C, respectively. The bioreactor operated at 55 °C presented the highest carbon mineralization rate in the initial stage, suggesting accelerated biodegradation rates under thermophilic conditions. The nitrogen speciation study indicated that organic nitrogen was the dominant species of total N in aerobic bioreactors due to ammonia removal. Leachate organic nitrogen was further fractionated to elucidate the fate of individual constituent. Detailed investigation revealed the higher bioconversion rates of N-humic and N-fulvic compounds compared to hydrophilic compounds in thermophilic conditions. At the end, waste material in 55 °C bioreactor was richer in highly matured humic substances (HS) verifying the high bioconversion rates. PMID:26026292

  7. The ASP at 125: Advancing Science Literacy in an Age of Acceleration

    NASA Astrophysics Data System (ADS)

    Manning, Jim

    2014-01-01

    On February 7, 2014, the Astronomical Society of the Pacific will celebrate its 125th birthday and a century and a quarter of advancing astronomy and astronomy/science education during a period of revolutionary change in our understanding of the universe. In keeping with both the retrospective and forward-looking nature of such milestones, the presenter will: 1) share highlights of the Society’s work in supporting the communication of astronomy research through its professional publications, and creating innovative astronomy education and public outreach projects and networks to advance student, teacher and public understanding of astronomy and science; 2) report on current NASA- and NSF-funded efforts and on plans going forward; 3) and solicit input from the assembled community on how the ASP can best serve its various constituencies and the cause of science education, communication and literacy at a time when both the universe and life on Earth are accelerating at unprecedented rates. Birthdays are for celebrating; come celebrate with us as we rededicate ourselves to a mission of advancing science literacy through astronomy.

  8. Evidence for a little ice age and recent warming from a borehole temperature data inversion procedure

    SciTech Connect

    Fivez, J.; Thoen, J.

    2004-11-15

    In this article, we apply our analytical theory, published earlier in this journal, to obtain information on the earth surface temperature history from some borehole temperature data. Compared to the results of the five different methods applied to the same temperature data, our method seems to be easier, assumption-free, and yields internally consistent results. The results suggest a cooling a few centuries ago, followed by a continuing warming up to these days, in agreement with a little ice age scenario.

  9. Accelerated test techniques for micro-circuits: Evaluation of high temperature (473 k - 573 K) accelerated life test techniques as effective microcircuit screening methods

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The application of high temperature accelerated test techniques was shown to be an effective method of microcircuit defect screening. Comprehensive microcircuit evaluations and a series of high temperature (473 K to 573 K) life tests demonstrated that a freak or early failure population of surface contaminated devices could be completely screened in thirty two hours of test at an ambient temperature of 523 K. Equivalent screening at 398 K, as prescribed by current Military and NASA specifications, would have required in excess of 1,500 hours of test. All testing was accomplished with a Texas Instruments' 54L10, low power triple-3 input NAND gate manufactured with a titanium- tungsten (Ti-W), Gold (Au) metallization system. A number of design and/or manufacturing anomalies were also noted with the Ti-W, Au metallization system. Further study of the exact nature and cause(s) of these anomalies is recommended prior to the use of microcircuits with Ti-W, Au metallization in long life/high reliability applications. Photomicrographs of tested circuits are included.

  10. Mevastatin accelerates loss of synaptic proteins and neurite degeneration in aging cortical neurons in a heme-independent manner.

    PubMed

    Kannan, Madhuvanthi; Steinert, Joern R; Forsythe, Ian D; Smith, Andrew G; Chernova, Tatyana

    2010-09-01

    The therapeutic use of statins in reducing cholesterol requires careful assessment of potential neuroprotective and/or neurotoxic mechanisms. Chronic treatment with mevastatin (MV) exerts effects on cortical neuron morphology, protein expression and synaptic function in primary culture. MV impaired expression of synaptic proteins, reduced N-methyl-d-aspartate receptor (NMDAR) currents and accelerated neurodegeneration associated with aging. The down-regulating effect of MV on neuronal protein expression was additive with aging-associated decline in culture. Induction of Heme oxygenase-1 (HMOX1) by MV was superimposed on age-related up-regulation. Comparison of MV-treated and heme-deficient neurons showed that inhibition of heme synthesis (by succinyl acetone) had similar damaging effect on neurite integrity and MNDAR expression and function but not on expression of the receptor for neuropeptide Y1 (NPY1R). Replacement of heme in heme-deficient cultures restored protein expression but had no effect in those cultures co-treated with MV. Despite the dramatic induction of HMOX1, intracellular heme remained sufficient in MV-treated cultures, consistent with a heme-independent mechanism of MV-induced neurotoxicity and this was confirmed by analysing neurons with lentiviral over-expression of HMOX1. We conclude that MV exerts a neurotoxic effect in cultured neurons in a heme-independent manner. PMID:18951667

  11. Signature of recent ice flow acceleration in the radar attenuation and temperature structure of Thwaites Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Schroeder, Dustin; Seroussi, Helene; Chu, Winnie; Young, Duncan

    2016-04-01

    Englacial temperature structure exerts significant control on the rheology and flow of glaciers and ice sheets. It is however logistically prohibitive to directly measure at the glacier-catchment scale. As a result, numerical ice sheet models often make broad assumptions about englacial temperatures based on contemporary ice surface velocities. However, this assumption might break down in regions - like the Amundsen Sea Embayment - that have experienced recent acceleration since temperature and rheology do not respond instantaneously to changes in ice flow regime. To address this challenge, we present a new technique for estimating englacial attenuation rates using bed echoes from radar sounding data. We apply this technique to an airborne survey of Thwaites Glacier and compare the results to temperature and attenuation structures modeled using the numerical Ice Sheet System Model (ISSM) for three surface velocity scenarios. These include contemporary surface velocities, surface velocities from the early 1970s, and ice-sheet balance velocities. We find that the observed attenuation structure is much closer to those modeled with pre-acceleration surface velocities. This suggests that ice sheet models initialized with contemporary surface velocities are likely overestimating the temperature and underestimating the rheology of the fast-flowing trunk and grounding zone of Thwaites Glacier.

  12. Accelerated age-related olfactory decline among type 1 Usher patients

    PubMed Central

    Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D.

    2016-01-01

    Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin’ Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome. PMID:27329700

  13. Accelerated age-related olfactory decline among type 1 Usher patients.

    PubMed

    Ribeiro, João Carlos; Oliveiros, Bárbara; Pereira, Paulo; António, Natália; Hummel, Thomas; Paiva, António; Silva, Eduardo D

    2016-01-01

    Usher Syndrome (USH) is a rare disease with hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. A phenotype heterogeneity is reported. Recent evidence indicates that USH is likely to belong to an emerging class of sensory ciliopathies. Olfaction has recently been implicated in ciliopathies, but the scarce literature about olfaction in USH show conflicting results. We aim to evaluate olfactory impairment as a possible clinical manifestation of USH. Prospective clinical study that included 65 patients with USH and 65 normal age-gender-smoking-habits pair matched subjects. A cross culturally validated version of the Sniffin' Sticks olfaction test was used. Young patients with USH have significantly better olfactory scores than healthy controls. We observe that USH type 1 have a faster ageing olfactory decrease than what happens in healthy subjects, leading to significantly lower olfactory scores in older USH1 patients. Moreover, USH type 1 patients showed significantly higher olfactory scores than USH type 2, what can help distinguishing them. Olfaction represents an attractive tool for USH type classification and pre diagnostic screening due to the low cost and non-invasive nature of the testing. Olfactory dysfunction should be considered among the spectrum of clinical manifestations of Usher syndrome. PMID:27329700

  14. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. III. Kraton block copolymer binder and plasticizers

    SciTech Connect

    Caley, L.E.; Hoffman, D.M.

    1981-01-01

    The dynamic mechanical properties and molecular weight distribution of two experimental polymer bonded explosives, X-0287 and X-0298, maintained at 23, 60, and 74/sup 0/C for 3 years were examined. X-0287 is 97% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane explosive, 1.8% Kraton G-1650, and 1.2% B/sup 2/ was 170. X-0298 is 97.4% explosive, 1.4% Kraton G-1650, and 1.2% Cenco Hi-vac oil. The relaxation associated with the Kraton rubber block glass transition is observed in both X-0287 and X-0298. In the unaged X-0298 it occurs at -59/sup 0/C and in the aged explosive at 50/sup 0/C. This is caused by migration of the oil plasticizer out of the explosive. In X-0287 the Kraton rubber block T/sub g/ is weak and broad due to the presence of the wax plasticizer. X-0287 has a second broad relaxation associated with the melting of the wax from 10 to 65/sup 0/C. The molecular weight of the Kraton binder decreased with increasing accelerated aging temperature. The oil plasticizer had no stabilizing effect, but below its melting point the wax reduced Kraton chain scission considerably. The simple random chain scission model predicted a 20.5 year use-life for X-0298, but X-0287 was stabilized against degradation below the wax melting point.

  15. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries.

    PubMed

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-01-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries. PMID:25907411

  16. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-04-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries.

  17. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries

    PubMed Central

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-01-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries. PMID:25907411

  18. Does chronic glycolysis accelerate aging? Could this explain how dietary restriction works?

    PubMed

    Hipkiss, Alan R

    2006-05-01

    The mechanisms by which dietary restriction (DR) suppresses aging are not understood. Suppression of glycolysis by DR could contribute to controlling senescence. Many glycolytic intermediates can glycate proteins and other macromolecules. Methyglyoxal (MG), formed from dihydroxyacetone- and glyceraldehyde-3-phosphates, rapidly glycates proteins, damages mitochondria, and induces a prooxidant state to create a senescent-like condition. Ad libitum-fed and DR animals differ in mitochondrial activity and glycolytic flux rates. Persistent glycolysis in the unrestricted condition would increase the intracellular load of glycating agents (e.g., MG) and increase ROS generation by inactive mitochondria. Occasional glycolysis during DR would decrease MG and reactive oxygen species (ROS) production and could be hormetic, inducing synthesis of glyoxalase-1 and anti-glycating agents (carnosine and polyamines). PMID:16804012

  19. Low-Temperature Aging and Phase Stability of U6Nb

    SciTech Connect

    Hsiung, L M; Briant, C L; Chasse, K R

    2003-11-21

    Aging behavior and phase stability of a water-quenched U-6wt%Nb (U-14at%Nb) alloy artificially aged at 200 C and naturally aged at ambient temperature for 15 years have been investigated using Vickers hardness test, X-ray diffraction analysis, and transmission electron microscopy techniques. Age hardening/softening phenomenon is observed from the artificially aged samples according to microhardness measurement. The age hardening can be rationalized by the occurrence of spinodal decomposition, or fine scale of Nb segregation, which results in the formation of a nano-scale modulated structure within the artificially aged samples. Coarsening of the modulated structure after prolonged aging leads to the age softening. The occurrence of chemical ordering (disorder-order transformation) is found in the naturally aged sample based upon the observations of antiphase domain boundaries (APB's) and superlattice diffraction patterns. A possible superlattice structure is accordingly proposed for the chemically ordered phase observed in the naturally aged alloy sample.

  20. Growth of the Tuolumne Batholith: Zircon Crystallization Temperature, Age and Trace Element Data

    NASA Astrophysics Data System (ADS)

    Matzel, J.; Miller, J.; Mundil, R.; Wooden, J.; Mazdab, F.; Burgess, S.; Paterson, S.; Memeti, V.

    2007-12-01

    Deciphering the intrusive record of magma systems is essential to understanding the links between surface volcanism and the long-term storage and evolution of magma reservoirs. Here we use age and geochemical data from zircon crystals to track mixing between different parts of the Tuolumne Batholith (Sierra Nevada, California). U-Pb zircon TIMS analyses from all locations examined in the batholith exhibit appreciable dispersion of single crystal or crystal fragment ages (several 105 yrs to 1x106 yrs) and, in addition, display distinctly older ages that likely represent zircon crystals entrained from older parts of the Tuolumne magmatic system. Since techniques aimed at eliminating Pb loss (and thus age scatter) have been employed prior to analysis, we interpret the age dispersion to reflect real variation in the timing of zircon crystallization. Two samples that show a high degree of age dispersion (> 1 Myr) were selected for trace element analysis and Ti- in zircon geothermometry by SHRIMP-RG. Crystallization temperatures ranged from 780-640°C and averaged 695°C (aTiO2 0.75 based on presence of titanite). No clear correlation exists between crystal age and temperature, and in most cases, the temperatures from crystal centers are within uncertainty of the temperatures at the rims. Trace element ratios vary systematically with temperature (e.g. decreasing Th/U ratio with decreasing T) and are attributed to fractionation, although neither sample represents strongly fractionated melt. Low total Zr indicates that the magmas were initially undersaturated in zircon when emplaced, which is also consistent with late zircon crystallization. Combined evidence from TIMS age analyses, geothermometry and trace element data suggests that entrainment of zircon from older parts of the magmatic system occurred late in the history of the batholith, and recycling of zircon crystals during successive magmatic injections is compatible with progressive growth of a large, long

  1. Effect of low-temperature aging on the mechanical behavior of ground Y-TZP.

    PubMed

    Pereira, Gkr; Amaral, M; Cesar, P F; Bottino, M C; Kleverlaan, C J; Valandro, L F

    2015-05-01

    This study evaluated the effects of low-temperature aging on the surface topography, phase transformation, biaxial flexural strength, and structural reliability of a ground Y-TZP ceramic. Disc-shaped specimens were manufactured and divided according to two factors: "grinding" - without grinding (as-sintered, Ctrl), grinding with an extra-fine diamond bur (25 µm Xfine) and coarse diamond bur (181 µm Coarse); and "low-temperature-aging" (absence or presence). Grinding was performed using a contra-angle handpiece under water-cooling. Aging was performed in an autoclave at 134 °C, under 2 bar, over a period of 20 h. Surface topography analysis showed an increase in roughness based on grit-size (Coarse>Xfine>Ctrl), and aging promoted different effects on roughness (Ctrl AgCoarse). Grinding and aging promoted an increase in the amount of m-phase, although different susceptibilities to degradation were observed. Weibull analysis showed an increase in characteristic strength after grinding (Coarse=Xfine>Ctrl); however, distinct effects were observed for aging (CtrlCoarse Ag). Weibull moduli were statistically similar. Grinding promoted an increase in characteristic strength as a result of an increase in m-phase content; when the Y-TZP surface was ground by coarse diamond burs followed by aging, characteristic strength was reduced, meaning the low-temperature degradation appeared to intensify for rougher Y-TZP surfaces. PMID:25746851

  2. Possible Origin of Improved High Temperature Performance of Hydrothermally Aged Cu/Beta Zeolite Catalysts

    SciTech Connect

    Peden, Charles HF; Kwak, Ja Hun; Burton, Sarah D.; Tonkyn, Russell G.; Kim, Do Heui; Lee, Jong H.; Jen, H. W.; Cavattaio, Giovanni; Cheng, Yisun; Lambert, Christine

    2012-04-30

    The hydrothermal stability of Cu/beta NH3 SCR catalysts are explored here. In particular, this paper focuses on the interesting ability of this catalyst to maintain and even enhance high-temperature performance for the "standard" SCR reaction after modest (900 °C, 2 hours) hydrothermal aging. Characterization of the fresh and aged catalysts was performed with an aim to identify possible catalytic phases responsible for the enhanced high temperature performance. XRD, TEM and 27Al NMR all showed that the hydrothermally aging conditions used here resulted in almost complete loss of the beta zeolite structure between 1 and 2 hours aging. While the 27Al NMR spectra of 2 and 10 hour hydrothermally-aged catalysts showed significant loss of a peak associated with tetrahedrally-coordinated Al species, no new spectral features were evident. Two model catalysts, suggested by these characterization data as possible mimics of the catalytic phase formed during hydrothermal aging of Cu/beta, were prepared and tested for their performance in the "standard" SCR and NH3 oxidation reactions. The similarity in their reactivity compared to the 2 hour hydrothermally-aged Cu/beta catalyst suggests possible routes for preparing multi-component catalysts that may have wider temperature windows for optimum performance than those provided by current Cu/zeolite catalysts.

  3. Temperature calibration of amino acid racemization: age implications for the Yuha skeleton

    USGS Publications Warehouse

    Bischoff, J.L.; Childers, W.M.

    1979-01-01

    D/L of aspartic acid ranged from 0.52 to 0.56 for femur samples of the Yuha skeleton. Subsurface temperature measurements made at the burial site indicate average annual temperature is 18??C and diagenetic temperature is 21.6??C. These data and a relation derived for the dependence of the aspartic acid rate constant on diagenetic temperature indicate an age of 23,600. The result is consistent with 14C and 230Th dating of calcrete found coating the bones. ?? 1979.

  4. [Immunity and health: the accelerated aging of immune system in veterans of extra risk divisions].

    PubMed

    Puchkova, E I; Alishev, N V; Drabkin, B A; Shubik, V M

    2011-01-01

    This article presents the data about state of health and immunity in veterans of extra risk divisions. The increased morbidity and immunity infringement in the remote terms after nuclear tests, and also while liquidation of consequences of radiating failures on nuclear submarines are shown. Changes of humoral factors of nonspecific protection, concentration of immunoglobulinums, in blood whey, a sensitization of lymphocytes to respiratory viruses, humoral and cellular autoimmune shifts are registered. Some of the revealed changes (complement, lysozyme, concentration of immunoglobulinums) are a consequence of advanced age and accompanying diseases in the people surveyed, and others (autoimmune shifts, a sensitization to respiratory viruses) can be connected with carrying out of tests of the nuclear weapon. Some of immunological changes are apparently a consequence of joined actions of radiating and not radiating factors. Among the last ones stress plays the essential role. For the characteristic of a state of health in 20-40 years after carrying out nuclear tests and possible radiating influence the estimation of autoimmune changes has a great value. The important role of such changes in morbidity of veterans of extra risk divisions is shown. PMID:22550872

  5. Color and opacity of composites protected with surface sealants and submitted to artificial accelerated aging

    PubMed Central

    Aguilar, Fabiano Gamero; Roberti Garcia, Lucas da Fonseca; Cruvinel, Diogo Rodrigues; Sousa, Ana Beatriz Silva; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2012-01-01

    Objectives: To evaluate the color similarity, stability and opacity of composites (TPH, Charisma, and Concept, shade A2) protected with surface sealants (Fortify Plus and Biscover) and cyanoacrylate (Super Bonder). Methods: Forty specimens of each composite were made and separated into 4 groups (n=10) according to the surface protection: GI - without sealant; GII - cyanoacrylate; GIII - Fortify Plus; GIV - Biscover. Color and opacity readings were taken before and after Artificial Acelerated Aging (AAA) and the values obtained for color stability were submitted to statistical analysis by 2-way ANOVA and Bonferroni’s test (P<.05). The values acquired for color similarity were submitted to 1-way ANOVA and Tukey’s test (P<.05). The specimen sufaces were compared before and after AAA using Scanning Electronic Microscopy (SEM). Results: Studied composites did not present the same values for the coordinates L*, a* and b * before AAA, indicating that there was no color similarity among them. All composites presented color alteration after AAA with clinically unacceptable values. Protected groups presented lower opacity variation after AAA, in comparison with the control goup. SEM evaluation demonstrated that AAA increased the surface irregularities in all of the studied groups. Conclusion: Surface sealants were not effective in maintaining composite color, but were able to maintain opacity. PMID:22229004

  6. Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs.

    PubMed

    Nasto, Luigi A; Wang, Dong; Robinson, Andria R; Clauson, Cheryl L; Ngo, Kevin; Dong, Qing; Roughley, Peter; Epperly, Michael; Huq, Saiful M; Pola, Enrico; Sowa, Gwendolyn; Robbins, Paul D; Kang, James; Niedernhofer, Laura J; Vo, Nam V

    2013-01-01

    Intervertebral disc degeneration (IDD) is the leading cause of debilitating spinal disorders such as chronic lower back pain. Aging is the greatest risk factor for IDD. Previously, we demonstrated IDD in a murine model of a progeroid syndrome caused by reduced expression of a key DNA repair enzyme. This led us to hypothesize that DNA damage promotes IDD. To test our hypothesis, we chronically exposed adult wild-type (Wt) and DNA repair-deficient Ercc1(-/Δ) mice to the cancer therapeutic agent mechlorethamine (MEC) or ionization radiation (IR) to induce DNA damage and measured the impact on disc structure. Proteoglycan, a major structural matrix constituent of the disc, was reduced 3-5× in the discs of MEC- and IR-exposed animals compared to untreated controls. Expression of the protease ADAMTS4 and aggrecan proteolytic fragments was significantly increased. Additionally, new PG synthesis was reduced 2-3× in MEC- and IR-treated discs compared to untreated controls. Both cellular senescence and apoptosis were increased in discs of treated animals. The effects were more severe in the DNA repair-deficient Ercc1(-/Δ) mice than in Wt littermates. Local irradiation of the vertebra in Wt mice elicited a similar reduction in PG. These data demonstrate that genotoxic stress drives degenerative changes associated with IDD. PMID:23262094

  7. Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs

    PubMed Central

    Nasto, Luigi A.; Wang, Dong; Robinson, Andria R.; Clauson, Cheryl L.; Ngo, Kevin; Dong, Qing; Roughley, Peter; Epperly, Michael; Huq, Saiful M.; Pola, Enrico; Sowa, Gwendolyn; Robbins, Paul D.; Kang, James; Niedernhofer, Laura J.; Vo, Nam V.

    2013-01-01

    Intervertebral disc degeneration (IDD) is the leading cause of debilitating spinal disorders such as chronic lower back pain. Aging is the greatest risk factor for IDD. Previously, we demonstrated IDD in a murine model of a progeroid syndrome caused by reduced expression of a key DNA repair enzyme. This led us to hypothesize that DNA damage promotes IDD. To test our hypothesis, we chronically exposed adult wild-type (Wt) and DNA repair-deficient Ercc1−/Δ mice to the cancer therapeutic agent mechlorethamine (MEC) or ionization radiation (IR) to induce DNA damage and measured the impact on disc structure. Proteoglycan, a major structural matrix constituent of the disc, was reduced 3-5x in the discs of MEC- and IR-exposed animals compared to untreated controls. Expression of the protease ADAMTS4 and aggrecan proteolytic fragments were significantly increased. Additionally, new PG synthesis was reduced 2-3x in MEC- and IR-treated discs compared to untreated controls. Both cellular senescence and apoptosis were increased in discs of treated animals. The effects were more severe in the DNA repair-deficient Ercc1−/Δ mice than in Wt littermates. Local irradiation of the vertebra in Wt mice elicited a similar reduction in PG. These data demonstrate that genotoxic stress drives degenerative changes associated with IDD. PMID:23262094

  8. Linseed oil presents different patterns of oxidation in real-time and accelerated aging assays.

    PubMed

    Douny, Caroline; Razanakolona, Rina; Ribonnet, Laurence; Milet, Jérôme; Baeten, Vincent; Rogez, Hervé; Scippo, Marie-Louise; Larondelle, Yvan

    2016-10-01

    This study aimed at verifying if the hypothesis that one day at 60°C is equivalent to one month at 20°C could be confirmed during linseed oil aging for 6months at 20°C and 6days at 60°C using the "Schaal oven stability test". Tests were conducted with linseed oil supplemented or not with myricetin or butyl-hydroxytoluene as antioxidants. Oxidation was evaluated with the peroxide and p-anisidine values, as well as the content in conjugated dienes and aldehydes. All four indicators of oxidation showed very different kinetic behaviors at 20 and 60°C. The hypothesis is thus not verified for linseed oil, supplemented or not with antioxidant. In the control oil, the conjugated dienes and the peroxide value observed were respectively of 41.8±0.8 Absorbance Unit (AU)/g oil and 254.3±5.8meq.O2/kg oil after 6months at 20°C. These values were of 18.2±1.3AU/g oil and 65.2±20.3meq.O2/kg after 6days at 60°C. PMID:27132830

  9. Constitutive Modeling and Testing of Polymer Matrix Composites Incorporating Physical Aging at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Veazie, David R.

    1998-01-01

    Advanced polymer matrix composites (PMC's) are desirable for structural materials in diverse applications such as aircraft, civil infrastructure and biomedical implants because of their improved strength-to-weight and stiffness-to-weight ratios. For example, the next generation military and commercial aircraft requires applications for high strength, low weight structural components subjected to elevated temperatures. A possible disadvantage of polymer-based composites is that the physical and mechanical properties of the matrix often change significantly over time due to the exposure of elevated temperatures and environmental factors. For design, long term exposure (i.e. aging) of PMC's must be accounted for through constitutive models in order to accurately assess the effects of aging on performance, crack initiation and remaining life. One particular aspect of this aging process, physical aging, is considered in this research.

  10. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage.

    PubMed

    Ames, Bruce N

    2006-11-21

    Inadequate dietary intakes of vitamins and minerals are widespread, most likely due to excessive consumption of energy-rich, micronutrient-poor, refined food. Inadequate intakes may result in chronic metabolic disruption, including mitochondrial decay. Deficiencies in many micronutrients cause DNA damage, such as chromosome breaks, in cultured human cells or in vivo. Some of these deficiencies also cause mitochondrial decay with oxidant leakage and cellular aging and are associated with late onset diseases such as cancer. I propose DNA damage and late onset disease are consequences of a triage allocation response to micronutrient scarcity. Episodic shortages of micronutrients were common during evolution. Natural selection favors short-term survival at the expense of long-term health. I hypothesize that short-term survival was achieved by allocating scarce micronutrients by triage, in part through an adjustment of the binding affinity of proteins for required micronutrients. If this hypothesis is correct, micronutrient deficiencies that trigger the triage response would accelerate cancer, aging, and neural decay but would leave critical metabolic functions, such as ATP production, intact. Evidence that micronutrient malnutrition increases late onset diseases, such as cancer, is discussed. A multivitamin-mineral supplement is one low-cost way to ensure intake of the Recommended Dietary Allowance of micronutrients throughout life. PMID:17101959

  11. Prognostics of Power Mosfets Under Thermal Stress Accelerated Aging Using Data-Driven and Model-Based Methodologies

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Saxena, Abhinav; Saha, Sankalita; Goebel, Kai F.

    2011-01-01

    An approach for predicting remaining useful life of power MOSFETs (metal oxide field effect transistor) devices has been developed. Power MOSFETs are semiconductor switching devices that are instrumental in electronics equipment such as those used in operation and control of modern aircraft and spacecraft. The MOSFETs examined here were aged under thermal overstress in a controlled experiment and continuous performance degradation data were collected from the accelerated aging experiment. Dieattach degradation was determined to be the primary failure mode. The collected run-to-failure data were analyzed and it was revealed that ON-state resistance increased as die-attach degraded under high thermal stresses. Results from finite element simulation analysis support the observations from the experimental data. Data-driven and model based prognostics algorithms were investigated where ON-state resistance was used as the primary precursor of failure feature. A Gaussian process regression algorithm was explored as an example for a data-driven technique and an extended Kalman filter and a particle filter were used as examples for model-based techniques. Both methods were able to provide valid results. Prognostic performance metrics were employed to evaluate and compare the algorithms.

  12. The ac and dc performance of polymeric insulating materials under accelerated aging in a fog chamber

    SciTech Connect

    Gorur, R.S. ); Cherney, E.A. ); Hackam, R. )

    1988-10-01

    The paper presents the results of the dc performance of polymeric insulating materials in a fog chamber. The materials evaluated in fog produced from low (250 ..mu..S/cm) and high (1000 ..mu..S/cm) conductivity water include cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of either alumina trihydrate (ATH) or silica fillers, or both. Comparison is made of material performance obtained with ac which was reported in an earlier study. In both low and high conductivity fog, the time to failure with ac and +dc was very similar, but a reduction by a factor of about four was observed in the time to failure with -dc. For both ac and dc, silicone rubber performed better than EPDM samples in low conductivity fog, while the order of performance was reversed in high conductivity fog. A theoretical model to determine the effect of dry band discharges on material is presented. Good agreement of the predicted behavior of materials with the experimental findings is shown.

  13. Spent fuel temperature and age determination from the analysis of uranium and plutonium isotopics

    SciTech Connect

    Scott, Mark R; Eccleston, George W; Bedell, Jeffrey J; Lockard, Chanelle M

    2009-01-01

    The capability to determine the age (time since irradiation) of spent fuel can be useful for verification and safeguards. While the age of spent fuel can be determined based on measurements of short-lived fission products, these measurements are not routinely done nor generally reported. As an alternative, age can also be determined if the uranium (U) and plutonium (Pu) isotopic values are available. Uranium isotopics are not strongly affected by fuel temperature, and bumup is determined from the {sup 235}U and {sup 236}U isotopic values. Age is calculated after estimating the {sup 241}Pu at the end of irradiation while accounting for the fuel temperature, which is determined from {sup 239}Pu or {sup 240}Pu. Burnup and age determinations are calibrated to reactor models that provide uranium and plutonium isotopics over the range of fuel irradiation. The reactor model must contain sufficient fidelity on details of the reactor type, fuel burnup, irradiation history, initial fuel enrichment and fuel temperature to obtain accurate isotopic calculations. If the latter four are unknown, they can be derived from the uranium and plutonium isotopics. Fuel temperature has a significant affect on the production of plutonium isotopics; therefore, one group cross section reactor models, such as ORIGEN, cannot be used for these calculations. Multi-group cross section set codes, such as Oak Ridge National Laboratory's TRITON code, must be used.

