Sample records for accelerated atherosclerotic process

  1. CML/CD36 accelerates atherosclerotic progression via inhibiting foam cell migration.

    PubMed

    Xu, Suining; Li, Lihua; Yan, Jinchuan; Ye, Fei; Shao, Chen; Sun, Zhen; Bao, Zhengyang; Dai, Zhiyin; Zhu, Jie; Jing, Lele; Wang, Zhongqun

    2018-01-01

    Among the various complications of type 2 diabetes mellitus, atherosclerosis causes the highest disability and morbidity. A multitude of macrophage-derived foam cells are retained in atherosclerotic plaques resulting not only from recruitment of monocytes into lesions but also from a reduced rate of macrophage migration from lesions. Nε-carboxymethyl-Lysine (CML), an advanced glycation end product, is responsible for most complications of diabetes. This study was designed to investigate the mechanism of CML/CD36 accelerating atherosclerotic progression via inhibiting foam cell migration. In vivo study and in vitro study were performed. For the in vivo investigation, CML/CD36 accelerated atherosclerotic progression via promoting the accumulation of macrophage-derived foam cells in aorta and inhibited macrophage-derived foam cells in aorta migrating to the para-aorta lymph node of diabetic apoE -/- mice. For the in vitro investigation, CML/CD36 inhibited RAW264.7-derived foam cell migration through NOX-derived ROS, FAK phosphorylation, Arp2/3 complex activation and F-actin polymerization. Thus, we concluded that CML/CD36 inhibited foam cells of plaque migrating to para-aorta lymph nodes, accelerating atherosclerotic progression. The corresponding mechanism may be via free cholesterol, ROS generation, p-FAK, Arp2/3, F-actin polymerization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Early changes in vascular reactivity in response to 56Fe irradiation in ApoE-/- mice

    NASA Astrophysics Data System (ADS)

    White, C. Roger; Yu, Tao; Gupta, Kiran; Babitz, Stephen K.; Black, Leland L.; Kabarowski, Janusz H.; Kucik, Dennis F.

    2015-03-01

    Epidemiological studies have established that radiation from a number of terrestrial sources increases the risk of atherosclerosis. The accelerated heavy ions in the galacto-cosmic radiation (GCR) that astronauts will encounter on in space, however, interact very differently with tissues than most types of terrestrial radiation, so the health consequences of exposure on deep-space missions are not clear. We demonstrated earlier that 56Fe, an important component of cosmic radiation, accelerates atherosclerotic plaque development. In the present study, we examined an earlier, pro-atherogenic event that might be predictive of later atherosclerotic disease. Decreased endothelium-dependent vasodilation is a prominent manifestation of vascular dysfunction that is thought to predispose humans to the development of structural vascular changes that precede the development of atherosclerotic plaques. To test the effect of heavy-ion radiation on endothelium-dependent vasodilation, we used the same ApoE-/- mouse model in which we previously demonstrated the pro-atherogenic effect of 56Fe on plaque development. Ten week old male ApoE mice (an age at which there is little atherosclerotic plaque in the descending aorta) were exposed to 2.6 Gy 56Fe. The mice were then fed a normal diet and housed under standard conditions. At 4-5 weeks post-irradiation, aortic rings were isolated and endothelial-dependent relaxation was measured. Relaxation in response to acetylcholine was significantly impaired in irradiated mice compared to age-matched, un-irradiated mice. This decrease in vascular reactivity following 56Fe irradiation occurred eight weeks prior to the development of statistically significant exacerbation of aortic plaque formation and may contribute to the formation of later atherosclerotic lesions.

  3. Marked Acceleration of Atherosclerosis following Lactobacillus casei induced Coronary Arteritis in a Mouse Model of Kawasaki Disease

    PubMed Central

    Chen, Shuang; Lee, Young Ho; Crother, Timothy R.; Fishbein, Michael; Zhang, Wenxuan; Yilmaz, Atilla; Shimada, Kenichi; Schulte, Danica J; Lehman, Thomas J.A.; Shah, Prediman K.; Arditi, Moshe

    2012-01-01

    Objective To investigate if Lactobacillus casei cell wall extract (LCWE)-induced Kawasaki Disease (KD) accelerates atherosclerosis in hypercholesterolemic mice. Method and Resuslts Apoe−/− or Ldlr−/− mice were injected with LCWE (KD mice) or PBS, fed high fat diet for 8 weeks, and atherosclerotic lesions in aortic sinuses (AS), arch (AC) and whole aorta were assessed. KD mice had larger, more complex aortic lesions with abundant collagen, and both extracellular and intracellular lipid and foam cells, compared to lesions in control mice despite similar cholesterol levels. Both Apoe−/− KD and Ldlr−/− KD mice showed dramatic acceleration in atherosclerosis vs. controls, with increases in en face aortic atherosclerosis and plaque size in both the AS and AC plaques. Accelerated atherosclerosis was associated with increased circulating IL-12p40, IFN-γ, TNF-α, and increased macrophage, DC, and T cell recruitment in lesions. Furthermore, daily injections of the IL-1Ra, which inhibits LCWE induced KD vasculitis, prevented the acceleration of atherosclerosis. Conclusions Our results suggest an important pathophysiologic link between coronary arteritis/vasculitis in the KD mouse model and subsequent atherosclerotic acceleration, supporting the concept that a similar relation may also be present in KD patients. These results also suggest that KD in childhood may predispose to accelerated and early atherosclerosis as adults. PMID:22628430

  4. LOX-1, OxLDL, and Atherosclerosis

    PubMed Central

    Catapano, Alberico Luigi

    2013-01-01

    Oxidized low-density lipoprotein (OxLDL) contributes to the atherosclerotic plaque formation and progression by several mechanisms, including the induction of endothelial cell activation and dysfunction, macrophage foam cell formation, and smooth muscle cell migration and proliferation. Vascular wall cells express on their surface several scavenger receptors that mediate the cellular effects of OxLDL. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the main OxLDL receptor of endothelial cells, and it is expressed also in macrophages and smooth muscle cells. LOX-1 is almost undetectable under physiological conditions, but it is upregulated following the exposure to several proinflammatory and proatherogenic stimuli and can be detected in animal and human atherosclerotic lesions. The key contribution of LOX-1 to the atherogenic process has been confirmed in animal models; LOX-1 knockout mice exhibit reduced intima thickness and inflammation and increased expression of protective factors; on the contrary, LOX-1 overexpressing mice present an accelerated atherosclerotic lesion formation which is associated with increased inflammation. In humans, LOX-1 gene polymorphisms were associated with increased susceptibility to myocardial infarction. Inhibition of the LOX-1 receptor with chemicals or antisense nucleotides is currently being investigated and represents an emerging approach for controlling OxLDL-LOX-1 mediated proatherogenic effects. PMID:23935243

  5. Quantifying progression and regression of thrombotic risk in experimental atherosclerosis.

    PubMed

    Palekar, Rohun U; Jallouk, Andrew P; Goette, Matthew J; Chen, Junjie; Myerson, Jacob W; Allen, John S; Akk, Antonina; Yang, Lihua; Tu, Yizheng; Miller, Mark J; Pham, Christine T N; Wickline, Samuel A; Pan, Hua

    2015-07-01

    Currently, there are no generally applicable noninvasive methods for defining the relationship between atherosclerotic vascular damage and risk of focal thrombosis. Herein, we demonstrate methods to delineate the progression and regression of vascular damage in response to an atherogenic diet by quantifying the in vivo accumulation of semipermeable 200-300 nm perfluorocarbon core nanoparticles (PFC-NP) in ApoE null mouse plaques with [(19)F] magnetic resonance spectroscopy (MRS). Permeability to PFC-NP remained minimal until 12 weeks on diet, then increased rapidly following 12 weeks, but regressed to baseline within 8 weeks after diet normalization. Markedly accelerated clotting (53.3% decrease in clotting time) was observed in carotid artery preparations of fat-fed mice subjected to photochemical injury as defined by the time to flow cessation. For all mice on and off diet, an inverse linear relationship was observed between the permeability to PFC-NP and accelerated thrombosis (P = 0.02). Translational feasibility for quantifying plaque permeability and vascular damage in vivo was demonstrated with clinical 3 T MRI of PFC-NP accumulating in plaques of atherosclerotic rabbits. These observations suggest that excessive permeability to PFC-NP may indicate prothrombotic risk in damaged atherosclerotic vasculature, which resolves within weeks after dietary therapy. © FASEB.

  6. Genetic Markers of Cardiovascular Disease in Rheumatoid Arthritis

    PubMed Central

    Rodríguez-Rodríguez, Luis; López-Mejías, Raquel; García-Bermúdez, Mercedes; González-Juanatey, Carlos; González-Gay, Miguel A.; Martín, Javier

    2012-01-01

    Cardiovascular (CV) disease is the most common cause of premature mortality in patients with rheumatoid arthritis (RA). It is the result of an accelerated atherosclerotic process. Both RA and atherosclerosis are complex polygenic diseases. Besides traditional CV risk factors and chronic inflammation, a number of studies have confirmed the role of genetic factors in the development of the atherogenesis observed in RA. In this regard, besides a strong association between the HLA-DRB1∗04 shared epitope alleles and both endothelial dysfunction, an early step in the atherosclerotic process, and clinically evident CV disease, other polymorphisms belonging to genes implicated in inflammatory and metabolic pathways, located inside and outside the HLA region, such as the 308 variant (G > A, rs1800629) of the TNFA locus, the rs1801131 polymorphism (A > C; position + 1298) of the MTHFR locus, or a deletion of 32 base pairs on the CCR5 gene, seem to be associated with the risk of CV disease in patients with RA. Despite considerable effort to decipher the genetic basis of CV disease in RA, further studies are required to better establish the genetic influence in the increased risk of CV events observed in patients with RA. PMID:22927710

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yi xi; Zhang, Man; Cai, Yuehua

    Activation of the silent mating type information regulation 2 homolog 1 (SIRT1) has been shown consistent antiinflammatory function. However, little information is available on the function of SIRT1 during Angiotensin II (AngII)-induced atherosclerosis. Here we report atheroprotective effects of sirt1 activation in a model of AngII-accelerated atherosclerosis, characterized by suppression pro-inflammatory transcription factors Nuclear transcription factor (NF)-κB and Signal Transducers and Activators of Transcription. (STAT) signaling pathway, and atherosclerotic lesion macrophage content. In this model, administration of the SIRT1 agonist SRT1720 substantially attenuated AngII-accelerated atherosclerosis with decreasing blood pressure and inhibited NF-κB and STAT3 activation, which was associated with suppressionmore » of inflammatory factor and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in AngII-treated VSMCs and macrophages: SIRT1 activation inhibited the expression levels of proinflammatory factor. These studies uncover crucial proinflammatory mechanisms of AngII and highlight actions of SIRT1 activation to inhibit AngII signaling, which is atheroprotective. - Highlights: • SRT1720 reduced atherosclerotic lesion size in aortic arches and atherosclerotic lesion macrophage content. • SRT1720 could inhibit the phosphorylation of STAT3 and p65 phosphorylation and translocation. • SRT1720 could inhibit the expression of proinflammatory factor.« less

  8. Deficiency of cyclin-dependent kinase inhibitors p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apolipoprotein E-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyuerek, Levent M.; Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Goeteborg, SE-405 30; Boehm, Manfred

    2010-05-28

    Cyclin-dependent kinase inhibitors, p21{sup Cip1} and p27{sup Kip1}, are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21{sup Cip1} or p27{sup Kip1} in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE{sup -/-} aortae, both apoE{sup -/-}/p21{sup -/-} and apoE{sup -/-}/p27{sup -/-} aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27{sup Kip1} accelerated plaque formation significantly more than p21{sup -/-} in apoE{sup -/-} mice. This increased plaque formation was in parallel with increased intima/mediamore » area ratios. Deficiency of p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apoE{sup -/-} mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.« less

  9. Effect of impaired glucose tolerance on atherosclerotic lesion formation: an evaluation in selectively bred mice with different susceptibilities to glucose intolerance.

    PubMed

    Asai, Akira; Nagao, Mototsugu; Kawahara, Momoyo; Shuto, Yuki; Sugihara, Hitoshi; Oikawa, Shinichi

    2013-12-01

    Impaired glucose tolerance (IGT) is an independent risk factor for atherosclerotic cardiovascular disease. However, due to the lack of appropriate animal models, the underlying mechanisms for IGT-induced atherosclerosis remain to be elucidated in vivo. We recently used selective breeding to establish 2 mouse lines with distinctively different susceptibilities to diet-induced glucose intolerance, designated selectively bred diet-induced glucose intolerance-resistant (SDG-R) and SDG-prone (SDG-P), respectively. Here, we assessed atherosclerotic lesion formation in these mice. Female SDG-R and SDG-P mice were fed an atherogenic diet (AD; 1.25% cholesterol, 0.5% sodium cholate, and 36% energy as fat) for 20 weeks (8-28 weeks of age). Oral glucose tolerance tests were performed during the AD-feeding period. Atherosclerotic lesion formation was quantitatively analyzed in serial aortic sinus sections by oil red O staining. Plasma lipids were measured after the AD-feeding period. Glucose tolerance was impaired in SDG-P mice as compared to SDG-R mice over the 20-week AD-feeding period. No significant differences were observed in any plasma lipid measurement between the 2 mouse lines. Aortic sinus atherosclerotic lesion formation in SDG-P mice was approximately 4-fold greater than that in SDG-R mice. In 2 mouse lines with different susceptibilities to diet-induced glucose intolerance, IGT accelerated atherosclerotic lesion formation. These mice may therefore serve as useful in vivo models for investigating the causal role of IGT in the pathogenesis of atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Atorvastatin Upregulates the Expression of miR-126 in Apolipoprotein E-knockout Mice with Carotid Atherosclerotic Plaque.

    PubMed

    Pan, Xudong; Hou, Rongyao; Ma, Aijun; Wang, Ting; Wu, Mei; Zhu, Xiaoyan; Yang, Shaonan; Xiao, Xing

    2017-01-01

    Carotid atherosclerosis (AS) is a chronic inflammatory disease of the carotid arterial wall, which is very important in terms of the occurrence of cerebral vascular accidents. Studies have demonstrated that microRNAs (miRNAs) and their target genes are involved in the formation of atherosclerosis and that atorvastatin might reduce atherosclerotic plaques by regulating the expression of miRNAs. However, the related mechanism is not yet known. In this study, we first investigated the effects of atorvastatin on miR-126 and its target gene, i.e., vascular cell adhesion molecule-1 (VCAM-1) in apolipoprotein E-knockout (ApoE-/-) mice with carotid atherosclerotic plaque in vivo. We compared the expressions of miR-126 and VCAM-1 between the control, atherosclerotic model and atorvastatin treatment groups of ApoE-/- mice using RT-PCR and Western blot. We found the miR-126 expression was significantly down-regulated, and the VCAM-1 expression was significantly up-regulated in the atherosclerotic model group, which accelerated the progression of atherosclerosis in the ApoE-/- mice. These results following atorvastatin treatment indicated that miR-126 expression was significantly up-regulated, VCAM-1 expression was significantly down-regulated and atherosclerotic lesions were reduced. The present results might explain the mechanism by which miR-126 is involved in the formation of atherosclerosis in vivo. Our study first indicated that atorvastatin might exert its anti-inflammatory effects in atherosclerosis by regulating the expressions of miR-126 and VCAM-1 in vivo.

  11. Regulation of programmed cell death or apoptosis in atherosclerosis.

    PubMed

    Geng, Y J

    1997-01-01

    Intimal thickening caused by accumulation of cells, lipids, and connective tissue characterizes atherosclerosis, an arterial disease that leads to cardiac and cerebral infarction. Apoptosis, or genetically programmed cell death, is important for the development and morphogenesis of organs and tissues. As in other tissues, cells of cardiovascular tissues can undergo apoptosis. Increased apoptosis has been found in both human and animal atherosclerotic lesions, mediating tissue turnover and lesion development. In addition to vascular cells, many activated immune cells, mainly macrophages and T cells, are present in atherosclerotic lesions, where these cells produce biologically active substances such as the proinflammatory cytokines tumor necrosis factor, interleukin-1 (IL-1), and interferon-gamma. Simultaneous exposure to these cytokines may trigger apoptosis of vascular smooth muscle cells. The products of death-regulating genes including Fas/Fas ligand, members of IL-1 beta cysteinyl protease (caspase) family, the tumor suppressive gene p53, and the protooncogene c-myc have been found in vascular cells and may participate in the regulation of vascular apoptosis during the development of atherosclerosis. Abnormal occurrence of apoptosis may take place in atherosclerotic lesions, including attenuation or acceleration of the apoptotic death process. The former may cause an increase in the cellularity of the lesions, and the latter can reduce cellular components important for maintaining the integrity and stability of the plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of patients with atherosclerosis and its major complications, heart attack and stroke.

  12. HbA1c is significantly associated with arterial stiffness but not with carotid atherosclerosis in a community-based population without type 2 diabetes: The Dong-gu study.

    PubMed

    Lee, Young-Hoon; Shin, Min-Ho; Choi, Jin-Su; Rhee, Jung-Ae; Nam, Hae-Sung; Jeong, Seul-Ki; Park, Kyeong-Soo; Ryu, So-Yeon; Choi, Seong-Woo; Kim, Bok-Hee; Oh, Gyung-Jae; Kweon, Sun-Seog

    2016-04-01

    We examined the associations between HbA1c levels and various atherosclerotic vascular parameters among adults without diabetes from the general population. A total of 6500 community-dwelling adults, who were free of type 2 diabetes and ≥50 years of age, were included. High-resolution B-mode ultrasound was used to evaluate carotid artery structure, including intima-media thickness (IMT), plaque, and luminal diameter. Brachial-ankle pulse wave velocity (baPWV), which is a useful indicator of systemic arterial stiffness, was determined using an automatic waveform analysis device. No significant associations were observed between HbA1c, carotid IMT, plaque, or luminal diameter in a fully adjusted model. However, the odds ratio (95% confidence interval) for high baPWV (defined as the highest quartile) increased by 1.43 (1.19-1.71) per 1% HbA1c increase after adjusting for conventional risk factors in a multivariate logistic regression analysis. In addition, HbA1c was independently associated with baPWV in a multivariate linear regression analysis. High-normal HbA1c level was independently associated with arterial stiffness, but not with carotid atherosclerotic parameters, in the general population without diabetes. Our results suggest that the functional atherosclerotic process may already be accelerated according to HbA1c level, even at a level below the diagnostic threshold for diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Angiotensin II–accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice

    PubMed Central

    Bruemmer, Dennis; Collins, Alan R.; Noh, Grace; Wang, Wei; Territo, Mary; Arias-Magallona, Sarah; Fishbein, Michael C.; Blaschke, Florian; Kintscher, Ulrich; Graf, Kristof; Law, Ronald E.; Hsueh, Willa A.

    2003-01-01

    Osteopontin (OPN) is expressed in atherosclerotic lesions, particularly in diabetic patients. To determine the role of OPN in atherogenesis, ApoE–/–OPN+/+, ApoE–/–OPN+/–, and ApoE–/–OPN–/– mice were infused with Ang II, inducing vascular OPN expression and accelerating atherosclerosis. Compared with ApoE–/–OPN+/+ mice, ApoE–/–OPN+/– and ApoE–/–OPN–/– mice developed less Ang II–accelerated atherosclerosis. ApoE–/– mice transplanted with bone marrow derived from ApoE–/–OPN–/– mice had less Ang II–induced atherosclerosis compared with animals receiving ApoE–/–OPN+/+ cells. Aortae from Ang II–infused ApoE–/–OPN–/– mice expressed less CD68, C-C-chemokine receptor 2, and VCAM-1. In response to intraperitoneal thioglycollate, recruitment of leukocytes in OPN–/– mice was impaired, and OPN–/– leukocytes exhibited decreased basal and MCP-1–directed migration. Furthermore, macrophage viability in atherosclerotic lesions from Ang II–infused ApoE–/–OPN–/– mice was decreased. Finally, Ang II–induced abdominal aortic aneurysm formation in ApoE–/–OPN–/– mice was reduced and associated with decreased MMP-2 and MMP-9 activity. These data suggest an important role for leukocyte-derived OPN in mediating Ang II–accelerated atherosclerosis and aneurysm formation. PMID:14597759

  14. Short communication: Dating components of human atherosclerotic plaques.

    PubMed

    Gonçalves, Isabel; Stenström, Kristina; Skog, Göran; Mattsson, Sören; Nitulescu, Mihaela; Nilsson, Jan

    2010-04-02

    Atherosclerotic plaques that give rise to acute clinical symptoms are typically characterized by degradation of the connective tissue and plaque rupture. Experimental studies have shown that mechanisms to repair vulnerable lesions exist, but the rate of remodeling of human plaque tissue has not been studied. In the present study, we determined the biological age of different components of advanced human atherosclerotic plaques by analyzing tissue levels of (14)C released into the atmosphere during the nuclear weapons tests in the late 1950s and early 1960s. Atherosclerotic plaques were obtained from 10 patients (age 46 to 80 years) undergoing carotid surgery. Different regions of the plaques were dissected and analyzed for (14)C content using accelerator mass spectrometry. At the time of surgery, the mean biological age of the cap region was 6.4+/-3.2 years, which was significantly lower than that of the shoulder region (12.9+/-3.0 years, P<0.01), the interface toward the media (12.4+/-3.3 years, P<0.01), and the core (9.8+/-4.5 years, P<0.05). Analysis of proliferative activity and rate of apoptosis showed no signs of increased cellular turnover in the cap, suggesting that the lower (14)C content reflected a more recent time of formation. These results show that the turnover time of human plaque tissue is very long and may explain why regression of atherosclerotic plaque size rarely is observed in cardiovascular intervention trials.

  15. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation.

    PubMed

    Massberg, Steffen; Brand, Korbinian; Grüner, Sabine; Page, Sharon; Müller, Elke; Müller, Iris; Bergmeier, Wolfgang; Richter, Thomas; Lorenz, Michael; Konrad, Ildiko; Nieswandt, Bernhard; Gawaz, Meinrad

    2002-10-07

    The contribution of platelets to the process of atherosclerosis remains unclear. Here, we show in vivo that platelets adhere to the vascular endothelium of the carotid artery in ApoE(-)(/)(-) mice before the development of manifest atherosclerotic lesions. Platelet-endothelial cell interaction involved both platelet glycoprotein (GP)Ibalpha and GPIIb-IIIa. Platelet adhesion to the endothelium coincides with inflammatory gene expression and preceded atherosclerotic plaque invasion by leukocytes. Prolonged blockade of platelet adhesion in ApoE(-)(/)(-) mice profoundly reduced leukocyte accumulation in the arterial intima and attenuated atherosclerotic lesion formation in the carotid artery bifurcation, the aortic sinus, and the coronary arteries. These findings establish the platelet as a major player in initiation of the atherogenetic process.

  16. Quantifying progression and regression of thrombotic risk in experimental atherosclerosis

    PubMed Central

    Palekar, Rohun U.; Jallouk, Andrew P.; Goette, Matthew J.; Chen, Junjie; Myerson, Jacob W.; Allen, John S.; Akk, Antonina; Yang, Lihua; Tu, Yizheng; Miller, Mark J.; Pham, Christine T. N.; Wickline, Samuel A.; Pan, Hua

    2015-01-01

    Currently, there are no generally applicable noninvasive methods for defining the relationship between atherosclerotic vascular damage and risk of focal thrombosis. Herein, we demonstrate methods to delineate the progression and regression of vascular damage in response to an atherogenic diet by quantifying the in vivo accumulation of semipermeable 200–300 nm perfluorocarbon core nanoparticles (PFC-NP) in ApoE null mouse plaques with [19F] magnetic resonance spectroscopy (MRS). Permeability to PFC-NP remained minimal until 12 weeks on diet, then increased rapidly following 12 weeks, but regressed to baseline within 8 weeks after diet normalization. Markedly accelerated clotting (53.3% decrease in clotting time) was observed in carotid artery preparations of fat-fed mice subjected to photochemical injury as defined by the time to flow cessation. For all mice on and off diet, an inverse linear relationship was observed between the permeability to PFC-NP and accelerated thrombosis (P = 0.02). Translational feasibility for quantifying plaque permeability and vascular damage in vivo was demonstrated with clinical 3 T MRI of PFC-NP accumulating in plaques of atherosclerotic rabbits. These observations suggest that excessive permeability to PFC-NP may indicate prothrombotic risk in damaged atherosclerotic vasculature, which resolves within weeks after dietary therapy.—Palekar, R. U., Jallouk, A. P., Goette, M. J., Chen, J., Myerson, J. W., Allen, J. S., Akk, A., Yang, L., Tu, Y., Miller, M. J., Pham, C. T. N., Wickline, S. A., Pan, H. Quantifying progression and regression of thrombotic risk in experimental atherosclerosis. PMID:25857553

  17. Atherosclerotic Cardiovascular Disease Beginning in Childhood

    PubMed Central

    2010-01-01

    Although the clinical manifestations of cardiovascular disease (CVD), such as myocardial infarction, stroke, and peripheral vascular disease, appear from middle age, the process of atherosclerosis can begin early in childhood. The early stage and progression of atherosclerosis in youth are influenced by risk factors that include obesity, hypertension, dyslipidemia, and smoking, and by the presence of specific diseases, such as diabetes mellitus and Kawasaki disease (KD). The existing evidence indicates that primary prevention of atherosclerotic disease should begin in childhood. Identification of children at risk for atherosclerosis may allow early intervention to decrease the atherosclerotic process, thereby preventing or delaying CVD. This review will describe the origin and progression of atherosclerosis in childhood, and the identification and management of known risk factors for atherosclerotic CVD in children and young adults. PMID:20111646

  18. A Critical Role of Platelet Adhesion in the Initiation of Atherosclerotic Lesion Formation

    PubMed Central

    Massberg, Steffen; Brand, Korbinian; Grüner, Sabine; Page, Sharon; Müller, Elke; Müller, Iris; Bergmeier, Wolfgang; Richter, Thomas; Lorenz, Michael; Konrad, Ildiko; Nieswandt, Bernhard; Gawaz, Meinrad

    2002-01-01

    The contribution of platelets to the process of atherosclerosis remains unclear. Here, we show in vivo that platelets adhere to the vascular endothelium of the carotid artery in ApoE − / − mice before the development of manifest atherosclerotic lesions. Platelet–endothelial cell interaction involved both platelet glycoprotein (GP)Ibα and GPIIb-IIIa. Platelet adhesion to the endothelium coincides with inflammatory gene expression and preceded atherosclerotic plaque invasion by leukocytes. Prolonged blockade of platelet adhesion in ApoE − / − mice profoundly reduced leukocyte accumulation in the arterial intima and attenuated atherosclerotic lesion formation in the carotid artery bifurcation, the aortic sinus, and the coronary arteries. These findings establish the platelet as a major player in initiation of the atherogenetic process. PMID:12370251

  19. Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress

    PubMed Central

    Di Pietro, Marisa; Filardo, Simone; Falasca, Francesca; Turriziani, Ombretta; Sessa, Rosa

    2017-01-01

    Accumulating evidence demonstrates that vascular oxidative stress is a critical feature of atherosclerotic process, potentially triggered by several infectious agents that are considered as risk co-factors for the atherosclerotic cardiovascular diseases (CVDs). C. pneumoniae has been shown to upregulate multiple enzymatic systems capable of producing reactive oxygen species (ROS) such as NADPH oxidase (NOX) and cyclooxygenase in vascular endothelial cells, NOX and cytochrome c oxidase in macrophages as well as nitric oxide synthase and lipoxygenase in platelets contributing to both early and late stages of atherosclerosis. P. gingivalis seems to be markedly involved in the atherosclerotic process as compared to A. actinomycetemcomitans contributing to LDL oxidation and foam cell formation. Particularly interesting is the evidence describing the NLRP3 inflammasome activation as a new molecular mechanism underlying P. gingivalis-induced oxidative stress and inflammation. Amongst viral agents, immunodeficiency virus-1 and hepatitis C virus seem to have a major role in promoting ROS production, contributing, hence, to the early stages of atherosclerosis including endothelial dysfunction and LDL oxidation. In conclusion, oxidative mechanisms activated by several infectious agents during the atherosclerotic process underlying CVDs are very complex and not well-known, remaining, thus, an attractive target for future research. PMID:29156574

  20. Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress.

    PubMed

    Di Pietro, Marisa; Filardo, Simone; Falasca, Francesca; Turriziani, Ombretta; Sessa, Rosa

    2017-11-18

    Accumulating evidence demonstrates that vascular oxidative stress is a critical feature of atherosclerotic process, potentially triggered by several infectious agents that are considered as risk co-factors for the atherosclerotic cardiovascular diseases (CVDs). C. pneumoniae has been shown to upregulate multiple enzymatic systems capable of producing reactive oxygen species (ROS) such as NADPH oxidase (NOX) and cyclooxygenase in vascular endothelial cells, NOX and cytochrome c oxidase in macrophages as well as nitric oxide synthase and lipoxygenase in platelets contributing to both early and late stages of atherosclerosis. P. gingivalis seems to be markedly involved in the atherosclerotic process as compared to A. actinomycetemcomitans contributing to LDL oxidation and foam cell formation. Particularly interesting is the evidence describing the NLRP3 inflammasome activation as a new molecular mechanism underlying P. gingivalis -induced oxidative stress and inflammation. Amongst viral agents, immunodeficiency virus-1 and hepatitis C virus seem to have a major role in promoting ROS production, contributing, hence, to the early stages of atherosclerosis including endothelial dysfunction and LDL oxidation. In conclusion, oxidative mechanisms activated by several infectious agents during the atherosclerotic process underlying CVDs are very complex and not well-known, remaining, thus, an attractive target for future research.

  1. Inflammation in renal atherosclerotic disease.

    PubMed

    Udani, Suneel M; Dieter, Robert S

    2008-07-01

    The study of renal atherosclerotic disease has conventionally focused on the diagnosis and management of renal artery stenosis. With the increased understanding of atherosclerosis as a systemic inflammatory process, there has been increased interest in vascular biology at the microvasculature level. While different organ beds share some features, the inflammation and injury in the microvasculature of the kidney has unique elements as well. Understanding of the pathogenesis yields a better understanding of the clinical manifestations of renal atherosclerotic disease, which can be very subtle. Furthermore, identifying the molecular mechanisms responsible for the progression of kidney damage can also direct clinicians and scientists toward targeted therapies. Existing therapies used to treat atherosclerotic disease in other vascular beds may also play a role in the treatment of renal atherosclerotic disease.

  2. Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin?

    PubMed

    Bobryshev, Yuri V; Killingsworth, Murray C; Huynh, Thuan G; Lord, Reginald S A; Grabs, Anthony J; Valenzuela, Stella M

    2007-03-01

    Over recent years, the role of matrix vesicles in the initial stages of arterial calcification has been recognized. Matrix calcifying vesicles have been isolated from atherosclerotic arteries and the biochemical composition of calcified vesicles has been studied. No studies have yet been carried out to examine the fine structure of matrix vesicles in order to visualize the features of the consequent stages of their calcification in arteries. In the present work, a high resolution ultrastructural analysis has been employed and the study revealed that matrix vesicles in human atherosclerotic lesions are heterogeneous with two main types which we classified. Type I calcified vesicles were presented by vesicles surrounded by two electron-dense layers and these vesicles were found to be resistant to the calcification process in atherosclerotic lesions in situ. Type II matrix vesicles were presented by vesicles surrounded by several electron-dense layers and these vesicles were found to represent calcifying vesicles in atherosclerotic lesions. To test the hypothesis that calcification of matrix vesicles surrounded by multilayer sheets may occur simply as a physicochemical process, independently from the cell regulation, we produced multilamellar liposomes and induced their calcification in vitro in a manner similar to that occurring in matrix vesicles in atherosclerotic lesions in situ.

  3. Single-Dose and Fractionated Irradiation Promote Initiation and Progression of Atherosclerosis and Induce an Inflammatory Plaque Phenotype in ApoE{sup -/-} Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoving, Saske; Heeneman, Sylvia; Gijbels, Marion J.J.

    2008-07-01

    Purpose: Increased risk of atherosclerosis and stroke has been demonstrated in patients receiving radiotherapy for Hodgkin's lymphoma and head-and-neck cancer. We previously showed that 14 Gy to the carotid arteries of hypercholesterolemic ApoE{sup -/-} mice resulted in accelerated development of macrophage-rich, inflammatory atherosclerotic lesions. Here we investigate whether clinically relevant fractionated irradiation schedules and lower single doses also predispose to an inflammatory plaque phenotype. Methods and Materials: ApoE{sup -/-} mice were given 8 or 14 Gy, or 20 x 2.0 Gy in 4 weeks to the neck, and the carotid arteries were subsequently examinated for presence of atherosclerotic lesions, plaquemore » size, and phenotype. Results: At 4 weeks, early atherosclerotic lesions were found in 44% of the mice after single doses of 14 Gy but not in age-matched controls. At 22 to 30 weeks after irradiation there was a twofold increase in the mean number of carotid lesions (8-14 Gy and 20 x 2.0 Gy) and total plaque burden (single doses only), compared with age-matched controls. The majority of lesions seen at 30 to 34 weeks after fractionated irradiation or 14-Gy single doses were granulocyte rich (100% and 63%, respectively), with thrombotic features (90% and 88%), whereas these phenotypes were much less common in age-matched controls or after a single dose of 8 Gy. Conclusions: We showed that fractionated irradiation accelerated the development of atherosclerosis in ApoE{sup -/-} mice and predisposed to the formation of an inflammatory, thrombotic plaque phenotype.« less

  4. Annexin A5 prevents post-interventional accelerated atherosclerosis development in a dose-dependent fashion in mice.

    PubMed

    Ewing, M M; Karper, J C; Sampietro, M L; de Vries, M R; Pettersson, K; Jukema, J W; Quax, P H A

    2012-04-01

    Activated cells in atherosclerotic lesions expose phosphatidylserine (PS) on their surface. Annexin A5 (AnxA5) binds to PS and is used for imaging atherosclerotic lesions. Recently, AnxA5 was shown to inhibit vascular inflammatory processes after vein grafting. Here, we report a therapeutic role for AnxA5 in post-interventional vascular remodeling in a mouse model mimicking percutaneous coronary intervention (PCI). Associations between the rs4833229 (OR = 1.29 (CI 95%), p(allelic) = 0.011) and rs6830321 (OR = 1.35 (CI 95%), p(allelic) = 0.003) SNPs in the AnxA5 gene and increased restenosis-risk in patients undergoing PCI were found in the GENDER study. To evaluate AnxA5 effects on post-interventional vascular remodeling and accelerated atherosclerosis development in vivo, hypercholesterolemic ApoE(-/-) mice underwent femoral arterial cuff placement to induce intimal thickening. Dose-dependent effects were investigated after 3 days (effects on inflammation and leukocyte recruitment) or 14 days (effects on remodeling) after cuff placement. Systemically administered AnxA5 in doses of 0.1, 0.3 and 1.0mg/kg compared to vehicle reduced early leukocyte and macrophage adherence up to 48.3% (p = 0.001) and diminished atherosclerosis development by 71.2% (p = 0.012) with a reduction in macrophage/foam cell presence. Moreover, it reduced the expression of the endoplasmic reticulum stress marker GRP78/BiP, indicating lower inflammatory activity of the cells present. AnxA5 SNPs could serve as markers for restenosis after PCI and AnxA5 therapeutically prevents vascular remodeling in a dose-dependent fashion, together indicating clinical potential for AnxA5 against post-interventional remodeling. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Particulate matter air pollution exposure promotes recruitment of monocytes into atherosclerotic plaques.

    PubMed

    Yatera, Kazuhiro; Hsieh, Joanne; Hogg, James C; Tranfield, Erin; Suzuki, Hisashi; Shih, Chih-Horng; Behzad, Ali R; Vincent, Renaud; van Eeden, Stephan F

    2008-02-01

    Epidemiologic studies have shown an association between exposure to ambient particulate air pollution <10 microm in diameter (PM(10)) and increased cardiovascular morbidity and mortality. We previously showed that PM(10) exposure causes progression of atherosclerosis in coronary arteries. We postulate that the recruitment of monocytes from the circulation into atherosclerotic lesions is a key step in this PM(10)-induced acceleration of atherosclerosis. The study objective was to quantify the recruitment of circulating monocytes into vessel walls and the progression of atherosclerotic plaques induced by exposure to PM(10). Female Watanabe heritable hyperlipidemic rabbits, which naturally develop systemic atherosclerosis, were exposed to PM(10) (EHC-93) or vehicle by intratracheal instillation twice a week for 4 wk. Monocytes, labeled with 5-bromo-2'-deoxyuridine (BrdU) in donors, were transfused to recipient rabbits as whole blood, and the recruitment of BrdU-labeled cells into vessel walls and plaques in recipients was measured by quantitative histological methodology. Exposure to PM(10) caused progression of atherosclerotic lesions in thoracic and abdominal aorta. It also decreased circulating monocyte counts, decreased circulating monocytes expressing high levels of CD31 (platelet endothelial cell adhesion molecule-1) and CD49d (very late antigen-4 alpha-chain), and increased expression of CD54 (ICAM-1) and CD106 (VCAM-1) in plaques. Exposure to PM(10) increased the number of BrdU-labeled monocytes adherent to endothelium over plaques and increased the migration of BrdU-labeled monocytes into plaques and smooth muscle underneath plaques. We conclude that exposure to ambient air pollution particles promotes the recruitment of circulating monocytes into atherosclerotic plaques and speculate that this is a critically important step in the PM(10)-induced progression of atherosclerosis.

  6. Deficiency of Endogenous Acute Phase Serum Amyloid A Does Not Impact Atherosclerotic Lesions in ApoE-/- Mice

    PubMed Central

    De Beer, Maria C; Wroblewski, Joanne M; Noffsinger, Victoria P; Rateri, Debra L; Howatt, Deborah A; Balakrishnan, Anju; Ji, Ailing; Shridas, Preetha; Thompson, Joel C; van der Westhuyzen, Deneys R; Tannock, Lisa R; Daugherty, Alan; Webb, Nancy R; De Beer, Frederick C

    2014-01-01

    Objective Although elevated plasma concentrations of serum amyloid A (SAA) are strongly associated with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. Approach and Results ApoE-/- mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1 (SAAWT and SAAKO, respectively), were fed a normal rodent diet for 50 weeks. Female, but not male SAAKO mice had a modest increase (22%; p ≤ 0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared to SAAWT mice that did not impact the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not impact lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between SAAKO and SAAWT mice in either gender. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had no effect on diet-induced alterations in plasma cholesterol, triglyceride or cytokine concentrationsn or on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. Conclusions The absence of endogenous SAA1.1 and 2.1 does not impact atherosclerotic lipid deposition in apoE-/- mice fed either normal or Western diets. PMID:24265416

  7. Toll-like receptor 7 stimulation by imiquimod induces macrophage autophagy and inflammation in atherosclerotic plaques.

    PubMed

    De Meyer, Inge; Martinet, Wim; Schrijvers, Dorien M; Timmermans, Jean-Pierre; Bult, Hidde; De Meyer, Guido R Y

    2012-05-01

    Atherosclerotic plaques tend to rupture as a consequence of a weakened fibrous cap, particularly in the shoulder regions where most macrophages reside. Macrophages express Toll-like receptors to recognize pathogens and eliminate intracellular pathogens by inducing autophagy. Because Toll-like receptor 7 (TLR7) is thought to be expressed in macrophages but not in smooth muscle cells (SMCs), we investigated whether induction of macrophage autophagic death by TLR7 ligand imiquimod can affect the composition of atherosclerotic plaques in favor of their stability. Immunohistochemical staining of human carotid plaques as well as Western blotting of cultured macrophages and SMCs confirmed that TLR7 was expressed in macrophages, but not in SMCs. In vitro experiments showed that only TLR7 expressing cells underwent imiquimod-induced cell death, which was characterized by autophagosome formation. Imiquimod-treated macrophages activated nuclear factor-κB (NF-κB) and released pro-inflammatory cytokines and chemokines. This effect was inhibited by the glucocorticoid dexamethasone. Imiquimod-induced cytokine release was significantly decreased in autophagy-deficient macrophages because these cells died by necrosis at an accelerated pace. Local in vivo administration of imiquimod to established atherosclerotic lesions in rabbit carotid arteries induced macrophage autophagy without induction of cell death, and triggered cytokine production, upregulation of vascular adhesion molecule-1, infiltration of T-lymphocytes, accumulation of macrophages and enlargement of plaque area. Treatment with dexamethasone suppressed these pro-inflammatory effects in vivo. SMCs and endothelial cells in imiquimod-treated plaques were not affected. In conclusion, imiquimod induces macrophage autophagy in atherosclerotic plaques, but stimulates plaque progression through cytokine release and enhanced infiltration of inflammatory cells.

  8. Polymicrobial Oral Infection with Four Periodontal Bacteria Orchestrates a Distinct Inflammatory Response and Atherosclerosis in ApoEnull Mice

    PubMed Central

    Chukkapalli, Sasanka S.; Velsko, Irina M.; Rivera-Kweh, Mercedes F.; Zheng, Donghang; Lucas, Alexandra R.; Kesavalu, Lakshmyya

    2015-01-01

    Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoEnull mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoEnull hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoEnull mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection with atherosclerotic lesion progression in a mouse model. PMID:26619277

  9. Polymicrobial Oral Infection with Four Periodontal Bacteria Orchestrates a Distinct Inflammatory Response and Atherosclerosis in ApoE null Mice.

    PubMed

    Chukkapalli, Sasanka S; Velsko, Irina M; Rivera-Kweh, Mercedes F; Zheng, Donghang; Lucas, Alexandra R; Kesavalu, Lakshmyya

    2015-01-01

    Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoE null mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoE null hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoE null mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection with atherosclerotic lesion progression in a mouse model.

  10. Complement factor C5a induces atherosclerotic plaque disruptions

    PubMed Central

    Wezel, Anouk; de Vries, Margreet R; Lagraauw, H Maxime; Foks, Amanda C; Kuiper, Johan; Quax, Paul HA; Bot, Ilze

    2014-01-01

    Complement factor C5a and its receptor C5aR are expressed in vulnerable atherosclerotic plaques; however, a causal relation between C5a and plaque rupture has not been established yet. Accelerated atherosclerosis was induced by placing vein grafts in male apoE−/− mice. After 24 days, when advanced plaques had developed, C5a or PBS was applied locally at the lesion site in a pluronic gel. Three days later mice were killed to examine the acute effect of C5a on late stage atherosclerosis. A significant increase in C5aR in the plaque was detectable in mice treated with C5a. Lesion size and plaque morphology did not differ between treatment groups, but interestingly, local treatment with C5a resulted in a striking increase in the amount of plaque disruptions with concomitant intraplaque haemorrhage. To identify the potential underlying mechanisms, smooth muscle cells and endothelial cells were treated in vitro with C5a. Both cell types revealed a marked increase in apoptosis after stimulation with C5a, which may contribute to lesion instability in vivo. Indeed, apoptosis within the plaque was seen to be significantly increased after C5a treatment. We here demonstrate a causal role for C5a in atherosclerotic plaque disruptions, probably by inducing apoptosis. Therefore, intervention in complement factor C5a signalling may be a promising target in the prevention of acute atherosclerotic complications. PMID:25124749

  11. Quantitative evaluation of lipid concentration in atherosclerotic plaque phantom by near-infrared multispectral angioscope at wavelengths around 1200 nm

    NASA Astrophysics Data System (ADS)

    Matsui, Daichi; Ishii, Katsunori; Awazu, Kunio

    2015-07-01

    Atherosclerosis is a primary cause of critical ischemic diseases like heart infarction or stroke. A method that can provide detailed information about the stability of atherosclerotic plaques is required. We focused on spectroscopic techniques that could evaluate the chemical composition of lipid in plaques. A novel angioscope using multispectral imaging at wavelengths around 1200 nm for quantitative evaluation of atherosclerotic plaques was developed. The angioscope consists of a halogen lamp, an indium gallium arsenide (InGaAs) camera, 3 optical band pass filters transmitting wavelengths of 1150, 1200, and 1300 nm, an image fiber having 0.7 mm outer diameter, and an irradiation fiber which consists of 7 multimode fibers. Atherosclerotic plaque phantoms with 100, 60, 20 vol.% of lipid were prepared and measured by the multispectral angioscope. The acquired datasets were processed by spectral angle mapper (SAM) method. As a result, simulated plaque areas in atherosclerotic plaque phantoms that could not be detected by an angioscopic visible image could be clearly enhanced. In addition, quantitative evaluation of atherosclerotic plaque phantoms based on the lipid volume fractions was performed up to 20 vol.%. These results show the potential of a multispectral angioscope at wavelengths around 1200 nm for quantitative evaluation of the stability of atherosclerotic plaques.

  12. Identification of Mature Atherosclerotic Plaque Proteome Signatures Using Data-Independent Acquisition Mass Spectrometry.

    PubMed

    Hansmeier, Nicole; Buttigieg, Josef; Kumar, Pankaj; Pelle, Shaneen; Choi, Kyoo Yoon; Kopriva, David; Chao, Tzu-Chiao

    2018-01-05

    Atherosclerosis is a chronic inflammatory disease with complex pathobiology and one of the most common causes of cardiovascular events. The process is characterized by complex vascular remodeling processes that require the actions of numerous proteins. The composition of atherosclerotic plaque is increasingly recognized as a major factor governing the occurrence of cardiovascular or neurological symptoms. To gain deeper insights into the composition of atherosclerotic plaques, we created quantitative proteome profiles of advanced plaque tissues of six male patients undergoing carotid endarterectomy for stroke prevention. Using a quantitative, data-independent proteome approach, we identified 4181 proteins with an average protein coverage of 45%. An analysis of the quantitative composition of the tissue revealed key players of vascular remodeling processes. Moreover, compared with proximal arterial tissue, 20 proteins in mature plaques were enriched, whereas 52 proteins were found in lower quantities. Among the proteins with increased abundance were prominent extracellular matrix proteins such as biglycan and lumican, whereas cytoskeletal markers for contractile smooth muscle cells (SMCs) were decreased. Taken together, this study provides the most comprehensive quantitative assessment of mature human plaque tissue to date, which indicates a central role of SMCs in the structure of advanced atherosclerotic plaques.

  13. Porphyromonas gingivalis Accelerates Inflammatory Atherosclerosis in the Innominate Artery of ApoE Deficient Mice

    PubMed Central

    Hayashi, Chie; Viereck, Jason; Hua, Ning; Phinikaridou, Alkystis; Madrigal, Andres G.; Gibson, Frank C.; Hamilton, James A.; Genco, Caroline A.

    2011-01-01

    Objective Studies in humans support a role for the oral pathogen Porphyromonas gingivalis in the development of inflammatory atherosclerosis. The goal of this study was to determine if P. gingivalis infection accelerates inflammation and atherosclerosis in the innominate artery of mice, an artery which has been reported to exhibit many features of human atherosclerotic disease, including plaque rupture. Methods and Results Apolipoprotein E-deficient (ApoE−/−) mice were orally infected with P. gingivalis, and Magnetic Resonance Imaging (MRI) was used to monitor the progression of atherosclerosis in live mice. P. gingivalis infected mice exhibited a statistically significant increase in atherosclerotic plaque in the innominate artery as compared to uninfected mice. Polarized light microscopy and immunohistochemistry revealed that the innominate arteries of infected mice had increased lipids, macrophages and T cells as compared to uninfected mice. Increases in plaque, total cholesterol esters and cholesterol monohydrate crystals, macrophages, and T cells were prevented by immunization with heat-killed P. gingivalis prior to pathogen exposure. Conclusions These are the first studies to demonstrate progression of inflammatory plaque accumulation in the innominate arteries by in-vivo MRI analysis following pathogen exposure, and to document protection from plaque progression in the innominate artery via immunization. PMID:21251656

  14. AIBP reduces atherosclerosis by promoting reverse cholesterol transport and ameliorating inflammation in apoE-/- mice.

    PubMed

    Zhang, Min; Zhao, Guo-Jun; Yao, Feng; Xia, Xiao-Dan; Gong, Duo; Zhao, Zhen-Wang; Chen, Ling-Yan; Zheng, Xi-Long; Tang, Xiao-Er; Tang, Chao-Ke

    2018-06-01

    ApoA-1 binding protein (AIBP) is a secreted protein that interacts with apoA-I and accelerates cholesterol efflux from cells. We have recently reported that AIBP promotes apoA-1 binding to ABCA1 in the macrophage cell membrane, partially through 115-123 amino acids. However, the effects of AIBP on the development of atherosclerosis in vivo remain unknown. ApoE -/- mice with established atherosclerotic plaques were infected with rAAV-AIBP or rAAV-AIBP(Δ115-123), respectively. AIBP-treated mice showed reduction of atherosclerotic lesion formation, increase in circulating HDL levels and enhancement of reverse cholesterol transport to the plasma, liver, and feces. AIBP increased ABCA1 protein levels in aorta and peritoneal macrophages. Furthermore, AIBP could diminish atherosclerotic plaque macrophage content and the expression of chemotaxis-related factors. In addition, AIBP prevented macrophage inflammation by inactivating NF-κB and promoted the expression of M2 markers like Mrc-1 and Arg-1. However, lack of 115-123 amino acids of AIBP(Δ115-123) had no such preventive effects on the progression of atherosclerosis. Our observations demonstrate that AIBP inhibits atherosclerosis progression and suggest that it may be an effective target for prevention of atherosclerosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Decreased expression of liver X receptor-α in macrophages infected with Chlamydia pneumoniae in human atherosclerotic arteries in situ.

    PubMed

    Bobryshev, Yuri V; Orekhov, Alexander N; Killingsworth, Murray C; Lu, Jinhua

    2011-01-01

    In in vitro experiments, Chlamydia pneumoniae has been shown to infect macrophages and to accelerate foam cell formation. It has been hypothesized that the C. pneumoniae infection affects foam cell formation by suppressing the expression of liver X receptors (LXR), but whether such an event occurs in human atherosclerosis is not known. In this study we examined carotid artery segments, obtained by endarterectomy, in which the presence of C. pneumoniae was confirmed by both polymerase chain reaction and immunohistochemistry. The expression of LXR-α in macrophages infected with C. pneumoniae and macrophages that were not infected was compared using a quantitative immunohistochemical analysis. The analysis revealed a 2.2-fold reduction in the expression of LXR-α in C. pneumoniae-infected cells around the lipid cores in atherosclerotic plaques. In the cytoplasm of laser-capture microdissected cells that were immunopositive for C. pneumoniae, electron microscopy demonstrated the presence of structures with the appearance of elementary, reticulate and aberrant bodies of C. pneumoniae. We conclude that LXR-α expression is reduced in C. pneumoniae-infected macrophages in human atherosclerotic lesions which supports the hypothesis that C. pneumoniae infection might suppress LXR expression in macrophages transforming into foam cells. Copyright © 2011 S. Karger AG, Basel.

  16. 12- and 15-lipoxygenases in human carotid atherosclerotic lesions: Associations with cerebrovascular symptoms

    USDA-ARS?s Scientific Manuscript database

    Lipoxygenase (ALOX) enzymes are implicated in both pro- and anti-atherogenic processes. The aim of this study was to investigate mRNA expression of 12- and 15-lipoxygenases (ALOX12, ALOX12B, ALOX15, ALOX15B) and the atypical ALOXE3 in human carotid atherosclerotic lesions, in relation to cerebrovasc...

  17. Visualization of Monocytic Cells in Regressing Atherosclerotic Plaques by Intravital 2-Photon and Positron Emission Tomography-Based Imaging-Brief Report.

    PubMed

    Li, Wenjun; Luehmann, Hannah P; Hsiao, Hsi-Min; Tanaka, Satona; Higashikubo, Ryuji; Gauthier, Jason M; Sultan, Deborah; Lavine, Kory J; Brody, Steven L; Gelman, Andrew E; Gropler, Robert J; Liu, Yongjian; Kreisel, Daniel

    2018-05-01

    Aortic arch transplants have advanced our understanding of processes that contribute to progression and regression of atherosclerotic plaques. To characterize the dynamic behavior of monocytes and macrophages in atherosclerotic plaques over time, we developed a new model of cervical aortic arch transplantation in mice that is amenable to intravital imaging. Vascularized aortic arch grafts were transplanted heterotropically to the right carotid arteries of recipient mice using microsurgical suture techniques. To image immune cells in atherosclerotic lesions during regression, plaque-bearing aortic arch grafts from B6 ApoE-deficient donors were transplanted into syngeneic CX 3 CR1 GFP reporter mice. Grafts were evaluated histologically, and monocytic cells in atherosclerotic plaques in ApoE-deficient grafts were imaged intravitally by 2-photon microscopy in serial fashion. In complementary experiments, CCR2 + cells in plaques were serially imaged by positron emission tomography using specific molecular probes. Plaques in ApoE-deficient grafts underwent regression after transplantation into normolipidemic hosts. Intravital imaging revealed clusters of largely immotile CX 3 CR1 + monocytes/macrophages in regressing plaques that had been recruited from the periphery. We observed a progressive decrease in CX 3 CR1 + monocytic cells in regressing plaques and a decrease in CCR2 + positron emission tomography signal during 4 months. Cervical transplantation of atherosclerotic mouse aortic arches represents a novel experimental tool to investigate cellular mechanisms that contribute to the remodeling of atherosclerotic plaques. © 2018 American Heart Association, Inc.

  18. Impact of Glutathione Peroxidase-1 Deficiency on Macrophage Foam Cell Formation and Proliferation: Implications for Atherogenesis

    PubMed Central

    Degreif, Adriana; Rossmann, Heidi; Canisius, Antje; Lackner, Karl J.

    2013-01-01

    Clinical and experimental evidence suggests a protective role for the antioxidant enzyme glutathione peroxidase-1 (GPx-1) in the atherogenic process. GPx-1 deficiency accelerates atherosclerosis and increases lesion cellularity in ApoE−/− mice. However, the distribution of GPx-1 within the atherosclerotic lesion as well as the mechanisms leading to increased macrophage numbers in lesions is still unknown. Accordingly, the aims of the present study were (1) to analyze which cells express GPx-1 within atherosclerotic lesions and (2) to determine whether a lack of GPx-1 affects macrophage foam cell formation and cellular proliferation. Both in situ-hybridization and immunohistochemistry of lesions of the aortic sinus of ApoE−/− mice after 12 weeks on a Western type diet revealed that both macrophages and – even though to a less extent – smooth muscle cells contribute to GPx-1 expression within atherosclerotic lesions. In isolated mouse peritoneal macrophages differentiated for 3 days with macrophage-colony-stimulating factor (MCSF), GPx-1 deficiency increased oxidized low density-lipoprotein (oxLDL) induced foam cell formation and led to increased proliferative activity of peritoneal macrophages. The MCSF- and oxLDL-induced proliferation of peritoneal macrophages from GPx-1−/−ApoE−/− mice was mediated by the p44/42 MAPK (p44/42 mitogen-activated protein kinase), namely ERK1/2 (extracellular-signal regulated kinase 1/2), signaling pathway as demonstrated by ERK1/2 signaling pathways inhibitors, Western blots on cell lysates with primary antibodies against total and phosphorylated ERK1/2, MEK1/2 (mitogen-activated protein kinase kinase 1/2), p90RSK (p90 ribosomal s6 kinase), p38 MAPK and SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase), and immunohistochemistry of mice atherosclerotic lesions with antibodies against phosphorylated ERK1/2, MEK1/2 and p90RSK. Representative effects of GPx-1 deficiency on both macrophage proliferation and MAPK phosphorylation could be abolished by the GPx mimic ebselen. The present study demonstrates that GPx-1 deficiency has a significant impact on macrophage foam cell formation and proliferation via the p44/42 MAPK (ERK1/2) pathway encouraging further studies on new therapeutic strategies against atherosclerosis. PMID:23991041

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun-Mi, E-mail: lala1647@hanmail.net; Kim, Bo-Young, E-mail: kimboyoung@pusan.ac.kr; Lee, Sae-A, E-mail: saeah486@nate.com

    Th1 lymphocytes are predominant in atherosclerotic lesions. However, mechanisms involved in the Th1 predominance are unknown. We have investigated the possibility of Th1 lymphocyte recruitment in a cholesterol-rich milieu. A high cholesterol diet resulted in enhanced expression of CCR5 ligands, including CCL3 and CCL4, but not of proatherogenic CXCR3 ligands, in atherosclerotic arteries of ApoE{sup −/−} mice. 27-Hydroxycholesterol and 7α-hydroxycholesterol, cholesterol oxides (oxysterols) detected in abundance in atherosclerotic lesions, greatly induced the transcription of CCL3 and CCL4 genes in addition to enhancing secretion of corresponding proteins by THP-1 monocytic cells. However, an identical or even higher concentration of cholesterol, 7β-hydroxycholesterol,more » and 7-ketocholsterol did not influence expression of these chemokines. Conditioned media containing the CCR5 ligands secreted from THP-1 cells induced migration of Jurkat T cells expressing CCR5, a characteristic chemokine receptor of Th1 cells, but not of Jurkat T cells that do not express CCR5. The migration of CCR5-expressing Jurkat T cells was abrogated in the presence of a CCR5-neutralizing antibody. 27-Hydroxycholesterol and 7α-hydroxycholesterol enhanced phosphorylation of Akt. Pharmacological inhibitors of phosphoinositide-3-kinase/Akt pathways blocked transcription as well as secretion of CCL3 and CCL4 in conjunction with attenuated migration of CCR5-expressing Jurkat T cells. This is the first report on the involvement of cholesterol oxides in migration of distinct subtype of T cells. We propose that 27-hydroxycholesterol and 7α-hydroxycholesterol can trigger a sequence of events that leads to recruitment of Th1 lymphocytes and phosphoinositide-3-kinase/Akt pathways play a major role in the process. - Graphical abstract: Th1 lymphocytes are predominant in atherosclerotic lesions. However, mechanisms involved in the Th1 predominance are unknown. We have investigated the possibility of Th1 lymphocyte recruitment in a cholesterol-rich milieu. We propose a model via which 27OHChol and 7αOHChol contribute to the predominance of Th1 cells in atherosclerotic lesions on the basis of our results and previous findings. Cholesterol deposited in the artery undergoes oxidative modification to oxysterols. Exposure of monocytic cells to 27OHChol or 7αOHChol results in increased transcription and secretion of CCR5 ligands, like CCL3 and CCL4, which leads to a concentration gradient of the chemokines. Among the lymphocytes attached to cell adhesion molecules expressed on endothelial cells, Th1 cells that express CCR5 recognize the gradient and follow the signal of increasing chemokine concentration towards the source of the chemokines, whereas other subtypes of T cells that do not express CCR5 (Tregs and Th2 cells) do not respond. The preferential infiltration of Th1 cells leads to predominance of Th1 cells. Since oxidized LDL (oxLDL) enhances the expression of cell adhesion molecules on endothelial cells, existence of oxLDL will accelerate the recruitment of Th1 lymphocytes into atherosclerotic lesions in response to the oxysterols. - Highlights: • High-cholesterol diet induces CCR5L expression, like CCL3 and CCL4, in ApoE{sup −/−} mice. • 27OHChol and 7αOHChol enhance secretion of CCL3 and CCL4 by monocytic cells. • The secreted CCR5 ligands promote migration of CCR5-expressing Th1 cells. • We report a mechanism underlying Th1 cell recruitment into atherosclerotic lesions.« less

  20. Elevated lipoprotein(a) levels are associated with coronary artery calcium scores in asymptomatic individuals with a family history of premature atherosclerotic cardiovascular disease.

    PubMed

    Verweij, Simone L; de Ronde, Maurice W J; Verbeek, Rutger; Boekholdt, S Matthijs; Planken, R Nils; Stroes, Erik S G; Pinto-Sietsma, Sara-Joan

    2018-02-16

    Elevated lipoprotein(a) (Lp(a)) levels are associated with increased risk for atherosclerotic cardiovascular disease (ASCVD). Individuals with a family history of premature ASCVD are at increased cardiovascular risk with concomitantly a higher burden of (subclinical) atherosclerosis. However, whether Lp(a) contributes to the increased atherosclerotic burden in these individuals remains to be established. In this study, we evaluated the association between Lp(a) levels and coronary atherosclerotic burden, assessed by coronary arterty calcium (CAC) scores, in asymptomatic individuals with a family history of premature ASCVD. Lp(a) levels and other ASCVD risk factors were assessed in 432 individuals with premature ASCVD and in 937 healthy asymptomatic family members. CAC scores were only measured in asymptomatic family members. In this cohort, 16% had elevated Lp(a) levels, defined as ≥ 50 mg/dL. Among healthy family members, elevated Lp(a) levels were associated with both absolute CAC scores of ≥ 100 (odds ratio [OR] 1.79 [95% confidence interval {CI} 1.13-2.83]) as well as with age- and gender-corrected CAC scores ≥ 80th percentile (OR 1.69 [95% CI 1.14-2.50]). This coincides with a higher prevalence of cardiovascular events (OR 1.48 [95% CI 1.11-2.01]) in the whole cohort. Elevated Lp(a) levels were associated with higher CAC scores, both absolute as well as age- and gender-corrected percentiles, in individuals with a family history of premature ASCVD. These data imply that Lp(a) accelerates progression of atherosclerosis in these individuals, thereby contributing to their increased ASCVD risk. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  1. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Dong Ju; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA; Kim, Soo Yeon

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murinemore » model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.« less

  2. Evaluating the Effectiveness of New York City Health Policy Initiatives in Reducing Cardiovascular Disease Mortality, 1990-2011.

    PubMed

    Ong, Paulina; Lovasi, Gina S; Madsen, Ann; Van Wye, Gretchen; Demmer, Ryan T

    2017-09-01

    Beginning in 2002, New York City (NYC) implemented numerous policies and programs targeting cardiovascular disease (CVD) risk factors. Using death certificates, we analyzed trends in NYC-specific and US mortality rates from 1990 to 2011 for all causes, any CVD, atherosclerotic CVD (ACVD), coronary artery disease (CAD), and stroke. Joinpoint analyses quantified annual percent change (APC) and evaluated whether decreases in CVD mortality accelerated after 2002 in either NYC or the total US population. Our analyses included 1,149,217 NYC decedents. The rates of decline in mortality from all causes, any CVD, and stroke in NYC did not change after 2002. Among men, the decline in ACVD mortality accelerated during 2002-2011 (APC = -4.8%, 95% confidence interval (CI): -6.1, -3.4) relative to 1990-2001 (APC = -2.3%, 95% CI: -3.1, -1.5). Among women, ACVD rates began declining more rapidly in 1993 (APC = -3.2%, 95% CI: -3.8, -2.7) and again in 2006 (APC = -6.6%, 95% CI: -8.9, -4.3) as compared with 1990-1992 (APC = 1.6%, 95% CI: -2.7, 6.0). In the US population, no acceleration of mortality decline was observed in either ACVD or CAD mortality rates after 2002. Relative to 1990-2001, atherosclerotic CVD and CAD rates began to decline more rapidly during the 2002-2011 period in both men and women-a pattern not observed in the total US population, suggesting that NYC initiatives might have had a measurable influence on delaying or reducing ACVD mortality. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study.

    PubMed

    Derlin, Thorsten; Tóth, Zoltán; Papp, László; Wisotzki, Christian; Apostolova, Ivayla; Habermann, Christian R; Mester, Janos; Klutmann, Susanne

    2011-07-01

    Formation and progression of atherosclerotic plaque is a dynamic and complex process involving various pathophysiologic steps including inflammation and calcification. The purpose of this study was to compare macrophage activity as determined by (18)F-FDG PET and ongoing mineral deposition as measured by (18)F-sodium fluoride PET in atherosclerotic plaque and to correlate these findings with calcified plaque burden as assessed by CT. Forty-five patients were examined by whole-body (18)F-FDG PET, (18)F-sodium fluoride PET, and CT. Tracer uptake in various arterial segments was analyzed both qualitatively and semiquantitatively by measuring the blood-pool-corrected standardized uptake value (target-to-background ratio [TBR]). The pattern of tracer uptake in atherosclerotic lesions was compared after color-coded multistudy image fusion of PET and CT studies. The Fisher exact test and the Spearman correlation coefficient r(s) were used for statistical analysis of image-based results and cardiovascular risk factors. Intra- and interrater reproducibility were evaluated using the Cohen κ. (18)F-sodium fluoride uptake was observed at 105 sites in 27 (60%) of the 45 study patients, and mean TBR was 2.3 ± 0.7. (18)F-FDG uptake was seen at 124 sites in 34 (75.6%) patients, and mean TBR was 1.5 ± 0.3. Calcified atherosclerotic lesions were observed at 503 sites in 34 (75.6%) patients. Eighty-one (77.1%) of the 105 lesions with marked (18)F-sodium fluoride uptake and only 18 (14.5%) of the 124 lesions with (18)F-FDG accumulation were colocalized with arterial calcification. Coincident uptake of both (18)F-sodium fluoride and (18)F-FDG was observed in only 14 (6.5%) of the 215 arterial lesions with radiotracer accumulation. PET/CT with (18)F-FDG and (18)F-sodium fluoride may allow evaluation of distinct pathophysiologic processes in atherosclerotic lesions and might provide information on the complex interactions involved in formation and progression of atherosclerotic plaque.

  4. Fluorescence spectroscopic detection of virus-induced atherosclerosis

    NASA Astrophysics Data System (ADS)

    Yan, Wei-dong; Perk, Masis; Nation, Patric N.; Power, Robert F.; Liu, Liying; Jiang, Xiuyan; Lucas, Alexandra

    1994-07-01

    Laser-induced fluorescence (LF) has been developed as a diagnostic tool for the detection of atherosclerosis. We have examined the use of LF for the identification of accelerated atherosclerotic plaque growth induced by Marek's Disease Virus (MDV) infection in White Leghorn rooster chicks (R) as well as plaque regression after treatment. Twenty-eight newborn R were infected with 12,000 cfu of MDV. Twelve parallel control R had saline injection. LF spectra were recorded from the arteries in vitro with a CeramOptec laser angioplasty catheter during 308 nm XeCl excimer laser excitation. Significant differences were detected at 440 to 475, 525, 550, 600, and 650 nm in MDV-R (p<0.05). In a subsequent study, 60 R were infected with 5,000 cfu of MDV, and were then treated with either Pravastatin (PRV) or placebo at 3 months post infection. These PRV-R were followed for 6 months to detect changes in atherosclerotic plaque development. PRV reduced intimal proliferation produced by MDV infection on histological examination (PRV-R 128.0+/- 44.0 micrometers , placebo-R 412.2+/- 91.5 micrometers , pequals0.007). MDV infected, PRV treated R were examined for LF changes that correlated with decreased atherosclerosis. There was an associated significant increase in LF intensity in PRV-R at 405 to 425 nm (p<0.001). In conclusion, LF can detect intimal proliferation in virus- induced atherosclerosis and atherosclerotic plaque regression after PRV therapy.

  5. Hyperkinetic transient ischemic attacks preceding deep ganglionic infarction in a patient with a treated parasellar chondrosarcoma.

    PubMed

    Ruff, Michael W; Bhargav, Adip G; English, Stephen W; Klaas, James P

    2018-02-01

    A 44-year-old right-handed female with a past medical history of parasellar chondrosarcoma status post-surgical debulking and proton beam therapy (70 Gy) three years prior to presentation experienced several hours of brief, repetitive episodes of transient hemiballism and dystonia; this was followed by abrupt onset of fixed hemiparesis and dysarthria weeks later, ipsilateral to her prior hyperkinetic movements. She was found to have total occlusion of the right middle cerebral artery with focal stenosis of the proximal right A-1 segment of the anterior cerebral artery adjacent to the remnants of the chondrosarcoma. These focal areas of narrowing were attributed to accelerated atherosclerotic disease, an adverse effect of the radiotherapy used to treat her chondrosarcoma. As treatments improve and mean survival increases for intracranial malignancy, radiation-induced atherosclerotic disease with protean manifestations such as those presented in this case may be encountered more frequently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice.

    PubMed

    Fuster, José J; MacLauchlan, Susan; Zuriaga, María A; Polackal, Maya N; Ostriker, Allison C; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A B; Cooper, Matthew A; Andrés, Vicente; Hirschi, Karen K; Martin, Kathleen A; Walsh, Kenneth

    2017-02-24

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2 -mutant cells in atherosclerosis-prone, low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome-mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. Copyright © 2017, American Association for the Advancement of Science.

  7. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice

    PubMed Central

    Fuster, José J.; MacLauchlan, Susan; Zuriaga, María A.; Polackal, Maya N.; Ostriker, Allison C.; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A. B.; Cooper, Matthew A.; Andrés, Vicente; Hirschi, Karen K.; Martin, Kathleen A.; Walsh, Kenneth

    2017-01-01

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2-mutant cells in atherosclerosis-prone, low-density lipoprotein receptor–deficient (Ldlr−/−) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome–mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. PMID:28104796

  8. A Quantitative Model of Early Atherosclerotic Plaques Parameterized Using In Vitro Experiments.

    PubMed

    Thon, Moritz P; Ford, Hugh Z; Gee, Michael W; Myerscough, Mary R

    2018-01-01

    There are a growing number of studies that model immunological processes in the artery wall that lead to the development of atherosclerotic plaques. However, few of these models use parameters that are obtained from experimental data even though data-driven models are vital if mathematical models are to become clinically relevant. We present the development and analysis of a quantitative mathematical model for the coupled inflammatory, lipid and macrophage dynamics in early atherosclerotic plaques. Our modeling approach is similar to the biologists' experimental approach where the bigger picture of atherosclerosis is put together from many smaller observations and findings from in vitro experiments. We first develop a series of three simpler submodels which are least-squares fitted to various in vitro experimental results from the literature. Subsequently, we use these three submodels to construct a quantitative model of the development of early atherosclerotic plaques. We perform a local sensitivity analysis of the model with respect to its parameters that identifies critical parameters and processes. Further, we present a systematic analysis of the long-term outcome of the model which produces a characterization of the stability of model plaques based on the rates of recruitment of low-density lipoproteins, high-density lipoproteins and macrophages. The analysis of the model suggests that further experimental work quantifying the different fates of macrophages as a function of cholesterol load and the balance between free cholesterol and cholesterol ester inside macrophages may give valuable insight into long-term atherosclerotic plaque outcomes. This model is an important step toward models applicable in a clinical setting.

  9. [Atherosclerosis in inflammatory diseases].

    PubMed

    Páramo, José A; Rodríguez, José A; Orbe, Josune

    2007-05-19

    The recognition that inflammation is a hallmark of atherosclerotic disease and its complications has led to a series of studies reporting high prevalence of atherosclerosis in chronic inflammatory diseases. Indeed, chronic immune diseases, such as systemic lupus erythematosus and rheumatoid arthritis, are associated with proinflammation, accelerated atherosclerosis and increased incidence of cardiovascular disease. Since the susceptibility towards cardiovascular events cannot be explained by classical risk factors, disease-specific pathways have been put forward as additional risk factors, potentially important for future prevention and treatment of atherosclerosis associated with chronic inflammatory diseases.

  10. Alternative Medicine in Diabetes - Role of Angiogenesis, Oxidative Stress, and Chronic Inflammation

    PubMed Central

    El-Refaei, Mohamed F.; Abduljawad, Suha H.; Alghamdi, Ahmed H.

    2014-01-01

    Diabetes is a chronic metabolic disorder that is characterized by hyperglycemia due to lack of or resistance to insulin. Patients with diabetes are frequently afflicted with ischemic vascular disease and impaired wound healing. Type 2 diabetes is known to accelerate atherosclerotic processes, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. Herbal medicines and naturally occurring substances may positively affect diabetes management, and could thus be utilized as cost-effective means of supporting treatment in developing countries. Natural treatments have been used in these countries for a long time to treat diabetes. The present review analyses the features of aberrant angiogenesis, abnormalities in growth factors, oxidative stress, and metabolic derangements relevant to diabetes, and how herbal substances and their active chemical constituents may counteract these events. Evidence for possible biochemical effectiveness and limitations of herbal medicines are given, as well as details regarding the role of cytokines and nitric oxide. PMID:26177484

  11. The NF-κB pathway: regulation of the instability of atherosclerotic plaques activated by Fg, Fb, and FDPs.

    PubMed

    Cao, Yongjun; Zhou, Xiaomei; Liu, Huihui; Zhang, Yanlin; Yu, Xiaoyan; Liu, Chunfeng

    2013-11-01

    Recently, the molecular mechanism responsible for the instability of atherosclerotic plaques has gradually become a hot topic among researchers and clinicians. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play an important role in the processes of formation and development of atherosclerosis. In this study, we established and employed the transwell co-culture system of rabbit aortic endothelial cells and smooth muscle cells to explore the relationship between fibrin (Fb), fibrinogen (Fg), and/or their degradation products (FDPs) in relation to the instability of atherosclerotic plaques; meanwhile, we observed the effects of Fg, Fb, and FDPs on the mRNA levels of MMPs and VEGF as well as on the activation of nuclear factor-kappa B (NF-κB). We concluded that Fb, Fg, and FDPs are involved in the progression of the instability of atherosclerotic plaques via increasing the expression of MMPs and VEGF. This effect might be mediated by the NF-кB pathway.

  12. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease.

    PubMed

    Nörenberg, Dominik; Ebersberger, Hans U; Diederichs, Gerd; Hamm, Bernd; Botnar, René M; Makowski, Marcus R

    2016-03-01

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. Targeted MR-probes allow the characterization of atherosclerosis on a molecular level. Molecular MRI can identify in vivo markers for the differentiation of stable and unstable plaques. Visualization of early molecular changes has the potential to improve patient-individualized risk-assessment.

  13. Signaling of Serum Amyloid A Through Receptor for Advanced Glycation End Products as a Possible Mechanism for Uremia-Related Atherosclerosis.

    PubMed

    Belmokhtar, Karim; Robert, Thomas; Ortillon, Jeremy; Braconnier, Antoine; Vuiblet, Vincent; Boulagnon-Rombi, Camille; Diebold, Marie Danièle; Pietrement, Christine; Schmidt, Ann Marie; Rieu, Philippe; Touré, Fatouma

    2016-05-01

    Cardiovascular disease is the leading cause of death in patients with end-stage renal disease. Serum amyloid A (SAA) is an acute phase protein and a binding partner for the multiligand receptor for advanced glycation end products (RAGE). We investigated the role of the interaction between SAA and RAGE in uremia-related atherogenesis. We used a mouse model of uremic vasculopathy, induced by 5 of 6 nephrectomy in the Apoe(-/-) background. Sham-operated mice were used as controls. Primary cultures of Ager(+/+) and Ager(-/-) vascular smooth muscle cells (VSMCs) were stimulated with recombinant SAA, S100B, or vehicle alone. Relevance to human disease was assessed with human VSMCs. The surface area of atherosclerotic lesions at the aortic roots was larger in uremic Apoe(-/-) than in sham-operated Apoe(-/-) mice (P<0.001). Furthermore, atherosclerotic lesions displayed intense immunostaining for RAGE and SAA, with a pattern similar to that of α-SMA. Ager transcript levels in the aorta were 6× higher in uremic animals than in controls (P<0.0001). Serum SAA concentrations were higher in uremic mice, not only after 4 weeks of uremia but also at 8 and 12 weeks of uremia, than in sham-operated animals. We investigated the functional role of RAGE in uremia-induced atherosclerosis further, in animals lacking RAGE. We found that the induction of uremia in Apoe(-/-) Ager(-/-) mice did not accelerate atherosclerosis. In vitro, the stimulation of Ager(+/+) but not of Ager(-/-) VSMCs with SAA or S100B significantly induced the production of reactive oxygen species, the phosphorylation of AKT and mitogen-activated protein kinase-extracellular signal-regulated kinases and cell migration. Reactive oxygen species inhibition with N-acetyl cysteine significantly inhibited both the phosphorylation of AKT and the migration of VSMCs. Similar results were obtained for human VSMCs, except that the phosphorylation of mitogen-activated protein kinase-extracellular signal-regulated kinases, rather than of AKT, was subject to specific redox-regulation by SAA and S100B. Furthermore, human aortic atherosclerotic sections were positively stained for RAGE and SAA. Uremia upregulates SAA and RAGE expression in the aortic wall and in atherosclerotic lesions in mice. Ager(-/-) animals are protected against the uremia-induced acceleration of atherosclerosis. SAA modulates the functions of murine and human VSMCs in vitro in a RAGE-dependent manner. This study, therefore, identifies SAA as a potential new uremic toxin involved in uremia-related atherosclerosis through interaction with RAGE. © 2016 American Heart Association, Inc.

  14. [Cardiovascular disease and systemic inflammatory diseases].

    PubMed

    Cuende, José I; Pérez de Diego, Ignacio J; Godoy, Diego

    2016-01-01

    More than a century of research has shown that atherosclerosis is an inflammatory process more than an infiltrative or thrombogenic process. It has been demonstrated epidemiologically and by imaging techniques, that systemic inflammatory diseases (in particular, but not exclusively, rheumatoid arthritis and systemic lupus erythematosus) increase the atherosclerotic process, and has a demonstrated pathophysiological basis. Furthermore, treatments to control inflammatory diseases can modify the course of the atherosclerotic process. Although there are no specific scales for assessing cardiovascular risk in patients with these diseases, cardiovascular risk is high. A number of specific risk scales are being developed, that take into account specific factors such as the degree of inflammatory activity. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  15. NF-κB inhibitors that prevent foam cell formation and atherosclerotic plaque accumulation.

    PubMed

    Plotkin, Jesse D; Elias, Michael G; Dellinger, Anthony L; Kepley, Christopher L

    2017-08-01

    The transformation of monocyte-derived macrophages into lipid-laden foam cells is one inflammatory process underlying atherosclerotic disease. Previous studies have demonstrated that fullerene derivatives (FDs) have inflammation-blunting properties. Thus, it was hypothesized that FD could inhibit the transformation process underlying foam cell formation. Fullerene derivatives inhibited the phorbol myristic acid/oxidized low-density lipoprotein-induced differentiation of macrophages into foam cells as determined by lipid staining and morphology.Lipoprotein-induced generation of TNF-α, C5a-induced MC activation, ICAM-1 driven adhesion, and CD36 expression were significantly inhibited in FD treated cells compared to non-treated cells. Inhibition appeared to be mediated through the NF-κB pathway as FD reduced expression of NF-κB and atherosclerosis-associated genes. Compared to controls, FD dramatically inhibited plaque formation in arteries of apolipoprotein E null mice. Thus, FD may be an unrecognized therapy to prevent atherosclerotic lesions via inhibition of foam cell formation and MC stabilization. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. What We Have Learned from the Recent Meta-analyses on Diagnostic Methods for Atherosclerotic Plaque Regression.

    PubMed

    Biondi-Zoccai, Giuseppe; Mastrangeli, Simona; Romagnoli, Enrico; Peruzzi, Mariangela; Frati, Giacomo; Roever, Leonardo; Giordano, Arturo

    2018-01-17

    Atherosclerosis has major morbidity and mortality implications globally. While it has often been considered an irreversible degenerative process, recent evidence provides compelling proof that atherosclerosis can be reversed. Plaque regression is however difficult to appraise and quantify, with competing diagnostic methods available. Given the potential of evidence synthesis to provide clinical guidance, we aimed to review recent meta-analyses on diagnostic methods for atherosclerotic plaque regression. We identified 8 meta-analyses published between 2015 and 2017, including 79 studies and 14,442 patients, followed for a median of 12 months. They reported on atherosclerotic plaque regression appraised with carotid duplex ultrasound, coronary computed tomography, carotid magnetic resonance, coronary intravascular ultrasound, and coronary optical coherence tomography. Overall, all meta-analyses showed significant atherosclerotic plaque regression with lipid-lowering therapy, with the most notable effects on echogenicity, lipid-rich necrotic core volume, wall/plaque volume, dense calcium volume, and fibrous cap thickness. Significant interactions were found with concomitant changes in low density lipoprotein cholesterol, high density lipoprotein cholesterol, and C-reactive protein levels, and with ethnicity. Atherosclerotic plaque regression and conversion to a stable phenotype is possible with intensive medical therapy and can be demonstrated in patients using a variety of non-invasive and invasive imaging modalities.

  17. Selective Imaging of Vascular Endothelial Growth Factor Receptor-1 and Receptor-2 in Atherosclerotic Lesions in Diabetic and Non-diabetic ApoE-/- Mice.

    PubMed

    Tekabe, Yared; Johnson, Lynne L; Rodriquez, Krissy; Li, Qing; Backer, Marina; Backer, Joseph M

    2018-02-01

    Plaque vulnerability is associated with inflammation and angiogenesis, processes that rely on vascular endothelial growth factor (VEGF) signaling via two receptors, VEGFR-1 and VEGFR-2. We have recently reported that enhanced uptake of scVEGF-PEG-DOTA/Tc-99m (scV/Tc) single photon emission computed tomography (SPECT) tracer that targets both VEGFR-1 and VEGFR-2, identifies accelerated atherosclerosis in diabetic relative to non-diabetic ApoE -/- mice. Since VEGFR-1 and VEGFR-2 may play different roles in atherosclerotic plaques, we reasoned that selective imaging of each receptor can provide more detailed information on plaque biology. Recently described VEGFR-1 and VEGFR-2 selective mutants of scVEGF, named scVR1 and scVR2, were site-specifically derivatized with Tc-99m chelator DOTA via 3.4 kDa PEG linker, and their selectivity to the cognate receptors was confirmed in vitro. scVR1 and scVR2 conjugates were radiolabeled with Tc-99m to specific activity of 110 ± 11 MBq/nmol, yielding tracers named scVR1/Tc and scVR2/Tc. 34-40 week old diabetic and age-matched non-diabetic ApoE -/- mice were injected with tracers, 2-3 h later injected with x-ray computed tomography (CT) contrast agent and underwent hybrid SPECT/CT imaging. Tracer uptake, localized to proximal aorta and brachiocephalic vessels, was quantified as %ID from. Tracer uptake was also quantified as %ID/g from gamma counting of harvested plaques. Harvested atherosclerotic arterial tissue was used for immunofluorescent analyses of VEGFR-1 and VEGFR-2 and various lineage-specific markers. Focal, receptor-mediated uptake in proximal aorta and brachiocephalic vessels was detected for both scVR1/Tc and scVR2/Tc tracers. Uptake of scVR1/Tc and scVR2/Tc was efficiently inhibited only by "cold" proteins of the same receptor selectivity. Tracer uptake in this area, expressed as %ID, was higher in diabetic vs. non- diabetic mice for scVR1/Tc (p = 0.01) but not for scVR2/Tc. Immunofluorescent analysis revealed enhanced VEGFR-1 prevalence in and around plaque area in diabetic mice. Selective VEGFR-1 and VEGFR-2 imaging of atherosclerotic lesions may be useful to explore plaque biology and identify vulnerability.

  18. Effect of long-term dietary sphingomyelin supplementation on atherosclerosis in mice

    PubMed Central

    Chung, Rosanna W. S.; Wang, Zeneng; Bursill, Christina A.; Wu, Ben J.; Barter, Philip J.

    2017-01-01

    Sphingomyelin (SM) levels in the circulation correlate positively with atherosclerosis burden. SM is a ubiquitous component of human diets, but it is unclear if dietary SM increases circulating SM levels. Dietary choline increases atherosclerosis by raising circulating trimethylamine N-oxide (TMAO) levels in mice and humans. As SM has a choline head group, we ask in this study if dietary SM accelerates atherosclerotic lesion development by increasing circulating SM and TMAO levels. Three studies were performed: (Study 1) C57BL/6 mice were maintained on a high fat diet with or without SM supplementation for 4 weeks prior to quantification of serum TMAO and SM levels; (Study 2) atherosclerosis was studied in apoE-/- mice after 16 weeks of a high fat diet without or with SM supplementation and (Study 3) apoE-/- mice were maintained on a chow diet for 19 weeks without or with SM supplementation and antibiotic treatment prior to quantification of atherosclerotic lesions and serum TMAO and SM levels. SM consumption did not increase circulating SM levels or atherosclerosis in high fat-fed apoE-/- mice. Serum TMAO levels in C57BL/6 mice were low and had no effect atherosclerosis lesion development. Dietary SM supplementation significantly reduced atherosclerotic lesion area in the aortic arch of chow-fed apoE-/- mice. This study establishes that dietary SM does not affect circulating SM levels or increase atherosclerosis in high fat-fed apoE-/- mice, but it is anti-atherogenic in chow-fed apoE-/- mice. PMID:29240800

  19. Myeloid protein tyrosine phosphatase 1B (PTP1B) deficiency protects against atherosclerotic plaque formation in the ApoE-/- mouse model of atherosclerosis with alterations in IL10/AMPKα pathway.

    PubMed

    Thompson, D; Morrice, N; Grant, L; Le Sommer, S; Ziegler, K; Whitfield, P; Mody, N; Wilson, H M; Delibegović, M

    2017-08-01

    Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with Type 1 or Type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance due to impaired insulin receptor (IR) signaling. Moreover, inflammatory cells, in particular macrophages, play a key role in pathogenesis of atherosclerosis and insulin resistance in humans. We hypothesized that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR, specifically in macrophages, would have beneficial anti-inflammatory effects and lead to protection against atherosclerosis and CVD. We generated novel macrophage-specific PTP1B knockout mice on atherogenic background (ApoE -/- /LysM-PTP1B). Mice were fed standard or pro-atherogenic diet, and body weight, adiposity (echoMRI), glucose homeostasis, atherosclerotic plaque development, and molecular, biochemical and targeted lipidomic eicosanoid analyses were performed. Myeloid-PTP1B knockout mice on atherogenic background (ApoE -/- /LysM-PTP1B) exhibited a striking improvement in glucose homeostasis, decreased circulating lipids and decreased atherosclerotic plaque lesions, in the absence of body weight/adiposity differences. This was associated with enhanced phosphorylation of aortic Akt, AMPKα and increased secretion of circulating anti-inflammatory cytokine interleukin-10 (IL-10) and prostaglandin E2 (PGE 2 ), without measurable alterations in IR phosphorylation, suggesting a direct beneficial effect of myeloid-PTP1B targeting. Here we demonstrate that inhibiting the activity of PTP1B specifically in myeloid lineage cells protects against atherosclerotic plaque formation, under atherogenic conditions, in an ApoE -/- mouse model of atherosclerosis. Our findings suggest for the first time that macrophage PTP1B targeting could be a therapeutic target for atherosclerosis treatment and reduction of CVD risk.

  20. Role of infrasound pressure waves in atherosclerotic plaque rupture: a theoretical approach.

    PubMed

    Tsatsaris, Athanasios; Koukounaris, Efstathios; Motsakos, Theodoros; Perrea, Despina

    2007-01-01

    To investigate the role of infrasound aortic pressure waves (IPW) in atherosclerotic plaque rupture. Atherosclerotic plaques have been simulated partly, in two dimensions, as being short or long Conical Intersections (CIS), that is to say elliptic, parabolic or hyperbolic surfaces. Consequently, the course and reflection of the generated aortic pressure wave (infrasound domain-less than 20Hz) has been examined around the simulated plaques. The incidence of IPW on plaque surface results both in reflection and "refraction" of the wave. The IPW course within tissue, seems to be enhanced by high Cu-level presence at these areas according to recent evidence (US2003000388213). The "refracted", derived wave travels through plaque tissue and is eventually accumulated to the foci of the respective CIS-plaque geometry. The foci location within or underneath atheroma declares zones where infrasound energy is mostly absorbed. This process, among other mechanisms may contribute to plaque rupture through the development of local hemorrhage and inflammation in foci areas. In future, detection of foci areas and repair (i.e. via Laser Healing Microtechnique) may attenuate atherosclerotic plaque rupture behavior.

  1. Risk Factors for Atherosclerosis and the Development of Pre-Atherosclerotic Intimal Hyperplasia

    PubMed Central

    Cizek, Stephanie M.; Bedri, Shahinaz; Talusan, Paul; Silva, Nilsa; Lee, Hang; Stone, James R.

    2007-01-01

    Summary Intimal hyperplasia or thickening is considered to be the precursor lesion for atherosclerosis in humans; however the factors governing its formation are unclear. In the atherosclerosis-resistant internal thoracic artery, pre-atherosclerotic intimal hyperplasia routinely forms during adulthood after the 4th decade and is associated with at least two traditional risk factors for atherosclerosis: age and smoking. Background Intimal hyperplasia, or thickening, is considered to be the precursor lesion for atherosclerosis in humans; however, the factors governing its formation are unclear. To gain insight into the etiology of pre-atherosclerotic intimal hyperplasia, traditional risk factors for atherosclerosis were correlated with the intimal hyperplasia in an atherosclerosis-resistant vessel, the internal thoracic artery. Methods Paired internal thoracic arteries were obtained from 89 autopsies. Multivariate logistic regression and multiple regression models were used to examine the association of pre-atherosclerotic intimal hyperplasia with traditional risk factors for atherosclerosis: age, gender, hypertension, smoking, body mass index, diabetes, and hypercholesterolemia. Results Atherosclerotic lesions consisting of fatty streaks and/or type III intermediate lesions were identified in 19 autopsies. Only age >75 years was found to be significantly correlated with atherosclerotic lesion development (P=0.01). Multiple regression model of the intima/media ratio in all 89 cases revealed age >75 years (P<0.0001), age 51–75years (P=0.0012), smoking (P=0.008) and hypertension (P=0.02) to be significantly correlated with intimal thickness. In the 70 cases without atherosclerosis, only age 51–75 years (P=0.006) and smoking (P=0.028) were found to be significantly associated with pre-atherosclerotic intimal thickening. Conclusions In the atherosclerosis-resistant internal thoracic artery, pre-atherosclerotic intimal hyperplasia routinely forms during adulthood after the 4th decade and is associated with at least two traditional risk factors for atherosclerosis: age and smoking. These observations indicate that in some settings, intimal hyperplasia may be part of the disease process of atherosclerosis, and that its formation may be influenced by traditional risk factors for atherosclerosis. PMID:18005873

  2. The Effects of Chronic Exercise on the Heart and on Coronary Atherosclerotic Heart Disease. A Literature Survey

    DTIC Science & Technology

    1976-02-01

    McAllister, F. F., R. Bertsch, and J. Jacobson. The accelerating effect of muscular exercise on experimental atherosclerosis. Arch Surg 80:54 (1959). 93. M...Lipid metabolism and muscular work. Fed Proc 26:1755 (1967). 98. Faris, A. W., F. M. Browning, and J. D. Ibach. The effect of physical training upon...total serum choleiterol levels and arterial distensibility of male ’hite rats. J Sports Med 11:24 (1971). 34 99. Rdb, rt, J. A., and A. LX"e-S

  3. Chlamydia pneumoniae Infection in Atherosclerotic Lesion Development through Oxidative Stress: A Brief Overview

    PubMed Central

    Di Pietro, Marisa; Filardo, Simone; De Santis, Fiorenzo; Sessa, Rosa

    2013-01-01

    Chlamydia pneumoniae, an obligate intracellular pathogen, is known as a leading cause of respiratory tract infections and, in the last two decades, has been widely associated with atherosclerosis by seroepidemiological studies, and direct detection of the microorganism within atheroma. C. pneumoniae is presumed to play a role in atherosclerosis for its ability to disseminate via peripheral blood mononuclear cells, to replicate and persist within vascular cells, and for its pro-inflammatory and angiogenic effects. Once inside the vascular tissue, C. pneumoniae infection has been shown to induce the production of reactive oxygen species in all the cells involved in atherosclerotic process such as macrophages, platelets, endothelial cells, and vascular smooth muscle cells, leading to oxidative stress. The aim of this review is to summarize the data linking C. pneumoniae-induced oxidative stress to atherosclerotic lesion development. PMID:23877837

  4. Real-Time Elastography Visualization and Histopathological Characterization of Rabbit Atherosclerotic Carotid Arteries.

    PubMed

    Wang, ZhenZhen; Liu, NaNa; Zhang, LiFeng; Li, XiaoYing; Han, XueSong; Peng, YanQing; Dang, MeiZheng; Sun, LiTao; Tian, JiaWei

    2016-01-01

    To evaluate the feasibility of non-invasive vascular real-time elastography imaging (RTE) in visualizing the composition of rabbit carotid atherosclerotic plaque as determined by histopathology, a rabbit model of accelerated carotid atherosclerosis was used. Thirty rabbits were randomly divided into two groups of 15 rabbits each. The first group was fed a cholesterol-rich diet and received balloon-induced injury the left common carotid artery endothelium, whereas the second group only received a cholesterol-rich diet. The rabbits were all examined in vivo with HITACHI non-invasive vascular real-time elastography (Hi-RTE) at baseline and 12 wk, and results from the elastography were compared with American Heart Association histologic classifications. Hi-RTE and the American Heart Association histologic classifications had good agreement, with weighted Cohen's kappa (95% confidence internal) of 0.785 (0.649-0.920). Strains of segmented plaques that were stained in different colors were statistically different (p < 0.0001). The sensitivity and specificity of elastograms for detecting a lipid core were 95.5% and 61.5%, respectively, and the area under the receiver operating characteristic curve was 0.789, with a 95% confidence interval of 0.679 to 0.876. This study is the first to indicate the feasibility of utilizing Hi-RTE in visualizing normal and atherosclerotic rabbit carotid arteries non-invasively. This affordable and reliable method can be widely applied in research of both animal and human peripheral artery atherosclerosis. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. In vivo MRI-based simulation of fatigue process: a possible trigger for human carotid atherosclerotic plaque rupture.

    PubMed

    Huang, Yuan; Teng, Zhongzhao; Sadat, Umar; He, Jing; Graves, Martin J; Gillard, Jonathan H

    2013-04-23

    Atherosclerotic plaque is subjected to a repetitive deformation due to arterial pulsatility during each cardiac cycle and damage may be accumulated over a time period causing fibrous cap (FC) fatigue, which may ultimately lead to rupture. In this study, we investigate the fatigue process in human carotid plaques using in vivo carotid magnetic resonance (MR) imaging. Twenty seven patients with atherosclerotic carotid artery disease were included in this study. Multi-sequence, high-resolution MR imaging was performed to depict the plaque structure. Twenty patients were found with ruptured FC or ulceration and 7 without. Modified Paris law was used to govern crack propagation and the propagation direction was perpendicular to the maximum principal stress at the element node located at the vulnerable site. The predicted crack initiations from 20 patients with FC defect all matched with the locations of the in vivo observed FC defect. Crack length increased rapidly with numerical steps. The natural logarithm of fatigue life decreased linearly with the local FC thickness (R(2) = 0.67). Plaques (n=7) without FC defect had a longer fatigue life compared with those with FC defect (p = 0.03). Fatigue process seems to explain the development of cracks in FC, which ultimately lead to plaque rupture.

  6. Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis

    PubMed Central

    Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.

    2018-01-01

    Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372

  7. Quantitative micro-CT based coronary artery profiling using interactive local thresholding and cylindrical coordinates.

    PubMed

    Panetta, Daniele; Pelosi, Gualtiero; Viglione, Federica; Kusmic, Claudia; Terreni, Marianna; Belcari, Nicola; Guerra, Alberto Del; Athanasiou, Lambros; Exarchos, Themistoklis; Fotiadis, Dimitrios I; Filipovic, Nenad; Trivella, Maria Giovanna; Salvadori, Piero A; Parodi, Oberdan

    2015-01-01

    Micro-CT is an established imaging technique for high-resolution non-destructive assessment of vascular samples, which is gaining growing interest for investigations of atherosclerotic arteries both in humans and in animal models. However, there is still a lack in the definition of micro-CT image metrics suitable for comprehensive evaluation and quantification of features of interest in the field of experimental atherosclerosis (ATS). A novel approach to micro-CT image processing for profiling of coronary ATS is described, providing comprehensive visualization and quantification of contrast agent-free 3D high-resolution reconstruction of full-length artery walls. Accelerated coronary ATS has been induced by high fat cholesterol-enriched diet in swine and left coronary artery (LCA) harvested en bloc for micro-CT scanning and histologic processing. A cylindrical coordinate system has been defined on the image space after curved multiplanar reformation of the coronary vessel for the comprehensive visualization of the main vessel features such as wall thickening and calcium content. A novel semi-automatic segmentation procedure based on 2D histograms has been implemented and the quantitative results validated by histology. The potentiality of attenuation-based micro-CT at low kV to reliably separate arterial wall layers from adjacent tissue as well as identify wall and plaque contours and major tissue components has been validated by histology. Morphometric indexes from histological data corresponding to several micro-CT slices have been derived (double observer evaluation at different coronary ATS stages) and highly significant correlations (R2 > 0.90) evidenced. Semi-automatic morphometry has been validated by double observer manual morphometry of micro-CT slices and highly significant correlations were found (R2 > 0.92). The micro-CT methodology described represents a handy and reliable tool for quantitative high resolution and contrast agent free full length coronary wall profiling, able to assist atherosclerotic vessels morphometry in a preclinical experimental model of coronary ATS and providing a link between in vivo imaging and histology.

  8. Connecting the Lines between Hypogonadism and Atherosclerosis

    PubMed Central

    Fahed, Akl C.; Gholmieh, Joanna M.; Azar, Sami T.

    2012-01-01

    Epidemiological studies show that atherosclerotic cardiovascular disease is a leading cause of morbidity and mortality worldwide and point to gender differences with ageing males being at highest risk. Atherosclerosis is a complex process that has several risk factors and mediators. Hypogonadism is a commonly undiagnosed disease that has been associated with many of the events, and risk factors leading to atherosclerosis. The mechanistic relations between testosterone levels, atherosclerotic events, and risk factors are poorly understood in many instances, but the links are clear. In this paper, we summarize the research journey that explains the link between hypogonadism, each of the atherosclerotic events, and risk factors. We look into the different areas from which lessons could be learned, including epidemiological studies, animal and laboratory experiments, studies on androgen deprivation therapy patients, and studies on testosterone-treated patients. We finish by providing recommendations for the clinician and needs for future research. PMID:22518131

  9. From hemobiology to vascular disease: a review of the potential of gliclazide to influence the pathogenesis of diabetic vascular disease.

    PubMed

    Jennings, P E

    1994-01-01

    Patients with type II diabetes commonly die from thrombotic vascular disease. Large vessel occlusion due to thrombosis or atherosclerotic stenosis is a process accelerated by diabetes and results in premature death. Diabetic small vessel disease, with its unique microangiopathic process, underlies many of the large vessel changes as well as causing retinopathy and nephropathy. The microangiopathic changes produce a prothrombotic tendency that has been widely reported in type II diabetes. There is reduced endothelial cell production of prostacyclin and the activators of fibrinolysis, together with increased platelet reactivity. In addition, there is increased lipid peroxidation and oxidative stress due to excess free-radical activity and impaired antioxidant defenses particularly in the presence of microvascular disease. The development of many of these abnormalities is associated with poor long-term glycemic control. However, the changes are also seen in atherosclerosis in nondiabetic patients where the progression of the disease can be modified by antiplatelet agents and antioxidants. The process of vascular damage is accelerated by diabetes, often due to co-existing disease and aging, although it is not clear that improvement in long-term glycemic control by lowering blood glucose levels to near to the nondiabetic state reduces the development of small and large vessel disease. Although the biochemical mechanism underlying this observation remains uncertain, protein glycosylation and increased platelet reactivity are implicated and interrelated. Increased oxidative stress due to excess free-radical activity may be central to diabetic vascular disease as endothelial cell damage, lipoprotein oxidation, modification of both platelet reactivity and arachidonic acid cascade are all properties of free radicals and their reaction products lipid peroxides.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Bioinformatics approach to evaluate differential gene expression of M1/M2 macrophage phenotypes and antioxidant genes in atherosclerosis.

    PubMed

    da Rocha, Ricardo Fagundes; De Bastiani, Marco Antônio; Klamt, Fábio

    2014-11-01

    Atherosclerosis is a pro-inflammatory process intrinsically related to systemic redox impairments. Macrophages play a major role on disease development. The specific involvement of classically activated, M1 (pro-inflammatory), or the alternatively activated, M2 (anti-inflammatory), on plaque formation and disease progression are still not established. Thus, based on meta-data analysis of public micro-array datasets, we compared differential gene expression levels of the human antioxidant genes (HAG) and M1/M2 genes between early and advanced human atherosclerotic plaques, and among peripheric macrophages (with or without foam cells induction by oxidized low density lipoprotein, oxLDL) from healthy and atherosclerotic subjects. Two independent datasets, GSE28829 and GSE9874, were selected from gene expression omnibus (http://www.ncbi.nlm.nih.gov/geo/) repository. Functional interactions were obtained with STRING (http://string-db.org/) and Medusa (http://coot.embl.de/medusa/). Statistical analysis was performed with ViaComplex(®) (http://lief.if.ufrgs.br/pub/biosoftwares/viacomplex/) and gene score enrichment analysis (http://www.broadinstitute.org/gsea/index.jsp). Bootstrap analysis demonstrated that the activity (expression) of HAG and M1 gene sets were significantly increased in advance compared to early atherosclerotic plaque. Increased expressions of HAG, M1, and M2 gene sets were found in peripheric macrophages from atherosclerotic subjects compared to peripheric macrophages from healthy subjects, while only M1 gene set was increased in foam cells from atherosclerotic subjects compared to foam cells from healthy subjects. However, M1 gene set was decreased in foam cells from healthy subjects compared to peripheric macrophages from healthy subjects, while no differences were found in foam cells from atherosclerotic subjects compared to peripheric macrophages from atherosclerotic subjects. Our data suggest that, different to cancer, in atherosclerosis there is no M1 or M2 polarization of macrophages. Actually, M1 and M2 phenotype are equally induced, what is an important aspect to better understand the disease progression, and can help to develop new therapeutic approaches.

  11. Importance and Repercussions of Renal and Cardiovascular Pathology on Stroke in Young Adults: An Anatomopathologic Study of 52 Clinical Necropsies

    PubMed Central

    Arismendi-Morillo, Gabriel; Fernández-Abreu, Mary; Cardozo-Duran, José; Vilchez-Barrios, Gustavo

    2008-01-01

    INTRODUCTION Stroke in young adults has seldom been studied in a necropsy series. The objective of the present clinical necropsy-based investigation was to analyze stroke and its relationship with cardiovascular and renal pathology in young adults. MATERIALS AND METHODS The protocols of 52 clinical necropsies with diagnoses of stroke in patients aged 18 – 49 years, performed between the years 1990–2006, were reviewed. RESULTS Hemorrhagic stroke was diagnosed in 36 patients (69.3%), whereas the remaining 16 (30.7%) had ischemic stroke. Hypertensive cardiopathy was evident in 88.4% of the cases. Chronic renal pathology, directly or indirectly related to hypertension, was observed in 55.7% of the patients. Ischemic stroke as a result of occlusive atherosclerotic disease was seen in 50% of cases. Cardiogenic emboli were found in 25% of the cadavers. Hemorrhagic stroke was associated with hypertension in 43% of the cases, with ruptured vascular malformations in 29%, and coagulopathies in 17% of the cases. Hypertensive cardiopathy was present in patients with either ischemic or hemorrhagic stroke (81.2% and 91.6%, respectively). The most frequently observed renal ailments were chronic pyelonephritis (23%) and nephrosclerosis (21.1%). These were associated with ischemic stroke in 43.7%, and 12.5% of the cases, respectively, and with 13.8% and 25% of the hemorrhagic stroke cases. DISCUSSION Hypertensive cardiopathy, occlusive atherosclerotic disease, chronic pyelonephritis and nephrosclerosis are among the pathophysiologycal mechanisms that apparently and eventually interact to induce a significant number of cases of stroke in young adults. A chronic systemic inflammatory state appears to be an important related condition because it possibly constitutes an accelerant of the pathophysiologycal process. PMID:18297202

  12. Atherosclerosis and leukocyte-endothelial adhesive interactions are increased following acute myocardial infarction in apolipoprotein E deficient mice.

    PubMed

    Wright, Andrew P; Öhman, Miina K; Hayasaki, Takanori; Luo, Wei; Russo, Hana M; Guo, Chiao; Eitzman, Daniel T

    2010-10-01

    To determine the effect of myocardial infarction (MI) on progression of atherosclerosis in apolipoprotein E deficient (ApoE-/-) mice. MI was induced following left anterior descending coronary artery (LAD) ligation in wild-type (WT) (n=9) and ApoE-/- (n=25) mice. Compared to sham-operated animals, MI mice demonstrated increased intravascular leukocyte rolling and firm adhesion by intravital microscopy, reflecting enhanced systemic leukocyte-endothelial interactions. To determine if MI was associated with accelerated atherogenesis, LAD ligation was performed in ApoE-/- mice. Six weeks following surgery, atherosclerosis was quantitated throughout the arterial tree by microdissection and Oil-Red-O staining. There was 1.6-fold greater atherosclerotic burden present in ApoE-/- MI mice compared to sham-operated mice. Acute MI accelerates atherogenesis in mice. These results may be related to the increased risk of recurrent ischemic coronary events following MI in humans. Published by Elsevier Ireland Ltd.

  13. Modeling vascular inflammation and atherogenicity after inhalation of ambient levels of ozone: exploratory lessons from transcriptomics.

    PubMed

    Tham, Andrea; Lullo, Dominic; Dalton, Sarah; Zeng, Siyang; van Koeverden, Ian; Arjomandi, Mehrdad

    2017-02-01

    Epidemiologic studies have linked inhalation of air pollutants such as ozone to cardiovascular mortality. Human exposure studies have shown that inhalation of ambient levels of ozone causes airway and systemic inflammation and an imbalance in sympathetic/parasympathetic tone. To explore molecular mechanisms through which ozone inhalation contributes to cardiovascular mortality, we compared transcriptomics data previously obtained from bronchoalveolar lavage (BAL) cells obtained from healthy subjects after inhalational exposure to ozone (200 ppb for 4 h) to those of various cell samples from 11 published studies of patients with atherosclerotic disease using the Nextbio genomic data platform. Overlapping gene ontologies that may be involved in the transition from pulmonary to systemic vascular inflammation after ozone inhalation were explored. Local and systemic enzymatic activity of an overlapping upregulated gene, matrix metalloproteinase-9 (MMP-9), was measured by zymography after ozone exposure. A set of differentially expressed genes involved in response to stimulus, stress, and wounding were in common between the ozone and most of the atherosclerosis studies. Many of these genes contribute to biological processes such as cholesterol metabolism dysfunction, increased monocyte adherence, endothelial cell lesions, and matrix remodeling, and to diseases such as heart failure, ischemia, and atherosclerotic occlusive disease. Inhalation of ozone increased MMP-9 enzymatic activity in both BAL fluid and serum. Comparison of transcriptomics between BAL cells after ozone exposure and various cell types from patients with atherosclerotic disease reveals commonly regulated processes and potential mechanisms by which ozone inhalation may contribute to progression of pre-existent atherosclerotic lesions.

  14. Impaired gait pattern as a sensitive tool to assess hypoxic brain damage in a novel mouse model of atherosclerotic plaque rupture.

    PubMed

    Roth, Lynn; Van Dam, Debby; Van der Donckt, Carole; Schrijvers, Dorien M; Lemmens, Katrien; Van Brussel, Ilse; De Deyn, Peter P; Martinet, Wim; De Meyer, Guido R Y

    2015-02-01

    Apolipoprotein E deficient (ApoE(-/-)) mice with a heterozygous mutation in the fibrillin-1 gene (Fbn1(C1039G+/-)) show spontaneous atherosclerotic plaque ruptures, disturbances in cerebral flow and sudden death when fed a Western-type diet (WD). The present study focused on motor coordination and spatial learning of ApoE(-/-) Fbn1(C1039G+/-) mice on WD for 20 weeks (n=21). ApoE(-/-) mice on WD (n=24) and ApoE(-/-) Fbn1(C1039G+/-) mice on normal diet (ND, n=21) served as controls. Starting from 10 weeks of diet, coordination was assessed every two weeks by the following tests: gait analysis, stationary beam, wire suspension and accelerating rotarod. The Morris water maze test was performed after 13 weeks of diet to study spatial learning. At the end of the experiment (20 weeks of WD), the mice were sacrificed and the brachiocephalic artery and brain were isolated. From 12 weeks onward, gait analysis of ApoE(-/-) Fbn1(C1039G+/-) mice on WD revealed a progressive increase in track width as compared to ApoE(-/-) mice on WD and ApoE(-/-) Fbn1(C1039G+/-) mice on ND (at 20 weeks: 29.8±0.6 mm vs. 25.8±0.4 mm and 26.0±0.5 mm). Moreover, the stationary beam test showed a decrease in motor coordination of ApoE(-/-) Fbn1(C1039G+/-) mice on WD at 18 and 20 weeks. The wire suspension test and accelerating rotarod could not detect signs of motor impairment. Spatial learning was also not affected. Histological analysis of the brachiocephalic artery showed larger and more stenotic plaques in ApoE(-/-) Fbn1(C1039G+/-) mice on WD. Furthermore, the parietal cortex of ApoE(-/-) Fbn1(C1039G+/-) mice on WD showed pyknotic nuclei as a sign of hypoxia and the percentage of pyknosis correlated with track width. In conclusion, gait analysis may be an efficient method for analyzing hypoxic brain damage in the ApoE(-/-) Fbn1(C1039G+/-) mouse model. This test could be of value to assess the effect of potential anti-atherosclerotic therapies in mice. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype

    PubMed Central

    Cardilo-Reis, Larissa; Gruber, Sabrina; Schreier, Sabine M; Drechsler, Maik; Papac-Milicevic, Nikolina; Weber, Christian; Wagner, Oswald; Stangl, Herbert; Soehnlein, Oliver; Binder, Christoph J

    2012-01-01

    Atherosclerotic lesions are characterized by the accumulation of oxidized LDL (OxLDL) and the infiltration of macrophages and T cells. Cytokine expression in the microenvironment of evolving lesions can profoundly contribute to plaque development. While the pro-atherogenic effect of T helper (Th) 1 cytokines, such as IFN-γ, is well established, the role of Th2 cytokines is less clear. Therefore, we characterized the role of the Th2 cytokine interleukin (IL)-13 in murine atherosclerosis. Here, we report that IL-13 administration favourably modulated the morphology of already established atherosclerotic lesions by increasing lesional collagen content and reducing vascular cell adhesion molecule-1 (VCAM-1)-dependent monocyte recruitment, resulting in decreased plaque macrophage content. This was accompanied by the induction of alternatively activated (M2) macrophages, which exhibited increased clearance of OxLDL compared to IFN-γ-activated (M1) macrophages in vitro. Importantly, deficiency of IL-13 results in accelerated atherosclerosis in LDLR−/− mice without affecting plasma cholesterol levels. Thus, IL-13 protects from atherosclerosis and promotes a favourable plaque morphology, in part through the induction of alternatively activated macrophages. PMID:23027612

  16. MCS-18, a natural product isolated from Helleborus purpurascens, inhibits maturation of dendritic cells in ApoE-deficient mice and prevents early atherosclerosis progression.

    PubMed

    Dietel, Barbara; Muench, Rabea; Kuehn, Constanze; Kerek, Franz; Steinkasserer, Alexander; Achenbach, Stephan; Garlichs, Christoph D; Zinser, Elisabeth

    2014-08-01

    Inflammation accelerates both plaque progression and instability in the pathogenesis of atherosclerosis. The inhibition of dendritic cell (DC) maturation is a promising approach to suppress excessive inflammatory immune responses and has been shown to be protective in several autoimmune models. The aim of this study was to investigate the immune modulatory effects of the natural substance MCS-18, an inhibitor of DC maturation, regarding the progression of atherosclerosis in ApoE-deficient mice. ApoE-deficient mice were fed for twelve weeks with a Western-type diet (n = 32) or normal chow (control group; n = 16). Animals receiving high-fat diet were treated with MCS-18 (500 μg/kg body weight, n = 16) or saline (n = 16) twice a week. After 12 weeks, animals were transcardially perfused and sacrificed. The percentage of mature DCs (CD3(-)/CD19(-)/CD14(-)/NK1.1(-)/CD11c(+)/MHCII(+)/CD83(+)/CD86(+)) and T cell subpopulations (CD4(+)/CD25(+)/Foxp3(+), CD3/CD4/CD8) was analyzed in peripheral blood and in the spleen using flow cytometry. Plaque size was determined in the aortic root and the thoracoabdominal aorta using en-face staining. Immunohistochemical stainings served to detect inflammatory cells in the aortic root. Several cytokines and chemokines were determined in serum using multiplex assays. In splenic cells derived from saline-treated atherosclerotic mice an increased DC maturation, reflected by the upregulation of CD83 and CD86 expression, was observed. The enhanced expression of both maturation markers was absent in MCS-18 treated atherosclerotic mice. While the percentage of splenic Foxp3 expressing Treg was increased in animals receiving MCS-18 compared to saline-treated atherosclerotic mice, cytotoxic T cells were reduced in the spleen and in atherosclerotic lesions of the aortic root. Furthermore, proatherogenic cytokines (e.g. IL-6 and IFN-γ) and chemokines (e.g. MIP-1β) were decreased in serum of MCS-18-treated animals when compared to saline-treated atherosclerotic mice. Also plaque size in the aortic root and the thoracoabdominal aorta was significantly lower following administration of MCS-18. This study provides for the first time evidence that MCS-18 is able to prevent the onset of atherosclerosis in ApoE-deficient mice. The observed anti-atherogenic effect is associated with the suppression of DC maturation and an inhibited migration and proliferation of cytotoxic T cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Protease-Activated Receptor-2 Deficiency Attenuates Atherosclerotic Lesion Progression and Instability in Apolipoprotein E-Deficient Mice

    PubMed Central

    Zuo, Pengfei; Zuo, Zhi; Zheng, Yueyue; Wang, Xin; Zhou, Qianxing; Chen, Long; Ma, Genshan

    2017-01-01

    Inflammatory mechanisms are involved in the process of atherosclerotic plaque formation and rupture. Accumulating evidence suggests that protease-activated receptor (PAR)-2 contributes to the pathophysiology of chronic inflammation on the vasculature. To directly examine the role of PAR-2 in atherosclerosis, we generated apolipoprotein E/PAR-2 double-deficient mice. Mice were fed with high-fat diet for 12 weeks starting at ages of 6 weeks. PAR-2 deficiency attenuated atherosclerotic lesion progression with reduced total lesion area, reduced percentage of stenosis and reduced total necrotic core area. PAR-2 deficiency increased fibrous cap thickness and collagen content of plaque. Moreover, PAR-2 deficiency decreased smooth muscle cell content, macrophage accumulation, matrix metallopeptidase-9 expression and neovascularization in plaque. Relative quantitative PCR assay using thoracic aorta revealed that PAR-2 deficiency reduced mRNA expression of inflammatory molecules, such as vascular cell adhesion molecule-1, intercellular adhesion molecule-1, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1. In vitro experiment, we found that PAR-2 deficiency reduced mRNA expression of interferon-γ, interleukin-6, TNF-α and MCP-1 in macrophage under unstimulated and lipopolysaccharide-stimulated conditions. These results suggest that PAR-2 deficiency attenuates the progression and instability of atherosclerotic plaque. PMID:28959204

  18. Positron emission tomography of the vulnerable atherosclerotic plaque in man – a contemporary review

    PubMed Central

    Pedersen, Sune F; Hag, Anne Mette F; Klausen, Thomas L; Ripa, Rasmus S; Bodholdt, Rasmus P; Kjær, Andreas

    2014-01-01

    Atherosclerosis is the primary underlying cause of cardiovascular disease (CVD). It is the leading cause of morbidity and mortality in the Western world today and is set to become the prevailing disease and major cause of death worldwide by 2020. In the 1950s surgical intervention was introduced to treat symptomatic patients with high-grade carotid artery stenosis due to atherosclerosis – a procedure known as carotid endarterectomy (CEA). By removing the atherosclerotic plaque from the affected carotid artery of these patients, CEA is beneficial by preventing subsequent ipsilateral ischemic stroke. However, it is known that patients with low to intermediate artery stenosis may still experience ischemic events, leading clinicians to consider plaque composition as an important feature of atherosclerosis. Today molecular imaging can be used for characterization, visualization and quantification of cellular and subcellular physiological processes as they take place in vivo; using this technology we can obtain valuable information on atherosclerostic plaque composition. Applying molecular imaging clinically to atherosclerotic disease therefore has the potential to identify atherosclerotic plaques vulnerable to rupture. This could prove to be an important tool for the selection of patients for CEA surgery in a health system increasingly focused on individualized treatment. This review focuses on current advances and future developments of in vivo atherosclerosis PET imaging in man. PMID:24289282

  19. Modeling of Mechanical Stress Exerted by Cholesterol Crystallization on Atherosclerotic Plaques.

    PubMed

    Luo, Yuemei; Cui, Dongyao; Yu, Xiaojun; Chen, Si; Liu, Xinyu; Tang, Hongying; Wang, Xianghong; Liu, Linbo

    2016-01-01

    Plaque rupture is the critical cause of cardiovascular thrombosis, but the detailed mechanisms are not fully understood. Recent studies have found abundant cholesterol crystals in ruptured plaques, and it has been proposed that the rapid expansion of cholesterol crystals in a limited space during crystallization may contribute to plaque rupture. To evaluate the effect of cholesterol crystal growth on atherosclerotic plaques, we modeled the expansion of cholesterol crystals during the crystallization process in the necrotic core and estimated the stress on the thin cap with different arrangements of cholesterol crystals. We developed a two-dimensional finite element method model of atherosclerotic plaques containing expanding cholesterol crystals and investigated the effect of the magnitude and distribution of crystallization on the peak circumferential stress born by the cap. Using micro-optical coherence tomography (μOCT), we extracted the cross-sectional geometric information of cholesterol crystals in human atherosclerotic aorta tissue ex vivo and applied the information to the model. The results demonstrate that (1) the peak circumference stress is proportionally dependent on the cholesterol crystal growth; (2) cholesterol crystals at the cap shoulder impose the highest peak circumference stress; and (3) spatial distributions of cholesterol crystals have a significant impact on the peak circumference stress: evenly distributed cholesterol crystals exert less peak circumferential stress on the cap than concentrated crystals.

  20. Effect of Watermarking on Diagnostic Preservation of Atherosclerotic Ultrasound Video in Stroke Telemedicine.

    PubMed

    Dey, Nilanjan; Bose, Soumyo; Das, Achintya; Chaudhuri, Sheli Sinha; Saba, Luca; Shafique, Shoaib; Nicolaides, Andrew; Suri, Jasjit S

    2016-04-01

    Embedding of diagnostic and health care information requires secure encryption and watermarking. This research paper presents a comprehensive study for the behavior of some well established watermarking algorithms in frequency domain for the preservation of stroke-based diagnostic parameters. Two different sets of watermarking algorithms namely: two correlation-based (binary logo hiding) and two singular value decomposition (SVD)-based (gray logo hiding) watermarking algorithms are used for embedding ownership logo. The diagnostic parameters in atherosclerotic plaque ultrasound video are namely: (a) bulb identification and recognition which consists of identifying the bulb edge points in far and near carotid walls; (b) carotid bulb diameter; and (c) carotid lumen thickness all along the carotid artery. The tested data set consists of carotid atherosclerotic movies taken under IRB protocol from University of Indiana Hospital, USA-AtheroPoint™ (Roseville, CA, USA) joint pilot study. ROC (receiver operating characteristic) analysis was performed on the bulb detection process that showed an accuracy and sensitivity of 100 % each, respectively. The diagnostic preservation (DPsystem) for SVD-based approach was above 99 % with PSNR (Peak signal-to-noise ratio) above 41, ensuring the retention of diagnostic parameter devalorization as an effect of watermarking. Thus, the fully automated proposed system proved to be an efficient method for watermarking the atherosclerotic ultrasound video for stroke application.

  1. Dysfunctional nitric oxide signalling increases risk of myocardial infarction.

    PubMed

    Erdmann, Jeanette; Stark, Klaus; Esslinger, Ulrike B; Rumpf, Philipp Moritz; Koesling, Doris; de Wit, Cor; Kaiser, Frank J; Braunholz, Diana; Medack, Anja; Fischer, Marcus; Zimmermann, Martina E; Tennstedt, Stephanie; Graf, Elisabeth; Eck, Sebastian; Aherrahrou, Zouhair; Nahrstaedt, Janja; Willenborg, Christina; Bruse, Petra; Brænne, Ingrid; Nöthen, Markus M; Hofmann, Per; Braund, Peter S; Mergia, Evanthia; Reinhard, Wibke; Burgdorf, Christof; Schreiber, Stefan; Balmforth, Anthony J; Hall, Alistair S; Bertram, Lars; Steinhagen-Thiessen, Elisabeth; Li, Shu-Chen; März, Winfried; Reilly, Muredach; Kathiresan, Sekar; McPherson, Ruth; Walter, Ulrich; Ott, Jurg; Samani, Nilesh J; Strom, Tim M; Meitinger, Thomas; Hengstenberg, Christian; Schunkert, Heribert

    2013-12-19

    Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.

  2. Flow-mediated dilation and exercise blood pressure in healthy adolescents

    USDA-ARS?s Scientific Manuscript database

    Objectives: Atherosclerosis is a process that begins in youth. The endothelium plays an essential role in regulating blood flow and protecting against progression of the initial stages of the atherosclerotic process. Few studies have investigated the relationship between aerobic fitness and exerc...

  3. SEMIANNUAL REPORT TO THE ATOMIC ENERGY COMMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, L.O. ed.

    Progress is reported in the following studies: carbohydrate metabolism in human erythrocytes; the development of a system of electron therapy employing a linear electron accelerator and an electromagnetic beann deflector; the capacity of progesterone to inhibit the sodium-retaining influence of aldosterone and desoxycorticosterone; use of tritium-labeled cholesterol in measuring the lability of cholesterol in human atherosclerotic plaques; the capacity of a number of steroid hormone metabelites to provoke fever in man; the failure of human placental tissue homogenates to convent progesterone to estrogens; and tracer studies on enzyme requirements for the incorporation of cytidine triphosphate into ribonucleic acid in amore » mammalian system. (L.H.)« less

  4. New magnetic resonance imaging methods in nephrology

    PubMed Central

    Zhang, Jeff L.; Morrell, Glen; Rusinek, Henry; Sigmund, Eric; Chandarana, Hersh; Lerman, Lilach O.; Prasad, Pottumarthi Vara; Niles, David; Artz, Nathan; Fain, Sean; Vivier, Pierre H.; Cheung, Alfred K.; Lee, Vivian S.

    2013-01-01

    Established as a method to study anatomic changes, such as renal tumors or atherosclerotic vascular disease, magnetic resonance imaging (MRI) to interrogate renal function has only recently begun to come of age. In this review, we briefly introduce some of the most important MRI techniques for renal functional imaging, and then review current findings on their use for diagnosis and monitoring of major kidney diseases. Specific applications include renovascular disease, diabetic nephropathy, renal transplants, renal masses, acute kidney injury and pediatric anomalies. With this review, we hope to encourage more collaboration between nephrologists and radiologists to accelerate the development and application of modern MRI tools in nephrology clinics. PMID:24067433

  5. Curcuma oil attenuates accelerated atherosclerosis and macrophage foam-cell formation by modulating genes involved in plaque stability, lipid homeostasis and inflammation.

    PubMed

    Singh, Vishal; Rana, Minakshi; Jain, Manish; Singh, Niharika; Naqvi, Arshi; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-01-14

    In the present study, the anti-atherosclerotic effect and the underlying mechanism of curcuma oil (C. oil), a lipophilic fraction from turmeric (Curcuma longa L.), was evaluated in a hamster model of accelerated atherosclerosis and in THP-1 macrophages. Male golden Syrian hamsters were subjected to partial carotid ligation (PCL) or FeCl3-induced arterial oxidative injury (Ox-injury) after 1 week of treatment with a high-cholesterol (HC) diet or HC diet plus C. oil (100 and 300 mg/kg, orally). Hamsters fed with the HC diet were analysed at 1, 3 and 5 weeks following carotid injury. The HC diet plus C. oil-fed group was analysed at 5 weeks. In hyperlipidaemic hamsters with PCL or Ox-injury, C. oil (300 mg/kg) reduced elevated plasma and aortic lipid levels, arterial macrophage accumulation, and stenosis when compared with those subjected to arterial injury alone. Similarly, elevated mRNA transcripts of matrix metalloproteinase-2 (MMP-2), MMP-9, cluster of differentiation 45 (CD45), TNF-α, interferon-γ (IFN-γ), IL-1β and IL-6 were reduced in atherosclerotic arteries, while those of transforming growth factor-β (TGF-β) and IL-10 were increased after the C. oil treatment (300 mg/kg). The treatment with C. oil prevented HC diet- and oxidised LDL (OxLDL)-induced lipid accumulation, decreased the mRNA expression of CD68 and CD36, and increased the mRNA expression of PPARα, LXRα, ABCA1 and ABCG1 in both hyperlipidaemic hamster-derived peritoneal and THP-1 macrophages. The administration of C. oil suppressed the mRNA expression of TNF-α, IL-1β, IL-6 and IFN-γ and increased the expression of TGF-β in peritoneal macrophages. In THP-1 macrophages, C. oil supplementation prevented OxLDL-induced production of TNF-α and IL-1β and increased the levels of TGF-β. The present study shows that C. oil attenuates arterial injury-induced accelerated atherosclerosis, inflammation and macrophage foam-cell formation.

  6. Elucidation of the atherosclerotic disease process in apo E and wild type mice by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Adar, Fran; Jelicks, Linda; Naudin, Coralie; Rousseau, Denis; Yeh, Syun-ru

    2004-07-01

    Raman and FTIR microprobe spectroscopy have been used to characterize the atherosclerotic process in Apo E and wild type mice. The Apo E null mouse is being studied in parallel with a healthy strain as a model of the human atherosclerotic disease. Preliminary Raman microprobe spectra have been recorded from the lumen of the aorta vessels from a normal black mouse (C57BL/6J) and the apo E null mouse fed on a normal chow diet. Spectra were also recorded from another normal mouse fed breeder chow containing a much higher content of fats. In the Raman spectra the fat cells exhibited spectra typical of esterified triglycerides while the wall tissue had spectra dominated by Amide I and III modes and the phenylalanine stretch at 1003 cm-1 of protein. The FTIR spectra showed the typical Amide I and II bands of protein and the strong >C=O stretch of the triglycerides. In addition, there were morphologically distinct regions of the specimens indicating a surprising form of calcification in one very old mouse (wild type), and free fatty acid inclusions in the knock out mouse. The observation of these chemistries provide new information for elucidation of the molecular mechanisms of the development of atherosclerosis.

  7. Rosuvastatin reduces atherosclerotic lesions and promotes progenitor cell mobilisation and recruitment in apolipoprotein E knockout mice.

    PubMed

    Schroeter, Marco R; Humboldt, Tim; Schäfer, Katrin; Konstantinides, Stavros

    2009-07-01

    Statins enhance incorporation of bone marrow-derived cells into experimental neointimal lesions. However, the contribution of progenitor cells to progression of spontaneous atherosclerotic plaques, and the possible modulatory role of statins in this process, remain poorly understood. We compared the effects of rosuvastatin (1 and 10mg/kg BW) and pravastatin (10mg/kg) on progenitor cell mobilisation, recruitment into atherosclerotic plaques, and lesion growth. Statins were administered over 8 weeks to apolipoprotein E knockout mice on atherogenic diet. In addition, mice were lethally irradiated, followed by transplantation of bone marrow from LacZ transgenic mice. Rosuvastatin reduced lesion area and intima-to-media ratio at the brachiocephalic artery compared to vehicle, while both parameters were not significantly altered by pravastatin. Rosuvastatin also augmented endothelialisation (P<0.05) and reduced the smooth muscle cells (SMC) content (P=0.042) of lesions. Numbers of c-kit, sca-1 and flk-1, sca-1 double-positive progenitor cells were significantly increased in rosuvastatin compared to control-treated mice, both in the bone marrow and the peripheral blood. Similarly, the number of spleen-derived acLDL, lectin double-positive progenitor cells (P=0.001) and colony-forming units (P=0.0104) was significantly increased in mice treated with rosuvastatin compared to vehicle alone. In the bone marrow, increased Akt and p42/44 MAP kinase phosphorylation and upregulated SDF1alpha mRNA expression were observed. Importantly, rosuvastatin treatment also increased the plasma levels of c-kit ligand (P=0.003), and the number of c-kit-positive cells within atherosclerotic lesions (P=0.041). Our findings suggest that rosuvastatin reduces the size of atherosclerotic plaques, and this effect appears to involve progenitor cell mobilisation and recruitment into vascular lesions.

  8. Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis.