  14. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    SciTech Connect

    Klein, Steven Karl; Determan, John C.

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  15. The effect of aging temperature on structure characteristics of ordered mesoporous silicas

    NASA Astrophysics Data System (ADS)

    Deryło-Marczewska, A.; Marczewski, A. W.; Skrzypek, I.; Pikus, S.; Kozak, M.

    2005-10-01

    A series of mesoporous silica materials were synthesized by applying Pluronic type polymers as pore creating agents. In order to differentiate the characteristics of porous structure of the obtained sorbents the temperature of aging process was changed in the synthesis. The parameters characterizing the pore structure were estimated from nitrogen adsorption/desorption isotherms. The changes of pore arrangement of the obtained materials being a result of different synthesis conditions were investigated by using a small angle X-ray scattering method. Correlations between the values of structure parameters and aging temperature were found.

  16. Telomeric attrition with age and temperature in Eastern mosquitofish ( Gambusia holbrooki)

    NASA Astrophysics Data System (ADS)

    Rollings, Nicky; Miller, Emily; Olsson, Mats

    2014-03-01

    Telomeric attrition has repeatedly been found to correlate with the ageing of organisms; however, recent research is increasingly showing that the determinants of attrition dynamics are not well understood. This study examined the relative telomere lengths in Eastern mosquitofish, Gambusia holbrooki, kept at different temperatures and at different ages. Newly born fry were randomly selected for one of four treatment groups: 20, 30, 20-30, and 30-20 °C, where the third and fourth treatment groups were gradually changed from their starting temperature to their final temperature between days 10 and 14. Telomere length was measured, and it was found that length decreased with age and that fish exposed to the 20 °C treatment had significantly shorter telomeres than those that received the 30-20 °C treatment. Telomeric attrition with age agrees with results previously found in studies of telomeres; however, the variation in attrition with temperature was not simply predictable and may be the synergistic effects of temperature and some other factor.

  17. Is age-related decline in lean mass and physical function accelerated by Obstructive Lung Disease or smoking?

    PubMed Central

    van den Borst, Bram; Koster, Annemarie; Yu, Binbing; Gosker, Harry R.; Meibohm, Bernd; Bauer, Douglas C.; Kritchevsky, Stephen B.; Liu, Yongmei; Newman, Anne B.; Harris, Tamara B.; Schols, Annemie M.W.J.

    2012-01-01

    Background and aims Cross-sectional studies suggest that Obstructive Lung Disease (OLD) and smoking affect lean mass and mobility. We aimed to investigate whether OLD and smoking accelerate aging-related decline in lean mass and physical functioning. Methods 260 persons with OLD (FEV1 63±18 %predicted), 157 smoking controls (FEV1 95±16 %predicted), 866 formerly smoking controls (FEV1 100±16 %predicted) and 891 never-smoking controls (FEV1 104±17 %predicted) participating in the Health, Aging and Body Composition (ABC) Study were studied. At baseline, the mean age was 74±3 y and participants reported no functional limitations. Baseline and seven-year longitudinal data were investigated of body composition (by Dual-energy X-ray absorptiometry), muscle strength (by hand and leg dynamometry) and Short Physical Performance Battery (SPPB). Results Compared to never-smoking controls, OLD persons and smoking controls had a significantly lower weight, fat mass, lean mass and bone mineral content (BMC) at baseline (p<0.05). While the loss of weight, fat mass, lean mass and strength was comparable between OLD persons and never-smoking controls, the SPPB declined 0.12 points/yr faster in OLD men (p=0.01) and BMC 4 g/yr faster in OLD women (p=0.02). In smoking controls, only lean mass declined 0.1 kg/yr faster in women (p=0.03) and BMC 8 g/yr faster in men (p=0.02) compared to never-smoking controls. Conclusions Initially well-functioning older adults with mild-to-moderate OLD and smokers without OLD have a comparable compromised baseline profile of body composition and physical functioning, while seven-year longitudinal trajectories are to a large extent comparable to those observed in never-smokers without OLD. This suggests a common insult earlier in life related to smoking. 3 PMID:21724748

  18. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration

    PubMed Central

    2013-01-01

    Background The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. Method The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. Results In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Conclusion Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G’ increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue

  19. Zonal temperature-anomaly maps of Indian ocean surface waters: modern and ice-age patterns.

    PubMed

    Prell, W L; Hutson, W H

    1979-10-26

    Maps of sea surface temperature anomalies in the Indian Ocean in modern and ice-age times reveal striking changes in its surface circulation. During the last glacial maximum (18,000 years before the present), the Indian Ocean had colder average zonal surface temperatures, a cooler and less extensive Agulhas Current, a distinct eastern boundary current, and decreased upwelling and a weaker southwest monsoon in its northwestern region. PMID:17809371

  20. Structural transition in sputter-deposited amorphous germanium films by aging at ambient temperature

    NASA Astrophysics Data System (ADS)

    Okugawa, M.; Nakamura, R.; Ishimaru, M.; Watanabe, K.; Yasuda, H.; Numakura, H.

    2016-06-01

    The structure of amorphous Ge (a-Ge) films prepared by sputter-deposition and the effects of aging at ambient temperature and pressure were studied by pair-distribution-function (PDF) analysis from electron scattering and molecular dynamics simulations. The PDFs of the as-deposited and aged samples for 3-13 months showed that the major peaks for Ge-Ge bonds decrease in intensity and broaden with aging for up to 7 months. In the PDFs of a-Ge of molecular dynamics simulation obtained by quenching liquid at different rates, the major peak intensities of a slowly cooled model are higher than those of a rapidly cooled model. Analyses on short- and medium-range configurations show that the slowly cooled model includes a certain amount of medium-range ordered (MRO) clusters, while the rapidly cooled model includes liquid-like configurations rather than MRO clusters. The similarity between experimental and computational PDFs implies that as-deposited films are similar in structure to the slowly cooled model, whereas the fully aged films are similar to the rapidly cooled model. It is assumed that as they undergo room-temperature aging, the MRO clusters disintegrate and transform into liquid-like regions in the same matrix. This transition in local configurations is discussed in terms of instability and the non-equilibrium of nanoclusters produced by a vapor-deposition process.

  1. Age-related changes of serum mitochondrial uncoupling 1, rumen and rectal temperature in goats.

    PubMed

    Arfuso, Francesca; Rizzo, Maria; Giannetto, Claudia; Giudice, Elisabetta; Fazio, Francesco; Piccione, Giuseppe

    2016-07-01

    Thermoregulatory processes are induced not only by exposure to cold or heat but also by a variety of physiological situations including age, fasting and food intake that result in changes in body temperature. The aim of the present study was to evaluate the differences in serum mitochondrial uncoupling protein 1 (UCP1), rumen temperature (TRUMEN) and rectal temperature (TRECTAL) values between adult and kids goats. Ten adult male Maltese goats aged 3-5 years old (Group A) and 30 male kids, raised for meat, were enrolled in this study. The kids were equally divided into 3 groups according to their age: Group B included kids aged 3 months, Group C included kids aged 4 months and Group D included kids aged 5 months. Blood samples and measurements of TRUMEN and TRECTAL were obtained from each animal. One-way repeated measures analysis of variance (ANOVA) was applied to evaluate the effect of age on the studied parameters. Statistically significant higher serum UCP1 levels (P<0.001) were found in Group A as compared to Groups B, C and D. Higher TRUMEN values (P<0.001) were found in Group A than in Groups B, C and D, and in Group B than in Groups C and D. Group A showed lower TRECTAL values (P<0.001) than Groups B, C and D. The Pearson's Correlation test was applied to assess significant relationship among studied parameters showing a statistically significant negative correlation between the values of TRECTAL and serum UCP1 in all studied Groups (P<0.001). These results indicate that goats have good control of body temperature suggesting that further details about the thermogenic capacity and the function of UCP1 in kids and adult goats are worth exploring. PMID:27264887

  2. Sodar retrieval of vertical acceleration, and implications for the determination of temperature and fluxes in the convective boundary layer

    NASA Astrophysics Data System (ADS)

    Fiocco, Giorgio; Ciminelli, Maria Grazia; Mastrantonio, Giangiuseppe

    With an array of acoustic Doppler sounders it is possible to retrieve a Lagrangian description of the air motions in the boundary layer: with adequate signal-to-noise and data processing, vertical profiles of the vertical acceleration can be obtained. In addition, by application of the buoyancy equation, the temperature and the heat flux in convective conditions can be inferred. Results of experiments carried out with three vertically pointing sodars, but with the horizontal velocity information independently provided, are shown, compared with profiles obtained with tethered balloons, and discussed.

  3. Unbalanced discharging and aging due to temperature differences among the cells in a lithium-ion battery pack with parallel combination

    NASA Astrophysics Data System (ADS)

    Yang, Naixing; Zhang, Xiongwen; Shang, BinBin; Li, Guojun

    2016-02-01

    This paper presents an investigation on the unbalanced discharging and aging due to temperature difference between the parallel-connected cells. A thermal-electrochemical model is developed for the parallel-connected battery pack. The effects of temperature difference on the unbalanced discharging performances are studied by simulations and experiments. For the parallel-connected cells, the cell at higher temperature experiences a larger current in the early discharging process before approximately 75% of depth of discharge (DOD). When the discharge process approaches the voltage turn point of the battery pack, the discharge current through the cell at higher temperature begins to decrease significantly. After the DOD reaches approximately 90%, the discharge current of the cell at higher temperature rises again. Correspondingly, the changes in the discharging current through the cell at lower temperature are opposite to that of the cell at higher temperature. Simulations also show that the temperature difference between the parallel-connected cells greatly aggravates the imbalance discharge phenomenon between the cells, which accelerates the losses of the battery pack capacity. For the parallel-connected battery pack, the capacity loss rate approximately increases linearly as the temperature difference between the cells increases. This trend is magnified with the increase of operating temperature.

  4. Aging gauge

    DOEpatents

    Betts, Robert E.; Crawford, John F.

    1989-04-04

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  5. Aging gauge

    DOEpatents

    Betts, Robert E.; Crawford, John F.

    1989-01-01

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  6. Microstructural Evolution in 2101 Lean Duplex Stainless Steel During Low- and Intermediate-Temperature Aging.

    PubMed

    Maetz, Jean-Yves; Cazottes, Sophie; Verdu, Catherine; Danoix, Frédéric; Kléber, Xavier

    2016-04-01

    The microstructural evolution of a 2101 lean duplex stainless steel (DSS) during isothermal aging from room temperature to 470 °C was investigated using thermoelectric power (TEP) measurements to follow the kinetics, atom probe tomography, and transmission electron microscopy. Despite the low Ni, Cr, and Mo contents, the lean DSS was sensitive to α-α' phase separation and Ni-Mn-Si-Al-Cu clustering at intermediate temperatures. The time-temperature pairs characteristic of the early stages of ferrite decomposition were determined from the TEP kinetics. Considering their composition and locations, the clusters are most likely G phase precursors. PMID:26940550

  7. Asphalt Pavement Aging and Temperature Dependent Properties Using Functionally Graded Viscoelastic Model

    ERIC Educational Resources Information Center

    Dave, Eshan V.

    2009-01-01

    Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional…

  8. Experimental study of temperature fields and thermal fluxes in the electrode walls of an MGD accelerator

    SciTech Connect

    Alferov, V.I.; Vitkovskaya, O.N.; Panfilova, O.V.; Rudakova, A.P.; Sukhobokov, A.D.; Shcherbakov, G.I.

    1980-07-01

    Results are presented of an experimental study of the features of heat transfer from a flow of air with KNa admixture to the electrode walls of an MGD accelerator in a wide range of operating modes (B=1--2.5 T,j=4--45 A/cm/sup 2/,P/sub st/0.2=(en-dash0.5)x10/sup 5/ Pa). Data are obtained on the size and distribution of the thermal fluxes in different zones of an MGD channel and over the electrodes, taken separately. Methods are chosen for calculating the convective thermal flux on the electrode walls over the entire length of the accelerator channel, and the values of the thermal flux in the discharge zone due to processes at the electrodes are determined. A possible explanation is proposed for the difference between the values of the thermal fluxes at the electrode walls over different portions of the MGD channel, which is based on features of the behavior of microarcs on the surface of the electrodes.

  9. Rapid Discoloration of Aged Beef Muscles after Short-Term/Extreme Temperature Abuse during Retail Display

    PubMed Central

    Choi, Yun-Sang

    2016-01-01

    The objective of this study was to evaluate the effects of a short-term/extreme temperature abuse (STA) on color characteristics and oxidative stability of aged beef muscles during simulated retail display. Two beef muscles (longissimus lumborum, LL and semitendinosus, ST) were aged for 7 (A7), 14 (A14), 21 (A21), and 28 d (A28), and further displayed at 2℃ for 7 d. The STA was induced by placing steak samples at 20℃ for 1 h on the 4th d of display. Instrumental and visual color evaluations, ferric ion reducing capacity (FRC) and 2-thiobarbituric acid reactive substances (TBARS) assay were performed. Initially, redness, yellowness and hue angle of all beef muscles were similar, regardless of aging time before display (p>0.05). An increase in postmortem aging time increased lipid oxidation and caused a rapid discoloration after STA during display (p<0.05). ST muscle was more sharply discolored and oxidized after STA, when compared to LL muscle (p<0.05). The FRC value of beef muscles was decreased after 7 d of display (p<0.05). The results from the current study indicate adverse impacts of postmortem aging on color and oxidative stabilities of beef muscles, particularly under temperature abusing conditions during retail display. Thus, developing a specific post-harvest strategy to control quality attributes in retail levels for different muscle types and aging conditions would be required. PMID:27433105

  10. Rapid Discoloration of Aged Beef Muscles after Short-Term/Extreme Temperature Abuse during Retail Display.

    PubMed

    Kim, Hyun-Wook; Setyabrata, Derico; Choi, Yun-Sang; Kim, Yuan H Brad

    2016-01-01

    The objective of this study was to evaluate the effects of a short-term/extreme temperature abuse (STA) on color characteristics and oxidative stability of aged beef muscles during simulated retail display. Two beef muscles (longissimus lumborum, LL and semitendinosus, ST) were aged for 7 (A7), 14 (A14), 21 (A21), and 28 d (A28), and further displayed at 2℃ for 7 d. The STA was induced by placing steak samples at 20℃ for 1 h on the 4th d of display. Instrumental and visual color evaluations, ferric ion reducing capacity (FRC) and 2-thiobarbituric acid reactive substances (TBARS) assay were performed. Initially, redness, yellowness and hue angle of all beef muscles were similar, regardless of aging time before display (p>0.05). An increase in postmortem aging time increased lipid oxidation and caused a rapid discoloration after STA during display (p<0.05). ST muscle was more sharply discolored and oxidized after STA, when compared to LL muscle (p<0.05). The FRC value of beef muscles was decreased after 7 d of display (p<0.05). The results from the current study indicate adverse impacts of postmortem aging on color and oxidative stabilities of beef muscles, particularly under temperature abusing conditions during retail display. Thus, developing a specific post-harvest strategy to control quality attributes in retail levels for different muscle types and aging conditions would be required. PMID:27433105

  11. Effects of aging temperature on microstructural evolution at dissimilar metal weld interfaces

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Taeho; Bahn, Chi Bum; Kim, Ji Hyun

    2015-07-01

    From the earlier study which characterized the region of a fusion boundary between a low-alloy steel (LAS) and a Ni-based weld metal of as-welded and aged samples at 450 °C for a 30-y-equivalent time, it was observed in the microstructure that the aging treatment induced the formation and growth of Cr precipitates in the fusion boundary region because of the thermodynamic driving force. Now, this research extends the text matrix and continues the previous study by compiling all the test data, with an additional aging heat treatment conducted at 400 °C for 15- and 30-y-equivalent times (6450 and 12,911 h, respectively). The results for the extended test matrix primarily represent the common features of and disparities in the effects of thermal aging on the aged samples at two different heat-treatment temperatures (400 and 450 °C). Although no difference was expected between the samples, because the heat treatment conditions simulate thermal aging effects during the same service time of 30 y, the sample aged at 450 °C exhibited slightly more severe effects of thermal aging than the sample aged at 400 °C. Nevertheless, the trends for these effects are similar and the simulation of thermal aging effects for a light-water reactor appears to be reliable. However, according to a simulation of the same degree of thermal aging effects, it appears that the activation energy for Cr diffusion should be larger than the numerical value used in this study.

  12. Endocrine and fluid metabolism in males and females of different ages after bedrest, acceleration and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Vernikos-Danellis, J.; Krauhs, J. M.; Sandler, H.

    1985-01-01

    Space shuttle flight simulations were conducted to determine the effects of weightlessness, lower body negative pressure (LBNP), and acceleration of fluid and electrolyte excretion and the hormones that control it. Measurements were made on male and female subjects of different ages before and after bedrest. After admission to a controlled environment, groups of 6 to 14 subjects in the age ranges 25 to 35, 35 to 45, 45 to 55 to 65 years were exposed to +3 G sub z for 15 minutes (G1) and to LBNP (LBNP1) on different days. On 3 days during this prebedrest period, no tests were conducted. Six days of bedrest followed, and the G sub z (G2) and LBNP (LBNP2) tests were run again. Hormones, electrolytes, and other parameters were measured in 24-hour urine pools throughout the experiment. During bedrest, cortisol and aldosterone excretion increased. Urine volume decreased, and specific gravity and osmolality increased. Urinary electrolytes were statistically unchanged from levels during the non-stress control period. During G2, cortisol increased significantly over its control and bedrest levels. Urine volume, sodium, and chloride were significantly lower; specific gravity and osmolality were higher during the control period or bedrest. The retention of fluids and electrolytes after +G sub z may at least partially explain decreased urine volume and increased osmolality observed during bedrest in this study. There were some who indicated that space flight would not affect the fluid and electrolyte metabolism of females or older males any more severely than it has affected that of male astronauts.

  13. Low-temperature solute segregation and crack age studies. Final report. [BWR

    SciTech Connect

    Lumsden, J.B.

    1981-06-01

    This work led to a better understanding of the composition changes that occur in grain boundaries which lead to low-temperature sensitization (LTS) of type-304 stainless steel (T304SS) and explored analytic techniques for determining the age of stress corrosion cracks in components removed from BWRs. Grain boundary compositions of the weld-heat-affected zones in several LTS conditions were determined using Auger electron spectroscopy. It was found that chromium depletion and phosphorous segregation progressed with aging time until equilibrium concentrations were reached. The equilibrium phosphorous concentration increased as the sensitizing temperature was decreased. Chromium concentrations as low as 8 at% and phosphorous coverages as high as 26 at% were measured. These results suggest further investigations for determining susceptible grain boundary compositions as a function of temperature and time.

  14. Temperature and behavioral responses of squirrel monkeys to 2Gz acceleration

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Tremor, J.; Connolly, J. P.; Williams, B. A.

    1982-01-01

    This study examines the responses of squirrel monkeys to acute +2Gz exposure. Body temperature responses of loosely restrained animals were recorded via a thermistor in the colon. Behavioral responses were recorded by video monitoring. After baseline recording at 1G, monkeys were exposed to 2G for 60 min. The body temperature started to fall within 10 min of the onset of centrifugation and declined an average of 1.4 C in 60 min. This is in contrast to a stable body temperature during the control period. Further, after a few minutes at 2G, the animals became drowsy and appeared to fall asleep. During the control period, however, they were alert and continually shifting their gaze about the cage. Thus, primates are susceptible to hypergravic fields in the +Gz orientation. The depression in primate body temperature was consistent and significant. Further, the observed drowsiness in this study has significant ramifications regarding alertness and performance in man.

  15. Bleaching Agent Action on Color Stability, Surface Roughness and Microhardness of Composites Submitted to Accelerated Artificial Aging

    PubMed Central

    Rattacaso, Raphael Mendes Bezerra; da Fonseca Roberti Garcia, Lucas; Aguilar, Fabiano Gamero; Consani, Simonides; de Carvalho Panzeri Pires-de-Souza, Fernanda

    2011-01-01

    Objectives: The purpose of this study was to evaluate the bleaching agent action on color stability, surface roughness and microhardness of composites (Charisma, Filtek Supreme and Heliomolar - A2) submitted to accelerated artificial aging (AAA). Methods: A Teflon matrix (12 x 2 mm) was used to fabricate 18 specimens (n=6) which, after polishing (Sof-Lex), were submitted to initial color reading (ΔE), Knoop microhardness (KHN) (50 g/15 s load) and roughness (Ra) (cut-off 0.25 mm) tests. Afterwards, the samples were submitted to AAA for 384 hours and new color, microhardness and roughness readings were performed. After this, the samples were submitted to daily application (4 weeks) of 16% Carbamide Peroxide (NiteWhite ACP) for 8 hours and kept in artificial saliva for 16 hours. New color, microhardness and roughness readings were made at the end of the cycle, and 15 days after bleaching. Results: Comparison of the ΔE means (2-way ANOVA, Bonferroni, P<.05) indicated clinically unacceptable color alteration for all composites after AAA, but without significant difference. Statistically significant increase in the KHN values after AAA was observed, but without significant alterations 15 days after bleaching. For Ra there was no statistically significant difference after AAA and 15 days after bleaching. Conclusions: The alterations promoted by the bleaching agent and AAA are material dependent. PMID:21494380

  16. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    PubMed

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (p<0.05) occurred when 0.5 mm veneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (p<0.05) in comparison with both substrates and restored teeth. Therefore, it was concluded that the thickness of the restoration influences color and luminosity changes for conventional dual and light-cured cements. The changes in self-adhesive cement do not depend on restoration thickness. PMID:27007354

  17. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: a field-scale study.

    PubMed

    Chung, Jinwook; Kim, Seungjin; Baek, Seungcheon; Lee, Nam-Hoon; Park, Seongjun; Lee, Junghun; Lee, Heechang; Bae, Wookeun

    2015-03-21

    Leachate recirculation for rapid landfill stabilization can result in the accumulation of high-strength ammonium. An on-site sequencing batch reactor (SBR) was therefore, applied to oxidize the ammonium to nitrite, which was then recirculated to the landfill for denitrification to nitrogen gas. At relatively higher ammonium levels, nitrite accumulated well in the SBR; the nitrite was denitrified stably in the landfill, despite an insufficient biodegradable carbon source in the leachate. As the leachate was recirculated, the methane and carbon dioxide contents produced from the landfill fluctuated, implying that the organic acids and hydrogen produced in the acid production phase acted as the carbon source for denitrification in the landfill. Leachate recirculation combined with ex-situ partial nitrification of the leachate may enhance the biodegradation process by: (a) removing the nitrogen that is contained with the leachate, and (b) accelerating landfill stabilization, because the biodegradation efficiency of landfill waste is increased by supplying sufficient moisture and its byproducts are used as the carbon source for denitrification. In addition, partial nitrification using an SBR has advantages for complete denitrification in the landfill, since the available carbon source is in short supply in aged landfills. PMID:25531070

  18. Folate Acts in E. coli to Accelerate C. elegans Aging Independently of Bacterial Biosynthesis

    PubMed Central

    Virk, Bhupinder; Jia, Jie; Maynard, Claire A.; Raimundo, Adelaide; Lefebvre, Jolien; Richards, Shane A.; Chetina, Natalia; Liang, Yen; Helliwell, Noel; Cipinska, Marta; Weinkove, David

    2016-01-01

    Summary Folates are cofactors for biosynthetic enzymes in all eukaryotic and prokaryotic cells. Animals cannot synthesize folate and must acquire it from their diet or microbiota. Previously, we showed that inhibiting E. coli folate synthesis increases C. elegans lifespan. Here, we show that restriction or supplementation of C. elegans folate does not influence lifespan. Thus, folate is required in E. coli to shorten worm lifespan. Bacterial proliferation in the intestine has been proposed as a mechanism for the life-shortening influence of E. coli. However, we found no correlation between C. elegans survival and bacterial growth in a screen of 1,000+ E. coli deletion mutants. Nine mutants increased worm lifespan robustly, suggesting specific gene regulation is required for the life-shortening activity of E. coli. Disrupting the biosynthetic folate cycle did not increase lifespan. Thus, folate acts through a growth-independent route in E. coli to accelerate animal aging. PMID:26876180

  19. Circadian and age-related modulation of thermoreception and temperature regulation: mechanisms and functional implications.

    PubMed

    Van Someren, Eus J W; Raymann, Roy J E M; Scherder, Erik J A; Daanen, Hein A M; Swaab, Dick F

    2002-09-01

    At older ages, the circadian rhythm of body temperature shows a decreased amplitude, an advanced phase, and decreased stability. The present review evaluates to what extent these changes may result from age-related deficiencies at several levels of the thermoregulatory system, including thermoreception, thermogenesis and conservation, heat loss, and central regulation. Whereas some changes are related to the aging process per se, others appear to be secondary to other factors, for which the risk increases with aging, notably a decreased level of fitness and physical activity. Moreover, functional implications of the body temperature rhythm are discussed. For example, the relation between circadian rhythm and thermoregulation has hardly been investigated, while evidence showed that sleep quality is dependent on both aspects. It is proposed that the circadian rhythm in temperature in homeotherms should not be regarded as a leftover of ectothermy in early evolution, but appears to be of functional significance for physiology from the level of molecules to cognition. A new view on the functional significance of the circadian rhythm in peripheral vasodilation and the consequent out-of-phase rhythms in skin and core temperature is presented. It is unlikely that the strong, daily occurring, peripheral vasodilation primarily represents heat loss in response to a lowering of set point, since behavioral measures are simultaneously taken in order to prevent heat loss. Several indications rather point towards a supportive role in immunological host defense mechanisms. Given the functional significance of the temperature rhythm, research should focus on the feasibility and effectiveness of methods that can in principle be applied in order to enhance the weakened circadian temperature rhythm in the elderly. PMID:12208240

  20. APT: An Autonomous Tool for Measuring Acceleration, Pressure, and Temperature with Large Dynamic Range and Bandwidth

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Davis, E. E.

    2015-12-01

    We describe a new tool developed to facilitate the study of inter-related geodetic, geodynamic, seismic, and oceanographic phenomena. It incorporates a novel tri-axial accelerometer developed by Quartz Seismic Sensors, Inc, a pressure sensor developed by Paroscientific Inc., and a low-power, high-precision frequency counter and data logger built by RBR, Ltd. The sensors, counters, and loggers are housed in a 7 cm o.d., 70 cm long pressure case designed for use in up to 12 km of water. Sampling intervals are programmable from 0.1 s to 1 hr; standard memory can store up to 30 million samples; total power consumption is roughly 115 mW when operating continuously (1 s.p.s. or higher) and proportionately lower when operating intermittently (e.g., 2 mW at 1 sample per min.). Serial and USB communications protocols allow a variety of download and cable-connection options. Measurement precision of the order of 10-8 of full scale (e.g., 4000 m water depth, 1 g) allows observations of pressure and acceleration variations of 0.4 Pa and 0.1 μm s-2. Long-term variations in vertical acceleration are sensitive to displacement through the gravity gradient at a level of roughly 2 cm; long-term variations in horizontal acceleration are sensitive to tilt at a level of 0.01 μRad. With these sensitivities and the broad bandwidth (5 Hz to DC), ground motion associated with microseisms and seismic waves, tidal loading, and slow and rapid geodynamic deformation normally studied by disparate instruments can be observed with a single tool. The first c. 1-year deployment with the instrument connected to the Ocean Networks Canada NEPTUNE observatory cable is underway to study interseismic deformation of the Cascadia subduction zone. It will then be deployed at the Hikurangi subduction zone to study episodic slow slip. Deployment of the tool for the initial test was accomplished by pushing the tool vertically below the seafloor with the remotely operated vehicle Jason, with no profile

  1. Role of environmental temperature in aging and longevity: insights from neurolipofuscin.

    PubMed

    Sheehy, M R J

    2002-01-01

    The available evidence for thermal modulation of neurolipofuscin deposition in poikilotherms is reviewed here and additional data are contributed. Mainly decapod crustacean models are employed and neurolipofuscin is treated as an index of physiological aging. In all cases, neurolipofuscin accumulation rate is positively correlated with environmental temperature but there appears to be lowered sensitivity in the thermal mid-range, an 'optimum' temperature for neurolipofuscin accumulation and possibly age-associated variation. The geographical position of the population within the species' thermal range may determine sensitivity of the response. There is seasonal oscillation of neurolipofuscin accumulation rate, providing preliminary evidence for neurolipofuscin turnover with net loss in winter. Spatial and temporal thermal variations of similar magnitude appear to have comparable effects on neurolipofuscin accumulation rate. Such effects may be extreme, suggesting important implications for physiological aging even in homeotherms. Inter-specific comparisons indicate that species-specific neurolipofuscin accumulation rates are positively correlated with habitat temperature and inversely correlated with maximum lifespan and age at maturity. These findings help explain some well-known bioclimatic trends in maturation- and maximum body size, such as Bergmann's rule. They also highlight the fact that global warming is likely to cause significant changes in life history parameters, population dynamics and responses to exploitation for many species. PMID:14764331

  2. Accelerating the Convergence of Replica Exchange Simulations Using Gibbs Sampling and Adaptive Temperature Sets

    DOE PAGESBeta

    Vogel, Thomas; Perez, Danny

    2015-08-28

    We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. The methodmore » is particularly useful for the fast and reliable estimation of the microcanonical temperature T (U) or, equivalently, of the density of states g(U) over a wide range of energies.« less

  3. Accelerating the Convergence of Replica Exchange Simulations Using Gibbs Sampling and Adaptive Temperature Sets

    SciTech Connect

    Vogel, Thomas; Perez, Danny

    2015-08-28

    We recently introduced a novel replica-exchange scheme in which an individual replica can sample from states encountered by other replicas at any previous time by way of a global configuration database, enabling the fast propagation of relevant states through the whole ensemble of replicas. This mechanism depends on the knowledge of global thermodynamic functions which are measured during the simulation and not coupled to the heat bath temperatures driving the individual simulations. Therefore, this setup also allows for a continuous adaptation of the temperature set. In this paper, we will review the new scheme and demonstrate its capability. The method is particularly useful for the fast and reliable estimation of the microcanonical temperature T (U) or, equivalently, of the density of states g(U) over a wide range of energies.