    PubMed

    He, Hongliang; Yuan, Quan; Bie, Jinghua; Wallace, Ryan L; Yannie, Paul J; Wang, Jing; Lancina, Michael G; Zolotarskaya, Olga Yu; Korzun, William; Yang, Hu; Ghosh, Shobha

    2018-03-01

    Dysfunctional macrophages underlie the development of several diseases including atherosclerosis where accumulation of cholesteryl esters and persistent inflammation are 2 of the critical macrophage processes that regulate the progression as well as stability of atherosclerotic plaques. Ligand-dependent activation of liver-x-receptor (LXR) not only enhances mobilization of stored cholesteryl ester but also exerts anti-inflammatory effects mediated via trans-repression of proinflammatory transcription factor nuclear factor kappa B. However, increased hepatic lipogenesis by systemic administration of LXR ligands (LXR-L) has precluded their therapeutic use. The objective of the present study was to devise a strategy to selectively deliver LXR-L to atherosclerotic plaque-associated macrophages while limiting hepatic uptake. Mannose-functionalized dendrimeric nanoparticles (mDNP) were synthesized to facilitate active uptake via the mannose receptor expressed exclusively by macrophages using polyamidoamine dendrimer. Terminal amine groups were used to conjugate mannose and LXR-L T091317 via polyethylene glycol spacers. mDNP-LXR-L was effectively taken up by macrophages (and not by hepatocytes), increased expression of LXR target genes (ABCA1/ABCG1), and enhanced cholesterol efflux. When administered intravenously to LDLR-/- mice with established plaques, significant accumulation of fluorescently labeled mDNP-LXR-L was seen in atherosclerotic plaque-associated macrophages. Four weekly injections of mDNP-LXR-L led to significant reduction in atherosclerotic plaque progression, plaque necrosis, and plaque inflammation as assessed by expression of nuclear factor kappa B target gene matrix metalloproteinase 9; no increase in hepatic lipogenic genes or plasma lipids was observed. These studies validate the development of a macrophage-specific delivery platform for the delivery of anti-atherosclerotic agents directly to the plaque-associated macrophages to attenuate plaque burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Computational Hemodynamic Analysis for the Diagnosis of Atherosclerotic Changes in Intracranial Aneurysms: A Proof-of-Concept Study Using 3 Cases Harboring Atherosclerotic and Nonatherosclerotic Aneurysms Simultaneously

    PubMed Central

    Endo, Hidenori; Niizuma, Kuniyasu; Endo, Toshiki; Funamoto, Kenichi; Ohta, Makoto; Tominaga, Teiji

    2016-01-01

    This was a proof-of-concept computational fluid dynamics (CFD) study designed to identify atherosclerotic changes in intracranial aneurysms. We selected 3 patients with multiple unruptured aneurysms including at least one with atherosclerotic changes and investigated whether an image-based CFD study could provide useful information for discriminating the atherosclerotic aneurysms. Patient-specific geometries were constructed from three-dimensional data obtained using rotational angiography. Transient simulations were conducted under patient-specific inlet flow rates measured by phase-contrast magnetic resonance velocimetry. In the postanalyses, we calculated time-averaged wall shear stress (WSS), oscillatory shear index, and relative residence time (RRT). The volume of blood flow entering aneurysms through the neck and the mean velocity of blood flow inside aneurysms were examined. We applied the age-of-fluid method to quantitatively assess the residence of blood inside aneurysms. Atherosclerotic changes coincided with regions exposed to disturbed blood flow, as indicated by low WSS and long RRT. Blood entered aneurysms in phase with inlet flow rates. The mean velocities of blood inside atherosclerotic aneurysms were lower than those inside nonatherosclerotic aneurysms. Blood in atherosclerotic aneurysms was older than that in nonatherosclerotic aneurysms, especially near the wall. This proof-of-concept study demonstrated that CFD analysis provided detailed information on the exchange and residence of blood that is useful for the diagnosis of atherosclerotic changes in intracranial aneurysms. PMID:27703491

  10. Characterization of human arterial tissue affected by atherosclerosis using multimodal nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Baria, Enrico; Cicchi, Riccardo; Rotellini, Matteo; Nesi, Gabriella; Massi, Daniela; Pavone, Francesco S.

    2016-03-01

    Atherosclerosis is a widespread cardiovascular disease caused by the deposition of lipids (such as cholesterol and triglycerides) on the inner arterial wall. The rupture of an atherosclerotic plaque, resulting in a thrombus, is one of the leading causes of death in the Western World. Preventive assessment of plaque vulnerability is therefore extremely important and can be performed by studying collagen organization and lipid composition in atherosclerotic arterial tissues. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires immune-histochemical examination and a morpho-functional approach. Instead, a label-free and non-invasive alternative is provided by nonlinear microscopy. In this study, we combined SHG and FLIM microscopy in order to characterize collagen organization and lipids in human carotid ex vivo tissues affected by atherosclerosis. SHG and TPF images, acquired from different regions within atherosclerotic plaques, were processed through image pattern analysis methods (FFT, GLCM). The resulting information on collagen and cholesterol distribution and anisotropy, combined with collagen and lipids fluorescence lifetime measured from FLIM images, allowed characterization of carotid samples and discrimination of different tissue regions. The presented method can be applied for automated classification of atherosclerotic lesions and plaque vulnerability. Moreover, it lays the foundation for a potential in vivo diagnostic tool to be used in clinical setting.

  11. Saphenous vein graft aneurysm fistula formation causing right heart failure: an unusual presentation.

    PubMed

    Boon, K J; Arshad, M A; Singh, H; Lainchbury, J G; Blake, J W H

    2015-11-01

    Saphenous vein graft aneurysm (SVG) formation after coronary artery bypass grafting is a rare complication of the surgery. We present a case of a 68-year-old man with an unusual presentation of such an aneurysm. Thirty-four years after his initial bypass surgery, the patient presented with a fistula formation into his right atrium from a vein graft aneurysm. Late aneurysm formation is thought to occur secondary to atherosclerotic degeneration of the SVG with background hypertension and dyslipidaemia accelerating the process. Diagnostic modalities used to investigate SVG aneurysms include computed tomography, transthoracic echocardiogram, magnetic resonance imaging and cardiac catheterisation. Aneurysms with fistula formation historically require aggressive surgical intervention. Resection of the aneurysm with subsequent revascularisation if required is the surgical norm. SVG aneurysm with fistula formation into a cardiac chamber is a rare complication of coronary artery bypass grafting (CABG), which can occur with atypical presenting symptoms. Physicians should keep in mind the possibility of this occurring in post-CABG patients presenting with heart failure and a new murmur. © 2015 Royal Australasian College of Physicians.

  12. Mercury accumulation and accelerated progression of carotid atherosclerosis: a population-based prospective 4-year follow-up study in men in eastern Finland.

    PubMed

    Salonen, J T; Seppänen, K; Lakka, T A; Salonen, R; Kaplan, G A

    2000-02-01

    Basic research and our previous studies have suggested that mercury exposure enhances lipid peroxidation and the risk of myocardial infarction, but there are no studies concerning the association between mercury accumulation and atherosclerosis. We therefore investigated whether high hair mercury content is associated with accelerated progression of carotid atherosclerosis, determined by ultrasonographic assessment of common carotid intima-media thickness (IMT), in a prospective study among 1014 men aged 42-60 years. In a linear regression model adjusting for other atherosclerotic risk factors, high hair mercury content was one of the strongest predictors of the 4-year increase in the mean IMT (P2.81 microg/g (fifths) had an IMT increase of 0.105, 0.102, 0.113, 0.107 and 0.140 mm/4 years, respectively (P=0.041 for heterogeneity between groups). The IMT increase was 0.034 mm/4 years (31.9%) greater in the highest fifth than in the other fifths (P<0.05 for the difference). These findings suggest that mercury accumulation in the human body is associated with accelerated progression of carotid atherosclerosis.

  13. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice.

    PubMed Central

    Zhou, X; Paulsson, G; Stemme, S; Hansson, G K

    1998-01-01

    Atherosclerosis is an inflammatory-fibrotic response to accumulation of cholesterol in the artery wall. In hypercholesterolemia, low density lipoproteins (LDL) accumulate and are oxidized to proinflammatory compounds in the arterial intima, leading to activation of endothelial cells, macrophages, and T lymphocytes. We have studied immune cell activation and the autoimmune response to oxidized LDL in atherosclerotic apo E-knockout mice. Autoantibodies to oxidized LDL exhibited subclass specificities indicative of T cell help, and the increase in antibody titers in peripheral blood was associated with increased numbers of cytokine-expressing T cells in the spleen. In addition to T cell-dependent antibodies, IgM antibodies to oxidized LDL were also increased in apo E-knockout mice. This suggests that both T cell-dependent and T cell-independent epitopes may be present on oxidized LDL. In moderate hypercholesterolemia, IgG antibodies were largely of the IgG2a isotype, suggesting that T cell help was provided by proinflammatory T helper (Th) 1 cells, which are prominent components of atherosclerotic lesions. In severe hypercholesterolemia induced by cholesterol feeding of apo E-knockout mice, a switch to Th2-dependent help was evident. It was associated with a loss of IFN-gamma-producing Th1 cells in the spleen, whereas IL-4-producing Th2 cells were more resistant to hypercholesterolemia. IFN-gamma but not IL-4 mRNA was detected in atherosclerotic lesions of moderately hypercholesterolemic apo E-knockout mice, but IL-4 mRNA appeared in the lesions when mice were made severely hypercholesterolemic by cholesterol feeding. These data show that IFN-gamma-producing Th1 cells infiltrate atherosclerotic lesions and provide T cell help for autoimmune responses to oxidized LDL in apo E-knockout mice. However, severe hypercholesterolemia is associated with a switch from Th1 to Th2, which results not only in the formation of IgG1 autoantibodies to oxidized LDL, but also in the appearance of Th2-type cytokines in the atherosclerotic lesions. Since the two subsets of T cells counteract each other, this switch may have important consequences for the inflammatory/immune process in atherosclerosis. PMID:9541503

  14. Atherosclerosis in chronic kidney disease: the role of macrophages

    PubMed Central

    Kon, Valentina; Linton, MacRae F.; Fazio, Sergio

    2013-01-01

    Patients with chronic kidney disease (CKD) are at increased risk of atherosclerotic cardiovascular disease and loss of renal parenchyma accelerates atherosclerosis in animal models. Macrophages are central to atherogenesis because they regulate cholesterol traffic and inflammation in the arterial wall. CKD influences macrophage behavior at multiple levels, rendering them proatherogenic. Even at normal creatinine levels, macrophages from uninephrectomized Apoe−/− mice are enriched in cholesterol owing to downregulation of cholesterol transporter ATP-binding cassette subfamily A member 1 levels and activation of nuclear factor κB, which leads to impaired cholesterol efflux. Interestingly, treatment with an angiotensin-II-receptor blocker (ARB) improves these effects. Moreover, atherosclerotic aortas from Apoe−/− mice transplanted into renal-ablated normocholesterolemic recipients show plaque progression and increased macrophage content instead of the substantial regression seen in recipient mice with intact kidneys. ARBs reduce atherosclerosis development in mice with partial renal ablation. These results, combined with the clinical benefits of angiotensin-converting-enzyme (ACE) inhibitors and ARBs in patients with CKD, suggest an important role for the angiotensin system in the enhanced susceptibility to atherosclerosis seen across the spectrum of CKD. The role of macrophages could explain why these therapies may be effective in end-stage renal disease, one of the few conditions in which statins show no clinical benefit. PMID:21102540

  15. Increased Th9 cells and IL-9 levels accelerate disease progression in experimental atherosclerosis.

    PubMed

    Li, Qing; Ming, Tingting; Wang, Yuanmin; Ding, Shaowei; Hu, Chaojie; Zhang, Cuiping; Cao, Qi; Wang, Yiping

    2017-01-01

    Atherosclerosis (AS) is the number one killer in developed countries, and currently considered a chronic inflammatory disease. The central role of T cells in the pathogenesis of atherosclerosis is well documented. However, little is known about the newly described T cell subset-Th9 cells and their role in AS pathogenesis. Here, the amounts of Th9 cells as well as their key transcription factors and relevant cytokines during atherosclerosis were assessed in ApoE -/- mice and age-matched C57BL/6J mice. Significantly increased Th9 cell number, Th9 related cytokine (IL-9), and key transcription factor (PU.1) were found in ApoE -/- mice compared with age-matched C57BL/6J mice. Additionally, treatment with rIL-9 accelerated atherosclerotic development, which was attenuated by anti-IL-9 antibodies. These data suggested that both Th9 cells and related IL-9 play key roles in the pathogenesis of atherosclerosis, and antibodies against these antigens offer a novel therapeutic approach in AS treatment.

  16. Distinct effects of glucose and glucosamine on vascular endothelial and smooth muscle cells: Evidence for a protective role for glucosamine in atherosclerosis

    PubMed Central

    Duan, Wenlan; Paka, Latha; Pillarisetti, Sivaram

    2005-01-01

    Accelerated atherosclerosis is one of the major vascular complications of diabetes. Factors including hyperglycemia and hyperinsulinemia may contribute to accelerated vascular disease. Among the several mechanisms proposed to explain the link between hyperglycemia and vascular dysfunction is the hexosamine pathway, where glucose is converted to glucosamine. Although some animal experiments suggest that glucosamine may mediate insulin resistance, it is not clear whether glucosamine is the mediator of vascular complications associated with hyperglycemia. Several processes may contribute to diabetic atherosclerosis including decreased vascular heparin sulfate proteoglycans (HSPG), increased endothelial permeability and increased smooth muscle cell (SMC) proliferation. In this study, we determined the effects of glucose and glucosamine on endothelial cells and SMCs in vitro and on atherosclerosis in apoE null mice. Incubation of endothelial cells with glucosamine, but not glucose, significantly increased matrix HSPG (perlecan) containing heparin-like sequences. Increased HSPG in endothelial cells was associated with decreased protein transport across endothelial cell monolayers and decreased monocyte binding to subendothelial matrix. Glucose increased SMC proliferation, whereas glucosamine significantly inhibited SMC growth. The antiproliferative effect of glucosamine was mediated via induction of perlecan HSPG. We tested if glucosamine affects atherosclerosis development in apoE-null mice. Glucosamine significantly reduced the atherosclerotic lesion in aortic root. (P < 0.05) These data suggest that macrovascular disease associated with hyperglycemia is unlikely due to glucosamine. In fact, glucosamine by increasing HSPG showed atheroprotective effects. PMID:16207378

  17. Evaluation of 99mTc labeled diadenosine tetraphosphate as an atherosclerotic plaque imaging agent in experimental models.

    PubMed

    Cao, Wei; Zhang, Yongxue; An, Rui

    2006-01-01

    The potential of 99mTc labeled P1, P4-di (adenosine-5')-tetraphosphate (Ap4A) for imaging experimental atherosclerotic plaques was evaluated in New Zealand white (NZW) rabbits. To label the 99mTc to Ap4A, stannous tartrate solution was used. 99mTc-Ap4A was purified on a Sephadex G-25 column. The radiochemistry purities of 99mTc-Ap4A were 85% to 91%. Biodistribution study revealed 99mTc-Ap4A cleared from blood rapidly. Thirty min after 99mTc-Ap4A administrated on NZW atherosclerotic rabbits, lesion to blood (target/blood, T/B) ratio was 3.17 +/- 1.27, and lesions to normal (target/non-target, T/NT) ratio was 5.23 +/- 1.87. Shadows of atherosclerotic plaques were clearly visible on radioautographic film. Aortas with atherosclerotic plaques also could be seen on ex vivo gamma camera images. Atherosclerotic abdominal aortas were clearly visible on in vivo images 15 min to 3 h after 99mTc-Ap4A administration. 99mTc-labeled Ap4A can be used for rapid noninvasive detection of experimental atherosclerotic plaque.

  18. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging.

    PubMed Central

    Schleicher, E D; Wagner, E; Nerlich, A G

    1997-01-01

    N(epsilon)-(Carboxymethyl)lysine (CML), a major product of oxidative modification of glycated proteins, has been suggested to represent a general marker of oxidative stress and long-term damage to proteins in aging, atherosclerosis, and diabetes. To investigate the occurrence and distribution of CML in humans an antiserum specifically recognizing protein-bound CML was generated. The oxidative formation of CML from glycated proteins was reduced by lipoic acid, aminoguanidine, superoxide dismutase, catalase, and particularly vitamin E and desferrioxamine. Immunolocalization of CML in skin, lung, heart, kidney, intestine, intervertebral discs, and particularly in arteries provided evidence for an age-dependent increase in CML accumulation in distinct locations, and acceleration of this process in diabetes. Intense staining of the arterial wall and particularly the elastic membrane was found. High levels of CML modification were observed within atherosclerotic plaques and in foam cells. The preferential location of CML immunoreactivity in lesions may indicate the contribution of glycoxidation to the processes occurring in diabetes and aging. Additionally, we found increased CML content in serum proteins in diabetic patients. The strong dependence of CML formation on oxidative conditions together with the increased occurrence of CML in diabetic serum and tissue proteins suggest a role for CML as endogenous biomarker for oxidative damage. PMID:9022079

  19. CANCER BIOMARKERS IN HUMAN ATHEROSCLEROTIC LESIONS: DETECTION OF DNA ADDUCTS

    EPA Science Inventory

    Since somatic mutations are suspected to contribute to the pathogenesis not only of cancer but also of atherosclerotic plaques, we measured DNA adducts in the smooth muscle layer of atherosclerotic lesions in abnormal aorta specimens taken at surgery from seven patients. NA adduc...

  20. Viscoelastic properties of the posterior eye of normal subjects, patients with age-related macular degeneration, and pigs.

    PubMed

    Zhang, Zhen Huan; Pan, Meng Xin; Cai, Jia Tong; Weiland, James D; Chen, Kinon

    2018-03-26

    The purpose of this study is to measure, characterize, and compare the viscoelastic properties of the posterior eye of advanced dry age-related macular degeneration (AMD) patients, age-matched normal subjects, and pigs (3 groups). Ten horizontal and ten vertical strips of the macula retina and the underneath choroid and sclera were obtained for each group, respectively. They were examined by incremental stress-relaxation cycles in body-temperature saline. Mechanical response was characterized by the quasi-linear viscoelastic model. All the tissues were shown to be nonlinear viscoelastic. Stiffening and isotropization, increased relaxation, and softening and isotropization were found in AMD retina, choroid, and sclera, respectively, which are the mechanical features of the atherosclerotic process. The patients' medical records were in accordance with epidemiological studies indicating a relationship between the advanced AMD and atherosclerotic vascular disease (ASVD). Moreover, many differences were found between the viscoelastic properties of porcine and normal human retina, choroid, and sclera. The results suggest that AMD is associated with ASVD through a mechanism involving abnormal retinal, choroidal, and scleral mechanics similar to those seen in the atherosclerotic process. Moreover, researchers should be aware of mechanical differences when using porcine posterior eyes as a substitute for human posterior eyes. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  1. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients.

    PubMed

    Chhibber-Goel, Jyoti; Singhal, Varsha; Bhowmik, Debaleena; Vivek, Rahul; Parakh, Neeraj; Bhargava, Balram; Sharma, Amit

    2016-01-01

    Coronary artery disease is an inflammatory disorder characterized by narrowing of coronary arteries due to atherosclerotic plaque formation. To date, the accumulated epidemiological evidence supports an association between oral bacterial diseases and coronary artery disease, but has failed to prove a causal link between the two. Due to the recent surge in microbial identification and analyses techniques, a number of bacteria have been independently found in atherosclerotic plaque samples from coronary artery disease patients. In this study, we present meta-analysis from published studies that have independently investigated the presence of bacteria within atherosclerotic plaque samples in coronary artery disease patients. Data were collated from 63 studies covering 1791 patients spread over a decade. Our analysis confirms the presence of 23 oral commensal bacteria, either individually or in co-existence, within atherosclerotic plaques in patients undergoing carotid endarterectomy, catheter-based atherectomy, or similar procedures. Of these 23 bacteria, 5 ( Campylobacter rectus , Porphyromonas gingivalis , Porphyromonas endodontalis , Prevotella intermedia , Prevotella nigrescens ) are unique to coronary plaques, while the other 18 are additionally present in non-cardiac organs, and associate with over 30 non-cardiac disorders. We have cataloged the wide spectrum of proteins secreted by above atherosclerotic plaque-associated bacteria, and discuss their possible roles during microbial migration via the bloodstream. We also highlight the prevalence of specific poly-microbial communities within atherosclerotic plaques. This work provides a resource whose immediate implication is the necessity to systematically catalog landscapes of atherosclerotic plaque-associated oral commensal bacteria in human patient populations.

  2. Direct anti-atherosclerotic therapy; development of natural anti-atherosclerotic drugs preventing cellular cholesterol retention.

    PubMed

    Orekhov, Alexander N

    2013-01-01

    The results of numerous clinical trials with statins and other drugs have demonstrated the principal possibility of the prevention and regression of atherosclerosis by pharmacotherapy. This review describes the use of cultured human arterial cells for the mass screening of anti-atherosclerotic substances, the investigation of the mechanisms responsible for their atherosclerosis-related effects, and the optimization of anti-atherosclerotic and anti-atherogenic drug and dietary therapies. Natural products can be considered promising drugs for anti-atherosclerotic therapy. Our basic studies have shown that cellular lipidosis is the principal event in the genesis of atherosclerotic lesions. Using cellular models and natural products, we have developed an approach to prevent lipid accumulation in arterial cells. Based on our knowledge of atherosclerosis, we developed drugs that possess direct anti-atherosclerotic activity. Two-year treatment with allicor (garlic powder) has a direct anti-atherosclerotic effect on carotid atherosclerosis in asymptomatic men. Inflaminat (calendula, elder, and violet), which possesses anti-cytokine activity, has been shown to cause the regression of carotid atherosclerosis following the treatment of asymptomatic men for one year. The phytoestrogen-rich drug karinat (garlic powder, extract of grape seeds, green tea leaves, hop cones, β-carotene, α-tocopherol, and ascorbic acid) prevents the development of carotid atherosclerosis in postmenopausal women. Thus, our basic findings were successfully translated into clinical practice. Because of this translation, a novel approach to antiatherosclerotic therapy was developed. Our clinical trial confirmed the efficacy of both the novel approach and the novel drugs.

  3. Viral Heart Disease and Acute Coronary Syndromes - Often or Rare Coexistence?

    PubMed

    Pawlak, Agnieszka; Wiligorska, Natalia; Wiligorska, Diana; Frontczak-Baniewicz, Malgorzata; Przybylski, Maciej; Krzyzewski, Rafal; Ziemba, Andrzej; Gil, Robert J

    2018-01-01

    Clinical presentation of viral myocarditis can mimic acute coronary syndrome and making diagnosis of viral heart disease (VHD) may be challenging. The presence of coronary artery disease (CAD) does not always exclude VHD and these entities can coexist. However, the incidence of co-occurrence of CAD and VHD is not precisely known. Moreover, inflammatory process caused by viruses may result in atherosclerotic plaque destabilization. The goal of this work is to summarize the current knowledge about co-occurrence of VHD and CAD. This article presents the importance of inflammatory process in both diseases and helps to understand pathophysiological mechanisms underlying their coexistence. It provides information about making differential diagnosis between these entities, including clinical presentation, noninvasive imaging features and findings in endomyocardial biopsy. Although currently there are no standard therapy strategies in coexistence of VHD and CAD, we present some remarkable aspects of treatment of patients, in whom VHD co-occurs with CAD. Viral heart disease may occur both in patients without and with atherosclerotic plaques in coronary arteries. Destabilization of atherosclerotic plaques in coronary arteries can be facilitated by inflammatory process. Increased inflammatory infiltrates in the coronary lesions of patients with VHD can lead to plaques' instability and consequently trigger acute coronary syndrome. In this article we attempted to present that co-occurrence of VHD and CAD may have therapeutic implications and as specific antiviral treatment is currently available, proper diagnosis and treatment can improve patient's condition and prognosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Incremental value of live/real time three-dimensional transesophageal echocardiography over the two-dimensional technique in the assessment of aortic atherosclerotic thrombi and ulcers.

    PubMed

    Elsayed, Mahmoud; Bulur, Serkan; Kalla, Aditi; Ahmed, Mustafa I; Hsiung, Ming C; Uygur, Begum; Alagic, Nermina; Sungur, Aylin; Singh, Satinder; Nanda, Navin C

    2016-08-01

    We present two cases in whom live/real time three-dimensional transesophageal echocardiography (3DTEE) provided incremental value in the assessment of atherosclerotic disease in the aorta. In one patient, it identified additional atherosclerotic ulcers as well as thrombi within them which were missed by two-dimensional (2D) TEE. In both cases, the size of the large mobile atherosclerotic plaque was underestimated by 2DTEE as compared with 3DTEE. Furthermore, 3DTEE provided volume quantification of the thrombi and ulcers which is not possible by 2DTEE. The echocardiographic findings of atherosclerotic plaques were confirmed by computed tomography in one patient and by surgery in the other. © 2016, Wiley Periodicals, Inc.

  5. Globular domain of adiponectin: promising target molecule for detection of atherosclerotic lesions

    PubMed Central

    Almer, Gunter; Saba-Lepek, Matthias; Haj-Yahya, Samih; Rohde, Eva; Strunk, Dirk; Fröhlich, Eleonore; Prassl, Ruth; Mangge, Harald

    2011-01-01

    Background: Adiponectin, an adipocyte-specific plasma protein, has been shown to accumulate in injured endothelial cells during development of atherosclerotic lesions. In this study, we investigated the potential of different adiponectin subfractions with special emphasis on globular adiponectin (gAd) to recognize and visualize atherosclerotic lesions. Methods: Recombinant mouse gAd and subfractions of full-length adiponectin (ie, trimeric, hexameric, and oligomeric forms) were fluorescence-labeled. Aortas of wild-type and apoprotein E-deficient mice fed a high cholesterol diet were dissected and incubated with the labeled biomarkers. Imaging was performed using confocal laser scanning microscopy. Results: Confocal laser scanning microscopic images showed that gAd binds more strongly to atherosclerotic plaques than full-length adiponectin subfractions. Further, we showed that gAd accumulates preferentially in endothelial cells and the fibrous cap area of plaques. Here we demonstrate for the first time that gAd recognizes atherosclerotic plaques on aortic sections of apoprotein E-deficient mice. Conclusion: These results suggest that gAd, in addition to its physiological properties, is also suitable as a target molecule for prospective diagnostic strategies in imaging atherosclerotic lesions. PMID:22022204

  6. Agonistic antibody to angiotensin II type 1 receptor accelerates atherosclerosis in ApoE-/- mice

    PubMed Central

    Li, Weijuan; Chen, Yaoqi; Li, Songhai; Guo, Xiaopeng; Zhou, Wenping; Zeng, Qiutang; Liao, Yuhua; Wei, Yumiao

    2014-01-01

    This study aimed to investigate the effects of agonistic antibody to angiotensin II type 1 receptor (AT1-AA) on atherosclerosis in male ApoE-/- mice which were employed to establish the animal models of AT1-AA in two ways. In the first group, mice were injected subcutaneously with conjugated AT1 peptide at multiple sites; in the second group, mice were infused with AT1-AA prepared from rabbits that were treated with AT1 peptide intraperitoneally. Mice in each group were further randomly divided into five subgroups and treated with AT1 peptide/AT1-AA, AT1 peptide/AT1-AA plus valsartan, AT1 peptide/AT1-AA plus fenofibrate, AT1 peptide/ AT1-AA plus pyrrolidine dithiocarbamate (PDTC) and control vehicle, respectively. Antibodies were detected in mice (except for mice in control group). Aortic atherosclerotic lesions were assessed by oil red O staining, while plasma CRP, TNF-α, nuclear factor-kappa B (NF-κB) and H2O2 were determined by ELISA. CCR2 (the receptor of MCP-1), macrophages, and smooth muscle cells were detected by immunohistochemistry. P47phox, MCP-1 and eNOS were detected by RT-PCR, while P47phox, NF-κB and MCP-1 were detected by Western blot assay. The aortic atherosclerotic lesions were significantly increased in AT1 peptide/AT1-AA treated mice, along with simultaneous increases in inflammatory parameters. However, mice treated with valsartan, fenofibrate or PDTC showed alleviated progression of atherosclerosis and reductions in inflammatory parameters. Thus, AT1-AA may accelerate aortic atherosclerosis in ApoE-/- mice, which is mediated, at least in part, by the inflammatory reaction involving nicotinamide-adenine dinucleotide phosphate oxidase, reactive oxygen species, and NF-κB. In addition, valsartan, fenofibrate and PDTC may inhibit the AT1-AA induced atherosclerosis. PMID:25628779

  7. Long-term behavior of aortic intramural hematomas and penetrating ulcers.

    PubMed

    Chou, Alan S; Ziganshin, Bulat A; Charilaou, Paris; Tranquilli, Maryann; Rizzo, John A; Elefteriades, John A

    2016-02-01

    For intramural hematoma and penetrating atherosclerotic ulcer, long-term behavior and treatment are controversial. This study evaluates the long-term behavior of intramural hematoma and penetrating atherosclerotic ulcer, including radiologic follow-up and survival analysis. Between 1995 and 2014, 108 patients (mean age, 70.8 ± 10 years; 56% female) presented with intramural hematoma or penetrating atherosclerotic ulcer to Yale-New Haven Hospital (New Haven, Conn). We reviewed the medical records, radiology, and online mortality databases. Ten of 55 patients (18%) with intramural hematoma and 17 of 53 patients (32%) with penetrating atherosclerotic ulcer had rupture state symptoms on admission, both greater than type A (8%) or type B dissection (4%) (P < .001). No branch vascular occlusion occurred. For patients with intramural hematoma with follow-up imaging, 8 of 14 (57%) worsened (mean follow-up, 9.4 months) and 6 (43%) underwent late surgery. For patients with penetrating atherosclerotic ulcer with follow-up imaging, 6 of 20 (30%) worsened and underwent late surgery, and 11 (55%) showed no change (mean follow-up, 34.3 months). Overall survivals were 77%, 70%, 58%, and 33% at 1, 3, 5, and 10 years, respectively. No operative deaths occurred for patients with nonrupture state. Patients with penetrating atherosclerotic ulcer with initial surgical treatment had better long-term survival than patients treated medically (P = .037). In the intramural hematoma group, no such difference was observed (P = .10). At presentation, the incidence of early rupture of intramural hematoma and penetrating atherosclerotic ulcer was higher than for typical dissection. For branch vessels, intramural hematoma never occludes branch arteries. On imaging follow-up, patients with intramural hematoma and penetrating atherosclerotic ulcer rarely improved, with late surgery commonly needed. Better survival was observed for the initial surgical management of patients with penetrating atherosclerotic ulcer compared with initial medical management. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  8. Ghrelin inhibits atherosclerotic plaque angiogenesis and promotes plaque stability in a rabbit atherosclerotic model.

    PubMed

    Wang, Li; Chen, Qingwei; Ke, Dazhi; Li, Guiqiong

    2017-04-01

    Intraplaque angiogenesis associates with the instability of atherosclerotic plaques. In the present study, we investigated the effects of ghrelin on intraplaque angiogenesis and plaque instability in a rabbit model of atherosclerosis. The rabbits were randomly divided into three groups, namely, the control group, atherosclerotic model group, and ghrelin-treated group, with treatments lasting for 4 weeks. We found that the thickness ratio of the intima to media in rabbits of the ghrelin-treated group was significantly lower than that in rabbits of the atherosclerotic model group. The number of neovessels and the levels of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) decreased dramatically in rabbits of the ghrelin-treated group compared to those of the atherosclerotic model group. Ghrelin significantly decreased the plaque content of macrophages, matrix metalloproteinase (MMP)-2, and MMP-9, in a rabbit model of atherosclerosis. In addition, the level of the pro-inflammatory factor monocyte chemoattractant protein (MCP)-1 was significantly lower in rabbits of the ghrelin-treated group than in rabbits of the atherosclerotic model group. In summary, ghrelin can inhibit intraplaque angiogenesis and promote plaque stability by down-regulating VEGF and VEGFR2 expression, inhibiting the plaque content of macrophages, and reducing MCP-1 expression at an advanced stage of atherosclerosis in rabbits. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Intravascular photoacoustic imaging of exogenously labeled atherosclerotic plaque through luminal blood

    NASA Astrophysics Data System (ADS)

    Yeager, Doug; Karpiouk, Andrei; Wang, Bo; Amirian, James; Sokolov, Konstantin; Smalling, Richard; Emelianov, Stanislav

    2012-10-01

    Combined intravascular ultrasound and intravascular photoacoustic (IVUS/IVPA) imaging has been previously established as a viable means for assessing atherosclerotic plaque morphological and compositional characteristics using both endogenous and exogenous contrast. In this study, IVUS/IVPA imaging of atherosclerotic rabbit aortas following systemic injection of gold nanorods (AUNRs) with peak absorbance within the tissue optical window is performed. Ex vivo imaging results reveal a high photoacoustic signal from localized AUNRs in regions with atherosclerotic plaques. Corresponding histological staining further confirms the preferential extravasation of AUNRs in atherosclerotic regions with compromised luminal endothelium and acute inflammation. The ability to detect AUNRs using combined IVUS and photoacoustic imaging in the presence of luminal saline and luminal blood is evaluated using both spectroscopic and single wavelength IVPA imaging techniques. Results demonstrate that AUNR detection within the arterial wall can be achieved using both methods, even in the case of imaging through luminal blood.

  10. Indocyanine Green Enables Near-Infrared Fluorescence Imaging of Lipid-Rich, Inflamed Atherosclerotic Plaques

    PubMed Central

    Vinegoni, Claudio; Botnaru, Ion; Aikawa, Elena; Calfon, Marcella A.; Iwamoto, Yoshiko; Folco, Eduardo J.; Ntziachristos, Vasilis; Weissleder, Ralph; Libby, Peter; Jaffer, Farouc A.

    2011-01-01

    New high-resolution molecular and structural imaging strategies are needed to visualize high-risk plaques that are likely to cause acute myocardial infarction, because current diagnostic methods do not reliably identify at-risk subjects. While molecular imaging agents are available for lower-resolution detection of atherosclerosis in large arteries, a lack of imaging agents coupled to high-resolution modalities has limited molecular imaging of atherosclerosis in the smaller coronary arteries [AU: ok? YES]. Here, we have demonstrated that indocyanine green (ICG), an FDA-approved near-infrared fluorescence (NIRF) emitting compound, targets atheromas within 20 minutes of injection and provides sufficient signal enhancement for in vivo detection of lipid-rich, inflamed, coronary-sized plaques in atherosclerotic rabbits. In vivo NIRF sensing was achieved with an intravascular wire in the aortae, a vessel of comparable caliber to human coronary arteries. Ex vivo fluorescence reflectance imaging studies showed high plaque target-to-background ratios in atheroma-bearing rabbits injected with ICG, compared to atheroma-bearing rabbits injected with saline. In vitro studies using human macrophages established that ICG preferentially targets lipid-loaded macrophages. In an early clinical study of human atheroma specimens from four patients, we found that ICG colocalized with plaque macrophages and lipids. The atheroma-targeting capability of ICG has the potential to accelerate the clinical development of NIRF molecular imaging of high-risk plaques in humans. PMID:21613624

  11. Cardiovascular protection by ezetimibe and influence on oxidative stress in mice exposed to intermittent hypoxia.

    PubMed

    Kato, Ryuji; Nishioka, Satoshi; Nomura, Atsuo; Ijiri, Yoshio; Miyamura, Masatoshi; Ukimura, Akira; Okada, Yoshikatsu; Kitaura, Yasushi; Hayashi, Tetsuya

    2015-10-15

    Ezetimibe is as an inhibitor of NPC1L1 protein, which has a key role in cholesterol absorption. The aim of this study was to evaluate the influence of ezetimibe on the plasma lipid profile, atherosclerotic lesions, and cardiomyocyte ultrastructure in an animal model of atherosclerosis with intermittent hypoxia. Apolipoprotein E-knockout mice received a high-fat diet for 30 days. Then animals were exposed to intermittent hypoxia for 10 days or were maintained under normoxic conditions. In the ezetimibe group, ezetimibe (5 mg/kg/day) was added to the diet. Under normoxic conditions, the total cholesterol level was significantly lower in the ezetimibe group (63.6±6.6 mg/dl) than in the control group (116.3±16.9 mg/dl, P<0.001). Intermittent hypoxia accelerated atherosclerosis associated with increased superoxide production, which also caused degeneration of cardiomyocytes, mitochondrial abnormalities, and interstitial fibrosis. Compared with the control group, the ezetimibe group showed significantly less advanced atherosclerotic lesions and lower superoxide production in the thoracic aorta, as well as reduced oxidative stress, preservation of cardiomyocyte ultrastructure, and reduced interstitial fibrosis in the left ventricular myocardium. In conclusion, ezetimibe not only reduces total cholesterol, but also prevents the development of atherosclerosis and cardiovascular events due to intermittent hypoxia at least partly through suppression of oxidative stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis.

    PubMed

    Hovland, Anders; Jonasson, Lena; Garred, Peter; Yndestad, Arne; Aukrust, Pål; Lappegård, Knut T; Espevik, Terje; Mollnes, Tom E

    2015-08-01

    Despite recent medical advances, atherosclerosis is a global burden accounting for numerous deaths and hospital admissions. Immune-mediated inflammation is a major component of the atherosclerotic process, but earlier research focus on adaptive immunity has gradually switched towards the role of innate immunity. The complement system and toll-like receptors (TLRs), and the crosstalk between them, may be of particular interest both with respect to pathogenesis and as therapeutic targets in atherosclerosis. Animal studies indicate that inhibition of C3a and C5a reduces atherosclerosis. In humans modified LDL-cholesterol activate complement and TLRs leading to downstream inflammation, and histopathological studies indicate that the innate immune system is present in atherosclerotic lesions. Moreover, clinical studies have demonstrated that both complement and TLRs are upregulated in atherosclerotic diseases, although interventional trials have this far been disappointing. However, based on recent research showing an intimate interplay between complement and TLRs we propose a model in which combined inhibition of both complement and TLRs may represent a potent anti-inflammatory therapeutic approach to reduce atherosclerosis. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Measurement of drug and macromolecule diffusion across atherosclerotic rabbit aorta ex vivo by attenuated total reflection-Fourier transform infrared imaging

    NASA Astrophysics Data System (ADS)

    Palombo, Francesca; Danoux, Charlène B.; Weinberg, Peter D.; Kazarian, Sergei G.

    2009-07-01

    Diffusion of two model drugs-benzyl nicotinate and ibuprofen-and the plasma macromolecule albumin across atherosclerotic rabbit aorta was studied ex vivo by attenuated total reflection-Fourier transform infrared (ATR-FTIR) imaging. Solutions of these molecules were applied to the endothelial surface of histological sections of the aortic wall that were sandwiched between two impermeable surfaces. An array of spectra, each corresponding to a specific location in the section, was obtained at various times during solute diffusion into the wall and revealed the distribution of the solutes within the tissue. Benzyl nicotinate in Ringer's solution showed higher affinity for atherosclerotic plaque than for apparently healthy tissue. Transmural concentration profiles for albumin demonstrated its permeation across the section and were consistent with a relatively low distribution volume for the macromolecule in the middle of the wall. The ability of albumin to act as a drug carrier for ibuprofen, otherwise undetected within the tissue, was demonstrated by multivariate subtraction image analysis. In conclusion, ATR-FTIR imaging can be used to study transport processes in tissue samples with high spatial and temporal resolution and without the need to label the solutes under study.

  14. Cellular Model of Atherogenesis Based on Pluripotent Vascular Wall Pericytes.

    PubMed

    Ivanova, Ekaterina A; Orekhov, Alexander N

    2016-01-01

    Pericytes are pluripotent cells that can be found in the vascular wall of both microvessels and large arteries and veins. They have distinct morphology with long branching processes and form numerous contacts with each other and with endothelial cells, organizing the vascular wall cells into a three-dimensional network. Accumulating evidence demonstrates that pericytes may play a key role in the pathogenesis of vascular disorders, including atherosclerosis. Macrovascular pericytes are able to accumulate lipids and contribute to growth and vascularization of the atherosclerotic plaque. Moreover, they participate in the local inflammatory process and thrombosis, which can lead to fatal consequences. At the same time, pericytes can represent a useful model for studying the atherosclerotic process and for the development of novel therapeutic approaches. In particular, they are suitable for testing various substances' potential for decreasing lipid accumulation induced by the incubation of cells with atherogenic low-density lipoprotein. In this review we will discuss the application of cellular models for studying atherosclerosis and provide several examples of successful application of these models to drug research.

  15. Haloperidol inhibits the development of atherosclerotic lesions in LDL receptor knockout mice.

    PubMed

    van der Sluis, Ronald J; Nahon, Joya E; Reuwer, Anne Q; Van Eck, Miranda; Hoekstra, Menno

    2015-05-01

    Antipsychotic drugs have been shown to modulate the expression of ATP-binding cassette transporter A1 (ABCA1), a key factor in the anti-atherogenic reverse cholesterol transport process, in vitro. Here we evaluated the potential of the typical antipsychotic drug haloperidol to modulate the cholesterol efflux function of macrophages in vitro and their susceptibility to atherosclerosis in vivo. Thioglycollate-elicited peritoneal macrophages were used for in vitro studies. Hyperlipidaemic low-density lipoprotein (LDL) receptor knockout mice were implanted with a haloperidol-containing pellet and subsequently fed a Western-type diet for 5 weeks to induce the development of atherosclerotic lesions in vivo. Haloperidol induced a 54% decrease in the mRNA expression of ABCA1 in peritoneal macrophages. This coincided with a 30% decrease in the capacity of macrophages to efflux cholesterol to apolipoprotein A1. Haloperidol treatment stimulated the expression of ABCA1 (+51%) and other genes involved in reverse cholesterol transport, that is, CYP7A1 (+98%) in livers of LDL receptor knockout mice. No change in splenic ABCA1 expression was noted. However, the average size of the atherosclerotic size was significantly smaller (-31%) in the context of a mildly more atherogenic metabolic phenotype upon haloperidol treatment. More importantly, haloperidol markedly lowered MCP-1 expression (-70%) and secretion (-28%) by peritoneal macrophages. Haloperidol treatment lowered the susceptibility of hyperlipidaemic LDL receptor knockout mice to develop atherosclerotic lesions. Our findings suggest that the beneficial effect of haloperidol on atherosclerosis susceptibility can be attributed to its ability to inhibit macrophage chemotaxis. © 2015 The British Pharmacological Society.

  16. Association between diabetes and different components of coronary atherosclerotic plaque burden as measured by coronary multidetector computed tomography.

    PubMed

    Yun, Chun-Ho; Schlett, Christopher L; Rogers, Ian S; Truong, Quynh A; Toepker, Michael; Donnelly, Patrick; Brady, Thomas J; Hoffmann, Udo; Bamberg, Fabian

    2009-08-01

    The aim of the study was to assess differences in the presence, extent, and composition of coronary atherosclerotic plaque burden as detected by coronary multidetector computed tomography (MDCT) between patients with and without diabetes mellitus. We compared coronary atherosclerotic plaques (any plaque, calcified [CAP], non-calcified [NCAP, and mixed plaque [MCAP

  17. Ultrafast laser ablation for targeted atherosclerotic plaque removal

    NASA Astrophysics Data System (ADS)

    Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-07-01

    Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.

  18. Lack of association between JAK3 gene polymorphisms and cardiovascular disease in Spanish patients with rheumatoid arthritis.

    PubMed

    García-Bermúdez, Mercedes; López-Mejías, Raquel; Genre, Fernanda; Castañeda, Santos; Corrales, Alfonso; Llorca, Javier; González-Juanatey, Carlos; Ubilla, Begoña; Miranda-Filloy, José A; Pina, Trinitario; Gómez-Vaquero, Carmen; Rodríguez-Rodríguez, Luis; Fernández-Gutiérrez, Benjamín; Balsa, Alejandro; Pascual-Salcedo, Dora; López-Longo, Francisco J; Carreira, Patricia; Blanco, Ricardo; Martín, Javier; González-Gay, Miguel A

    2015-01-01

    Rheumatoid arthritis (RA) is a polygenic disease associated with accelerated atherosclerosis and increased cardiovascular (CV) mortality. JAK/STAT signalling pathway is involved in autoimmune diseases and in the atherosclerotic process. JAK3 is a highly promising target for immunomodulatory drugs and polymorphisms in JAK3 gene have been associated with CV events in incident dialysis patients. Therefore, the aim of this study was to assess the potential role of JAK3 polymorphisms in the development of CV disease in patients with RA. 2136 Spanish RA patients were genotyped for the rs3212780 and rs3212752 JAK3 gene polymorphisms by TaqMan assays. Subclinical atherosclerosis was evaluated in 539 of these patients by carotid ultrasonography (US). No statistically significant differences were found when each polymorphism was assessed according to carotid intima-media thickness values and presence/absence of carotid plaques in RA, after adjusting the results for potential confounders. Moreover, no significant differences were obtained when RA patients were stratified according to the presence/absence of CV events after adjusting for potential confounders. In conclusion, our results do not confirm association between JAK3 polymorphisms and CV disease in RA.

  19. Lack of Association between JAK3 Gene Polymorphisms and Cardiovascular Disease in Spanish Patients with Rheumatoid Arthritis

    PubMed Central

    García-Bermúdez, Mercedes; López-Mejías, Raquel; Castañeda, Santos; Corrales, Alfonso; González-Juanatey, Carlos; Ubilla, Begoña; Miranda-Filloy, José A.; Pina, Trinitario; Gómez-Vaquero, Carmen; Rodríguez-Rodríguez, Luis; Fernández-Gutiérrez, Benjamín; Balsa, Alejandro; Pascual-Salcedo, Dora; López-Longo, Francisco J.; Carreira, Patricia; Blanco, Ricardo; Martín, Javier; González-Gay, Miguel A.

    2015-01-01

    Rheumatoid arthritis (RA) is a polygenic disease associated with accelerated atherosclerosis and increased cardiovascular (CV) mortality. JAK/STAT signalling pathway is involved in autoimmune diseases and in the atherosclerotic process. JAK3 is a highly promising target for immunomodulatory drugs and polymorphisms in JAK3 gene have been associated with CV events in incident dialysis patients. Therefore, the aim of this study was to assess the potential role of JAK3 polymorphisms in the development of CV disease in patients with RA. 2136 Spanish RA patients were genotyped for the rs3212780 and rs3212752 JAK3 gene polymorphisms by TaqMan assays. Subclinical atherosclerosis was evaluated in 539 of these patients by carotid ultrasonography (US). No statistically significant differences were found when each polymorphism was assessed according to carotid intima-media thickness values and presence/absence of carotid plaques in RA, after adjusting the results for potential confounders. Moreover, no significant differences were obtained when RA patients were stratified according to the presence/absence of CV events after adjusting for potential confounders. In conclusion, our results do not confirm association between JAK3 polymorphisms and CV disease in RA. PMID:25815310

  20. The potential roles of FGF23 and Klotho in the prognosis of renal and cardiovascular diseases.

    PubMed

    Bernheim, Jacques; Benchetrit, Sydney

    2011-08-01

    Fibroblast growth factor (FGF) 23 and Klotho are two factors associated with several metabolic disorders. Similar to humans, accelerated aging processes characterized by chronic vascular disease, bone demineralization, skin atrophy and emphysema have been recognized in FGF23-null mice and Klotho-deficient mice. The role of these factors in the control of mineral metabolism homeostasis have been shown recently, particularly at the level of parathyroid cells and also in modulating active vitamin D production, two phenomena which are relevant in the presence of chronic kidney disease. In addition, the hormonal affect of circulating FGF23 and Klotho proteins on vascular reactivity, either directly on endothelial cell functions or indirectly by modulating the brain endothelin-1-dependent sympathetic nervous system activity, has contributed to understanding their role in the pathophysiology of hypertension and atherosclerotic vasculopathies. Consequently, very recent clinical investigations seem to confirm the involvement of Klotho in modulating the severity and prognosis of human cardiovascular (CV) disorders and longevity. The present review reports data related to the possible interactive effects of Klotho and FGF23 on the prognosis of renal and CV diseases.

  1. Rate of atherosclerosis progression in ApoE-/- mice long after discontinuation of cola beverage drinking.

    PubMed

    Otero-Losada, Matilde; Cao, Gabriel; Mc Loughlin, Santiago; Rodríguez-Granillo, Gastón; Ottaviano, Graciela; Milei, José

    2014-01-01

    This study was conducted in order to evaluate the effect of cola beverages drinking on atherosclerosisand test the hypothesis whether cola beverages consumption at early life stages might affect the development and progression of atherosclerosis later in life. ApoE-/- C57BL/6J mice (8 week-old) were randomized in 3 groups (n = 20 each) according to free accessto water (W), sucrose sweetened carbonated cola drink(C) or aspartame-acesulfame K sweetened carbonated 'light' cola drink (L)for the next 8 weeks. Drinking treatment was ended by switching C and L groups to drinking water. Four mice per group and time were sequentially euthanized: before treatment (8 weeks-old), at the end of treatment (16 weeks-old) and after treatment discontinuation (20 weeks-old, 24 weeks-old, 30 week-old mice). Aortic roots and livers were harvested, processed for histology and serial cross-sections were stained. Aortic plaque area was analyzed and plaque/media-ratio was calculated. Early consumption of cola drinks accelerated atherosclerotic plaque progression favoring the interaction between macrophages and myofibroblasts, without the participation of either T lymphocytes or proliferative activity. Plaque/media-ratio varied according to drink treatment (F2,54 = 3.433, p<0.04) and mice age (F4,54 = 5.009, p<0.03) and was higher in C and L groups compared with age-matched W group (p<0.05 at 16 weeks and 20 weeks, p<0.01 at 24 weeks and 30 weeks). Natural evolution of atherosclerosis in ApoE-/- mice (W group) evidenced atherosclerosis acceleration in parallel with a rapid increase in liver inflammation around the 20 weeks of age. Cola drinking within the 8-16 weeks of age accelerated atherosclerosis progression in ApoE-/- mice favoring aortic plaque enlargement (inward remodeling) over media thinning all over the study time. Data suggest that cola drinking at early life stages may predispose to atherosclerosis progression later in life in ApoE-/- mice.

  2. Lipidomics in vascular health: current perspectives.

    PubMed

    Kolovou, Genovefa; Kolovou, Vana; Mavrogeni, Sophie

    2015-01-01

    Identifying the mechanisms that convert a healthy vascular wall to an atherosclerotic wall is of major importance since the consequences may lead to a shortened lifespan. Classical risk factors (age, smoking, obesity, diabetes mellitus, hypertension, and dyslipidemia) may result in the progression of atherosclerotic lesions by processes including inflammation and lipid accumulation. Thus, the evaluation of blood lipids and the full lipid complement produced by cells, organisms, or tissues (lipidomics) is an issue of importance. In this review, we shall describe the recent progress in vascular health research using lipidomic advances. We will begin with an overview of vascular wall biology and lipids, followed by a short analysis of lipidomics. Finally, we shall focus on the clinical implications of lipidomics and studies that have examined lipidomic approaches and vascular health.

  3. Emerging Technology Update Intravascular Photoacoustic Imaging of Vulnerable Atherosclerotic Plaque.

    PubMed

    Wu, Min; Fw van der Steen, Antonius; Regar, Evelyn; van Soest, Gijs

    2016-10-01

    The identification of vulnerable atherosclerotic plaques in the coronary arteries is emerging as an important tool for guiding atherosclerosis diagnosis and interventions. Assessment of plaque vulnerability requires knowledge of both the structure and composition of the plaque. Intravascular photoacoustic (IVPA) imaging is able to show the morphology and composition of atherosclerotic plaque. With imminent improvements in IVPA imaging, it is becoming possible to assess human coronary artery disease in vivo . Although some challenges remain, IVPA imaging is on its way to being a powerful tool for visualising coronary atherosclerotic features that have been specifically associated with plaque vulnerability and clinical syndromes, and thus such imaging might become valuable for clinical risk assessment in the catheterisation laboratory.

  4. Imaging of oxidation-specific epitopes with targeted nanoparticles to detect high-risk atherosclerotic lesions: Progress and future directions

    PubMed Central

    Briley-Saebo, Karen; Yeang, Calvin; Witztum, Joseph L.; Tsimikas, Sotirios

    2014-01-01

    Oxidation-specific epitopes (OSE) within developing atherosclerotic lesions are key antigens that drive innate and adaptive immune responses in atherosclerosis, leading to chronic inflammation. Oxidized phospholipids and malondialdehyde-lysine epitopes are well-characterized OSE present in human atherosclerotic lesions, particularly in pathologically defined vulnerable plaques. Using murine and human OSE-specific antibodies as targeting agents, we have developed radionuclide and magnetic resonance based nanoparticles, containing gadolinium, manganese or lipid-coated ultrasmall superparamagnetic iron oxide, to noninvasively image OSE within experimental atherosclerotic lesions. These methods quantitate plaque burden, allow detection of lesion progression and regression, plaque stabilization, and accumulation of OSE within macrophage-rich areas of the artery wall, suggesting they detect the most active lesions. Future studies will focus on using “natural” antibodies, lipopeptides and mimotopes for imaging applications. These approaches should enhance the clinical translation of this technique to image, monitor, evaluate efficacy of novel therapeutic agents and guide optimal therapy of high-risk atherosclerotic lesions. PMID:25297940

  5. Application of infrared fiber optic imaging in atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Guo, Bujin; Casscells, S. W.; Bearman, Gregory H.; McNatt, Janice; Naghevi, Morteza; Malik, Basit A.; Gul, Khawar; Willerson, James T.

    1999-07-01

    Rupture of atherosclerotic plaques - the main cause of heart attach and stokes - is not predictable. Hence even treadmill stress tests fail to detect many persons at risk. Fatal plaques are found at autopsies to be associated with active inflammatory cells. Classically, inflammation is detected by its swelling, red color, pain and heat. We have found that heat accurately locates the dangerous plaques that are significantly warmer then atherosclerotic plaques without the same inflammation. In order to develop a non-surgical method of locating these plaques, an IR fiber optic imaging system has been developed in our laboratory to evalute the causes and effect of heat in atherosclerotic plaques. The fiber optical imagin bundle consists of 900 individual As2S3 chalcogenide glass fibers which transmit IR radiation from 0.7 micrometers 7 micrometers with little energy loss. By combining that with a highly sensitive Indium Antimonide IR focal plane array detector, we are able to obtain thermal graphic images in situ. The temperature heterogeneity of atherosclerotic plaques developed in the arteral of the experimental animal models is under study with the new device. The preliminary experimental results from the animal model are encouraging. The potential of using this new technology in diagnostic evaluation of the vulnerable atherosclerotic plaques is considerable.

  6. Decreased cathepsin K levels in human atherosclerotic plaques are associated with plaque instability.

    PubMed

    Zhao, Huiying; Qin, Xiujiao; Wang, Shuai; Sun, Xiwei; Dong, Bin

    2017-10-01

    Investigating the determinants and dynamics of atherosclerotic plaque instability is a key area of current cardiovascular research. Extracellular matrix degradation from excessive proteolysis induced by enzymes such as cathepsin K (Cat K) is implicated in the pathogenesis of unstable plaques. The current study assessed the expression of Cat K in human unstable atherosclerotic plaques. Specimens of popliteal arteries with atherosclerotic plaques were classified as stable (<40% lipid core plaque area; n=6) or unstable (≥40% lipid core plaque area; n=14) based on histopathological examinations of hematoxylin and eosin stained sections. The expression of Cat K and cystatin C (Cys C) were assessed by immunohistochemical examination and levels of Cat K mRNA were detected by semi-quantitative reverse transcriptase polymerase chain reaction. Morphological changes including a larger lipid core, endothelial proliferation with foam cells and destruction of internal elastic lamina were observed in unstable atherosclerotic plaques. In unstable plaques, the expression of Cat K protein and mRNA was upregulated, whereas Cys C protein expression was downregulated. The interplay between Cat K and Cys C may underlie the progression of plaques from stable to unstable and the current study indicated that Cat K and Cys C are potential targets for preventing and treating vulnerable atherosclerotic plaque ruptures.

  7. EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis.

    PubMed

    Finney, Alexandra C; Funk, Steven D; Green, Jonette M; Yurdagul, Arif; Rana, Mohammad Atif; Pistorius, Rebecca; Henry, Miriam; Yurochko, Andrew; Pattillo, Christopher B; Traylor, James G; Chen, Jin; Woolard, Matthew D; Kevil, Christopher G; Orr, A Wayne

    2017-08-08

    Atherosclerotic plaque formation results from chronic inflammation and fibroproliferative remodeling in the vascular wall. We previously demonstrated that both human and mouse atherosclerotic plaques show elevated expression of EphA2, a guidance molecule involved in cell-cell interactions and tumorigenesis. Here, we assessed the role of EphA2 in atherosclerosis by deleting EphA2 in a mouse model of atherosclerosis (Apoe - /- ) and by assessing EphA2 function in multiple vascular cell culture models. After 8 to 16 weeks on a Western diet, male and female mice were assessed for atherosclerotic burden in the large vessels, and plasma lipid levels were analyzed. Despite enhanced weight gain and plasma lipid levels compared with Apoe -/- controls, EphA2 -/- Apoe -/- knockout mice show diminished atherosclerotic plaque formation, characterized by reduced proinflammatory gene expression and plaque macrophage content. Although plaque macrophages express EphA2, EphA2 deletion does not affect macrophage phenotype, inflammatory responses, and lipid uptake, and bone marrow chimeras suggest that hematopoietic EphA2 deletion does not affect plaque formation. In contrast, endothelial EphA2 knockdown significantly reduces monocyte firm adhesion under flow. In addition, EphA2 -/- Apoe -/- mice show reduced progression to advanced atherosclerotic plaques with diminished smooth muscle and collagen content. Consistent with this phenotype, EphA2 shows enhanced expression after smooth muscle transition to a synthetic phenotype, and EphA2 depletion reduces smooth muscle proliferation, mitogenic signaling, and extracellular matrix deposition both in atherosclerotic plaques and in vascular smooth muscle cells in culture. Together, these data identify a novel role for EphA2 in atherosclerosis, regulating both plaque inflammation and progression to advanced atherosclerotic lesions. Cell culture studies suggest that endothelial EphA2 contributes to atherosclerotic inflammation by promoting monocyte firm adhesion, whereas smooth muscle EphA2 expression may regulate the progression to advanced atherosclerosis by regulating smooth muscle proliferation and extracellular matrix deposition. © 2017 American Heart Association, Inc.

  8. Bilirubin Prevents Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor-Deficient Mice by Inhibiting Endothelial VCAM-1 and ICAM-1 Signaling.

    PubMed

    Vogel, Megan E; Idelman, Gila; Konaniah, Eddy S; Zucker, Stephen D

    2017-04-01

    Numerous epidemiological studies support an inverse association between serum bilirubin levels and the incidence of cardiovascular disease; however, the mechanism(s) by which bilirubin may protect against atherosclerosis is undefined. The goals of the present investigations were to assess the ability of bilirubin to prevent atherosclerotic plaque formation in low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice and elucidate the molecular processes underlying this effect. Bilirubin, at physiological concentrations (≤20 μmol/L), dose-dependently inhibits THP-1 monocyte migration across tumor necrosis factor α-activated human umbilical vein endothelial cell monolayers without altering leukocyte binding or cytokine production. A potent antioxidant, bilirubin effectively blocks the generation of cellular reactive oxygen species induced by the cross-linking of endothelial vascular cell adhesion molecule 1 (VCAM-1) or intercellular adhesion molecule 1 (ICAM-1). These findings were validated by treating cells with blocking antibodies or with specific inhibitors of VCAM-1 and ICAM-1 signaling. When administered to Ldlr -/- mice on a Western diet, bilirubin (30 mg/kg intraperitoneally) prevents atherosclerotic plaque formation, but does not alter circulating cholesterol or chemokine levels. Aortic roots from bilirubin-treated animals exhibit reduced lipid and collagen deposition, decreased infiltration of monocytes and lymphocytes, fewer smooth muscle cells, and diminished levels of chlorotyrosine and nitrotyrosine, without changes in VCAM-1 or ICAM-1 expression. Bilirubin suppresses atherosclerotic plaque formation in Ldlr -/- mice by disrupting endothelial VCAM-1- and ICAM-1-mediated leukocyte migration through the scavenging of reactive oxygen species signaling intermediaries. These findings suggest a potential mechanism for the apparent cardioprotective effects of bilirubin. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Myeloperoxidase-mediated Methionine Oxidation Promotes an Amyloidogenic Outcome for Apolipoprotein A-I*

    PubMed Central

    Chan, Gary K. L.; Witkowski, Andrzej; Gantz, Donald L.; Zhang, Tianqi O.; Zanni, Martin T.; Jayaraman, Shobini; Cavigiolio, Giorgio

    2015-01-01

    High plasma levels of apolipoprotein A-I (apoA-I) correlate with cardiovascular health, whereas dysfunctional apoA-I is a cause of atherosclerosis. In the atherosclerotic plaques, amyloid deposition increases with aging. Notably, apoA-I is the main component of these amyloids. Recent studies identified high levels of oxidized lipid-free apoA-I in atherosclerotic plaques. Likely, myeloperoxidase (MPO) secreted by activated macrophages in atherosclerotic lesions is the promoter of such apoA-I oxidation. We hypothesized that apoA-I oxidation by MPO levels similar to those present in the artery walls in atherosclerosis can promote apoA-I structural changes and amyloid fibril formation. ApoA-I was exposed to exhaustive chemical (H2O2) oxidation or physiological levels of enzymatic (MPO) oxidation and incubated at 37 °C and pH 6.0 to induce fibril formation. Both chemically and enzymatically oxidized apoA-I produced fibrillar amyloids after a few hours of incubation. The amyloid fibrils were composed of full-length apoA-I with differential oxidation of the three methionines. Met to Leu apoA-I variants were used to establish the predominant role of oxidation of Met-86 and Met-148 in the fibril formation process. Importantly, a small amount of preformed apoA-I fibrils was able to seed amyloid formation in oxidized apoA-I at pH 7.0. In contrast to hereditary amyloidosis, wherein specific mutations of apoA-I cause protein destabilization and amyloid deposition, oxidative conditions similar to those promoted by local inflammation in atherosclerosis are sufficient to transform full-length wild-type apoA-I into an amyloidogenic protein. Thus, MPO-mediated oxidation may be implicated in the mechanism that leads to amyloid deposition in the atherosclerotic plaques in vivo. PMID:25759391

  10. Haloperidol inhibits the development of atherosclerotic lesions in LDL receptor knockout mice

    PubMed Central

    van der Sluis, Ronald J; Nahon, Joya E; Reuwer, Anne Q; Van Eck, Miranda; Hoekstra, Menno

    2015-01-01

    Background and Purpose Antipsychotic drugs have been shown to modulate the expression of ATP-binding cassette transporter A1 (ABCA1), a key factor in the anti-atherogenic reverse cholesterol transport process, in vitro. Here we evaluated the potential of the typical antipsychotic drug haloperidol to modulate the cholesterol efflux function of macrophages in vitro and their susceptibility to atherosclerosis in vivo. Experimental Approach Thioglycollate-elicited peritoneal macrophages were used for in vitro studies. Hyperlipidaemic low-density lipoprotein (LDL) receptor knockout mice were implanted with a haloperidol-containing pellet and subsequently fed a Western-type diet for 5 weeks to induce the development of atherosclerotic lesions in vivo. Key Results Haloperidol induced a 54% decrease in the mRNA expression of ABCA1 in peritoneal macrophages. This coincided with a 30% decrease in the capacity of macrophages to efflux cholesterol to apolipoprotein A1. Haloperidol treatment stimulated the expression of ABCA1 (+51%) and other genes involved in reverse cholesterol transport, that is, CYP7A1 (+98%) in livers of LDL receptor knockout mice. No change in splenic ABCA1 expression was noted. However, the average size of the atherosclerotic size was significantly smaller (−31%) in the context of a mildly more atherogenic metabolic phenotype upon haloperidol treatment. More importantly, haloperidol markedly lowered MCP-1 expression (−70%) and secretion (−28%) by peritoneal macrophages. Conclusions and Implications Haloperidol treatment lowered the susceptibility of hyperlipidaemic LDL receptor knockout mice to develop atherosclerotic lesions. Our findings suggest that the beneficial effect of haloperidol on atherosclerosis susceptibility can be attributed to its ability to inhibit macrophage chemotaxis. PMID:25572138

  11. CXCL4-induced macrophages in human atherosclerosis.

    PubMed

    Domschke, Gabriele; Gleissner, Christian A

    2017-09-09

    Atherosclerosis is considered an inflammatory disease of the arterial wall. Monocytes and monocyte-derived cells (most often termed macrophages) play an essential role in the formation of atherosclerotic lesions, as they take up lipids leading to subsequent foam cell formation accompanied by release of pro-inflammatory cytokines. Similarly, platelets have been discovered to represent an important cell type mediating inflammatory and immune processes in atherogenesis, mainly by secreting chemokines, which are stored in the platelets' alpha granules, upon platelet activation. Therefore, the interaction between monocyte-derived cells and platelets is of exceptional importance. In this review, we specifically focus on the chemokine (platelet factor-4, PF4) and its effects on monocytes and monocyte-derived cells. By formation of heterodimers dimers and -oligomers with CCL5, CXCL4 induces binding of monocytes cells to endothelial cell and thereby promotes diapedesis of monocytes into the subendothelial space. CXCL4 also affects the differentiation of monocytes as it induces a specific macrophage phenotype, which we suggested to term "M4". For example, CXCL4-induced macrophages irreversibly lose the hemoglobin-haptoglobin scavenger receptor CD163. The combination of CD68, S100A8, and MMP7 turned out to reliably identify M4 macrophages both in vitro and in vivo within atherosclerotic lesions. In human atherosclerotic plaques, M4 macrophages are predominantly present in the adventitia and the intima and their prevalence is associated with plaque instability suggesting that they are a marker of pro-inflammatory activity. Overall, CXCL4-induced M4 macrophages may represent a target for diagnostic and therapeutic interventions in human atherosclerotic disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process.

    PubMed

    Chen, Lihua; Liu, Wenen; Li, Yanming; Luo, San; Liu, Qingxia; Zhong, Yiming; Jian, Zijuan; Bao, Meihua

    2013-09-01

    The aim of this study was to investigate the effect of Lactobacillus (L.) acidophilus ATCC 4356 on the progression of atherosclerosis in Apoliprotein-E knockout (ApoE(-/-)) mice and the underlying mechanisms. Eight week-old ApoE(-/-) mice were treated with L. acidophilus ATCC 4356 daily for 12 weeks. The wild type (WT) mice or ApoE(-/-) mice in the vehicle group were treated with saline only. Body weights, serum lipid levels, aortic atherosclerotic lesions, and tissue oxidative and inflammatory statuses were examined among the groups. As compared to ApoE(-/-) mice in the vehicle group, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 had no changes in body weights and serum lipid profiles, but showed decreased atherosclerotic lesion size in en face aorta. In comparison with WT mice, ApoE(-/-) mice in the vehicle group showed higher levels of serum malondialdehyde (MDA), oxidized low density lipoprotein (oxLDL) and tumor necrosis factor-alpha (TNF-α), but lower levels of interleukin-10 (IL-10) and superoxide dismutase (SOD) activities in serum. Administration of L. acidophilus ATCC 4356 could reverse these trends in a dose-dependent manner in ApoE(-/-) mice. Furthermore, ApoE(-/-) mice treated with L. acidophilus ATCC 4356 showed an inhibition of translocation of NF-κB p65 from cytoplasm to nucleus, suppression of degradation of aortic IκB-α, and improvements of gut microbiota distribution, as compared to ApoE(-/-) mice in the vehicle group. Our findings suggest that administration of L. acidophilus ATCC 4356 can attenuate the development of atherosclerotic lesions in ApoE(-/-) mice through reducing oxidative stress and inflammatory response. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. SASH1, a new potential link between smoking and atherosclerosis.

    PubMed

    Weidmann, Henri; Touat-Hamici, Zahia; Durand, Herve; Mueller, Christian; Chardonnet, Solenne; Pionneau, Cedric; Charlotte, Frédéric; Janssen, Klaus-Peter; Verdugo, Ricardo; Cambien, Francois; Blankenberg, Stefan; Tiret, Laurence; Zeller, Tanja; Ninio, Ewa

    2015-10-01

    We have previously reported that SASH1 expression is increased in circulating human monocytes from smokers and was positively correlated with the number of carotid atherosclerotic plaques. The aim of this study was to further validate the link between smoking, SASH1 and atherosclerosis within the vascular wall and to assess the impact of SASH1 expression on endothelial cell functions. Human carotids with atherosclerotic plaques were obtained from 58 patients (45 of them with known smoking status: smoker, non-smoker, ex-smokers), and were processed for gene expression analyses and immunostaining. To investigate its function, SASH1 was silenced in human aortic endothelial cells (HAECs) using two different siRNA and subcellular localization of SASH1 was determined by immunostaining and subcellular fractionation. Subsequently the transcriptomic analyses and functional experiments (wound healing, WST-1 proliferation or Matrigel assays) were performed to characterize SASH1 function. SASH1 was expressed in human vascular cells (HAECs, smooth muscle cells) and in monocytes/macrophages. Its tissue expression was significantly higher in the atherosclerotic carotids of smokers compared to non-smokers (p < 0.01). In HAECs, SASH1 was expressed mostly in the cytoplasm and SASH1 knockdown resulted in an increased cell migration, proliferation and angiogenesis. Transcriptomic and pathway analyses showed that SASH1 silencing results in a decreased CYP1A1 expression possibly through the inhibition of TP53 activity. We showed that SASH1 expression is increased in atherosclerotic carotids in smokers and its silencing affects endothelial angiogenic functions; therefore we provide a potential link between smoking and atherosclerosis through SASH1 expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Endotoxin, Toll-like Receptor-4, and Atherosclerotic Heart Disease

    PubMed Central

    Horseman, Michael A.; Surani, Salim; Bowman, John D.

    2017-01-01

    Background: Endotoxin is a lipopolysaccharide (LPS) constituent of the outer membrane of most gram negative bacteria. Ubiquitous in the environment, it has been implicated as a cause or con-tributing factor in several disparate disorders from sepsis to heatstroke and Type II diabetes mellitus. Starting at birth, the innate immune system develops cellular defense mechanisms against environmen-tal microbes that are in part modulated through a series of receptors known as toll-like receptors. Endo-toxin, often referred to as LPS, binds to toll-like receptor 4 (TLR4)/ myeloid differentiation protein 2 (MD2) complexes on various tissues including cells of the innate immune system, smooth muscle and endothelial cells of blood vessels including coronary arteries, and adipose tissue. Entry of LPS into the systemic circulation ultimately leads to intracellular transcription of several inflammatory mediators. The subsequent inflammation has been implicated in the development and progression atherosclerosis and subsequent coronary artery disease and heart failure. Objective: The potential roles of endotoxin and TLR4 are reviewed regarding their role in the pathogen-esis of atherosclerotic heart disease. Conclusion: Atherosclerosis is initiated by inflammation in arterial endothelial and subendothelial cells, and inflammatory processes are implicated in its progression to clinical heart disease. Endotoxin and TLR4 play a central role in the inflammatory process, and represent potential targets for therapeutic intervention. Therapy with HMG-CoA inhibitors may reduce the expression of TLR4 on monocytes. Other therapeutic interventions targeting TLR4 expression or function may prove beneficial in athero-sclerotic disease prevention and treatment.

  15. Texture based segmentation method to detect atherosclerotic plaque from optical tomography images

    NASA Astrophysics Data System (ADS)

    Prakash, Ammu; Hewko, Mark; Sowa, Michael; Sherif, Sherif

    2013-06-01

    Optical coherence tomography (OCT) imaging has been widely employed in assessing cardiovascular disease. Atherosclerosis is one of the major cause cardio vascular diseases. However visual detection of atherosclerotic plaque from OCT images is often limited and further complicated by high frame rates. We developed a texture based segmentation method to automatically detect plaque and non plaque regions from OCT images. To verify our results we compared them to photographs of the vascular tissue with atherosclerotic plaque that we used to generate the OCT images. Our results show a close match with photographs of vascular tissue with atherosclerotic plaque. Our texture based segmentation method for plaque detection could be potentially used in clinical cardiovascular OCT imaging for plaque detection.

  16. Inhalation exposure of gas-metal arc stainless steel welding fume increased atherosclerotic lesions in apolipoprotein E knockout mice.

    PubMed

    Erdely, Aaron; Hulderman, Tracy; Salmen-Muniz, Rebecca; Liston, Angie; Zeidler-Erdely, Patti C; Chen, Bean T; Stone, Samuel; Frazer, David G; Antonini, James M; Simeonova, Petia P

    2011-07-04

    Epidemiological studies suggest that welding, a process which generates an aerosol of inhalable gases and metal rich particulates, increases the risk for cardiovascular disease. In this study we analyzed systemic inflammation and atherosclerotic lesions following gas metal arc-stainless steel (GMA-SS) welding fume exposure. Apolipoprotein E knockout (apoE(-/-)) mice, fed a Western diet, were exposed to GMA-SS at 40mg/m(3) for 3h/day for ten days (∼8.26μg daily alveolar deposition). Mice were sacrificed two weeks after exposure and serum chemistry, serum protein profiling and aortic lesion area were determined. There were no significant changes in serum total cholesterol, triglycerides or alanine aminotransferase. Serum levels of uric acid, a potent antioxidant, were decreased perhaps suggesting a reduced capacity to combat systemic oxidative stress. Inflammatory serum proteins interleukin 1 beta (IL-1β) and monocyte chemoattractant protein 3 (MCP-3) were increased two weeks after GMA-SS exposure. Analysis of atherosclerotic plaques showed an increase in lesion area as the result of GMA-SS exposure. In conclusion, GMA-SS exposure showed evidence of systemic inflammation and increased plaque progression in apoE(-/-) mice. These results complement epidemiological and functional human studies that suggest welding may result in adverse cardiovascular effects. Published by Elsevier Ireland Ltd.

  17. Compound K Attenuates the Development of Atherosclerosis in ApoE−/− Mice via LXRα Activation

    PubMed Central

    Zhou, Li; Zheng, Yu; Li, Zhuoying; Bao, Lingxia; Dou, Yin; Tang, Yuan; Zhang, Jianxiang; Zhou, Jianzhi; Liu, Ya; Jia, Yi; Li, Xiaohui

    2016-01-01

    Background: Atherosclerosis is a fundamental pathological process responded to some serious cardiovascular events. Although the cholesterol-lowering drugs are widely prescribed for atherosclerosis therapy, it is still the leading cause of death in the developed world. Here we measured the effects of compound K in atherosclerosis formation and investigated the probably mechanisms of the anti-antherosclerosis roles of compound K. Methods: We treated the atherosclerotic model animals (apoE−/− mice on western diet) with compound K and measured the size of atherosclerotic lesions, inflammatory cytokine levels and serum lipid profile. Peritoneal macrophages were collected in vitro for the foam cell and inflammasome experiments. Results: Our results show that treatment with compound K dose-dependently attenuates the formation of atherosclerotic plaques by 55% through activation of reverse cholesterol transport pathway, reduction of systemic inflammatory cytokines and inhibition of local inflammasome activity. Compound K increases the cholesterol efflux of macrophage-derived foam cells, and reduces the inflammasome activity in cholesterol crystal stimulated macrophages. The activation of LXRα may contribute to the athero-protective effects of compound K. Conclusion: These observations provide evidence for an athero-protective effect of compound K via LXRα activation, and support its further evaluation as a potential effective modulator for the prevention and treatment of atherosclerosis. PMID:27399689

  18. Evaluation of the radiolabeled boronic acid-based FAP inhibitor MIP-1232 for atherosclerotic plaque imaging.

    PubMed

    Meletta, Romana; Müller Herde, Adrienne; Chiotellis, Aristeidis; Isa, Malsor; Rancic, Zoran; Borel, Nicole; Ametamey, Simon M; Krämer, Stefanie D; Schibli, Roger

    2015-01-27

    Research towards the non-invasive imaging of atherosclerotic plaques is of high clinical priority as early recognition of vulnerable plaques may reduce the incidence of cardiovascular events. The fibroblast activation protein alpha (FAP) was recently proposed as inflammation-induced protease involved in the process of plaque vulnerability. In this study, FAP mRNA and protein levels were investigated by quantitative polymerase chain reaction and immunohistochemistry, respectively, in human endarterectomized carotid plaques. A published boronic-acid based FAP inhibitor, MIP-1232, was synthetized and radiolabeled with iodine-125. The potential of this radiotracer to image plaques was evaluated by in vitro autoradiography with human carotid plaques. Specificity was assessed with a xenograft with high and one with low FAP level, grown in mice. Target expression analyses revealed a moderately higher protein level in atherosclerotic plaques than normal arteries correlating with plaque vulnerability. No difference in expression was determined on mRNA level. The radiotracer was successfully produced and accumulated strongly in the FAP-positive SK-Mel-187 melanoma xenograft in vitro while accumulation was negligible in an NCI-H69 xenograft with low FAP levels. Binding of the tracer to endarterectomized tissue was similar in plaques and normal arteries, hampering its use for atherosclerosis imaging.

  19. 64Cu-Labeled Divalent Cystine Knot Peptide for Imaging Carotid Atherosclerotic Plaques.

    PubMed

    Jiang, Lei; Tu, Yingfeng; Kimura, Richard H; Habte, Frezghi; Chen, Hao; Cheng, Kai; Shi, Hongcheng; Gambhir, Sanjiv Sam; Cheng, Zhen

    2015-06-01

    The rupture of vulnerable atherosclerotic plaques that lead to stroke and myocardial infarction may be induced by macrophage infiltration and augmented by the expression of integrin αvβ3. Indeed, atherosclerotic angiogenesis may be a promising marker of inflammation. In this study, an engineered integrin αvβ3-targeting PET probe, (64)Cu-NOTA-3-4A, derived from a divalent knottin miniprotein was evaluated in a mouse model for carotid atherosclerotic plaques. Atherosclerotic plaques in BALB/C mice, maintained on a high-fat diet, were induced with streptozotocin injection and carotid artery ligation and verified by MR imaging. Knottin 3-4A was synthesized by solid-phase peptide synthesis chemistry and coupled to 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) before radiolabeling with (64)Cu. PET probe stability in mouse serum was evaluated. Mice with carotid atherosclerotic plaques were injected via the tail vein with (64)Cu-NOTA-3-4A or (18)F-FDG, followed by small-animal PET/CT imaging at different time points. Receptor targeting specificity of the probe was verified by coinjection of c(RGDyK) administered in molar excess. Subsequently, carotid artery dissection and immunofluorescence staining were performed to evaluate target expression. (64)Cu-NOTA-3-4A was synthesized in high radiochemical purity and yield and demonstrated molecular stability in both phosphate-buffered saline and mouse serum at 4 h. Small-animal PET/CT showed that (64)Cu-NOTA-3-4A accumulated at significantly higher levels in the neovasculature of carotid atherosclerotic plaques (7.41 ± 1.44 vs. 0.67 ± 0.23 percentage injected dose/gram, P < 0.05) than healthy or normal vessels at 1 h after injection. (18)F-FDG also accumulated in atherosclerotic lesions at 0.5 and 1 h after injection but at lower plaque-to-normal tissue ratios than (64)Cu-NOTA-3-4A. For example, plaque-to-normal carotid artery ratios for (18)F-FDG and (64)Cu-NOTA-3-4A at 1 h after injection were 3.75 and 14.71 (P < 0.05), respectively. Furthermore, uptake of (64)Cu-NOTA-3-4A in atherosclerotic plaques was effectively blocked (∼90% at 1 h after injection) by coinjection of c(RGDyK). Immunostaining confirmed integrin αvβ3 expression in both the infiltrating macrophages and the neovasculature of atherosclerotic plaques. (64)Cu-NOTA-3-4A demonstrates specific accumulation in carotid atherosclerotic plaques in which macrophage infiltration and angiogenesis are responsible for elevated integrin αvβ3 levels. Therefore, (64)Cu-NOTA-3-4A may demonstrate clinical utility as a PET probe for atherosclerosis imaging or for the evaluation of therapies used to treat atherosclerosis. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. Selective removal of cholesterol ester in atherosclerotic plaque using nanosecond pulsed laser at 5.75 μm

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Tsukimoto, H.; Hazama, H.; Awazu, K.

    2008-02-01

    Laser angioplasty, for example XeCl excimer laser angioplasty, has gained more attention in addition to conventional methods of surgical and interventional treatment of atherosclerotic diseases such as bypass operation and balloon dilatation. Low degrees of thermal damage after ablation of atherosclerotic lesions have been achieved by XeCl excimer laser at 308 nm. However, in most cases, laser ablation is not selective and normal arterial wall is also damaged. To avoid complications such as severe dissections or perforation of the arterial wall in an angioplasty, a laser light source with high ablation efficiency but low arterial wall injury is desirable. At atherosclerotic lesions, cholesterol accumulates on the tunica intima by establishing an ester bond with fatty acids such as oleic acid, and thus cholesterol ester is the main component of atherosclerotic plaques. Mid-infrared pulsed laser at 5.75 μm is selectively well absorbed in C=O stretching vibration mode of ester bonds. The purpose of this study is to determine the effectiveness of nanosecond pulsed laser at 5.75 μm irradiation of cholesterol ester in atherosclerotic plaques. In this study, we used a mid-infrared tunable solid-state laser which is operated by difference frequency generation method, with a wavelength of 5.75 μm, a pulse width of 5 nsec and a pulse duration of 10 Hz. It was confirmed that non-invasive interaction to normal thoracic aortas could be induce by the parameters, the wavelength of 5.75 μm, the average power densities of 35 W/cm2 and the irradiation time under 10 sec. This study shows that nanosecond pulsed laser irradiations at 5.75 μm provide an alternative laser light source as an effectively cutting, less traumatic tool for removal of atherosclerotic plaque.

  1. [Expression of proBNP and NT-proBNP in Sudden Death of Coronary Heart Disease].

    PubMed

    Zeng, Q; Sun, R F; Li, Z; Zhai, L Q; Liu, M Z; Guo, X J; Gao, C R

    2017-10-01

    To study the expression change of pro-brain natriuretic peptide (proBNP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) in sudden death of coronary atherosclerotic heart disease, and to explore its application in forensic diagnosis. Myocardial and blood samples were collected from normal control group, sudden death of coronary atherosclerotic heart disease group and single coronary stenosis group (20 cases in each group). The expression of proBNP in myocardial samples were detected by immunohistochemical staining and Western blotting, and that of BNP mRNA were detected by reverse transcription PCR (RT-PCR). The content of NT-proBNP in plasma were detected by ELISA. Immunohistochemical staining showed positive expression of proBNP in both sudden death of coronary atherosclerotic heart disease group and single coronary stenosis group. There was no positive expression in normal control group. For sudden death of coronary atherosclerotic heart disease group and single coronary stenosis group, the relative expression of proBNP protein and BNP mRNA in myocardial tissue and the NT-proBNP content in plasma were higher than that of normal control group ( P <0.05). The NT-proBNP content in plasma of sudden death of coronary atherosclerotic heart disease group was higher than that of single coronary stenosis group ( P <0.05). In myocardial ischemia condition, the higher expression of proBNP in cardiac muscle cell shows that the detection of NT-proBNP in plasma can be useful to differentially diagnose the degree of coronary atherosclerotic heart disease and determine whether the sudden death due to coronary atherosclerotic heart disease. Copyright© by the Editorial Department of Journal of Forensic Medicine

  2. Anti-atherosclerotic effects of pravastatin in brachiocephalic artery in comparison with en face aorta and aortic roots in ApoE/LDLR-/- mice.

    PubMed

    Kostogrys, Renata B; Franczyk-Zarow, Magdalena; Gasior-Glogowska, Marlena; Kus, Edyta; Jasztal, Agnieszka; Wrobel, Tomasz P; Baranska, Malgorzata; Czyzynska-Cichon, Izabela; Drahun, Anna; Manterys, Angelika; Chlopicki, Stefan

    2017-02-01

    Cholesterol-dependent and independent mechanisms were proposed to explain anti-atherosclerotic action of statins in humans. However, their effects in murine models of atherosclerosis have not been consistently demonstrated. Here, we studied the effects of pravastatin on atherosclerosis in ApoE/LDLR -/- mice fed a control and atherogenic diet. ApoE/LDLR -/- mice were fed a control (CHOW) or an atherogenic (Low Carbohydrate High Protein, LCHP) diet. Two doses of pravastatin (40mg/kg and 100mg/kg) were used. The anti-atherosclerotic effects of pravastatin in en face aorta, cross-sections of aortic roots and brachiocephalic artery (BCA) were analysed. The lipid profile was determined. Fourier Transform Infrared Spectroscopy followed by Fuzzy C-Means (FCM) clustering was used for the quantitative assessment of plaque composition. Treatment with pravastatin (100mg/kg) decreased total and LDL cholesterol only in the LCHP group, but displayed a pronounced anti-atherosclerotic effect in BCA and abdominal aorta. The anti-atherosclerotic effect of pravastatin (100mg/kg) in BCA was associated with significant alterations of the chemical plaque composition, including a fall in cholesterol and cholesterol esters contents independently on total cholesterol and LDL concentration in plasma. Pravastatin at high (100mg/kg), but not low dose displayed a pronounced anti-atherosclerotic effect in ApoE/LDLR -/- mice fed a CHOW or LCHP diet that was remarkable in BCA, visible in en face aorta, whereas it was not observed in aortic roots, suggesting that previous inconsistencies might have been due to the various sites of atherosclerotic plaque analysis. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  3. Selective ablation of rabbit atherosclerotic plaque with less thermal effect by the control of pulse structure of a quantum cascade laser in the 5.7 μm wavelength range

    NASA Astrophysics Data System (ADS)

    Hashimura, Keisuke; Ishii, Katsunori; Awazu, Kunio

    2016-03-01

    Cholesteryl esters are main components of atherosclerotic plaques and have an absorption peak at the wavelength of 5.75 μm originated from C=O stretching vibration mode of ester bond. Our group achieved the selective ablation of atherosclerotic lesions using a quantum cascade laser (QCL) in the 5.7 μm wavelength range. QCLs are relatively new types of semiconductor lasers that can emit mid-infrared range. They are sufficiently compact and considered to be useful for clinical application. However, large thermal effects were observed because the QCL worked as quasicontinuous wave (CW) lasers due to its short pulse interval. Then we tried macro pulse irradiation (irradiation of pulses at intervals) of the QCL and achieved effective ablation with less-thermal effects than conventional quasi-CW irradiation. However, lesion selectivity might be changed by changing pulse structure. Therefore, in this study, irradiation effects of the macro pulse irradiation to rabbit atherosclerotic plaque and normal vessel were compared. The macro pulse width and the macro pulse interval were set to 0.5 and 12 ms, respectively, because the thermal relaxation time of rabbit normal and atherosclerotic aortas in the oscillation wavelength of the QCL was 0.5-12 ms. As a result, cutting difference was achieved between rabbit atherosclerotic and normal aortas by the macro pulse irradiation. Therefore, macro pulse irradiation of a QCL in the 5.7 μm wavelength range is effective for reducing thermal effects and selective ablation of the atherosclerotic plaque. QCLs have the potential of realizing less-invasive laser angioplasty.

  4. Is the Use of Fullerene in Photodynamic Therapy Effective for Atherosclerosis?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitta, Norihisa, E-mail: r34nitta@belle.shiga-med.ac.jp; Seko, Ayumi; Sonoda, Akinaga

    2008-03-15

    The purpose of this study was to evaluate Fullerene as a therapeutic photosensitizer in the treatment of atherosclerosis. An atherosclerotic experimental rabbit model was prepared by causing intimal injury to bilateral external iliac arteries using balloon expansion. In four atherosclerotic rabbits and one normal rabbit, polyethylene glycol-modified Fullerene (Fullerene-PEG) was infused into the left external iliac artery and illuminated by light emitting diode (LED), while the right external iliac artery was only illuminated by LED. Two weeks later, the histological findings for each iliac artery were evaluated quantitatively and comparisons were made among atherosclerotic Fullerene+LED artery (n = 4), atheroscleroticmore » light artery (n = 4), normal Fullerene+LED artery (n = 1), and normal light artery (n = 1). An additional two atherosclerotic rabbits were studied by fluorescence microscopy, after Fullerene-PEG-Cy5 complex infusion into the left external iliac artery, for evaluation of Fullerene-PEG incorporated within the atherosclerotic lesions. The degree of atherosclerosis in the atherosclerotic Fullerene+LED artery was significantly (p < 0.05) more severe than that in the atherosclerotic LED artery. No pathological change was observed in normal Fullerene+LED and LED arteries. In addition, strong accumulation of Fullerene-PEG-Cy5 complex within the plaque of the left iliac artery of the two rabbits was demonstrated, in contrast to no accumulation in the right iliac artery. We conclude that infusion of a high concentration of Fullerene-PEG followed by photo-illumination resulted not in a suppression of atherosclerosis but in a progression of atherosclerosis in experimental rabbit models. However, this intervention showed no adverse effects on the normal iliac artery.« less

  5. How to manage hypertension with atherosclerotic renal artery stenosis?

    PubMed

    Ricco, Jean-Baptiste; Belmonte, Romain; Illuminati, Guilio; Barral, Xavier; Schneider, Fabrice; Chavent, Bertrand

    2017-04-01

    The management of atherosclerotic renal artery stenosis (ARAS) in patients with hypertension has been the topic of great controversy. Major contemporary clinical trials such as the Cardiovascular Outcomes for Renal Artery lesions (CORAL) and Angioplasty and Stenting for Renal Atherosclerotic lesions (ASTRAL) have failed to show significant benefit of revascularization over medical management in controlling blood pressure and preserving renal function. We present here the implications and limitations of these trials and formulate recommendations for management of ARAS.

  6. Intra-plaque production of platelet-activating factor correlates with neoangiogenesis in human carotid atherosclerotic lesions.

    PubMed

    Lupia, Enrico; Pucci, Angela; Peasso, Paolo; Merlo, Maurizio; Baron, Paolo; Zanini, Cristina; Del Sorbo, Lorenzo; Rizea-Savu, Simona; Silvestro, Luigi; Forni, Marco; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe

    2003-09-01

    Platelet-activating factor (PAF) is a phospholipid mediator synthesized by activated inflammatory and endothelial cells. Recently PAF has been shown to contribute to neoangiogenesis in several experimental models. Here we evaluated the presence of PAF and its potential role in neovascularization within human atherosclerotic plaques. The amount of PAF extracted from 18 carotid plaques (266.65+/-40.07 pg/100 mg dry tissue; mean +/- SE) was significantly higher than that extracted from 18 normal arterial specimens (6 from carotid artery and 12 from aorta) (4.72+/-2.31 pg/100 mg dry tissue; mean +/- SE). The levels of PAF significantly correlated with the infiltration of CD68-positive monocytes and the extent of neovascularization, detected as von Willebrand Factor-positive cells. The amount of PAF also correlated with the area occupied by TNF-alpha-expressing cells. The absence of enhanced level of PAF in the circulation of atherosclerotic patients suggests a local production of this mediator within the plaque. The lipid extracts of atherosclerotic plaques containing high levels of PAF-bioactivity, but not those of control arteries, were angiogenic in a murine Matrigel model. WEB 2170, a specific PAF receptor antagonist, significantly prevented angiogenesis induced by the lipid extracts of atherosclerotic plaques. Our results indicate a local production of PAF within the atherosclerotic plaques and suggest that it may contribute to intra-plaque neoangiogenesis.

  7. Lipoprotein-associated phospholipase A(2), platelet-activating factor acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions.

    PubMed

    Häkkinen, T; Luoma, J S; Hiltunen, M O; Macphee, C H; Milliner, K J; Patel, L; Rice, S Q; Tew, D G; Karkola, K; Ylä-Herttuala, S

    1999-12-01

    We studied the expression of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), an enzyme capable of hydrolyzing platelet-activating factor (PAF), PAF-like phospholipids, and polar-modified phosphatidylcholines, in human and rabbit atherosclerotic lesions. Oxidative modification of low-density lipoprotein, which plays an important role in atherogenesis, generates biologically active PAF-like modified phospholipid derivatives with polar fatty acid chains. PAF is known to have a potent proinflammatory activity and is inactivated by its hydrolysis. On the other hand, lysophosphatidylcholine and oxidized fatty acids released from oxidized low-density lipoprotein as a result of Lp-PLA(2) activity are thought to be involved in the progression of atherosclerosis. Using combined in situ hybridization and immunocytochemistry, we detected Lp-PLA(2) mRNA and protein in macrophages in both human and rabbit atherosclerotic lesions. Reverse transcriptase-polymerase chain reaction analysis indicated an increased expression of Lp-PLA(2) mRNA in human atherosclerotic lesions. In addition, approximately 6-fold higher Lp-PLA(2) activity was detected in atherosclerotic aortas of Watanabe heritable hyperlipidemic rabbits compared with normal aortas from control rabbits. It is concluded that (1) macrophages in both human and rabbit atherosclerotic lesions express Lp-PLA(2), which could cleave any oxidatively modified phosphatidylcholine present in the lesion area, and (2) modulation of Lp-PLA(2) activity could lead to antiatherogenic effects in the vessel wall.

  8. Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions.

    PubMed

    Jo, Javier A; Fang, Qiyin; Papaioannou, Thanassis; Baker, J Dennis; Dorafshar, Amir H; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C; Freischlag, Julie A; Marcu, Laura

    2006-01-01

    We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability.

  9. Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions

    NASA Astrophysics Data System (ADS)

    Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Baker, J. Dennis; Dorafshar, Amir; Reil, Todd; Qiao, Jianhua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura

    2006-03-01

    We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability.

  10. Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions

    PubMed Central

    Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Baker, J. Dennis; Dorafshar, Amir H.; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura

    2007-01-01

    We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability. PMID:16674179

  11. Near-infrared hyperspectral imaging of atherosclerotic plaque in WHHLMI rabbit artery

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kitayabu, Akiko; Omiya, Kota; Honda, Norihiro; Awazu, Kunio

    2013-03-01

    Hyperspectral imaging (HSI) of rabbit atherosclerotic plaque in near-infrared (NIR) range from 1150 to 2400 nm was demonstrated. A method to identify vulnerable plaques that are likely to cause acute coronary events has been required. The object of this study is identifying vulnerable plaques by NIR-HSI for an angioscopic application. In this study, we observed the hyperspectral images of the atherosclerotic plaque in WHHLMI rabbit (atherosclerotic rabbit) artery under simulated angioscopic conditions by NIR-HSI. NIR-HSI system was constructed by a NIR super continuum light and a mercury-cadmium-telluride camera. Spectral absorbance values (log (1/R) data) were obtained in the wavelength range from 1150 to 2400 nm at 10 nm intervals. The hyperspectral images were constructed with spectral angle mapper algorithm. As a result, the detections of atherosclerotic plaque under angioscopic observation conditions were achieved especially in the wavelength around 1200 nm, which corresponds to the second overtone of CH stretching vibration mode. The NIR-HSI was considered to serve as an angioscopic diagnosis technique to identify vulnerable plaques without clamping and saline injection.

  12. Alloimmune responses and atherosclerotic disease after kidney transplantation.

    PubMed

    Ducloux, Didier; Courivaud, Cécile; Bamoulid, Jamal; Bisaccia, Vincent; Roubiou, Caroline; Crepin, Thomas; Gaugler, Béatrice; Laheurte, Caroline; Rebibou, Jean-Michel; Chalopin, Jean-Marc; Saas, Philippe

    2015-01-01

    Chronic exposure to exogenous antigens causes accumulation of proinflammatory CD57(+)CD28(-) hyperactivated CD8(+) T cells that may promote atherosclerosis. We hypothesized that persistent alloimmune responses may induce immune activation and contribute to posttransplant atherosclerosis. This hypothesis was tested in a single-center cohort of 577 kidney transplant patients. Propensity score analysis was performed to address potential confounding variables by indication. Immune exhaustion was studied in subcohort of 103 patients. Five hundred seventy-seven consecutive renal transplant recipients were included. Seventy-seven atherosclerotic events (AE) (12.3%) occurred during a mean follow-up of 7 years. The cumulative incidence of AE increased with the number of human leukocyte antigen (HLA) mismatches (18%, 10%, and 5% in patients with 5-6, 3-4, and 0-2 mismatches, respectively; P=0.012). Human leukocyte antigen mismatch number (hazards ratio, 1.35; 95% confidence interval, 1.10-1.66, for each supplementary mismatch; P=0.005) was an independent risk factor for AE. In the propensity score match analysis, having received a well-matched kidney conferred a reduced risk of AE (hazards ratio, 0.22; 95% confidence interval, 0.05-0.95; P=0.044). We observed a significant correlation between HLA mismatch numbers and circulating CD57(+)CD28(-) CD8(+) T cells (R=0.31; P=0.017). These CD8(+) T cells were more frequent in patients with more HLA mismatches (P<0.0001). Overall, our results suggest that chronic allogeneic stimulation participates to accelerated atherosclerosis observed after transplantation.

  13. Three-dimensional color Doppler imaging of the carotid artery

    NASA Astrophysics Data System (ADS)

    Picot, Paul A.; Rickey, Daniel W.; Mitchell, Ross; Rankin, Richard N.; Fenster, Aaron

    1991-05-01

    Stroke is the third leading cause of death in the United States. It is caused by ischemic injury to the brain, usually resulting from emboli from atherosclerotic plaques. The carotid bifurcation in humans is prone to atherosclerotic disease and is a site where emboli may originate. Currently, carotid stenoses are evaluated by non-invasive duplex Doppler ultrasound, with preoperative verification by intra-arterial angiography. We have developed a system that uses a color Doppler ultrasound imaging system to acquire in-vivo 3-D color Doppler images of the human carotid artery, with the aim of increasing the diagnostic accuracy of ultrasound and decreasing the use of angiography for verification. A clinical TL Ultramark 9 color Doppler ultrasound system was modified by mounting the hand-held ultrasound scan head on a motor-driven translation stage. The stage allows planar ultrasound images to be acquired over 45 mm along the neck between the clavicle and the mandible. A 3- D image is acquired by digitizing, in synchrony with the cardiac cycle, successive color ultrasound video images as the scan head is stepped along the neck. A complete volume set of 64 frames, comprising some 15 megabytes of data, requires approximately 2 minutes to acquire. The volume image is reformatted and displayed on a Sun 4/360 workstation equipped with a TAAC-1 graphics accelerator. The 3-D image may be manipulated in real time to yield the best view of blood flow in the bifurcation.

  14. Label-free imaging of atherosclerotic plaques using third-harmonic generation microscopy

    PubMed Central

    Small, David M.; Jones, Jason S.; Tendler, Irwin I.; Miller, Paul E.; Ghetti, Andre; Nishimura, Nozomi

    2017-01-01

    Multiphoton microscopy using laser sources in the mid-infrared range (MIR, 1,300 nm and 1,700 nm) was used to image atherosclerotic plaques from murine and human samples. Third harmonic generation (THG) from atherosclerotic plaques revealed morphological details of cellular and extracellular lipid deposits. Simultaneous nonlinear optical signals from the same laser source, including second harmonic generation and endogenous fluorescence, resulted in label-free images of various layers within the diseased vessel wall. The THG signal adds an endogenous contrast mechanism with a practical degree of specificity for atherosclerotic plaques that complements current nonlinear optical methods for the investigation of cardiovascular disease. Our use of whole-mount tissue and backward scattered epi-detection suggests THG could potentially be used in the future as a clinical tool. PMID:29359098

  15. Defining the Relationship between Biomarkers of Oxidative and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts during and after Long-duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Westby, Christian M.; Stenger, Michael B.; Smith, Scott M.; Zwart, Sara; Ploutz-Snyder, Robert J.; Platts, Steven H.

    2014-01-01

    Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative damage and inflammation can accelerate the development of atherosclerosis. PURPOSE The purpose of this investigation is to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and investigate if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. This is the first study to propose assessing atherosclerotic risk using biochemical, structural, and functional measures before, during, and immediately after spaceflight, and structural and functional measures for up to 5 years after landing. METHODS We will study 12 astronauts before, during, and up to 5 years after long-duration ISS missions. A panel of biomarkers of oxidative and inflammatory stress will be measured twice before flight, early (flight days 15 and 60) and late (2 weeks before landing) during the mission, and early in the postflight recovery phase (approx 3 days after landing). Arterial structure and vascular compliance will be measured at the same times and also at 1, 3, and 5 years after landing (surveillance). Arterial function will be measured using the same preflight, postflight, and surveillance schedule as arterial structure and vascular compliance measures, but will not be measured inflight. Biomarkers, some of which we have previously shown to be elevated with spaceflight, will be measured in venous blood samples and 24-h (in-flight) and 48-h (pre- and post-flight) urine pools. Arterial structure will be assessed from measures of carotid intima-media thickness, which have been shown to be better indicators of atherosclerotic than the Framingham Risk Score. Arterial function will be assessed using brachial flow-mediated dilation, a well-validated measure used to assess endothelium-dependent vasodilation and is a sensitive predictor of atherosclerotic risk. Arterial pulse pressure measured in the brachial artery and stroke volume measured from cardiac ultrasound will be used to assess hemodynamic status, cardiac function, and systemic vascular compliance. Three astronauts are actively participating in the preflight data collection and training activities. One astronaut has completed all preflight activities and will participate in the first in-flight data collection sessions by the end of 2013. The first post-flight data collection sessions will occur in the spring of 2014. EXPECTED RESULTS We hypothesize that biomarkers of oxidative and inflammatory stress will increased with spaceflight and will correlate with increased carotid intima-media thickness during and after flight and with decreased flow-mediated dilation after the mission. Furthermore, we hypothesize that measures of oxidative stress will return to baseline after flight, but biomarkers of inflammatory stress and vascular indices of atherosclerotic risk will remain elevated.

  16. Revascularization to preserve renal function in patients with atherosclerotic renovascular disease.

    PubMed

    Novick, A C; Textor, S C; Bodie, B; Khauli, R B

    1984-08-01

    There are a significant number of patients with advanced atherosclerotic renovascular disease whose blood pressure is well controlled with medical therapy but in whom such vascular disease poses a grave risk to overall renal function. This article reviews current concepts regarding screening, evaluation, and selection of patients with this disease for revascularization to preserve renal function. The underlying rationale for this approach is an increasing awareness that, in selected patients, atherosclerotic renovascular disease represents a surgically correctable cause of progressive renal failure.

  17. Endoplasmic reticulum stress in perivascular adipose tissue promotes destabilization of atherosclerotic plaque by regulating GM-CSF paracrine.

    PubMed

    Ying, Ru; Li, Sheng-Wei; Chen, Jia-Yuan; Zhang, Hai-Feng; Yang, Ying; Gu, Zhen-Jie; Chen, Yang-Xin; Wang, Jing-Feng

    2018-04-18

    Perivascular adipose tissue (PVAT) accelerates plaque progression and increases cardiovascular risk. We tested the hypothesis that PVAT contributed to plaque vulnerability and investigated whether endoplasmic reticulum stress (ER stress) in PVAT played an important role in vulnerable plaque. We transplanted thoracic aortic PVAT or subcutaneous adipose tissue as a control, from donor mice to carotid arteries of recipient apolipoprotein E deficient (apoE -/- ) mice after removing carotid artery collar placed for 6 weeks. Two weeks after transplantation, ER stress inhibitor 4-phenyl butyric acid (4-PBA) was locally administrated to the transplanted PVAT and then animals were euthanized after 4 weeks. Immunohistochemistry was performed to quantify plaque composition and neovascularization. Mouse angiogenesis antibody array kit was used to test the angiogenic factors produced by transplanted adipose tissue. In vitro tube formation assay, scratch wound migration assay and mouse aortic ring assay were used to assess the angiogenic capacity of supernatant of transplanted PVAT. Ultrastructural detection by transmission electron microscopy showed transplanted PVAT was a mixed population of white and brown adipocytes with abundant mitochondria. Transplanted PVAT increased the intraplaque macrophage infiltration, lipid core, intimal and vasa vasorum neovascularization and MMP2/9 expression in plaque while decreased smooth muscle cells and collagen in atherosclerotic plaque, which were restored by local 4-PBA-treatment. Antibody array analysis showed that 4-PBA reduced several angiogenic factors [Granulocyte Macrophage Colony Stimulating Factor (GM-CSF), MCP-1, IL-6] secreted by PVAT. Besides, conditioned medium from 4-PBA treated-PVAT inhibited tube formation and migration capacity of endothelial cells and ex vivo mouse aortic ring angiogenesis compared to conditioned medium from transplanted PVAT. mRNA expression and protein levels of GM-CSF were markedly elevated in adipocytes under ER stress which would be suppressed by 4-PBA. In addition, ER stress enhanced NF-κB binding to the promoter of the mouse GM-CSF gene in adipocytes confirmed by Chromatin immunoprecipitation analyses. Our findings demonstrate that ER stress in PVAT destabilizes atherosclerotic plaque, in part through increasing GM-CSF paracrine via transcription factor NF-κB.

  18. Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis.

    PubMed

    Dou, Yin; Chen, Yue; Zhang, Xiangjun; Xu, Xiaoqiu; Chen, Yidan; Guo, Jiawei; Zhang, Dinglin; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2017-10-01

    Atherosclerosis is the leading cause of many fatal cardiovascular and cerebrovascular diseases. Whereas nanomedicines are promising for targeted therapy of atherosclerosis, great challenges remain in development of effective, safe, and translational nanotherapies for its treatment. Herein we hypothesize that non-proinflammatory nanomaterials sensitive to low pH or high reactive oxygen species (ROS) may serve as effective platforms for triggerable delivery of anti-atherosclerotic therapeutics in cellular and tissue microenvironments of inflammation. To demonstrate this hypothesis, an acid-labile material of acetalated β-cyclodextrin (β-CD) (Ac-bCD) and a ROS-sensitive β-CD material (Ox-bCD) were separately synthesized by chemical modification of β-CD, which were formed into responsive nanoparticles (NPs). Ac-bCD NP was rapidly hydrolyzed in mildly acidic buffers, while hydrolysis of Ox-bCD NP was selectively accelerated by H 2 O 2 . Using an anti-atherosclerotic drug rapamycin (RAP), we found stimuli-responsive release of therapeutic molecules from Ac-bCD and Ox-bCD nanotherapies. Compared with non-responsive poly(lactide-co-glycolide) (PLGA)-based NP, Ac-bCD and Ox-bCD NPs showed negligible inflammatory responses in vitro and in vivo. By endocytosis in cells and intracellularly releasing cargo molecules in macrophages, responsive nanotherapies effectively inhibited macrophage proliferation and suppressed foam cell formation. After intraperitoneal (i.p.) delivery in apolipoprotein E-deficient (ApoE -/- ) mice, fluorescence imaging showed accumulation of NPs in atherosclerotic plaques. Flow cytometry analysis indicated that the lymphatic translocation mediated by neutrophils and monocytes/macrophages may contribute to atherosclerosis targeting of i.p. administered NPs, in addition to targeting via the leaky blood vessels. Correspondingly, i.p. treatment with different nanotherapies afforded desirable efficacies. Particularly, both pH and ROS-responsive nanomedicines more remarkably delayed progression of atherosclerosis and significantly enhanced stability of atheromatous lesions, in comparison to non-responsive PLGA nanotherapy. Furthermore, responsive nanovehicles displayed good safety performance after long-term administration in mice. Consequently, for the first time our findings demonstrated the therapeutic advantages of nanomedicines responsive to mildly acidic or abnormally high ROS microenvironments for the treatment of atherosclerosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Blueberry diet protect against atherosclerosis in apoE-deficient mice by inhibiting scavenger receptor expression

    USDA-ARS?s Scientific Manuscript database

    Atherosclerosis is an inflammatory process that leads to the onset of cardiovascular disease. The scavenger receptor-mediated uptake of oxLDL by macrophages leads to foam cell formation, which is an initial event in the formation of atherosclerotic fatty streak lesions. In this report, the mechanism...

  20. Transcriptional Profiling of Foam Cells Reveals Induction of Guanylate-Binding Proteins Following Western Diet Acceleration of Atherosclerosis in the Absence of Global Changes in Inflammation.

    PubMed

    Goo, Young-Hwa; Son, Se-Hee; Yechoor, Vijay K; Paul, Antoni

    2016-04-18

    Foam cells are central to two major pathogenic processes in atherogenesis: cholesterol buildup in arteries and inflammation. The main underlying cause of cholesterol deposition in arteries is hypercholesterolemia. This study aimed to assess, in vivo, whether elevated plasma cholesterol also alters the inflammatory balance of foam cells. Apolipoprotein E-deficient mice were fed regular mouse chow through the study or were switched to a Western-type diet (WD) 2 or 14 weeks before death. Consecutive sections of the aortic sinus were used for lesion quantification or to isolate RNA from foam cells by laser-capture microdissection (LCM) for microarray and quantitative polymerase chain reaction analyses. WD feeding for 2 or 14 weeks significantly increased plasma cholesterol, but the size of atherosclerotic lesions increased only in the 14-week WD group. Expression of more genes was affected in foam cells of mice under prolonged hypercholesterolemia than in mice fed WD for 2 weeks. However, most transcripts coding for inflammatory mediators remained unchanged in both WD groups. Among the main players in inflammatory or immune responses, chemokine (C-X-C motif) ligand 13 was induced in foam cells of mice under WD for 2 weeks. The interferon-inducible GTPases, guanylate-binding proteins (GBP)3 and GBP6, were induced in the 14-week WD group, and other GBP family members were moderately increased. Our results indicate that acceleration of atherosclerosis by hypercholesterolemia is not linked to global changes in the inflammatory balance of foam cells. However, induction of GBPs uncovers a novel family of immune modulators with a potential role in atherogenesis. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. Coronary artery calcium before and after hospitalization with pneumonia: The MESA study.

    PubMed

    Corrales-Medina, Vicente F; Dwivedi, Girish; Taljaard, Monica; Petrcich, William; Lima, Joao A; Yende, Sachin; Kronmal, Richard A; Chirinos, Julio A

    2018-01-01

    Epidemiological analyses demonstrate that pneumonia survivors have a higher risk of myocardial infarction than people with similar load of risk factors for atherosclerotic cardiovascular disease (ASCVD) but without pneumonia. This may be due to a higher baseline burden of ASCVD in patients with pneumonia that is not captured by the accounting of known ASCVD risk factors in epidemiological analyses or to unfavorable accelerating effects of pneumonia on atherosclerosis. We analyzed data from the Multi-Ethnic Study of Atherosclerosis. We identified 54 participants that were hospitalized for pneumonia during study follow-up and that also had assessment of coronary artery calcium (CAC, an objective marker of coronary atherosclerotic burden) before and after this hospitalization. We matched them to 54 participants who were not hospitalized for pneumonia but that had CAC assessments at the same study visits as the pneumonia cases. We compared baseline CAC scores and their progression between groups. Baseline CAC scores were similar in both groups (median [IQR]; 6.3 [0-356.8] in pneumonia participants vs. 10.8 [0-178.3] in controls; p = 0.25). After a median of 4.8 years, the direction and magnitude of CAC score change, and the slope of CAC score progression between groups was also similar (median change [IQR], 21.8 [0 to 287.29] in participants with pneumonia versus 15.8 [0 to 140.94] in controls, p = 0.28; difference in slope, 7.7, 95% CI -9.0 to 24.6, p = 0.18). However, among participants with high baseline ASCVD risk (i.e. ACC/AHA 10-year risk estimate ≥7.5%), participants with pneumonia showed a larger increase in CAC scores (median change [IQR]; 159.10 [38.55-407.34] versus 48.72 [0.97-246.99] in controls; p = 0.02) and a trend towards a steeper slope of CAC score progression (difference in slope, 19.7, 95% CI -6.6 to 45.6, p = 0.07). Pneumonia may accelerate the progression of atherosclerosis in people with high baseline ASCVD risk.

  2. Renal Artery Stenting in Patients With Documented Resistant Hypertension and Atherosclerotic Renal Artery Stenosis (ANDORRA)

    ClinicalTrials.gov

    2018-01-24

    Hypertension; Hypertension Resistant to Conventional Therapy; Angiographically Proven Grade III Unilateral or Bilateral Atherosclerotic Renal Artery Stenosis (ARAS) Greater Than or Equal to 60 Percent

  3. Endovascular Management of Atherosclerotic Renal Artery Stenosis: Post-Cardiovascular Outcomes in Renal Atherosclerotic Lesions Era Winner or False Alarm?

    PubMed Central

    Karanikola, Evridiki; Karaolanis, Georgios; Galyfos, George; Barbaressos, Emmanuel; Palla, Viktoria; Filis, Konstantinos

    2017-01-01

    Renal artery stenosis (RAS) is frequently associated with severe comorbidities such as reduced renal perfusion, hypertension, and end-stage renal failure. In approximately 90% of patients, renal artery atherosclerosis is the main cause for RAS, and it is associated with an increased risk for fatal and non-fatal cardiovascular and renal complications. Endovascular management of atherosclerotic RAS (ARAS) has been recently evaluated by several randomized controlled trials that failed to demonstrate benefit of stenting. Furthermore, the Cardiovascular Outcomes in Renal Atherosclerotic Lesions study did not demonstrate any benefit over the revascularization approach. In this review, we summarized the available data from retrospective, prospective and randomized trials on ARAS to provide clinicians with sufficient data in order to produce useful conclusions for everyday clinical practice. PMID:28377906

  4. Overexpression of TGF-ß1 in Macrophages Reduces and Stabilizes Atherosclerotic Plaques in ApoE-Deficient Mice

    PubMed Central

    Orning, Carolin; Crain, Jeanine; Küpper, Ines; Wiese, Elena; Protschka, Martina; Blessing, Manfred; Lackner, Karl J.; Torzewski, Michael

    2012-01-01

    Although macrophages represent the hallmark of both human and murine atherosclerotic lesions and have been shown to express TGF-ß1 (transforming growth factor β1) and its receptors, it has so far not been experimentally addressed whether the pleiotropic cytokine TGF-ß1 may influence atherogenesis by a macrophage specific mechanism. We developed transgenic mice with macrophage specific TGF-ß1 overexpression, crossed the transgenics to the atherosclerotic ApoE (apolipoprotein E) knock-out strain and quantitatively analyzed both atherosclerotic lesion development and composition of the resulting double mutants. Compared with control ApoE−/− mice, animals with macrophage specific TGF-ß1 overexpression developed significantly less atherosclerosis after 24 weeks on the WTD (Western type diet) as indicated by aortic plaque area en face (p<0.05). Reduced atherosclerotic lesion development was associated with significantly less macrophages (p<0.05 after both 8 and 24 weeks on the WTD), significantly more smooth muscle cells (SMCs; p<0.01 after 24 weeks on the WTD), significantly more collagen (p<0.01 and p<0.05 after 16 and 24 weeks on the WTD, respectively) without significant differences of inner aortic arch intima thickness or the number of total macrophages in the mice pointing to a plaque stabilizing effect of macrophage-specific TGF-ß1 overexpression. Our data shows that macrophage specific TGF-ß1 overexpression reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice. PMID:22829904

  5. The addition of vildagliptin to metformin prevents the elevation of interleukin 1ß in patients with type 2 diabetes and coronary artery disease: a prospective, randomized, open-label study.

    PubMed

    Younis, Arwa; Eskenazi, Dana; Goldkorn, Ronen; Leor, Jonathan; Naftali-Shani, Nili; Fisman, Enrique Z; Tenenbaum, Alexander; Goldenberg, Ilan; Klempfner, Robert

    2017-05-22

    Patients with type 2 diabetes present with an accelerated atherosclerotic process. Animal evidence indicates that dipeptidyl peptidase-4 inhibitors (gliptins) have anti-inflammatory and anti-atherosclerotic effects, yet clinical data are scarcely available. A prospective, randomized, open-label study was performed in 60 patients with coronary artery disease (CAD) and type 2 diabetes, who participated in a cardiac rehabilitation program. After a washout period of 3 weeks, patients were randomized in a 2:1 ratio to receive combined vildagliptin/metformin therapy (intervention group: n = 40) vs. metformin alone (control group: n = 20) for a total of 12 weeks. Blinded assessment of interleukin-1ß (IL-1ß, the primary endpoint), hemoglobin A1c (HbA1c), and high sensitivity C reactive protein (hsCRP), were performed at baseline and after 12 weeks. Mean age of study patients was 67 ± 9 years, 75% were males, and baseline HbA1c and inflammatory markers levels were similar between the two groups. At 12 weeks of follow up, levels of IL-1ß, hsCRP, and HbA1c were significantly lower in the intervention group as compared with the control group. There was a continuous elevation of IL-1ß among the control group, which was not observed in the intervention group (49 vs. 4%, respectively; p < 0.001). The hsCRP was lowered by 60% in the vildagliptin/metformin group vs. 23% in the metformin group (p < 0.01). Moreover, a significant relative reduction of the HbA1c was seen in the intervention group (7% reduction, p < 0.03). The addition of vildagliptin to metformin treatment in patients with type 2 diabetes and CAD led to a significant suppression of the IL-1ß elevation during follow up. A significant relative reduction of hsCRP and HbA1c in the intervention group was also observed. Trial registration NCT01604213.

  6. Ageing induced vascular smooth muscle cell senescence in atherosclerosis.

    PubMed

    Uryga, Anna K; Bennett, Martin R

    2016-04-15

    Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  7. The metabolic syndrome in a Congolese population and its implications for metabolic syndrome definitions.

    PubMed

    Longo-Mbenza, B; Kasiam Lasi On'kin, J B; Nge Okwe, A; Kangola Kabangu, N

    2011-01-01

    Metabolic syndrome defined by International cut-off values are limited to detect people at high cardiometabolic risk in Central Africans in comparison with metabolic syndrome defined by ethnic-specific definition. We examined the relationship between metabolic syndromes, diabetes control, abdominal obesity, HDL-cholesterol groups and atherosclerotic complications. A representative sample of type-2 diabetic central Africans from Kinshasa were studied. Outcome measures included control of diabetes, atherosclerosis, abdominal obesity, insulin resistance, total cholesterol, triglycerides, HDL-cholesterol, metabolic syndromes and atherosclerosis. Of 1266 type-2 diabetic patients (48.8%), (61.8%), (27.1%) and (81%) had uncontrolled diabetes, atherosclerotics, metabolic syndrome (IDF/Europe), and metabolic syndrome (IDF/local) respectively. There was a significant U-shaped relationship between atherosclerotics complications, insulin resistance, delta postprandial glycaemia and HDL-cholesterol stratification. There was also a significant U-shaped relationship between cardiometabolic risk (P<0.01) and atherosclerotic complications. Type-2 diabetic Central Africans exhibit very high rates of uncontrolled diabetes, atherosclerotic complications and metabolic syndrome. Both, abdominal obesity, insulin resistance, low and very high HDL-cholesterol levels are cardiometabolic risk factors. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  8. Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Coexpression with intercellular adhesion molecule-1.

    PubMed Central

    Johnson-Tidey, R. R.; McGregor, J. L.; Taylor, P. R.; Poston, R. N.

    1994-01-01

    P-selectin (GMP-140) is an adhesion molecule present within endothelial cells that is rapidly translocated to the cell membrane upon activation, where it mediates endothelial-leukocyte interactions. Immunohistochemical analysis of human atherosclerotic plaques has shown strong expression of P-selectin by the endothelium overlying active atherosclerotic plaques. P-selectin is not, however, detected in normal arterial endothelium or in endothelium overlying inactive fibrous plaques. Color image analysis was used to quantitate the degree of P-selectin expression in the endothelium and demonstrates a statistically significant increase in P-selectin expression by atherosclerotic endothelial cells. Double immunofluorescence shows that some of this P-selectin is expressed on the luminal surface of the endothelial cells. Previous work has demonstrated a significant up-regulation in the expression of the intercellular adhesion molecule-1 in atherosclerotic endothelium and a study on the expression of intercellular adhesion molecule-1 and P-selectin in atherosclerosis shows a highly positive correlation. These results suggest that the selective and cooperative expression of P-selectin and intercellular adhesion molecule-1 may be involved in the recruitment of monocytes into sites of atherosclerosis. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:7513951

  9. Lysophosphatidic acid triggers mast cell-driven atherosclerotic plaque destabilization by increasing vascular inflammation[S

    PubMed Central

    Bot, Martine; de Jager, Saskia C. A.; MacAleese, Luke; Lagraauw, H. Maxime; van Berkel, Theo J. C.; Quax, Paul H. A.; Kuiper, Johan; Heeren, Ron M. A.; Biessen, Erik A. L.; Bot, Ilze

    2013-01-01

    Lysophosphatidic acid (LPA), a bioactive lysophospholipid, accumulates in the atherosclerotic plaque. It has the capacity to activate mast cells, which potentially exacerbates plaque progression. In this study, we thus aimed to investigate whether LPA contributes to plaque destabilization by modulating mast cell function. We here show by an imaging mass spectrometry approach that several LPA species are present in atherosclerotic plaques. Subsequently, we demonstrate that LPA is a potent mast cell activator which, unlike other triggers, favors release of tryptase. Local perivascular administration of LPA to an atherosclerotic carotid artery segment increases the activation status of perivascular mast cells and promotes intraplaque hemorrhage and macrophage recruitment without impacting plaque cell apoptosis. The mast cell stabilizer cromolyn could prevent intraplaque hemorrhage elicited by LPA-mediated mast cell activation. Finally, the involvement of mast cells in these events was further emphasized by the lack of effect of perivascular LPA administration in mast cell deficient animals. We demonstrate that increased accumulation of LPA in plaques induces perivascular mast cell activation and in this way contributes to plaque destabilization in vivo. This study points to local LPA availability as an important factor in atherosclerotic plaque stability. PMID:23396975

  10. Lysophosphatidic acid triggers mast cell-driven atherosclerotic plaque destabilization by increasing vascular inflammation.

    PubMed

    Bot, Martine; de Jager, Saskia C A; MacAleese, Luke; Lagraauw, H Maxime; van Berkel, Theo J C; Quax, Paul H A; Kuiper, Johan; Heeren, Ron M A; Biessen, Erik A L; Bot, Ilze

    2013-05-01

    Lysophosphatidic acid (LPA), a bioactive lysophospholipid, accumulates in the atherosclerotic plaque. It has the capacity to activate mast cells, which potentially exacerbates plaque progression. In this study, we thus aimed to investigate whether LPA contributes to plaque destabilization by modulating mast cell function. We here show by an imaging mass spectrometry approach that several LPA species are present in atherosclerotic plaques. Subsequently, we demonstrate that LPA is a potent mast cell activator which, unlike other triggers, favors release of tryptase. Local perivascular administration of LPA to an atherosclerotic carotid artery segment increases the activation status of perivascular mast cells and promotes intraplaque hemorrhage and macrophage recruitment without impacting plaque cell apoptosis. The mast cell stabilizer cromolyn could prevent intraplaque hemorrhage elicited by LPA-mediated mast cell activation. Finally, the involvement of mast cells in these events was further emphasized by the lack of effect of perivascular LPA administration in mast cell deficient animals. We demonstrate that increased accumulation of LPA in plaques induces perivascular mast cell activation and in this way contributes to plaque destabilization in vivo. This study points to local LPA availability as an important factor in atherosclerotic plaque stability.

  11. Mast cells in atherosclerotic cardiovascular disease - Activators and actions.

    PubMed

    Kovanen, Petri T; Bot, Ilze

    2017-12-05

    Mast cells are potent actors involved in inflammatory reactions in various tissues, including both in the intimal and the adventitial layers of atherosclerotic arteries. In the arterial intima, the site of atherogenesis, mast cells are activated to degranulate, and thereby triggered to release an abundance of preformed inflammatory mediators, notably histamine, heparin, neutral proteases and cytokines stored in their cytoplasmic secretory granules. Depending on the stimulus, mast cell activation may also launch prolonged synthesis and secretion of single bioactive molecules, such as cytokines and derivatives of arachidonic acid. The mast cell-derived mediators may impede the functions of different types of cells present in atherosclerotic lesions, and also compromise the structural and functional integrity of the intimal extracellular matrix. In the adventitial layer of atherosclerotic coronary arteries, mast cells locate next to peptidergic sensory nerve fibers, which, by releasing neuropeptides may activate mast cells to release vasoactive compounds capable of triggering local vasoconstriction. The concerted actions of arterial mast cells have the potential to contribute to the initiation and progression of atherosclerosis, and ultimately to destabilization and rupture of an advanced atherosclerotic plaque with ensuing atherothrombotic complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Advances in the development of an imaging device for plaque measurement in the area of the carotid artery.

    PubMed

    Ličev, Lačezar; Krumnikl, Michal; Škuta, Jaromír; Babiuch, Marek; Farana, Radim

    2014-03-04

    This paper describes the advances in the development and subsequent testing of an imaging device for three-dimensional ultrasound measurement of atherosclerotic plaque in the carotid artery. The embolization from the atherosclerotic carotid plaque is one of the most common causes of ischemic stroke and, therefore, we consider the measurement of the plaque as extremely important. The paper describes the proposed hardware for enhancing the standard ultrasonic probe to provide a possibility of accurate probe positioning and synchronization with the cardiac activity, allowing the precise plaque measurements that were impossible with the standard equipment. The synchronization signal is derived from the output signal of the patient monitor (electrocardiogram (ECG)), processed by a microcontroller-based system, generating the control commands for the linear motion moving the probe. The controlling algorithm synchronizes the movement with the ECG waveform to obtain clear images not disturbed by the heart activity.

  13. Xanthine Oxidase Inhibition by Febuxostat Attenuates Experimental Atherosclerosis in Mice

    PubMed Central

    Nomura, Johji; Busso, Nathalie; Ives, Annette; Matsui, Chieko; Tsujimoto, Syunsuke; Shirakura, Takashi; Tamura, Mizuho; Kobayashi, Tsunefumi; So, Alexander; Yamanaka, Yoshihiro

    2014-01-01

    Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE−/− mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE−/− mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis. PMID:24686534

  14. Fluorescence lifetime in cardiovascular diagnostics

    NASA Astrophysics Data System (ADS)

    Marcu, Laura

    2010-01-01

    We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications.

  15. Fluorescence lifetime in cardiovascular diagnostics.

    PubMed

    Marcu, Laura

    2010-01-01

    We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications.

  16. Atherosclerosis in the Erythrocebus patas, an old world monkey.

    PubMed Central

    Mahley, R. W.; Johnson, D. K.; Pucak, G. J.; Fry, D. L.

    1980-01-01

    Fifty monkeys of the species Erythrocebus patas were fed a control monkey chow, a semi-synthetic diet containing 25% lard, or a semisynthetic diet containing 25% lard and 0.5% cholesterol for 2 years. The patas monkeys had naturally occurring atherosclerosis that was greatly accelerated by feeding a diet containing cholesterol. The atherosclerosis involved the aorta, predominantly the abdominal portion, the coronary arteries, and various peripheral vessels. Histologically, the atherosclerosis was characterized by intimal proliferative lesions associated with intra- and extracellular lipid deposition. Complicated lesions that developed after 2 years on the cholesterol-containing diet were associated with lipid crystals, necrosis, mineralization, and encroachment upon the media. Adventitial reactions characterized by increased vascularity and the presence of inflammatory cells were seen. All of these observations have been described as components of the human atherosclerotic disease process. The similarity of the patas monkey atherosclerosis to human atherosclerosis, the relatively large size and easy handling of the animals, and the fact that previous studies have shown the lipoproteins of both control and cholesterol-fed monkeys to resemble human lipoproteins all contribute to making the patas monkey a useful model for the study of experimental atherosclerosis. Images Figure 1-5 Figure 6 Figure 7-10 Figure 11 Figure 12 PMID:6766672

  17. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease

    PubMed Central

    Ackers-Johnson, Matthew; Talasila, Amarnath; Sage, Andrew P; Long, Xiaochun; Bot, Ilze; Morrell, Nicholas W; Bennett, Martin R; Miano, Joseph M.; Sinha, Sanjay

    2015-01-01

    Objective Atherosclerosis, the cause of 50% of deaths in westernised societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local pro-inflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. Approach and Results We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic ApoE−/− mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. Conclusions We propose myocardin as a guardian of the contractile, non-inflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease. PMID:25614278

  18. Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology.

    PubMed

    Chistiakov, Dimitry A; Grechko, Andrey V; Myasoedova, Veronika A; Melnichenko, Alexandra A; Orekhov, Alexander N

    2017-08-01

    Cardiac obesity makes an important contribution to the pathogenesis of cardiovascular disease. One of the important pathways of this contribution is the inflammatory process that takes place in the adipose tissue. In this review, we consider the role of the cardiovascular system-associated fat in atherosclerotic cardiovascular pathology and a non-atherosclerotic cause of coronary artery disease, such as atrial fibrillation. Cardiovascular system-associated fat not only serves as the energy store, but also releases adipokines that control local and systemic metabolism, heart/vascular function and vessel tone, and a number of vasodilating and anti-inflammatory substances. Adipokine appears to play an important protective role in cardiovascular system. Under chronic inflammation conditions, the repertoire of signaling molecules secreted by cardiac fat can be altered, leading to a higher amount of pro-inflammatory messengers, vasoconstrictors, profibrotic modulators. This further aggravates cardiovascular inflammation and leads to hypertension, induction of the pathological tissue remodeling and cardiac fibrosis. Contemporary imaging techniques showed that epicardial fat thickness correlates with the visceral fat mass, which is an established risk factor and predictor of cardiovascular disease in obese subjects. However, this correlation is no longer present after adjustment for other covariates. Nevertheless, recent studies showed that pericardial fat volume and epicardial fat thickness can probably serve as a better indicator for atrial fibrillation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mechanical properties of human atherosclerotic intima tissue.