  4. Mechanical properties improvement of silica aerogel through aging: Role of solvent type, time and temperature

    NASA Astrophysics Data System (ADS)

    Omranpour, H.; Dourbash, A.; Motahari, S.

    2014-05-01

    Effective parameters that enhance mechanical properties during aging were investigated in the present study. Silica aerogels were made from tetraethyl orthosilicate (TEOS), water, methanol and NH4F in molar ratio 1:4:8:2×10-3 using a one-step method. Different time, temperature and aging solvents in aging stage were studied. Subsequently, solvent exchange with n-hexane, modification under TMCS solution and ambient pressure drying (APD) were performed for all samples. The aerogels had densities within the range of 0.1 and 0.6 g/cm3. The FTIR, mechanical properties, density and BET results, porosity, pore volume, pore diameter and surface area of the samples, were discussed. The compression properties of the gel increased with the increase in the time and temperature of aging. It was observed that solvents with more polarity improved polymerization, which enhanced the mechanical properties of the related samples. However, the stresses and capillary forces of water during drying were so large that inhibited "spring-back effect" during APD, and consequently a collapsed silica network with higher density was fabricated. In other words, the specific compression strength and modulus declined drastically. For methanol, alcohols inhibit the reactions inconveniently causing more shrinkage. In aging by n-hexane, capillary pressure declined significantly and thereby shrinkage was eliminated and silica aerogels with low bulk densities (0.095 g/cm3), high specific surface areas (600 m2/g), and large pore volumes (2.6 cm3/g) were synthesized.

  5. In vitro analysis of different properties of acrylic resins for ocular prosthesis submitted to accelerated aging with or without photopolymerized glaze.

    PubMed

    Santos, Daniela Micheline Dos; Nagay, Bruna Egumi; da Silva, Emily Vivianne Freitas; Bonatto, Liliane da Rocha; Sonego, Mariana Vilela; Moreno, Amália; Rangel, Elidiane Cipriano; da Cruz, Nilson Cristino; Goiato, Marcelo Coelho

    2016-12-01

    The effect of a photopolymerized glaze on different properties of acrylic resin (AR) for ocular prostheses submitted to accelerated aging was investigated. Forty discs were divided into 4 groups: N1 AR without glaze (G1); colorless AR without glaze (G2); N1 AR with glaze (G3); and colorless AR with glaze (G4). All samples were polished with sandpaper (240, 600 and 800-grit). In G1 and G2, a 1200-grit sandpaper was also used. In G3 and G4, samples were coated with MegaSeal glaze. Property analysis of color stability, microhardness, roughness, and surface energy, and assays of atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy were performed before and after the accelerated aging (1008h). Data were submitted to the ANOVA and Tukey Test (p<0.05). Groups with glaze exhibited statistically higher color change and roughness after aging. The surface microhardness significantly decreased in groups with glaze and increased in groups without glaze. The surface energy increased after the aging, independent of the polishing procedure. All groups showed an increase of surface irregularities. Photopolymerized glaze is an inadequate surface treatment for AR for ocular prostheses and it affected the color stability, roughness, and microhardness. The accelerated aging interfered negatively with the properties of resins. PMID:27612795

  6. Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response

    PubMed Central

    Osorio, Fernando G.; Bárcena, Clea; Soria-Valles, Clara; Ramsay, Andrew J.; de Carlos, Félix; Cobo, Juan; Fueyo, Antonio; Freije, José M.P.; López-Otín, Carlos

    2012-01-01

    Alterations in the architecture and dynamics of the nuclear lamina have a causal role in normal and accelerated aging through both cell-autonomous and systemic mechanisms. However, the precise nature of the molecular cues involved in this process remains incompletely defined. Here we report that the accumulation of prelamin A isoforms at the nuclear lamina triggers an ATM- and NEMO-dependent signaling pathway that leads to NF-κB activation and secretion of high levels of proinflammatory cytokines in two different mouse models of accelerated aging (Zmpste24−/− and LmnaG609G/G609G mice). Causal involvement of NF-κB in accelerated aging was demonstrated by the fact that both genetic and pharmacological inhibition of NF-κB signaling prevents age-associated features in these animal models, significantly extending their longevity. Our findings provide in vivo proof of principle for the feasibility of pharmacological modulation of the NF-κB pathway to slow down the progression of physiological and pathological aging. PMID:23019125

  7. Differences in gait velocity and trunk acceleration during semicircular turning gait with and without bag in females of very advanced age

    PubMed Central

    Shin, Sun-Shil; Yoo, Won-Gyu

    2016-01-01

    [Purpose] Gait velocity and trunk acceleration during semicircular turning gait with and without carrying a hand-held bag were compared in females of very advanced age. [Subjects and Methods] Ten female volunteers of very advanced age who could walk independently were recruited for this study. Gait velocity and trunk acceleration were measured using an accelerometer during semicircular turning gait with and without carrying a hand-held bag. [Results] Gait velocity during semicircular turning gait was greater with the bag than without the bag. [Conclusions] Trunk stability during semicircular turning gait was higher when the subjects carried a bag. Additional arm load could be considered during gait training in females of very advanced age.

  8. Evaluation of non-volatile metabolites in beer stored at high temperature and utility as an accelerated method to predict flavour stability.

    PubMed

    Heuberger, Adam L; Broeckling, Corey D; Sedin, Dana; Holbrook, Christian; Barr, Lindsay; Kirkpatrick, Kaylyn; Prenni, Jessica E

    2016-06-01

    Flavour stability is vital to the brewing industry as beer is often stored for an extended time under variable conditions. Developing an accelerated model to evaluate brewing techniques that affect flavour stability is an important area of research. Here, we performed metabolomics on non-volatile compounds in beer stored at 37 °C between 1 and 14 days for two beer types: an amber ale and an India pale ale. The experiment determined high temperature to influence non-volatile metabolites, including the purine 5-methylthioadenosine (5-MTA). In a second experiment, three brewing techniques were evaluated for improved flavour stability: use of antioxidant crowns, chelation of pro-oxidants, and varying plant content in hops. Sensory analysis determined the hop method was associated with improved flavour stability, and this was consistent with reduced 5-MTA at both regular and high temperature storage. Future studies are warranted to understand the influence of 5-MTA on flavour and aging within different beer types. PMID:26830592

  9. High ambient temperature and mortality in California: exploring the roles of age, disease, and mortality displacement.

    PubMed

    Basu, Rupa; Malig, Brian

    2011-11-01

    Investigators have consistently demonstrated associations between elevated temperatures and mortality worldwide. Few have recently focused on identifying vulnerable subgroups, and far fewer have determined whether at least some of the observed effect may be a manifestation of mortality displacement. We examined mean daily apparent temperature and mortality in 13 counties in California during the warm season from 1999 to 2006 to identify age and disease subgroups that are at increased risk, and to evaluate the potential effect of mortality displacement. The time-series method using the Poisson regression was applied for data analysis for single lag days of 0-20 days, and for cumulative average lag days of five and ten days. Significant associations were observed for the same-day (excess risk=4.3% per 5.6 °C increase in apparent temperature, 95% confidence interval: 3.4, 5.2) continuing up to a maximum of three days following apparent temperature exposure for non-accidental mortality. Similar risks were found for mortality from cardiovascular diseases, respiratory diseases, and among children zero to 18 years of age, and adults and the elderly 50 years and older. Since no significant negative effects were observed in the following single or cumulative days, evidence of mortality displacement was not found. Thus, the effect of temperature on mortality appears to be an event that occurs within three days following exposure, and requires immediate attention for prevention. PMID:21981982

  10. Low temperature ageing of silicas Gasil-I and TK800

    NASA Astrophysics Data System (ADS)

    Collins, K. E.; Gonçalves, M. C.; Romero, R. B.; Conz, R. F.; de Camargo, V. R.; Collins, C. H.

    2008-04-01

    Gasil-I (a mesoporous silica) and TK800 (a non-porous pyrogenic silica) were investigated in the early 1970s as standard reference materials. Since then the specific surface areas of both silicas have decreased to ˜85% of their initial values, suggesting that the surface character and the ageing mechanism may be the same for both. Comparisons of the shapes of nitrogen-adsorption isotherms, confirmed by comparisons of the shape ratios for Gasil-I and TK800, indicate that Gasil-I has greater microbore character and a higher absorption at p/ p0 > 0.5 than TK800 and that the isotherm shapes have changed little since 1974. The specific volume of Gasil-I has remained nearly constant during the ageing period but the pore size distribution (PSD) has shifted markedly to higher values. Electron micrographs show that low (room) temperature gas-solid ageing results in similar enlargement at the point of contact between attached secondary particles as that which occurs in hydrothermal ageing. In the gas-solid case, this change, which accounts for the decrease in overall surface area, is attributed to the surface transport of silica material in the presence of near monolayer quantities of adsorbed water. Ageing in this manner is geometry-limited so that the rate of ageing is expected to approach zero, resulting in time-stable silicas.

  11. Low-Temperature Aging Kinetics of a 15-Year Old Water-Quenched U-6wt.% Nb Alloy

    SciTech Connect

    Hsiung, L; Zhou, J

    2007-10-30

    } {approx} 0.5 nm) of modulation for the spinodal ordering, as illustrated in Fig. 2. Since the Nb modulation for the spinodal ordering can occur within the unit cell of {alpha}{double_prime} phase through the nearest jumps of atoms along the [001] direction, the degree of long-range order (S) increases from 0 to 0.16 as a result of the Nb modulation, as illustrated in Fig. 3. As we accelerated the ordering transformation by thermal heating a 15-year old alloy at 200 C, decomposition of the {alpha}{double_prime}{sub po} phase into {alpha} (U) and a fully ordered {alpha}{sub o} (U{sub 3}Nb) phase occurred, as shown in Fig. 4. Figure 5 shows the results of microhardness measurement and TEM analysis of the microstructural evolution in the 15-old alloy samples thermally heated at 200 C. Here, it can be clearly seen that the {alpha}{double_prime}{sub po} phase with a swirl-shape feature of antiphase boundaries (APBs) vanishes upon heating with the formation of U{sub 3}Nb precipitates, which gives rise to the increase of microhardness (precipitation hardening). Figure 6 shows the changes of tensile properties of the 15-old alloy thermally heated at 200 C. It can be readily seen that in addition to the increase of tensile strength (precipitation hardening), the ductility reduces from {approx}40% to {approx}14% after heating for 96 hours. In view of these adverse changes in tensile properties upon aging, we accordingly pursued a precipitation kinetics study on the 15-year old WQ-U6Nb alloy in order to develop an empirical time-temperature-transformation model for predicting the remaining lifetime of the WQ-U6Nb alloy in the stockpile.

  12. Tripartite associations among bacteriophage WO, Wolbachia, and host affected by temperature and age in Tetranychus urticae.

    PubMed

    Lu, Ming-Hong; Zhang, Kai-Jun; Hong, Xiao-Yue

    2012-11-01

    A phage density model of cytoplasmic incompatibility (CI), which means lytic phages reduce bacterial density associated with CI, significantly enhances our understanding of the tripartite associations among bacteriophage WO, Wolbachia and host. However, WO may alternate between lytic and lysogenic life cycles or change phage production under certain conditions including temperature, host age and host species background. Here, extreme temperatures can induce an alteration in the life cycle of WO and change the tripartite associations among WO, Wolbachia and CI. Based on the accumulation of the WO load, WO can transform into the lytic life cycle with increasing age. These findings confirmed that the environment plays an important role in the associations among WO, Wolbachia and host. PMID:22669278

  13. Effect of artificial accelerated aging on the optical properties and monomeric conversion of composites used after expiration date.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Mundim, Fabricio Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Puppin Rontani, Regina Maria; Consani, Simonides

    2013-01-01

    This study sought to evaluate how artificial accelerated aging (AAA) affected color stability (ΔE), opacity (ΔOP), and degree of conversion (DOC) for 3 composite materials (Tetric Ceram, Tetric Ceram HB, and Tetric Flow) used both 180 days before and 180 days after their expiration dates. To evaluate the materials' optical properties, 10 specimens of each composite-5 prior to expiration and 5 after the materials' expiration date-were made in a teflon matrix. After polishing, the specimens were submitted to initial color and opacity readings and submitted to AAA for 384 hours; at that point, new readings were taken to determine ΔE and ΔOP. To evaluate monomeric conversion evaluation, 6 specimens from each composite and expiration date-3 prior to AAA and 3 after-were submitted to DOC analysis. Results of the 2-way ANOVA and Bonferroni's tests (P < 0.05) demonstrated that all composites had ΔE values above the clinically acceptable level (ΔE ≥ 3.3). When expiration dates were compared, only Tetric Flow showed a statistically significant difference (P < 0.05). Regardless of the expiration date, ΔOP values for all composites increased after AAA, but not significantly (P > 0.05). The expired Tetric Flow had the highest DOC values (71.42% ± 4.21) before AAA, significantly different than that of the other composites (P > 0.05). It was concluded that both expiration date and AAA affected the properties of the composites tested. PMID:24192739

  14. Fatigue limit of polycrystalline zirconium oxide ceramics: Effect of grinding and low-temperature aging.

    PubMed

    Pereira, G K R; Silvestri, T; Amaral, M; Rippe, M P; Kleverlaan, C J; Valandro, L F

    2016-08-01

    The following study aimed to evaluate the effect of grinding and low-temperature aging on the fatigue limit of Y-TZP ceramics for frameworks and monolithic restorations. Disc specimens from each ceramic material, Lava Frame (3M ESPE) and Zirlux FC (Ivoclar Vivadent) were manufactured according to ISO:6872-2008 and assigned in accordance with two factors: (1) "surface treatment"-without treatment (as-sintered, Ctrl), grinding with coarse diamond bur (181µm; Grinding); and (2) "low-temperature aging (LTD)" - presence and absence. Grinding was performed using a contra-angle handpiece under constant water-cooling. LTD was simulated in an autoclave at 134°C under 2-bar pressure for 20h. Mean flexural fatigue limits (20,000 cycles) were determined under sinusoidal loading using stair case approach. For Lava ceramic, it was observed a statistical increase after grinding procedure and different behavior after LTD stimuli (Ctrltemperature aging promoted a statistical increase in the fatigue limit (Ctrltemperature aging did not damage the fatigue limit values significantly for both materials evaluated, even though those conditions promoted increase in m-phase. PMID:26828768

  15. Investigation of elevated temperature aging effects on lithium-ion cells

    SciTech Connect

    JUNGST,RUDOLPH G.; NAGASUBRAMANIAN,GANESAN; INGERSOLL,DAVID

    2000-04-17

    Electrical and chemical measurements have been made on 18650-size lithium-ion cells that have been exposed to calendar and cycle life aging at temperatures up to 70 C. Aging times ranged from 2 weeks at the highest temperature to several months under more moderate conditions. After aging, the impedance behavior of the cells was reversed from that found originally, with lower impedance at low state of charge and the total impedance was significantly increased. Investigations using a reference electrode showed that these changes are primarily due to the behavior of the cathode. Measurements of cell impedance as a function of cell voltage reveal a pronounced minimum in the total impedance at approximately 40--50% state-of-charge (SOC). Chemical analysis data are presented to support the SOC assignments for aged and unaged cells. Electrochemical impedance spectroscopy (EIS) data have been recorded at several intermediate states of charge to construct the impedance vs. open circuit voltage curve for the cell. This information has not previously been available for the LiNi{sub 0.85}Co{sub 0.15}O{sub 2} cathode material. Structural and chemical analysis information obtained from cell components removed during postmortems will also be discussed in order to reveal the true state of charge of the cathode and to develop a more complete lithium inventory for the cell.

  16. Temperature and Pomaceous Flower Age Related to Colonization by Erwinia amylovora and Antagonists.

    PubMed

    Pusey, P L; Curry, E A

    2004-08-01

    ABSTRACT Fire blight of apple and pear is initiated by epiphytic populations of Erwinia amylovora on flower stigmas. Predicting this disease and managing it with microbial antagonists depends on an understanding of bacterial colonization on stigmas. Detached 'Manchurian' crab apple flowers were inoculated with E. amylovora and subjected to a range of constant temperatures or various fluctuating temperature regimes. Results may have application to disease risk assessment systems such as the Cougarblight model, which now are based on in vitro growth of the pathogen. In other experiments, detached crab apple flowers and attached 'Gala' apple flowers were maintained at different temperatures for various periods before inoculation with E. amylovora or antagonists (Pseudomonas fluorescens strain A506 and Pantoea agglomerans strains C9-1 and E325). Maximum stigma age supporting bacterial multiplication decreased as temperature increased, and was reduced by pollination. Stigmas were receptive to bacteria at ages older than previously reported, probably due to less interference from indigenous organisms. The study revealed antagonist limitations that possibly affect field performance (e.g., the inability of strain A506 to grow on relatively old stigmas conducive to the pathogen). Such deficiencies could be overcome by selecting other antagonists or using antagonist mixtures in the orchard. PMID:18943112

  17. Temperature, age and crust thickness distributions of Loki Patera on Io: implications for resurfacing mechanism

    NASA Technical Reports Server (NTRS)

    Davies, A. G.

    2003-01-01

    A high-spatial-resolution, multi-wavelength observation by the Galileo NIMS instrument has been analysed to determine the temperature and area distribution of a large portion of the ionian volcano Loki Patera. The temperatures of the cooler components from a two-temperature fit to the data can be used to determine ages of the surface. The age of the floor along a profile across the floor of the caldera ranges from 10 to 80 days. This puts the start of the resurfacing in July/early August 2001, yielding a resurfacing rate of approximately 1 km/day, with the new lava spreading from the SW corner of the caldera in a NE direction. This rate is consistent with resurfacing by foundering of the crust on a lava lake. However,the temperature distribution may also result from the emplacement of flows. Implied crust thicknesses (derived using a lava cooling model) range from 2.6 to 0.9 m.

  18. Temperature dependence of the transverse piezoelectric coefficient of thin films and aging effects

    SciTech Connect

    Rossel, C. Sousa, M.; Abel, S.; Caimi, D.; Suhm, A.; Abergel, J.; Le Rhun, G.; Defay, E.

    2014-01-21

    We present a technique to measure the temperature dependence of the transverse piezoelectric coefficient e{sub 31,f} of thin films of lead zirconate titanate (PZT), aluminum nitride, and BaTiO{sub 3} deposited on Si wafers. It is based on the collection of electric charges induced by the deflection of a Si cantilever coated with the piezoelectric film. The aim of this work is to assess the role of temperature in the decay of the remnant polarization of these materials, in particular, in optimized gradient-free PZT with composition PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}. It is found that in contrast to theoretical predictions, e{sub 31,f} decreases with temperature because of the dominance of relaxation effects. The observation of steps in the logarithmic aging decay law is reminiscent of memory effects seen in frustrated spin glasses.

  19. Medieval Warm Period, Little Ice Age and 20th century temperature variability from Chesapeake Bay

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Kamiya, T.; Schwede, S.; Willard, D.A.

    2003-01-01

    We present paleoclimate evidence for rapid (< 100 years) shifts of ??? 2-4??C in Chesapeake Bay (CB) temperature ???2100, 1600, 950, 650, 400 and 150 years before present (years BP) reconstructed from magnesium/calcium (Mg/Ca) paleothermometry. These include large temperature excursions during the Little Ice Age (???1400-1900 AD) and the Medieval Warm Period (???800-1300 AD) possibly related to changes in the strength of North Atlantic thermohaline circulation (THC). Evidence is presented for a long period of sustained regional and North Atlantic-wide warmth with low-amplitude temperature variability between ???450 and 1000 AD. In addition to centennial-scale temperature shifts, the existence of numerous temperature maxima between 2200 and 250 years BP (average ???70 years) suggests that multi-decadal processes typical of the North Atlantic Oscillation (NAO) are an inherent feature of late Holocene climate. However, late 19th and 20th century temperature extremes in Chesapeake Bay associated with NAO climate variability exceeded those of the prior 2000 years, including the interval 450-1000 AD, by 2-3??C, suggesting anomalous recent behavior of the climate system. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival.

    PubMed

    Christiansen-Jucht, Céline; Erguler, Kamil; Shek, Chee Yan; Basáñez, María-Gloria; Parham, Paul E

    2015-06-01

    Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a "standard" model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors. PMID:26030468

  1. Age, temperature and pressure of metamorphism in the Tasriwine Ophiolite Complex, Sirwa, Morocco

    NASA Astrophysics Data System (ADS)

    Samson, S. D.; Inglis, J.; Hefferan, K. P.; Admou, H.; Saquaque, A.

    2013-12-01

    Sm-Nd garnet-whole rock geochronology and phase equilbria modeling have been used to determine the age and conditions of regional metamorphism within the Tasriwine ophiolite complex,Sirwa, Morocco. Pressure and temperature estimates obtained using a NaCaKFMASHT phase diagram (pseudosection) and garnet core and rim compositions predict that garnet growth began at ~0.72GPa and ~615°C and ended at ~0.8GPa and ~640°C. A bulk garnet Sm-Nd age of 645.6 × 1.6 Ma, calculated from a four point isochron that combines whole rock, garnet full dissolution and two successively more aggressive partial dissolutions, provides a precise date for garnet formation and regional metamorphism. The age is nearly 20 million years younger than a previous age estimate of regional metamorphism of 663 × 14 Ma based upon a SHRIMP U-Pb date from rims on zircon from the Irri migmatite. The new data provide further constraints on the age and nature of regional metamorphism in the Anti-Atlas mountains and emphasizes that garnet growth during regional metamorphism may not necessarily coincide with magmatism/anatexis which predominate the signature witnessed by previous U-Pb studies. The ability to couple PT estimates for garnet formation with high precision Sm- Nd geochronology highlights the utility of garnet studies for uncovering the detailed metamorphic history of the Anti-Atlas mountain belt.

  2. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival

    PubMed Central

    Christiansen-Jucht, Céline; Erguler, Kamil; Shek, Chee Yan; Basáñez, María-Gloria; Parham, Paul E.

    2015-01-01

    Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a “standard” model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors. PMID:26030468

  3. Age-related changes in amino acid pool sizes in the adult silkmoth, Bombyx mori, reared at low and high temperature; a biochemical examination of the rate-of-living theory and urea accumulation when reared at high temperature.

    PubMed

    Osanai, M; Yonezawa, Y

    1984-01-01

    To examine the rate-of-living theory, age-related changes in amino acid pool sizes were investigated in the adult silkmoth, Bombyx mori, reared at low and high temperature. At either temperature concentrations of free amino acids contained in silkmoths revealed a great sexual difference. Those in females were generally much higher than in males and the former changed much more dynamically than the latter. Major amino acids or ninhydrin-positive compounds inclusive of some essential amino acids such as Leu, Ile, Val, Thr, Arg, Phe, Met, Ala, Tyr, Gln, Aspn , Lan , Cysta , GABA and PEA accumulated in 4 degrees C-moths. However, the levels of these amino changed irregularly with advanced age. Inhibition of protein synthesis may occur generally at low temperature, while protein degradation may be promoted at high temperature. High concentrations of MSO and Tau in the moths reared at high temperature than in the normal moths suggested also catabolism of amino acids proceeding together with protein degradation at high temperature. Amino acid metabolism seems to be complicated under various temperature conditions. When reared at the optimal temperature of 25 degrees C, urea is not present in the body of the silkmoth except for a slight amount in the secreted meconium. In silkmoths reared at the higher temperature of 35 degrees C, however, an extraordinary accumulation of urea occurs accompanied by a reduction in lifespan by one half. Undoubtedly, urea is produced in this terrestrial insect, although the accumulation mechanism is not clear: in silkmoths reared at various temperatures, arginase is found, but urease is not detected. Arginase activity was found to be higher in male moths than in female moths regardless of the rearing temperature. High temperature rearing also did not induce activity and female activity never exceeded that in males at either 25 degrees C or 35 degrees C rearing. Protein degradation accelerated by rearing at high temperatures may result in

  4. Age-related maintenance of eccentric strength: a study of temperature dependence.

    PubMed

    Power, Geoffrey A; Flaaten, Nordan; Dalton, Brian H; Herzog, Walter

    2016-04-01

    With adult aging, eccentric strength is maintained better than isometric strength leading to a higher ratio of eccentric/isometric force production (ECC/ISO) in older than younger adults. The purpose was to investigate the ECC/ISO during electrical activation of the adductor pollicis during lengthening (20-320° s(-1)) contractions in 24 young (n = 12, ∼24 years) and old (n = 12, ∼72 years) males across muscle temperatures (cold ∼19 °C; normal ∼30 °C; warm ∼35 °C). For isometric force, the old were 20-30 % weaker in the normal and cold conditions (P < 0.05) with no difference for the warm condition compared to young (P > 0.05). Half-relaxation time (HRT) did not differ across age for the normal and warm temperatures (P > 0.05), but it slowed significantly for old in the cold condition compared with young (∼15 %; P < 0.05), as well, there was a 20 and 40 % increase in muscle stiffness for the young and old, respectively. ECC/ISO was 50-60 % greater for the cold condition than the normal and warm conditions. There was no age difference in ECC/ISO across ages for the normal and warm conditions (P > 0.05), but for the cold, the old exhibited a 20-35 % higher ECC/ISO than did the young for velocities above 60° s(-1) (P < 0.05). A contributing factor to the elevated ECC/ISO is an increased proportion of weakly compared to strongly bound crossbridges. These findings highlight the relationship (r = 0.70) between intrinsic muscle contractile speed (HRT) and eccentric strength in old age. PMID:27028894

  5. Effects of ration and temperature on growth of age-0 Atlantic sturgeon

    USGS Publications Warehouse

    Kelly, J.L.; Arnold, D.E.

    1999-01-01

    Our objective was to gain insight into the optimum temperature and ration for growth of age-0 Atlantic sturgeon Acipenser oxyrinchus in culture. We conducted two trials, each for 8 weeks. Trial 1 started with 60-g fish, trial 2 started with 0 3-g fish. Water temperatures of 15, 17, and 19??C were used separately in each trial. Rations (dry food, wet weight of fish) for 60-g fish were 0.5, 1.0, and 1.5% of biomass per day, for 0.3-g fish, rations were 3, 5, and 7% of biomass per day. We set up three tank replicates, of equal fish biomass, at each combination of temperature and ration. The highest growth rate in trial 1 (for 60-g fish) was 0.014/d at 15??C and the 1.5% ration, although this growth rate was not significantly different from the growth rate at 17??C and 1.5% ration or at 17??C and 1.0% ration. The highest growth rate in trial 2 (for 0.3-g fish) was 0.067/d at 19??C and the 7.0% ration. Instantaneous growth at these conditions was significantly different from all other combinations of temperature and ration. Although these results may not completely define the temperature and ration under which fish could achieve maximum growth rate, they provide a solid starting point for further development of Atlantic sturgeon culture.

  6. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    SciTech Connect

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent; Perrin, Greg; Glick, Stephen; Kurtz, Sarah; Wohlgemuth, John

    2015-06-14

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module power degradation data obtained semi-continuously and statistically by in-situ dark current-voltage measurements in an environmental chamber. The modeling enables prediction of degradation rates and times as functions of temperature and humidity. Power degradation could be modeled linearly as a function of time to the second power; additionally, we found that coulombs transferred from the active cell circuit to ground during the stress test is approximately linear with time. Therefore, the power loss could be linearized as a function of coulombs squared. With this result, we observed that when the module face was completely grounded with a condensed phase conductor, leakage current exceeded the anticipated corresponding degradation rate relative to the other tests performed in damp heat.

  7. Explosive and pyrotechnic aging demonstration

    NASA Technical Reports Server (NTRS)

    Rouch, L. L., Jr.; Maycock, J. N.