    PubMed

    Akyildiz, Ali C; Speelman, Lambert; Gijsen, Frank J H

    2014-03-03

    Progression and rupture of atherosclerotic plaques in coronary and carotid arteries are the key processes underlying myocardial infarctions and strokes. Biomechanical stress analyses to compute mechanical stresses in a plaque can potentially be used to assess plaque vulnerability. The stress analyses strongly rely on accurate representation of the mechanical properties of the plaque components. In this review, the composition of intima tissue and how this changes during plaque development is discussed from a mechanical perspective. The plaque classification scheme of the American Heart Association is reviewed and plaques originating from different vascular territories are compared. Thereafter, an overview of the experimental studies on tensile and compressive plaque intima properties are presented and the results are linked to the pathology of atherosclerotic plaques. This overview revealed a considerable variation within studies, and an enormous dispersion between studies. Finally, the implications of the dispersion in experimental data on the clinical applications of biomechanical plaque modeling are presented. Suggestions are made on mechanical testing protocol for plaque tissue and on using a standardized plaque classification scheme. This review identifies the current status of knowledge on plaque mechanical properties and the future steps required for a better understanding of the plaque type specific material properties. With this understanding, biomechanical plaque modeling may eventually provide essential support for clinical plaque risk stratification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Usefulness of automatic measurement of contrast flow intensity: an innovative tool in contrast-enhanced ultrasound imaging of atherosclerotic carotid plaque neovascularization. A pilot study.

    PubMed

    Lisowska, A; Knapp, M; Tycinska, A; Sawicki, R; Kralisz, P; Lisowski, P; Sobkowicz, B; Musial, W I

    2014-02-01

    Contrast-enhanced ultrasound imaging of the carotid arteries (CECU) permits direct, real-time visualization of neovascularization in atherosclerotic plaques and is a confirmed predictor of unstable atheromatous lesions. The aim of the study was the assessment of a new, automatically measured index of intensity in quantitative estimation of the contrast flow through the carotid plaque (till now assessed only visually). Forty-four patients (mean age 70.4±11.4) with ultrasound diagnosed significant stenosis of internal carotid artery (ICA), after cerebrovascular or cardiovascular events, qualified for carotid artery stenting (CAS) were examined. The carotid ultrasound examinations with contrast agent Sonovue were performed. Visually in 22 patients (50%) contrast flow through the atherosclerotic plaques was found. In 17 patients (38.6%) massive, calcified atherosclerotic plaques were present. Patients with preserved contrast flow through the plaque more frequently had a history of cerebral stroke (P=0.04). Massive calcifications of atherosclerotic plaques correlated with a previous MI (P=0.03) and the degree of advancement of coronary artery disease (P=0.04), but not with a previous cerebral stroke. Contrast flow through the atherosclerotic plaque positively correlated with values of the index of intensity (r=0.69, P<0.00001). In patients with preserved contrast flow the mean value of the index of intensity was 22.24±3.55 dB as compared with 12.37±7.67 dB - a value present in patients without preserved contrast flow. No significant relation for the degree of calcifications and the value of the index of intensity was found. The assessment of the index of intensity is a novel, simple and automatic method to estimate the degree of contrast flow through the carotid plaque. The values of the index of intensity correlate with the contrast flow through the atherosclerotic plaque, but not with its calcification.

  1. Association between abdominal fat distribution and atherosclerotic changes in the carotid artery.

    PubMed

    Oike, Miki; Yokokawa, Hirohide; Fukuda, Hiroshi; Haniu, Tomomi; Oka, Fukuko; Hisaoka, Teruhiko; Isonuma, Hiroshi

    2014-01-01

    We aimed to evaluate the association between abdominal fat distribution (e.g., abdominal visceral fat area [VFA], subcutaneous fat area [SFA], and total fat area [TFA]), waist circumference (WC), or body mass index (BMI) and atherosclerotic changes in the carotid artery after adjusting for common risk factors. The present study is a hospital-based, cross-sectional study. Study participants included 223 Japanese individuals who underwent a medical health checkup at Juntendo University Hospital, Tokyo, between December 2005 and August 2011. Multivariate logistic regression analysis was used to examine the association between abdominal VFA, SFA, TFA, the VFA/SFA ratio, WC, or BMI and intima-media thickness [IMT] (mean IMT≥1.1mm or maximum IMT≥1.2mm) as atherosclerotic changes in the carotid artery. Multivariate logistic regression analysis showed that VFA (OR for ≥150cm(2) versus <100cm(2), 3.88; 95% CI, 1.39-10.85), BMI (OR for ≥27.6kg/m(2) versus <25kg/m(2), 5.22; 95% CI, 1.69-16.16), and TFA (OR for 200-285cm(2) versus <200cm(2), 4.15; 95% CI, 1.34-12.86: OR for ≥285cm(2) versus <200cm(2), 5.53; 95% CI, 1.76-17.35) were significantly associated with atherosclerotic changes in men. After adjustment for BMI, only TFA (OR for ≥285cm(2) versus <200cm(2), 3.76; 95%CI, 1.03-13.79) in men was significantly associated with atherosclerotic changes in the carotid artery. Our results indicate that VFA, TFA, and BMI are independently associated with atherosclerotic changes in Japanese men. TFA may be considered as a valuable measure of atherosclerotic changes. Copyright © 2013 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  2. Proteoglycan 4 regulates macrophage function without altering atherosclerotic lesion formation in a murine bone marrow-specific deletion model.

    PubMed

    Nahon, Joya E; Hoekstra, Menno; Havik, Stefan R; Van Santbrink, Peter J; Dallinga-Thie, Geesje M; Kuivenhoven, Jan-Albert; Geerling, Janine J; Van Eck, Miranda

    2018-05-05

    Proteoglycan 4 (Prg4) has a high structural similarity with the established atherosclerosis-modulating proteoglycan versican, but its role in atherogenesis is still unknown. Therefore, the impact of Prg4 deficiency on macrophage function in vitro and atherosclerosis susceptibility in vivo was investigated. The presence and localization of Prg4 was studied in atherosclerotic lesions. Furthermore, the effect of Prg4 deficiency on macrophage foam cell formation, cholesterol efflux and lipopolysaccharide (LPS) response was determined. Finally, susceptibility for atherosclerotic lesion formation was investigated in bone marrow-specific Prg4 knockout (KO) mice. Prg4 mRNA expression was induced 91-fold (p<0.001) in murine initial atherosclerotic lesions and Prg4 protein co-localized with human lesional macrophages. Murine Prg4 KO macrophages showed increased foam cell formation (+2.1-fold, p<0.01). In parallel, the expression of the cholesterol efflux genes ATP-binding cassette transporter A1 and scavenger receptor type B1 was lower (-35%, p<0.05;-40%, p<0.05) in Prg4 KO macrophages. This translated into an impaired cholesterol efflux to high-density lipoprotein (-13%, p<0.001) and apolipoprotein A1 (-8%, p<0.05). Furthermore, Prg4 KO macrophages showed an impaired LPS-induced rise in TNFα secretion as compared to wild-type controls (-31%, p<0.001), indicating a reduced inflammatory response. Combined, these pro- and anti-atherogenic effects did not translate into a significant difference in atherosclerotic lesion formation upon bone marrow-specific deletion of Prg4 in low-density lipoprotein receptor KO mice. Prg4 is present in macrophages in both murine and human atherosclerotic lesions and critically influences macrophage function, but deletion of Prg4 in bone marrow-derived cells does not affect atherosclerotic lesion development. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Valsartan Promoting Atherosclerotic Plaque Stabilization by Upregulating Renalase: A Potential-Related Gene of Atherosclerosis.

    PubMed

    Zhou, Mingxue; Ma, Chao; Liu, Weihong; Liu, Hongxu; Wang, Ning; Kang, Qunfu; Li, Ping

    2015-09-01

    Renalase is a protein that can regulate sympathetic nerve activity by metabolizing catecholamines, while redundant catecholamines are thought to contribute to atherosclerosis (As). Catecholamine release can be facilitated by angiotensin (Ang) II by binding to Ang II type 1 (AT1) receptors. Valsartan, a special AT1 antagonist, can dilate blood vessels and reduce blood pressure, but it remained unclear whether valsartan can promote the stability of atherosclerotic plaque by affecting renalase. This study examined the tissue distribution of renalase in ApoE(-/-) mice fed with a high-fat diet and the effect of valsartan on expression of renalase. ApoE(-/-) mice were fed with a high-fat diet for 13 or 26 weeks. As a control, 10 C57BL mice were fed with a standard chow diet. After 13 weeks on the high-fat diet, the ApoE(-/-) mice were randomized (10 mice/group) and treated with valsartan, simvastatin, or distilled water (control group) for an additional 13 weeks accompanied by a high-fat diet. Knockout of ApoE caused a dramatic increase in expression of renalase in mice adipose tissue. With the disturbance of lipid metabolism induced by a high-fat diet, renalase expression decreased in the liver. Renalase can be expressed in smooth muscle cells and M2 macrophages in atherosclerotic plaque, and its expression gradually decreases in the fibrous cap during the transition from stable to vulnerable atherosclerotic plaque. Valsartan, an AT1 receptor antagonist, promotes the stabilization of atherosclerotic plaque by increasing the levels of renalase in serum and the expression of renalase in the fibrous cap of atherosclerotic plaque. It also reduces triglyceride levels in serum and increases the expression of renalase in the liver. Renalase may be a potential-related gene of lipid metabolism and As, and it may be the possible molecular target of valsartan to help stabilize atherosclerotic plaque. © The Author(s) 2015.

  4. Genesis and growth of extracellular vesicle-derived microcalcification in atherosclerotic plaques

    PubMed Central

    Hutcheson, Joshua D.; Goettsch, Claudia; Bertazzo, Sergio; Maldonado, Natalia; Ruiz, Jessica L.; Goh, Wilson; Yabusaki, Katsumi; Faits, Tyler; Bouten, Carlijn; Franck, Gregory; Quillard, Thibaut; Libby, Peter; Aikawa, Masanori; Weinbaum, Sheldon; Aikawa, Elena

    2015-01-01

    Clinical evidence links arterial calcification and cardiovascular risk. Finite-element modelling of the stress distribution within atherosclerotic plaques has suggested that subcellular microcalcifications in the fibrous cap may promote material failure of the plaque, but that large calcifications can stabilize it. Yet the physicochemical mechanisms underlying such mineral formation and growth in atheromata remain unknown. Here, by using three-dimensional collagen hydrogels that mimic structural features of the atherosclerotic fibrous cap, and high-resolution microscopic and spectroscopic analyses of both the hydrogels and of calcified human plaques, we demonstrate that calcific mineral formation and maturation results from a series of events involving the aggregation of calcifying extracellular vesicles, and the formation of microcalcifications and ultimately large calcification zones. We also show that calcification morphology and the plaque’s collagen content – two determinants of atherosclerotic plaque stability - are interlinked. PMID:26752654

  5. Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice.

    PubMed

    Ulrich, Victoria; Rotllan, Noemi; Araldi, Elisa; Luciano, Amelia; Skroblin, Philipp; Abonnenc, Mélanie; Perrotta, Paola; Yin, Xiaoke; Bauer, Ashley; Leslie, Kristen L; Zhang, Pei; Aryal, Binod; Montgomery, Rusty L; Thum, Thomas; Martin, Kathleen; Suarez, Yajaira; Mayr, Manuel; Fernandez-Hernando, Carlos; Sessa, William C

    2016-06-01

    Abnormal remodeling of atherosclerotic plaques can lead to rupture, acute myocardial infarction, and death. Enhancement of plaque extracellular matrix (ECM) may improve plaque morphology and stabilize lesions. Here, we demonstrate that chronic administration of LNA-miR-29 into an atherosclerotic mouse model improves indices of plaque morphology. This occurs due to upregulation of miR-29 target genes of the ECM (col1A and col3A) resulting in reduced lesion size, enhanced fibrous cap thickness, and reduced necrotic zones. Sustained LNA-miR-29 treatment did not affect circulating lipids, blood chemistry, or ECM of solid organs including liver, lung, kidney, spleen, or heart. Collectively, these data support the idea that antagonizing miR-29 may promote beneficial plaque remodeling as an independent approach to stabilize vulnerable atherosclerotic lesions. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  6. Natural history of severe atheromatous disease of the thoracic aorta: a transesophageal echocardiographic study.

    PubMed

    Montgomery, D H; Ververis, J J; McGorisk, G; Frohwein, S; Martin, R P; Taylor, W R

    1996-01-01

    This study sought to prospectively observe the morphologic and clinical natural history of severe atherosclerotic disease of the thoracic aorta as defined by transesophageal echocardiography. Atherosclerosis of the thoracic aorta has been shown to be highly associated with risk for embolic events in transesophageal studies, but the natural history of the disease under clinical conditions has not been reported. During a 20-month period, 191 of 264 patients undergoing transesophageal echocardiography had adequate visualization of the aorta to allow atherosclerotic severity to be graded as follows: grade I = normal (44 patients); grade II = intimal thickening (52 patients); grade III = atheroma < 5 mm (62 patients); grade IV = atheroma > or = 5 mm (19 patients); grade V = mobile lesion (14 patients). All available patients with grades IV (8 patients) and V (10 patients) disease as well as a subgroup of 12 patients with grade III disease had follow-up transesophageal echocardiographic studies (mean [+/- SD] 11.7 +/- 0.9 months, range 6 to 22). Of 30 patients undergoing follow-up transesophageal echocardiographic studies, 20 (66%) had no change in atherosclerotic severity grade. Of the remaining 10 patients, atherosclerotic severity progressed one grade in 7 and decreased in 3 with resolved mobile lesions. Of 18 patients with grade IV or V disease of the aorta who underwent a follow-up study, 11 (61%) demonstrated formation of new mobile lesions. Of 10 patients with grade V disease on initial study who underwent follow-up study, 7 (70%) demonstrated resolution of a specific previously documented mobile lesion. However, seven patients (70%) with grade V disease also demonstrated development of a new mobile lesion. Of 33 patients with grade IV or V disease, 8 (24%) died during the study period, and 1 (3%) had a clinical embolic event. The presence of severe atherosclerotic disease of the thoracic aorta as defined by transesophageal echocardiography is associated with a high mortality rate. Although the morphologic natural history of the disease process itself is marked by stability over a 1-year period, individual lesion morphology is dynamic, with formation and resolution of mobile components occurring frequently over the same period. The dynamic nature of individual lesion morphology potentially enhances the possibility of developing a successful therapeutic strategy.

  7. Rationale, Design, and Methodological Aspects of the BUDAPEST-GLOBAL Study (Burden of Atherosclerotic Plaques Study in Twins-Genetic Loci and the Burden of Atherosclerotic Lesions).

    PubMed

    Maurovich-Horvat, Pál; Tárnoki, Dávid L; Tárnoki, Ádám D; Horváth, Tamás; Jermendy, Ádám L; Kolossváry, Márton; Szilveszter, Bálint; Voros, Viktor; Kovács, Attila; Molnár, Andrea Á; Littvay, Levente; Lamb, Hildo J; Voros, Szilard; Jermendy, György; Merkely, Béla

    2015-12-01

    The heritability of coronary atherosclerotic plaque burden, coronary geometry, and phenotypes associated with increased cardiometabolic risk are largely unknown. The primary aim of the Burden of Atherosclerotic Plaques Study in Twins-Genetic Loci and the Burden of Atherosclerotic Lesions (BUDAPEST-GLOBAL) study is to evaluate the influence of genetic and environmental factors on the burden of coronary artery disease. By design this is a prospective, single-center, classical twin study. In total, 202 twins (61 monozygotic pairs, 40 dizygotic same-sex pairs) were enrolled from the Hungarian Twin Registry database. All twins underwent non-contrast-enhanced computed tomography (CT) for the detection and quantification of coronary artery calcium and for the measurement of epicardial fat volumes. In addition, a single non-contrast-enhanced image slice was acquired at the level of L3-L4 to assess abdominal fat distribution. Coronary CT angiography was used for the detection and quantification of plaque, stenosis, and overall coronary artery disease burden. For the primary analysis, we will assess the presence and volume of atherosclerotic plaques. Furthermore, the 3-dimensional coronary geometry will be assessed based on the coronary CT angiography datasets. Additional phenotypic analyses will include per-patient epicardial and abdominal fat quantity measurements. Measurements obtained from monozygotic and dizygotic twin pairs will be compared to evaluate the genetic or environmental effects of the given phenotype. The BUDAPEST-GLOBAL study provides a unique framework to shed some light on the genetic and environmental influences of cardiometabolic disorders. © 2015 Wiley Periodicals, Inc.

  8. Expressions of Mast Cell Tryptase and Brain Natriuretic Peptide in Myocardium of Sudden Death due to Hypersensitivity and Coronary Atherosclerotic Heart Disease.

    PubMed

    Shi, J R; Tian, C J; Zeng, Q; Guo, X J; Lu, J; Gao, C R

    2016-06-01

    To explore the value of mast cell tryptase and brain natriuretic peptide(BNP) in the differential diagnostic of sudden death due to hypersensitivity and coronary atherosclerotic heart disease. Totally 30 myocardial samples were collected from the autopsy cases in the Department of Forensic Pathology, Shanxi Medical University during 2010-2015. All samples were divided into three groups: death of craniocerebral injury group, sudden death of hypersensitivity group and sudden death of coronary atherosclerotic heart disease group, 10 cases in each group. Mast cell tryptase and BNP in myocardium were detected by immunofluorescence staining and Western Blotting. Immunofluorescence staining showed that the positive staining mast cell tryptase appeared in myocardium of sudden death of hypersensitivity group and coronary atherosclerotic heart disease group. Among the three groups, the expression of mast cell tryptase showed significantly differences through pairwise comparison ( P <0.05); The expression level of BNP in sudden death of coronary atherosclerotic heart disease group were significantly higher than the sudden death of hypersensitivity group and death of craniocerebral injury group ( P <0.05). The difference of the expression level of BNP between the sudden death of hypersensitivity group and the death of craniocerebral injury group had no statistical significance ( P >0.05). The combined detection of the mast cell tryptase and BNP in myocardium is expected to provide help for the forensic differential diagnosis of sudden death due to hypersensitivity and coronary atherosclerotic heart disease. Copyright© by the Editorial Department of Journal of Forensic Medicine

  9. Atherosclerotic Plaque in Patients with Zero Calcium Score at Coronary Computed Tomography Angiography.

    PubMed

    Gabriel, Fabíola Santos; Gonçalves, Luiz Flávio Galvão; Melo, Enaldo Vieira de; Sousa, Antônio Carlos Sobral; Pinto, Ibraim Masciarelli Francisco; Santana, Sara Melo Macedo; Matos, Carlos José Oliveira de; Souto, Maria Júlia Silveira; Conceição, Flávio Mateus do Sacramento; Oliveira, Joselina Luzia Menezes

    2018-05-03

    In view of the high mortality for cardiovascular diseases, it has become necessary to stratify the main risk factors and to choose the correct diagnostic modality. Studies have demonstrated that a zero calcium score (CS) is characteristic of a low risk for cardiovascular events. However, the prevalence of individuals with coronary atherosclerotic plaques and zero CS is conflicting in the specialized literature. To evaluate the frequency of patients with coronary atherosclerotic plaques, their degree of obstruction and associated factors in patients with zero CS and indication for coronary computed tomography angiography (CCTA). This is a cross-sectional, prospective study with 367 volunteers with zero CS at CCTA in four diagnostic imaging centers in the period from 2011 to 2016. A significance level of 5% and 95% confidence interval were adopted. The frequency of atherosclerotic plaque in the coronary arteries in 367 patients with zero CS was 9.3% (34 individuals). In this subgroup, mean age was 52 ± 10 years, 18 (52.9%) were women and 16 (47%) had significant coronary obstructions (> 50%), with involvement of two or more segments in 4 (25%) patients. The frequency of non-obese individuals (90.6% vs 73.9%, p = 0.037) and alcohol drinkers (55.9% vs 34.8%, p = 0.015) was significantly higher in patients with atherosclerotic plaques, with an odds ratio of 3.4 for each of this variable. The frequency of atherosclerotic plaque with zero CS was relatively high, indicating that the absence of calcification does not exclude the presence of plaques, many of which obstructive, especially in non-obese subjects and alcohol drinkers.

  10. Human mast cell neutral proteases generate modified LDL particles with increased proteoglycan binding.

    PubMed

    Maaninka, Katariina; Nguyen, Su Duy; Mäyränpää, Mikko I; Plihtari, Riia; Rajamäki, Kristiina; Lindsberg, Perttu J; Kovanen, Petri T; Öörni, Katariina

    2018-04-13

    Subendothelial interaction of LDL with extracellular matrix drives atherogenesis. This interaction can be strengthened by proteolytic modification of LDL. Mast cells (MCs) are present in atherosclerotic lesions, and upon activation, they degranulate and release a variety of neutral proteases. Here we studied the ability of MC proteases to cleave apoB-100 of LDL and affect the binding of LDL to proteoglycans. Mature human MCs were differentiated from human peripheral blood-derived CD34 + progenitors in vitro and activated with calcium ionophore to generate MC-conditioned medium. LDL was incubated in the MC-conditioned medium or with individual MC proteases, and the binding of native and modified LDL to isolated human aortic proteoglycans or to human atherosclerotic plaques ex vivo was determined. MC proteases in atherosclerotic human coronary artery lesions were detected by immunofluorescence and qPCR. Activated human MCs released the neutral proteases tryptase, chymase, carboxypeptidase A3, cathepsin G, and granzyme B. Of these, cathepsin G degraded most efficiently apoB-100, induced LDL fusion, and enhanced binding of LDL to isolated human aortic proteoglycans and human atherosclerotic lesions ex vivo. Double immunofluoresence staining of human atherosclerotic coronary arteries for tryptase and cathepsin G indicated that lesional MCs contain cathepsin G. In the lesions, expression of cathepsin G correlated with the expression of tryptase and chymase, but not with that of neutrophil proteinase 3. The present study suggests that cathepsin G in human atherosclerotic lesions is largely derived from MCs and that activated MCs may contribute to atherogenesis by enhancing LDL retention. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Proliferating macrophages prevail in atherosclerosis.

    PubMed

    Randolph, Gwendalyn J

    2013-09-01

    Macrophages accumulate in atherosclerotic lesions during the inflammation that is part of atherosclerosis development and progression. A new study in mice indicates that the accumulation of macrophages in atherosclerotic plaques depends on local macrophage proliferation rather than the recruitment of circulating monocytes.

  12. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Ikuko, E-mail: nakamuri@riken.jp; Department of Cardiovascular Medicine, Saga University, Saga; Hasegawa, Koki

    2013-03-29

    Highlights: ► P-selectin regulates leukocyte recruitment as an early stage event of atherogenesis. ► We developed an antibody-based molecular imaging probe targeting P-selectin for PET. ► This is the first report on successful PET imaging for delineation of P-selectin. ► P-selectin is a candidate target for atherosclerotic plaque imaging by clinical PET. -- Abstract: Background: Sensitive detection and qualitative analysis of atherosclerotic plaques are in high demand in cardiovascular clinical settings. The leukocyte–endothelial interaction mediated by an adhesion molecule P-selectin participates in arterial wall inflammation and atherosclerosis. Methods and results: A {sup 64}Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid conjugated anti-P-selectin monoclonal antibody ({sup 64}Cu-DOTA-anti-P-selectinmore » mAb) probe was prepared by conjugating an anti-P-selectin monoclonal antibody with DOTA followed by {sup 64}Cu labeling. Thirty-six hours prior to PET and CT fusion imaging, 3 MBq of {sup 64}Cu-DOTA-anti-P-selectin mAb was intravenously injected into low density lipoprotein receptor-deficient Ldlr-/- mice. After a 180 min PET scan, autoradiography and biodistribution of {sup 64}Cu-DOTA-anti-P-selectin monoclonal antibody was examined using excised aortas. In Ldlr-/- mice fed with a high cholesterol diet for promotion of atherosclerotic plaque development, PET and CT fusion imaging revealed selective and prominent accumulation of the probe in the aortic root. Autoradiography of aortas that demonstrated probe uptake into atherosclerotic plaques was confirmed by Oil red O staining for lipid droplets. In Ldlr-/- mice fed with a chow diet to develop mild atherosclerotic plaques, probe accumulation was barely detectable in the aortic root on PET and CT fusion imaging. Probe biodistribution in aortas was 6.6-fold higher in Ldlr-/- mice fed with a high cholesterol diet than in those fed with a normal chow diet. {sup 64}Cu-DOTA-anti-P-selectin mAb accumulated selectively in aortic atherosclerotic plaques and was detectable by PET and CT fusion imaging in Ldlr-/- mice. Conclusions: P-selectin is a candidate target molecule for early-phase detection by PET and CT fusion imaging of atherosclerotic plaques.« less

  13. Effects of positive acceleration on the metabolism of endogenous carbon monoxide and serum lipid in atherosclerotic rabbits

    PubMed Central

    Luo, Huilan; Chen, Yongsheng; Wang, Junhua

    2010-01-01

    Background: Atherosclerosis (AS) is caused mainly due to the increase in the serum lipid, thrombosis, and injuries of the endothelial cells. During aviation, the incremental load of positive acceleration that leads to dramatic stress reactions and hemodynamic changes may predispose pilots to functional disorders and even pathological changes of organs. However, much less is known on the correlation between aviation and AS pathogenesis. Methods and Results: A total of 32 rabbits were randomly divided into 4 groups with 8 rabbits in each group. The control group was given a high cholesterol diet but no acceleration exposure, whereas the other 3 experimental groups were treated with a high cholesterol diet and acceleration exposure for 4, 8, and 12 weeks, respectively. In each group, samples of celiac vein blood and the aorta were collected after the last exposure for the measurement of endogenous CO and HO-1 activities, as well as the levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). As compared with the control group, the endocardial CO content and the HO-1 activity in aortic endothelial cells were significantly elevated at the 4th, 8th, and 12th weekend, respectively (P < 0.05 or <0.01). And these measures tended upward as the exposure time was prolonged. Levels of TC and LDL-C in the experimental groups were significantly higher than those in the control group, presenting an upward tendency. Levels of TG were found significantly increased in the 8-week-exposure group, but significantly declined in the 12-week-exposure group (still higher than those in the control group). Levels of the HDL-C were increased in the 4-week-exposure group, declined in the 8-week-exposure group, and once more increased in the 12-week-exposure group, without significant differences with the control group. Conclusions: Positive acceleration exposure may lead to a significant increase of endogenous CO content and HO-1 activity and a metabolic disorder of serum lipid in high-cholesterol diet–fed rabbits, which implicates that the acceleration exposure might accelerate the progression of AS. PMID:20877690

  14. [Association of Some Homozygous Genotypes of Genes Regulating Inflammation, Destruction and Angiogenesis With Laboratory Markers of Atherosclerosis Course in Men With Stable Effort Angina].

    PubMed

    Shevchenko, A V; Konenkov, V I; Prokofiev, V F; Ragino, Yu I; Chernjavski, A M; Voevoda, M I

    2016-03-01

    Great number of factors stimulating or inhibiting production of proteins in inflammatory process influence serum levels of markers of inflammation. A number of homozygous genotypes of inflammation, destruction, and angiogenesis genes have been found to be associated with basic clinical-laboratory indices of inflammation and atherosclerotic process. The revealed genetic markers can be used as complimentary markers of prognosis of the disease course.

  15. Digital image processing of vascular angiograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Blankenhorn, D. H.; Beckenbach, E. S.; Crawford, D. W.; Brooks, S. H.

    1975-01-01

    A computer image processing technique was developed to estimate the degree of atherosclerosis in the human femoral artery. With an angiographic film of the vessel as input, the computer was programmed to estimate vessel abnormality through a series of measurements, some derived primarily from the vessel edge information and others from optical density variations within the lumen shadow. These measurements were combined into an atherosclerosis index, which was found to correlate well with both visual and chemical estimates of atherosclerotic disease.

  16. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis.

    PubMed

    Ackers, Ian; Szymanski, Candice; Duckett, K Jordan; Consitt, Leslie A; Silver, Mitchell J; Malgor, Ramiro

    Wnt5a is a highly studied member of the Wnt family and recently has been implicated in the pathogenesis of atherosclerosis, but its precise role is unknown. Foam cell development is a critical process to atherosclerotic plaque formation. In the present study, we investigated the role of noncanonical Wnt5a signaling in the development of foam cells. Human carotid atherosclerotic tissue and THP-1-derived macrophages were used to investigate the contribution of Wnt5a signaling in the formation of foam cells. Immunohistochemistry was used to evaluate protein expression of scavenger receptors and noncanonical Wnt5a receptors [frizzled 5 (Fz5) and receptor tyrosine kinase-like orphan receptor 2 (Ror2)] in human atherosclerotic macrophages/foam cells. Changes in protein expression in response to Wnt5a stimulation/inhibition were determined by Western blot, and lipid accumulation was evaluated by fluorescent lipid droplet staining. Wnt5a (P<.05), Fz5 (P<.01), and Ror2 (P<.01) were significantly expressed in advanced atherosclerotic lesions compared to less advanced lesions (N=10). Wnt5a, Fz5, and Ror2 were expressed in macrophages/foam cells within the plaque. In vitro studies revealed that Wnt5a significantly increased the expression of the lipid uptake receptor CD36 (P<.05) but not the lipid efflux receptor ATP-binding cassette transporter (P>.05). rWnt5a also significantly increased lipid accumulation in THP-1 macrophages (P<.05). Furthermore, inhibition of Wnt5a signaling with Box5 prevented lipid accumulation (P<.01) and prevented CD36 up-regulation (P<.01). These results suggest a direct role for Wnt5a signaling in the pathogenesis of atherosclerosis, specifically the accumulation of lipid in macrophages and the formation of foam cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Mathematical modeling of atherosclerotic plaque destabilization: Role of neovascularization and intraplaque hemorrhage.

    PubMed

    Guo, Muyi; Cai, Yan; Yao, Xinke; Li, Zhiyong

    2018-08-07

    Observational studies have identified angiogenesis from the adventitial vasa vasorum and intraplaque hemorrhage (IPH) as critical factors in atherosclerotic plaque progression and destabilization. Here we propose a mathematical model incorporating intraplaque neovascularization and hemodynamic calculation with plaque destabilization for the quantitative evaluation of the role of neoangiogenesis and IPH in the vulnerable atherosclerotic plaque formation. An angiogenic microvasculature is generated by two-dimensional nine-point discretization of endothelial cell proliferation and migration from the vasa vasorum. Three key cells (endothelial cells, smooth muscle cells and macrophages) and three key chemicals (vascular endothelial growth factors, extracellular matrix and matrix metalloproteinase) are involved in the plaque progression model, and described by the reaction-diffusion partial differential equations. The hemodynamic calculation of the microcirculation on the generated microvessel network is carried out by coupling the intravascular, interstitial and transvascular flow. The plasma concentration in the interstitial domain is defined as the description of IPH area according to the diffusion and convection with the interstitial fluid flow, as well as the extravascular movement across the leaky vessel wall. The simulation results demonstrate a series of pathophysiological phenomena during the vulnerable progression of an atherosclerotic plaque, including the expanding necrotic core, the exacerbated inflammation, the high microvessel density (MVD) region at the shoulder areas, the transvascular flow through the capillary wall and the IPH. The important role of IPH in the plaque destabilization is evidenced by simulations with varied model parameters. It is found that the IPH can significantly speed up the plaque vulnerability by increasing necrotic core and thinning fibrous cap. In addition, the decreased MVD and vessel permeability may slow down the process of plaque destabilization by reducing the IPH dramatically. We envision that the present model and its future advances can serve as a valuable theoretical platform for studying the dynamic changes in the microenvironment during the plaque destabilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Developing a Reliable Mouse Model for Cancer Therapy-Induced Cardiovascular Toxicity in Cancer Patients and Survivors.

    PubMed

    Ko, Kyung Ae; Wang, Yin; Kotla, Sivareddy; Fujii, Yuka; Vu, Hang Thi; Venkatesulu, Bhanu P; Thomas, Tamlyn N; Medina, Jan L; Gi, Young Jin; Hada, Megumi; Grande-Allen, Jane; Patel, Zarana S; Milgrom, Sarah A; Krishnan, Sunil; Fujiwara, Keigi; Abe, Jun-Ichi

    2018-01-01

    The high incidence of cardiovascular events in cancer survivors has long been noted, but the mechanistic insights of cardiovascular toxicity of cancer treatments, especially for vessel diseases, remain unclear. It is well known that atherosclerotic plaque formation begins in the area exposed to disturbed blood flow, but the relationship between cancer therapy and disturbed flow in regulating plaque formation has not been well studied. Therefore, we had two goals for this study; (1) Generate an affordable, reliable, and reproducible mouse model to recapitulate the cancer therapy-induced cardiovascular events in cancer survivors, and (2) Establish a mouse model to investigate the interplay between disturbed flow and various cancer therapies in the process of atherosclerotic plaque formation. We examined the effects of two cancer drugs and ionizing radiation (IR) on disturbed blood flow-induced plaque formation using a mouse carotid artery partial ligation (PCL) model of atherosclerosis. We found that doxorubicin and cisplatin, which are commonly used anti-cancer drugs, had no effect on plaque formation in partially ligated carotid arteries. Similarly, PCL-induced plaque formation was not affected in mice that received IR (2 Gy) and PCL surgery performed one week later. In contrast, when PCL surgery was performed 26 days after IR treatment, not only the atherosclerotic plaque formation but also the necrotic core formation was significantly enhanced. Lastly, we found a significant increase in p90RSK phosphorylation in the plaques from the IR-treated group compared to those from the non-IR treated group. Our results demonstrate that IR not only increases atherosclerotic events but also vulnerable plaque formation. These increases were a somewhat delayed effect of IR as they were observed in mice with PCL surgery performed 26 days, but not 10 days, after IR exposure. A proper animal model must be developed to study how to minimize the cardiovascular toxicity due to cancer treatment.

  19. Oral activated charcoal adsorbent (AST-120) ameliorates extent and instability of atherosclerosis accelerated by kidney disease in apolipoprotein E-deficient mice

    PubMed Central

    Yamamoto, Suguru; Zuo, Yiqin; Ma, Ji; Yancey, Patricia G.; Hunley, Tracy E.; Motojima, Masaru; Fogo, Agnes B.; Linton, MacRae F.; Fazio, Sergio; Ichikawa, Iekuni

    2011-01-01

    Background. Accelerated atherosclerosis and increased cardiovascular events are not only more common in chronic kidney disease (CKD) but are more resistant to therapeutic interventions effective in the general population. The oral charcoal adsorbent, AST-120, currently used to delay start of dialysis, reduces circulating and tissue uremic toxins, which may contribute to vasculopathy, including atherosclerosis. We, therefore, investigated whether AST-120 affects CKD-induced atherosclerosis. Methods. Apolipoprotein E-deficient mice, a model of atherosclerosis, underwent uninephrectomy, subtotal nephrectomy or sham operation at 8 weeks of age and were treated with AST-120 after renal ablation. Atherosclerosis and its characteristics were assessed at 25 weeks of age. Results. Uninephrectomy and subtotal nephrectomised mice had significantly increased acceleration of atherosclerosis. AST-120 treatment dramatically reduced the atherosclerotic burden in mice with kidney damage, while there was no beneficial effect in sham-operated mice. The benefit was independent of blood pressure, serum total cholesterol or creatinine clearance. AST-120 significantly decreased necrotic areas and lessened aortic deposition of the uremic toxin indoxyl sulfate without affecting lesional macrophage or collagen content. Furthermore, AST-120 lessened aortic expression of monocyte chemoattractant protein-1, tumor necrosis factor-α and interleukin-1β messenger RNA. Conclusions. AST-120 lessens the extent of atherosclerosis induced by kidney injury and alters lesion characteristics in apolipoprotein E-deficient mice, resulting in plaques with a more stable phenotype with less necrosis and reduced inflammation. PMID:21245127

  20. Intimal hyperplasia induced by vascular intervention causes lipoprotein retention and accelerated atherosclerosis.

    PubMed

    Kijani, Siavash; Vázquez, Ana Maria; Levin, Malin; Borén, Jan; Fogelstrand, Per

    2017-07-01

    Accelerated atherosclerosis diminishes the long term patency of vascular interventions, such as percutaneous coronary intervention and implantation of saphenous vein grafts. However, the cause of this accelerated atherosclerosis is unclear. In this study, we tested the hypothesis that intimal hyperplasia formed following vascular intervention promotes retention of atherogenic lipoproteins. Intimal hyperplasia was surgically induced in the mouse common carotid artery. The surgery was combined with different mouse models of hypercholesterolemia to obtain different cholesterol levels and to control the onsets of hypercholesterolemia. Three weeks after surgery, samples were immunostained for apoB lipoproteins, smooth muscle cells and leukocytes. Already at mild hypercholesterolemia (193 mg/dL), pronounced apoB lipoprotein retention was found in the extracellular matrix in both intimal hyperplasia and the injured underlying media. In contrast, minimal retention was detected in the uninjured proximal region of the same vessel, or in vessels from mice with normal cholesterol levels (81 mg/dL). Induction of aggravated hypercholesterolemia 3 weeks after surgery, when a mature intimal hyperplasia had been formed, caused a very rapid development of atherosclerotic lesions. Mechanistically, we show that lipoprotein retention was almost exclusively dependent on electrostatic interactions to proteoglycan glycosaminoglycans, and the lipoprotein retention to intimal hyperplasia could be inhibited in vivo using glycosaminoglycan-binding antibodies. Thus, formation of intimal hyperplasia following vascular intervention makes the vessel wall highly susceptible for lipoprotein retention and accelerated atherosclerosis. The increased lipoprotein retention in intimal hyperplasia can be targeted by blocking the interaction between apoB lipoproteins and glycosaminoglycans in the extracellular matrix. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Characterization of atherosclerotic plaques by cross-polarization optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Dudenkova, Varvara V.; Feldchtein, Felix I.; Timofeeva, Lidia B.; Kiseleva, Elena B.; Kuznetsov, Sergei S.; Moiseev, Alexander A.; Gelikonov, Gregory V.; Vitkin, Alex I.; Gladkova, Natalia D.

    2016-02-01

    We combined cross-polarization optical coherence tomography (CP OCT) and non-linear microscopy based on second harmonic generation (SHG) and two-photon-excited fluorescence (2PEF) to assess collagen and elastin fibers in the development of the atherosclerotic plaque (AP). The study shows potential of CP OCT for the assessment of collagen and elastin fibers condition in atherosclerotic arteries. Specifically, the additional information afforded by CP OCT, related to birefringence and cross-scattering properties of arterial tissues, may improve the robustness and accuracy of assessment about the microstructure and composition of the plaque for different stages of atherosclerosis.

  2. Fluorescence lifetime in cardiovascular diagnostics

    PubMed Central

    Marcu, Laura

    2010-01-01

    We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications. PMID:20210432

  3. Differentiation of artery wall lesions using porphyrins and fiberoptic sensor in rabbits

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; van der Veen, Maurits J.; Papazoglou, Theodore G.; Fishbein, Michael C.; Stavridi, Marigo; Papaioannou, Thanassis; Grundfest, Warren S.

    1994-02-01

    We investigated the ability of fluorescence spectroscopy, and photosensitizers to differentiate normal, hyperplastic and atherosclerotic arterial wall lesions in vivo. Hyperplastic lesions were induced in the abdominal aorta (AB) of 24 rabbits by balloon injury (BI). Atherosclerotic arterial wall lesions were induced by BI and diet. Fluorescence signals from thoracic n equals 16 and AB n equals 15 sites were analyzed by computer. A ratio was used as an index of drug presence. Use of PPS or BPD and LIFS may be a feasible, in vivo method for the differentiation between normal, hyperplastic and atherosclerotic arterial wall lesions.

  4. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Tearney, Guillermo J.; Bouma, Brett E.

    2002-04-01

    Improved methods are needed to identify the vulnerable coronary plaques responsible for acute myocardial infraction or sudden cardiac death. We describe a method for characterizing the structure and biomechanical properties of atherosclerotic plaques based on speckle pattern fluctuations. Near-field speckle images were acquired from five human aortic specimens ex vivo. The speckle decorrelation time constant varied significantly for vulnerable aortic plaques (τ = 40 ms) versus stable plaques (τ = 400 ms) and normal aorta (τ = 500 ms). These initial results indicate that different atherosclerotic plaque types may be distinguished by analysis of temporal and spatial speckle pattern fluctuations.

  5. Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques.

    PubMed

    Htun, Nay Min; Chen, Yung Chih; Lim, Bock; Schiller, Tara; Maghzal, Ghassan J; Huang, Alex L; Elgass, Kirstin D; Rivera, Jennifer; Schneider, Hans G; Wood, Bayden R; Stocker, Roland; Peter, Karlheinz

    2017-07-13

    Atherosclerosis is a major cause of mortality and morbidity, which is mainly driven by complications such as myocardial infarction and stroke. These complications are caused by thrombotic arterial occlusion localized at the site of high-risk atherosclerotic plaques, of which early detection and therapeutic stabilization are urgently needed. Here we show that near-infrared autofluorescence is associated with the presence of intraplaque hemorrhage and heme degradation products, particularly bilirubin by using our recently created mouse model, which uniquely reflects plaque instability as seen in humans, and human carotid endarterectomy samples. Fluorescence emission computed tomography detecting near-infrared autofluorescence allows in vivo monitoring of intraplaque hemorrhage, establishing a preclinical technology to assess and monitor plaque instability and thereby test potential plaque-stabilizing drugs. We suggest that near-infrared autofluorescence imaging is a novel technology that allows identification of atherosclerotic plaques with intraplaque hemorrhage and ultimately holds promise for detection of high-risk plaques in patients.Atherosclerosis diagnosis relies primarily on imaging and early detection of high-risk atherosclerotic plaques is important for risk stratification of patients and stabilization therapies. Here Htun et al. demonstrate that vulnerable atherosclerotic plaques generate near-infrared autofluorescence that can be detected via emission computed tomography.

  6. Quantification of carotid atherosclerotic plaque components using feature space analysis and magnetic resonance imaging.

    PubMed

    Karmonik, Christof; Basto, Pamela; Morrisett, Joel D

    2006-01-01

    Atherosclerosis is one of the main causes of cardiovascular disease, accounting for more than one third of all deaths in the United States, there is a growing need to develop non-invasive techniques to assess the severity of atherosclerotic plaque burden. Recent research has suggested that not the size of the atherosclerotic plaque but rather its composition is indicative for plaque rupture as the underlying event of stroke and acute coronary syndrome. With its excellent soft-tissue contrast, magnetic resonance imaging (MRI) is a favored modality for examining plaque composition. In an ex-vivo study, aimed to show the feasibility of quantifying the components of carotid atherosclerotic plaques in-vivo, we acquired multi-contrast MRI images of 13 freshly excised endarterectomy tissues with commercially available MRI sequences and a human surface coil. Feature space analysis (FSA) was utilized in four representative tissues to determine the total relative abundance of calcific, lipidic, fibrotic, thrombotic and normal components as well as in consecutive 2 mm sections across the carotid bifurcation in each tissue. Excellent qualitative agreement between the FSA results and the results obtained from histological methods was observed. This study demonstrates the feasibility of combining MRI with FSA to quantify carotid atherosclerotic plaques in-vivo.

  7. Diminazene enhances stability of atherosclerotic plaques in ApoE-deficient mice

    PubMed Central

    Fraga-Silva, Rodrigo A.; Montecucco, Fabrizio; Costa-Fraga, Fabiana P.; Nencioni, Alessio; Caffa, Irene; Bragina, Maiia E.; Mach, François; Raizada, Mohan K.; Santos, Robson A.S.; da Silva, Rafaela F.; Stergiopulos, Nikolaos

    2017-01-01

    Angiotensin (Ang) II contributes to the development of atherosclerosis, while Ang-(1–7) has atheroprotective actions. Accordingly, angiotensin-converting enzyme 2 (ACE2), which breaks-down Ang II and forms Ang-(1–7), has been suggested as a target against atherosclerosis. Here we investigated the actions of diminazene, a recently developed ACE2 activator compound, in a model of vulnerable atherosclerotic plaque. Atherosclerotic plaque formation was induced in the carotid artery of ApoE-deficient mice by a shear stress (SS) modiffer device. The animals were treated with diminazene (15 mg/kg/day) or vehicle. ACE2 was strongly expressed in the aortic root and low SS-induced carotid plaques, but poorly expressed in the oscillatory SS-induced carotid plaques. Diminazene treatment did not change the lesion size, but ameliorated the composition of aortic root and low SS-induced carotid plaques by increasing collagen content and decreasing both MMP-9 expression and macrophage infiltration. Interestingly, these beneficial effects were not observed in the oscillatory SS-induced plaque. Additionally, diminazene treatment decreased intraplaque ICAM-1 and VCAM-1 expression, circulating cytokine and chemokine levels and serum triglycerides. In summary, ACE2 was distinctively expressed in atherosclerotic plaques, which depends on the local pattern of shear stress. Moreover, diminazene treatment enhances the stability of atherosclerotic plaques. PMID:26304699

  8. Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD.

    PubMed

    Funamoto, Masafumi; Sunagawa, Yoichi; Katanasaka, Yasufumi; Miyazaki, Yusuke; Imaizumi, Atsushi; Kakeya, Hideaki; Yamakage, Hajime; Satoh-Asahara, Noriko; Komiyama, Maki; Wada, Hiromichi; Hasegawa, Koji; Morimoto, Tatsuya

    2016-01-01

    COPD is mainly caused by tobacco smoking and is associated with a high frequency of coronary artery disease. There is growing recognition that the inflammation in COPD is not only confined to the lungs but also involves the systemic circulation and can impact nonpulmonary organs, including blood vessels. α1-antitrypsin-low-density lipoprotein (AT-LDL) complex is an oxidatively modified LDL that accelerates atherosclerosis. Curcumin, one of the best-investigated natural products, is a powerful antioxidant. However, the effects of curcumin on AT-LDL remain unknown. We hypothesized that Theracurmin(®), a highly absorptive curcumin with improved bioavailability using a drug delivery system, ameliorates the inflammatory status in subjects with mild COPD. This is a randomized, double-blind, parallel-group study. Subjects with stages I-II COPD according to the Japanese Respiratory Society criteria were randomly assigned to receive 90 mg Theracurmin(®) or placebo twice a day for 24 weeks, and changes in inflammatory parameters were evaluated. There were no differences between the Theracurmin(®) and placebo groups in terms of age, male/female ratio, or body mass index in 39 evaluable subjects. The percent changes in blood pressure and hemoglobin A1c and LDL-cholesterol, triglyceride, or high-density lipoprotein-cholesterol levels after treatment were similar for the two groups. However, the percent change in the AT-LDL level was significantly (P=0.020) lower in the Theracurmin(®) group compared with the placebo group. Theracurmin(®) reduced levels of atherosclerotic AT-LDL, which may lead to the prevention of future cardiovascular events in mild COPD subjects.

  9. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice.

    PubMed

    Thorp, Edward; Cui, Dongying; Schrijvers, Dorien M; Kuriakose, George; Tabas, Ira

    2008-08-01

    Atherosclerotic plaques that are prone to disruption and acute thrombotic vascular events are characterized by large necrotic cores. Necrotic cores result from the combination of macrophage apoptosis and defective phagocytic clearance (efferocytosis) of these apoptotic cells. We previously showed that macrophages with tyrosine kinase-defective Mertk receptor (Mertk(KD)) have a defect in phagocytic clearance of apoptotic macrophages in vitro. Herein we test the hypothesis that the Mertk(KD) mutation would result in increased accumulation of apoptotic cells and promote necrotic core expansion in a mouse model of advanced atherosclerosis. Mertk(KD);Apoe(-/-) mice and control Apoe(-/-) mice were fed a Western-type diet for 10 or 16 weeks, and aortic root lesions were analyzed for apoptosis and plaque necrosis. We found that the plaques of the Mertk(KD);Apoe(-/-) mice had a significant increase in terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive apoptotic cells. Most importantly, there were more non-macrophage-associated apoptotic cells in the Mertk(KD) lesions, consistent with defective efferocytosis. The more advanced (16-week) Mertk(KD);Apoe(-/-) plaques were more necrotic, consistent with a progression from apoptotic cell accumulation to plaque necrosis in the setting of a defective efferocytosis receptor. In a mouse model of advanced atherosclerosis, mutation of the phagocytic Mertk receptor promotes the accumulation of apoptotic cells and the formation of necrotic plaques. These data are consistent with the notion that a defect in an efferocytosis receptor can accelerate the progression of atherosclerosis and suggest a novel therapeutic target to prevent advanced plaque progression and its clinical consequences.

  10. Rate of Atherosclerosis Progression in ApoE−/− Mice Long After Discontinuation of Cola Beverage Drinking

    PubMed Central

    Otero-Losada, Matilde; Cao, Gabriel; Mc Loughlin, Santiago; Rodríguez-Granillo, Gastón; Ottaviano, Graciela; Milei, José

    2014-01-01

    This study was conducted in order to evaluate the effect of cola beverages drinking on atherosclerosisand test the hypothesis whether cola beverages consumption at early life stages might affect the development and progression of atherosclerosis later in life. ApoE−/− C57BL/6J mice (8 week-old) were randomized in 3 groups (n = 20 each) according to free accessto water (W), sucrose sweetened carbonated cola drink(C) or aspartame-acesulfame K sweetened carbonated ‘light’ cola drink (L)for the next 8 weeks. Drinking treatment was ended by switching C and L groups to drinking water. Four mice per group and time were sequentially euthanized: before treatment (8weeks-old), at the end of treatment (16 weeks-old) and after treatment discontinuation (20 weeks-old, 24 weeks-old, 30 week-old mice). Aortic roots and livers were harvested, processed for histology and serial cross-sections were stained. Aortic plaque area was analyzed and plaque/media-ratio was calculated. Early consumption of cola drinks accelerated atherosclerotic plaque progression favoring the interaction between macrophages and myofibroblasts, without the participation of either T lymphocytes or proliferative activity. Plaque/media-ratio varied according to drink treatment (F2,54 = 3.433, p<0.04) and mice age (F4,54 = 5.009, p<0.03) and was higher in C and L groups compared with age-matched W group (p<0.05 at 16 weeks and 20 weeks, p<0.01 at 24 weeks and 30 weeks). Natural evolution of atherosclerosis in ApoE−/− mice (W group) evidenced atherosclerosis acceleration in parallel with a rapid increase in liver inflammation around the 20 weeks of age. Cola drinking within the 8–16 weeks of age accelerated atherosclerosis progression in ApoE−/− mice favoring aortic plaque enlargement (inward remodeling) over media thinning all over the study time. Data suggest that cola drinking at early life stages may predispose to atherosclerosis progression later in life in ApoE−/− mice. PMID:24670925

  11. Imaging of lipids in atherosclerotic lesion in aorta from ApoE/LDLR-/- mice by FT-IR spectroscopy and Hierarchical Cluster Analysis.

    PubMed

    P Wrobel, Tomasz; Mateuszuk, Lukasz; Chlopicki, Stefan; Malek, Kamilla; Baranska, Malgorzata

    2011-12-21

    Spectroscopy-based approaches can provide an insight into the biochemical composition of a tissue sample. In the present work Fourier transform infrared (FT-IR) spectroscopy was used to develop a reliable methodology to study the content of free fatty acids, triglycerides, cholesteryl esters as well as cholesterol in aorta from mice with atherosclerosis (ApoE/LDLR(-/-) mice). In particular, distribution and concentration of palmitic, oleic and linoleic acid derivatives were analyzed. Spectral analysis of pure compounds allowed for clear discrimination between free fatty acids and other similar moieties based on the carbonyl band position (1699-1710 cm(-1) range). In order to distinguish cholesteryl esters from triglycerides a ratio of carbonyl band to signal at 1010 cm(-1) was used. Imaging of lipids in atherosclerotic aortic lesions in ApoE/LDLR(-/-) mice was followed by Hierarchical Cluster Analysis (HCA). The aorta from C57Bl/6J control mice (fed with chow diet) was used for comparison. The measurements were completed with an FT-IR spectrometer equipped with a 128 × 128 FPA detector. In cross-section of aorta from ApoE/LDLR(-/-) mice a region of atherosclerotic plaque was clearly identified by HCA, which was later divided into 2 sub-regions, one characterized by the higher content of cholesterol, while the other by higher contents of cholesteryl esters. HCA of tissues deposited on normal microscopic glass, hence limited to the 2200-3800 cm(-1) spectral range, also identified a region of atherosclerotic plaque. Importantly, this region correlates with the area stained by standard histological staining for atherosclerotic plaque (Oil Red O). In conclusion, the use of FT-IR and HCA may provide a novel tool for qualitative and quantitative analysis of contents and distribution of lipids in atherosclerotic plaque.

  12. Myeloperoxidase-oxidized high density lipoprotein impairs atherosclerotic plaque stability by inhibiting smooth muscle cell migration.

    PubMed

    Zhou, Boda; Zu, Lingyun; Chen, Yong; Zheng, Xilong; Wang, Yuhui; Pan, Bing; Dong, Min; Zhou, Enchen; Zhao, Mingming; Zhang, Youyi; Zheng, Lemin; Gao, Wei

    2017-01-10

    High density lipoprotein (HDL) has been proved to be a protective factor for coronary heart disease. Notably, HDL in atherosclerotic plaques can be nitrated (NO 2 -oxHDL) and chlorinated (Cl-oxHDL) by myeloperoxidase (MPO), likely compromising its cardiovascular protective effects. Here we determined the effects of NO 2 -oxHDL and Cl-oxHDL on SMC migration using wound healing and transwell assays, proliferation using MTT and BrdU assays, and apoptosis using Annexin-V assay in vitro, as well as on atherosclerotic plaque stability in vivo using a coratid artery collar implantation mice model. Our results showed that native HDL promoted SMC proliferation and migration, whereas NO 2 -oxHDL and Cl-oxHDL inhibited SMC migration and reduced capacity of stimulating SMC proliferation as well as migration, respectively. OxHDL had no significant influence on SMC apoptosis. In addition, we found that ERK1/2-phosphorylation was significantly lower when SMCs were incubated with NO 2 -oxHDL and Cl-oxHDL. Furthermore, transwell experiments showed that differences between native HDL, NO 2 -oxHDL and Cl-oxHDL was abolished after PD98059 (MAPK kinase inhibitor) treatment. In aortic SMCs from scavenger receptor BI (SR-BI) deficient mice, differences between migration of native HDL, NO 2 -oxHDL and Cl-oxHDL treated SMCs vanished, indicating SR-BI's possible role in HDL-associated SMC migration. Importantly, NO 2 -oxHDL and Cl-oxHDL induced neointima formation and reduced SMC positive staining cells in atherosclerotic plaque, resulting in elevated vulnerable index of atherosclerotic plaque. These findings implicate MPO-catalyzed oxidization of HDL may contribute to atherosclerotic plaque instability by inhibiting SMC proliferation and migration through MAPK-ERK pathway which was dependent on SR-BI.

  13. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Hiroyuki; Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp; Ishii, Norio

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progressionmore » of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.« less

  14. Ultrasound Tissue Characterization of Vulnerable Atherosclerotic Plaque

    PubMed Central

    Picano, Eugenio; Paterni, Marco

    2015-01-01

    A thrombotic occlusion of the vessel fed by ruptured coronary atherosclerotic plaque may result in unstable angina, myocardial infarction or death, whereas embolization from a plaque in carotid arteries may result in transient ischemic attack or stroke. The atherosclerotic plaque prone to such clinical events is termed high-risk or vulnerable plaque, and its identification in humans before it becomes symptomatic has been elusive to date. Ultrasonic tissue characterization of the atherosclerotic plaque is possible with different techniques—such as vascular, transesophageal, and intravascular ultrasound—on a variety of arterial segments, including carotid, aorta, and coronary districts. The image analysis can be based on visual, video-densitometric or radiofrequency methods and identifies three distinct textural patterns: hypo-echoic (corresponding to lipid- and hemorrhage-rich plaque), iso- or moderately hyper-echoic (fibrotic or fibro-fatty plaque), and markedly hyperechoic with shadowing (calcific plaque). Hypoechoic or dishomogeneous plaques, with spotty microcalcification and large plaque burden, with plaque neovascularization and surface irregularities by contrast-enhanced ultrasound, are more prone to clinical complications than hyperechoic, extensively calcified, homogeneous plaques with limited plaque burden, smooth luminal plaque surface and absence of neovascularization. Plaque ultrasound morphology is important, along with plaque geometry, in determining the atherosclerotic prognostic burden in the individual patient. New quantitative methods beyond backscatter (to include speed of sound, attenuation, strain, temperature, and high order statistics) are under development to evaluate vascular tissues. Although not yet ready for widespread clinical use, tissue characterization is listed by the American Society of Echocardiography roadmap to 2020 as one of the most promising fields of application in cardiovascular ultrasound imaging, offering unique opportunities for the early detection and treatment of atherosclerotic disease. PMID:25950760

  15. Atherosclerotic Plaque in Patients with Zero Calcium Score at Coronary Computed Tomography Angiography

    PubMed Central

    Gabriel, Fabíola Santos; Gonçalves, Luiz Flávio Galvão; de Melo, Enaldo Vieira; Sousa, Antônio Carlos Sobral; Pinto, Ibraim Masciarelli Francisco; Santana, Sara Melo Macedo; de Matos, Carlos José Oliveira; Souto, Maria Júlia Silveira; Conceição, Flávio Mateus do Sacramento; Oliveira, Joselina Luzia Menezes

    2018-01-01

    Background In view of the high mortality for cardiovascular diseases, it has become necessary to stratify the main risk factors and to choose the correct diagnostic modality. Studies have demonstrated that a zero calcium score (CS) is characteristic of a low risk for cardiovascular events. However, the prevalence of individuals with coronary atherosclerotic plaques and zero CS is conflicting in the specialized literature. Objective To evaluate the frequency of patients with coronary atherosclerotic plaques, their degree of obstruction and associated factors in patients with zero CS and indication for coronary computed tomography angiography (CCTA). Methods This is a cross-sectional, prospective study with 367 volunteers with zero CS at CCTA in four diagnostic imaging centers in the period from 2011 to 2016. A significance level of 5% and 95% confidence interval were adopted. Results The frequency of atherosclerotic plaque in the coronary arteries in 367 patients with zero CS was 9.3% (34 individuals). In this subgroup, mean age was 52 ± 10 years, 18 (52.9%) were women and 16 (47%) had significant coronary obstructions (> 50%), with involvement of two or more segments in 4 (25%) patients. The frequency of non-obese individuals (90.6% vs 73.9%, p = 0.037) and alcohol drinkers (55.9% vs 34.8%, p = 0.015) was significantly higher in patients with atherosclerotic plaques, with an odds ratio of 3.4 for each of this variable. Conclusions The frequency of atherosclerotic plaque with zero CS was relatively high, indicating that the absence of calcification does not exclude the presence of plaques, many of which obstructive, especially in non-obese subjects and alcohol drinkers. PMID:29723329

  16. Add-On Effect of Probucol in Atherosclerotic, Cholesterol-Fed Rabbits Treated with Atorvastatin

    PubMed Central

    Keyamura, Yuka; Nagano, Chifumi; Kohashi, Masayuki; Niimi, Manabu; Nozako, Masanori; Koyama, Takashi; Yasufuku, Reiko; Imaizumi, Ayako; Itabe, Hiroyuki; Yoshikawa, Tomohiro

    2014-01-01

    Objective Lowering the blood concentration of low-density lipoprotein (LDL) cholesterol is the primary strategy employed in treating atherosclerotic disorders; however, most commonly prescribed statins prevent cardiovascular events in just 30% to 40% of treated patients. Therefore, additional treatment is required for patients in whom statins have been ineffective. In this study of atherosclerosis in rabbits, we examined the effect of probucol, a lipid-lowering drug with potent antioxidative effects, added to treatment with atorvastatin. Methods and Results Atherosclerosis was induced by feeding rabbits chow containing 0.5% cholesterol for 8 weeks. Probucol 0.1%, atorvastatin 0.001%, and atorvastatin 0.003% were administered solely or in combination for 6 weeks, beginning 2 weeks after the start of atherosclerosis induction. Atorvastatin decreased the plasma concentration of non-high-density lipoprotein cholesterol (non-HDLC) dose-dependently; atorvastatin 0.003% decreased the plasma concentration of non-HDLC by 25% and the area of atherosclerotic lesions by 21%. Probucol decreased the plasma concentration of non-HDLC to the same extent as atorvastatin (i.e., by 22%) and the area of atherosclerotic lesions by 41%. Probucol with 0.003% atorvastatin decreased the plasma concentration of non-HDLC by 38% and the area of atherosclerotic lesions by 61%. Co-administration of probucol with atorvastatin did not affect the antioxidative effects of probucol, which were not evident on treatment with atorvastatin alone, such as prevention of in vitro LDL-oxidation, increase in paraoxonase-1 activity of HDL, and decreases in plasma and plaque levels of oxidized-LDL in vivo. Conclusions Probucol has significant add-on anti-atherosclerotic effects when combined with atorvastatin treatment; suggesting that this combination might be beneficial for treatment of atherosclerosis. PMID:24810608

  17. A Salmon Protein Hydrolysate Exerts Lipid-Independent Anti-Atherosclerotic Activity in ApoE-Deficient Mice

    PubMed Central

    Busnelli, Marco; Bjørndal, Bodil; Holm, Sverre; Brattelid, Trond; Manzini, Stefano; Ganzetti, Giulia S.; Dellera, Federica; Halvorsen, Bente; Aukrust, Pål; Sirtori, Cesare R.; Nordrehaug, Jan E.; Skorve, Jon; Berge, Rolf K.; Chiesa, Giulia

    2014-01-01

    Fish consumption is considered health beneficial as it decreases cardiovascular disease (CVD)-risk through effects on plasma lipids and inflammation. We investigated a salmon protein hydrolysate (SPH) that is hypothesized to influence lipid metabolism and to have anti-atherosclerotic and anti-inflammatory properties. 24 female apolipoprotein (apo) E−/− mice were divided into two groups and fed a high-fat diet with or without 5% (w/w) SPH for 12 weeks. The atherosclerotic plaque area in aortic sinus and arch, plasma lipid profile, fatty acid composition, hepatic enzyme activities and gene expression were determined. A significantly reduced atherosclerotic plaque area in the aortic arch and aortic sinus was found in the 12 apoE−/− mice fed 5% SPH for 12 weeks compared to the 12 casein-fed control mice. Immunohistochemical characterization of atherosclerotic lesions in aortic sinus displayed no differences in plaque composition between mice fed SPH compared to controls. However, reduced mRNA level of Icam1 in the aortic arch was found. The plasma content of arachidonic acid (C20∶4n-6) and oleic acid (C18∶1n-9) were increased and decreased, respectively. SPH-feeding decreased the plasma concentration of IL-1β, IL-6, TNF-α and GM-CSF, whereas plasma cholesterol and triacylglycerols (TAG) were unchanged, accompanied by unchanged mitochondrial fatty acid oxidation and acyl-CoA:cholesterol acyltransferase (ACAT)-activity. These data show that a 5% (w/w) SPH diet reduces atherosclerosis in apoE−/− mice and attenuate risk factors related to atherosclerotic disorders by acting both at vascular and systemic levels, and not directly related to changes in plasma lipids or fatty acids. PMID:24840793

  18. Biological signatures of asymptomatic extra- and intracranial atherosclerosis: the Barcelona-AsIA (Asymptomatic Intracranial Atherosclerosis) study.

    PubMed

    López-Cancio, Elena; Galán, Amparo; Dorado, Laura; Jiménez, Marta; Hernández, María; Millán, Mónica; Reverté, Silvia; Suñol, Anna; Barallat, Jaume; Massuet, Anna; Alzamora, Maria Teresa; Dávalos, Antonio; Arenillas, Juan Francisco

    2012-10-01

    Intracranial atherosclerotic disease (ICAD) remains a challenge for stroke primary and secondary prevention. Molecular pathways involved in the development of ICAD from its asymptomatic stages are largely unknown. In our population-based study, we aimed to compare the risk factor and biomarker profiles associated with intracranial and extracranial asymptomatic cerebral atherosclerosis. The Asymptomatic Intracranial Atherosclerosis (AsIA) study cohort includes a random sample population of 933 white subjects >50 years with a moderate to high vascular risk (based on REGICOR score) and without a history of stroke (64% males; mean age, 66 years). Carotid and intracranial atherosclerosis were screened by cervical and transcranial color-coded Duplex ultrasound, being moderate to severe stenoses confirmed by MR angiography. We registered clinical and anthropometric data and created a biobank with blood samples at baseline. A panel of biomarkers involved in atherothrombogenesis was determined: C-reactive protein, asymmetric-dimethylarginine, resistin, and plasminogen activator inhibitor-1. Insulin resistance was quantified by Homeostasis Model Assessment index. After multinomial regression analyses, male sex, hypertension, smoking, and alcoholic habits were independent risk factors of isolated extracranial atherosclerotic disease. Diabetes and metabolic syndrome conferred a higher risk for ICAD than for extracranial atherosclerotic disease. Moreover, metabolic syndrome and insulin resistance were independent risk factors of moderate to severe ICAD but were not risk factors of moderate to severe extracranial atherosclerotic disease. Regarding biomarkers, asymmetric-dimethylarginine was independently associated with isolated ICAD and resistin with combined ICAD-extracranial atherosclerotic disease. Our findings show distinct clinical and biological profiles in subclinical ICAD and extracranial atherosclerotic disease. Insulin resistance emerged as an important molecular pathway involved in the development of ICAD from its asymptomatic stage.

  19. Aortic stenosis: insights on pathogenesis and clinical implications

    PubMed Central

    Carità, Patrizia; Coppola, Giuseppe; Novo, Giuseppina; Caccamo, Giuseppa; Guglielmo, Marco; Balasus, Fabio; Novo, Salvatore; Castrovinci, Sebastiano; Moscarelli, Marco; Fattouch, Khalil; Corrado, Egle

    2016-01-01

    Aortic stenosis (AS) is a common valvular heart disease in the Western populations, with an estimated overall prevalence of 3% in adults over 75 years. To understand its patho-biological processes represents a priority. In elderly patients, AS usually involves trileaflet valves and is referred to as degenerative calcific processes. Scientific evidence suggests the involvement of an active “atherosclerosis-like” pathogenesis in the initiation phase of degenerative AS. To the contrary, the progression could be driven by different forces (such as mechanical stress, genetic factors and interaction between inflammation and calcification). The improved understanding presents potentially new therapeutic targets for preventing and inhibiting the development and progression of the disease. Furthermore, in clinical practice the management of AS patients implies the evaluation of generalized atherosclerotic manifestations (i.e., in the coronary and carotid arteries) even for prognostic reasons. In counselling elderly patients, the risk stratification should address individual frailty beyond the generic risk scores. In these regard, the co-morbidities, and in particular those linked to the global atherosclerotic burden, should be carefully investigated in order to define the risk/benefit ratio for invasive treatment strategies. We present a detailed overview of insights in pathogenesis of AS with possible practical implications. PMID:27582763

  20. Role of Platelet-Derived Microvesicles As Crosstalk Mediators in Atherothrombosis and Future Pharmacology Targets: A Link between Inflammation, Atherosclerosis, and Thrombosis

    PubMed Central

    Badimon, Lina; Suades, Rosa; Fuentes, Eduardo; Palomo, Iván; Padró, Teresa

    2016-01-01

    Reports in the last decade have suggested that the role of platelets in atherosclerosis and its thrombotic complications may be mediated, in part, by local secretion of platelet-derived microvesicles (pMVs), small cell blebs released during the platelet activation process. MVs are the most abundant cell-derived microvesicle subtype in the circulation. High concentrations of circulating MVs have been reported in patients with atherosclerosis, acute vascular syndromes, and/or diabetes mellitus, suggesting a potential correlation between the quantity of microvesicles and the clinical severity of the atherosclerotic disease. pMVs are considered to be biomarkers of disease but new information indicates that pMVs are also involved in signaling functions. pMVs evoke or promote haemostatic and inflammatory responses, neovascularization, cell survival, and apoptosis, processes involved in the pathophysiology of cardiovascular disease. This review is focused on the complex cross-talk between platelet-derived microvesicles, inflammatory cells and vascular elements and their relevance in the development of the atherosclerotic disease and its clinical outcomes, providing an updated state-of-the art of pMV involvement in atherothrombosis and pMV potential use as therapeutic agent influencing cardiovascular biomedicine in the future. PMID:27630570

  1. PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis.

    PubMed

    Lü, Silin; Deng, Jiacheng; Liu, Huiying; Liu, Bo; Yang, Juan; Miao, Yutong; Li, Jing; Wang, Nan; Jiang, Changtao; Xu, Qingbo; Wang, Xian; Feng, Juan

    2018-06-01

    Inflammation mediated by activated T cells plays an important role in the initiation and progression of hyperhomocysteinemia (HHcy)-accelerated atherosclerosis in ApoE -/- mice. Homocysteine (Hcy) activates T cells to secrete proinflammatory cytokines, especially interferon (IFN)-γ; however, the precise mechanisms remain unclear. Metabolic reprogramming is critical for T cell inflammatory activation and effector functions. Our previous study demonstrated that Hcy regulates T cell mitochondrial reprogramming by enhancing endoplasmic reticulum (ER)-mitochondria coupling. In this study, we further explored the important role of glycolysis-mediated metabolic reprogramming in Hcy-activated CD4 + T cells. Mechanistically, Hcy-activated CD4 + T cell increased the protein expression and activity of pyruvate kinase muscle isozyme 2 (PKM2), the final rate-limiting enzyme in glycolysis, via the phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin signaling pathway. Knockdown of PKM2 by small interfering RNA reduced Hcy-induced CD4 + T cell IFN-γ secretion. Furthermore, we generated T cell-specific PKM2 knockout mice by crossing LckCre transgenic mice with PKM2 fl/fl mice and observed that Hcy-induced glycolysis and oxidative phosphorylation were both diminished in PKM2-deficient CD4 + T cells with reduced glucose and lipid metabolites, and subsequently reduced IFN-γ secretion. T cell-depleted apolipoprotein E-deficient (ApoE -/- ) mice adoptively transferred with PKM2-deficient CD4 + T cells, compared to mice transferred with control cells, showed significantly decreased HHcy-accelerated early atherosclerotic lesion formation. In conclusion, this work indicates that the PKM2-dependent glycolytic-lipogenic axis, a novel mechanism of metabolic regulation, is crucial for HHcy-induced CD4 + T cell activation to accelerate early atherosclerosis in ApoE -/- mice. Metabolic reprogramming is crucial for Hcy-induced CD4 + T cell inflammatory activation. Hcy activates the glycolytic-lipogenic pathway in CD4 + T cells via PKM2. Targeting PKM2 attenuated HHcy-accelerated early atherosclerosis in ApoE -/- mice in vivo.

  2. Detection of atherosclerotic lesions and intimal macrophages using CD36-targeted nanovesicles

    USDA-ARS?s Scientific Manuscript database

    Current approaches to the diagnosis and therapy of atherosclerosis cannot target to lesion-determinant cells in the artery wall. Intimal macrophage infiltration promotes atherosclerotic lesion development by facilitating the accumulation of oxidized low-density lipoproteins (oxLDL) and increasing in...

  3. Collagen and related extracellular matrix proteins in atherosclerotic plaque development.

    PubMed

    Shami, Annelie; Gonçalves, Isabel; Hultgårdh-Nilsson, Anna

    2014-10-01

    The structure, composition and turnover of the extracellular matrix (ECM) as well as cell-matrix interactions are crucial in the developing atherosclerotic plaque. There is a need for further insight into specific proteins in the ECM and their functions in the developing plaque, and during the last few years a number of publications have highlighted this very important field of research. These novel findings will be addressed in the present review. This review covers literature focused on collagen and ECM proteins interacting with collagen, and what their roles may be in plaque development. Acute myocardial infarction and stroke are common diseases that cause disability and mortality, and the underlying mechanism is often the rupture of a vulnerable atherosclerotic plaque. The vascular ECM and the tissue repair in the atherosclerotic lesion are important players in plaque progression. Understanding how specific proteins in the ECM interact with cells in the plaque and affect the fate of the plaque can lead to new treatments for cardiovascular disease.

  4. Ex-vivo UV autofluorescence imaging and fluorescence spectroscopy of atherosclerotic pathology in human aorta

    NASA Astrophysics Data System (ADS)

    Lewis, William; Williams, Maura; Franco, Walfre

    2017-02-01

    The aim of our study was to identify fluorescence excitation-emission pairs correlated with atherosclerotic pathology in ex-vivo human aorta. Wide-field images of atherosclerotic human aorta were captured using UV and visible excitation and emission wavelength pairs of several known fluorophores to investigate correspondence with gross pathologic features. Fluorescence spectroscopy and histology were performed on 21 aortic samples. A matrix of Pearson correlation coefficients were determined for the relationship between relevant histologic features and the intensity of emission for 427 wavelength pairs. A multiple linear regression analysis indicated that elastin (370/460 nm) and tryptophan (290/340 nm) fluorescence predicted 58% of the variance in intima thickness (R-squared = 0.588, F(2,18) = 12.8, p=.0003), and 48% of the variance in media thickness (R-squared = 0.483, F(2,18) = 8.42, p=.002), suggesting that endogenous fluorescence intensity at these wavelengths can be utilized for improved pathologic characterization of atherosclerotic plaques.

  5. Exposure to Cigarette Smoke and the Morphology of Atherosclerotic Plaques in the Extracranial Arteries Assessed by Computed Tomography Angiography in Patients with Essential Hypertension.

    PubMed

    Gać, Paweł; Jaźwiec, Przemysław; Mazur, Grzegorz; Poręba, Rafał

    2017-01-01

    The aim of the study was to determine the relationship between exposure to cigarette smoke and the morphology of atherosclerotic plaques in the extracranial arteries assessed by computed tomography angiography in patients with hypertension. The study included 61 hypertensive patients: 17 active smokers (group A), 18 non-smokers, declaring environmental exposure to tobacco smoke (group B), and 26 non-smokers, not declaring exposure to cigarette smoke (group C). The number of segments with plaques was significantly higher in group A compared to groups B and C. The number of segments with non-calcified and mixed plaques was significantly higher in group A and group B than in group C. A positive correlation between cigarette-years and the number of segments with atherosclerotic plaques was noted. In summary, both active smoking and environmental exposure to tobacco smoke appear to increase the number of segments of the extracranial arteries with non-calcified and mixed atherosclerotic plaques.

  6. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5'-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta.

    PubMed Central

    Bossaller, C; Habib, G B; Yamamoto, H; Williams, C; Wells, S; Henry, P D

    1987-01-01

    The dependence of vascular relaxation on an intact endothelium and the relationship between relaxation and cyclic GMP accumulation were determined in coronary arteries isolated from cardiac transplantation patients with or without coronary atherosclerosis. In nonatherosclerotic arteries, the endothelium-dependent agent acetylcholine produced concentration-related relaxations. In atherosclerotic arteries, endothelium-dependent relaxations were abolished with acetylcholine, partly suppressed with substance P and histamine, and completely preserved with the ionophore A23187. In these arteries, the endothelium-independent agent nitroglycerin remained fully active. Accumulation of cyclic GMP in atherosclerotic strips was suppressed with acetylcholine but unattenuated with A23187 and nitroglycerin. In aortas from rabbits with diet-induced atherosclerosis, there was likewise an impaired cholinergic relaxation and cyclic GMP accumulation in the presence of preserved responses to A23187 and nitroglycerin. The results demonstrate that impaired cholinergic responses in atherosclerotic arteries reflect a muscarinic defect and not an inability of endothelium to release endothelial factor or smooth muscle to respond to it. PMID:2432088

  7. Vulnerable atherosclerotic plaque detection by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-hui; Boydston-White, Susie; Weisberg, Arel; Wang, Wubao; Sordillo, Laura A.; Perotte, Adler; Tomaselli, Vincent P.; Sordillo, Peter P.; Pei, Zhe; Shi, Lingyan; Alfano, Robert R.

    2016-12-01

    A clear correlation has been observed between the resonance Raman (RR) spectra of plaques in the aortic tunica intimal wall of a human corpse and three states of plaque evolution: fibrolipid plaques, calcified and ossified plaques, and vulnerable atherosclerotic plaques (VPs). These three states of atherosclerotic plaque lesions demonstrated unique RR molecular fingerprints from key molecules, rendering their spectra unique with respect to one another. The vibrational modes of lipids, cholesterol, carotenoids, tryptophan and heme proteins, the amide I, II, III bands, and methyl/methylene groups from the intrinsic atherosclerotic VPs in tissues were studied. The salient outcome of the investigation was demonstrating the correlation between RR measurements of VPs and the thickness measurements of fibrous caps on VPs using standard histopathology methods, an important metric in evaluating the stability of a VP. The RR results show that VPs undergo a structural change when their caps thin to 66 μm, very close to the 65-μm empirical medical definition of a thin cap fibroatheroma plaque, the most unstable type of VP.

  8. [Is regression of atherosclerotic plaque possible?

    PubMed

    Páramo, José A; Civeira, Fernando

    As it is well-known, a thrombus evolving into a disrupted/eroded atherosclerotic plaque causes most acute coronary syndromes. Plaque stabilization via reduction of the lipid core and/or thickening of the fibrous cap is one of the possible mechanisms accounted for the clinical benefits displayed by different anti-atherosclerotic strategies. The concept of plaque stabilization was developed to explain how lipid-lowering agents could decrease adverse coronary events without substantial modifications of the atherosclerotic lesion ('angiographic paradox'). A number of imaging modalities (vascular ultrasound and virtual histology, MRI, optical coherence tomography, positron tomography, etc.) are used for non-invasive assessment of atherosclerosis; most of them can identify plaque volume and composition beyond lumen stenosis. An 'aggressive' lipid-lowering strategy is able to reduce the plaque burden and the incidence of cardiovascular events; this may be attributable, at least in part, to plaque-stabilizing effects. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation

    NASA Astrophysics Data System (ADS)

    Duivenvoorden, Raphaël; Tang, Jun; Cormode, David P.; Mieszawska, Aneta J.; Izquierdo-Garcia, David; Ozcan, Canturk; Otten, Maarten J.; Zaidi, Neeha; Lobatto, Mark E.; van Rijs, Sarian M.; Priem, Bram; Kuan, Emma L.; Martel, Catherine; Hewing, Bernd; Sager, Hendrik; Nahrendorf, Matthias; Randolph, Gwendalyn J.; Stroes, Erik S. G.; Fuster, Valentin; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2014-01-01

    Inflammation is a key feature of atherosclerosis and a target for therapy. Statins have potent anti-inflammatory properties but these cannot be fully exploited with oral statin therapy due to low systemic bioavailability. Here we present an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle that delivers statins to atherosclerotic plaques. We demonstrate the anti-inflammatory effect of statin-rHDL in vitro and show that this effect is mediated through the inhibition of the mevalonate pathway. We also apply statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and show that they accumulate in atherosclerotic lesions in which they directly affect plaque macrophages. Finally, we demonstrate that a 3-month low-dose statin-rHDL treatment regimen inhibits plaque inflammation progression, while a 1-week high-dose regimen markedly decreases inflammation in advanced atherosclerotic plaques. Statin-rHDL represents a novel potent atherosclerosis nanotherapy that directly affects plaque inflammation.

  10. The Leu72Met polymorphism of the ghrelin gene is associated with a decreased risk for type 2 diabetes.

    PubMed

    Berthold, Heiner K; Giannakidou, Eleni; Krone, Wilhelm; Mantzoros, Christos S; Gouni-Berthold, Ioanna

    2009-01-01

    Ghrelin is involved in several metabolic and cardiovascular processes. The Leu72Met polymorphism of its gene was associated with an increased risk of type 2 diabetes (DM2) in some, but not all studies. Its association with atherosclerosis is not known. We investigated 420 Caucasian subjects with DM2 and 430 controls without diabetes (56.6% male, age 62+/-10 years). The Leu72Leu genotype frequencies were 89.76/84.65%, the Leu72Met 9.52/15.12% and the Met72Met 0.71/0.23% (P=0.029) in the DM2 and controls groups, respectively. In subjects with Met72+ genotypes the risk of DM2 was significantly decreased (univariate OR 0.63, 95% CI 0.42-0.95, P=0.026). In a logistic regression model, body mass index, hypertension and a positive family history for diabetes were predictors of diabetes while the polymorphism remained negatively associated with the disease (OR 0.62, 95% CI 0.40-0.97, P=0.036). After adjusting for known risk factors for atherosclerosis, the Met72+ variant was not associated with atherosclerotic disease (OR 1.41, 95% CI 0.78-2.54, P=0.25). Ghrelin concentrations were not associated with the polymorphism, DM2 or atherosclerotic disease. The Leu72Met polymorphism of the ghrelin gene is associated with a decreased risk for DM2. There is no association between the variant and atherosclerotic disease or ghrelin concentrations.

  11. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed Evans blue-DTPA-gadolinium contrast medium in apolipoprotein-E-deficient mice.

    PubMed

    Yasuda, Satoshi; Ikuta, Kenjiro; Uwatoku, Toyokazu; Oi, Keiji; Abe, Kohtaro; Hyodo, Fuminori; Yoshimitsu, Kengo; Sugimura, Kohtaro; Utsumi, Hideo; Katayama, Yoshiki; Shimokawa, Hiroaki

    2008-01-01

    Magnetic resonance imaging (MRI) contrast agents that specifically detect atherosclerotic plaque may be useful for the noninvasive detection of the plaque. We have recently developed a new contrast agent, Evans blue-DTPA-gadolinium (EB-DTPA-Gd), which selectively accumulates vascular lesions with endothelial removal. In this study, we examined whether EB-DTPA-Gd is also useful for in vivo imaging of atherosclerotic plaques. We used male apolipoprotein-E-deficient (ApoE-/-) mice of different ages (3, 6 and 12 months old) and age-matched male wild-type mice. After a single intravenous administration of EB-DTPA-Gd (160 microM/kg body weight), MRI T(1) signal was obtained in vivo. Increased signal intensity in the aortic wall was noted within 10-20 min after intravenous injection of EB-DTPA-Gd and was maintained for 30 min. The MRI enhancement in the aorta of ApoE-/- mice was increased in accordance with age, whereas no such enhancement was noted in wild-type mice. Histological examination demonstrated that there was a topological correlation between the site of MRI enhancement and that of atherosclerotic plaque. These results indicate that EB-DTPA-Gd is a useful MRI contrast medium for the in vivo detection of atherosclerotic plaques. Copyright (c) 2007 S. Karger AG, Basel.

  12. Icaritin Inhibits Collagen Degradation-Related Factors and Facilitates Collagen Accumulation in Atherosclerotic Lesions: A Potential Action for Plaque Stabilization

    PubMed Central

    Zhang, Zong-Kang; Li, Jie; Yan, De-Xin; Leung, Wing-Nang; Zhang, Bao-Ting

    2016-01-01

    Most acute coronary syndromes result from rupture of vulnerable atherosclerotic plaques. The collagen content of plaques may critically affect plaque stability. This study tested whether Icaritin (ICT), an intestinal metabolite of Epimedium-derived flavonoids, could alter the collagen synthesis/degradation balance in atherosclerotic lesions. Rabbits were fed with an atherogenic diet for four months. Oral administration of ICT (10 mg·kg−1·day−1) was started after two months of an atherogenic diet and lasted for two months. The collagen degradation-related parameters, including macrophages accumulation, content and activity of interstitial collagenase-1 (MMP-1), and the collagen synthesis-related parameters, including amount and distribution of smooth muscle cells (SMC) and collagen mRNA/protein levels, were evaluated in the aorta. ICT reduced plasma lipid levels, inhibited macrophage accumulation, lowered MMP-1 mRNA and protein expression, and suppressed proteolytic activity of pro-MMP-1 and MMP-1 in the aorta. ICT changed the distribution of the SMCs towards the fibrous cap of lesions without increasing the amount of SMCs. Higher collagen protein content in lesions and aorta homogenates was observed with ICT treatment compared with the atherogenic diet only, without altered collagen mRNA level. These results suggest that ICT could inhibit the collagen degradation-related factors and facilitate collagen accumulation in atherosclerotic lesions, indicating a new potential of ICT in atherosclerotic plaques. PMID:26828485

  13. Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles

    PubMed Central

    Wang, Tianyi; Jacob Mancuso, J.; Sapozhnikova, Veronika; Dwelle, Jordan; Ma, Li L.; Willsey, Brian; Shams Kazmi, S. M.; Qiu, Jinze; Li, Xiankai; Asmis, Reto; Johnston, Keith P.; Feldman, Marc D.

    2012-01-01

    Abstract. The objective of this study was to assess the ability of combined photothermal wave (PTW) imaging and optical coherence tomography (OCT) to detect, and further characterize the distribution of macrophages (having taken up plasmonic gold nanorose as a contrast agent) and lipid deposits in atherosclerotic plaques. Aortas with atherosclerotic plaques were harvested from nine male New Zealand white rabbits divided into nanorose- and saline-injected groups and were imaged by dual-wavelength (800 and 1210 nm) multifrequency (0.1, 1 and 4 Hz) PTW imaging in combination with OCT. Amplitude PTW images suggest that lateral and depth distribution of nanorose-loaded macrophages (confirmed by two-photon luminescence microscopy and RAM-11 macrophage stain) and lipid deposits can be identified at selected modulation frequencies. Radiometric temperature increase and modulation amplitude of superficial nanoroses in response to 4 Hz laser irradiation (800 nm) were significantly higher than native plaque (P<0.001). Amplitude PTW images (4 Hz) were merged into a coregistered OCT image, suggesting that superficial nanorose-loaded macrophages are distributed at shoulders on the upstream side of atherosclerotic plaques (P<0.001) at edges of lipid deposits. Results suggest that combined PTW-OCT imaging can simultaneously reveal plaque structure and composition, permitting characterization of nanorose-loaded macrophages and lipid deposits in atherosclerotic plaques. PMID:22502567

  14. HDL Function in Rheumatoid Arthritis

    PubMed Central

    Ormseth, Michelle J; Stein, C. Michael

    2015-01-01

    Purpose of review Patients with rheumatoid arthritis (RA) have accelerated atherosclerosis despite the appearance of having a less atherogenic lipid profile; however, lipoprotein function rather than concentration may be a better indicator of atherosclerotic risk. The purpose of this review is to summarize recent findings concerning HDL function in patients with RA. Recent findings Two major activities of HDL, its antioxidant and cholesterol efflux functions have been examined in RA. HDL antioxidant capacity is inversely associated with inflammation and RA disease activity; however, there is no clear consensus if antioxidant capacity is altered significantly in RA compared to control subjects. Moreover, despite numerous studies there is no consensus whether HDL cholesterol efflux capacity is significantly altered in RA compared to control subjects or influenced by inflammation or disease activity. Summary Additional studies will be valuable to consolidate existing data and find consensus. Moreover, studies evaluating the impact of various HDL functions on cardiovascular disease in RA are needed. PMID:26709471

  15. Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions

    NASA Astrophysics Data System (ADS)

    Kutikhin, Anton G.; Velikanova, Elena A.; Mukhamadiyarov, Rinat A.; Glushkova, Tatiana V.; Borisov, Vadim V.; Matveeva, Vera G.; Antonova, Larisa V.; Filip'Ev, Dmitriy E.; Golovkin, Alexey S.; Shishkova, Daria K.; Burago, Andrey Yu.; Frolov, Alexey V.; Dolgov, Viktor Yu.; Efimova, Olga S.; Popova, Anna N.; Malysheva, Valentina Yu.; Vladimirov, Alexandr A.; Sozinov, Sergey A.; Ismagilov, Zinfer R.; Russakov, Dmitriy M.; Lomzov, Alexander A.; Pyshnyi, Dmitriy V.; Gutakovsky, Anton K.; Zhivodkov, Yuriy A.; Demidov, Evgeniy A.; Peltek, Sergey E.; Dolganyuk, Viatcheslav F.; Babich, Olga O.; Grigoriev, Evgeniy V.; Brusina, Elena B.; Barbarash, Olga L.; Yuzhalin, Arseniy E.

    2016-06-01

    Calcium phosphate bions (CPB) are biomimetic mineralo-organic nanoparticles which represent a physiological mechanism regulating the function, transport and disposal of calcium and phosphorus in the human body. We hypothesised that CPB may be pathogenic entities and even a cause of cardiovascular calcification. Here we revealed that CPB isolated from calcified atherosclerotic plaques and artificially synthesised CPB are morphologically and chemically indistinguishable entities. Their formation is accelerated along with the increase in calcium salts-phosphates/serum concentration ratio. Experiments in vitro and in vivo showed that pathogenic effects of CPB are defined by apoptosis-mediated endothelial toxicity but not by direct tissue calcification or functional changes in anti-calcification proteins. Since the factors underlying the formation of CPB and their pathogenic mechanism closely resemble those responsible for atherosclerosis development, further research in this direction may help us to uncover triggers of this disease.

  16. Atorvastatin Improves Inflammatory Response in Atherosclerosis by Upregulating the Expression of GARP.

    PubMed

    Zhao, Xiaoqi; Liu, Yuzhou; Zhong, Yucheng; Liu, Bo; Yu, Kunwu; Shi, Huairui; Zhu, Ruirui; Meng, Kai; Zhang, Wei; Wu, Bangwei; Zeng, Qiutang

    2015-01-01

    Regulatory T cells play an important role in the progression of atherosclerosis. GARP is a newly biological membrane molecule existed on activated Tregs, which is related to the release of TGF-β. The antiatherosclerosis effects of statins partly depend on their multiple immune modulatory potencies. In this paper, we present that atorvastatin could upregulate the expression of GARP and TGF-β in CD4+ T cells and increase the numbers of CD4+LAP+ and CD4+Foxp3+ regulatory T cells in ApoE-/- mice. Also, we indicate that atorvastatin promotes the aggregation of GARP+ and Foxp3+ cells and secretory of the TGF-β1 in atherosclerotic plaques. Furthermore, we prove that atorvastatin could delay the procession of atherosclerosis and improve the stability of atherosclerotic plaques. Interestingly, we report that inhibition of GARP distinctly inhibits the anti-inflammatory effects of atorvastatin. We conclude that atorvastatin improves the inflammatory response in atherosclerosis partly by upregulating the expression of GARP on regulatory T cells.

  17. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models

    PubMed Central

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  18. Atorvastatin Improves Inflammatory Response in Atherosclerosis by Upregulating the Expression of GARP

    PubMed Central

    Zhao, Xiaoqi; Liu, Yuzhou; Zhong, Yucheng; Liu, Bo; Yu, Kunwu; Shi, Huairui; Zhu, Ruirui; Meng, Kai; Zhang, Wei; Wu, Bangwei

    2015-01-01

    Regulatory T cells play an important role in the progression of atherosclerosis. GARP is a newly biological membrane molecule existed on activated Tregs, which is related to the release of TGF-β. The antiatherosclerosis effects of statins partly depend on their multiple immune modulatory potencies. In this paper, we present that atorvastatin could upregulate the expression of GARP and TGF-β in CD4+ T cells and increase the numbers of CD4+LAP+ and CD4+Foxp3+ regulatory T cells in ApoE−/− mice. Also, we indicate that atorvastatin promotes the aggregation of GARP+ and Foxp3+ cells and secretory of the TGF-β1 in atherosclerotic plaques. Furthermore, we prove that atorvastatin could delay the procession of atherosclerosis and improve the stability of atherosclerotic plaques. Interestingly, we report that inhibition of GARP distinctly inhibits the anti-inflammatory effects of atorvastatin. We conclude that atorvastatin improves the inflammatory response in atherosclerosis partly by upregulating the expression of GARP on regulatory T cells. PMID:26063978

  19. Increased Atherogenesis during Streptococcus mutans Infection in ApoE-null Mice

    PubMed Central

    Kesavalu, L.; Lucas, A.R.; Verma, R.K.; Liu, L.; Dai, E.; Sampson, E.; Progulske-Fox, A.

    2012-01-01

    Streptococcus mutans, a dental caries pathogen, also causes endocarditis and is detected in atheroscelerotic plaque. We investigated the potential for an invasive strain of S. mutans, OMZ175, to accelerate plaque growth in apolipoprotein E deficient (ApoEnull) mice without and with balloon angioplasty (BA) injury, a model of restenosis. ApoEnull mice were divided into 4 groups (N = 10), 2 with and 2 without BA. One each of the BA and non-BA groups was infected with S. mutans (Sm). S. mutans DNA, plaque area, inflammatory cell invasion, and Toll-like receptor (TLR) expression were measured at 6-20 weeks post-infection. S. mutans genomic DNA was detected in the aorta, liver, spleen, and heart. Plaque growth was significantly increased in infected mice with BA (Sm+BA) vs. those in the non-infected groups (p < 0.03). Plaque size was increased after infection without BA (Sm), but did not reach significance. Aortic specimens from both S. mutans and Sm+BA groups displayed increased numbers of macrophages, and TLR4 expression was increased in BA mice. In conclusion, S. mutans infection accelerated plaque growth, macrophage invasion, and TLR4 expression after angioplasty. S. mutans may also be associated with atherosclerotic plaque growth in non-injured arteries. PMID:22262633

  20. Vitamin A-Deficient Diet Accelerated Atherogenesis in Apolipoprotein E−/− Mice and Dietary β-Carotene Prevents This Consequence

    PubMed Central

    Relevy, Noa Zolberg; Harats, Dror; Harari, Ayelet; Ben-Amotz, Ami; Bitzur, Rafael; Rühl, Ralph; Shaish, Aviv

    2015-01-01

    Vitamin A is involved in regulation of glucose concentrations, lipid metabolism, and inflammation, which are major risk factors for atherogenesis. However, the effect of vitamin A deficiency on atherogenesis has not been investigated. Therefore, the objective of the current study was to examine whether vitamin A deficiency accelerates atherogenesis in apolipoprotein E-deficient mice (apoE−/−). ApoE−/− mice were allocated into the following groups: control, fed vitamin A-containing chow diet; BC, fed chow diet fortified with Dunaliella powder containing βc isomers; VAD, fed vitamin A-deficient diet; and VAD-BC group, fed vitamin A-deficient diet fortified with a Dunaliella powder. Following 15 weeks of treatment, liver retinol concentration had decreased significantly in the VAD group to about 30% that of control group. Vitamin A-deficient diet significantly increased both plasma cholesterol concentrations and the atherosclerotic lesion area at the aortic sinus (+61%) compared to the control group. Dietary βc fortification inhibited the elevation in plasma cholesterol and retarded atherogenesis in mice fed the vitamin A-deficient diet. The results imply that dietary vitamin A deficiency should be examined as a risk factor for atherosclerosis and that dietary βc, as a sole source of retinoids, can compensate for vitamin A deficiency. PMID:25802864

  1. A fluorescence lifetime spectroscopy study of matrix metalloproteinases -2 and -9 in human atherosclerotic plaque

    PubMed Central

    Phipps, Jennifer E.; Hatami, Nisa; Galis, Zorina S.; Baker, J. Dennis; Fishbein, Michael C.; Marcu, Laura

    2011-01-01

    Matrix metalloproteinase (MMP) -2 and -9 play important roles in the progression of atherosclerosis. This study aims to determine whether MMP-2 and -9 content in the fibrotic caps of atherosclerotic plaque is correlated with plaque autofluorescence. A time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) system was used to measure the autofluorescence and assess the biochemical composition of human plaques obtained from carotid endarterectomy. Results presented here demonstrate for the first time the ability to characterize the biochemical composition as it relates to MMP-2 and -9 content in the atherosclerotic plaque cap using a label-free imaging technique implemented with a fiberoptic TR-LIFS system. PMID:21770037

  2. A vascular biology network model focused on inflammatory processes to investigate atherogenesis and plaque instability

    PubMed Central

    2014-01-01

    Background Numerous inflammation-related pathways have been shown to play important roles in atherogenesis. Rapid and efficient assessment of the relative influence of each of those pathways is a challenge in the era of “omics” data generation. The aim of the present work was to develop a network model of inflammation-related molecular pathways underlying vascular disease to assess the degree of translatability of preclinical molecular data to the human clinical setting. Methods We constructed and evaluated the Vascular Inflammatory Processes Network (V-IPN), a model representing a collection of vascular processes modulated by inflammatory stimuli that lead to the development of atherosclerosis. Results Utilizing the V-IPN as a platform for biological discovery, we have identified key vascular processes and mechanisms captured by gene expression profiling data from four independent datasets from human endothelial cells (ECs) and human and murine intact vessels. Primary ECs in culture from multiple donors revealed a richer mapping of mechanisms identified by the V-IPN compared to an immortalized EC line. Furthermore, an evaluation of gene expression datasets from aortas of old ApoE-/- mice (78 weeks) and human coronary arteries with advanced atherosclerotic lesions identified significant commonalities in the two species, as well as several mechanisms specific to human arteries that are consistent with the development of unstable atherosclerotic plaques. Conclusions We have generated a new biological network model of atherogenic processes that demonstrates the power of network analysis to advance integrative, systems biology-based knowledge of cross-species translatability, plaque development and potential mechanisms leading to plaque instability. PMID:24965703

  3. Anti-angiogenic drug loaded liposomes: Nanotherapy for early atherosclerotic lesions in mice

    PubMed Central

    Pont, Isabel; Calatayud-Pascual, Aracely; López-Castellano, Alicia; Albelda, Elena P.; García-España, Enrique; Martí-Bonmatí, Luis; Frias, Juan C.

    2018-01-01

    Fumagillin-loaded liposomes were injected into ApoE-KO mice. The animals were divided into several groups to test the efficacy of this anti-angiogenic drug for early treatment of atherosclerotic lesions. Statistical analysis of the lesions revealed a decrease in the lesion size after 5 weeks of treatment. PMID:29338009

  4. Quantitative analysis of the polarization characteristics of atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Kirillin, Michail Y.; Dudenkova, Varvara V.; Kiseleva, Elena B.; Moiseev, Alexander A.; Gelikonov, Grigory V.; Timofeeva, Lidia B.; Fiks, Ilya I.; Feldchtein, Felix I.; Gladkova, Natalia D.

    2016-04-01

    In this study we demonstrate the capability of cross-polarization optical coherence tomography (CP OCT) to assess collagen and elastin fibers condition in atherosclerotic plaques basing on ratio of the OCT signal levels in cross- and co- polarizations. We consider the depolarization factor (DF) and the effective birefringence (Δn) as quantitative characteristics of CP OCT images. We revealed that calculation of both DF and Δn in the region of interest (fibrous cap) yields a statistically significant difference between stable and unstable plaques (0.46+/-0.21 vs 0.09+/-0.04 for IDF; (4.7+/-1.0)•10-4 vs (2.5+/-0.7)•10-4 for Δn p<0.05). In parallel with CP OCT we used the nonlinear microscopy for analysis of thin cross-section of atherosclerotic plaque, revealing the different average isotropy index of collagen and elastin fibers for stable and unstable plaques (0.30 +/- 0.10 vs 0.70 +/- 0.08; p<0.001). The proposed approach for quantitative assessment of CP OCT images allows cross-scattering and birefringence characterization of stable and unstable atherosclerotic plaques.

  5. Intracranial Atherosclerotic Disease

    PubMed Central

    Khan, Maria; Naqvi, Imama; Bansari, Asha; Kamal, Ayeesha Kamran

    2011-01-01

    Intracranial atherosclerotic disease (ICAD) is the most common proximate mechanism of ischemic stroke worldwide. Approximately half of those affected are Asians. For diagnosis of ICAD, intra-arterial angiography is the gold standard to identify extent of stenosis. However, noninvasive techniques including transcranial ultrasound and MRA are now emerging as reliable modalities to exclude moderate to severe (50%–99%) stenosis. Little is known about measures for primary prevention of the disease. In terms of secondary prevention of stroke due to intracranial atherosclerotic stenosis, aspirin continues to be the preferred antiplatelet agent although clopidogrel along with aspirin has shown promise in the acute phase. Among Asians, cilostazol has shown a favorable effect on symptomatic stenosis and is of benefit in terms of fewer bleeds. Moreover, aggressive risk factor management alone and in combination with dual antiplatelets been shown to be most effective in this group of patients. Interventional trials on intracranial atherosclerotic stenosis have so far only been carried out among Caucasians and have not yielded consistent results. Since the Asian population is known to be preferentially effected, focused trials need to be performed to establish treatment modalities that are most effective in this population. PMID:21772967

  6. Loxoprofen Sodium, a Non-Selective NSAID, Reduces Atherosclerosis in Mice by Reducing Inflammation.

    PubMed

    Hamaguchi, Masahide; Seno, Takahiro; Yamamoto, Aihiro; Kohno, Masataka; Kadoya, Masatoshi; Ishino, Hidetaka; Ashihara, Eishi; Kimura, Shinya; Tsubakimoto, Yoshinori; Takata, Hiroki; Yoshikawa, Toshikazu; Maekawa, Taira; Kawahito, Yutaka

    2010-09-01

    Recently, it is suggested that the use of nonsteroidal anti-inflammatory drugs (NSAID) may contribute to the occurrence of cardiovascular events, while the formation of atherosclerotic lesions is related to inflammation. Loxoprofen sodium, a non-selective NSAID, becomes active after metabolism in the body and inhibits the activation of cyclooxygenase. We fed apoE(-/-) mice a western diet from 8 to 16 weeks of age and administered loxoprofen sodium. We measured atherosclerotic lesions at the aortic root. We examined serum levels of cholesterol and triglycerides with HPLC, platelet aggregation, and urinary prostaglandin metabolites with enzyme immune assay. Atherosclerotic lesion formation was reduced to 63.5% and 41.5% as compared to the control in male and female apoE(-/-) mice treated with loxoprofen sodium respectively. Urinary metabolites of prostaglandin E(2), F(1α), and thromboxane B(2), and platelet aggregation were decreased in mice treated with loxoprofen sodium. Serum levels of cholesterol and triglycerides were not changed. We conclude that loxoprofen sodium reduced the formation of early to intermediate atherosclerotic lesions at the proximal aorta in mice mediated by an anti-inflammatory effect.

  7. A Review of Intravascular Ultrasound–Based Multimodal Intravascular Imaging: The Synergistic Approach to Characterizing Vulnerable Plaques

    PubMed Central

    Ma, Teng; Zhou, Bill; Hsiai, Tzung K.; Shung, K. Kirk

    2015-01-01

    Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features—the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages—are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal “gold standard” for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability. PMID:26400676

  8. High-frequency ultrasound-guided disruption of glycoprotein VI-targeted microbubbles targets atheroprogressison in mice.

    PubMed

    Metzger, Katja; Vogel, Sebastian; Chatterjee, Madhumita; Borst, Oliver; Seizer, Peter; Schönberger, Tanja; Geisler, Tobias; Lang, Florian; Langer, Harald; Rheinlaender, Johannes; Schäffer, Tilman E; Gawaz, Meinrad

    2015-01-01

    Targeted contrast-enhanced ultrasound (CEU) using microbubble agents is a promising non-invasive imaging technique to evaluate atherosclerotic lesions. In this study, we decipher the diagnostic and therapeutic potential of targeted-CEU with soluble glycoprotein (GP)-VI in vivo. Microbubbles were conjugated with the recombinant fusion protein GPVI-Fc (MBGPVI) that binds with high affinity to atherosclerotic lesions. MBGPVI or control microbubbles (MBC) were intravenously administered into ApoE(-/-) or wild type mice and binding of the microbubbles to the vessel wall was visualized by high-resolution CEU. CEU molecular imaging signals of MBGPVI were substantially enhanced in the aortic arch and in the truncus brachiocephalicus in ApoE(-/-) as compared to wild type mice. High-frequency ultrasound (HFU)-guided disruption of MBGPVI enhanced accumulation of GPVI in the atherosclerotic lesions, which may interfere with atheroprogression. Thus, we establish targeted-CEU with soluble GPVI as a novel non-invasive molecular imaging method for atherosclerosis. Further, HFU-guided disruption of GPVI-targeted microbubbles is an innovate therapeutic approach that potentially prevents progression of atherosclerotic disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Antiinflammatory actions of inorganic nitrate stabilize the atherosclerotic plaque

    PubMed Central

    Khambata, Rayomand S.; Ghosh, Suborno M.; Rathod, Krishnaraj S.; Thevathasan, Tharssana; Filomena, Federica; Xiao, Qingzhong; Ahluwalia, Amrita

    2017-01-01

    Reduced bioavailable nitric oxide (NO) plays a key role in the enhanced leukocyte recruitment reflective of systemic inflammation thought to precede and underlie atherosclerotic plaque formation and instability. Recent evidence demonstrates that inorganic nitrate (NO3−) through sequential chemical reduction in vivo provides a source of NO that exerts beneficial effects upon the cardiovascular system, including reductions in inflammatory responses. We tested whether the antiinflammatory effects of inorganic nitrate might prove useful in ameliorating atherosclerotic disease in Apolipoprotein (Apo)E knockout (KO) mice. We show that dietary nitrate treatment, although having no effect upon total plaque area, caused a reduction in macrophage accumulation and an elevation in smooth muscle accumulation within atherosclerotic plaques of ApoE KO mice, suggesting plaque stabilization. We also show that in nitrate-fed mice there is reduced systemic leukocyte rolling and adherence, circulating neutrophil numbers, neutrophil CD11b expression, and myeloperoxidase activity compared with wild-type littermates. Moreover, we show in both the ApoE KO mice and using an acute model of inflammation that this effect upon neutrophils results in consequent reductions in inflammatory monocyte expression that is associated with elevations of the antiinflammatory cytokine interleukin (IL)-10. In summary, we demonstrate that inorganic nitrate suppresses acute and chronic inflammation by targeting neutrophil recruitment and that this effect, at least in part, results in consequent reductions in the inflammatory status of atheromatous plaque, and suggest that this effect may have clinical utility in the prophylaxis of inflammatory atherosclerotic disease. PMID:28057862

  10. Non-linear imaging and characterization of atherosclerotic arterial tissue using combined two photon fluorescence, second-harmonic generation and CARS microscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Matthäus, Christian; Meyer, Tobias; Lattermann, Annika; Dietzek, Benjamin; Brehm, Bernhard R.; Popp, Jürgen; Pavone, Francesco S.

    2014-02-01

    Atherosclerosis is among the most widespread cardiovascular diseases and one of the leading cause of death in the Western World. Characterization of arterial tissue in atherosclerotic condition is extremely interesting from the diagnostic point of view. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires a morpho-functional approach. Multimodal non-linear microscopy has the potential to bridge this gap by providing morpho-functional information on the examined tissues in a label-free way. Here we employed multiple non-linear microscopy techniques, including CARS, TPF, and SHG to provide intrinsic optical contrast from various tissue components in both arterial wall and atherosclerotic plaques. CARS and TPF microscopy were used to respectively image lipid depositions within plaques and elastin in the arterial wall. Cholesterol deposition in the lumen and collagen in the arterial wall were selectively imaged by SHG microscopy and distinguished by forward-backward SHG ratio. Image pattern analysis allowed characterizing collagen organization in different tissue regions. Different values of fiber mean size, distribution and anisotropy are calculated for lumen and media prospectively allowing for automated classification of atherosclerotic lesions. The presented method represents a promising diagnostic tool for evaluating atherosclerotic tissue and has the potential to find a stable place in clinical setting as well as to be applied in vivo in the near future.

  11. Atherosclerotic vascular disease in systemic lupus erythematosus.

    PubMed

    Liang, Matthew H; Mandl, Lisa A; Costenbader, Karen; Fox, Ervin; Karlson, Elizabeth

    2002-09-01

    In the United States, systemic lupus erythematosus (SLE) disproportionately affects African Americans. It has become a chronic disease with long-term morbidity including chronic renal disease, osteoporosis, cataracts, psychosocial impairment, and importantly, atherosclerotic vascular disease (ASVD). The latter (myocardial infarction, angina, peripheral vascular disease and stroke) are strikingly accelerated, occurring in subjects who are predominantly premenopausal women at an age when ASVD is rare or unusual. Although much is known about the biology, risk factors, and the prevention of atherosclerosis in normal individuals, little work has been done in SLE. In fact, ASVD in people with SLE may be a different disease. Approximately 1.5% of SLE patients per year will have a myocardial infarction or equivalent; about 0.5% of SLE patients per year will have a stroke. The risk factors for ASVD in SLE are based on small, retrospective, single center studies. These suggest that the risk factors known for the general population (i.e., smoking, obesity, sedentary lifestyle, high LDL cholesterol, etc.) are also observed in SLE. The best study of risk factors shows that even accounting for the known factors, SLE and/or its treatment (glucocorticoids) is by far the most important. Our current management of cardiovascular risk factors in SLE patients with ASVD is substandard and our adherence to national guidelines for prevention is substandard. It is not known whether improving either will prevent these disastrous outcomes. Very little is known about the risk factors in African Americans with SLE, although there is data to suggest that they may not be identical to those seen in Caucasian populations. The study of the best and most effective means to prevent ASVD in SLE and in African Americans with SLE and in African Americans with SLE should be a major priority.

  12. Ezetimibe reduces plaque inflammation in a rabbit model of atherosclerosis and inhibits monocyte migration in addition to its lipid-lowering effect

    PubMed Central

    Gómez-Garre, D; Muñoz-Pacheco, P; González-Rubio, ML; Aragoncillo, P; Granados, R; Fernández-Cruz, A

    2009-01-01

    Background and purpose: Ezetimibe, a selective inhibitor of intestinal cholesterol absorption, might also suppress inflammatory components of atherogenesis. We have studied the effects of ezetimibe on two characteristics of atherosclerotic plaques (infiltrate and fibrosis) and on expression of inflammatory genes in a rabbit model of accelerated atherosclerosis. Experimental approach: Femoral atherosclerosis was induced by a combination of endothelial desiccation and atherogenic diet. Animals were randomized to ezetimibe (0.6 mg·kg−1·day−1), simvastatin (5 mg·kg−1·day−1), ezetimibe plus simvastatin or no treatment, still on atherogenic diet. A control group of rabbits received normolipidemic diet. Key results: Rabbits fed the normolipidemic diet showed normal plasma lipid levels. Either the normolipidemic diet or drug treatment reduced the intima/media ratio (normolipidemic diet: 22%, ezetimibe: 13%, simvastatin: 27%, ezetimibe + simvastatin: 28%), compared with rabbits with atherosclerosis. Ezetimibe also decreased macrophage content and monocyte chemoattractant protein-1 expression in atherosclerotic lesions. Furthermore, ezetimibe reduced the increased activity of nuclear factor κB in peripheral blood leucocytes and plasma C-reactive protein levels in rabbits with atherosclerosis. In THP-1 cells, ezetimibe decreased monocyte chemoattractant protein-1-induced monocyte migration. Importantly, the combination of ezetimibe with simvastatin was associated with a more significant reduction in plaque monocyte/macrophage content and some proinflammatory markers than observed with each drug alone. Conclusions and implications: Ezetimibe had beneficial effects both on atherosclerosis progression and plaque stabilization and showed additional anti-atherogenic benefits when combined with simvastatin. Its effect on monocyte migration provides a potentially beneficial action, in addition to its effects on lipids. PMID:19222481

  13. Catechin treatment improves cerebrovascular flow-mediated dilation and learning abilities in atherosclerotic mice

    PubMed Central

    Drouin, Annick; Bolduc, Virginie; Thorin-Trescases, Nathalie; Bélanger, Élisabeth; Fernandes, Priscilla; Baraghis, Edward; Lesage, Frédéric; Gillis, Marc-Antoine; Villeneuve, Louis; Hamel, Edith; Ferland, Guylaine; Thorin, Eric

    2013-01-01

    Severe dyslipidemia and the associated oxidative stress could accelerate the age-related decline in cerebrovascular endothelial function and cerebral blood flow (CBF), leading to neuronal loss and impaired learning abilities. We hypothesized that a chronic treatment with the polyphenol catechin would prevent endothelial dysfunction, maintain CBF responses, and protect learning abilities in atherosclerotic (ATX) mice. We treated ATX (C57Bl/6-LDLR−/− hApoB+/+; 3 mo old) mice with catechin (30 mg·kg−1·day−1) for 3 mo, and C57Bl/6 [wild type (WT), 3 and 6 mo old] mice were used as controls. ACh- and flow-mediated dilations (FMD) were recorded in pressurized cerebral arteries. Basal CBF and increases in CBF induced by whisker stimulation were measured by optical coherence tomography and Doppler, respectively. Learning capacities were evaluated with the Morris water maze test. Compared with 6-mo-old WT mice, cerebral arteries from 6-mo-old ATX mice displayed a higher myogenic tone, lower responses to ACh and FMD, and were insensitive to NOS inhibition (P < 0.05), suggesting endothelial dysfunction. Basal and increases in CBF were lower in 6-mo-old ATX than WT mice (P < 0.05). A decline in the learning capabilities was also observed in ATX mice (P < 0.05). Catechin 1) reduced cerebral superoxide staining (P < 0.05) in ATX mice, 2) restored endothelial function by reducing myogenic tone, improving ACh- and FMD and restoring the sensitivity to nitric oxide synthase inhibition (P < 0.05), 3) increased the changes in CBF during stimulation but not basal CBF, and 4) prevented the decline in learning abilities (P < 0.05). In conclusion, catechin treatment of ATX mice prevents cerebrovascular dysfunctions and the associated decline in learning capacities. PMID:21186270

  14. PSGL-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice

    PubMed Central

    An, Guangyu; Wang, Huan; Tang, Rong; Yago, Tadayuki; McDaniel, J. Michael; McGee, Samuel; Huo, Yuqing; Xia, Lijun

    2008-01-01

    Background Ly-6Chi monocytes are key contributors to atherosclerosis in mice. However, how Ly-6Chi monocytes selectively accumulate in atherosclerotic lesions is largely unknown. Monocyte homing to sites of atherosclerosis is primarily initiated by rolling on P- and E-selectin expressed on endothelium. We hypothesize that P-selectin glycoprotein ligand-1 (PSGL-1), the common ligand of P- and E-selectin on leukocytes, contributes to the preferential homing of Ly-6Chi monocytes to atherosclerotic lesions. Methods and Results To test this hypothesis, we examined the expression and function of PSGL-1 on Ly-6Chi and Ly-6Clo monocytes from wild-type mice, ApoE-/- mice, and mice lacking both ApoE and PSGL-1 genes (ApoE-/-/PSGL-1-/-). We found that Ly-6Chi monocytes expressed a higher level of PSGL-1, and had enhanced binding to fluid-phase P- and E-selectin, compared to Ly-6Clo monocytes. Under in vitro flow conditions, more Ly-6Chi monocytes rolled on P-, E-, and L-selectin at slower velocities than Ly-6Clo cells. In an ex vivo perfused carotid artery model, Ly-6Chi monocytes interacted preferentially with atherosclerotic endothelium compared with Ly-6Clo monocytes in a PSGL-1-dependent manner. In vivo, ApoE-/- mice lacking PSGL-1 had impaired Ly-6Chi monocyte recruitment to atherosclerotic lesions. Moreover, ApoE-/-/PSGL-1-/- mice exhibited significantly reduced monocyte infiltration in wire injury-induced neointima and in atherosclerotic lesions. ApoE-/-/PSGL-1-/- mice also developed smaller neointima and atherosclerotic plaques. Conclusions These data indicate that PSGL-1 is a new marker for Ly-6Chi monocytes and a major determinant for Ly-6Chi cell recruitment to sites of atherosclerosis in mice. PMID:18519846

  15. Effects of the ethanol extract of black mulberry (Morus nigra L.) fruit on experimental atherosclerosis in rats.

    PubMed

    Jiang, Yan; Dai, Min; Nie, Wen-Jing; Yang, Xiao-Rong; Zeng, Xian-Chun

    2017-03-22

    Atherosclerosis (AS) is the major pathogenic component of coronary artery and cardiovascular disease. Studies have increasingly focused on natural medicines that have lipid-lowering, anti-inflammatory, and endothelial-protection activities. Black mulberry fruits are traditionally used in Uyghur folk medicine for the prevention and treatment of cardiovascular diseases in southern Xinjiang region of China. However, its underlying mechanisms remain unknown. Thus, our objective was to explore the effects and underlying mechanisms of ethanol extract of black mulberry (EEBM) in experimental atherosclerotic rats. The black mulberry fruit was extracted with acid ethanol and chromatographed on an AB-8 macroporous resin to obtain EEBM. Atherosclerotic rats were divided into five groups: normal, model, model plus simvastatin (5mg/kgd·body weight), and model plus low-dose and high-dose EEBM groups (105 and 210mg/kgd·body weight, respectively). Serum lipid profiles were measured by an automatic biochemistry analyser. The activities of anti-oxidative enzymes were determined using the chemical colorimetric method. Pathological changes in liver and arteries were examined by hematoxylin and eosin (H&E), and the intima-media thickness was measured. The high-dose EEBM group showed significantly reduced total cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels, as well as atherogenic index. Furthermore, treatment with high-dose EEBM markedly decreased malondialdehyde content and enhanced anti-oxidative enzyme activities. Histopathological examination showed that EEBM attenuated hepatic steatosis and reduced intima-media thickness and arterial atherosclerotic lesions in atherosclerotic rats. These results suggest that EEBM suppressed atherosclerosis development in atherosclerotic rats by regulating lipid metabolism abnormalities, enhancing anti-oxidative activities, and reducing atherosclerotic lesions, which could be attributed to anthocyanins (23.75%), or the cooperative action of anthocyanins, polyphenols (2.95%), and flavonoids (0.94%). Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. Efficacy and safety of ticagrelor versus aspirin in acute stroke or transient ischaemic attack of atherosclerotic origin: a subgroup analysis of SOCRATES, a randomised, double-blind, controlled trial.

    PubMed

    Amarenco, Pierre; Albers, Gregory W; Denison, Hans; Easton, J Donald; Evans, Scott R; Held, Peter; Hill, Michael D; Jonasson, Jenny; Kasner, Scott E; Ladenvall, Per; Minematsu, Kazuo; Molina, Carlos A; Wang, Yongjun; Wong, K S Lawrence; Johnston, S Claiborne

    2017-04-01

    Ticagrelor is an effective antiplatelet therapy for patients with coronary atherosclerotic disease and might be more effective than aspirin in preventing recurrent stroke and cardiovascular events in patients with acute cerebral ischaemia of atherosclerotic origin. Our aim was to test for a treatment-by-ipsilateral atherosclerotic stenosis interaction in a subgroup analysis of patients in the Acute Stroke or Transient Ischaemic Attack Treated with Aspirin or Ticagrelor and Patient Outcomes (SOCRATES) trial. SOCRATES was a randomised, double-blind, controlled trial of ticagrelor versus aspirin in patients aged 40 years or older with a non-cardioembolic, non-severe acute ischaemic stroke, or high-risk transient ischaemic attack from 674 hospitals in 33 countries. We randomly allocated patients (1:1) to ticagrelor (180 mg loading dose on day 1 followed by 90 mg twice daily for days 2-90, given orally) or aspirin (300 mg on day 1 followed by 100 mg daily for days 2-90, given orally) within 24 h of symptom onset. Investigators classified all patients into atherosclerotic and non-atherosclerotic groups for the prespecified, exploratory analysis reported in this study. The primary endpoint was the time to occurrence of stroke, myocardial infarction, or death within 90 days. Efficacy analysis was by intention to treat. The SOCRATES trial is registered with ClinicalTrials.gov, number NCT01994720. Between Jan 7, 2014, and Oct 29, 2015, we randomly allocated 13 199 patients (6589 [50%] to ticagrelor and 6610 [50%] to aspirin). Potentially symptomatic ipsilateral atherosclerotic stenosis was reported in 3081 (23%) of 13 199 patients. We found a treatment-by-atherosclerotic stenosis interaction (p=0·017). 103 (6·7%) of 1542 patients with ipsilateral stenosis in the ticagrelor group and 147 (9·6%) of 1539 patients with ipsilateral stenosis in the aspirin group had an occurrence of stroke, myocardial infarction, or death within 90 days (hazard ratio 0·68 [95% CI 0·53-0·88]; p=0·003). In 10 118 patients with no ipsilateral stenosis, 339 (6·7%) of 5047 patients in the ticagrelor group had an occurrence of stroke, myocardial infarction, or death within 90 days compared with 350 (6·9%) of 5071 in the aspirin group (0·97 [0·84-1·13]; p=0·72). There were no significant differences in the proportion of life-threatening bleeding or major or minor bleeding events in patients with ipsilateral stenosis in the ticagrelor group compared with the aspirin group. In this prespecified exploratory analysis, ticagrelor was superior to aspirin at preventing stroke, myocardial infarction, or death at 90 days in patients with acute ischaemic stroke or transient ischaemic attack when associated with ipsilateral atherosclerotic stenosis. An understanding of stroke mechanisms and causes is important to deliver safe and efficacious treatments for early stroke prevention. AstraZeneca. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Colorimetric Topography of Atherosclerotic Lesions by Television Image Processing

    DTIC Science & Technology

    1979-06-15

    image. Indeed, the system is capable of detecting such fine dynamics that epidemiologic factors effecting those changes can not be measured...different occurance patterns and development of clinical atherosclerosis (30). Numerous risk factors have been determined by group comparison and some...techniques and scanners today are much more uniform, and these errors are no longer limiting factors . Since the films were "black and white," and scanned as

  18. Grating interferometry-based phase microtomography of atherosclerotic human arteries

    NASA Astrophysics Data System (ADS)

    Buscema, Marzia; Holme, Margaret N.; Deyhle, Hans; Schulz, Georg; Schmitz, Rüdiger; Thalmann, Peter; Hieber, Simone E.; Chicherova, Natalia; Cattin, Philippe C.; Beckmann, Felix; Herzen, Julia; Weitkamp, Timm; Saxer, Till; Müller, Bert

    2014-09-01

    Cardiovascular diseases are the number one cause of death and morbidity in the world. Understanding disease development in terms of lumen morphology and tissue composition of constricted arteries is essential to improve treatment and patient outcome. X-ray tomography provides non-destructive three-dimensional data with micrometer-resolution. However, a common problem is simultaneous visualization of soft and hard tissue-containing specimens, such as atherosclerotic human coronary arteries. Unlike absorption based techniques, where X-ray absorption strongly depends on atomic number and tissue density, phase contrast methods such as grating interferometry have significant advantages as the phase shift is only a linear function of the atomic number. We demonstrate that grating interferometry-based phase tomography is a powerful method to three-dimensionally visualize a variety of anatomical features in atherosclerotic human coronary arteries, including plaque, muscle, fat, and connective tissue. Three formalin-fixed, human coronary arteries were measured using advanced laboratory μCT. While this technique gives information about plaque morphology, it is impossible to extract the lumen morphology. Therefore, selected regions were measured using grating based phase tomography, sinograms were treated with a wavelet-Fourier filter to remove ring artifacts, and reconstructed data were processed to allow extraction of vessel lumen morphology. Phase tomography data in combination with conventional laboratory μCT data of the same specimen shows potential, through use of a joint histogram, to identify more tissue types than either technique alone. Such phase tomography data was also rigidly registered to subsequently decalcified arteries that were histologically sectioned, although the quality of registration was insufficient for joint histogram analysis.

  19. Influence of ghrelin gene polymorphisms on hypertension and atherosclerotic disease.

    PubMed

    Berthold, Heiner K; Giannakidou, Eleni; Krone, Wilhelm; Trégouët, David-Alexandre; Gouni-Berthold, Ioanna

    2010-02-01

    Ghrelin is involved in several metabolic and cardiovascular processes. Recent evidence suggests its involvement in blood pressure regulation and hypertension. The aim of the study was to determine associations of single-nucleotide polymorphisms (SNPs) and haplotypes of the ghrelin gene (GHRL) with hypertension and atherosclerotic disease. Six GHRL SNPs (rs27647, rs26802, rs34911341, rs696217, rs4684677 and a -473G/A (with no assigned rsID)) were investigated in a sample of 1143 hypertensive subjects and 1489 controls of Caucasian origin. Both single-locus and haplotype association analyses were performed. In single-locus analyses, only the non-synonymous rs34911341 was associated with hypertension (odds ratio (OR)=1.95 (95% confidence interval (CI): 1.26-3.02), P=0.003). Six common haplotypes with frequency >1% were inferred from the studied GHRL SNPs, and their frequency distribution was significantly different between hypertensive subjects and controls (chi(2)=12.96 with 5 d.f. (degree of freedom), P=0.024). The effect of rs26802 was found to be significantly (P=0.017) modulated by other GHRL SNPs, as its C allele conferred either an increased risk (OR=1.30 (1.08-1.57), P=0.005) or a decreased risk (OR=0.50 (0.23-1.06), P=0.07) of hypertension according to the two different haplotypes on which it can be found. No association of GHRL SNPs or haplotypes with atherosclerotic disease was observed. In conclusion, we observed statistical evidence for association between GHRL SNPs and risk of hypertension.

  20. A Recombinant Human Anti-Platelet scFv Antibody Produced in Pichia pastoris for Atheroma Targeting

    PubMed Central

    Vallet-Courbin, Amelie; Larivière, Mélusine; Hocquellet, Agnès; Hemadou, Audrey; Parimala, Sarjapura-Nagaraja; Laroche-Traineau, Jeanny; Santarelli, Xavier; Clofent-Sanchez, Gisèle; Jacobin-Valat, Marie-Josée; Noubhani, Abdelmajid

    2017-01-01

    Cells of the innate and adaptive immune system are key factors in the progression of atherosclerotic plaque, leading to plaque instability and rupture, potentially resulting in acute atherothrombotic events such as coronary artery disease, cerebrovascular disease and peripheral arterial disease. Here, we describe the cloning, expression, purification, and immunoreactivity assessment of a recombinant single-chain variable fragment (scFv) derived from a human anti-αIIbβ3 antibody (HuAb) selected to target atheromatous lesions for the presence of platelets. Indeed, platelets within atheroma plaques have been shown to play a role in inflammation, in platelet-leucocyte aggregates and in thrombi formation and might thus be considered relevant biomarkers of atherosclerotic progression. The DNA sequence that encodes the anti-αIIbβ3 TEG4 scFv previously obtained from a phage-display selection on activated platelets, was inserted into the eukaryote vector (pPICZαA) in fusion with a tag sequence encoding 2 cysteines useable for specific probes grafting experiments. The recombinant protein was expressed at high yields in Pichia pastoris (30 mg/L culture). The advantage of P. pastoris as an expression system is the production and secretion of recombinant proteins in the supernatant, ruling out the difficulties encountered when scFv are produced in the cytoplasm of bacteria (low yield, low solubility and reduced affinity). The improved conditions allowed for the recovery of highly purified and biologically active scFv fragments ready to be grafted in a site-directed way to nanoparticles for the imaging of atherosclerotic plaques involving inflammatory processes and thus at high risk of instability. PMID:28125612

  1. Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging.

    PubMed

    Graf, Iulia M; Kim, Seungsoo; Wang, Bo; Smalling, Richard; Emelianov, Stanislav

    2012-03-01

    The structure, composition and mechanics of carotid artery are good indicators of early progressive atherosclerotic lesions. The combination of three imaging modalities (ultrasound, strain rate and photoacoustic imaging) which could provide corroborative information about the named arterial properties could enhance the characterization of intimal xanthoma. The experiments were performed using a New Zealand white rabbit model of atherosclerosis. The aorta excised from an atherosclerotic rabbit was scanned ex vivo using the three imaging techniques: (1) ultrasound imaging of the longitudinal section: standard ultrasound B-mode (74Hz frame rate); (2) strain rate imaging: the artery was flushed with blood and a 1.5Hz physiologic pulsation was induced, while the ultrasound data were recorded at higher frame rate (296Hz); (3) photoacoustic imaging: the artery was irradiated with nanosecond pulsed laser light of low fluence in the 1210-1230nm wavelength range and the photoacoustic data was recorded at 10Hz frame rate. Post processing algorithms based on cross-correlation and optical absorption variation were implemented to derive strain rate and spectroscopic photoacoustic images, respectively. Based on the spatio-temporal variation in displacement of different regions within the arterial wall, strain rate imaging reveals differences in tissue mechanical properties. Additionally, spectroscopic photoacoustic imaging can spatially resolve the optical absorption properties of arterial tissue and identify the location of lipid pools. The study demonstrates that ultrasound, strain rate and photoacoustic imaging can be used to simultaneously evaluate the structure, the mechanics and the composition of atherosclerotic lesions to improve the assessment of plaque vulnerability. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Treatment of blood cholesterol to reduce atherosclerotic cardiovascular disease risk in adults: Synopsis of the 2013 ACC/AHA cholesterol guideline

    USDA-ARS?s Scientific Manuscript database

    Atherosclerotic cardiovascular disease (ASCVD) is the leading U.S. cause of death, lost quality of life and medical costs. Nearly one in three Americans die from heart disease and stroke. Most ASCVD is preventable through a healthy lifestyle and effective treatment of cholesterol and blood pressure...