    1976-01-01

    The survivability was experimentally verified of fine selected explosive and pyrotechnic propellant materials when subjected to sterilization, and prolonged exposure to space environments. This verification included thermal characterization, sterilization heat cycling, sublimation measurements, isothermal decomposition measurements, and accelerated aging at a preselected elevated temperature. Temperatures chosen for sublimation and isothermal decomposition measurements were those in which the decomposition processess occurring would be the same as those taking place in real-time aging. The elevated temperature selected (84 C) for accelerated aging was based upon the parameters calculated from the kinetic data obtained in the isothermal measurement tests and was such that one month of accelerated aging in the laboratory approximated one year of real-time aging at 66 C. Results indicate that HNS-IIA, pure PbN6, KDNBF, and Zr/KC10 are capable of withstanding sterilization. The accelerated aging tests indicated that unsterilized HNS-IIA and Zr/KC104 can withstand the 10 year, elevated temperature exposure, pure PbN6 and KDNBF exhibit small weight losses (less than 2 percent) and B/KC104 exhibits significant changes in its thermal characteristics. Accelerated aging tests after sterilization indicated that only HNS-IIA exhibited high stability.

  8. Manure source and age affect survival of zoonotic pathogens during aerobic composting at sublethal temperatures.

    PubMed

    Erickson, Marilyn C; Smith, Chris; Jiang, Xiuping; Flitcroft, Ian D; Doyle, Michael P

    2015-02-01

    Heat is the primary mechanism by which aerobic composting inactivates zoonotic bacterial pathogens residing within animal manures, but at sublethal temperatures, the time necessary to hold the compost materials to ensure pathogen inactivation is uncertain. To determine the influence of the type of nitrogen amendment on inactivation of Salmonella, Listeria monocytogenes, and Escherichia coli O157:H7 in compost mixtures stored at sublethal temperatures, specific variables investigated in these studies included the animal source of the manure, the initial carbon/nitrogen (C:N) ratio of the compost mixture, and the age of the manure. Salmonella and L. monocytogenes were both inactivated more rapidly in chicken and swine compost mixtures stored at 20°C when formulated to an initial C:N ratio of 20:1 compared with 40:1, whereas a C:N ratio did not have an effect on inactivation of these pathogens in cow compost mixtures. Pathogen inactivation was related to the elevated pH of the samples that likely arises from ammonia produced by the indigenous microflora in the compost mixtures. Indigenous microbial activity was reduced when compost mixtures were stored at 30°C and drier conditions (<10% moisture level) were prevalent. Furthermore, under these drier conditions, Salmonella persisted to a greater extent than L. monocytogenes, and the desiccation resistance of Salmonella appeared to convey cross-protection to ammonia. Salmonella persisted longer in compost mixtures prepared with aged chicken litter compared with fresh chicken litter, whereas E. coli O157:H7 survived to similar extents in compost mixtures prepared with either fresh or aged cow manure. The different responses observed when different sources of manure were used in compost mixtures reveal that guidelines with times required for pathogen inactivation in compost mixtures stored at sublethal temperatures should be dependent on the source of nitrogen, i.e., type of animal manure, present. PMID:25710145

  9. Characterization of polymers in the glass transition range: Time-temperature and time-aging time superposition in polycarbonate

    SciTech Connect

    Pesce, J.J.; Niemiec, J.M.; Chiang, M.Y.

    1995-12-31

    Here we present time-temperature and time-aging time superposition data for a commercial grade polycarbonate. The data reduction is performed for dynamic-mechanical data obtained in torsion over a range of temperatures from 103.6 to 144.5{degrees}C and aging times to 16 h. For time-temperature superposition the results show the deviation of the sub-T{sub g} response from the WTF equation. Two response regimes are observed: at temperatures far below T{sub g} the log(a{sub T}) is linear in T, followed by a transition towards the WLF behavior as T{sub g} is approached. The temperature at which the behavior changes from a linear dependence of log(aT) on T to the transition-type behavior is found to depend on the aging time. This temperature decreases as aging time increases. The time-aging time response is found to behave in a normal way. At temperatures far below T{sub g} the log(a{sub te}) vs log(t{sub e}) is constant and has a slope somewhat less than unity. However, nearer to T{sub g} the slope decreases and there is a second regime in which the aging virtually ceases. In this polycarbonate, above 136.9{degrees}C, no aging is observed.

  10. Effect of different aging temperatures prior to freezing on meat quality attributes of frozen/thawed lamb loins.

    PubMed

    Choe, Ju-Hui; Stuart, Adam; Kim, Yuan H Brad

    2016-06-01

    The objective of this study was to determine the effect of different aging temperatures prior to freezing on quality attributes of frozen/thawed lamb loins. The loins (M. longissimus lumborum; n=32) were randomly allocated to one of the four different aging/freezing treatments: aged only (-1.5°C for 14days) and aged (-1.5°C for 14days, 3°C for 8days, or 7°C for 8days) then frozen/thawed loins. The loins aged at elevated temperatures (3°C or 7°C) for 8days had equivalent shear force, protein degradation and purge loss values compared to the loins aged at -1.5°C for 14days (P>0.05). However, significantly higher drip loss and less color stability were observed in the loins with increasing aging temperatures compared to the loins aged at -1.5°C. These results suggest that application of elevated aging temperatures could shorten required aging periods prior to freezing, while not adversely affecting tenderness and purge loss of frozen/thawed meat. PMID:26890391

  11. Improving tribological performance of gray cast iron by laser peening in dynamic strain aging temperature regime

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Zhou, Jianzhong; Mei, Yufen; Huang, Shu; Sheng, Jie; Zhu, Weili

    2015-09-01

    A high and stable brake disc friction coefficient is needed for automobile safety, while the coefficient degrades due to elevated temperature during the braking process. There is no better solution except changes in material composition and shape design optimization. In the dynamic strain aging(DSA) temperature regime of gray cast iron, micro-dimples with different dimple depth over diameter and surface area density are fabricated on the material surface by laser peening(LP) which is an LST method. Friction behavior and wear mechanism are investigated to evaluate the effects of surface texturing on the tribological performance of specimens under dry conditions. Through LP impacts assisted by DSA, the friction coefficients of the LPed specimens increase noticeably both at room temperature and elevated temperature in comparison to untreated specimens. Moreover, the coefficient of specimen with dimple depth over diameter of 0.03 and surface area density of 30% is up to 0.351 at room temperature, which dramatically rises up to 1.33 times that of untextured specimen and the value is still up to 0.3305 at 400°C with an increasing ratio of 35% compared to that of untreated specimen. The surface of textured specimen shows better wear resistance compared to untreated specimen. Wear mechanism includes adhesive wear, abrasive wear and oxidation wear. It is demonstrated that LP assisted by DSA can substantially improve wear resistance, raise the friction coefficient as well as its stability of gray cast iron under elevated temperatures. Heat fade and premature wear can be effectively relieved by this surface modification method.

  12. Early-age cold conditioning of broilers: effects of timing and temperature.

    PubMed

    Shahir, M H; Dilmagani, S; Tzschentke, B

    2012-01-01

    1. The aim of the present study was to determine the effects of early-age cold conditioning (CC) on performance, ascites mortality, thyroid hormones status and immune response (leucocytes count) of broiler chickens. 2. A total of 336 chicks at 2 and 3 d of age were exposed to 20 or 25°C (for 3 or 6 h) in a 2 × 2 × 2 factorial experiment, while a control group was kept under normal temperature conditions (30°C). Thereafter, both control and cold conditioned birds were reared under standard conditions until 42 d of age. 3. The results showed that performance (weight gain and feed efficiency) was improved by CC at the end of the rearing period. Carcase traits (breast, thigh and abdominal fat percentage) were not affected by different treatments. Heart weight was lower in cold conditioned birds accompanied with lower ascites mortality. Total leucocyte count was higher in CC birds. Higher concentrations of thyroxin (T(4)) were found in plasma of treated groups, while triiodothyronine (T(3)) to T(4) ratio was decreased. 4. In conclusion, it seems that early age CC improves performance and reduces ascites mortality of broilers through altered thyroid hormones metabolism and leucocyte function. According to the results, the best timing for CC of broilers was 20°C for 6 h at the age of 2 d, and no significant benefit was observed by repeated CC. PMID:23130589

  13. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis

    PubMed Central

    van der Heijden, Roel A.; Bijzet, Johan; Meijers, Wouter C.; Yakala, Gopala K.; Kleemann, Robert; Nguyen, Tri Q.; de Boer, Rudolf A.; Schalkwijk, Casper G.; Hazenberg, Bouke P. C.; Tietge, Uwe J. F.; Heeringa, Peter

    2015-01-01

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process. PMID:26563579

  14. Asphalt pavement aging and temperature dependent properties using functionally graded viscoelastic model

    NASA Astrophysics Data System (ADS)

    Dave, Eshan V.

    Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional finite-element modeling (FEM) technique discretizes the problem domain into smaller elements, each with a unique constitutive property. However the assignment of unique material property description to an element in the FEM approach makes it an unattractive choice for simulation of problems with material non-homogeneities. Specialized elements such as "graded elements" allow for non-homogenous material property definitions within an element. This dissertation describes the development of graded viscoelastic finite element analysis method and its application for analysis of asphalt concrete pavements. Results show that the present research improves efficiency and accuracy of simulations for asphalt pavement systems. Some of the practical implications of this work include the new technique's capability for accurate analysis and design of asphalt pavements and overlay systems and for the determination of pavement performance with varying climatic conditions and amount of in-service age. Other application areas include simulation of functionally graded fiber-reinforced concrete, geotechnical materials, metal and metal composites at high temperatures, polymers, and several other naturally existing and engineered materials.

  15. Evidence that Arrhenius high-temperature aging behavior for an EPDM o-ring does not extrapolate to lower temperatures

    SciTech Connect

    Gillen, K.T.; Wise, J.; Celina, M.; Clough, R.L.

    1997-09-01

    Because of the need to significantly extend the lifetimes of weapons, and because of potential implications of environmental O-ring failure on degradation of critical internal weapon components, the authors have been working on improved methods of predicting and verifying O-ring lifetimes. In this report, they highlight the successful testing of a new predictive method for deriving more confident lifetime extrapolations. This method involves ultrasensitive oxygen consumption measurements. The material studied is an EPDM formulation use for the environmental O-ring the W88. Conventional oven aging (155 C to 111 C) was done on compression molded sheet material; periodically, samples were removed from the ovens and subjected to various measurements, including ultimate tensile elongation, density and modulus profiles. Compression stress relaxation (CSR) measurements were made at 125 C and 111 C on disc shaped samples (12.7 mm diameter by 6 mm thick) using a Shawbury Wallace Compression Stress Relaxometer MK 2. Oxygen consumption measurements were made versus time, at temperatures ranging from 160 C to 52 C, using chromatographic quantification of the change in oxygen content caused by reaction with the EPDM material in sealed containers.

  16. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    PubMed

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most

  17. Literacy Acceleration and the Key Stage 3 English Strategy - Comparing Two Approaches for Secondary-Age Pupils with Literacy Difficulties

    ERIC Educational Resources Information Center

    Lingard, Tony

    2005-01-01

    Literacy for pupils in the secondary phase of education is a key concern for practitioners and policy makers alike. Tony Lingard is the SENCo at a large comprehensive school in the south-west of England but he is also involved in staff development and school improvement initiatives across the UK. Literacy Acceleration is an intervention strategy…

  18. Aging curve of neuromotor function by pronation and supination of forearms using three-dimensional wireless acceleration and angular velocity sensors.

    PubMed

    Kaneko, M; Okui, H; Hirakawa, G; Ishinishi, H; Katayama, Y; Iramina, K

    2012-01-01

    We have developed an evaluation system for pronation and supination of forearms. The motion of pronation and supination of the forearm is used as a diagnosis method of developmental disability, etc. However, this diagnosis method has a demerit in which diagnosis results between doctors are not consistent. It is hoped that a more quantitative and simple evaluation method is established. Moreover it is hoped a diagnostic criteria obtained from healthy subjects can be established to diagnose developmental disorder patients. We developed a simple and portable evaluation system for pronation and supination of forearms. Three-dimensional wireless acceleration and angular velocity sensors are used for this system. In this study, pronation and supination of forearms of 570 subjects (subjects aged 6-12, 21-100) were examined. We could obtain aging curves in the neuromotor function of pronation and supination. These aging curves obtained by our developed system, has the potential to become diagnostic criteria for a developmental disability, etc. PMID:23366971

  19. Role of initial state and final quench temperature on aging properties in phase-ordering kinetics

    NASA Astrophysics Data System (ADS)

    Corberi, Federico; Villavicencio-Sanchez, Rodrigo

    2016-05-01

    We study numerically the two-dimensional Ising model with nonconserved dynamics quenched from an initial equilibrium state at the temperature Ti≥Tc to a final temperature Tf below the critical one. By considering processes initiating both from a disordered state at infinite temperature Ti=∞ and from the critical configurations at Ti=Tc and spanning the range of final temperatures Tf∈[0 ,Tc[ we elucidate the role played by Ti and Tf on the aging properties and, in particular, on the behavior of the autocorrelation C and of the integrated response function χ . Our results show that for any choice of Tf, while the autocorrelation function exponent λC takes a markedly different value for Ti=∞ [λC(Ti=∞ ) ≃5 /4 ] or Ti=Tc [λC(Ti=Tc) ≃1 /8 ] the response function exponents are unchanged. Supported by the outcome of the analytical solution of the solvable spherical model we interpret this fact as due to the different contributions provided to autocorrelation and response by the large-scale properties of the system. As changing Tf is considered, although this is expected to play no role in the large-scale and long-time properties of the system, we show important effects on the quantitative behavior of χ . In particular, data for quenches to Tf=0 are consistent with a value of the response function exponent λχ=1/2 λC(Ti=∞ ) =5 /8 different from the one [λχ∈(0.5 -0.56 ) ] found in a wealth of previous numerical determinations in quenches to finite final temperatures. This is interpreted as due to important preasymptotic corrections associated to Tf>0 .

  20. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    PubMed Central

    Yu, Tang-Qing; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Vanden-Eijnden, Eric; Tuckerman, Mark

    2014-01-01

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency. PMID:24907992

  1. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    SciTech Connect

    Yu, Tang-Qing Vanden-Eijnden, Eric; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Tuckerman, Mark

    2014-06-07

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

  2. Proteomic identification of less oxidized brain proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at the Abeta region of amyloid precursor protein.

    PubMed

    Poon, H Fai; Farr, Susan A; Banks, William A; Pierce, William M; Klein, Jon B; Morley, John E; Butterfield, D Allan

    2005-07-29

    Amyloid beta-peptide (Abeta) is the major constituent of senile plaques, a pathological hallmark of Alzheimer's disease (AD) brain. It is generally accepted that Abeta plays a central role in the pathophysiology of AD. Abeta is released from cells under entirely normal cellular conditions during the internalization and endosomal processing of amyloid precursor protein (APP). However, accumulation of Abeta can induce neurotoxicity. Our previous reports showed that decreasing the production of Abeta by giving an intracerebroventricular injection of a 42-mer phosphorothiolated antisense oligonucleotide (AO) directed at the Abeta region of the APP gene reduces lipid peroxidation and protein oxidation and improves cognitive deficits in aged senescence-accelerated mice prone 8 (SAMP8) mice. In order to investigate how Abeta level reduction improves learning and memory performance of SAMP8 mice through reduction of oxidative stress in brains, we used proteomics to identify the proteins that are less oxidized in 12-month-old SAMP8 mice brains treated with AO against the Abeta region of APP (12 mA) compared to that of the age-control SAMP8 mice. We found that the specific protein carbonyl levels of aldoase 3 (Aldo3), coronin 1a (Coro1a) and peroxiredoxin 2 (Prdx2) are significantly decreased in the brains of 12 mA SAMP8 mice compared to the age-controlled SAMP8 treated with random AO (12 mR). We also found that the expression level of alpha-ATP synthase (Atp5a1) was significantly decreased, whereas the expression of profilin 2 (Pro-2) was significantly increased in brains from 12 mA SAMP8 mice. Our results suggest that decreasing Abeta levels in aged brain in aged accelerated mice may contribute to the mechanism of restoring the learning and memory improvement in aged SAMP8 mice and may provide insight into the role of Abeta in the memory and cognitive deficits in AD. PMID:15932783

  3. Effects of Finish Cooling Temperature on Tensile Properties After Thermal Aging of Strain-Based API X60 Linepipe Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Lee, Dong Ho; Shin, Sang Yong; Lee, Sunghak; Ro, Yunjo; Lee, Chang Sun; Hwang, Byoungchul

    2015-09-01

    Two types of strain-based American Petroleum Institute (API) X60 linepipe steels were fabricated at two finish cooling temperatures, 673 K and 723 K (400 °C and 450 °C), and the effects of the finish cooling temperatures on the tensile properties after thermal aging were investigated. The strain-based API X60 linepipe steels consisted mainly of polygonal ferrite (PF) or quasi-polygonal ferrite and the volume fraction of acicular ferrite increased with the increasing finish cooling temperature. In contrast, the volume fractions of bainitic ferrite (BF) and secondary phases decreased. The tensile properties before and after thermal aging at 473 K and 523 K (200 °C and 250 °C) were measured. The yield strength, ultimate tensile strength, and yield ratio increased with the increasing thermal aging temperature. The strain hardening rate in the steel fabricated at the higher finish cooling temperature decreased rapidly after thermal aging, probably due to the Cottrell atmosphere, whereas the strain hardening rate in the steel fabricated at the lower finish cooling temperature changed slightly after thermal aging. The uniform elongation and total elongation decreased with increasing thermal aging temperature, probably due to the interactions between carbon atoms and dislocations. The uniform elongation decreased rapidly with the decreasing volume fractions of BF and martensite and secondary phases. The yield ratio increased with the increasing thermal aging temperature, whereas the strain hardening exponent decreased. The strain hardening exponent of PL steel decreased rapidly after thermal aging because of the large number of mobile dislocations between PF and BF or martensite or secondary phases.

  4. Age-dependent acceleration of ischemic injury in endothelial nitric oxide synthase-deficient mice: potential role of impaired VEGF receptor 2 expression.

    PubMed

    Qian, Hu Sheng; de Resende, Micheline Monterio; Beausejour, Christian; Huw, Ling-Yuh; Liu, Perry; Rubanyi, Gabor M; Kauser, Katalin

    2006-04-01

    Morbidity and mortality of peripheral arterial occlusive disease significantly increases with age, often exhibiting more severe disease pathology and decreased treatment effectiveness. Therapeutic angiogenesis with angiogenic growth factors may represent a valuable treatment option for the severely ill, older adult patient population. Aging is considered an independent cardiovascular risk factor, but pathomechanistically it is not well understood. Diminished endothelial nitric oxide (EDNO) production has been considered as a major contributor to the aging process. To investigate the effect of age on postischemic revascularization independent of changes in EDNO, we used endothelial nitric oxide synthase-deficient (ecNOS-KO) mice. We found an age-dependent acceleration in ischemic injury following unilateral femoral artery ligation in these animals compared to C57BL/J6 mice. Postischemic revascularization, quantified by measuring von Willebrand factor expression, was significantly impaired, suggesting that factors other than progressive EDNO deterioration are also involved in the age-dependent severe disease phenotype. Ischemia led to an increase in the expression of vascular endothelial growth factor receptor-2, KDR, in younger ecNOS-KO; however, this increase in KDR expression was absent in the older animals. Lack of increased KDR expression may provide a mechanistic explanation for the severe ischemic injury and perhaps can be used as a clinical marker to identify severe, vascular endothelial growth factor refractory patient population. PMID:16680073

  5. Aging.

    PubMed

    Park, Dong Choon; Yeo, Seung Geun

    2013-09-01

    Aging is initiated based on genetic and environmental factors that operate from the time of birth of organisms. Aging induces physiological phenomena such as reduction of cell counts, deterioration of tissue proteins, tissue atrophy, a decrease of the metabolic rate, reduction of body fluids, and calcium metabolism abnormalities, with final progression onto pathological aging. Despite the efforts from many researchers, the progression and the mechanisms of aging are not clearly understood yet. Therefore, the authors would like to introduce several theories which have gained attentions among the published theories up to date; genetic program theory, wear-and-tear theory, telomere theory, endocrine theory, DNA damage hypothesis, error catastrophe theory, the rate of living theory, mitochondrial theory, and free radical theory. Although there have been many studies that have tried to prevent aging and prolong life, here we introduce a couple of theories which have been proven more or less; food, exercise, and diet restriction. PMID:24653904

  6. Aging

    PubMed Central

    Park, Dong Choon

    2013-01-01

    Aging is initiated based on genetic and environmental factors that operate from the time of birth of organisms. Aging induces physiological phenomena such as reduction of cell counts, deterioration of tissue proteins, tissue atrophy, a decrease of the metabolic rate, reduction of body fluids, and calcium metabolism abnormalities, with final progression onto pathological aging. Despite the efforts from many researchers, the progression and the mechanisms of aging are not clearly understood yet. Therefore, the authors would like to introduce several theories which have gained attentions among the published theories up to date; genetic program theory, wear-and-tear theory, telomere theory, endocrine theory, DNA damage hypothesis, error catastrophe theory, the rate of living theory, mitochondrial theory, and free radical theory. Although there have been many studies that have tried to prevent aging and prolong life, here we introduce a couple of theories which have been proven more or less; food, exercise, and diet restriction. PMID:24653904

  7. Effects of aging temperature on G-phase precipitation and ferrite-phase decomposition in duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Hamaoka, T.; Nomoto, A.; Nishida, K.; Dohi, K.; Soneda, N.

    2012-12-01

    G-phase precipitation and ferrite-phase decomposition in a cast duplex stainless steel (DSS) aged at 623-723 K for up to 8000 h were investigated using atom probe tomography (APT). Large sample volume was observed in every APT experiment, which yielded significantly statistical results. The number density of G-phase precipitates tended to be high and their sizes were small at lower aging temperatures. G-phase precipitates grew during prolonged isothermal aging. The concentrations of nickel, silicon, manganese and molybdenum in G-phase precipitates tended to increase as the precipitates grew. Heterogeneous distributions of alloying elements within G-phase precipitates were observed. An interesting positional relationship of G-phase precipitates with dislocations was revealed. Regarding the ferrite-phase decomposition, local chromium concentrations in the ferrite phase varied fast at higher aging temperatures. Good correlation between the variation of local chromium concentrations and aging conditions was revealed, which indicates that the variation can be estimated for arbitrary aging conditions. Representative distances between chromium-enriched and chromium-diluted regions were long at higher aging temperatures. Time exponent of the representative distances of ferrite-phase decomposition as well as the size of G-phase precipitates increased with aging temperatures.

  8. Infant Gaze Following and Pointing Predict Accelerated Vocabulary Growth through Two Years of Age: A Longitudinal, Growth Curve Modeling Study

    ERIC Educational Resources Information Center

    Brooks, Rechele; Meltzoff, Andrew N.

    2008-01-01

    We found that infant gaze following and pointing predicts subsequent language development. At ages 0 ; 10 or 0 ; 11, infants saw an adult turn to look at an object in an experimental setting. Productive vocabulary was assessed longitudinally through two years of age. Growth curve modeling showed that infants who gaze followed and looked longer at…

  9. Effect of root canal sealer and artificial accelerated aging on fibreglass post bond strength to intraradicular dentin

    PubMed Central

    Santana, Fernanda-Ribeiro; Soares, Carlos-José; Ferreira, Josemar-Martins; Valdivi, Andréa-Dolores-Correia- Miranda; Souza, João-Batista-de

    2014-01-01

    Objectives: To evaluate the effect of root canal sealers (RCS) and specimen aging on the bond strength of fibre posts to bovine intraradicular dentin. Material and Methods: 80 teeth were used according the groups - Sealapextm, Sealer 26®, AH Plus® and specimens aging - test with no aging and with aging. The canals prepared were filled using one of each RCS. The posts were cemented. Roots were cross-sectioned to obtain two slices of each third. Samples were submitted to push-out test. Failure mode was evaluated under a confocal microscope. The data were analysed by ANOVA, Tukey’s, and Dunnet tests (α = 0.05). Results: No significant difference was detected among RCS. Aged control presented higher bond strength than immediate control. The aging did not result significant difference. Adhesive cement-dentin failure was prevalent in all groups. Conclusions: RCS interfered negatively with bonding of fibreglass posts cemented with self-adhesive resin cement to intraradicular dentin. Key words:Fibreglass post, bond strength, root dentin, endodontic sealer, aging. PMID:25593655

  10. Effects of Resveratrol on Daily Rhythms of Locomotor Activity and Body Temperature in Young and Aged Grey Mouse Lemurs

    PubMed Central

    Dal-Pan, Alexandre; Languille, Solène; Aujard, Fabienne

    2013-01-01

    In several species, resveratrol, a polyphenolic compound, activates sirtuin proteins implicated in the regulation of energy balance and biological clock processes. To demonstrate the effect of resveratrol on clock function in an aged primate, young and aged mouse lemurs (Microcebus murinus) were studied over a 4-week dietary supplementation with resveratrol. Spontaneous locomotor activity and daily variations in body temperature were continuously recorded. Reduction in locomotor activity onset and changes in body temperature rhythm in resveratrol-supplemented aged animals suggest an improved synchronisation on the light-dark cycle. Resveratrol could be a good candidate to restore the circadian rhythms in the elderly. PMID:23983895

  11. Room temperature aging of Narmco 5208 carbon-epoxy prepreg. I. Physicochemical characterization

    SciTech Connect

    Cole, K.C.; Noel, D.; Hechler, J.J.; Chouliotis, A.; Overbury, K.C. )

    1989-06-01

    Data are presented on physicochemical tests carried out on room-temperature aged samples of a commercially available carbon-epoxy composite prepreg system. The analytical methods used included Fourier transform IR (FTIR) spectroscopy, reverse-phase liquid chromatography (RPLC), high-speed RPLC, high-performance size-exclusion chromatography, differential scanning calorimetry and thermogravimetry, and pyrolysis/gas chromatography. All data indicated significant changes in these samples due to aging, with the most sensitive indices being those of FTIR and RPLC procedures. Results indicate that the number of unreacted epoxy groups decreased steadily at a rate of 0.34 percent per day, based on the initial amount, and the number of free amine-hardener molecules decreased at a rate of 1.05 percent per day. The amount of initial epoxy-amine reaction product increased significantly over the first 30 days, but then declined, due to further reactions of these to give higher-molecular-weight products. 23 refs.

  12. Lithium plating in a commercial lithium-ion battery - A low-temperature aging study

    NASA Astrophysics Data System (ADS)

    Petzl, Mathias; Kasper, Michael; Danzer, Michael A.

    2015-02-01

    The formation of metallic lithium on the negative graphite electrode in a lithium-ion (Li-ion) battery, also known as lithium plating, leads to severe performance degradation and may also affect the cell safety. This study is focused on the nondestructive characterization of the aging behavior during long-term cycling at plating conditions, i.e. low temperature and high charge rate. A commercial graphite/LiFePO4 Li-ion battery is investigated in order to elucidate the aging effects of lithium plating for real-world purposes. It is shown that lithium plating can be observed as a loss of cyclable lithium which affects the capacity balance of the electrodes. In this way, lithium plating counteracts its own occurrence during prolonged cycling. The capacity losses due to lithium plating are therefore decreasing at higher cycle numbers and the capacity retention curve exhibits an inflection point. It is further shown that the observed capacity fade is partly reversible. Electrochemical impedance spectroscopy (EIS) reveals a significant increase of the ohmic cell resistance due to electrolyte consumption during surface film formation on the plated lithium. Additional cell opening provides important quantitative information regarding the thickness of the lithium layer and the corresponding mass of the plated lithium.

  13. Temperature Accelerated Molecular Dynamics with Soft-Ratcheting Criterion Orients Enhanced Sampling by Low-Resolution Information.

    PubMed

    Cortes-Ciriano, Isidro; Bouvier, Guillaume; Nilges, Michael; Maragliano, Luca; Malliavin, Thérèse E

    2015-07-14

    Many proteins exhibit an equilibrium between multiple conformations, some of them being characterized only by low-resolution information. Visiting all conformations is a demanding task for computational techniques performing enhanced but unfocused exploration of collective variable (CV) space. Otherwise, pulling a structure toward a target condition biases the exploration in a way difficult to assess. To address this problem, we introduce here the soft-ratcheting temperature-accelerated molecular dynamics (sr-TAMD), where the exploration of CV space by TAMD is coupled to a soft-ratcheting algorithm that filters the evolving CV values according to a predefined criterion. Any low resolution or even qualitative information can be used to orient the exploration. We validate this technique by exploring the conformational space of the inactive state of the catalytic domain of the adenyl cyclase AC from Bordetella pertussis. The domain AC gets activated by association with calmodulin (CaM), and the available crystal structure shows that in the complex the protein has an elongated shape. High-resolution data are not available for the inactive, CaM-free protein state, but hydrodynamic measurements have shown that the inactive AC displays a more globular conformation. Here, using as CVs several geometric centers, we use sr-TAMD to enhance CV space sampling while filtering for CV values that correspond to centers moving close to each other, and we thus rapidly visit regions of conformational space that correspond to globular structures. The set of conformations sampled using sr-TAMD provides the most extensive description of the inactive state of AC up to now, consistent with available experimental information. PMID:26575778

  14. Aging and Tennis Playing in a Coincidence-Timing Task with an Accelerating Object: The Role of Visuomotor Delay

    ERIC Educational Resources Information Center

    Lobjois, Regis; Benguigui, Nicolas; Bertsch, Jean

    2005-01-01

    The purpose of the present study was to determine whether playing a specific ball sport, such as tennis, could maintain the coincidence-timing (CT) performance of older adults at a similar level to that of younger ones. To address this question, tennis players and nonplayers of three different age ranges (ages 20-30, 60-70, and 70-80 years)…

  15. Evidence that glucose metabolism is decreased in the cerebrum of aged female senescence-accelerated mouse; possible involvement of a low hexokinase activity.