  3. A fluorescence lifetime spectroscopy study of matrix metalloproteinases-2 and -9 in human atherosclerotic plaque.

    PubMed

    Phipps, Jennifer E; Hatami, Nisa; Galis, Zorina S; Baker, J Dennis; Fishbein, Michael C; Marcu, Laura

    2011-09-01

    Matrix metalloproteinase (MMP)-2 and -9 play important roles in the progression of atherosclerosis. This study aims to determine whether MMP-2 and -9 content in the fibrotic caps of atherosclerotic plaque is correlated with plaque autofluorescence. A time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) system was used to measure the autofluorescence and assess the biochemical composition of human plaques obtained from carotid endarterectomy. Results presented here demonstrate for the first time the ability to characterize the biochemical composition as it relates to MMP-2 and -9 content in the atherosclerotic plaque cap using a label-free imaging technique implemented with a fiberoptic TR-LIFS system. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Progress in atherosclerotic plaque imaging

    PubMed Central

    Soloperto, Giulia; Casciaro, Sergio

    2012-01-01

    Cardiovascular diseases are the primary cause of mortality in the industrialized world, and arterial obstruction, triggered by rupture-prone atherosclerotic plaques, lead to myocardial infarction and cerebral stroke. Vulnerable plaques do not necessarily occur with flow-limiting stenosis, thus conventional luminographic assessment of the pathology fails to identify unstable lesions. In this review we discuss the currently available imaging modalities used to investigate morphological features and biological characteristics of the atherosclerotic plaque. The different imaging modalities such as ultrasound, magnetic resonance imaging, computed tomography, nuclear imaging and their intravascular applications are illustrated, highlighting their specific diagnostic potential. Clinically available and upcoming methodologies are also reviewed along with the related challenges in their clinical translation, concerning the specific invasiveness, accuracy and cost-effectiveness of these methods. PMID:22937215

  5. A case of atherosclerotic inferior mesenteric artery aneurysm secondary to high flow state.

    PubMed

    Troisi, Nicola; Esposito, Giovanni; Cefalì, Pietro; Setti, Marco

    2011-07-01

    Inferior mesenteric artery aneurysms are very rare and they are among the rarest of visceral artery aneurysms. Sometimes, the distribution of the blood flow due to chronic atherosclerotic occlusion of some arteries can establish an increased flow into a particular supplying district (high flow state). A high flow state in a stenotic inferior mesenteric artery in compensation for a mesenteric occlusive disease can produce a rare form of aneurysm. We report the case of an atherosclerotic inferior mesenteric aneurysm secondary to high flow state (association with occlusion of the celiac trunk and severe stenosis of the superior mesenteric artery), treated by open surgical approach. Copyright © 2011 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  6. Renal artery stenosis: epidemiology and treatment

    PubMed Central

    Weber, Benjamin R; Dieter, Robert S

    2014-01-01

    Renal artery stenosis (RAS) is a frequently encountered problem in clinical practice. The disease encompasses a broad spectrum of pathophysiologies and is associated with three major clinical syndromes: ischemic nephropathy, hypertension, and destabilizing cardiac syndromes. The two most common etiologies are fibromuscular dysplasia and atherosclerotic renal artery disease with atherosclerotic disease accounting for the vast majority of cases. Atherosclerotic renovascular disease has considerable overlap with atherosclerotic disease elsewhere and is associated with a poor prognosis. A wide range of diagnostic modalities and treatment approaches for RAS are available to clinicians, and with the advent of endovascular interventions, selecting the best course for a given patient has only grown more challenging. Several clinical trials have demonstrated some benefit with revascularization but not to the extent that many had hoped for or expected. Furthermore, much of the existing data is only marginally useful given significant flaws in study design and inherent bias. There remains a need for further identification of subgroups and appropriate indications in hopes of maximizing outcomes and avoiding unnecessary procedures in patients who would not benefit from treatment. In recent decades, the study of RAS has expanded and evolved rapidly. In this review, we will attempt to summarize the amassed body of literature with a focus on the epidemiology of RAS including prevalence, overlap with other atherosclerotic disease, and prognosis. We will also outline existing diagnostic and treatment approaches available to clinicians as well as summarize the findings of several major clinical trials. Finally, we will offer our perspective on future directions in the field. PMID:24868169

  7. CXCR6 regulates the recruitment of pro-inflammatory IL-17A-producing T cells into atherosclerotic aortas

    PubMed Central

    Butcher, Matthew J.; Wu, Chih-I; Waseem, Tayab

    2016-01-01

    The adaptive immune response is involved in the development and progression of atherosclerosis and IL-17A+ cells play a role in this disease. Although elevated number of CD4+ IL-17A+ (Th17) and IL-17A+TCRγδ+ T cells are found within murine atherosclerotic aortas and human plaques, the mechanisms governing IL-17A+ T-cell migration to atherosclerotic lesions are unclear. The chemokine receptor CXCR6 is expressed on several T-cell subsets and plays a pro-atherogenic role in atherosclerosis. Here, we used CXCR6-deficient (Cxcr6 GFP/GFP) apolipoprotein E-deficient (Apoe −/−) mice to investigate the involvement of CXCR6 in the recruitment IL-17A+ T cells to atherosclerotic aortas. Flow cytometric analyses revealed reductions in Th17 and IL-17A+TCRγδ+ T cells within aged Cxcr6 GFP/GFP Apoe −/− aortas, in comparison with age-matched Cxcr6 GFP/+ Apoe −/− aortas. Although CXCR6-sufficient IL-17A+ T cells efficiently migrated toward CXCL16, the migration of CXCR6-deficient IL-17A+ T cells was abolished in transwell assays. Importantly, the recruitment of Cxcr6 GFP/GFP Apoe −/− IL-17A+ T cells into the aortas of Apoe −/− recipients was markedly reduced in short-term adoptive transfer experiments. Altogether these results demonstrate an important role of CXCR6 in the regulation of pathological Th17 and IL-17A+TCRγδ+ T-cell recruitment into atherosclerotic lesions. PMID:26614640

  8. CXCR6 regulates the recruitment of pro-inflammatory IL-17A-producing T cells into atherosclerotic aortas.

    PubMed

    Butcher, Matthew J; Wu, Chih-I; Waseem, Tayab; Galkina, Elena V

    2016-05-01

    The adaptive immune response is involved in the development and progression of atherosclerosis and IL-17A(+) cells play a role in this disease. Although elevated number of CD4(+) IL-17A(+) (Th17) and IL-17A(+)TCRγδ(+) T cells are found within murine atherosclerotic aortas and human plaques, the mechanisms governing IL-17A(+) T-cell migration to atherosclerotic lesions are unclear. The chemokine receptor CXCR6 is expressed on several T-cell subsets and plays a pro-atherogenic role in atherosclerosis. Here, we used CXCR6-deficient (Cxcr6 (GFP/GFP) ) apolipoprotein E-deficient (Apoe (-/-) ) mice to investigate the involvement of CXCR6 in the recruitment IL-17A(+) T cells to atherosclerotic aortas. Flow cytometric analyses revealed reductions in Th17 and IL-17A(+)TCRγδ(+) T cells within aged Cxcr6 (GFP/GFP) Apoe (-/-) aortas, in comparison with age-matched Cxcr6 (GFP/+) Apoe (-/-) aortas. Although CXCR6-sufficient IL-17A(+) T cells efficiently migrated toward CXCL16, the migration of CXCR6-deficient IL-17A(+) T cells was abolished in transwell assays. Importantly, the recruitment of Cxcr6 (GFP/GFP) Apoe (-/-) IL-17A(+) T cells into the aortas of Apoe (-/-) recipients was markedly reduced in short-term adoptive transfer experiments. Altogether these results demonstrate an important role of CXCR6 in the regulation of pathological Th17 and IL-17A(+)TCRγδ(+) T-cell recruitment into atherosclerotic lesions. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Rapid noninvasive detection of experimental atherosclerotic lesions with novel 99mTc-labeled diadenosine tetraphosphates

    PubMed Central

    Elmaleh, David R.; Narula, Jagat; Babich, John W.; Petrov, Artiom; Fischman, Alan J.; Khaw, Ban-An; Rapaport, Eliezer; Zamecnik, Paul C.

    1998-01-01

    The development of a noninvasive imaging procedure for identifying atherosclerotic lesions is extremely important for the clinical management of patients with coronary artery and peripheral vascular disease. Although numerous radiopharmaceuticals have been proposed for this purpose, none has demonstrated the diagnostic accuracy required to replace invasive angiography. In this report, we used the radiolabeled purine analog, 99mTc diadenosine tetraphosphate (Ap4A; AppppA, P1,P4-di(adenosine-5′)-tetraphosphate) and its analogue 99mTc AppCHClppA for imaging experimental atherosclerotic lesions in New Zealand White rabbits. Serial gamma camera images were obtained after intravenous injection of the radiolabeled dinucleotides. After acquiring the final images, the animals were sacrificed, ex vivo images of the aortas were recorded, and biodistribution was measured. 99mTc-Ap4A and 99mTc AppCHClppA accumulated rapidly in atherosclerotic abdominal aorta, and lesions were clearly visible within 30 min after injection in all animals that were studied. Both radiopharmaceuticals were retained in the lesions for 3 hr, and the peak lesion to normal vessel ratio was 7.4 to 1. Neither of the purine analogs showed significant accumulation in the abdominal aorta of normal (control) rabbits. The excised aortas showed lesion patterns that were highly correlated with the in vivo and ex vivo imaging results. The present study demonstrates that purine receptors are up-regulated in experimental atherosclerotic lesions and 99mTc-labeled purine analogs have potential for rapid noninvasive detection of plaque formation. PMID:9435254

  10. An ultrasound-based comparative study on carotid plaques in HIV-positive patients vs. atherosclerotic and arteritis patients: atherosclerotic or inflammatory lesions?

    PubMed

    Maggi, Paolo; Perilli, Francesco; Lillo, Antonio; Carito, Valentina; Epifani, Giuseppe; Bellacosa, Chiara; Pastore, Giuseppe; Regina, Guido

    2007-02-01

    We have previously described two cases of HIV-1-positive patients undergoing surgery for stenosis of the internal carotid arteries. Histology revealed an extensive inflammatory infiltration of the vascular wall and no evidence of atheromasic plaque. This unexpected pattern of carotid damage prompted us to perform a more accurate investigation of the characteristics of carotid plaques in a group of HIV-positive patients. The results were compared with those obtained from young patients affected by atherosclerosis of the epi-aortic vessels and patients with arteritis. The patients underwent ultrasonography of the epi-aortic vessels using one of the latest generation power color-Doppler with 7.5 MHz probes. The study population included 61 HIV-positive patients and 47 HIV-negative patients (37 atherosclerotic and 10 with arteritis). Compared with HIV-negative atherosclerotic patients, there were significantly higher proportions of HIV-positive patients with iso-hypoechogenic lesions (81.8 vs. 29%) that were homogeneous both in their parietal and endoluminal portions (96.7 vs. 21.6% and 88.5 vs. 54.0%, respectively), with a smooth or slightly irregular surface (99.0 vs. 56.7%) (P=0.001 for all differences). No statistically significant differences were seen between HIV-positive and arteritis patients. Our study evidenced that the ultrasonographic structure of the epi-aortic lesions in HIV-positive patients substantially differ from those of the plaques in atherosclerotic patients, although they share similar characteristics with patients affected by arteritis. Further investigations are warranted to better define the structure and the mechanism of onset of these lesions.

  11. Angiographic assessment of atherosclerotic load at the lower extremity in patients with diabetic foot and charcot neuro-arthropathy.

    PubMed

    Çildağ, Mehmet B; Ertuğrul, Bülent M; Köseoğlu, Ömer Fk; Çildağ, Songül; Armstrong, David G

    2018-06-01

    The aim of this study was to investigate atherosclerotic load at the lower extremity in patients with diabetic foot and charcot neuro-arthropathy and compare them with patients with diabetic foot without charcot neuro-arthropathy. This retrospective study consists of 78 patients with diabetic foot who had lower extremity angiography with antegrade approach. All patients were classified into two groups; neuro ischemic wounds with charcot neuro-arthropathy (30/78) and without charcot neuro-arthropathy (48/78).Atherosclerotic load at the side of diabetic foot was determined by using the Bollinger angiogram scoring method. Comparison of atherosclerotic load between the two groups was performed. The mean of total and infrapopliteal level angiogram scoring of all patients was 33.3 (standard deviation, sd:±17.2) and 29.3 (sd:±15.6), respectively. The mean of total and infrapopliteal level angiogram scoring of neuroischemic wounds with charcot neuro-arthropathy group was 18.1 (sd:±11.6) and 15.7 (sd:±10.4), respectively. The mean of total and infrapopliteal level angiogram scoring of neuroischemic wounds without charcot neuro-arthropathy group was 42.8 (sd:±12.7) and 37.7 (sd:±12.0), respectively. There was a statistically significant difference between the two groups of mean total and infrapopliteal angiogram scoring (p < 0.01). This angiographic study confirms that the atherosclerotic load in patients with diabetic foot and chronic charcot neuro-arthropathy is significantly less than in patients with neuroischemic diabetic foot wounds without chronic charcot neuro-arthropathy. Copyright © 2017. Published by Elsevier Taiwan LLC.

  12. Green tea polyphenol epigallocatechin-3-gallate increases atherosclerotic plaque stability in apolipoprotein E-deficient mice fed a high-fat diet.

    PubMed

    Wang, Qiming; Zhang, Jian; Li, Yafei; Shi, Haojie; Wang, Hao; Chen, Bingrui; Wang, Fang; Wang, Zemu; Yang, Zhijian; Wang, Liansheng

    2018-06-04

    Epigallocatechin-3-gallate (EGCG), which is the principal component of green tea, has been shown to prevent the formation of atherosclerosis. However, the effect of EGCG on atherosclerotic plaque stability remains unknown. This study aimed to assess whether EGCG can enhance atherosclerotic plaque stability and to investigate the underlying mechanisms. Apolipoprotein E-deficient mice fed a high-fat diet were injected intraperitoneally with EGCG (10 mg/kg ) for 16 weeks. Cross sections of the brachiocephalic arteries were stained with hematoxylin and eosin (HE) for morphometric analyses or Masson's trichrome for collagen content analyses. Immunohistochemistry was performed to evaluate the percentage of macrophages and smooth muscle cells (SMCs). Protein expression and matrix metalloproteinase (MMP) activity were assayed by Western blot and gelatin zymography, respectively. Serum inflammatory cytokine levels were quantified by enzyme-linked immunosorbent assay. After 16 weeks of feeding the high-fat diet, there was clear atherosclerosis formation in the proximal brachiocephalic artery segments according to HE staining. EGCG treatment significantly increased the thickness of the fibrous cap. In the atherosclerotic plaques of the EGCG group, the relative macrophage content was decreased, whereas the relative SMC and collagen contents were increased. The expression levels of MMP-2, MMP-9 and extracellular matrix metalloproteinase inducer (EMMPRIN) were significantly decreased by EGCG treatment. In addition, EGCG treatment decreased the circulating TNF-a, IL-6, MCP-1 and IFN-γ levels in apolipoprotein E-deficient mice. EGCG promotes atherosclerotic lesion stability in apolipoprotein E-deficient mice. Potentially, these effects are mediated through the inhibition of inflammatory cytokine, MMPs and EMMPRIN expression.

  13. The roles of salusins in atherosclerosis and related cardiovascular diseases.

    PubMed

    Watanabe, Takuya; Sato, Kengo; Itoh, Fumiko; Iso, Yoshitaka; Nagashima, Masaharu; Hirano, Tsutomu; Shichiri, Masayoshi

    2011-01-01

    Human salusin-α and -β are related peptides of 28 and 20 amino acids, respectively, produced from the same precursor, prosalusin. Salusin-β exerts more potent mitogenic effects on human vascular smooth muscle cells (VSMCs) and fibroblasts than salusin-α. Human macrophage foam cell formation is significantly stimulated by salusin-β, but suppressed by salusin-α. Chronic salusin-β infusion into apolipoprotein E-knockout mice enhances atherosclerotic lesions, paralleling increases in foam cell formation and upregulation of scavenger receptors and of acyl-CoA:cholesterol acyltransferase-1 (ACAT1) in macrophages. In contrast, chronic salusin-α infusion reduces atherosclerotic lesions accompanied by significant suppression of foam cell formation owing to ACAT1 downregulation. Salusin-β is expressed in proliferative neointimal lesions of porcine coronary arteries after stenting. Salusin-α and -β immunoreactivity has been detected in human coronary atherosclerotic plaques, with dominance of salusin-β in macrophage foam cells, VSMCs, and fibroblasts. Serum salusin-α levels are markedly decreased in patients with angiographically proven coronary artery disease compared with patients with mild hypertension and healthy volunteers. Furthermore, among patients with acute coronary syndrome, serum salusin-α levels are decreased in accordance with the severity of coronary atherosclerotic lesions. These findings suggest that salusin-β may contribute to the pathogenesis of atherosclerosis. Decreased levels of salusin-α in circulating blood and vascular tissue are closely linked with human atherosclerosis. Therefore, salusin-α could be a candidate biomarker for atherosclerosis and may be therapeutically useful for prevention of atherosclerotic cardiovascular diseases. Copyright © 2011 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  14. Comprehensive Plasma Metabolomic Analyses of Atherosclerotic Progression Reveal Alterations in Glycerophospholipid and Sphingolipid Metabolism in Apolipoprotein E-deficient Mice

    PubMed Central

    Dang, Vi T.; Huang, Aric; Zhong, Lexy H.; Shi, Yuanyuan; Werstuck, Geoff H.

    2016-01-01

    Atherosclerosis is the major underlying cause of most cardiovascular diseases. Despite recent advances, the molecular mechanisms underlying the pathophysiology of atherogenesis are not clear. In this study, comprehensive plasma metabolomics were used to investigate early-stage atherosclerotic development and progression in chow-fed apolipoprotein E-deficient mice at 5, 10 and 15 weeks of age. Comprehensive plasma metabolomic profiles, based on 4365 detected metabolite features, differentiate atherosclerosis-prone from atherosclerosis-resistant models. Metabolites in the sphingomyelin pathway were significantly altered prior to detectable lesion formation and at all subsequent time-points. The cytidine diphosphate-diacylglycerol pathway was up-regulated during stage I of atherosclerosis, while metabolites in the phosphatidylethanolamine and glycosphingolipid pathways were augmented in mice with stage II lesions. These pathways, involving glycerophospholipid and sphingolipid metabolism, were also significantly affected during the course of atherosclerotic progression. Our findings suggest that distinct plasma metabolomic profiles can differentiate the different stages of atherosclerotic progression. This study reveals that alteration of specific, previously unreported pathways of glycerophospholipid and sphingolipid metabolism are associated with atherosclerosis. The clear difference in the level of several metabolites supports the use of plasma lipid profiling as a diagnostic tool of atherogenesis. PMID:27721472

  15. Ex vivo detection of macrophages in atherosclerotic plaques using intravascular ultrasonic-photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Quang Bui, Nhat; Hlaing, Kyu Kyu; Lee, Yong Wook; Kang, Hyun Wook; Oh, Junghwan

    2017-01-01

    Macrophages are excellent imaging targets for detecting atherosclerotic plaques as they are involved in all the developmental stages of atherosclerosis. However, no imaging technique is currently capable of visualizing macrophages inside blood vessel walls. The current study develops an intravascular ultrasonic-photoacoustic (IVUP) imaging system combined with indocyanine green (ICG) as a contrast agent to provide morphological and compositional information about the targeted samples. Both tissue-mimicking vessel phantoms and atherosclerotic plaque-mimicking porcine arterial tissues are used to demonstrate the feasibility of mapping macrophages labeled with ICG by endoscopically applying the proposed hybrid technique. A delay pulse triggering technique is able to sequentially acquire photoacoustic (PA) and ultrasound (US) signals from a single scan without using any external devices. The acquired PA and US signals are used to reconstruct 2D cross-sectional and 3D volumetric images of the entire tissue with the ICG-loaded macrophages injected. Due to high imaging contrast and sensitivity, the IVUP imaging vividly reveals structural information and detects the spatial distribution of the ICG-labeled macrophages inside the samples. ICG-assisted IVUP imaging can be a feasible imaging modality for the endoscopic detection of atherosclerotic plaques.

  16. Effect of chronic treatment with acetylsalicylic acid and clopidogrel on atheroprogression and atherothrombosis in ApoE-deficient mice in vivo.

    PubMed

    Schulz, Christian; Konrad, Ildiko; Sauer, Susanne; Orschiedt, Lena; Koellnberger, Maria; Lorenz, Reinhard; Walter, Ulrich; Massberg, Steffen

    2008-01-01

    Acetylsalicylic acid (ASA) and the thienopyridine clopidogrel are established anti-platelet drugs that significantly reduce secondary cardiovascular events in patients with manifest atherosclerosis. However, their impact on atherosclerotic lesion development remains controversial. Four-week-old ApoE-deficient mice were randomly assigned to four groups receiving a cholesterol diet together with either ASA (5 mg/kg), or clopidogrel (25 mg/kg), or a combination of both ASA and clopidogrel, or vehicle for 8-12 weeks. Using intravital microscopy we found that daily administration of ASA in combination with clopidogrel reduces platelet thrombus formation following rupture of atherosclerotic plaque in vivo by approximately 50%. However, therapy with ASA or clopidogrel alone, or in combination for a period of 8-12 weeks had no significant effect on adhesion of platelets to dysfunctional endothelial cells or on atherosclerotic lesion formation in the aortic root or the carotid artery. In conclusion, anti-platelet therapy is effective in reducing platelet adhesion and subsequent thrombus formation following rupture of atherosclerotic plaque in vivo. However, our data do not support a role of either drug in the primary prevention of atherosclerosis in ApoE-deficient mice.

  17. Loxoprofen Sodium, a Non-Selective NSAID, Reduces Atherosclerosis in Mice by Reducing Inflammation

    PubMed Central

    Hamaguchi, Masahide; Seno, Takahiro; Yamamoto, Aihiro; Kohno, Masataka; Kadoya, Masatoshi; Ishino, Hidetaka; Ashihara, Eishi; Kimura, Shinya; Tsubakimoto, Yoshinori; Takata, Hiroki; Yoshikawa, Toshikazu; Maekawa, Taira; Kawahito, Yutaka

    2010-01-01

    Recently, it is suggested that the use of nonsteroidal anti-inflammatory drugs (NSAID) may contribute to the occurrence of cardiovascular events, while the formation of atherosclerotic lesions is related to inflammation. Loxoprofen sodium, a non-selective NSAID, becomes active after metabolism in the body and inhibits the activation of cyclooxygenase. We fed apoE−/− mice a western diet from 8 to 16 weeks of age and administered loxoprofen sodium. We measured atherosclerotic lesions at the aortic root. We examined serum levels of cholesterol and triglycerides with HPLC, platelet aggregation, and urinary prostaglandin metabolites with enzyme immune assay. Atherosclerotic lesion formation was reduced to 63.5% and 41.5% as compared to the control in male and female apoE−/− mice treated with loxoprofen sodium respectively. Urinary metabolites of prostaglandin E2, F1α, and thromboxane B2, and platelet aggregation were decreased in mice treated with loxoprofen sodium. Serum levels of cholesterol and triglycerides were not changed. We conclude that loxoprofen sodium reduced the formation of early to intermediate atherosclerotic lesions at the proximal aorta in mice mediated by an anti-inflammatory effect. PMID:20838569

  18. Tracking Monocyte Recruitment and Macrophage Accumulation in Atherosclerotic Plaque Progression Using a Novel hCD68GFP/ApoE−/− Reporter Mouse—Brief Report

    PubMed Central

    Iqbal, Asif J.; Jones, Daniel; Patel, Jyoti; Coutinho, Patricia; Taylor, Lewis; Greaves, David R.; Channon, Keith M.

    2017-01-01

    Objective— To create a model of atherosclerosis using green fluorescent protein (GFP)–targeted monocytes/macrophages, allowing analysis of both endogenous GFP+ and adoptively transferred GFP+ myeloid cells in arterial inflammation. Approach and Results— hCD68GFP reporter mice were crossed with ApoE−/− mice. Expression of GFP was localized to macrophages in atherosclerotic plaques and in angiotensin II–induced aortic aneurysms and correlated with galectin 3 and mCD68 expression. Flow cytometry confirmed GFP+ expression in CD11b+/CD64+, CD11c+/MHC-IIHI, and CD11b+/F4/80+ myeloid cells. Adoptive transfer of GFP+ monocytes demonstrated monocyte recruitment to both adventitia and atherosclerotic plaque, throughout the aortic root, within 72 hours. We demonstrated the biological utility of hCD68GFP monocytes by comparing the recruitment of wild-type and CCR2−/− monocytes to sites of inflammation. Conclusions— hCD68GFP/ApoE−/− mice provide a new approach to study macrophage accumulation in atherosclerotic plaque progression and to identify cells recruited from adoptively transferred monocytes. PMID:27908893

  19. Quantification of plaque area and characterization of plaque biochemical composition with atherosclerosis progression in ApoE/LDLR(-/-) mice by FT-IR imaging.

    PubMed

    Wrobel, Tomasz P; Mateuszuk, Lukasz; Kostogrys, Renata B; Chlopicki, Stefan; Baranska, Malgorzata

    2013-11-07

    In this work the quantitative determination of atherosclerotic lesion area (ApoE/LDLR(-/-) mice) by FT-IR imaging is presented and validated by comparison with atherosclerotic lesion area determination by classic Oil Red O staining. Cluster analysis of FT-IR-based measurements in the 2800-3025 cm(-1) range allowed for quantitative analysis of the atherosclerosis plaque area, the results of which were highly correlated with those of Oil Red O histological staining (R(2) = 0.935). Moreover, a specific class obtained from a second cluster analysis of the aortic cross-section samples at different stages of disease progression (3, 4 and 6 months old) seemed to represent the macrophages (CD68) area within the atherosclerotic plaque.

  20. Medical therapy is best for atherosclerotic renal artery stenosis: Arguments for.

    PubMed

    Annigeri, R A

    2012-01-01

    Atherosclerotic renal artery stenosis (ARAS) is a common condition that causes hypertension and reduction in the glomerular filtration rate and is an independent risk factor for death. Despite high technical success, the clinical benefit of renal artery (RA) angioplasty with stenting in ARAS remains doubtful. The published randomized clinical trials provide no support for the notion that renal angioplasty with stenting significantly improves blood pressure, preserves renal function, or reduces episodes of congestive heart failure in patients with ARAS. RA stenting is associated with procedure-related morbidity and mortality. Agents to block the renin-angiotensin-aldosterone system improve outcome and should be a part of a multifaceted medical regimen in ARAS. Medical therapy effectively controls atherosclerotic renovascular disease at all levels of vasculature and hence is the best therapy for ARAS.

  1. Development of an aptamer-conjugated fluorescent nanoprobe for MMP2

    NASA Astrophysics Data System (ADS)

    Han, Myoung-Eun; Baek, Sungmin; Kim, Hyun-Jung; Lee, Jung Hwan; Ryu, Sung-Ho; Oh, Sae-Ock

    2014-03-01

    Matrix metalloproteinase 2 (MMP2) plays critical roles in various diseases, such as atherosclerosis and cancer, and has been suggested to contribute to the instability of atherosclerotic plaque. To visualize MMP2 in pathologic tissues, we developed an aptamer targeting MMP2 protein by performing eight rounds of modified DNA systematic evolution of ligands by exponential enrichment (SELEX). The aptamer showed high affinity for MMP2 ( K d = 5.59 nM), precipitated MMP2, and detected MMP2 protein in pathological tissues such as atherosclerotic plaque and gastric cancer tissues. Furthermore, a MMP2 aptamer-conjugated fluorescent nanoprobe successfully visualized atherosclerotic plaques in apolipoprotein E (ApoE) knockout mice. These results suggest that the devised MMP2 aptamer could be useful for the development of various diagnostic tools.

  2. Myocardial Bridge and Acute Plaque Rupture.

    PubMed

    Perl, Leor; Daniels, David; Schwartz, Jonathan; Tanaka, Shige; Yeung, Alan; Tremmel, Jennifer A; Schnittger, Ingela

    2016-01-01

    A myocardial bridge (MB) is a common anatomic variant, most frequently located in the left anterior descending coronary artery, where a portion of the coronary artery is covered by myocardium. Importantly, MBs are known to result in a proximal atherosclerotic lesion. It has recently been postulated that these lesions predispose patients to acute coronary events, even in cases of otherwise low-risk patients. One such mechanism may involve acute plaque rupture. In this article, we report 2 cases of patients with MBs who presented with acute coronary syndromes despite having low cardiovascular risk. Their presentation was life-risking and both were treated urgently and studied with coronary angiographies and intravascular ultrasound. This latter modality confirmed a rupture of an atherosclerotic plaque proximal to the MB as a likely cause of the acute events. These cases, of unexplained acute coronary syndrome in low-risk patients, raise the question of alternative processes leading to the event and the role MB play as an underlying cause of ruptured plaques. In some cases, an active investigation for this entity may be warranted, due to the prognostic implications of the different therapeutic modalities, should an MB be discovered.

  3. Atherosclerotic changes of vessels caused by restriction of movement

    NASA Technical Reports Server (NTRS)

    Gvishiani, G. S.; Kobakhidze, N. G.; Mchedlishvili, M. G.; Dekanosidze, T. I.

    1980-01-01

    The effect of restriction of movement on the development of atheroscelerosis was studied in rabbits. Drastic restriction of movement for 20 and 30 days causes atherosclerotic alterations of the aorta and shifts in ECG which are characteristic of coronary atherosclerosis. At the same time, shortening of the duration of blood coagulation and an increase in the content of catecholamines and beta-lipoproteids occur.

  4. Penetrating atherosclerotic ulcer at the proximal aorta complicated with cardiac tamponade and aortic valve regurgitation.

    PubMed

    Yano, K; Makino, N; Hirayama, H; Hatakenaka, M; Matsui, H; Soeda, T; Hadama, T

    1999-03-01

    A 56-year-old man had a penetrating atherosclerotic ulcer originating in the proximal ascending aorta, which is an unusual case of penetrating aortic ulcer complicated with the aortic valve regurgitation and cardiac tamponade. This hemodynamically unstable patient was successfully treated by conservative management to control his blood pressure and was also monitored closely with follow-up imaging studies.

  5. Tyrosine phosphorylation of platelet derived growth factor β receptors in coronary artery lesions: implications for vascular remodelling after directional coronary atherectomy and unstable angina pectoris

    PubMed Central

    Abe, J; Deguchi, J; Takuwa, Y; Hara, K; Ikari, Y; Tamura, T; Ohno, M; Kurokawa, K

    1998-01-01

    Background—Growth factors such as platelet derived growth factor (PDGF) have been postulated to be important mediators of neointimal proliferation observed in atherosclerotic plaques and restenotic lesions following coronary interventions. Binding of PDGF to its receptor results in intrinsic receptor tyrosine kinase activation and subsequent cellular migration, proliferation, and vascular contraction.
Aims—To investigate whether the concentration of PDGF β receptor tyrosine phosphorylation obtained from directional coronary atherectomy (DCA) samples correlate with atherosclerotic plaque burden, the ability of diseased vessels to remodel, coronary risk factors, and clinical events.
Methods—DCA samples from 59 patients and 15 non-atherosclerotic left internal thoracic arteries (LITA) were analysed for PDGF β receptor tyrosine phosphorylation content by receptor immunoprecipitation and antiphosphotyrosine western blot. The amount of PDGF β receptor phosphorylation was analysed in relation to angiographic follow up data and clinical variables.
Results—PDGF β receptor tyrosine phosphorylation in the 59 DCA samples was greater than in the 15 non-atherosclerotic LITA (mean (SD) 0.84 (0.67) v 0.17 (0.08) over a control standard, p < 0.0001). As evaluated by stepwise regression analysis, incorporation of both PDGF β receptor tyrosine phosphorylation and immediate gain correlated strongly (adjusted r2 = 0.579) with late loss, although PDGF β receptor tyramine phosphorylation alone correlated poorly with late loss. Multivariate regression analysis of coronary risk factors and clinical events revealed unstable angina as the most significant correlate of PDGF β receptor tyrosine phosphorylation (F value 20.009, p < 0.0001).
Conclusions—PDGF β receptor tyrosine phosphorylation in atherosclerotic lesions is increased compared with non-atherosclerotic arterial tissues. The association of PDGF β receptor tyrosine phosphorylation with immediate gain strongly correlates with vascular remodelling. PDGF β receptor tyrosine phosphorylation correlates with unstable angina pectoris.

 Keywords: PDGF receptors;  atherosclerosis;  directional coronary atherectomy;  restenosis PMID:9616351

  6. T Cell CX3CR1 Mediates Excess Atherosclerotic Inflammation in Renal Impairment

    PubMed Central

    Dong, Lei; Nordlohne, Johannes; Ge, Shuwang; Hertel, Barbara; Melk, Anette; Rong, Song; Haller, Hermann

    2016-01-01

    Reduced kidney function increases the risk for atherosclerosis and cardiovascular death. Leukocytes in the arterial wall contribute to atherosclerotic plaque formation. We investigated the role of fractalkine receptor CX3CR1 in atherosclerotic inflammation in renal impairment. Apoe−/− (apolipoprotein E) CX3CR1−/− mice with renal impairment were protected from increased aortic atherosclerotic lesion size and macrophage accumulation. Deficiency of CX3CR1 in bone marrow, only, attenuated atherosclerosis in renal impairment in an independent atherosclerosis model of LDL receptor–deficient (LDLr−/−) mice as well. Analysis of inflammatory leukocytes in atherosclerotic mixed bone-marrow chimeric mice (50% wild-type/50% CX3CR1−/− bone marrow into LDLr−/− mice) showed that CX3CR1 cell intrinsically promoted aortic T cell accumulation much more than CD11b+CD11c+ myeloid cell accumulation and increased IL-17-producing T cell counts. In vitro, fewer TH17 cells were obtained from CX3CR1−/− splenocytes than from wild-type splenocytes after polarization with IL-6, IL-23, and TGFβ. Polarization of TH17 or TREG cells, or stimulation of splenocytes with TGFβ alone, increased T cell CX3CR1 reporter gene expression. Furthermore, TGFβ induced CX3CR1 mRNA expression in wild-type cells in a dose- and time-dependent manner. In atherosclerotic LDLr−/− mice, CX3CR1+/− T cells upregulated CX3CR1 and IL-17A production in renal impairment, whereas CX3CR1−/− T cells did not. Transfer of CX3CR1+/− but not Il17a−/− T cells into LDLr−/−CX3CR1−/− mice increased aortic lesion size and aortic CD11b+CD11c+ myeloid cell accumulation in renal impairment. In summary, T cell CX3CR1 expression can be induced by TGFβ and is instrumental in enhanced atherosclerosis in renal impairment. PMID:26449606

  7. αVβ3 integrin-targeted microSPECT/CT imaging of inflamed atherosclerotic plaques in mice.

    PubMed

    Vancraeynest, David; Roelants, Véronique; Bouzin, Caroline; Hanin, François-Xavier; Walrand, Stephan; Bol, Vanesa; Bol, Anne; Pouleur, Anne-Catherine; Pasquet, Agnès; Gerber, Bernhard; Lesnik, Philippe; Huby, Thierry; Jamar, François; Vanoverschelde, Jean-Louis

    2016-12-01

    αVβ3-integrin is expressed by activated endothelial cells and macrophages in atherosclerotic plaques and may represent a valuable marker of high-risk plaques. We evaluated (99m)Tc-maraciclatide, an integrin-specific tracer, for imaging vascular inflammation in atherosclerotic lesions in mice. Apolipoprotein E-negative (ApoE(-/-)) mice on a Western diet (n = 10) and normally fed adult C57BL/6 control mice (n = 4) were injected with (99m)Tc-maraciclatide (51.8 ± 3.7 MBq). A blocking peptide was infused in three ApoE(-/-) mice; this condition served as another control. After 90 min, the animals were imaged via single-photon emission computed tomography (SPECT). While maintained in the same position, the mice were transferred to computed tomography (CT) to obtain contrast-enhanced images of the aortic arch. Images from both modalities were fused, and signal was quantified in the aortic arch and in the vena cava for subtraction of blood-pool activity. The aorta was carefully dissected after imaging for gamma counting, autoradiography, and histology. Tracer uptake was significantly higher in ApoE(-/-) mice than in both groups of control mice (1.56 ± 0.33 vs. 0.82 ± 0.24 vs. 0.98 ± 0.11, respectively; P = 0.006). Furthermore, higher tracer activity was detected via gamma counting in the aorta of hypercholesterolemic mice than in both groups of control mice (1.52 ± 0.43 vs. 0.78 ± 0.19 vs. 0.47 ± 0.31 (99m)Tc-maraciclatide %ID/g, respectively; P = 0.018). Autoradiography showed significantly higher tracer uptake in the atherosclerotic aorta than in the control aorta (P = 0.026). Finally, in the atherosclerotic aorta, immunostaining indicated that the integrin signal came predominantly from macrophages and was correlated with the macrophage CD68 immunomarker (r = 0.73). (99m)Tc-maraciclatide allows in vivo detection of inflamed atherosclerotic plaques in mice and may represent a non-invasive approach for identifying high-risk plaques in patients.

  8. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis[S

    PubMed Central

    Lu, Mengxiao; Gantz, Donald L.; Herscovitz, Haya; Gursky, Olga

    2012-01-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, Ea = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion. PMID:22855737

  9. 2013 Russell Ross memorial lecture in vascular biology: cellular and molecular mechanisms of diabetes mellitus-accelerated atherosclerosis.

    PubMed

    Bornfeldt, Karin E

    2014-04-01

    Adults with diabetes mellitus are much more likely to have cardiovascular disease than those without diabetes mellitus. Genetically engineered mouse models have started to provide important insight into the mechanisms whereby diabetes mellitus promotes atherosclerosis. Such models have demonstrated that diabetes mellitus promotes formation of atherosclerotic lesions, progression of lesions into advanced hemorrhaged lesions, and that it prevents lesion regression. The proatherosclerotic effects of diabetes mellitus are driven in part by the altered function of myeloid cells. The protein S100A9 and the receptor for advanced glycation end-products are important modulators of the effect of diabetes mellitus on myelopoiesis, which might promote monocyte accumulation in lesions. Furthermore, myeloid cell expression of the enzyme acyl-CoA synthetase 1 (ACSL1), which converts long-chain fatty acids into their acyl-CoA derivatives, has emerged as causal to diabetes mellitus-induced lesion initiation. The protective effects of myeloid ACSL1-deficiency in diabetic mice, but not in nondiabetic mice, indicate that myeloid cells are activated by diabetes mellitus through mechanisms that play minor roles in the absence of diabetes mellitus. The roles of reactive oxygen species and insulin resistance in diabetes mellitus-accelerated atherosclerosis are also discussed, primarily in relation to endothelial cells. Translational studies addressing whether the mechanisms identified in mouse models are equally important in humans with diabetes mellitus will be paramount.

  10. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis.

    PubMed

    Lu, Mengxiao; Gantz, Donald L; Herscovitz, Haya; Gursky, Olga

    2012-10-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.

  11. Haploinsufficiency of the insulin-like growth factor-1 receptor enhances endothelial repair and favorably modifies angiogenic progenitor cell phenotype.

    PubMed

    Yuldasheva, Nadira Y; Rashid, Sheikh Tawqeer; Haywood, Natalie J; Cordell, Paul; Mughal, Romana; Viswambharan, Hema; Imrie, Helen; Sukumar, Piruthivi; Cubbon, Richard M; Aziz, Amir; Gage, Matthew; Mbonye, Kamatamu Amanda; Smith, Jessica; Galloway, Stacey; Skromna, Anna; Scott, D Julian A; Kearney, Mark T; Wheatcroft, Stephen B

    2014-09-01

    Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R(+/-)). Endothelial regeneration after arterial injury was accelerated in IGF1R(+/-) mice. Although the yield of angiogenic progenitor cells was lower in IGF1R(+/-) mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R(+/-) bone marrow-derived CD117(+) cells into wild-type mice. IGF1R(+/-) cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow-derived CD117(+) cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury. © 2014 American Heart Association, Inc.

  12. Prognostic Value of C-Reactive Protein and Homocysteine in Large-Artery Atherosclerotic Stroke: a Prospective Observational Study.

    PubMed

    Ye, Zusen; Zhang, Zhizhong; Zhang, Hao; Hao, Yonggang; Zhang, Jun; Liu, Wenhua; Xu, Gelin; Liu, Xinfeng

    2017-03-01

    Our objective is to investigate whether C-reactive protein (CRP) and homocysteine (Hcy) levels in the acute phase of large-artery atherosclerotic stroke predict long-term functional disability and recurrent vascular events. Patients with first-ever large-artery atherosclerotic ischemic stroke were prospectively registered in the Nanjing Stroke Registry Program between January 2012 and June 2014. Venous blood samples were collected within 2 weeks after the index stroke. Patients were followed up for 1 year. The Kaplan-Meier method was performed in survival analysis. Multiple logistic regression analysis and Cox proportional hazard model were applied to identify predictors of functional disability and recurrent vascular events, respectively. A total of 625 eligible patients (458 males) were evaluated. During the 1-year follow-up period, 63 patients suffered recurrent vascular events. An elevated CRP level is an independent predictor of poor functional disability at 1 year (P for trend = .002), in both males (P for trend = .017) and females (P for trend = .042). Hcy showed no relationship with functional disability. No significant relationship between CRP and Hcy levels and recurrent vascular events was found in total patients in multiple models. Stratified by sex, high Hcy levels were associated with recurrent vascular events in females (P for trend = .036) but not in males. Elevated CRP levels are associated with poor functional disability in patients with large-artery atherosclerotic stroke at 1 year, and Hcy is a relatively moderate predictor of recurrent vascular events in female patients with large-artery atherosclerotic stroke at 1 year. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Genetic Evidence Supports a Major Role for Akt1 in VSMCs During Atherogenesis

    PubMed Central

    Rotllan, Noemi; Wanschel, Amarylis C.; Fernandez-Hernando, Ana; Salerno, Alessandro G.; Offermanns, Stefan; Sessa, William C.; Fernández-Hernando, Carlos

    2015-01-01

    Rationale Coronary artery disease (CAD), the direct result of atherosclerosis, is the most common cause of death in Western societies. Vascular smooth muscle cell (VSMC) apoptosis occurs during the progression of atherosclerosis and in advanced lesions, promotes plaque necrosis, a common feature of high-risk/vulnerable atherosclerotic plaques. Akt1, a serine-threonine protein kinase, regulates several key endothelial cell (EC) and VSMC functions including cell growth, migration, survival and vascular tone. While global deficiency of Akt1 results in impaired angiogenesis and massive atherosclerosis, the specific contribution of VSMC Akt1 remains poorly characterized. Objective To investigate the contribution of VSMC Akt1 during atherogenesis and in established atherosclerotic plaques. Methods and Results We generated two mouse models in which Akt1 expression can be suppressed specifically in VSCMs before (Apoe−/−Akt1fl/flSm22αCRE) and after (Apoe−/−Akt1fl/flSM-MHC-CreERT2E) the formation of atherosclerotic plaques. This approach allows us to interrogate the role of Akt1 during the initial and late steps of atherogenesis. Absence of Akt1 in VSMCs during the progression of atherosclerosis results in larger atherosclerotic plaques characterized by bigger necrotic core areas, enhanced VSMC apoptosis and reduced fibrous cap and collagen content. In contrast, VSMC Akt1 inhibition in established atherosclerotic plaques does not influence lesion size but markedly reduces the relative fibrous cap area in plaques and increases VSMC apoptosis. Conclusions Akt1 expression in VSMCs influences early and late stages of atherosclerosis. Absence of Akt1 in VSMCs induces features of plaque vulnerability including fibrous cap thinning and extensive necrotic core areas. These observations suggest that interventions enhancing Akt1 expression specifically in VSMCs may lessen plaque progression. PMID:25868464

  14. Intakes of Vitamin B6 and Dietary Fiber and Clinical Course of Systemic Lupus Erythematosus: A Prospective Study of Japanese Female Patients

    PubMed Central

    Minami, Yuko; Hirabayashi, Yasuhiko; Nagata, Chisato; Ishii, Tomonori; Harigae, Hideo; Sasaki, Takeshi

    2011-01-01

    Background Intakes of selected vitamins and dietary fiber may influence the clinical course of systemic lupus erythematosus (SLE). Using a cohort study method, we investigated the associations of dietary intake of vitamin B6 and B12, folate, and dietary fiber with the risk of active disease and atherosclerotic vascular events in SLE. Methods The study included female SLE patients in the Miyagi Lupus Cohort, which was founded in 1995. Dietary nutrients at baseline were estimated by a semiquantitative food frequency questionnaire. The association of each nutrient intake with the risk of active disease was investigated in 216 patients who had inactive disease at baseline. The association with atherosclerotic vascular events was assessed in 196 women who had inactive disease and no history of atherosclerotic diseases at baseline. Results Forty-three cases of active disease were identified during 9966 person-months of follow-up (1995–1999). During 19 575 person-months of follow-up (1995–2005), 20 atherosclerotic vascular events were documented. The Cox proportional hazards model revealed an inverse association between vitamin B6 intake and the risk of active disease (hazard ratio for the highest as compared with the lowest tertile, 0.41; 95% confidence interval, 0.18–0.97; P for trend = 0.04). An inverse association was also found for dietary fiber intake (P for trend = 0.01). However, no significant association was observed between intakes of these nutrients and the risk of atherosclerotic vascular events. Conclusions Higher intake of vitamin B6 and dietary fiber may prevent the occurrence of active disease in SLE. PMID:21515941

  15. Pharmacokinetics and atherosclerotic lesions targeting effects of tanshinone IIA discoidal and spherical biomimetic high density lipoproteins.

    PubMed

    Zhang, Wenli; He, Hongliang; Liu, Jianping; Wang, Ji; Zhang, Suyang; Zhang, Shuangshuang; Wu, Zimei

    2013-01-01

    High density lipoproteins (HDL) have been successfully reconstructed to deliver a large number of lipophilic drugs. Here, discoidal and spherical recombinant HDL loaded with cardiovascular drug tanshinone IIA (TA) were constructed (TA-d-rHDL and TA-s-rHDL), respectively. And next their in vitro physiochemical and biomimetic properties were characterized. Furthermore, pharmacokinetics, atherosclerotic lesions targeting effects and antiatherogenic efficacies were elaborately performed and compared in atherosclerotic New Zealand White (NZW) rabbits. In vitro characterizations results showed that both TA-d-rHDL and TA-s-rHDL had nano-size diameter, high entrapment efficiency (EE) and drug-loading capacity (DL). Additionally, similar to their native counterparts, TA-d-rHDL maintained remodeling behaviors induced by lecithin cholesterol acyltransferase (LCAT), and TA leaked during remodeling behaviors. Pharmacokinetic studies manifested that both TA-d-rHDL and TA-s-rHDL markedly improved pharmacokinetic behaviors of TA in vivo. Ex vivo imaging demonstrated that both d-rHDL and s-rHDL bound more avidly to atherosclerotic lesions than to normal vessel walls, and s-rHDL had better targeting effect than d-rHDL. Pharmacodynamic tests illustrated that both TA-d-rHDL and TA-s-rHDL had much stronger antiatherogenic efficacies than conventional TA nanostructured lipid carriers (TA-NLC), TA liposomes (TA-L) and commercially available preparation Sulfotanshinone Sodium Injection (SSI). Moreover, TA-s-rHDL had more potent antiatherogenic efficacies than TA-d-rHDL. Collectively our studies indicated that rHDL could be exploited as potential delivery vehicles of TA targeting atherosclerotic lesions as well as synergistically improving efficacies, especially for s-rHDL. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Precision phenotyping, panomics, and system-level bioinformatics to delineate complex biologies of atherosclerosis: rationale and design of the "Genetic Loci and the Burden of Atherosclerotic Lesions" study.

    PubMed

    Voros, Szilard; Maurovich-Horvat, Pal; Marvasty, Idean B; Bansal, Aruna T; Barnes, Michael R; Vazquez, Gustavo; Murray, Sarah S; Voros, Viktor; Merkely, Bela; Brown, Bradley O; Warnick, G Russell

    2014-01-01

    Complex biological networks of atherosclerosis are largely unknown. The main objective of the Genetic Loci and the Burden of Atherosclerotic Lesions study is to assemble comprehensive biological networks of atherosclerosis using advanced cardiovascular imaging for phenotyping, a panomic approach to identify underlying genomic, proteomic, metabolomic, and lipidomic underpinnings, analyzed by systems biology-driven bioinformatics. By design, this is a hypothesis-free unbiased discovery study collecting a large number of biologically related factors to examine biological associations between genomic, proteomic, metabolomic, lipidomic, and phenotypic factors of atherosclerosis. The Genetic Loci and the Burden of Atherosclerotic Lesions study (NCT01738828) is a prospective, multicenter, international observational study of atherosclerotic coronary artery disease. Approximately 7500 patients are enrolled and undergo non-contrast-enhanced coronary calcium scanning by CT for the detection and quantification of coronary artery calcium, as well as coronary artery CT angiography for the detection and quantification of plaque, stenosis, and overall coronary artery disease burden. In addition, patients undergo whole genome sequencing, DNA methylation, whole blood-based transcriptome sequencing, unbiased proteomics based on mass spectrometry, as well as metabolomics and lipidomics on a mass spectrometry platform. The study is analyzed in 3 subsequent phases, and each phase consists of a discovery cohort and an independent validation cohort. For the primary analysis, the primary phenotype will be the presence of any atherosclerotic plaque, as detected by cardiac CT. Additional phenotypic analyses will include per patient maximal luminal stenosis defined as 50% and 70% diameter stenosis. Single-omic and multi-omic associations will be examined for each phenotype; putative biomarkers will be assessed for association, calibration, discrimination, and reclassification. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Intracerebral Hemorrhage Caused by Cerebral Hyperperfusion after Superficial Temporal Artery to Middle Cerebral Artery Bypass for Atherosclerotic Occlusive Cerebrovascular Disease

    PubMed Central

    Matano, Fumihiro; Murai, Yasuo; Mizunari, Takayuki; Adachi, Koji; Kobayashi, Shiro; Morita, Akio

    Few papers have reported detailed accounts of intracerebral hemorrhage caused by cerebral hyperperfusion after superficial temporal artery to middle cerebral artery bypass (STA-MCA) bypass for atherosclerotic occlusive cerebrovascular disease. We report a case of vasogenic edema and subsequent intracerebral hemorrhage caused by the cerebral hyperperfusion syndrome (CHS) after STA-MCA bypass for atherosclerotic occlusive cerebrovascular disease disease without intense postoperative blood pressure control. A 63-year-old man with repeating left hemiparesis underwent magnetic resonance angiography (MRA), which revealed right internal carotid artery (ICA) occlusion. We performed a double bypass superficial temporal artery (STA)–middle cerebral artery (MCA) bypass surgery for the M2 and M3 branches. While the patient’s postoperative course was relatively uneventful, he suffered generalized convulsions, and computed tomography revealed a low area in the right frontal lobe on Day 4 after surgery. We considered this lesion to be pure vasogenic edema caused by cerebral hyperperfusion after revascularization. Intravenous drip infusion of a free radical scavenger (edaravone) and efforts to reduce systolic blood pressure to <120 mmHg were continued. The patient experienced severe left hemiparesis and disturbance of consciousness on Day 8 after surgery, due to intracerebral hemorrhage in the right frontal lobe at the site of the earlier vasogenic edema. Brain edema associated with cerebral hyperperfusion after STA-MCA bypass for atherosclerotic occlusive cerebrovascular disease should be recognized as a risk factor for intracerebral hemorrhage. The development of brain edema associated with CHS after STA-MCA bypass for atherosclerotic occlusive cerebrovascular disease requires not only intensive control of blood pressure, but also consideration of sedation therapy with propofol. PMID:28664022

  18. Elevated levels of protein-bound p-hydroxyphenylacetaldehyde, an amino-acid-derived aldehyde generated by myeloperoxidase, are present in human fatty streaks, intermediate lesions and advanced atherosclerotic lesions.

    PubMed Central

    Hazen, S L; Gaut, J P; Crowley, J R; Hsu, F F; Heinecke, J W

    2000-01-01

    Reactive aldehydes might have a pivotal role in the pathogenesis of atherosclerosis by covalently modifying low-density lipoprotein (LDL). However, the identities of the aldehyde adducts that form on LDL in vivo are not yet clearly established. We previously demonstrated that the haem protein myeloperoxidase oxidizes proteins in the human artery wall. We also have shown that p-hydroxyphenylacetaldehyde (pHA), the aldehyde that forms when myeloperoxidase oxidizes L-tyrosine, covalently modifies the N(epsilon)-lysine residues of proteins. The resulting Schiff base can be quantified as N(epsilon)-[2-(p-hydroxyphenyl)ethyl]lysine (pHA-lysine) after reduction with NaCNBH(3). Here we demonstrate that pHA-lysine is a marker for LDL that has been modified by myeloperoxidase, and that water-soluble, but not lipid-soluble, antioxidants inhibit the modification of LDL protein. To determine whether myeloperoxidase-generated aldehydes might modify LDL in vivo, we used a combination of isotope-dilution GC-MS to quantify pHA-lysine in aortic tissues at various stages of lesion evolution. We also analysed LDL isolated from atherosclerotic aortic tissue. Comparison of normal and atherosclerotic aortic tissue demonstrated a significant elevation (more than 10-fold) of the reduced Schiff base adduct in fatty streaks, intermediate lesions and advanced lesions compared with normal aortic tissue. Moreover, the level of pHA-lysine in LDL recovered from atherosclerotic aortic intima was 200-fold that in plasma LDL of healthy donors. These results indicate that pHA-lysine, a specific covalent modification of LDL, is generated in human atherosclerotic vascular tissue. They also raise the possibility that reactive aldehydes generated by myeloperoxidase have a role in converting LDL into an atherogenic lipoprotein. PMID:11104675

  19. Effects of onion extract on endogenous vascular H2S and adrenomedulin in rat atherosclerosis.

    PubMed

    Li, Wei; Tang, Chaoshu; Jin, Hongfang; Du, Junbao

    2011-09-01

    This study aimed to explore the effect of onion extract on endogenous hydrogen sulfide (H2S) and adrenomedulin (ADM) and on atherosclerotic progression in rats with atherosclerosis (AS). Male Sprague-Dawley rats were randomly divided into control, AS and AS+onion groups. Ultrastructure of aorta and atherosclerotic lesions both in aorta and in coronary artery were detected. Plasma and aortic H2S were detected by using a sulfide- sensitive electrode. Plasma and aortic ADM was determined with radioimmunoassay. Cystathionine-γ-lyase (CSE), calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein (RAMP1, RAMP2 and RAMP3) mRNA expressions were analysed. Glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO) and NO synthase (NOS) contents in plasma, SOD1, SOD2 and ICAM-1 expressions in aorta were detected. Rats in the AS group showed marked atherosclerotic lesions both in aorta and in coronary artery but decreased aortic H2S production. Decreased plasma and aortic ADM content, but increased levels of aortic CRLR, RAMP2 and RAMP3 mRNAs were observed. Plasma GSH-PX and SOD were reduced but MDA elevated. Plasma ICAM-1 and NO contents and iNOS activity were increased. Onion extract, however, lessened atherosclerotic lesions and increased endogenous aortic H2S production, but decreased plasma ADM content, aortic ADM content and aortic CRLR, RAMP2 and RAMP3 mRNAs. In addition, it increased plasma GSH-PX level and SOD activities but reduced MDA; it decreased inflammatory response but increased plasma eNOS activity and NO content. Onion extract exerted a marked antiatherogenic effect in association with the up-regulation of the endogenous CSE/H2S pathway but down-regulation of the ADM/CRLR family in atherosclerotic rats.

  20. Association of CD147 genetic polymorphisms with carotid atherosclerotic plaques in a Han Chinese population with cerebral infarction.

    PubMed

    Ni, Tongtian; Chen, Min; Yang, Kang; Shao, Jianwei; Fu, Yi; Zhou, Weijun

    2017-08-01

    Given the important role of CD147 in the development of atherosclerosis, we speculated that CD147 genetic polymorphisms might influence the formation of carotid atherosclerotic plaques. The study was to investigate the association between CD147 gene polymorphisms and susceptibility to carotid atherosclerotic plaques in individuals with cerebral infarction (CI). Eight SNPs in the regulatory and coding regions of the CD147 gene were examined using polymerase chain reaction-ligase detection reaction (PCR-LDR) in DNA samples from 732 Chinese patients with CI, divided into a carotid plaque group (n=475) and a non-carotid plaque group (n=257). Significant differences were found in the genotypes and allele frequencies of the rs4919862 SNP between the carotid plaque and non-carotid plaque groups of CI patients (P<0.05), while the frequencies of the C allele and the CC genotype in the non-carotid plaque group were significantly lower than those in the carotid plaque group, and the frequencies of the T allele in the non-carotid plaque group were significantly higher than those in the carotid plaque group (P<0.05). In addition, there was strong linkage disequilibrium among the rs4919862, rs8637 and rs8259 sites. In a haplotype analysis, the occurrence rate of the haplotype GATGCAGC was 2.095 times higher in the carotid plaque group than in the non-carotid plaque group (P<0.05). These results showed that the rs4919862 SNP of CD147 was closely associated with carotid atherosclerotic plaques formation. Thus, polymorphisms of the CD147 gene may be related to the tendency for carotid atherosclerotic plaques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease.

    PubMed

    Fetterman, Jessica L; Holbrook, Monica; Westbrook, David G; Brown, Jamelle A; Feeley, Kyle P; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Weisbrod, Robert M; Widlansky, Michael E; Gokce, Noyan; Ballinger, Scott W; Hamburg, Naomi M

    2016-03-31

    Prior studies demonstrate mitochondrial dysfunction with increased reactive oxygen species generation in peripheral blood mononuclear cells in diabetes mellitus. Oxidative stress-mediated damage to mitochondrial DNA promotes atherosclerosis in animal models. Thus, we evaluated the relation of mitochondrial DNA damage in peripheral blood mononuclear cells s with vascular function in patients with diabetes mellitus and with atherosclerotic cardiovascular disease. We assessed non-invasive vascular function and mitochondrial DNA damage in 275 patients (age 57 ± 9 years, 60 % women) with atherosclerotic cardiovascular disease alone (N = 55), diabetes mellitus alone (N = 74), combined atherosclerotic cardiovascular disease and diabetes mellitus (N = 48), and controls age >45 without diabetes mellitus or atherosclerotic cardiovascular disease (N = 98). Mitochondrial DNA damage measured by quantitative PCR in peripheral blood mononuclear cells was higher with clinical atherosclerosis alone (0.55 ± 0.65), diabetes mellitus alone (0.65 ± 1.0), and combined clinical atherosclerosis and diabetes mellitus (0.89 ± 1.32) as compared to control subjects (0.23 ± 0.64, P < 0.0001). In multivariable models adjusting for age, sex, and relevant cardiovascular risk factors, clinical atherosclerosis and diabetes mellitus remained associated with higher mitochondrial DNA damage levels (β = 0.14 ± 0.13, P = 0.04 and β = 0.21 ± 0.13, P = 0.002, respectively). Higher mitochondrial DNA damage was associated with higher baseline pulse amplitude, a measure of arterial pulsatility, but not with flow-mediated dilation or hyperemic response, measures of vasodilator function. We found greater mitochondrial DNA damage in patients with diabetes mellitus and clinical atherosclerosis. The association of mitochondrial DNA damage and baseline pulse amplitude may suggest a link between mitochondrial dysfunction and excessive small artery pulsatility with potentially adverse microvascular impact.

  2. Assessment of atherosclerotic plaque activity in patients with sleep apnea using hybrid positron emission tomography/magnetic resonance imaging (PET/MRI): a feasibility study.

    PubMed

    Kundel, Vaishnavi; Trivieri, Maria Giovanna; Karakatsanis, Nicolas A; Robson, Phillip M; Mani, Venkatesh; Kizer, Jorge R; Kaplan, Robert; Fayad, Zahi; Shah, Neomi

    2018-03-05

    Evidence suggests that the inflammatory state of an atherosclerotic plaque is important in predicting future risk of plaque rupture. This study aims to investigate the feasibility of measuring plaque inflammation in patients with obstructive sleep apnea (OSA) utilizing advanced vascular imaging - hybrid positron-emission tomography/magnetic resonance imaging (PET/MRI) with fluorodeoxyglucose (FDG) tracer-before and after continuous positive airway pressure (CPAP). Patients with newly diagnosed moderate to severe OSA underwent baseline PET/MRI for assessment of vascular inflammation of the carotid arteries and thoracic aorta prior to initiation of CPAP. Those adherent to CPAP returned for repeat imaging after 3-6 months of CPAP use. Atherosclerotic plaque activity, as measured by arterial wall FDG uptake, was calculated using target-to-background ratios (TBR) before and after CPAP. Five patients were recruited as part of a focused project. Mean age was 52 years (80% male), and mean apnea-hypopnea index (AHI) was 33. Three patients were objectively adherent with CPAP. In the pre-CPAP phase, all patients had focal FDG uptake in the carotid arteries and aorta. After CPAP, there was an average reduction in TBR of 5.5% (TBR mean ) and 6.2% (TBR max ) in carotid and aortic plaque inflammation, similar in magnitude to the reduction observed with statin therapy alone in non-OSA patients (previously reported by others). We demonstrate the feasibility of using hybrid PET/MRI to assess atherosclerotic plaque inflammation in patients with OSA before and after CPAP. Use of the vascular PET/MRI platform in patients with OSA may provide better insight into the role of OSA and its treatment in reducing atherosclerotic inflammation.

  3. Renal function during pregnancy may predict risk of future hospitalization due to atherosclerotic-related morbidity.

    PubMed

    Wolak, Talya; Shoham-Vardi, Ilana; Sergienko, Ruslan; Sheiner, Eyal

    2016-02-01

    This study aims to examine whether renal function during pregnancy can serve as a surrogate marker for the risk of developing atherosclerotic-related morbidity. A case-control study, including women who gave birth at a tertiary referral medical centre during 2000-2012. This population was divided into cases of women who were subsequently hospitalized for atherosclerotic morbidity during the study period and age-matched controls. From the study population, we retrieved two groups: the creatinine (Cr) group: women who had at least one Cr measurement (4945 women) and the urea group: women who had at least one urea measurement (4932 women) during their pregnancies. In the Cr and urea group, there were 572 and 571 cases and 4373 and 4361 controls, respectively. The mean follow-up period in the Cr and urea group was 61.7 ± 37.0 and 57.3 ± 36.0 months, respectively. Cox proportional hazards models (controlling for confounders: gestational hypertension, gestational diabetes, obesity, maternal age, creatinine level (for urea), and gestational week) were used to estimate the adjusted hazard ratios (HR) for hospitalizations. A significant association was documented between renal function during pregnancy and long-term atherosclerotic morbidity. Multivariate analysis, showed that Cr at pregnancy index of ≥89 μmol/L was associated with a significant increased risk for hospitalization due to cardiovascular (CVS) events (adjusted HR = 2.91 CI 1.37-6.19 P = 0.005) and urea level ≤7 mmol/L was independently associated with reduced prevalence of CVS hospitalization (adjusted HR = 0.62 CI 0.57-0.86 P = 0.001). Renal function abnormality during pregnancy may reveal occult predisposition to atherosclerotic morbidity years after childbirth. © 2015 Asian Pacific Society of Nephrology.

  4. Predictors of cardiovascular damage in patients with systemic lupus erythematosus: data from LUMINA (LXVIII), a multiethnic US cohort.

    PubMed

    Pons-Estel, Guillermo J; González, Luis A; Zhang, Jie; Burgos, Paula I; Reveille, John D; Vilá, Luis M; Alarcón, Graciela S

    2009-07-01

    To determine the features predictive of atherosclerotic cardiovascular damage in patients with SLE. SLE LUMINA (LUpus in MInorities: NAture vs nurture) patients (n = 637), aged >or=16 years, disease duration

  5. Arterial ageing: from endothelial dysfunction to vascular calcification.

    PubMed

    Tesauro, M; Mauriello, A; Rovella, V; Annicchiarico-Petruzzelli, M; Cardillo, C; Melino, G; Di Daniele, N

    2017-05-01

    Complex structural and functional changes occur in the arterial system with advancing age. The aged artery is characterized by changes in microRNA expression patterns, autophagy, smooth muscle cell migration and proliferation, and arterial calcification with progressively increased mechanical vessel rigidity and stiffness. With age the vascular smooth muscle cells modify their phenotype from contractile to 'synthetic' determining the development of intimal thickening as early as the second decade of life as an adaptive response to forces acting on the arterial wall. The increased permeability observed in intimal thickening could represent the substrate on which low-level atherosclerotic stimuli can promote the development of advanced atherosclerotic lesions. In elderly patients the atherosclerotic plaques tend to be larger with increased vascular stenosis. In these plaques there is a progressive accumulation of both lipids and collagen and a decrease of inflammation. Similarly the plaques from elderly patients show more calcification as compared with those from younger patients. The coronary artery calcium score is a well-established marker of adverse cardiovascular outcomes. The presence of diffuse calcification in a severely stenotic segment probably induces changes in mechanical properties and shear stress of the arterial wall favouring the rupture of a vulnerable lesion in a less stenotic adjacent segment. Oxidative stress and inflammation appear to be the two primary pathological mechanisms of ageing-related endothelial dysfunction even in the absence of clinical disease. Arterial ageing is no longer considered an inexorable process. Only a better understanding of the link between ageing and vascular dysfunction can lead to significant advances in both preventative and therapeutic treatments with the aim that in the future vascular ageing may be halted or even reversed. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  6. Plasma Cholesterol–Induced Lesion Networks Activated before Regression of Early, Mature, and Advanced Atherosclerosis

    PubMed Central

    Björkegren, Johan L. M.; Hägg, Sara; Jain, Rajeev K.; Cedergren, Cecilia; Shang, Ming-Mei; Rossignoli, Aránzazu; Takolander, Rabbe; Melander, Olle; Hamsten, Anders; Michoel, Tom; Skogsberg, Josefin

    2014-01-01

    Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr−/−Apob 100/100 Mttp flox/floxMx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions. PMID:24586211

  7. Clinical, laboratory, and transesophageal echocardiographic correlates of interatrial septal thickness: a population-based transesophageal echocardiographic study.