    PubMed

    Kurokawa, T; Sato, E; Inoue, A; Ishibashi, S

    1996-08-16

    d-Glucose metabolism in cerebral cells prepared from aged senescence-accelerated mouse (SAM), was investigated in consideration of a sex difference. The production of 14CO2 from 6-[14C]D-glucose was reduced in female senescence-accelerated-prone mouse (SAMP) 8, a prone substrain, in comparison with that in female senescence-accelerated-resistant mouse (SAMR) 2, a control substrain, whereas there was no difference in males. The 2-deoxy-D-glucose uptake into cerebral cells from female SAMP8 was also lower than that of control mice. But, the 3-O-methyl-D-glucose uptake in SAMP8 was higher than that of SAMR2, suggesting that the low hexokinase activity was involved in the decreased glucose metabolism in cerebrum of SAMP8 females irrespective of glucose transporter. This possibility was supported by the finding that the contents of glucose 6-phosphate produced from glucose added to cerebral cells from SAMP8 was lower than that in ICR mice. PMID:8873128

  16. The drusen-like phenotype in aging Ccl2 knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages

    PubMed Central

    Luhmann, Ulrich F.O.; Robbie, Scott; Munro, Peter M.G.; Barker, Susie E.; Duran, Yanai; Luong, Vy; Fitzke, Frederick W.; Bainbridge, James W.B.; Ali, Robin R.; MacLaren, Robert E.

    2009-01-01

    Purpose Drusen, which can be defined clinically as yellowish white spots in the outer retina, are cardinal features of age-related macular degeneration (AMD). Ccl2 knockout (Ccl2-/-) mice have been reported to develop drusen and phenotypic features similar to AMD including an increased susceptibility to choroidal neovascularisation (CNV). Here we investigate the nature of the drusen-like lesions in vivo and further evaluate the Ccl2-/- mouse as a model for AMD. Methods We examined eyes of 2-25 month old Ccl2-/- and C57Bl/6 mice in vivo by autofluorescence scanning laser ophthalmoscopy (AF-SLO), electroretinography, and measured the extent of laser- induced CNV by fluorescein fundus angiography. We also assessed retinal morphology using immunohistochemistry and quantitative histological and ultrastructural morphometry. Results The drusen-like lesions of Ccl2-/- mice comprise accelerated accumulation of swollen CD68+, F4/80+ macrophages in the subretinal space that are apparent as autofluorescent foci on AF-SLO. These macrophages contain pigment granules and phagosomes with outer segment and lipofuscin inclusions that might account for their autofluorescence. We only observed age-related RPE damage, photoreceptor loss and sub-RPE deposits but, despite the accelerated accumulation of macrophages, we identified no spontaneous CNV development in senescent mice and found a reduced susceptibility to laser-induced CNV in Ccl2-/- mice. Conclusion These findings suggest that the lack of Ccl2 leads to a monocyte/macrophage trafficking defect during aging and to an impaired recruitment of these cells to sites of laser injury. Other, previously described features of Ccl2-/- mice that are similar to AMD may be the result of aging alone. PMID:19578022

  17. The Combined Influence of Molecular Weight and Temperature on the Aging and Viscoelastic Response of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC-SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of five materials of different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have higher creep compliance and creep rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of M (bar) (sub w) 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly. The short-term creep compliance data were used in association with Struik's effective time theory to predict the long-term creep compliance behavior for the different molecular weights. At long timescales, physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested.

  18. Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents.

    PubMed Central

    Lane, M A; Baer, D J; Rumpler, W V; Weindruch, R; Ingram, D K; Tilmont, E M; Cutler, R G; Roth, G S

    1996-01-01

    Many studies of caloric restriction (CR) in rodents and lower animals indicate that this nutritional manipulation retards aging processes, as evidenced by increased longevity, reduced pathology, and maintenance of physiological function in a more youthful state. The anti-aging effects of CR are believed to relate, at least in part, to changes in energy metabolism. We are attempting to determine whether similar effects occur in response to CR in nonhuman primates. Core (rectal) body temperature decreased progressively with age from 2 to 30 years in rhesus monkeys fed ad lib (controls) and is reduced by approximately 0.5 degrees C in age-matched monkeys subjected to 6 years of a 30% reduction in caloric intake. A short-term (1 month) 30% restriction of 2.5-year-old monkeys lowered subcutaneous body temperature by 1.0 degrees C. Indirect calorimetry showed that 24-hr energy expenditure was reduced by approximately 24% during short-term CR. The temporal association between reduced body temperature and energy expenditure suggests that reductions in body temperature relate to the induction of an energy conservation mechanism during CR. These reductions in body temperature and energy expenditure are consistent with findings in rodent studies in which aging rate was retarded by CR, now strengthening the possibility that CR may exert beneficial effects in primates analogous to those observed in rodents. PMID:8633033

  19. Dietary (-)-Epigallocatechin-3-gallate Supplementation Counteracts Aging-Associated Skeletal Muscle Insulin Resistance and Fatty Liver in Senescence-Accelerated Mouse.

    PubMed

    Liu, Hung-Wen; Chan, Yin-Ching; Wang, Ming-Fu; Wei, Chu-Chun; Chang, Sue-Joan

    2015-09-30

    Aging is accompanied by pathophysiological changes including insulin resistance and fatty liver. Dietary supplementation with (-)-epigallocatechin-3-gallate (EGCG) improves insulin sensitivity and attenuates fatty liver disease. We hypothesized that EGCG could effectively modulate aging-associated changes in glucose and lipid metabolism in senescence-accelerated mice (SAM) prone 8 (SAMP8). Higher levels of glucose, insulin, and free fatty acid, inhibited Akt activity, and decreased glucose transporter 4 (GLUT4) expression were observed in SAMP8 mice compared to the normal aging group, SAM resistant 1 mice. EGCG supplementation for 12 weeks successfully decreased blood glucose and insulin levels via restoring Akt activity and GLUT4 expression and stimulating AMPKα activation in skeletal muscle. EGCG up-regulated genes involved in mitochondrial biogenesis and subsequently restored mitochondrial DNA copy number in skeletal muscle of SAMP8 mice. Decreased adipose triglyceride lipase and increased sterol regulatory element binding proteins-1c (SREBP-1c) and carbohydrate responsive element binding protein at mRNA levels were observed in SAMP8 mice in accordance with hepatocellular ballooning and excess lipid accumulation. The pevention of hepatic lipid accumulation by EGCG was mainly attributed to down-regulation of mTOR and SREBP-1c-mediated lipid biosynthesis via suppression of the positive regulator, Akt, and activation of the negative regulator, AMPKα, in the liver. EGCG beneficially modulates glucose and lipid homeostasis in skeletal muscle and liver, leading to alleviation of aging-associated metabolic disorders. PMID:26152236

  20. The Relationship Between Maillard Reaction Product Formation and the Strength of Griege Yarns Subjected to Accelerated Ageing Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work examining the effect of ageing on cotton fiber surface chemical and HVI properties, yarn processing performance, and yarn quality showed that cotton bales stored for extended periods exhibit significant changes in a number of these variables including primarily surface sugar content, H...

  1. Age-dependent capacity to accelerate protein synthesis dictates the extent of compensatory growth in skeletal muscle following undernutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In both humans and animals, impaired growth during early life compromises adult lean body mass and muscle strength despite skeletal muscle’s large regenerative capacity. To identify the significance of developmental age on skeletal muscle’s capacity for catch-up growth following an episode of under ...

  2. Exposure to 56Fe irradiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Casadesus, Gemma; Carey, Amanda N.; Rabin, Bernard M.; Joseph, James A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles) such as 56Fe, produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism. For example, an increased release of reactive oxygen species, and the subsequent oxidative stress and inflammatory damage caused to the central nervous system, is likely responsible for the deficits seen in aging and following irradiation. Therefore, dietary antioxidants, such as those found in fruits and vegetables, could be used as countermeasures to prevent the behavioral changes seen in these conditions. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment, and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a “map” provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with 56Fe high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts, particularly middle-aged ones, to perform critical tasks during long-term space travel beyond the magnetosphere.

  3. Tai Ji Quan for the aging cancer survivor: Mitigating the accelerated development of disability, falls, and cardiovascular disease from cancer treatment

    PubMed Central

    Winters-Stone, Kerri

    2014-01-01

    Currently there are more than 13.7 million cancer survivors living in the U.S., and that figure is projected to increase by 31% in the next decade, adding another 4 million cancer survivors into the healthcare system. Cancer is largely a disease of aging, and the aging of the population will sharply raise the proportion of older cancer survivors, many of whom will be long-term survivors (5+ years post diagnosis). This review will address the potential utility of exercise to address three health problems that are of particular concern for the aging cancer survivor and the healthcare system, i.e., disability, falls, and cardiovascular disease, because the development of these age-related problems may be accelerated by cancer treatment. While there are many different modes of exercise that each produce specific adaptations, Tai Ji Quan may be a particularly suitable strategy to mitigate the development of age- and cancer-treatment-related problems. Based on studies in older adults without cancer, Tai Ji Quan produces musculoskeletal and cardiometabolic adaptations and is more easily performed by older adults due to its low energy cost and slower movement patterns. Since cancer survivors are mostly older, inactive, and often physically limited by the lingering side effects of treatment, they need to engage in safe, practical, and effective modes of exercise. The dearth of published controlled trials examining the efficacy of Tai Ji Quan to mitigate cancer-treatment-related musculoskeletal and cardiovascular side effects points to ample research opportunities to explore the application of this non-Western exercise modality to improve long-term outcomes for aging cancer survivors. PMID:25285233

  4. Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production.

    NASA Astrophysics Data System (ADS)

    Heitkötter, Julian; Marschner, Bernd

    2015-04-01

    Biochar is suggested for soil amelioration and carbon sequestration, based on its assumed role as the key factor for the long-term fertility of Terra preta soils. Several studies have shown that certain biochar properties can undergo changes through ageing processes, especially regarding charge characteristics. However, only a few studies determined the changes of different biochars under the same incubation conditions and in different soils. The objective of this study was to characterize the changes of pine chip (PC)- and corn digestate (CD)-derived biochars pyrolyzed at 400 or 600 °C during 100 days of laboratory incubation in a historical kiln soil and an adjacent control soil. Separation between soil and biochar was ensured by using mesh bags. Especially, changes in charge characteristics depended on initial biochar properties affected by feedstock and pyrolysis temperature and on soil properties affected by historic charcoal production. While the cation exchange capacity (CEC) markedly increased for both CD biochars during incubation, PC biochars showed no or only slight increases in CEC. Corresponding to the changes in CEC, ageing of biochars also increased the amount of acid functional groups with increases being in average about 2-fold higher in CD biochars than in PC biochars. Further and in contrast to other studies, the surface areas of biochars increased during ageing, likely due to ash leaching and degradation of tar residues. Changes in CEC and surface acidity of CD biochars were more pronounced after incubation in the control soil, while surface area increase was higher in the kiln soil. Since the two acidic forest soils used in this this study did not greatly differ in physical or chemical properties, the main process for inducing these differences in the buried biochar most likely is related to the differences in dissolved organic carbon (DOC). Although the kiln soil contained about 50% more soil organic carbon due to the presence of charcoal

  5. Accelerated formation of strontium silicate by solid-state reaction in NaCl-H2O(v) system at lower temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Junhao; Qiu, Yushi; Huang, Man; Zheng, Hongjuan; Yanagisawa, Kazumichi

    2015-08-01

    An environmentally friendly NaCl-H2O system was developed to prepare SrSiO3 nanostructures from commercially available raw materials, SrCO3 and amorphous SiO2 (α-SiO2), by a one-step solid state reaction at 600 °C for 2 h. The formation of SrSiO3 was accelerated by NaCl-H2O(v) system. The results demonstrate that both NaCl and H2O played vital roles to accelerate the formation of SrSiO3 nanostructures at lower temperature. NaCl was considered to enhance the diffusivity of starting materials and the rate of solid state reactions, and promote the crystallization of products at lower temperature. Additionally, two different phases of SrSiO3 (JPDS 00-032-1257) and SrSiO3 (JPDS 00-006-0415) were abtained without or with the addition of NaCl. Water vapor accelerated the decomposition of SrCO3, and absorbed water on the surface of solid materials dissolved NaCl to form an aqueous ionic liquid composed of Na and Cl ions, which was similar to a hydrothermal process, and further increased the diffusivity of components and reduced the reaction temperature.

  6. The effects of high energy electron beam irradiation in air on accelerated aging and on the structure property relationships of low density polyethylene

    NASA Astrophysics Data System (ADS)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2013-02-01

    The response of low density polyethylene (LDPE) to high energy electron beam irradiation in air (10 MeV) between 25 and 400 kGy was examined and compared to non-irradiated polyethylene in terms of the mechanical and structural properties. To quantify the degree of crosslinking, swelling studies were performed and from this it was observed that the crosslink density increased as the irradiation dose increased. Furthermore, a reduction was observed in the numerical data for molar mass between adjacent crosslinks and the number of monomeric units between adjacent crosslinks as the irradiation dose was conducted incrementally. Accelerated aging provided evidence that radicals became trapped in the polymer matrix of LDPE and this in turn initiated further reactions to transpire as time elapsed, leading to additional alteration in the structural properties. Fourier transform infrared spectroscopy (FTIR) was implemented to provide insight into this. This technique established that the aging process had increased the oxidative degradation products due to oxygen permeation into the polymer and double bonds within the material. Mechanical testing revealed an increase in the tensile strength and a decrease in the elongation at break. Accelerated aging caused additional modifications to occur in the mechanical properties which are further elucidated throughout this study. Dynamic frequency sweeps investigated the effects of irradiation on the structural properties of LDPE. The effect of varying the irradiation dose concentration was apparent as this controlled the level of crosslinking within the material. Maxwell and Kelvin or Voigt models were employed in this analytical technique to define the reaction procedure of the frequency sweep test with regards to non-crosslinked and crosslinked LDPE.

  7. Effect of Thermal Aging on Ductile-Brittle Transition Temperature of Modified 9Cr-1Mo Steel Evaluated with Reference Temperature Approach Under Dynamic Loading Condition

    NASA Astrophysics Data System (ADS)

    Sathyanarayanan, S.; Basu, Joysurya; Moitra, A.; Sasikala, G.; Singh, V.

    2013-05-01

    The effect of thermal aging on the ductile-brittle transition behavior has been assessed for a modified 9Cr-1Mo steel (P91) using the reference temperature approach under dynamic loading condition ( T {0/dy}). The steel in normalized and tempered (NT) condition and in different levels of subsequent cold work (CW) was subjected to thermal aging at temperatures of 873 K and 923 K (600 °C and 650 °C) for 5000 and 10,000 hours. For the NT and all the cold work conditions of the starting material, a drastic increase in T {0/dy} has been noticed after aging at 923 K (650 °C) for 10,000 h. A moderate increase was observed for the NT steel aged at 873 K (600 °C) for 5000 hours and for the 10 pct CW steel aged at 873 K (600 °C) for 10,000 h. A detailed transmission electron microscope (TEM) study of the embrittled materials aged at 923 K (650 °C)/10,000 hours and 873 K (600 °C)/10,000 hours has indicated presence of hexagonal Laves phase of Fe2(Mo,Nb) type with different size and spatial distributions. The increase in the T {0/dy} is attributed to the embrittling effect of a network of Laves phase precipitates along the grain boundaries.

  8. Mechanical properties and microstructure of 6061 aluminum alloy severely deformed by ARB process and subsequently aged at low temperatures

    NASA Astrophysics Data System (ADS)

    Terada, Daisuke; Kaneda, Yoma; Horita, Zenji; Matsuda, Kenji; Hirosawa, Shoichi; Tsuji, Nobuhiro

    2014-08-01

    In order to clarify the aging behavior in ultrafine grained (UFG) Al alloys, a commercial Al-Mg-Si alloy was severely deformed by accumulative roll-bonding (ARB) process and subsequently aged at 100°C or 170°C. The age-hardening behavior and microstructure change during aging were investigated. At 170 °C, age-hardening was observed in solution treated (ST) specimens, but solution-treated and ARB-processed specimens were not hardened by aging. On the other hand, the hardness of the both ST specimen and ARB-processed specimen increased by aging at 100°C. From TEM observation, it was found that the ARB- processed specimen had an ultrafine lamellar boundary structure and the structure was kept during aging at 170°C and 100°C. In the ST specimen aged at 170°C, fine precipitates were observed within coarse grains. In the specimen ARB-processed and subsequently aged at 170°C, coarser precipitates were observed within ultrafine grains and on grain boundaries. It was considered that the reason why the hardness of the specimens ARB-processed and subsequently aged did not increase was coarsening of precipitates. In the specimens aged at 100°C, obvious precipitates were not observed, but clusters Mg and Si seemed to form during the aging, leading to the increase in the hardness of the specimen. From the results, it was suggested that aging at low temperatures could improve mechanical properties of Al alloys through combining grain refinement and precipitation hardening.

  9. Using Current Data to Define New Approach in Age Related Macular Degeneration: Need to Accelerate Translational Research

    PubMed Central

    Anand, Akshay; Sharma, Kaushal; Chen, Wei; Sharma, Neel Kamal

    2014-01-01

    Age related macular degeneration (AMD) is one of the major retinal degenerative disease of ageing whose complex genetic basis remains undeciphered. The involvement of various other factors like mitochondrial genes, cytoskeletal proteins and the role of epigenetics has been described in this review. Several population based AMD genetic studies have been carried out worldwide. Despite the increased publication of reports, clinical translation still eludes this davastating disease. We suggest models to address roadblocks in clinical translation hoping that these would be beneficial to drive AMD research towards innovative biomarkers and therapeutics Therefore, addressing the need large autopsy studies and combining it with efficient use of bioinformatic tools, statistical modeling and probing SNP-biomarker association are key to time bound resolution of this disease. PMID:25132797

  10. C-14 and temperature variation around and after AD 775 - after the Dark Age Grand Minimum

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Ralph; Neuhäuser, Dagmar L.

    2016-04-01

    We have compiled an extensive catalog of aurora observations from the Far and Near East as well as Europe for the time from AD 550 to 845. From historic observations of aurorae and sunspots as well as the C-14 and Be-10 data, we can date the end of the Dark Age grand minimum to about AD 690; we see strong activity after this period. We can fix the solar activity Schwabe cycle maxima and minima in the 7th and 8th centuries.. The strong 14-C increase in data with 1-yr time resolution in the AD 770s (e.g. Miyake et al. 2012) is still a matter of debate, e.g. a solar super-flare. In the last three millennia, there were two more strong rapid rises in 14-C - around BC 671 and AD 1795. All three 14-C variations are embedded in similar evolution of solar activity, as we can show with various solar activity proxies; secular evolution of solar wind plays an important role. The rises of 14-C - within a few years each - can be explained by a sudden strong decrease in solar modulation potential leading to increased radioisotope production. The strong rises around AD 775 and 1795 are due to three effects: (i) very strong activity in the previous cycles (i.e. very low 14-C level), (ii) the declining phase of a very strong Schwabe cycle, and (iii) a phase of very weak activity after the strong 14-C rise - very short and/or weak cycle(s) like the suddenly starting Dalton minimum. In addition to arXiv:1503.01581 and arXiv:1508.06745, we also discuss the temperature depression and new quasi-annual 10-Be data. If a temperature depression right after AD 775 for a few decades can be confirmed, this would be fully consistent with our suggestion: reduced solar activity since AD 775 (for a few decades like in the Dalton minimum). Otherwise, one would not expect such a temperature depression after a solar super-flare.

  11. Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging.

    PubMed

    Dechat, Thomas; Shimi, Takeshi; Adam, Stephen A; Rusinol, Antonio E; Andres, Douglas A; Spielmann, H Peter; Sinensky, Michael S; Goldman, Robert D

    2007-03-20

    Mutations in the gene encoding nuclear lamin A (LA) cause the premature aging disease Hutchinson-Gilford Progeria Syndrome. The most common of these mutations results in the expression of a mutant LA, with a 50-aa deletion within its C terminus. In this study, we demonstrate that this deletion leads to a stable farnesylation and carboxymethylation of the mutant LA (LADelta50/progerin). These modifications cause an abnormal association of LADelta50/progerin with membranes during mitosis, which delays the onset and progression of cytokinesis. Furthermore, we demonstrate that the targeting of nuclear envelope/lamina components into daughter cell nuclei in early G(1) is impaired in cells expressing LADelta50/progerin. The mutant LA also appears to be responsible for defects in the retinoblastoma protein-mediated transition into S-phase, most likely by inhibiting the hyperphosphorylation of retinoblastoma protein by cyclin D1/cdk4. These results provide insights into the mechanisms responsible for premature aging and also shed light on the role of lamins in the normal process of human aging. PMID:17360326

  12. Associations between Changes in City and Address Specific Temperature and QT Interval - The VA Normative Aging Study

    PubMed Central

    Mehta, Amar J.; Kloog, Itai; Zanobetti, Antonella; Coull, Brent A.; Sparrow, David; Vokonas, Pantel; Schwartz, Joel

    2014-01-01

    Background The underlying mechanisms of the association between ambient temperature and cardiovascular morbidity and mortality are not well understood, particularly for daily temperature variability. We evaluated if daily mean temperature and standard deviation of temperature was associated with heart rate-corrected QT interval (QTc) duration, a marker of ventricular repolarization in a prospective cohort of older men. Methods This longitudinal analysis included 487 older men participating in the VA Normative Aging Study with up to three visits between 2000–2008 (n = 743). We analyzed associations between QTc and moving averages (1–7, 14, 21, and 28 days) of the 24-hour mean and standard deviation of temperature as measured from a local weather monitor, and the 24-hour mean temperature estimated from a spatiotemporal prediction model, in time-varying linear mixed-effect regression. Effect modification by season, diabetes, coronary heart disease, obesity, and age was also evaluated. Results Higher mean temperature as measured from the local monitor, and estimated from the prediction model, was associated with longer QTc at moving averages of 21 and 28 days. Increased 24-hr standard deviation of temperature was associated with longer QTc at moving averages from 4 and up to 28 days; a 1.9°C interquartile range increase in 4-day moving average standard deviation of temperature was associated with a 2.8 msec (95%CI: 0.4, 5.2) longer QTc. Associations between 24-hr standard deviation of temperature and QTc were stronger in colder months, and in participants with diabetes and coronary heart disease. Conclusion/Significance In this sample of older men, elevated mean temperature was associated with longer QTc, and increased variability of temperature was associated with longer QTc, particularly during colder months and among individuals with diabetes and coronary heart disease. These findings may offer insight of an important underlying mechanism of temperature

  13. An assessment of anti-Müllerian hormone in predicting mating outcomes in female hamsters that have undergone natural and chemically-accelerated reproductive aging.

    PubMed

    Roosa, Kristen A; Zysling, Devin A; Place, Ned J

    2015-04-01

    In mammals, female fertility declines with age due in part to a progressive loss of ovarian follicles. The rate of follicle decline varies among individuals making it difficult to predict the age of onset of reproductive senescence. Serum anti-Müllerian hormone (AMH) concentrations correlate with the numbers of ovarian follicles, and therefore, AMH could be a useful predictor of female fertility. In women and some production animals, AMH is used to identify which individuals will respond best to ovarian stimulation for assisted reproductive technologies. However, few studies have evaluated AMH's predictive value in unassisted reproduction, and they have yielded conflicting results. To assess the predictive value of AMH in the context of reproductive aging, we prospectively measured serum AMH in 9-month-old Siberian hamsters shortly before breeding them. Female Siberian hamsters experience substantial declines in fertility and fecundity by 9months of age. We also measured serum AMH in 5-month-old females treated with 4-vinylcyclohexene diepoxide (VCD), which selectively destroys ovarian follicles and functionally accelerates ovarian aging. Vehicle-treated 5-month-old females served as controls. AMH concentrations were significantly reduced in VCD-treated females yet many females with low AMH reproduced successfully. On average, both young and old hamsters that littered had higher AMH concentrations than females that did not. However, some females with relatively high AMH concentrations failed to litter, whereas several with low AMH succeeded. Our results suggest that mean AMH concentration can predict mating outcomes on a population or group level, but on an individual basis, a single AMH determination is less informative. PMID:25801548

  14. Brief Report: Isogenic Induced Pluripotent Stem Cell Lines From an Adult With Mosaic Down Syndrome Model Accelerated Neuronal Ageing and Neurodegeneration

    PubMed Central

    Murray, Aoife; Letourneau, Audrey; Canzonetta, Claudia; Stathaki, Elisavet; Gimelli, Stefania; Sloan‐Bena, Frederique; Abrehart, Robert; Goh, Pollyanna; Lim, Shuhui; Baldo, Chiara; Dagna‐Bricarelli, Franca; Hannan, Saad; Mortensen, Martin; Ballard, David; Syndercombe Court, Denise; Fusaki, Noemi; Hasegawa, Mamoru; Smart, Trevor G.; Bishop, Cleo; Antonarakis, Stylianos E.

    2015-01-01

    Abstract Trisomy 21 (T21), Down Syndrome (DS) is the most common genetic cause of dementia and intellectual disability. Modeling DS is beginning to yield pharmaceutical therapeutic interventions for amelioration of intellectual disability, which are currently being tested in clinical trials. DS is also a unique genetic system for investigation of pathological and protective mechanisms for accelerated ageing, neurodegeneration, dementia, cancer, and other important common diseases. New drugs could be identified and disease mechanisms better understood by establishment of well‐controlled cell model systems. We have developed a first nonintegration‐reprogrammed isogenic human induced pluripotent stem cell (iPSC) model of DS by reprogramming the skin fibroblasts from an adult individual with constitutional mosaicism for DS and separately cloning multiple isogenic T21 and euploid (D21) iPSC lines. Our model shows a very low number of reprogramming rearrangements as assessed by a high‐resolution whole genome CGH‐array hybridization, and it reproduces several cellular pathologies seen in primary human DS cells, as assessed by automated high‐content microscopic analysis. Early differentiation shows an imbalance of the lineage‐specific stem/progenitor cell compartments: T21 causes slower proliferation of neural and faster expansion of hematopoietic lineage. T21 iPSC‐derived neurons show increased production of amyloid peptide‐containing material, a decrease in mitochondrial membrane potential, and an increased number and abnormal appearance of mitochondria. Finally, T21‐derived neurons show significantly higher number of DNA double‐strand breaks than isogenic D21 controls. Our fully isogenic system therefore opens possibilities for modeling mechanisms of developmental, accelerated ageing, and neurodegenerative pathologies caused by T21. Stem Cells 2015;33:2077–2084 PMID:25694335

  15. Low-temperature atmospheric plasma increases the expression of anti-aging genes of skin cells without causing cellular damages.

    PubMed

    Choi, Jeong-Hae; Lee, Hyun-Wook; Lee, Jae-Koo; Hong, Jin-woo; Kim, Gyoo-cheon

    2013-03-01

    Efforts to employ various types of plasma in the field of skin care have increased consistently because it can regulate many biochemical reactions that are normally unaffected by light-based therapy. One method for skin rejuvenation adopted a high-temperature plasma generator to remove skin epithelial cells. In this case, the catalyzing effects of the plasma were rarely used due to the high temperature. Hence, the benefits of the plasma were not magnified. Recently, many types of low-temperature plasma devices have been developed for medical applications but their detailed functions and working mechanisms are unclear. The present study examined the effect of low-temperature microwave plasma on skin cells. Treatment with low-temperature plasma increased the expression of anti-aging genes in skin cells, including collagen, fibronectin and vascular endothelial growth factor. Furthermore, the plasma treatment did not cause cell death, but only induced slight cell growth arrest at the G2 phase. Although the cells treated with low-temperature plasma showed moderate growth arrest, there were no signs of thermal or genetic damage of skin cells. Overall, this low-temperature microwave plasma device induces the expressions of some anti-aging-related genes in skin cells without causing damage. PMID:22773133

  16. Evolution of magnetic phase at low aging temperature in a heavily cold-drawn stainless steel fiber

    NASA Astrophysics Data System (ADS)

    Yang, Shun-Tung; Hwang, Weng-Sing; Shyr, Tien-Wei; Cheng, I.-Lin

    2012-08-01

    The evolution of the magnetic phase upon aging at 300-520 °C in a heavily cold-drawn AISI 316L austenitic stainless steel fiber was studied using thermomagnetic analysis (TMA) and magnetic force microscopy with a heating stage. An increasing trend of magnetization from 50 °C to around 470 °C in the heating curves of TMA in austenitic stainless steels after a cold-drawing process was observed. No significant Ms temperature signal in the TMA curve at cooling indicated an increase in magnetization upon cooling period without significant phase transformation. A series of in situ magnetic force microscopy observations reveal a growth of the magnetic domain structure after aging at 300 °C for 2.5 h. Results show that the ferromagnetic increase during aging at lower annealing temperature resulted from the growth of martensite.

  17. (U-Th)/He Ages from Martian Meteorites Zagami and ALHA77005: Their Implications to Shock Temperatures

    NASA Astrophysics Data System (ADS)

    Min, K. K.; Farah, A.

    2011-12-01

    Thermal histories of Martian meteorites provide important clues regarding the surface conditions of Mars, ejection dynamics of meteorites from Mars, and their delivery process to Earth. To investigate the peak shock temperatures of Zagami and ALHA77005 Martian meteorites during their ejection from Mars, we applied (U-Th)/He thermochronometry to multiple phosphate aggregates. A total of 248 phosphate aggregates (merrillite crystals with other attached phases) were identified using Scanning Electron Microscopy (SEM), and then grouped together in samples of five to twenty aggregates in order to measure U, Th, Sm and He abundances. The resulting (U-Th)/He ages are widely distributed in the range of 19.8 Ma - 202.4 Ma for Zagami. The ages from large aggregates (150-250 μm: 147 ± 35 Ma) are generally older than the ages from the smaller groups (75-250 μm, 51 ± 31 Ma). The textural relationships of the phosphates with neighboring phases in the aggregates were investigated using SEM and BSE (Back-Scattered Electron) imaging to understand the age distribution. Among the most contrasting features is that the larger aggregates contain thicker (>20 μm) layers of attached phases, whereas the smaller aggregates exhibit much thinner (<20 μm) corresponding layers. These observations imply that the large aggregates, with thick exotic layers, experienced least alpha-recoil loss, thus generating reliable (U-Th)/He ages. In contrast, the smaller aggregates' external layers lack sufficient thickness to shield recoiled alphas, and subsequently yielding apparently younger (U-Th)/He ages. For ALHA77005, the (U-Th)/He ages are relatively well constrained in the range of 5.9 Ma - 17.9 Ma (11.4 ± 5.8 Ma) with one outlier of 78.2 Ma. The limited amount of sample for ALHA77005 preempted us from testing any size effects on the ages. The peak shock temperatures of these two meteorites were estimated using a simple volume diffusion model with an assumption that all He loss occurred during

  18. The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Feldman, Mark

    1994-01-01

    Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.

  19. Tympanic Membrane Temperature and Emotional Dispositions in Preschool-Aged Children: A Methodological Study

    ERIC Educational Resources Information Center

    Gunnar, Megan R.; Donzella, Bonny

    2004-01-01

    Tympanic membrane (TM) temperature asymmetry has been proposed as a phenotypic marker of vulnerability to negative emotionality in children. Little is known about the stability of TM temperatures or how readily one can obtain a reliable index of the phenotype. TM temperatures were collected from 3- to 5-year-old children (N=73) over 5 months…

  20. Parylene C Aging Studies.

    SciTech Connect

    Achyuthan, Komandoor; Sawyer, Patricia Sue.; Mata, Guillermo Adrian; White II, Gregory Von; Bernstein, Robert

    2014-09-01

    Parylene C is used in a device because of its conformable deposition and other advantages. Techniques to study Parylene C aging were developed, and "lessons learned" that could be utilized for future studies are the result of this initial study. Differential Scanning Calorimetry yielded temperature ranges for Parylene C aging as well as post-deposition treatment. Post-deposition techniques are suggested to improve Parylene C performance. Sample preparation was critical to aging regimen. Short-term (%7E40 days) aging experiments with free standing and ceramic-supported Parylene C films highlighted "lessons learned" which stressed further investigations in order to refine sample preparation (film thickness, single sided uniform coating, machine versus laser cutting, annealing time, temperature) and testing issues ("necking") for robust accelerated aging of Parylene C.

  1. Leaf-age effects on temperature responses of photosynthesis and respiration of an alpine oak, Quercus aquifolioides, in southwestern China.

    PubMed

    Zhou, Haoran; Xu, Ming; Pan, Hongli; Yu, Xiubo

    2015-11-01

    Temperature responses and sensitivity of photosynthesis (A(n_)T) and respiration for leaves at different ages are crucial to modeling ecosystem carbon (C) cycles and productivity of evergreen forests. Understanding the mechanisms and processes of temperature sensitivity may further shed lights on temperature acclimation of photosynthesis and respiration with leaf aging. The current study examined temperature responses of photosynthesis and respiration of young leaves (YLs) (fully expanded in current growth season) and old leaves (OLs) (fully expanded in last growth season) of Quercus aquifolioides Rehder and E.H. Wilson in an alpine oak forest, southwestern China. Temperature responses of dark respiration (R(dark)), net assimilation (A(n)), maximal velocity of carboxylation (V(cmax)) and maximum rate of electron transport (J(max)) were significantly different between the two leaf ages. Those differences implied different temperature response parameters should be used for leaves of different ages in modeling vegetation productivity and ecosystem C cycles in Q. aquifolioides forests and other evergreen forests. We found that RuBP carboxylation determined the downward shift of A(n_)T in OLs, while RuBP regeneration and the balance between Rubisco carboxylation and RuBP regeneration made little contribution. Sensitivity of stomatal conductance to vapor pressure deficit changed in OLs and compensated part of the downward shift. We also found that OLs of Q. aquifolioides had lower An due to lower stomatal conductance, higher stomatal conductance limitation and deactivation of the biochemical processes. In addition, the balance between R(dark) and A(n) changed between OLs and YLs, which was represented by a higher R(dark)/A(n) ratio for OLs. PMID:26452765

  2. Morphometric age estimate of the last phase of accelerated uplift in the Kazdag area (Biga Peninsula, NW Turkey)

    NASA Astrophysics Data System (ADS)

    Demoulin, A.; Altin, T. Bayer; Beckers, A.

    2013-11-01

    While the Plio-Quaternary uplift of the Kazdag mountain range (Biga Peninsula, NW Turkey) is generally acknowledged, little is known about its detailed timing. Partly because of this lack of data, the cause of this uplift phase is also debated, being associated either to back-arc extension in the rear of the Hellenic subduction zone, to transpression along the northern edge of the west-moving Anatolian microplate, or to extension driven by gravitational collapse. Here, we perform a morphometric study of the fluvial landscape at the scale of the Biga Peninsula, coupling the recently developed R/SR analysis of the drainage network with concavity and steepness measures of a set of 29 rivers of all sizes. While the dependence of profile concavity on basin size confirms that the landscape of the peninsula is still in a transient state, the spatial distribution of profile steepness values characterized by higher values for streams flowing down from the Kazdag massif shows that the latter undergoes higher uplift rates than the rest of the peninsula. We obtain a SR value of 0.324 ± 0.035 that, according to the relation established by Demoulin (2012), yields an age range of 0.5-1.3 Ma and a most probable value of 0.8 Ma for the time of the last tectonic perturbation in the region. In agreement with the analysis of knickpoint migration in a subset of rivers, this suggests that a pulse of uplift occurred at that time and, corroborated by sparse published observations in the Bayramiç and Çanakkale depressions, that the peninsula was uplifted as a whole from that time. This uplift pulse might have been caused by transient compressive conditions in the Anatolian plate when the Eratosthenes seamount came to subduct beneath the Cyprus arc around the early-to-mid Pleistocene transition (Schattner, 2010).

  3. NEUROTOXICITY OF CARBARYL IN THE AGING BROWN NORWAY RAT: EFFECTS ON CORE TEMPERATURE AND MOTOR ACTIVITY.

    EPA Science Inventory

    The US EPA is pursuing a variety of research efforts to assess the susceptibility of the aged to neurotoxicants. The BN strain is a popular animal model for aging studies but there is a need for improved methods of monitoring their physiological responses to neurotoxicants over t...

  4. Low-Temperature Aging Characteristics of Type 316L Stainless Steel Welds: Dependence on Solidification Mode

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Watanabe, Yutaka

    2008-06-01

    Thermal aging embrittlement of light water reactor (LWR) components made of stainless steel cast has been recognized as a potential degradation issue, and careful attention has been paid to it. Although welds of austenitic stainless steels have γ-δ duplex microstructure, which is similar to that of the stainless steel cast, examination of the thermal aging characteristics of the stainless steel welds is very limited. In this investigation, two types of type 316L stainless steel weld metal with different solidification modes were prepared using two kinds of filler metals having tailored Ni equivalent and Cr equivalent. Differences between the two weld metals in the morphology of microstructure, in the composition of δ-ferrite, and in hardening behaviors with isothermal aging at 335 °C have been investigated. The hardness of the ferrite phase has increased with aging time, while the hardness of austenite phase has stayed the same. The mottled aspect has been observed in δ-ferrite of aged samples by transmission electron microscopy (TEM) observation. These characteristics suggest that spinodal decomposition has occurred in δ-ferrite by aging at 335 °C. The age-hardening rate of δ-ferrite was faster for the primary austenite solidification mode (AF mode) sample than the primary ferrite solidification mode (FA mode) sample in the initial stage of the aging up to 2000 hours. It has been suggested that the solidification mode can affect the kinetics of spinodal decomposition.

  5. Early-type galaxy archeology: Ages, abundance ratios, and effective temperatures from full-spectrum fitting

    SciTech Connect

    Conroy, Charlie; Graves, Genevieve J.; Van Dokkum, Pieter G.

    2014-01-01

    The stellar populations of galaxies hold vital clues to their formation histories. In this paper we present results based on modeling stacked spectra of early-type galaxies drawn from the Sloan Digital Sky Survey as a function of velocity dispersion, σ, from 90 km s{sup –1} to 300 km s{sup –1}. The spectra are of extremely high quality, with typical signal-to-noise ratio of 1000 Å{sup –1}, and a wavelength coverage of 4000 Å –8800 Å. Our population synthesis model includes variation in 16 elements from C to Ba, a two-component star formation history, the shift in effective temperature, Δ T {sub eff}, of the stars with respect to a solar metallicity isochrone, and the stellar initial mass function, among other parameters. In our approach we fit the full optical spectra rather than a select number of spectral indices and are able to, for the first time, measure the abundances of the elements V, Cr, Mn, Co, and Ni from the integrated light of distant galaxies. Our main results are as follows: (1) light-weighted stellar ages range from 6-12 Gyr from low to high σ; (2) [Fe/H] varies by less than 0.1 dex across the entire sample; (3) Mg closely tracks O, and both increase from ≈0.0 at low σ to ∼0.25 at high σ; Si and Ti show a shallower rise with σ, and Ca tracks Fe rather than O; (4) the iron peak elements V, Cr, Mn, and Ni track Fe, while Co tracks O, suggesting that Co forms primarily in massive stars; (5) C and N track O over the full sample and [C/Fe] and [N/Fe] exceed 0.2 at high σ; and (6) the variation in Δ T {sub eff} with total metallicity closely follows theoretical predictions based on stellar evolution theory. This last result is significant because it implies that we are robustly solving not only for the detailed abundance patterns but also the detailed temperature distributions (i.e., isochrones) of the stars in these galaxies. A variety of tests reveal that the systematic uncertainties in our measurements are probably 0.05 dex or

  6. Early-type Galaxy Archeology: Ages, Abundance Ratios, and Effective Temperatures from Full-spectrum Fitting

    NASA Astrophysics Data System (ADS)

    Conroy, Charlie; Graves, Genevieve J.; van Dokkum, Pieter G.

    2014-01-01

    The stellar populations of galaxies hold vital clues to their formation histories. In this paper we present results based on modeling stacked spectra of early-type galaxies drawn from the Sloan Digital Sky Survey as a function of velocity dispersion, σ, from 90 km s-1 to 300 km s-1. The spectra are of extremely high quality, with typical signal-to-noise ratio of 1000 Å-1, and a wavelength coverage of 4000 Å -8800 Å. Our population synthesis model includes variation in 16 elements from C to Ba, a two-component star formation history, the shift in effective temperature, Δ T eff, of the stars with respect to a solar metallicity isochrone, and the stellar initial mass function, among other parameters. In our approach we fit the full optical spectra rather than a select number of spectral indices and are able to, for the first time, measure the abundances of the elements V, Cr, Mn, Co, and Ni from the integrated light of distant galaxies. Our main results are as follows: (1) light-weighted stellar ages range from 6-12 Gyr from low to high σ (2) [Fe/H] varies by less than 0.1 dex across the entire sample; (3) Mg closely tracks O, and both increase from ≈0.0 at low σ to ~0.25 at high σ Si and Ti show a shallower rise with σ, and Ca tracks Fe rather than O; (4) the iron peak elements V, Cr, Mn, and Ni track Fe, while Co tracks O, suggesting that Co forms primarily in massive stars; (5) C and N track O over the full sample and [C/Fe] and [N/Fe] exceed 0.2 at high σ and (6) the variation in Δ T eff with total metallicity closely follows theoretical predictions based on stellar evolution theory. This last result is significant because it implies that we are robustly solving not only for the detailed abundance patterns but also the detailed temperature distributions (i.e., isochrones) of the stars in these galaxies. A variety of tests reveal that the systematic uncertainties in our measurements are probably 0.05 dex or less. Our derived [Mg/Fe] and [O

  7. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  8. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  9. Low-temperature (180 °C) formation of large-grained Ge (111) thin film on insulator using accelerated metal-induced crystallization

    SciTech Connect

    Toko, K. Numata, R.; Oya, N.; Suemasu, T.; Fukata, N.; Usami, N.

    2014-01-13

    The Al-induced crystallization (AIC) yields a large-grained (111)-oriented Ge thin film on an insulator at temperatures as low as 180 °C. We accelerated the AIC of an amorphous Ge layer (50-nm thickness) by initially doping Ge in Al and by facilitating Ge diffusion into Al. The electron backscatter diffraction measurement demonstrated the simultaneous achievement of large grains over 10 μm and a high (111) orientation fraction of 90% in the polycrystalline Ge layer formed at 180 °C. This result opens up the possibility for developing Ge-based electronic and optical devices fabricated on inexpensive flexible substrates.

  10. Circadian rhythms of body temperature and locomotor activity in aging BALB/c mice: early and late life span predictors.

    PubMed

    Basso, Andrea; Del Bello, Giovanna; Piacenza, Francesco; Giacconi, Robertina; Costarelli, Laura; Malavolta, Marco

    2016-08-01

    Impairment of one or more parameters of circadian rhythms (CR) of body temperature (BT) and locomotor activity (LMA) are considered among the hallmarks of mammalian aging. These alterations are frequently used as markers for imminent death in laboratory mice. However, there are still contradictory data for particular strains and it is also uncertain which changes might predict senescence changes later in life, including the force of mortality. In the present paper we use telemetry to study LMA and CR of BT during aging of BALB/c mice. At our knowledge this is the first time that CR of BT and LMA are investigated in this strain in a range of age covering the whole lifespan, from young adult up to very old age. CR of BT was analyzed with a cosine model using a cross sectional approach and follow-up measurements. The results show that BT, LMA, amplitude, goodness-of-fit (GoF) to circadian cycle of temperature decrease with different shapes during chronological age. Moreover, we found that the % change of amplitude and BT in early life (5-19 months) can predict the remaining lifespan of the mice. Later in life (22-32 months), best predictors are single measurements of LMA and GoF. The results of this study also offer potential measures to rapidly identifying freely unrestrained mice with the worst longitudinal outcome and against which existing or novel biomarkers and treatments may be assessed. PMID:26820297

  11. Influence of temperature, environment, and thermal aging on the continuous cycle fatigue behavior of Hastelloy X and Inconel 617

    SciTech Connect

    Strizak, J.P.; Brinkman, C.R.; Booker, M.K.; Rittenhouse, P.L.

    1982-04-01

    Results are presented for strain-controlled fatigue and tensile tests for two nickel-base, solution-hardened reference structural alloys for use in several High-Temperature Gas-Cooled Reactor (HTGR) concepts. These alloys, Hastelloy X and Inconel 617, were tested from room temperature to 871/sup 0/C in air and impure helium. Materials were tested in both the solution-annealed and the preaged conditios, in which aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are given between the strain-controlled fatigue lives of these and several other commonly used alloys, all tested at 538/sup 0/C. An analysis is also presented of the continuous cycle fatigue data obtained from room temperature to 427/sup 0/C for Hastelloy G, Hastelloy X, Hastelloy C-276, and Hastelloy C-4, an effort undertaken in support of ASME code development.

  12. Room-temperature aging of Narmco 5208 carbon-epoxy prepreg. II - Physical, mechanical, and nondestructive characterization

    SciTech Connect

    Cole, K.C.; Noel, D.; Hechler, J.-J.; Cielo, P.; Krapez, J.-C. )

    1991-06-01

    Samples of Narmco Rigidite 5208/WC3000 carbon-epoxy composite prepreg were exposed to ambient temperature and 50 percent relative humidity for different periods up to 66 days. The aging has a significant effect on prepreg physical properties such as tack, volatiles content, and gel time. A set of four-ply laminates made from aged prepreg was subjected to tensile testing, ultrasonic inspection, and optothermal inspection. No relationship could be discerned between laminate properties and prepreg aging time. However, variations in panel homogeneity were observed, and these correlated with thermal diffusivity and tensile modulus measurements, but not with ultimate tensile strength or elongation. A set of six-ply laminates was used to measure compressive properties, interlaminar shear strength, and physical properties. These panels also showed variations in porosity, again unrelated to aging, but in addition, the fiber-resin ratio was observed to decrease with aging time. Both factors were found to affect mechanical properties. The implications concerning the importance of monitoring the aging by physicochemical methods are discussed. 30 refs.

  13. Accelerator-Based Irradiation Creep of Pyrolytic Carbon Used in TRISO Fuel Particles for the (VHTR) Very Hight Temperature Reactors

    SciTech Connect

    Lumin Wang; Gary Was

    2010-07-30

    Pyrolytic carbon (PyC) is one of the important structural materials in the TRISO fuel particles which will be used in the next generation of gas-cooled very-high-temperature reactors (VHTR). When the TRISO particles are under irradiation at high temperatures, creep of the PyC layers may cause radial cracking leading to catastrophic particle failure. Therefore, a fundamental understanding of the creep behavior of PyC during irradiation is required to predict the overall fuel performance.

  14. Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition

    NASA Astrophysics Data System (ADS)

    Cui, Mengmeng; Ma, Anzhou; Qi, Hongyan; Zhuang, Xuliang; Zhuang, Guoqiang; Zhao, Guohui

    2015-06-01

    Zoige wetland, locating on the Tibet Plateau, accounts for 6.2% of organic carbon storage in China. However, the fate of the organic carbon storage in the Zoige wetland remains poorly understood despite the Tibetan Plateau is very sensitive to global climate change. As methane is an important greenhouse gas and methanogenesis is the terminal step in the decomposition of organic matter, understanding how methane emissions from the Zoige wetland is fundamental to elucidate the carbon cycle in alpine wetlands responding to global warming. In this study, microcosms were performed to investigate the effects of temperature and vegetation on methane emissions and microbial processes in the Zoige wetland soil. A positive correlation was observed between temperature and methane emissions. However, temperature had no effect on the main methanogenic pathway—acetotrophic methanogenesis. Moreover, methanogenic community composition was not related to temperature, but was associated with vegetation, which was also involved in methane emissions. Taken together, these results indicate temperature increases methane emissions in alpine wetlands, while vegetation contributes significantly to methanogenic community composition and is associated with methane emissions. These findings suggest that in alpine wetlands temperature and vegetation act together to affect methane emissions, which furthers a global warming feedback loop.

  15. Age-related expression of sigma1 receptors and antidepressant efficacy of a selective agonist in the senescence-accelerated (SAM) mouse.

    PubMed

    Phan, Vân-Ly; Miyamoto, Yoshiaki; Nabeshima, Toshitaka; Maurice, Tangui

    2005-02-15

    The sigma1 receptor is a unique intracellular receptor whose activation results in an efficient modulation of several neurotransmitter responses. Its role as a target for the rapid nongenomic effects of neuro(active)steroids and the age-related diminutions in steroid levels suggested that targeting the sigma1 receptor might allow alleviation of age-related neuronal dysfunctions. We examined here the expression and behavioral efficacy of sigma1 receptors in the senescence-accelerated (SAM) mouse model. The sigma1 receptor mRNA expression was measured by using comparative RT-PCR in the olfactory bulb, hippocampus, hypothalamus, cortex, or cerebellum of senescence-prone SAMP/8 and senescence-resistant SAMR/1 control animals. No difference was observed between substrains in 6-, 9-, and 12-month-old (m.o.) mice. The sigma1 protein expression was analyzed by using immunohistochemical techniques. Labeling was intense in the olfactory bulb, hippocampus, hypothalamus, and midbrain of both SAMR/1 and SAMP/8 mice, and the distribution appeared unchanged in 6-, 9-, and 12-m.o. animals. The receptor's in vivo availability was examined by using in vivo [3H](+)-SKF-10,047 binding. No age-related difference was observed in the olfactory bulb, hippocampus, hypothalamus, cortex, cerebellum, and brainstem of 6- or 12-m.o. SAMR/1 or SAMP/8 mice. The antidepressant efficacy of the selective agonist igmesine was examined in the forced-swimming test. The compound decreased significantly the immobility duration at 60 mg/kg in 6- and 12-m.o. SAMR/1 and in 6-m.o. SAMP/8 mice. In 12-m.o. SAMP/8 mice, the drug efficacy was facilitated; a significant effect was measured at 30 mg/kg. Decreased neurosteroid levels, particularly of progesterone, were seen in 12-m.o. SAMP/8 mice that might explain the enhanced efficacy of igmesine. Preserved sigma1 receptor expression and enhanced behavioral efficacy of sigma1 agonists were measured in SAM animals, confirming the therapeutic opportunities for

  16. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization

    NASA Astrophysics Data System (ADS)

    Motta Dias, M. H.; Jansen, K. M. B.; Luinge, J. W.; Bersee, H. E. N.; Benedictus, R.

    2016-06-01

    The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of `as received' and `surface modified' carbon fibers (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45° specimens under six different isothermal conditions, 40, 50, 60, 65, 70 and 75 °C. Physical aging effects were evaluated on both systems using the short-term test method established by Struik. The results showed that the shapes of the curves were affected neither by physical aging nor by the test temperature, allowing then superposition to be made. A unified model was proposed with a single physical aging and temperature-dependent shift factor, a_{T,te}. It was suggested that the surface treatment carried out in SM-CF/PPS had two major effects on the creep response of CF/PPS composites at a reference temperature of 40 °C: a lowering of the initial compliance of about 25 % and a slowing down of the creep response of about 1.1 decade.

  17. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization

    NASA Astrophysics Data System (ADS)

    Motta Dias, M. H.; Jansen, K. M. B.; Luinge, J. W.; Bersee, H. E. N.; Benedictus, R.

    2016-02-01

    The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of `as received' and `surface modified' carbon fibers (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45° specimens under six different isothermal conditions, 40, 50, 60, 65, 70 and 75 °C. Physical aging effects were evaluated on both systems using the short-term test method established by Struik. The results showed that the shapes of the curves were affected neither by physical aging nor by the test temperature, allowing then superposition to be made. A unified model was proposed with a single physical aging and temperature-dependent shift factor, a_{T,te}. It was suggested that the surface treatment carried out in SM-CF/PPS had two major effects on the creep response of CF/PPS composites at a reference temperature of 40 °C: a lowering of the initial compliance of about 25 % and a slowing down of the creep response of about 1.1 decade.

  18. The Temperature and Cooling Age of the White Dwarf Companion to the Millisecond Pulsar PSR B1855+09.

    PubMed

    van Kerkwijk MH; Bell; Kaspi; Kulkarni

    2000-02-10

    We report on Keck and Hubble Space Telescope observations of the binary millisecond pulsar PSR B1855+09. We detect its white dwarf companion and measure mF555W=25.90+/-0.12 and mF814W=24.19+/-0.11 (Vega system). From the reddening-corrected color, (mF555W-mF814W&parr0;0=1.06+/-0.21, we infer a temperature Teff=4800+/-800 K. The white dwarf mass is known accurately from measurements of the Shapiro delay of the pulsar signal, MC=0.258+0.028-0.016 M middle dot in circle. Hence, given a cooling model, one can use the measured temperature to determine the cooling age. The main uncertainty in the cooling models for such low-mass white dwarfs is the amount of residual nuclear burning, which is set by the thickness of the hydrogen layer surrounding the helium core. From the properties of similar systems, it has been inferred that helium white dwarfs form with thick hydrogen layers, with mass greater, similar3x10-3 M middle dot in circle, which leads to significant additional heating. This is consistent with expectations from simple evolutionary models of the preceding binary evolution. For PSR B1855+09, though, such models lead to a cooling age of approximately 10 Gyr, which is twice the spin-down age of the pulsar. It could be that the spin-down age were incorrect, which would call the standard vacuum dipole braking model into question. For two other pulsar companions, however, ages well over 10 Gyr are inferred, indicating that the problem may lie with the cooling models. There is no age discrepancy for models in which the white dwarfs are formed with thinner hydrogen layers ( less, similar3x10-4 M middle dot in circle). PMID:10642200

  19. Ambient temperature, air pollution, and heart rate variability in an aging population.

    PubMed

    Ren, Cizao; O'Neill, Marie S; Park, Sung Kyun; Sparrow, David; Vokonas, Pantel; Schwartz, Joel

    2011-05-01

    Studies show that ambient temperature and air pollution are associated with cardiovascular disease and that they may interact to affect cardiovascular events. However, few epidemiologic studies have examined mechanisms through which ambient temperature may influence cardiovascular function. The authors examined whether temperature was associated with heart rate variability (HRV) in a Boston, Massachusetts, study population and whether such associations were modified by ambient air pollution concentrations. The population was a cohort of 694 older men examined between 2000 and 2008. The authors fitted a mixed model to examine associations between temperature and air pollution and their interactions with repeated HRV measurements, adjusting for covariates selected a priori on the basis of their previous studies. Results showed that higher ambient temperature was associated with decreases in HRV measures (standard deviation of normal-to-normal intervals, low-frequency power, and high-frequency power) during the warm season but not during the cold season. These warm-season associations were significantly greater when ambient ozone levels were higher (>22.3 ppb) but did not differ according to levels of ambient fine (≤2.5 μm) particulate matter. The authors conclude that temperature and ozone, exposures to both of which are expected to increase with climate change, might act together to worsen cardiovascular health and/or precipitate cardiovascular events via autonomic nervous system dysfunction. PMID:21385834

  20. Temperature and age affect the life history characteristics and fatty acid profiles of Moina macrocopa (Cladocera).

    PubMed

    Gama-Flores, José Luis; Huidobro-Salas, María Elena; Sarma, S S S; Nandini, S; Zepeda-Mejia, Ricardo; Gulati, Ramesh D

    2015-10-01

    Demographic responses and fatty acid profiles of Moina macrocopa were quantified under different temperature regimes (20°C, 25°C and 30°C and diurnally variable 20-30°C) and at fixed ration (10.65µgDWml(-1)) of Chlorella. Highest constant temperature (30°C) reduced the density of M. macrocopa. The cladocerans under the fluctuating temperature regime too had lower population growth (about 50% lower than that at constant 25°C). The survivorship of M. macrocopa was higher at 20°C than that at 25°C and 30°C or at variable temperature regime. Gross and net reproductive rates were higher at 25°C. At 20°C, neonates had the highest proportion (67%) of myristic, palmitic and stearic acids while the adults had the lowest (26%) proportion. For both adults and neonates, palmitoleic, linoleic and linolenic comprised of 15-35% of the total fatty acids. Higher percentage (19%) of linoleic acid was present in adults than neonates (7%). Adults had linolenic acid level which was 3-times higher than in neonates. Linoleic and linolenic fatty acids decreased with increasing temperature for neonates and adults from 20°C to 30°C. The demographic responses and fatty acid profiles of M. macrocopa were discussed in relation to level and mode of temperature exposure. PMID:26590466

  1. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.

    PubMed

    Butterfield, D Allan; Poon, H Fai

    2005-10-01

    The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels. PMID:16026957

  2. Alfvén wave solar model (AWSoM): proton temperature anisotropy and solar wind acceleration

    NASA Astrophysics Data System (ADS)

    Meng, X.; van der Holst, B.; Tóth, G.; Gombosi, T. I.

    2015-12-01

    Temperature anisotropy has been frequently observed in the solar corona and the solar wind, yet poorly represented in computational models of the solar wind. Therefore, we have included proton temperature anisotropy in our Alfvén wave solar model (AWSoM). This model solves the magnetohydrodynamic equations augmented with low-frequency Alfvén wave turbulence. The wave reflection due to Alfvén speed gradient and field-aligned vorticity results in turbulent cascade. At the gyroradius scales, the apportioning of the turbulence dissipation into coronal heating of the protons and electrons is through stochastic heating. This paper focuses on the impacts of the proton temperature anisotropy on the solar wind. We apply AWSoM to simulate the steady solar wind from the corona to 1 AU using synoptic magnetograms. The Alfvén wave energy density at the inner boundary is prescribed with a uniform Poynting flux per field strength. We present the proton temperature anisotropy distribution, and investigate the firehose instability in the heliosphere from our simulations. In particular, the comparisons between the simulated and observed solar wind properties at 1 AU during the ramping-up phase and the maximum of solar cycle 24 imply the importance of addressing the proton temperature anisotropy in solar wind modelling to capture the fast solar wind speed.

  3. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  4. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  5. Age-Associated Induction of Cell Membrane CD47 Limits Basal and Temperature-Induced Changes in Cutaneous Blood Flow

    PubMed Central

    Rogers, Natasha M.; Roberts, David D.; Isenberg, Jeffrey S.

    2012-01-01

    Objective We tested the hypothesis that the matricellular protein thrombospondin-1 (TSP1), through binding to and activation of the cell receptor CD47, inhibits basal and thermal-mediated cutaneous blood flow. Background Data Abnormal and decreased cutaneous blood flow in response to temperature changes or vasoactive agents is a feature of cardiovascular disease and aging. The reasons for decreased cutaneous blood flow remain incompletely understood. Further, a role for matricellular proteins in the regulation skin blood flow has never been proposed. Methods C57BL/6 wild type, TSP1- and CD47-null 12 and 72 week old male mice underwent analysis of skin blood flow (SkBF) via laser Doppler in response to thermal stress and vasoactive challenge. Results Young and aged TSP1- and CD47-null mice displayed enhanced basal and thermal sensitive SkFB changes compared to age matched wild type controls. Nitric oxide-mediated increases in SkBF were also greater in null mice. TSP1 and CD47 were expressed in skin from young wild type mice, and both were significantly upregulated in aged animals. Tissue 3',5'-cyclic guanosine monophosphate (cGMP), a potent vasodilator, was greater in skin samples from null mice compared to wild type regardless of age. Finally, treating wild type animals with a CD47 monoclonal antibody, that inhibits TSP1 activation of CD47, enhanced SkBF in both young and aged animals. Conclusions The above results suggest that secreted TSP1, via its cognate receptor CD47, acutely modulates SkBF. These data further support therapeutically targeting CD47 to mitigate age-associated loss of SkBF and maximize wound healing. PMID:23275312

  6. Accelerated Thermal-Aging-Induced Degradation of Organometal Triiodide Perovskite on ZnO Nanostructures and Its Effect on Hybrid Photovoltaic Devices.

    PubMed

    Kumar, S; Dhar, A

    2016-07-20

    Organometal halide perovskite materials are presently some of the pacesetters for light harvesting in hybrid photovoltaic devices because of their excellent inherent electrical and optical properties. However, long-term durability of such perovskite materials remains a major bottleneck for their commercialization especially in countries with hot and humid climatic conditions, thus violating the international standards for photovoltaic technology. Albeit, TiO2 as an electron-transport layer has been well investigated for perovskite solar cells; the high-temperature processing makes it unsuitable for low-cost and large-scale roll-to-roll production of flexible photovoltaic devices. Herein, we have chosen low-temperature (<150 °C)-processable nanostructured ZnO as the electron-selective layer and used a two-step method for sensitizing ZnO nanorods with methylammonium lead iodide (MAPbI3) perovskite, which is viable for flexible photovoltaic devices. We have also elaborately addressed the effect of the annealing duration on the conversion of a precursor solution into the required perovskite phase on ZnO nanostructures. The investigations show that the presence of ZnO nanostructures accelerates the rate of degradation of MAPbI3 films under ambient annealing and thus requires proper optimization. The role of ZnO in enhancing the degradation kinetics of the perovskite layer has been investigated by X-ray photoelectron spectroscopy and a buffer layer passivation technique. The effect of the annealing duration of the MAPbI3 perovskite on the optical, morphological, and compositional behavior has been closely studied and correlated with the photovoltaic efficiency. The study captures the degradation behavior of the commercially interesting MAPbI3 perovskite on a ZnO electron-transport layer and thus can provide insight for developing alternative families of perovskite material with better thermal and environmental stability for application in low-cost flexible photovoltaic

  7. Comparison of different low-temperature aging protocols: its effects on the mechanical behavior of Y-TZP ceramics.

    PubMed

    Pereira, G K R; Muller, C; Wandscher, V F; Rippe, M P; Kleverlaan, C J; Valandro, L F

    2016-07-01

    This study evaluated the effect of different protocols of low-temperature degradation simulation on the mechanical behavior (structural reliability and flexural strength), the surface topography (roughness), and phase transformation of a Y-TZP ceramic. Disc-shaped specimens (1.2mm×12mm, Lava Frame, 3M ESPE, Seefeld, Germany) were manufactured according to ISO:6872-2008 and divided (n=30) according to the aging protocol executed: "Ctrl" - as-sintered - without any treatment; "Dist Water" - stored at distilled water at 37°C for 365 days; "MC" mechanical cycling into two steps: First - 200N, 2.2Hz for 2.000.000 cycles, Second - 450N, 10Hz for 1.000.000 cycles; "Aut" - steam autoclave at 134°C, 2bar (200kPa) for 20h; "Aut+MC"- Aut and MC methods. Roughness analysis (μm) showed, for Ra parameter, higher statistically significant values for Ctrl 0.68 (0.27), while for Rz parameter, the highest values were observed for Ctrl 4.43(1.53) and Aut 2.24 (0.62). Surface topography analysis showed that none aging method promoted surface alterations when compared to control group. Phase transformation analysis showed that all aging methods promoted an increase in m-phase content (Ctrl: 0.94%, Dist Water: 20.73%, MC: 9.47%, Aut: 53.33% and Aut+MC: 61.91%). Weibull Analysis showed higher statistical characteristic strength values for Aut (1033.36MPa) and Dist Water (1053.76MPa). No aging method promoted deleterious impact either on the biaxial flexural strengths or on the structural reliabilities (Weibull moduli). Also, none of the aging methods promoted reduction of Y-TZP mechanical properties; thus the development of new methodologies and the association between mechanical stimuli and hydrothermal degradation should be considered to better understand the mechanism of low-temperature degradation. PMID:26921592

  8. The microstructure and hydriding characteristics of high temperature aged U-13 at.%Nb alloy

    NASA Astrophysics Data System (ADS)

    Ji, Hefei; Shi, Peng; Li, Ruiwen; Jiang, Chunli; Yang, Jiangrong; Hu, Guichao

    2015-09-01

    Niobium as alloying element significantly improves physical and chemical properties of metallic uranium, exhibiting great application potential in uranium alloy materials. The corrosion resistance performance as well as the internal alloy phase structure of uranium-niobium alloy is closely related to aging processes. Microstructure and hydriding characteristics of the 400 °C/9 h + 500 °C/2 h aged uranium-13 at.% niobium alloys (U-13 at.%Nb) were investigated from the point of view of relationship between the microstructure and growth of the hydriding areas. The microstructure, morphology and composition of the alloy phases before and after the hydriding were well characterized by the laser scanning confocal microscopy (LSCM), scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Experimental results indicated that the hydrogen preferentially reacted with the Nb-depleted phase α-like-U to form monolithic β-UH3Nbx, and the alloy microstructure played an important role in hydride growth.

  9. Recrystallization and aging effects associated with the high temperature deformation of waspaloy and inconel 718

    NASA Astrophysics Data System (ADS)

    Guimaraes, A. A.; Jonas, J. J.

    1981-09-01

    Cylindrical samples of Waspaloy and Inconel 718 were hot compressed, using a computerized Instron machine. The test program covered strain rates from 10•4 s•1 to 1 s•1 temperatures ranging from 875 °C to 1220 °C and deformations up to strains of 0.7. Interrupted tests were also carried out to determine the nature of the static softening and hardening processes. Dynamic recrystallization, partial or complete, was observed at temperatures above 950 °C. At 950 °C and below, dynamic recovery was the process controlling the deformation. Static softening was found to take place both by recovery and by recrystallization. Yield points were detected in Waspaloy under certain conditions as well as in Inconel 718. For Waspaloy the yield drops occurred in the vicinity of 1100 °C, and a deviation from the normal behavior in the stress-temperature curve was seen in the same temperature range. The mechanism responsible for the occurrence of the yield drops, which in turn is related to the deviation in the σ vsT curve, is believed to be short range ordering of the γ’ forming elements. For Inconel 718, elements such as Co, Cr and Fe may be causing short range ordering, but the locking mechanism may also be associated with the precipitation of carbides or other intermetallic phases on the dislocations.

  10. Confronting Twin Paradox Acceleration

    NASA Astrophysics Data System (ADS)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  11. Evolution of stress and deformations in high-temperature polymer matrix composites during thermo-oxidative aging

    NASA Astrophysics Data System (ADS)

    Pochiraju, K. V.; Tandon, G. P.; Schoeppner, G. A.

    2008-03-01

    This paper presents a model-based analysis of thermo-oxidative behavior in high-temperature polymer matrix composite (HTPMC) materials. The thermo-oxidative behavior of the composite differs from that of the constituents as the composite microstructure, the fiber/matrix interphase/interface behavior and damage mechanisms introduce anisotropy in the diffusion and oxidation behavior. Three-dimensional Galerkin finite element methods (GFEM) that model the thermo-oxidative layer growth with time are used together with homogenization techniques to analyze lamina-scale behavior using representative volume elements (RVEs). Thermo-oxidation-induced shrinkage is characterized from dimensional changes observed during aging in inert (argon) and oxidative (air) environments. Temperature-dependent macro-scale (bulk) mechanical testing and nano-indentation techniques are used for characterizing the effect of oxidative aging on modulus evolution. The stress and deformation fields in a single ply unidirectional lamina are studied using coupled oxidation evolution and non-linear elastic deformation analyses. Deformation and stress states are shown as a function of the aging time. While the thermo-oxidative processes are controlled by diffusion phenomenon in neat resin, the onset and propagation of damage determines the oxidative response of an HTPMC.

  12. Influence of ageing on the quasistatic fracture toughness of an SS 316(N) weld at ambient and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Sasikala, G.; Ray, S. K.

    2011-01-01

    The leak before break analysis of SS 316L(N) components of the prototype fast breeder reactor requires the elastic plastic fracture toughness parameter J for 0.2 mm crack extension, J0.2, especially for the welds, at the operating temperatures. The J- R curves for the welds produced using the consumable developed by Indira Gandhi Centre for Atomic Research, were determined in the as-welded condition as well as after thermal ageing (923 K/4200 h) conditions at 298 K and 643 K, using unloading compliance method for 298 K and normalization method for 643 K. The aged material exhibited pop-in crack extensions of magnitudes that, according to ASTM E1820 standard, could be ignored for multi-specimen data analysis for determining J0.2. Therefore, for this condition, J nom- Δ a curves were established using the multiple specimen method and also single specimen normalization method; for the latter, a modification earlier developed by the authors for accounting for small pop-in crack extensions was used. The value of J0.2 from both methods showed excellent reproducibility. Ageing is seen to reduce the toughness of this material considerably at both the testing temperatures.

  13. Groundwater noble gas, age, and temperature signatures in an Alpine watershed: Valuable tools in conceptual model development

    USGS Publications Warehouse

    Manning, A.H.; Caine, J.S.

    2007-01-01

    [1] Bedrock groundwater in alpine watersheds is poorly understood, mainly because of a scarcity of wells in alpine settings. Groundwater noble gas, age, and temperature data were collected from springs and wells with depths of 3-342 m in Handcart Gulch, an alpine watershed in Colorado. Temperature profiles indicate active groundwater circulation to a maximum depth (aquifer thickness) of about 200 m, or about 150 m below the water table. Dissolved noble gas data show unusually high excess air concentrations (>0.02 cm3 STP/g, ??Ne > 170%) in the bedrock, consistent with unusually large seasonal water table fluctuations (up to 50 m) observed in the upper part of the watershed. Apparent 3H/3He ages are positively correlated with sample depth and excess air concentrations. Integrated samples were collected from artesian bedrock wells near the trunk stream and are assumed to approximate flow-weighted samples reflecting bedrock aquifer mean residence times. Exponential mean ages for these integrated samples are remarkably consistent along the stream, four of five being from 8 to 11 years. The tracer data in combination with other hydrologic and geologic data support a relatively simple conceptual model of groundwater flow in the watershed in which (1) permeability is primarily a function of depth; (2) water table fluctuations increase with distance from the stream; and (3) recharge, aquifer thickness, and porosity are relatively uniform throughout the watershed in spite of the geological complexity of the Proterozoic crystalline rocks that underlie it. Copyright 2007 by the American Geophysical Union.

  14. Groundwater noble gas, age, and temperature signatures in an Alpine watershed: Valuable tools in conceptual model development

    NASA Astrophysics Data System (ADS)

    Manning, Andrew H.; Caine, Jonathan Saul

    2007-04-01

    Bedrock groundwater in alpine watersheds is poorly understood, mainly because of a scarcity of wells in alpine settings. Groundwater noble gas, age, and temperature data were collected from springs and wells with depths of 3-342 m in Handcart Gulch, an alpine watershed in Colorado. Temperature profiles indicate active groundwater circulation to a maximum depth (aquifer thickness) of about 200 m, or about 150 m below the water table. Dissolved noble gas data show unusually high excess air concentrations (>0.02 cm3 STP/g, ΔNe > 170%) in the bedrock, consistent with unusually large seasonal water table fluctuations (up to 50 m) observed in the upper part of the watershed. Apparent 3H/3He ages are positively correlated with sample depth and excess air concentrations. Integrated samples were collected from artesian bedrock wells near the trunk stream and are assumed to approximate flow-weighted samples reflecting bedrock aquifer mean residence times. Exponential mean ages for these integrated samples are remarkably consistent along the stream, four of five being from 8 to 11 years. The tracer data in combination with other hydrologic and geologic data support a relatively simple conceptual model of groundwater flow in the watershed in which (1) permeability is primarily a function of depth; (2) water table fluctuations increase with distance from the stream; and (3) recharge, aquifer thickness, and porosity are relatively uniform throughout the watershed in spite of the geological complexity of the Proterozoic crystalline rocks that underlie it.

  15. Using compute unified device architecture-enabled graphic processing unit to accelerate fast Fourier transform-based regression Kriging interpolation on a MODIS land surface temperature image

    NASA Astrophysics Data System (ADS)

    Hu, Hongda; Shu, Hong; Hu, Zhiyong; Xu, Jianhui

    2016-04-01

    Kriging interpolation provides the best linear unbiased estimation for unobserved locations, but its heavy computation limits the manageable problem size in practice. To address this issue, an efficient interpolation procedure incorporating the fast Fourier transform (FFT) was developed. Extending this efficient approach, we propose an FFT-based parallel algorithm to accelerate regression Kriging interpolation on an NVIDIA® compute unified device architecture (CUDA)-enabled graphic processing unit (GPU). A high-performance cuFFT library in the CUDA toolkit was introduced to execute computation-intensive FFTs on the GPU, and three time-consuming processes were redesigned as kernel functions and executed on the CUDA cores. A MODIS land surface temperature 8-day image tile at a resolution of 1 km was resampled to create experimental datasets at eight different output resolutions. These datasets were used as the interpolation grids with different sizes in a comparative experiment. Experimental results show that speedup of the FFT-based regression Kriging interpolation accelerated by GPU can exceed 1000 when processing datasets with large grid sizes, as compared to the traditional Kriging interpolation running on the CPU. These results demonstrate that the combination of FFT methods and GPU-based parallel computing techniques greatly improves the computational performance without loss of precision.

  16. Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45-64 age-group

    NASA Astrophysics Data System (ADS)

    Díaz, Julio; Linares, Cristina; Tobías, Aurelio

    2006-07-01

    This paper analyses the relationship between extreme temperatures and mortality among persons aged 45-64 years. Daily mortality in Madrid was analysed by sex and cause, from January 1986 to December 1997. Quantitative analyses were performed using generalised additive models, with other covariables, such as influenza, air pollution and seasonality, included as controls. Our results showed that impact on mortality was limited for temperatures ranging from the 5th to the 95th percentiles, and increased sharply thereafter. During the summer period, the effect of heat was detected solely among males in the target age group, with an attributable risk (AR) of 13.3% for circulatory causes. Similarly, NO2 concentrations registered the main statistically significant associations in females, with an AR of 15% when circulatory causes were considered. During winter, the impact of cold was exclusively observed among females having an AR of 7.7%. The magnitude of the AR indicates that the impact of extreme temperature is by no means negligible.

  17. Aggravated efficiency droop in vertical-structured gallium nitride light-emitting diodes induced by high temperature aging

    NASA Astrophysics Data System (ADS)

    Liu, Lilin; Yang, Jianfu; Ling, Minjie; Zhong, Jianwei; Teng, Dongdong; Wang, Gang

    2013-02-01

    The present work demonstrates that aging at higher temperatures significantly aggravates "efficiency droop" in the n-side-up vertical-structured GaN-based light-emitting diodes (LEDs). The observed luminous efficiency droop is over 40% at the measuring current of 350 mA. This phenomenon closely relates with creeping of Au80Sn20 eutectic bonds. On one hand, the plastic deformation accumulated during creeping at higher aging temperatures will make the LED epilayers tensile strained at room temperature. The tensile strain induces a change of the internal quantum efficiency (IQE). The maximum variation of IQE related with strain states was around 20%. On the other hand, creeping under the thermal-mismatching induced tensile stress activates voids' nucleation and growth in the solder bonds. The distribution profile of voids in solder bonds will be mapped on the multiple quantum-well structure in vertical-structured LED chips. Local current densities can be much higher than the average current density used in the calculation of LED's efficiencies. Therefore, the efficiency roll-off value will shift toward the smaller bias direction and the total internal quantum efficiency will decrease as current increases.

  18. Impact of extreme temperatures on daily mortality in Madrid (Spain) among the 45-64 age-group.

    PubMed

    Díaz, Julio; Linares, Cristina; Tobías, Aurelio

    2006-07-01

    This paper analyses the relationship between extreme temperatures and mortality among persons aged 45-64 years. Daily mortality in Madrid was analysed by sex and cause, from January 1986 to December 1997. Quantitative analyses were performed using generalised additive models, with other covariables, such as influenza, air pollution and seasonality, included as controls. Our results showed that impact on mortality was limited for temperatures ranging from the 5th to the 95th percentiles, and increased sharply thereafter. During the summer period, the effect of heat was detected solely among males in the target age group, with an attributable risk (AR) of 13.3% for circulatory causes. Similarly, NO(2) concentrations registered the main statistically significant associations in females, with an AR of 15% when circulatory causes were considered. During winter, the impact of cold was exclusively observed among females having an AR of 7.7%. The magnitude of the AR indicates that the impact of extreme temperature is by no means negligible. PMID:16718468

  19. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    SciTech Connect

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  20. Effects of aging time and temperature of Fe-1wt.%Cu on magnetic Barkhausen noise and FORC

    NASA Astrophysics Data System (ADS)

    Saleh, Muad; Cao, Yue; Edwards, Danny J.; Ramuhalli, Pradeep; Johnson, Bradley R.; McCloy, John S.

    2016-05-01

    Magnetic Barkhausen noise (MBN), hysteresis measurements, first order reversal curves (FORC), Vickers microhardness, and Transmission Electron Microscopy (TEM) analyses were performed on Fe-1wt.%Cu (Fe-Cu) samples isothermally aged at 700°C for 0.5 - 25 hours to obtain samples with different sized Cu precipitates and dislocation structures. Fe-Cu is used to simulate the thermal and irradiation-induced defects in copper-containing nuclear reactor materials such as cooling system pipes and pressure vessel materials. The sample series showed an initial increase followed by a decrease in hardness and coercivity with aging time, which is explained by Cu precipitates formation and growth as observed by TEM measurements. Further, the MBN envelope showed a continuous decrease in its magnitude and the appearance of a second peak with aging. Also, FORC diagrams showed multiple peaks whose intensity and location changed for different aging time. The changes in FORC diagrams are attributed to combined changes of the magnetic behavior due to Cu precipitate characteristics and dislocation structure. A second series of samples aged at 850°C, which is above the solid solution temperature of Fe-Cu, was studied to isolate the effects of dislocations. These samples showed a continuous decrease in MBN amplitude with aging time although the coercivity and hardness did not change significantly. The decrease of MBN amplitude and the appearance of the second MBN envelope peak are attributed to the changes in dislocation density and structure. This study shows that the effect of dislocations on MBN and FORC of Fe-Cu materials can vary significantly and should be considered in interpreting magnetic signatures.

  1. Effect of the severe plastic deformation and aging temperature on the strengthening, structure, and wear resistance of a beryllium bronze

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Korznikov, A. V.; Chernenko, N. L.

    2011-04-01

    The effect of the aging temperature, severe plastic deformation by equal-channel angular (ECA) pressing at 400°C, and subsequent aging on the rate of wear, friction coefficient, and microhardness of a commercial beryllium bronze Br.B2 quenched from 800°C has been investigated. The bronze structure before and after tribological tests has been studied with the help of metallographic and electron-microscopic methods of analysis. It has been shown that tempering (aging) of the bronze at 250-400°C for 3 h leading to a sharp growth of the hardness substantially increases the wear rate of the bronze in pair with the steel 45 under the conditions of both dry and boundary sliding friction. The cause of this is a decrease in the toughness of the surface layer of the bronze due to the precipitation of particles of the strengthening γ' phase (CuBe) from the α solid solution. Severe plastic deformation (ECA pressing) markedly enhances the wear resistance of the bronze subjected to subsequent aging at 250-400°C. This is because ECA pressing favors the formation of an extremely dispersed nanocrystalline structure with α-phase crystals 40-50 nm in size at the wear surface of the bronze; whereas in the friction zone of the quenched bronze or the quenched and aged bronze, there arises a significantly less dispersed structure with matrix crystals to 300 nm in size. It has been assumed that under conditions of the rotational mechanism of plastic deformation operating upon sliding friction in the near-surface layer of the bronze, the increase in dispersity of its structure attained by using ECA pressing enhances the toughness and, correspondingly, wear resistance of the aged bronze.

  2. Minimal impact of age and housing temperature on the metabolic phenotype of Acc2-/- mice.

    PubMed

    Brandon, Amanda E; Stuart, Ella; Leslie, Simon J; Hoehn, Kyle L; James, David E; Kraegen, Edward W; Turner, Nigel; Cooney, Gregory J

    2016-03-01

    An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12-16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42-54 weeks of age, male WT and Acc2(-/-) mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2(-/-) mice, aged Acc2(-/-) mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2(-/-) mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic-euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2(-/-) mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action. PMID:26668208

  3. Effect of Relative Humidity and Temperature on Photochemical Aging of Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S.; Brady, M. V.; Hinks, M. L.; Lignell, H.; Bertram, A. K.; Song, M.; Laskin, A.; Laskin, J.; Lin, P.

    2014-12-01

    The viscosity of secondary organic aerosol material (SOM) is known to depend sensitively on both temperature and relative humidity (RH). This work investigates the effect of these two important environmental variables on photochemical processes occurring inside model SOM. The experiments are designed to test the hypothesis that an increased SOM viscosity, resulting from either lower temperatures or decreased RH, should slow down the rates of photochemical processes in the organic matrix by constraining molecular motion inside the matrix. Photolysis of a probe molecule, 2,4-dinitrophenol, dispersed in SOM made produced through oxidation of alpha-pinene and limonene by ozone is investigated with absorption spectroscopy methods under controlled humidity and temperature. Viscosity of SOM is directly measured using "bead-mobility" technique and "poke-flow" techniques. Finally, the products of 2,4-dinitrophenol are analyzed by liquid chromatography high resolution mass spectrometry methods. The experiments suggest that the presence of water strongly affects photodegradation rates of organic compounds contained in the SOM matrix. Given the paramount role of photochemistry in driving the chemical reactions in the environment, these results will have significant implications for predicting lifetimes of photolabile atmospheric organic compounds trapped in organic particles.

  4. The effects of trace impurities in coal-derived liquid fuels on deposition and accelerated high temperature corrosion of cast superalloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. J.; Santoro, G. J.; Kohl, F. J.

    1981-01-01

    The effects of trace metal impurities in coal-derived liquids on deposition, high temperature corrosion and fouling were examined. Alloys were burner rig tested from 800 to 1100 C and corrosion was evaluated as a function of potential impurities. Actual and doped fuel test were used to define an empirical life prediction equation. An evaluation of inhibitors to reduce or eliminate accelerated corrosion was made. Barium and strontium were found to limit attack. Intermittent application of the inhibitors or silicon additions were found to be effective techniques for controlling deposition without losing the inhibitor benefits. A computer program was used to predict the dew points and compositions of deposits. These predictions were confirmed in deposition test. The potential for such deposits to plug cooling holes of turbine airfoils was evaluated. Tests indicated that, while a potential problem exists, it strongly depended on minor impurity variations.

  5. Microstructural behavior of iron and bismuth added Sn-1Ag-Cu solder under elevated temperature aging

    NASA Astrophysics Data System (ADS)

    Ali, Bakhtiar; Sabri, Mohd Faizul Mohd; Jauhari, Iswadi

    2016-07-01

    An extensive study was done to investigate the microstructural behavior of iron (Fe) and bismuth (Bi) added Sn-1Ag-0.5Cu (SAC105) under severe thermal aging conditions. The isothermal aging was done at 200 °C for 100 h, 200 h, and 300 h. Optical microscopy with cross-polarized light revealed that the grain size significantly reduces with Fe/Bi addition to the base alloy SAC105 and remains literally the same after thermal aging. The micrographs of field emission scanning electron microscopy (FESEM) with backscattered electron detector and their further analysis via imageJ software indicated that Fe/Bi added SAC105 showed a significant reduction in the IMCs size (Ag3Sn and Cu6Sn5), especially the Cu6Sn5 IMCs, as well as β-Sn matrix and a refinement in the microstructure, which is due to the presence of Bi in the alloys. Moreover, their microstructure remains much more stable under severe thermal aging conditions, which is because of the presence of both Fe and Bi in the alloy. The microstructural behavior suggests that Fe/Bi modified SAC105 would have much improved reliability under severe thermal environments. These modified alloys also have relatively low melting temperature and low cost.

  6. A new model for the estimation of time of death from vitreous potassium levels corrected for age and temperature.

    PubMed

    Zilg, B; Bernard, S; Alkass, K; Berg, S; Druid, H

    2015-09-01

    Analysis of potassium concentration in the vitreous fluid of the eye is frequently used by forensic pathologists to estimate the postmortem interval (PMI), particularly when other methods commonly used in the early phase of an investigation can no longer be applied. The postmortem rise in vitreous potassium has been recognized for several decades and is readily explained by a diffusion of potassium from surrounding cells into the vitreous fluid. However, there is no consensus regarding the mathematical equation that best describes this increase. The existing models assume a linear increase, but different slopes and starting points have been proposed. In this study, vitreous potassium levels, and a number of factors that may influence these levels, were examined in 462 cases with known postmortem intervals that ranged from 2h to 17 days. We found that the postmortem rise in potassium followed a non-linear curve and that decedent age and ambient temperature influenced the variability by 16% and 5%, respectively. A long duration of agony and a high alcohol level at the time of death contributed less than 1% variability, and evaluation of additional possible factors revealed no detectable impact on the rise of vitreous potassium. Two equations were subsequently generated, one that represents the best fit of the potassium concentrations alone, and a second that represents potassium concentrations with correction for decedent age and/or ambient temperature. The former was associated with narrow confidence intervals in the early postmortem phase, but the intervals gradually increased with longer PMIs. For the latter equation, the confidence intervals were reduced at all PMIs. Therefore, the model that best describes the observed postmortem rise in vitreous potassium levels includes potassium concentration, decedent age, and ambient temperature. Furthermore, the precision of these equations, particularly for long PMIs, is expected to gradually improve by adjusting the

  7. In Situ GISAXS investigation of low-temperature aging in oriented surfactant-mesostructured titania thin films

    DOE PAGESBeta

    Nagpure, Suraj; Das, Saikat; Garlapalli, Ravinder K.; Strzalka, Joseph; Rankin, Stephen E.

    2015-09-11

    In this study, the mechanism of forming orthogonally oriented hexagonal close packed (o-HCP) mesostructures during aging of surfactant-templated titania thin films is elucidated using in situ grazing incidence small-angle x-ray scattering (GISAXS) in a controlled-environment chamber. To promote orthogonal orientation, glass slides are modified with crosslinked Pluronic P123, to provide surfaces chemically neutral towards both blocks of mesophase template P123. At 4 °C and 80% RH, the o-HCP mesophase emerges in thin (~60 nm) films by a direct disorder-to-order transition, with no intermediate ordered mesophase. The Pluronic/titania o-HCP GISAXS intensity emerges only after ~10-12 minutes, much slower than previously reportedmore » for smallmolecule surfactants. The Avrami model applied to the data suggests 2D growth with nucleation at the start of the process with a half-life of 39.7 minutes for the aging time just after the induction period of 7 minutes followed by a period consistent with 1D growth kinetics. Surprisingly, films that are thicker (~250 nm) or cast on unmodified slides form o-HCP mesophase domains, but by a different mechanism (2D growth with continuous nucleation) with faster and less complete orthogonal alignment. Thus, the o-HCP mesophase is favored not only 2 by modifying the substrate, but also by aging at 4 °C, which is below the lower consolute temperature (LCST) of the poly(propylene oxide) block of P123. Consistent with this, in situ GISAXS shows that films aged at room temperature (above the LCST of the PPO block) have randomly oriented HCP mesostructure.« less

  8. Literature Review of the Effects of Radiation and Temperature on the Aging of Concrete

    SciTech Connect

    D. L. Fillmore

    2004-09-01

    The open literature and accessible United States Department of Energy-sponsored reports were reviewed for the effects of radiation and temperature on concrete. No effects of radiation were found for exposures less than 1010 neutron/cm2 or 1010 Gy gamma for periods less than 50 years. Reductions in compressive and tensile strength and a marked increase in volume are reported for exposures greater than 1020 neutron/cm2 or 1010 rads of gamma. There are conflicting reports of damage for doses in the middle ranges.

  9. 40Ar/39Ar impact ages and time-temperature argon diffusion history of the Bunburra Rockhole anomalous basaltic achondrite

    NASA Astrophysics Data System (ADS)

    Jourdan, Fred; Benedix, Gretchen; Eroglu, Ela.; Bland, Phil. A.; Bouvier, Audrey.

    2014-09-01

    The Bunburra Rockhole meteorite is a brecciated anomalous basaltic achondrite containing coarse-, medium- and fine-grained lithologies. Petrographic observations constrain the limited shock pressure to between ca. 10 GPa and 20 GPa. In this study, we carried out nine 40Ar/39Ar step-heating experiments on distinct single-grain fragments extracted from the coarse and fine lithologies. We obtained six plateau ages and three mini-plateau ages. These ages fall into two internally concordant populations with mean ages of 3640 ± 21 Ma (n = 7; P = 0.53) and 3544 ± 26 Ma (n = 2; P = 0.54), respectively. Based on these results, additional 40Ar/39Ar data of fusion crust fragments, argon diffusion modelling, and petrographic observations, we conclude that the principal components of the Bunburra Rockhole basaltic achondrite are from a melt rock formed at ∼3.64 Ga by a medium to large impact event. The data imply that this impact generated high enough energy to completely melt the basaltic target rock and reset the Ar systematics, but only partially reset the Pb-Pb age. We also conclude that a complete 40Ar∗ resetting of pyroxene and plagioclase at this time could not have been achieved at solid-state conditions. Comparison with a terrestrial analog (Lonar crater) shows that the time-temperature conditions required to melt basaltic target rocks upon impact are relatively easy to achieve. Ar data also suggest that a second medium-size impact event occurred on a neighbouring part of the same target rock at ∼3.54 Ga. Concordant low-temperature step ages of the nine aliquots suggest that, at ∼3.42 Ga, a third smaller impact excavated parts of the ∼3.64 Ga and ∼3.54 Ga melt rocks and brought the fragments together. The lack of significant impact activity after 3.5 Ga, as recorded by the Bunburra Rockhole suggests that (1) either the meteorite was ejected in a small secondary parent body where it resided untouched by large impacts, or (2) it was covered by a porous heat

  10. Graphics processing unit accelerated three-dimensional model for the simulation of pulsed low-temperature plasmas

    SciTech Connect

    Fierro, Andrew Dickens, James; Neuber, Andreas

    2014-12-15

    A 3-dimensional particle-in-cell/Monte Carlo collision simulation that is fully implemented on a graphics processing unit (GPU) is described and used to determine low-temperature plasma characteristics at high reduced electric field, E/n, in nitrogen gas. Details of implementation on the GPU using the NVIDIA Compute Unified Device Architecture framework are discussed with respect to efficient code execution. The software is capable of tracking around 10 × 10{sup 6} particles with dynamic weighting and a total mesh size larger than 10{sup 8} cells. Verification of the simulation is performed by comparing the electron energy distribution function and plasma transport parameters to known Boltzmann Equation (BE) solvers. Under the assumption of a uniform electric field and neglecting the build-up of positive ion space charge, the simulation agrees well with the BE solvers. The model is utilized to calculate plasma characteristics of a pulsed, parallel plate discharge. A photoionization model provides the simulation with additional electrons after the initial seeded electron density has drifted towards the anode. Comparison of the performance benefits between the GPU-implementation versus a CPU-implementation is considered, and a speed-up factor of 13 for a 3D relaxation Poisson solver is obtained. Furthermore, a factor 60 speed-up is realized for parallelization of the electron processes.

  11. Flame acceleration and the development of detonation in fuel-oxygen mixtures at elevated temperatures and pressures.

    PubMed

    Thomas, G O

    2009-04-30

    Experimental measurements of the conditions required for the development of detonation in a 7 mm tube following ignition by a low energy spark are reported. There are then compared to previous experimental propagation limit criterion using theoretical predictions of detonation cell sizes based on a one-dimensional detonation length scale computed using a detailed chemical kinetic scheme. Technical difficulties precluded direct cell size measurements. Ethylene-oxygen and hydrogen-methane-oxygen mixtures were investigated as well as methane-ammonia-oxygen, at initial pressures and temperatures in the ranges 1-7 bar and 293-540 K, respectively. The likelihood of detonation in ethylene-air mixtures in 150 mm and 50mm pipes at ambient initial conditions is also discussed in relation to published cell width data.The results indicate that whilst detonation cell width predictions do not provide a quantitative measure of the conditions for which detonation may develop in a pipe of given diameter, for prescribed initial conditions, predicted detonation cell size data does provide useful qualitative guidance as to possible hazardous compositions, particularly if preliminary experimental safety testing is thought to be necessary. PMID:18782653

  12. Analysis of the Effect of Time, Temperature, and Fuel Age on Helium Release from 238-Plutonium Dioxide Fuel

    NASA Astrophysics Data System (ADS)

    Barklay, Chadwick D.; Kramer, Daniel P.; Ruhkamp, Joseph D.

    2005-02-01

    The compound 238-plutonium dioxide has been employed over the last several decades as the fuel of choice in fabricating nuclear powered thermal to electrical converters. The alpha decay of 238-plutonium results in the generation of helium ions as a function of time. While the quantity of helium formed within the fuel can be easily calculated, its diffusion and/or release mechanism as a function of time, temperature, fuel quantity and age needs to be characterized. Within the scope of this paper the principle interest centers on determining the expected quantity of helium that will be released from solid 238-plutonium dioxide fuel forms enclosed within a primary containment vessel (PCV) under Hypothetical Accident Conditions (HAC) as described in 10 CFR 71.73(4). Once the quantity of helium released during HAC has been determined, the partial pressure increase due to the helium release can be calculated for a given shipping configuration. This partial pressure increase due to helium release during HAC for a selected shipping configuration can then be used to determine if the structural integrity of the package will be maintained or compromised during HAC. However, it is important to recognize that helium release is not a function of a particular shipping package, but as shall be demonstrated is a function of time, temperature, and fuel quantity and age.

  13. Analysis of the Effect of Time, Temperature, and Fuel Age on Helium Release from 238-Plutonium Dioxide Fuel

    SciTech Connect

    Barklay, Chadwick D.; Kramer, Daniel P.; Ruhkamp, Joseph D.

    2005-02-06

    The compound 238-plutonium dioxide has been employed over the last several decades as the fuel of choice in fabricating nuclear powered thermal to electrical converters. The alpha decay of 238-plutonium results in the generation of helium ions as a function of time. While the quantity of helium formed within the fuel can be easily calculated, its diffusion and/or release mechanism as a function of time, temperature, fuel quantity and age needs to be characterized. Within the scope of this paper the principle interest centers on determining the expected quantity of helium that will be released from solid 238-plutonium dioxide fuel forms enclosed within a primary containment vessel (PCV) under Hypothetical Accident Conditions (HAC) as described in 10 CFR 71.73(4). Once the quantity of helium released during HAC has been determined, the partial pressure increase due to the helium release can be calculated for a given shipping configuration. This partial pressure increase due to helium release during HAC for a selected shipping configuration can then be used to determine if the structural integrity of the package will be maintained or compromised during HAC. However, it is important to recognize that helium release is not a function of a particular shipping package, but as shall be demonstrated is a function of time, temperature, and fuel quantity and age.

  14. A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Nie, Mengyun; Xia, Jian; Dahn, J. R.

    2016-09-01

    The reactivity between charged Li[NixMnyCoz]O2 (NMC, with x + y + z = 1, x:y:z = 1:1:1 (NMC111), 4:4:2 (NMC442), 5:3:2 (NMC532), 6:2:2 (NMC622) and 8:1:1 (NMC811)) and traditional carbonate-based electrolytes at elevated temperatures was systematically studied using accelerating rate calorimetry (ARC). The ARC results showed that the upper cut-off potential and NMC composition strongly affect the thermal stability of the various NMC grades when traditional carbonate-based electrolyte was used. Although higher cut-off potential and higher Ni content can help increase the energy density of lithium ion cells, these factors generally increase the reactivity between charged NMC and electrolyte at elevated temperatures. It is hoped that this report can be used to help guide the wise selection of NMC grade and upper cut-off potential to achieve high energy density Li-ion cells without seriously compromising cell safety.

  15. Recovery Strategy and Mechanism of Aged Lithium Ion Batteries after Shallow Depth of Discharge at Elevated Temperature.

    PubMed

    Cui, Yingzhi; Du, Chunyu; Gao, Yunzhi; Yang, Jie; Zhang, Lingling; Guan, Ting; Yang, Lijie; Cheng, Xinqun; Zuo, Pengjian; Ma, Yulin; Yin, Geping

    2016-03-01

    Performance degradation of prismatic lithium ion batteries (LIBs) with LiCoO2 and mesocarbon microbead as active materials is investigated at an elevated temperature for shallow depth of discharge. Aged LIBs are disassembled to characterize the interface morphology, bulk structure, and reversible capacity of an individual electrode. It is found that the formation of interfacial blocking layer (IBL) on the anode results in the cathode state of charge (SOC) offset, which is the primary reason for the cathode degradation. The main capacity degradation of the anode is attributed to the IBL on the anode surface that impedes the intercalation and deintercalation of lithium ions. Because the full battery capacity is limited by the cathode during aging, the cathode SOC offset is the most important reason for the full battery capacity loss. Interestingly, the capacity of aged LIBs can be recovered to a relative high level after adding the electrolyte, rather than the solvent. This recovery is attributed to the relief of the cathode SOC offset and the dissolution of the anode IBL, which reopens the intercalation and deintercalation paths of lithium ions on the anode. Moreover, it is revealed that the relief of cathode SOC offset and the dissolution of anode IBL trigger and promote mutually to drive the recovery of LIBs. PMID:26848629

  16. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  17. Effects of temperature on desiccant catalysis of refrigerant and lubricant decomposition. Final report

    SciTech Connect

    Rohatgi, N.D.T.

    1998-06-01

    Accelerated aging at high temperatures (149 C) for short aging times (28 days) is effective in screening the compatibility of different materials in refrigeration systems. However, in actual applications temperatures are usually lower and operating times much longer. Therefore plots to allow for interpolation or extrapolation of experimental data to actual operating conditions are needed. In the current study, aging of refrigerant/lubricant/desiccant/metal systems was conducted at five different temperatures, and for each temperature at four different aging times. The data collected from this study provided plots relating refrigerant or lubricant decomposition to aging time, aging temperature, and type of desiccant, which can be used for interpolation or extrapolation.

  18. The effects of solution treatment on the mechanical properties of age-hardened A-286 bar stock at elevated and cryogenic temperature

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1972-01-01

    The mechanical properties are presented of solution treated and age hardened A-286 corrosion resistant steel bar stock. Material solution treated at 899 C or 982 C, each followed by an age hardening treatment of 718 C, was evaluated. Test specimens manufactured from 1.50 inch (3.81 cm) diameter bar stock were tested at temperatures from +649 C to -253 C. The test data indicated excellent tensile, yield, elongation and reduction-in-area properties at all testing temperatures for both solution treated and aged materials. Cryogenic temperature notched tensile, impact, and shear tests indicated excellent notch strength, ductility, and shear values. There was very little difference in the mechanical properties of the two solution treated and aged materials. The only exception was that the 962 C solution treated and aged material had superior stress rupture properties at 649 C.

  19. Colloid-associated plutonium aged at room temperature: evaluating its transport velocity in saturated coarse-grained granites.

    PubMed

    Xie, Jinchuan; Lin, Jianfeng; Wang, Yu; Li, Mei; Zhang, Jihong; Zhou, Xiaohua; He, Yifeng

    2015-01-01

    The fate and transport of colloidal contaminants in natural media are complicated by physicochemical properties of the contaminants and heterogeneous characteristics of the media. Size and charge exclusion are two key microscopic mechanisms dominating macroscopic transport velocities. Faster velocities of colloid-associated actinides than that of (3)H2O were consistently indicated in many studies. However, dissociation/dissolution of these sorbed actinides (e.g., Pu and Np), caused by their redox reactions on mineral surfaces, possibly occurred under certain chemical conditions. How this dissolution is related to transport velocities remains unanswered. In this study, aging of the colloid-associated Pu (pseudo-colloid) at room temperature and transport through the saturated coarse-grained granites were performed to study whether Pu could exhibit slower velocity than that of (3)H2O (UPu/UT <1). The results show that oxidative dissolution of Pu(IV) associated with the surfaces of colloidal granite particles took place during the aging period. The relative velocity of UPu/UT declined from 1.06 (unaged) to 0.745 (135 d) over time. Size exclusion limited to the uncharged nano-sized particles could not explain such observed UPu/UT <1. Therefore, the decline in UPu/UT was ascribed to the presence of electrostatic attraction between the negatively charged wall of granite pore channels and the Pu(V)O2(+), as evidenced by increasing Pu(V)O2(+) concentrations in the suspensions aged in sealed vessels. As a result of this attraction, Pu(V)O2(+) was excluded from the domain closer to the centerline of pore channels. This reveals that charge exclusion played a more important role in dominating UPu than the size exclusion under the specific conditions, where oxidative dissolution of colloid-associated Pu(IV) was observed in the aged suspensions. PMID:25462640

  20. Colloid-associated plutonium aged at room temperature: evaluating its transport velocity in saturated coarse-grained granites

    NASA Astrophysics Data System (ADS)

    Xie, Jinchuan; Lin, Jianfeng; Wang, Yu; Li, Mei; Zhang, Jihong; Zhou, Xiaohua; He, Yifeng

    2015-01-01

    The fate and transport of colloidal contaminants in natural media are complicated by physicochemical properties of the contaminants and heterogeneous characteristics of the media. Size and charge exclusion are two key microscopic mechanisms dominating macroscopic transport velocities. Faster velocities of colloid-associated actinides than that of 3H2O were consistently indicated in many studies. However, dissociation/dissolution of these sorbed actinides (e.g., Pu and Np), caused by their redox reactions on mineral surfaces, possibly occurred under certain chemical conditions. How this dissolution is related to transport velocities remains unanswered. In this study, aging of the colloid-associated Pu (pseudo-colloid) at room temperature and transport through the saturated coarse-grained granites were performed to study whether Pu could exhibit slower velocity than that of 3H2O (UPu/UT < 1). The results show that oxidative dissolution of Pu(IV) associated with the surfaces of colloidal granite particles took place during the aging period. The relative velocity of UPu/UT declined from 1.06 (unaged) to 0.745 (135 d) over time. Size exclusion limited to the uncharged nano-sized particles could not explain such observed UPu/UT < 1. Therefore, the decline in UPu/UT was ascribed to the presence of electrostatic attraction between the negatively charged wall of granite pore channels and the Pu(V)O2+, as evidenced by increasing Pu(V)O2+ concentrations in the suspensions aged in sealed vessels. As a result of this attraction, Pu(V)O2+ was excluded from the domain closer to the centerline of pore channels. This reveals that charge exclusion played a more important role in dominating UPu than the size exclusion under the specific conditions, where oxidative dissolution of colloid-associated Pu(IV) was observed in the aged suspensions.

  1. Neonatal stress affects the aging trajectory of female rats on the endocrine, temperature, and ventilatory responses to hypoxia.

    PubMed

    Fournier, Sébastien; Gulemetova, Roumiana; Baldy, Cécile; Joseph, Vincent; Kinkead, Richard

    2015-04-01

    Human and animal studies on sleep-disordered breathing and respiratory regulation show that the effects of sex hormones are heterogeneous. Because neonatal stress results in sex-specific disruption of the respiratory control in adult rats, we postulate that it might affect respiratory control modulation induced by ovarian steroids in female rats. The hypoxic ventilatory response (HVR) of adult female rats exposed to neonatal maternal separation (NMS) is ∼30% smaller than controls (24), but consequences of NMS on respiratory control in aging female rats are unknown. To address this issue, whole body plethysmography was used to evaluate the impact of NMS on the HVR (12% O2, 20 min) of middle-aged (MA; ∼57 wk old) female rats. Pups subjected to NMS were placed in an incubator 3 h/day for 10 consecutive days (P3 to P12). Controls were undisturbed. To determine whether the effects were related to sexual hormone decline or aging per se, experiments were repeated on bilaterally ovariectomized (OVX) young (∼12 wk old) adult female rats. OVX and MA both reduced the HVR significantly in control rats but had little effect on the HVR of NMS females. OVX (but not aging) reduced the anapyrexic response in both control and NMS animals. These results show that hormonal decline decreases the HVR of control animals, while leaving that of NMS female animals unaffected. This suggests that neonatal stress alters the interaction between sex hormone regulation and the development of body temperature, hormonal, and ventilatory responses to hypoxia. PMID:25652536

  2. High-Temperature Oxidation of Cr-Mo Steels and Its Relevance to Accelerated Rupture Testing and Life Assessment of In-Service Components

    NASA Astrophysics Data System (ADS)

    Singh Raman, R. K.; Al-Mazrouee, A.

    2007-08-01

    Use of accelerated creep rupture testing to assess the remaining life of components operating at elevated temperatures, such as pipes and tubes, is a common practice. At high temperatures, oxide growth can affect the creep results by diameter reduction and thus can increase the stress. However, the nature of oxide layer and hence oxidation behavior can be affected by minor changes in alloying composition of steels. This article presents the study of oxide-scale growth and specimen diameter reduction kinetics during oxidation of two Cr-Mo steels used in the manufacture of boiler tubing. Oxidation tests were carried out on 1.25Cr-0.5Mo and 2.25Cr-1Mo steels at 600 °C and 700 °C for times up to 1000 hours, using cylindrical specimens (similar to those used for creep testing). At 600 °C, the oxidation resistance of 2.25Cr-1Mo steel was superior to 1.25Cr-0.5Mo steel. However, the oxidation resistance of the two steels at 700 °C was similar in spite of the difference in their Cr contents. Multilayer oxide scales of oxides with various compositions were observed to have formed over the two steels. The similarity in oxidation kinetics of the two steels at 700 °C (in spite of differences in Cr contents) is ascribed to their Si contents and the predominant role of Si in oxidation at this temperature. The article also discusses implications of the variation in the oxidation kinetics to the stress enhancement in creep specimens due to scaling losses, and possible inaccuracies in creep data, as a result of minor variations in alloying composition.

  3. Effects of breeder age, broiler strain, and eggshell temperature on development and physiological status of embryos and hatchlings.

    PubMed

    Nangsuay, A; Meijerhof, R; van den Anker, I; Heetkamp, M J W; Morita, V De Souza; Kemp, B; van den Brand, H

    2016-07-01

    Breeder age and broiler strain can influence the availability of nutrients and oxygen, particularly through differences in yolk size and shell conductance. We hypothesized that these egg characteristics might affect embryonic responses to changes in eggshell temperature (EST). This study aimed to investigate the effect of breeder age, broiler strain, and EST on development and physiological status of embryos. A study was designed as a 2 × 2 × 2 factorial arrangement using 4 batches of 1,116 hatching eggs of 2 flock ages at 29 to 30 wk (young) and 54 to 55 wk (old) of Ross 308 and Cobb 500. EST of 37.8 (normal) or 38.9°C (high) was applied from incubation d 7 (E7) until hatching. The results showed that breeder age rather than broiler strain had an influence on yolk size (P = 0.043). The shell conductance was higher in Ross 308 than in Cobb 500 (P < 0.001). A high EST resulted in a higher yolk free body mass (YFBM) compared to the normal EST at E14 and E16, but at 3 h after hatch YFBM was lower when eggs were incubated at high EST compared to normal EST (all P < 0.001). Cobb 500 eggs yielded embryos with a lower YFBM at E14, E18, and 3 h after hatch (all P < 0.05) than Ross 308 eggs. Breeder age had no effect on YFBM, but the RSY weight was higher in embryos from the old flock compared to the young flock embryos at E14 and E16 (both P < 0.05). A 3-way interaction among breeder age, strain, and EST was found, especially for incubation duration, navel quality, and relative heart and stomach weights at 3 h after hatch (all P < 0.05). Based on the results obtained, we conclude that oxygen availability rather than nutrient availability determines embryonic development, and the egg characteristics affected embryonic responses to changes of EST, especially for variables related to chick quality. PMID:26957632

  4. Effect of high-temperature aging on electrical properties of HipercoxAE 27, HipercoxAE 50, and HipercoxAE 50 HS alloys

    NASA Astrophysics Data System (ADS)

    Geist, B.; Peterson, T.; Horwath, J. C.; Turgut, Z.; Huang, M. Q.; Snyder, R. A.; Fingers, R. T.

    2003-05-01

    Some more electric aircraft concepts require soft magnetic FeCo materials to be stable at temperatures as high as 773 K for long periods of time. At this high operating temperature, aging related processes may occur that result in changes in material properties. The material supplier typically specifies only room-temperature properties, and only limited reports are available on properties at elevated temperatures. The change in properties as a function of time at 773 K will give information on the lifetime of the material to assist designers when selecting materials for high-temperature applications. We have conducted a study on the effects of long-term aging on the magnetic, mechanical, and electrical properties of Hiperco® 27, Hiperco® 50, and Hiperco® 50 HS FeCo soft magnetic alloys. Samples of each material were aged in argon for 100, 1000, 2000, and 5000 h at 773 K. Here, we report the changes in electrical resistivity after aging. Of the three alloys, high-temperature aging has the greatest effect on the resistivity of Hiperco® 50. The electrical resistivities for each sample are compared and conclusions are drawn on the relative thermal stability of each alloy. The changes in electrical resistivities for each alloy are also related to changes in other properties, such as total power loss and coercivity, that were observed during this study on aging.

  5. Sorption Characteristic of Phenanthrene on Biochar-Amended Soils: Effect of feedstock, pyrolysis temperature, and aging duration

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Kim, C.; Kim, Y. S.; Kim, J.

    2015-12-01

    The high sorption capacity of biochar is widely known in environmental studies. Especially, biochar is effective for removal of hydrophobic organic compounds (HOCs) due to high surface area and porosity. In this study, the sorption characteristic of biochar-amended soil was evaluated by sorption kinetic experiment of phenanthrene (PHE). For PHE sorption test, the effect of biochar feedstock (sludge waste char (SWC), municipal waste char (MWC) and wood char (WC), Giant Miscanthus (GM)), pyrolysis temperature (400°C, 500°C and 700°C,), and duration of amending period (0, 3, 6, and 12 months) was assessed. Field Emission-Scanning Electron Microscopy (FE-SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR) techniques were used to detect pore structure and the surface functional group of biochar amended soils. For all kinetic tests, apparent sorption equilibrium was attained in 24 hr. The result showed that sorption capacity of biochar amended soils was greatly influenced by biochar feedstock and pyrolysis temperature. For all samples, the sorption capacity of PHE by biochar amended soils decreased with aging period. This observation is due to the fact that the aromatic characters of biochar are different by feedstock and pyrolysis temperature and the amount of O-containing hydrophilic functional groups increased surfaces of biochar by natural oxidation (e.g. carboxyl groups) as confirmed by the result of FT-IR and FE-SEM. In addition, biochar pore blockage by inorganic minerals, which tended to increase with aging period, might attenuate the sorption capacity of samples. In conclusion, biochar derived from various feed stocks are all effective for PHE sorption. But the sorption capacity of biochar amended soils decreased with increasing aging duration most likely due to increasing hydrophilic functional groups of biochar surfaces and pore blockage by inorganic minerals in the weathering processes. Therefore, for the design of biochar amendment to attenuate

  6. High-precision abundances of elements in solar twin stars. Trends with stellar age and elemental condensation temperature

    NASA Astrophysics Data System (ADS)

    Nissen, P. E.

    2015-07-01

    Context. High-precision determinations of abundances of elements in the atmospheres of the Sun and solar twin stars indicate that the Sun has an unusually low ratio between refractory and volatile elements. This has led to the suggestion that the relation between abundance ratios, [X/Fe], and elemental condensation temperature, TC, can be used as a signature of the existence of terrestrial planets around a star. Aims: HARPS spectra with S/N ≳ 600 for 21 solar twin stars in the solar neighborhood and the Sun (observed via reflected light from asteroids) are used to determine very precise (σ ~ 0.01 dex) differential abundances of elements in order to see how well [X/Fe] is correlated with TC and other parameters such as stellar age. Methods: Abundances of C, O, Na, Mg, Al, Si, S, Ca, Ti, Cr, Fe, Ni, Zn, and Y are derived from equivalent widths of weak and medium-strong spectral lines using MARCS model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Non-LTE effects are considered and taken into account for some of the elements. In addition, precise (σ ≲ 0.8 Gyr) stellar ages are obtained by interpolating between Yonsei-Yale isochrones in the log g - Teff diagram. Results: It is confirmed that the ratio between refractory and volatile elements is lower in the Sun than in most of the solar twins (only one star has the same [X/Fe]-TC distribution as the Sun), but for many stars, the relation between [X/Fe] and TC is not well defined. For several elements there is an astonishingly tight correlation between [X/Fe] and stellar age with amplitudes up to ~0.20 dex over an age interval of eight Gyr in contrast to the lack of correlation between [Fe/H] and age. While [Mg/Fe] increases with age, the s-process element yttrium shows the opposite behavior meaning that [Y/Mg] can be used as a sensitive chronometer for Galactic evolution. The Na/Fe and Ni/Fe ratios are not well correlated with stellar age, but define a tight Ni

  7. Relationship of clay-mineral diagenesis to temperature, age, and hydrocarbon generation–an example from the Anadarko Basin, Oklahoma

    USGS Publications Warehouse

    Pollastro, Richard M.; Schmoker, James W.

    1989-01-01

    Randomly interstratified illite/smectite (I/S) is present in Springeran and Morrowan rocks (Late Mississippian and Early Pennsylvanian) of the Anadarko basin, Oklahoma, at present-day depths <2,750 m, but disappears at depths of 2,750-3,050 m. Only ordered I/S is found in samples below 3,050 m. The work reported here relates the diagenesis of I/S to burial history and oil generation in the Anadarko basin and tests the dependence of the smectite-to-illite reaction on temperature and time. Published temperature models of clay diagenesis suggest that, for Tertiary and Cretaceous rocks, the transition from randomly interstratified I/S to ordered I/S occurs at 100-110°C. Burial reconstructions for the Anadarko basin indicate that maximum temperatures of 100-110°C correspond to present-day burial depths between 2,700 and 3,100 m. These independently calculated depths for the 100-110°C isotherm match the depths at which randomly interstratified I/S is observed to disappear in Morrowan-Springeran rocks. Thus, random I/S disappears at the same temperature in rocks that differ in age by some 300 m.y. Although the extent of the smectite-to-illite reaction is controlled by kinetics, and effects of time are apparent in laboratory experiments and short-lived geologic systems, the results of this study suggest that time plays a secondary role in long-term diagenetic settings.

  8. Age and thinning effects on the temperature sensitivities of respiration in loblolly pine plantations in eastern North Carolina

    NASA Astrophysics Data System (ADS)

    Miao, G.; Noormets, A.

    2014-12-01

    Age and silvicultural interventions are two important factors to characterize the development of commercial plantations. Effects of the two factors are of importance in quantifying the carbon dynamics in these artificial systems, but remain unclear. From 9 years (2005-2013) of carbon exchange observations in a mature (13 years old in 2005) and a young (2 years old in 2005) loblolly pine plantations located on the lower coastal plain in eastern North Carolina, we investigated the difference in temperature sensitivities (Q10) of ecosystem respiration (ER) of the two plantations of different ages. The mature plantation was thinned in August 2009, therefore, we compared the ER before and after thinning to estimate the potential response of Q10 to thinning in the mature plantation. Before thinning (years of 2005 - early half year of 2009), Q10 of ER in the mature plantation was similar across years. Even during a severe drought (e.g. 2007), Q10 did not differ from other years (p = 0.2 - 0.8 between years). The mean Q10 before harvesting was 2.33±0.05 (mean±SE). After thinning (years of 2010-2013), there was significant inter-annual variation in Q10 with an overall estimate at 2.23±0.05. The young plantation also exhibited significant inter-annual variations in Q10, and the overall Q10 was 2.99±0.11, higher than that of the mature plantation. The increased variability of temperature sensitivity after thinning in the mature plantation might be associated with the altered physical environment by thinning such as soil bulk density and soil water content, whereas the similar pattern in the young plantation might result from the primary contribution of heterotrophic respiration and also be confounded