    PubMed

    Agmon, Yoram; Meissner, Irene; Tajik, A Jamil; Seward, James B; Petterson, Tanya M; Christianson, Teresa J H; O'Fallon, W Michael; Wiebers, David O; Khandheria, Bijoy K

    2005-02-01

    The determinants of interatrial septal (IAS) thickening ("lipomatous hypertrophy"), a common echocardiographic finding in the elderly, are poorly defined. The objective of this study was to determine the clinical, laboratory, and transesophageal echocardiographic correlates of IAS thickening in the general population. The thickness of the IAS was measured by transesophageal echocardiography in 384 patients (median age: 66 years; range: 51-101 years; 53% men) participating in a population-based study (Stroke Prevention: Assessment of Risk in a Community). The associations between atherosclerosis risk factors, clinical cardiovascular disease, aortic atherosclerotic plaques, and IAS thickness were examined. Age and body surface area (BSA) were significantly associated with IAS thickness (median: 6 mm; range: 2-17 mm). IAS thickness increased by 12.6% per 10 years of age (95% confidence interval: 9.0-16.4%) adjusting for sex and BSA, and increased by 7.0% per 0.1 m 2 BSA (confidence interval: 5.0-9.2%) adjusting for age and sex. Overall, age, sex, and BSA accounted for 22.5% of the variability in IAS thickness. Current smoking (20.4% increase in IAS thickness in current smokers) and hypertension treatment (8.5% increase in treated patients) were associated with increased IAS thickness, adjusting for age, sex, and BSA ( P < .05), but these two risk factor variables jointly explained only an additional 2.3% of the variability in IAS thickness beyond the variability explained by age, sex, and BSA. Clinical coronary artery and cerebrovascular disease, atrial arrhythmias, and aortic atherosclerotic plaques were not associated with IAS thickness, adjusting for age, sex, and BSA ( P > .3). IAS thickening is an age-associated process. Atherosclerosis risk factors are weakly associated with IAS thickening, whereas atherosclerotic vascular disease is not.

  8. 4-phenylbutyrate and valproate treatment attenuates the progression of atherosclerosis and stabilizes existing plaques.

    PubMed

    Huang, Aric; Young, Tayler L; Dang, Vi T; Shi, Yuanyuan; McAlpine, Cameron S; Werstuck, Geoff H

    2017-11-01

    Recent evidence suggests that endoplasmic reticulum (ER) stress signaling through glycogen synthase kinase (GSK)-3α/β is involved in the activation of pro-atherosclerotic processes. In this study, we examined the effects of small molecules that interfere with ER stress-GSK3α/β signaling on the progression and regression of atherosclerosis in a mouse model. To examine atherosclerotic progression, low-density lipoprotein receptor deficient (Ldlr -/- ) mice were placed on a high-fat diet (HFD) and treated with the chemical chaperone, 4-phenylbutyrate (4PBA, 3.8  g/L drinking water), or the GSK3α/β inhibitor, valproate (VPA, 625 mg VPA/kg diet), for 10 weeks. To examine potential effects on atherosclerotic regression, 4 week old Ldlr -/- mice were placed on a HFD for 16 weeks. Subsets of mice were harvested at this time or switched to a chow (low fat) diet, or a chow diet with 4PBA or VPA treatment for 4 weeks. In the progression model, the 4PBA- and VPA-treated mice had significantly reduced lesion and necrotic core size. Treatments had no effect on metabolic parameters, including plasma and hepatic lipid levels, or plaque composition. In the regression model, mice with 4PBA or VPA treatment showed no alterations in lesion size, but the lesions had significantly smaller necrotic cores, increased vascular smooth muscle cell content, and increased collagen content. These features are consistent with more stable plaques. The pharmacological attenuation of ER stress or inhibition of GSK3α/β impedes the development of atherosclerosis in Ldlr -/- mice and appears to promote the stabilization of existing lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Predictors of cardiovascular damage in patients with systemic lupus erythematosus: data from LUMINA (LXVIII), a multiethnic US cohort

    PubMed Central

    Pons-Estel, Guillermo J.; González, Luis A.; Zhang, Jie; Burgos, Paula I.; Reveille, John D.; Vilá, Luis M.

    2009-01-01

    Objective. To determine the features predictive of atherosclerotic cardiovascular damage in patients with SLE. Methods. SLE LUMINA (LUpus in MInorities: NAture vs nurture) patients (n = 637), aged ⩾16 years, disease duration ⩽5 years at baseline (T0), of African–American, Hispanic and Caucasian ethnicity were studied. Atherosclerotic cardiovascular damage was defined by the following items of the SLICC Damage Index (SDI) cardiovascular domain: angina or coronary artery by pass surgery, myocardial infarction and/or congestive heart failure; factors associated with its occurrence were examined by univariable and multivariable regression analyses. Results. Forty-three (6.8%) of 637 patients developed cardiovascular damage over a mean ± s.d. total disease duration of 6.6 ± 3.6 years. Nearly 90% of the patients were women with a mean ± s.d. age of 36.5 (12.6) years; all ethnic groups were represented. By multivariable analyses, after adjusting for the cardiovascular manifestations present, age [odds ratio (OR) = 1.06; 95% CI 1.03, 1.09], male gender (OR = 3.57; 95% CI 1.35, 9.09) SDI at baseline (OR = 1.28; 95% CI 1.09, 1.50) and CRP levels [highest tertile (OR = 2.63; 95% CI 1.17, 5.91)] were associated with the occurrence of cardiovascular damage, whereas the number of years of education was negatively associated with such outcome (OR = 0.85; 95% CI 0.74, 0.94). Conclusions. Our data suggest that atherosclerotic cardiovascular damage in SLE is multifactorial; traditional (age, gender) and disease-related factors (CRP levels, SDI at baseline) appear to be important contributors to such an occurrence. Tight control of the inflammatory process must be achieved to prevent it. PMID:19454606

  10. Platelets and their chemokines in atherosclerosis—clinical applications

    PubMed Central

    von Hundelshausen, Philipp; Schmitt, Martin M. N.

    2014-01-01

    The concept of platelets as important players in the process of atherogenesis has become increasingly accepted due to accumulating experimental and clinical evidence. Despite the progress in understanding the molecular details of atherosclerosis, particularly by using animal models, the inflammatory and thrombotic roles of activated platelet s especially in the human system remain difficult to dissect, as often only the complications of atherosclerosis, i.e., stroke and myocardial infarction are definable but not the plaque burden. Platelet indices including platelet count and mean platelet volume (MPV) and soluble mediators released by activated platelets are associated with atherosclerosis. The chemokine CXCL4 has multiple atherogenic activities, e.g., altering the differentiation of T cells and macrophages by inhibiting neutrophil and monocyte apoptosis and by increasing the uptake of oxLDL and synergizing with CCL5. CCL5 is released and deposited on endothelium by activated platelets thereby triggering atherogenic monocyte recruitment, which can be attenuated by blocking the corresponding chemokine receptor CCR5. Atheroprotective and plaque stabilizing properties are attributed to CXCL12, which plays an important role in regenerative processes by attracting progenitor cells. Its release from luminal attached platelets accelerates endothelial healing after injury. Platelet surface molecules GPIIb/IIIa, GP1bα, P-selectin, JAM-A and the CD40/CD40L dyade are crucially involved in the interaction with endothelial cells, leukocytes and matrix molecules affecting atherogenesis. Beyond the effects on the arterial inflammatory infiltrate, platelets affect cholesterol metabolism by binding, modifying and endocytosing LDL particles via their scavenger receptors and contribute to the formation of lipid laden macrophages. Current medical therapies for the prevention of atherosclerotic therapies enable the elucidation of mechanisms linking platelets to inflammation and atherosclerosis. PMID:25152735

  11. SRXRF Study of Chemical Elements Content in the Atherosclerotic Plaque of Heart Vessels

    NASA Astrophysics Data System (ADS)

    Zhuravskaya, E. Ya.; Savchenko, T. I.; Chankina, O. V.; Polonskaya, Ya. V.; Chernyavskii, A. M.; Ragino, Yu. I.; Shcherbakova, L. V.

    The SRXRF method has made it possible, for the first time, to determine the multielement composition in the atherosclerotic substrates of heart vessels after surgical interventions. The main advantage of the method is the possibility to analyze small samples without their destruction. As the amount of material to test is insufficient, we have developed a special technique for sample preparation. The concentrations of K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Sr, Zr, and Pb were measured in stable and unstable plaques. In all the samples studied, Ca is dominating, particularly, in the unstable plaque. No reliable difference was established for other elements measured. A high degree of the association of Ca with Fe, Zn and Sr has been revealed in the atherosclerotic plaques. Measurements were performed using SR from the VEPP-3 storage ring.

  12. Simultaneous two-photon imaging of cerebral oxygenation and capillary blood flow in atherosclerotic mice

    NASA Astrophysics Data System (ADS)

    Lu, Xuecong; Li, Baoqiang; Moeini, Mohammad; Lesage, Frédéric

    2017-02-01

    Gradual changes in brain microvasculature and cerebral capillary blood flow occurring with atherosclerosis may significantly contribute to cognition decline due to their role in brain tissue oxygenation. However, previous stud- ies of the relationship between cerebral capillary blood flow and brain tissue oxygenation are limited. This study aimed to investigate vascular and concomitant changes in brain tissue pO2 with atherosclerosis. Experiments in young healthy C57B1/6 mice (n=6 , WT), young atherosclerotic mice (n=6 , ATX Y) and old atherosclerotic mice (n=6 , ATX O) were performed imaging on the left sensory-motor cortex at resting state under urethane (1.5 g/kg) anesthesia using two-photon fluorescence microscopy. The results showed that pO2 around capillaries, correlated with red blood cell (RBC) flux, increased with atherosclerosis.

  13. New cholesterol guidelines for the management of atherosclerotic cardiovascular disease risk: a comparison of the 2013 American College of Cardiology/American Heart Association cholesterol guidelines with the 2014 National Lipid Association recommendations for patient-centered management of dyslipidemia.

    PubMed

    Adhyaru, Bhavin B; Jacobson, Terry A

    2015-05-01

    This review discusses the 2013 American College of Cardiology (ACC)/American Heart Association (AHA) Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults and compares it with the 2014 National Lipid Association (NLA) Recommendations for Patient-Centered Management of Dyslipidemia. The review discusses some of the distinctions between the guidelines, including how to determine a patient's atherosclerotic cardiovascular disease risk, the role of lipoprotein treatment targets, the importance of moderate- and high-intensity statin therapy, and the use of nonstatin therapy in light of the IMProved Reduction of Outcomes: Vytorin Efficacy International Trial (IMPROVE-IT) trial. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Near-infrared hyperspectral imaging of atherosclerotic tissue phantom

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nagao, R.; Kitayabu, A.; Awazu, K.

    2013-06-01

    A method to identify vulnerable plaques that are likely to cause acute coronary events has been required. The object of this study is identifying vulnerable plaques by hyperspectral imaging in near-infrared range (NIR-HSI) for an angioscopic application. In this study, NIR-HSI of atherosclerotic tissue phantoms was demonstrated under simulated angioscopic conditions. NIR-HSI system was constructed by a NIR super continuum light and a mercury-cadmium-telluride camera. Spectral absorbance values were obtained in the wavelength range from 1150 to 2400 nm at 10 nm intervals. The hyperspectral images were constructed with spectral angle mapper algorithm. As a result, detections of the lipid area in the atherosclerotic tissue phantom under angioscopic observation conditions were achieved especially in the wavelength around 1200 nm, which corresponds to the second overtone of CH stretching vibration mode.

  15. Symptomatic and asymptomatic carotid artery plaque

    PubMed Central

    Mughal, Majid M; Khan, Mohsin K; DeMarco, J Kevin; Majid, Arshad; Shamoun, Fadi; Abela, George S

    2011-01-01

    Carotid atherosclerotic plaques represent both stable and unstable atheromatous lesions. Atherosclerotic plaques that are prone to rupture owing to their intrinsic composition such as a large lipid core, thin fibrous cap and intraplaque hemorrhage are associated with subsequent thromboembolic ischemic events. At least 15–20% of all ischemic strokes are attributable to carotid artery atherosclerosis. Characterization of plaques may enhance the understanding of natural history and ultimately the treatment of atherosclerotic disease. MRI of carotid plaque and embolic signals during transcranial Doppler have identified features beyond luminal stenosis that are predictive of future transient ischemic attacks and stroke. The value of specific therapies to prevent stroke in symptomatic and asymptomatic patients with severe carotid artery stenosis are the subject of current research and analysis of recently published clinical trials that are discussed in this article. PMID:21985544

  16. Hepatic JAK2 protects against atherosclerosis through circulating IGF-1

    PubMed Central

    Sivasubramaniyam, Tharini; Schroer, Stephanie A.; Li, Angela; Luk, Cynthia T.; Shi, Sally Yu; Besla, Rickvinder; Metherel, Adam H.; Kitson, Alex P.; Brunt, Jara J.; Lopes, Joshua; Wagner, Kay-Uwe; Bazinet, Richard P.; Bendeck, Michelle P.; Robbins, Clinton S.

    2017-01-01

    Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2’s essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection. PMID:28724798

  17. Amalgamation of Chlamydia pneumoniae inclusions with lipid droplets in foam cells in human atherosclerotic plaque.

    PubMed

    Bobryshev, Yuri V; Killingsworth, Murray C; Tran, Dihn; Lord, Reginald

    2008-07-01

    Chlamydia pneumoniae (Chlamydophila pneumoniae) infect macrophages and accelerates foam cell formation in in vitro experiments, but whether this might occur in human atherosclerosis is unknown. In the present study, we examined 17 carotid artery segments, obtained by endarterectomy, in which the presence of C. pneumoniae was confirmed by both polymerase chain reaction and immunohistochemistry. Electron microscopy demonstrated the presence of structures with the appearance of elementary, reticulate and aberrant bodies of C. pneumoniae in the cytoplasm of macrophage foam cells. The volume of the cytoplasm that was free from vacuoles and lipid droplets in C. pneumoniae-infected foam cells was dramatically reduced, and a phenomenon of the amalgamation of C. pneumoniae inclusions with lipid droplets was detected. Double immunohistochemistry showed that C. pneumoniae-infected foam cells contained a large number of oxidized low-density lipoproteins. The observations provide support to the hypothesis that C. pneumoniae could affect foam cell formation in human atherosclerosis.

  18. Cardiovascular Safety of Biologics and JAK Inhibitors in Patients with Rheumatoid Arthritis.

    PubMed

    Kang, Eun Ha; Liao, Katherine P; Kim, Seoyoung C

    2018-05-30

    Increased cardiovascular (CV) risk and associated mortality in rheumatoid arthritis (RA) are not fully explained by traditional CV risk factors. This review discusses the epidemiology and mechanisms of increased CV risk in RA and treatment effects on CV risk focusing on biologic disease-modifying anti-rheumatic drugs (DMARDs) and JAK inhibitors. Intermediary metabolic changes by inflammatory cytokines are observed in body composition, lipid profile, and insulin sensitivity of RA patients, leading to accelerated atherosclerosis and increased CV risk. Successful treatment with DMARDs has shown beneficial effects on these metabolic changes and ultimately CV outcomes, in proportion to the treatment efficacy in general but also with drug-specific mechanisms. Recent data provide further information on comparative CV safety between biologic DMARDs or JAK inhibitors as well as their safety signals for non-atherosclerotic CV events. CV benefits or safety signals associated with DMARD treatments can differ despite similar drug efficacy against RA, suggesting that both anti-inflammatory and drug-specific mechanisms are involved in altering CV risk.

  19. Receptor mediated elevation in FABP4 levels by advanced glycation end products induces cholesterol and triacylglycerol accumulation in THP-1 macrophages.

    PubMed

    Wang, Xiao Qun; Yang, Ke; He, Yu Song; Lu, Lin; Shen, Wei Feng

    2011-06-01

    Excessive formation of advanced glycation end products (AGE) and lipid accumulation in macrophages play a pivotal role in the progression of atherosclerosis in diabetes mellitus. This study aimed to determine the molecular link between AGE-induced fatty acid binding protein 4 (FABP4) expression and macrophage lipid accumulation. AGE-BSA markedly increased macrophage FABP4 expression via engagement of RAGE, a 35-kDa transmembrane receptor that is able to bind extracellular AGE and responsible for the corresponding signal transduction, whereas knockdown of RAGE significantly reversed the FABP4 up-regulation. This effect was further paralleled with elevated intracellular total cholesterol and triacylglycerol levels. Finally, administration of FABP4 inhibitor totally abolished the increased lipid contents in response to AGE-BSA. These results indicate that FABP4 up-regulation is responsible for the enhanced macrophage lipid accumulation by AGE, which may underlie the accelerated formation of foam cells and development of atherosclerotic cardiovascular diseases in diabetic patients.

  20. Relationship between vascular endothelium and periodontal disease in atherosclerotic lesions: Review article

    PubMed Central

    Saffi, Marco Aurélio Lumertz; Furtado, Mariana Vargas; Polanczyk, Carisi Anne; Montenegro, Márlon Munhoz; Ribeiro, Ingrid Webb Josephson; Kampits, Cassio; Haas, Alex Nogueira; Rösing, Cassiano Kuchenbecker; Rabelo-Silva, Eneida Rejane

    2015-01-01

    Inflammation and endothelial dysfunction are linked to the pathogenesis of atherosclerotic disease. Recent studies suggest that periodontal infection and the ensuing increase in the levels of inflammatory markers may be associated with myocardial infarction, peripheral vascular disease and cerebrovascular disease. The present article aimed at reviewing contemporary data on the pathophysiology of vascular endothelium and its association with periodontitis in the scenario of cardiovascular disease. PMID:25632316

  1. Validation of a time-resolved fluorescence spectroscopy apparatus in a rabbit atherosclerosis model

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin; Jo, Javier A.; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura

    2004-07-01

    Time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) has been studied as a potential tool for in vivo diagnosis of atherosclerotic lesions. This study is to evaluate the potential of a compact fiber-optics based tr-LIFS instrument developed in our laboratory for in vivo analysis of atherosclerotic plaque composition. Time-resolved fluorescence spectroscopy studies were performed in vivo on fifteen New Zealand White rabbits (atherosclerotic: N=8, control: N=7). Time-resolved fluorescence spectra were acquired (range: 360-600 nm, increment: 5 nm, total acquisition time: 65 s) from normal aorta wall and lesions in the abdominal aorta. Data were analyzed in terms of fluorescence emission spectra and wavelength specific lifetimes. Following trichrome staining, tissue specimens were analyzed histopathologically in terms of intima/media thickness and biochemical composition (collagen, elastin, foam cells, and etc). Based on intimal thickness, the lesions were divided into thin and thick lesions. Each group was further separated into two categories: collagen rich lesions and foam cell rich lesions based on their biochemical composition. The obtained spectral and time domain fluorescence signatures were subsequently correlated to the histopathological findings. The results have shown that time-domain fluorescence spectral features can be used in vivo to separate atherosclerotic lesions from normal aorta wall as well discrimination within certain types of lesions.

  2. New methods for time-resolved fluorescence spectroscopy data analysis based on the Laguerre expansion technique--applications in tissue diagnosis.

    PubMed

    Jo, J A; Marcu, L; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J

    2007-01-01

    A new deconvolution method for the analysis of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data is introduced and applied for tissue diagnosis. The intrinsic TR-LIFS decays are expanded on a Laguerre basis, and the computed Laguerre expansion coefficients (LEC) are used to characterize the sample fluorescence emission. The method was applied for the diagnosis of atherosclerotic vulnerable plaques. At a first stage, using a rabbit atherosclerotic model, 73 TR-LIFS in-vivo measurements from the normal and atherosclerotic aorta segments of eight rabbits were taken. The Laguerre deconvolution technique was able to accurately deconvolve the TR-LIFS measurements. More interesting, the LEC reflected the changes in the arterial biochemical composition and provided discrimination of lesions rich in macrophages/foam-cells with high sensitivity (> 85%) and specificity (> 95%). At a second stage, 348 TR-LIFS measurements were obtained from the explanted carotid arteries of 30 patients. Lesions with significant inflammatory cells (macrophages/foam-cells and lymphocytes) were detected with high sensitivity (> 80%) and specificity (> 90%), using LEC-based classifiers. This study has demonstrated the potential of using TR-LIFS information by means of LEC for in vivo tissue diagnosis, and specifically for detecting inflammation in atherosclerotic lesions, a key marker of plaque vulnerability.

  3. Heparin Cofactor II in Atherosclerotic Lesions from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Study

    PubMed Central

    Rau, Jill C.; Deans, Carolyn; Hoffman, Maureane R.; Thomas, David B.; Malcom, Gray T.; Zieske, Arthur W.; Strong, Jack P.; Koch, Gary G.; Church, Frank C.

    2009-01-01

    Heparin cofactor II (HCII) is a serine protease inhibitor (serpin) that has been shown to be a predictor of decreased atherosclerosis in the elderly and protective against atherosclerosis in mice. HCII inhibits thrombin in vitro and HCII-thrombin complexes have been detected in human plasma. Moreover, the mechanism of protection against atherosclerosis in mice was determined to be the inhibition of thrombin. Despite this evidence, the presence of HCII in human atherosclerotic tissue has not been reported. In this study, using samples of coronary arteries obtained from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, we explore the local relationship between HCII and (pro)thrombin in atherosclerosis. We found that HCII and (pro)thrombin are co-localized in the lipid-rich necrotic core of atheromas. A significant positive correlation between each protein and the severity of the atherosclerotic lesion was present. These results suggest that HCII is in a position to inhibit thrombin in atherosclerotic lesions where thrombin can exert a proatherogenic inflammatory response. However, these results should be tempered by the additional findings from this, and other studies, that indicate the presence of other plasma proteins (antithrombin, albumin, and α1-protease inhibitor) in the same localized region of the atheroma. PMID:19747479

  4. Advances in non-invasive drug delivery for atherosclerotic heart disease.

    PubMed

    Maranhão, Raul C; Tavares, Elaine R

    2015-07-01

    Apart from statins, anti-platelet agents and invasive procedures, the anti-atherosclerotic medical weaponry for coronary heart disease (CHD) is scarce and only partially protects CHD patients from major adverse cardiac events. Several novel non-invasive strategies are being developed to widen the therapeutic options. Among them, drug delivery tools were tested in vivo encompassing liposomes, micelles, polymeric, metallic and lipid nanoparticles used as carriers of statins, corticosteroids, a bisphosphonate, a glitazone, anti-cancer agents, a mycotoxin, a calcium channel blocker and a compound of traditional Chinese medicine. All preparations improved parameters related to atherosclerotic lesions induced in rabbits, rats and mice and reduced neointima formation in experiments aiming to prevent post-stenting restenosis. In subjects submitted to percutaneous coronary intervention, nanoparticle formulations of paclitaxel and alendronate showed safety but are still not conclusive regarding in-stent late loss. The experience of our group in atherosclerotic rabbits treated with non-protein lipid nanoparticles associated with anti-cancer drugs such as paclitaxel, etoposide and methotrexate is summarized, and preliminary safety data in CHD patients are anticipated. Taken together, these studies show that non-invasive drug-delivery systems may become promising tools to rescue CHD patients from the risks of severe and life-threatening lesions that should be more energetically treated.

  5. Engineering adeno-associated virus 2 vectors for targeted gene delivery to atherosclerotic lesions.

    PubMed

    White, K; Büning, H; Kritz, A; Janicki, H; McVey, J; Perabo, L; Murphy, G; Odenthal, M; Work, L M; Hallek, M; Nicklin, S A; Baker, A H

    2008-03-01

    Targeted delivery of biological agents to atherosclerotic plaques may provide a novel treatment and/or useful tool for imaging of atherosclerosis in vivo. However, there are no known viral vectors that possess the desired tropism. Two plaque-targeting peptides, CAPGPSKSC (CAP) and CNHRYMQMC (CNH) were inserted into the capsid of adeno-associated virus 2 (AAV2) to assess vector retargeting. AAV2-CNH produced significantly higher levels of transduction than unmodified AAV2 in human, murine and rat endothelial cells, whereas transduction of nontarget HeLa cells was unaltered. Transduction studies and surface plasmon resonance suggest that AAV2-CNH uses membrane type 1 matrix metalloproteinase as a surface receptor. AAV2-CAP only produced higher levels of transduction in rat endothelial cells, possibly because the virus was found to be affected by proteasomal degradation. In vivo substantially higher levels of both peptide-modified AAV2 vectors was detected in the brachiocephalic artery (site of advanced atherosclerotic plaques) and aorta, whereas reduced levels were detected in all other organs examined. These results suggest that in the AAV2 platform the peptides are exposed on the capsid surface in a way that enables efficient receptor binding and so creates effective atherosclerotic plaque targeted vectors.

  6. Numerical simulation of haemodynamics and low-density lipoprotein transport in the rabbit aorta and their correlation with atherosclerotic plaque thickness

    PubMed Central

    Liu, Xiao; Zhang, Peng; Feng, Chenglong; Sun, Anqiang; Kang, Hongyan; Deng, Xiaoyan; Fan, Yubo

    2017-01-01

    Two mechanisms of shear stress and mass transport have been recognized to play an important role in the development of localized atherosclerosis. However, their relationship and roles in atherogenesis are still obscure. It is necessary to investigate quantitatively the correlation among low-density lipoproteins (LDL) transport, haemodynamic parameters and plaque thickness. We simulated blood flow and LDL transport in rabbit aorta using computational fluid dynamics and evaluated plaque thickness in the aorta of a high-fat-diet rabbit. The numerical results show that regions with high luminal LDL concentration tend to have severely negative haemodynamic environments (HEs). However, for regions with moderately and slightly high luminal LDL concentration, the relationship between LDL concentration and the above haemodynamic indicators is not clear cut. Point-by-point correlation with experimental results indicates that severe atherosclerotic plaque corresponds to high LDL concentration and seriously negative HEs, less severe atherosclerotic plaque is related to either moderately high LDL concentration or moderately negative HEs, and there is almost no atherosclerotic plaque in regions with both low LDL concentration and positive HEs. In conclusion, LDL distribution is closely linked to blood flow transport, and the synergetic effects of luminal surface LDL concentration and wall shear stress-based haemodynamic indicators may determine plaque thickness. PMID:28424305

  7. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody.

    PubMed Central

    Kume, S.; Takeya, M.; Mori, T.; Araki, N.; Suzuki, H.; Horiuchi, S.; Kodama, T.; Miyauchi, Y.; Takahashi, K.

    1995-01-01

    To elucidate the deposition of advanced glycation end products (AGEs) in aortic atherosclerosis, aortic walls were obtained from 25 autopsy cases and examined immunohistochemically and immunoelectron microscopically with a monoclonal antibody specific for AGEs, 6D12. Among the autopsy cases, atherosclerotic lesions were found in the aortas of 22 cases and were composed of diffuse intimal thickening, fatty streaks, atherosclerotic plaques, and/or complicated lesions. In these cases, intracellular AGE accumulation was demonstrated in the intimal lesions of aortic atherosclerosis in 12 cases. Compared with the diffuse intimal thickening, intracellular AGE accumulation was marked in the fatty streaks and atherosclerotic plaques. Immunohistochemical double staining with 6D12 and monoclonal antibodies for macrophages or muscle actin or a polyclonal antibody for scavenger receptors demonstrated that the AGE accumulation in macrophages or their related foam cells was marked in the diffuse intimal thickening and fatty streak lesions and that almost all macrophages and macrophage-derived foam cells possessed scavenger receptors. Immunoelectron microscopic observation revealed the localization of 6D12-positive reaction in lysosomal lipid vacuoles or electron-dense granules of the foam cells. These results indicate that AGE accumulation occurs in macrophages, smooth muscle cells, and their related foam cells. Images Figure 2 Figure 3 Figure 6 PMID:7545874

  8. In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity†

    PubMed Central

    Olson, Emilia S.; Whitney, Michael A.; Friedman, Beth; Aguilera, Todd A.; Crisp, Jessica L.; Baik, Fred M.; Jiang, Tao; Baird, Stephen M.; Tsimikas, Sotirios; Tsien, Roger Y.

    2012-01-01

    Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL–ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL–ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL–ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL–ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques. PMID:22534729

  9. In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity.

    PubMed

    Olson, Emilia S; Whitney, Michael A; Friedman, Beth; Aguilera, Todd A; Crisp, Jessica L; Baik, Fred M; Jiang, Tao; Baird, Stephen M; Tsimikas, Sotirios; Tsien, Roger Y; Nguyen, Quyen T

    2012-06-01

    Thrombin and other coagulation enzymes have been shown to be important during atherosclerotic disease development. Study of these proteases is currently limited because of lack of robust molecular imaging agents for imaging protease activity in vivo. Activatable cell penetrating peptides (ACPPs) have been used to monitor MMP activity in tumors and, in principle, can be modified to detect other proteases. We have developed a probe that incorporates the peptide sequence DPRSFL from the proteinase activated receptor 1 (PAR-1) into an ACPP and shown that it is preferentially cleaved by purified thrombin. Active thrombin in serum cleaves DPRSFL-ACPP with >90% inhibition by lepirudin or argatroban. The DPRSFL-ACPP cleavage product accumulated in advanced atherosclerotic lesions in living mice, with 85% reduction in retention upon pre-injection of mice with hirudin. Uptake of the ACPP cleavage product was highest in plaques with histological features associated with more severe disease. Freshly resected human atheromas bathed in DPRSFL-ACPP retained 63% greater cleavage product compared to control ACPP. In conclusion, DPRSFL-ACPP can be used to study thrombin activity in coagulation and atherosclerosis with good spatial and temporal resolution. Thrombin-sensitive ACPPs may be developed into probes for early detection and intraoperative imaging of high risk atherosclerotic plaques.

  10. A single-photon fluorescence and multi-photon spectroscopic study of atherosclerotic lesions

    NASA Astrophysics Data System (ADS)

    Smith, Michael S. D.; Ko, Alex C. T.; Ridsdale, Andrew; Schattka, Bernie; Pegoraro, Adrian; Hewko, Mark D.; Shiomi, Masashi; Stolow, Albert; Sowa, Michael G.

    2009-06-01

    In this study we compare the single-photon autofluorescence and multi-photon emission spectra obtained from the luminal surface of healthy segments of artery with segments where there are early atherosclerotic lesions. Arterial tissue was harvested from atherosclerosis-prone WHHL-MI rabbits (Watanabe heritable hyperlipidemic rabbit-myocardial infarction), an animal model which mimics spontaneous myocardial infarction in humans. Single photon fluorescence emission spectra of samples were acquired using a simple spectrofluorometer set-up with 400 nm excitation. Samples were also investigated using a home built multi-photon microscope based on a Ti:sapphire femto-second oscillator. The excitation wavelength was set at 800 nm with a ~100 femto-second pulse width. Epi-multi-photon spectroscopic signals were collected through a fibre-optics coupled spectrometer. While the single-photon fluorescence spectra of atherosclerotic lesions show minimal spectroscopic difference from those of healthy arterial tissue, the multi-photon spectra collected from atherosclerotic lesions show marked changes in the relative intensity of two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) signals when compared with those from healthy arterial tissue. The observed sharp increase of the relative SHG signal intensity in a plaque is in agreement with the known pathology of early lesions which have increased collagen content.

  11. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet

    PubMed Central

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-01-01

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model. PMID:19638223

  12. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet.

    PubMed

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-07-28

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model.

  13. Anti-atherosclerotic and anti-inflammatory actions of sesame oil.

    PubMed

    Narasimhulu, Chandrakala Aluganti; Selvarajan, Krithika; Litvinov, Dmitry; Parthasarathy, Sampath

    2015-01-01

    Atherosclerosis, a major form of cardiovascular disease, has now been recognized as a chronic inflammatory disease. Nonpharmacological means of treating chronic diseases have gained attention recently. We previously reported that sesame oil has anti-atherosclerotic properties. In this study, we have determined the mechanisms by which sesame oil might modulate atherosclerosis by identifying genes and inflammatory markers. Low-density lipoprotein receptor knockout (LDLR(-/-)) female mice were fed with either an atherogenic diet or an atherogenic diet reformulated with sesame oil (sesame oil diet). Plasma lipids and atherosclerotic lesions were quantified after 3 months of feeding. Plasma samples were used for cytokine analysis. RNA was extracted from the liver tissue and used for global gene arrays. The sesame oil diet significantly reduced atherosclerotic lesions, plasma cholesterol, triglyceride, and LDL cholesterol levels in LDLR(-/-) mice. Plasma inflammatory cytokines, such as MCP-1, RANTES, IL-1α, IL-6, and CXCL-16, were significantly reduced, demonstrating an anti-inflammatory property of sesame oil. Gene array analysis showed that sesame oil induced many genes, including ABCA1, ABCA2, APOE, LCAT, and CYP7A1, which are involved in cholesterol metabolism and reverse cholesterol transport. In conclusion, our studies suggest that a sesame oil-enriched diet could be an effective nonpharmacological treatment for atherosclerosis by controlling inflammation and regulating lipid metabolism.

  14. Cholesterol uptake in the mouse aorta increases during Chlamydia pneumoniae infection.

    PubMed

    Edvinsson, Marie; Tallkvist, Jonas; Nyström-Rosander, Christina; Ilbäck, Nils-Gunnar

    2017-01-01

    Chlamydia pneumoniae has been suggested as a stimulator of the atherosclerotic process. Mice fed a normal diet were infected intranasally with C. pneumoniae and given one intraperitoneal injection of 14C-cholesterol tracer per day for 12 days. Bacteria were demonstrated in the aorta in the early phase of infection and in lungs and liver throughout the study period of 20 days. 14C-cholesterol was not affected in the heart but increased in the blood, liver and aorta on day 4 when the infection was clinically most severe. Furthermore, on day 20 14C-cholesterol tended to be increased in the aorta. Accordingly, copper- and zinc levels and expressions of the infection biomarkers Cxcl2 and Ifng increased in the liver on day 4 with a tendency of increased of copper, zinc and Ifng on day 20. In mice where bacteria could be cultivated from the lungs, expressions of cholesterol transporters Abca1 and Idol were both increased in the liver on day 4. The increased levels of 14C-cholesterol in blood and aorta together with increased Abca1 and Idol in the liver during C. pneumoniae infection in mice fed a normal diet suggest that this pathogen may have a role in the initiation of the atherosclerotic process. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Checkpointing for a hybrid computing node

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cher, Chen-Yong

    2016-03-08

    According to an aspect, a method for checkpointing in a hybrid computing node includes executing a task in a processing accelerator of the hybrid computing node. A checkpoint is created in a local memory of the processing accelerator. The checkpoint includes state data to restart execution of the task in the processing accelerator upon a restart operation. Execution of the task is resumed in the processing accelerator after creating the checkpoint. The state data of the checkpoint are transferred from the processing accelerator to a main processor of the hybrid computing node while the processing accelerator is executing the task.

  16. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  17. Fluorescence Spectroscopic Properties of Normal and Abnormal Biomedical Materials

    NASA Astrophysics Data System (ADS)

    Pradhan, Asima

    Steady state and time-resolved optical spectroscopy and native fluorescence is used to study the physical and optical properties occurring in diseased and non-diseased biological human tissue, in particular, cancer of the human breast, artery and the dynamics of a photosensitizer useful in photodynamic therapy. The main focus of the research is on the optical properties of cancer and atherosclerotic tissues as compared to their normal counterparts using the different luminescence based spectroscopic techniques such as steady state fluorescence, time-resolved fluorescence, excitation spectroscopy and phosphorescence. The excitation and steady-state spectroscopic fluorescence using visible excitation wavelength displays a difference between normal and malignant tissues. This difference is attributed to absorption of the emission by hemoglobin in normal tissues. This method using 488nm fails to distinguish neoplastic tissue such as benign tissues and tumors from malignant tumors. The time-resolved fluorescence at visible, near -uv and uv excitation wavelengths display non-exponential profiles which are significantly different for malignant tumors as compared to non-malignant tissues only with uv excitation. The differences observed with visible and near-uv excitation wavelengths are not as significant. The non-exponential profiles are interpreted as due to a combination of fluorophores along with the action of non-radiative processes. Low temperature luminescence studies confirm the occurrence of non-radiative decay processes while temporal studies of various relevant biomolecules indicate the probable fluorophores responsible for the observed signal in tissues. Phosphorescence from human tissues have been observed for the first time and lifetimes of a few hundred nanoseconds are measured for malignant and benign tissues. Time-resolved fluorescence studies of normal artery and atherosclerotic plaque have shown that a combination of two excitation wavelengths can distinguish fibrous and calcified atherosclerotic plaque from normal artery. A minor effort of the study involves the high intensity effects on the optical properties of the dye, doxycycline (a particular photosensitizer of the tetracycline group) occurring during relaxation when excited at different laser intensities. This study has been performed by observing the fluorescence lifetimes and quantum yields of DOTC at different excitation intensities. The results obtained support the sequential excited state absorption model.

  18. Currently available methodologies for the processing of intravascular ultrasound and optical coherence tomography images.

    PubMed

    Athanasiou, Lambros; Sakellarios, Antonis I; Bourantas, Christos V; Tsirka, Georgia; Siogkas, Panagiotis; Exarchos, Themis P; Naka, Katerina K; Michalis, Lampros K; Fotiadis, Dimitrios I

    2014-07-01

    Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.

  19. Metabolomic and Genomic Markers of Atherosclerosis as Related to Oxidative Stress, Inflammation, and Vascular Function in Twin Astronauts

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Rana, Brinda K.; Stenger, Michael B.; Sears, Dorothy D.; Smith, Scott M.; Zwart, Sara R.; Macias, Brandon R.; Hargans, Alan R.; Sharma, Kumar; De Vivo, Immaculata

    2017-01-01

    BACKGROUND: Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. Astronauts participating in long-duration missions may be at an increased risk of oxidative stress and inflammatory damage due to radiation, psychological stress, altered physical activity, nutritional insufficiency, and hyperoxia during extravehicular activity. By studying one identical twin during his 1-year ISS mission and his ground-based twin, this work extends a current NASA-funded investigation to determine whether these spaceflight factors contribute to an accelerated progression of atherosclerosis. This study of twins affords a unique opportunity to examine spaceflight-related atherosclerosis risk that is independent of the confounding factors associated with different genotypes. PURPOSE: The purpose of this investigation was to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and determine if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. These physiological and biochemical data will be extended by using an exploratory approach to investigate the relationship between intermediate phenotypes and risk factors for atherosclerosis and the metabolomic signature from plasma and urine samples. Since metabolites are often the indirect products of gene expression, we simultaneously assessed gene expression and DNA methylation in leukocytes. HYPOTHESIS: We predict that, compared to the ground-based twin, the space-flown twin will experience elevated biomarkers of oxidative stress and inflammatory damage, altered arterial structure and function, accelerated telomere shortening, dysregulation of genes associated with oxidative stress and inflammation, and a metabolic profile shift that is associated with elevated atherosclerosis risk factors. METHODS: In the space-flown twin, a panel of biomarkers of oxidative and inflammatory stress were measured in venous blood samples and in 24-h (in-flight) and 48-h (pre- and post-flight) urine pools collected twice before flight, six times during the mission (FD15, 75, 180, 240, 300, 335), and early in the post-flight recovery phase (3-5 days after landing). We also measured metabolomic (targeted and untargeted approaches) and genomic markers (DNA methylation, mRNA gene expression, telomere length) in these samples. Arterial structure, assessed from measures of intima-media thickness, also were measured using standard clinical ultrasound at the same time points. Arterial function was assessed using brachial flow-mediated dilation, a well-validated measure used to assess endothelium-dependent vasodilation and a sensitive predictor of atherosclerotic risk, only before and after spaceflight. All of the same measures were obtained in the ground-based twin, but less frequently. DISCUSSION: All data collection has been completed for both the space-flown twin and the ground-based twin. Vascular structure and function measures have been analyzed, blood and urine samples have been batch-processed. Results from these individuals will be compared to each other, to data from other Twin Study investigations, and to the larger complement of subjects participating in the companion study currently ongoing in ISS astronauts.

  20. Atherectomy devices: technology update

    PubMed Central

    Akkus, Nuri I; Abdulbaki, Abdulrahman; Jimenez, Enrique; Tandon, Neeraj

    2015-01-01

    Atherectomy is a procedure which is performed to remove atherosclerotic plaque from diseased arteries. Atherosclerotic plaques are localized in either coronary or peripheral arterial vasculature and may have different characteristics depending on the texture of the plaque. Atherectomy has been used effectively in treatment of both coronary and peripheral arterial disease. Atherectomy devices are designed differently to either cut, shave, sand, or vaporize these plaques and have different indications. In this article, current atherectomy devices are reviewed. PMID:25565904

  1. Rank in Self-Defense Forces and risk factors for atherosclerotic disease.

    PubMed

    Sakuta, Hidenari; Suzuki, Takashi

    2005-10-01

    Socioeconomic status is associated with prevalence of and risk for atherosclerotic disease. We investigated the relationship between rank in the Self-Defense Forces (SDFs) and risk factors for atherosclerotic disease among middle-aged, male, SDFs personnel. Subjects were classified into five groups according to their ranks in the SDFs, i.e., class 1 (lowest, n = 289), class 2 (low, n = 170), class 3 (middle, n = 229), class 4 (high, n = 197), and class 5 (highest, n = 89). Low rank was associated with current cigarette smoking, alcohol abstaining, and poorer vegetable consumption. It was also associated with prevalence of type 2 diabetes, elevated gamma-glutamyltransferase activity, and high white blood cell counts. Prevalence of obesity, hypertension, hypercholesterolemia, hypertriglyceridemia, or hyperuricemia was not associated with rank in this population. Rank may be regarded as one of the markers that reflect individual health states among middle-aged male personnel.

  2. Giant right coronary artery aneurysm in an adult male patient with non-ST myocardial infarction.

    PubMed

    Halapas, Antonios; Lausberg, Henning; Gehrig, Thomas; Friedrich, Ivar; Hauptmann, Karl E

    2013-01-01

    The combination of a giant coronary aneurysm with multiple coronary aneurysms in adults is an extremely rare entity--especially in atherosclerotic patients, since it is most commonly associated with Kawasaki disease in children. We report an interesting case of a 59-year-old male patient with multiple atherosclerotic aneurysms of the left coronary system and a giant aneurysm of the right coronary artery. The patient was admitted to our hospital because of a non-ST myocardial infarction. Diagnosis was established by echocardiography, computed tomography angiogram, and coronary angiography. In view of the clinical symptoms and the extent of the giant right coronary aneurysm, with the associated risk of rupture, the patient was successfully treated with urgent surgical intervention. We also present a review of the current literature on this anomaly and a statistical analysis of all atherosclerotic giant coronary artery aneurysms previously reported.

  3. Spontaneous Coronary Artery Dissection: Current State of the Science

    PubMed Central

    Hayes, Sharonne N.; Kim, Esther S.H.; Saw, Jacqueline; Adlam, David; Arslanian-Engoren, Cynthia; Economy, Katherine E.; Ganesh, Santhi K.; Gulati, Rajiv; Lindsay, Mark E.; Mieres, Jennifer H.; Naderi, Sahar; Shah, Svati; Thaler, David E.; Tweet, Marysia S.; Wood, Malissa J.

    2018-01-01

    Spontaneous coronary artery dissection (SCAD) has emerged as an important cause of acute coronary syndrome, myocardial infarction, and sudden death, particularly among young women and individuals with few conventional atherosclerotic risk factors. Patient-initiated research has spurred increased awareness of SCAD, and improved diagnostic capabilities and findings from large case series have led to changes in approaches to initial and long-term management and increasing evidence that SCAD not only is more common than previously believed but also must be evaluated and treated differently from atherosclerotic myocardial infarction. High rates of recurrent SCAD; its association with female sex, pregnancy, and physical and emotional stress triggers; and concurrent systemic arteriopathies, particularly fibromuscular dysplasia, highlight the differences in clinical characteristics of SCAD compared with atherosclerotic disease. Recent insights into the causes of, clinical course of, treatment options for, outcomes of, and associated conditions of SCAD and the many persistent knowledge gaps are presented. PMID:29472380

  4. From anatomy to function: diagnosis of atherosclerotic renal artery stenosis.

    PubMed

    Odudu, Aghogho; Vassallo, Diana; Kalra, Philip A

    2015-12-01

    Atherosclerotic renal artery stenosis (ARAS) affects 7% of the over 65 s and will be increasingly common with an ageing population. ARAS obstructs normal renal perfusion with adverse renal and cardiovascular consequences. Drug therapy is directed at reducing atherosclerotic risk. Two recent major trials of revascularization for ARAS showed that clinical outcomes were not improved beyond those offered by optimal drug therapy in most patients. This reflects experimental data showing that restoration of blood flow alone may not attenuate a cascade of tissue injury. A shift from anatomic to functional imaging of ARAS coupled to novel therapies might improve clinical outcomes in selected patients. This review outlines the case for separately assessing hemodynamic significance of arterial stenosis and functional reserve of renal parenchymal tissue. The authors consider current and emerging diagnostic techniques for ARAS and their potential to allow individualized and functionally directed treatments.

  5. Ursodeoxycholic acid impairs atherogenesis and promotes plaque regression by cholesterol crystal dissolution in mice.

    PubMed

    Bode, Niklas; Grebe, Alena; Kerksiek, Anja; Lütjohann, Dieter; Werner, Nikos; Nickenig, Georg; Latz, Eicke; Zimmer, Sebastian

    2016-09-09

    Atherosclerosis is a chronic inflammatory disease driven primarily by a continuous retention of cholesterol within the subendothelial space where it precipitates to form cholesterol crystals (CC). These CC trigger a complex inflammatory response through activation of the NLRP3 inflammasome and promote lesion development. Here we examined whether increasing cholesterol solubility with ursodeoxycholic acid (UDCA) affects vascular CC formation and ultimately atherosclerotic lesion development. UDCA mediated intracellular CC dissolution in macrophages and reduced IL-1β production. In ApoE(-/-) mice, UDCA treatment not only impaired atherosclerotic plaque development but also mediated regression of established vascular lesions. Importantly, mice treated with UDCA had decreased CC-depositions in atherosclerotic plaques compared to controls. Together, our data demonstrate that UDCA impaired CC and NLRP3 dependent inflammation by increasing cholesterol solubility and diminished atherosclerosis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Prevalence and clinical characteristics of lower limb atherosclerotic lesions in newly diagnosed patients with ketosis-onset diabetes: a cross-sectional study

    PubMed Central

    2014-01-01

    Background The clinical features of atherosclerotic lesions in ketosis-onset diabetes are largely absent. We aimed to compare the characteristics of lower limb atherosclerotic lesions among type 1, ketosis-onset and non-ketotic type 2 diabetes. Methods A cross-sectional study was performed in newly diagnosed Chinese patients with diabetes, including 53 type 1 diabetics with positive islet-associated autoantibodies, 208 ketosis-onset diabetics without islet-associated autoantibodies, and 215 non-ketotic type 2 diabetics. Sixty-two subjects without diabetes were used as control. Femoral intima-media thickness (FIMT), lower limb atherosclerotic plaque and stenosis were evaluated and compared among the four groups based on ultrasonography. The risk factors associated with lower limb atherosclerotic plaque were evaluated via binary logistic regression in patients with diabetes. Results After adjusting for age and sex, the prevalence of lower limb plaque in the patients with ketosis-onset diabetes (47.6%) was significantly higher than in the control subjects (25.8%, p = 0.013), and showed a higher trend compared with the patients with type 1 diabetes (39.6%, p = 0.072), but no difference was observed in comparison to the patients with non-ketotic type 2 diabetes (62.3%, p = 0.859). The mean FIMT in the ketosis-onset diabetics (0.73 ± 0.17 mm) was markedly greater than that in the control subjects (0.69 ± 0.13 mm, p = 0.045) after controlling for age and sex, but no significant differences were found between the ketosis-onset diabetics and the type 1 diabetics (0.71 ± 0.16 mm, p = 0.373), and the non-ketotic type 2 diabetics (0.80 ± 0.22 mm, p = 0.280), respectively. Age and FIMT were independent risk factors for the presence of lower limb plaque in both the ketosis-onset and non-ketotic type 2 diabetic patients, while sex and age in the type 1 diabetic patients. Conclusions The prevalence and risk of lower limb atherosclerotic plaque in the ketosis-onset diabetes were remarkably higher than in the control subjects without diabetes. The features and risk factors of lower limb atherosclerotic lesions in the ketosis-onset diabetes resembled those in the non-ketotic type 2 diabetes, but different from those in the type 1 diabetes. Our findings provide further evidences to support the classification of ketosis-onset diabetes as a subtype of type 2 diabetes rather than idiopathic type 1 diabetes. PMID:24926320

  7. Ephrin-A1/EphA4-mediated adhesion of monocytes to endothelial cells.

    PubMed

    Jellinghaus, Stefanie; Poitz, David M; Ende, Georg; Augstein, Antje; Weinert, Sönke; Stütz, Beryl; Braun-Dullaeus, Rüdiger C; Pasquale, Elena B; Strasser, Ruth H

    2013-10-01

    The Eph receptors represent the largest family of receptor tyrosine kinases. Both Eph receptors and their ephrin ligands are cell-surface proteins, and they typically mediate cell-to-cell communication by interacting at sites of intercellular contact. The major aim of the present study was to investigate the involvement of EphA4-ephrin-A1 interaction in monocyte adhesion to endothelial cells, as this process is a crucial step during the initiation and progression of the atherosclerotic plaque. Immunohistochemical analysis of human atherosclerotic plaques revealed expression of EphA4 receptor and ephrin-A1 ligand in major cell types within the plaque. Short-time stimulation of endothelial cells with the soluble ligand ephrin-A1 leads to a fourfold increase in adhesion of human monocytes to endothelial cells. In addition, ephrin-A1 further increases monocyte adhesion to already inflamed endothelial cells. EphrinA1 mediates its effect on monocyte adhesion via the activated receptor EphA4. This ephrinA1/EphA4 induced process involves the activation of the Rho signaling pathway and does not require active transcription. Rho activation downstream of EphA4 leads to increased polymerization of actin filaments in endothelial cells. This process was shown to be crucial for the proadhesive effect of ephrin-A1. The results of the present study show that ephrin-A1-induced EphA4 forward signaling promotes monocyte adhesion to endothelial cells via activation of RhoA and subsequent stress-fiber formation by a non-transcriptional mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/-mice.

    PubMed

    Sala, Federica; Aranda, Juan F; Rotllan, Noemi; Ramírez, Cristina M; Aryal, Binod; Elia, Leonardo; Condorelli, Gianluigi; Catapano, Alberico Luigi; Fernández-Hernando, Carlos; Norata, Giuseppe Danilo

    2014-10-01

    The miR-143/145 cluster regulates VSMC specific gene expression, thus controlling differentiation, plasticity and contractile function, and promoting the VSMC phenotypic switch from a contractile/non-proliferative to a migrating/proliferative state. More recently increased miR-145 expression was observed in human carotid atherosclerotic plaques from symptomatic patients. The goal of this study was to investigate the contribution of miR-143/145 during atherogenesis by generating mice lacking miR-143/145 on an Ldlr-deficient background. Ldlr-/- and Ldlr-/--miR-143/145-/- (DKO) were fed a Western diet (WD) for 16 weeks. At the end of the treatment, the lipid profile and the atherosclerotic lesions were assessed in both groups of mice. Absence of miR-143/145 significantly reduced atherosclerotic plaque size and macrophage infiltration. Plasma total cholesterol levels were lower in DKO and FLPC analysis showed decreased cholesterol content in VLDL and LDL fractions. Interestingly miR-143/145 deficiency per se resulted in increased hepatic and vascular ABCA1 expression. We further confirmed the direct regulation of miR-145 on ABCA1 expression by qRT-PCR, Western blotting and 3'UTR-luciferase reporter assays. In summary, miR-143/145 deficiency significantly reduces atherosclerosis in mice. Therapeutic inhibition of miR-145 might be useful for treating atherosclerotic vascular disease.

  9. Detection of high-risk atherosclerotic lesions by time-resolved fluorescence spectroscopy based on the Laguerre deconvolution technique

    NASA Astrophysics Data System (ADS)

    Jo, J. A.; Fang, Q.; Papaioannou, T.; Qiao, J. H.; Fishbein, M. C.; Beseth, B.; Dorafshar, A. H.; Reil, T.; Baker, D.; Freischlag, J.; Marcu, L.

    2006-02-01

    This study introduces new methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data analysis for tissue characterization. These analytical methods were applied for the detection of atherosclerotic vulnerable plaques. Upon pulsed nitrogen laser (337 nm, 1 ns) excitation, TR-LIFS measurements were obtained from carotid atherosclerotic plaque specimens (57 endarteroctomy patients) at 492 distinct areas. The emission was both spectrally- (360-600 nm range at 5 nm interval) and temporally- (0.3 ns resolution) resolved using a prototype clinically compatible fiber-optic catheter TR-LIFS apparatus. The TR-LIFS measurements were subsequently analyzed using a standard multiexponential deconvolution and a recently introduced Laguerre deconvolution technique. Based on their histopathology, the lesions were classified as early (thin intima), fibrotic (collagen-rich intima), and high-risk (thin cap over necrotic core and/or inflamed intima). Stepwise linear discriminant analysis (SLDA) was applied for lesion classification. Normalized spectral intensity values and Laguerre expansion coefficients (LEC) at discrete emission wavelengths (390, 450, 500 and 550 nm) were used as features for classification. The Laguerre based SLDA classifier provided discrimination of high-risk lesions with high sensitivity (SE>81%) and specificity (SP>95%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for the diagnosis of high-risk vulnerable atherosclerotic plaques.

  10. Endothelial Nitric Oxide Synthase Overexpression Restores the Efficiency of Bone Marrow Mononuclear Cell-Based Therapy

    PubMed Central

    Mees, Barend; Récalde, Alice; Loinard, Céline; Tempel, Dennie; Godinho, Marcia; Vilar, José; van Haperen, Rien; Lévy, Bernard; de Crom, Rini; Silvestre, Jean-Sébastien

    2011-01-01

    Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease. PMID:21224043

  11. Quantification In Situ of Crystalline Cholesterol and Calcium Phosphate Hydroxyapatite in Human Atherosclerotic Plaques by Solid-State Magic Angle Spinning NMR

    PubMed Central

    Guo, Wen; Morrisett, Joel D.; DeBakey, Michael E.; Lawrie, Gerald M.; Hamilton, James A.

    2010-01-01

    Because of renewed interest in the progression, stabilization, and regression of atherosclerotic plaques, it has become important to develop methods for characterizing structural features of plaques in situ and noninvasively. We present a nondestructive method for ex vivo quantification of 2 solid-phase components of plaques: crystalline cholesterol and calcium phosphate salts. Magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of human carotid endarterectomy plaques revealed 13C resonances of crystalline cholesterol monohydrate and a 31P resonance of calcium phosphate hydroxyapatite (CPH). The spectra were obtained under conditions in which there was little or no interference from other chemical components and were suitable for quantification in situ of the crystalline cholesterol and CPH. Carotid atherosclerotic plaques showed a wide variation in their crystalline cholesterol content. The calculated molar ratio of liquid-crystalline cholesterol to phospholipid ranged from 1.1 to 1.7, demonstrating different capabilities of the phospholipids to reduce crystallization of cholesterol. The spectral properties of the phosphate groups in CPH in carotid plaques were identical to those of CPH in bone. 31P MAS NMR is a simple, rapid method for quantification of calcium phosphate salts in tissue without extraction and time-consuming chemical analysis. Crystalline phases in intact atherosclerotic plaques (ex vivo) can be quantified accurately by solid-state 13C and 31PMAS NMR spectroscopy. PMID:10845882

  12. In vitro quantitation of human femoral artery atherosclerosis using near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dykes, Ava C.; Anastasiadis, Pavlos; Allen, John S., III; Sharma, Shiv K.

    2012-06-01

    Near-infrared Raman spectroscopy has been used in vitro to identify calcified atherosclerotic plaques in human femoral arteries. Raman techniques allow for the identification of these plaques in a nondestructive manner, which may allow for the diagnosis of coronary artery disease in cardiac patients in the future. As Raman spectroscopy also reveals chemical information about the composition of the arteries, it can also be used as a prognostic tool. The in vivo detection of atherosclerotic plaques at risk for rupture in cardiac patients will enhance treatment methods while improving clinical outcomes for these procedures. Raman spectra were excited by an Invictus 785-nm NIR laser and measured with a fiber-coupled micro-Raman RXN system (Kaiser Optical Systems, Inc., Ann Arbor, MI) equipped with a 785 nm CW laser and CCD detector. Chemical mapping of arteries obtained post mortem allowed for the discrete location of atherosclerotic plaques. Raman peaks at 961 and 1073 cm-1 reveal the presence of calcium hydroxyapatite and carbonate apatite, which are known to be present in calcified plaques. By mapping the locations of these peaks the boundaries of the plaques can be precisely determined. Areas of varying degrees of calcification were also identified. Because this can be useful in determining the degree of plaque calcification and vessel stenosis, this may have a significant impact on the clinical treatment of atherosclerotic plaques in the future.

  13. Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images

    PubMed Central

    Ughi, Giovanni Jacopo; Adriaenssens, Tom; Sinnaeve, Peter; Desmet, Walter; D’hooge, Jan

    2013-01-01

    Intravascular optical coherence tomography (IVOCT) is rapidly becoming the method of choice for the in vivo investigation of coronary artery disease. While IVOCT visualizes atherosclerotic plaques with a resolution <20µm, image analysis in terms of tissue composition is currently performed by a time-consuming manual procedure based on the qualitative interpretation of image features. We illustrate an algorithm for the automated and systematic characterization of IVOCT atherosclerotic tissue. The proposed method consists in a supervised classification of image pixels according to textural features combined with the estimated value of the optical attenuation coefficient. IVOCT images of 64 plaques, from 49 in vivo IVOCT data sets, constituted the algorithm’s training and testing data sets. Validation was obtained by comparing automated analysis results to the manual assessment of atherosclerotic plaques. An overall pixel-wise accuracy of 81.5% with a classification feasibility of 76.5% and per-class accuracy of 89.5%, 72.1% and 79.5% for fibrotic, calcified and lipid-rich tissue respectively, was found. Moreover, measured optical properties were in agreement with previous results reported in literature. As such, an algorithm for automated tissue characterization was developed and validated using in vivo human data, suggesting that it can be applied to clinical IVOCT data. This might be an important step towards the integration of IVOCT in cardiovascular research and routine clinical practice. PMID:23847728

  14. Competing risk of atherosclerotic risk factors for arterial and venous thrombosis in a general population: the Tromso study.

    PubMed

    Brækkan, Sigrid K; Hald, Erin M; Mathiesen, Ellisiv B; Njølstad, Inger; Wilsgaard, Tom; Rosendaal, Frits R; Hansen, John-Bjarne

    2012-02-01

    To investigate and compare the impact of traditional atherosclerotic risk factors for the risk of arterial and venous thrombosis, taking into account competing risks. In 1994-1995, 26,185 subjects were screened in the Tromsø study. Information on traditional atherosclerotic risk factors was obtained by physical examination, blood samples, and questionnaires. Subjects were followed to the first incident event of myocardial infarction (MI) or venous thromboembolism (VTE), or December 31, 2005. During a median of 10.8 years of follow-up, there were 1279 cases of incident MI and 341 VTE events. Advancing age and high body mass index were both associated with MI and VTE. Hazard ratio per decade of age was 2.34 (95% CI: 2.25-2.43) for MI and 1.87 (1.74-2.01) for VTE, and 3 kg/m(2) increase in body mass index was associated with 1.16 (1.11-1.21) and 1.20 (1.12-1.29) increased risk of MI and VTE, respectively. Blood pressure, high levels of triglycerides and total cholesterol, low HDL cholesterol, self-reported diabetes, and smoking were all associated with increased risk of MI but not associated with VTE. Our findings imply that traditional atherosclerotic risk factors, such as smoking, hypertension, dyslipidemia, and diabetes mellitus are not shared by arterial and venous thrombosis.

  15. Spatial distribution of osteoblast-specific transcription factor Cbfa1 and bone formation in atherosclerotic arteries.

    PubMed

    Bobryshev, Yuri V; Killingsworth, Murray C; Lord, Reginald S A

    2008-08-01

    The mechanisms of ectopic bone formation in arteries are poorly understood. Osteoblasts might originate either from stem cells that penetrate atherosclerotic plaques from the blood stream or from pluripotent mesenchymal cells that have remained in the arterial wall from embryonic stages of the development. We have examined the frequency of the expression and spatial distribution of osteoblast-specific factor-2/core binding factor-1 (Osf2/Cbfa1) in carotid and coronary arteries. Cbfa1-expressing cells were rarely observed but were found in all tissue specimens in the deep portions of atherosclerotic plaques under the necrotic cores. The deep portions of atherosclerotic plaques under the necrotic cores were characterized by the lack of capillaries of neovascularization. In contrast, plaque shoulders, which were enriched by plexuses of neovascularization, lacked Cbfa1-expressing cells. No bone formation was found in any of the 21 carotid plaques examined and ectopic bone was observed in only two of 12 coronary plaques. We speculate that the sparse invasion of sprouts of neovascularization into areas underlying the necrotic cores, where Cbfa1-expressing cells reside, might explain the rarity of events of ectopic bone formation in the arterial wall. This study has also revealed that Cbfa1-expressing cells contain alpha-smooth muscle actin and myofilaments, indicating their relationship with arterial smooth muscle cells.

  16. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  17. Chlamydia pneumoniae-Mediated Inflammation in Atherosclerosis: A Meta-Analysis

    PubMed Central

    Filardo, Simone; Schiavoni, Giovanna

    2015-01-01

    Several studies have attempted to relate the C. pneumoniae-mediated inflammatory state with atherosclerotic cardiovascular diseases, providing inconsistent results. Therefore, we performed a meta-analysis to clarify whether C. pneumoniae may contribute to the pathogenesis of atherosclerosis by enhancing inflammation. 12 case-control, 6 cross-sectional, and 7 prospective studies with a total of 10,176 patients have been included in this meta-analysis. Odds Ratio (OR) with a 95% confidence interval was used to assess the seroprevalence of C. pneumoniae and differences between levels of inflammatory markers were assessed by standard mean differences. Publication bias was performed to ensure the statistical power. hsCRP, fibrinogen, interleukin- (IL-) 6, TNF-α, and IFN-γ showed a significant increase in patients with atherosclerosis compared to healthy controls (P < 0.05), along with a higher seroprevalence of C. pneumoniae (OR of 3.11, 95% CI: 2.88–3.36, P < 0.001). More interestingly, hsCRP, IL-6, and fibrinogen levels were significantly higher in C. pneumoniae IgA seropositive compared to seronegative atherosclerotic patients (P < 0.0001). In conclusion, the present meta-analysis suggests that C. pneumoniae infection may contribute to atherosclerotic cardiovascular diseases by enhancing the inflammatory state, and, in particular, seropositivity to C. pneumoniae IgA, together with hsCRP, fibrinogen, and IL-6, may be predictive of atherosclerotic cardiovascular risk. PMID:26346892

  18. Hypocholesterolemic and antiatherosclerotic effect of artemisia aucheri in hypercholesterolemic rabbits.

    PubMed

    Dinani, N Jafari; Asgary, Asgary; Madani, H; Naderi, Gh; Mahzoni, P

    2010-07-01

    Atherosclerosis which results from gradual deposition of lipids in arteries is a leading cause of mortality worldwide. Diet is one of the most important factors underlying atherosclerosis. High-cholesterol diets enhance atherosclerosis and vegetarian diets are known to slow down the process. Artemisia aucheri is an herb of the Composite family. Many species of Artemisia have proven hypolipidemic and antioxidant properties. This study determine the effects of Artemisia aucheri on lipoproteins and atherosclerosis in hypercholesterolemic rabbits. Fifteen male rabbits were randomly divided into three groups. Normal diet group, high-cholesterol diet group (1% cholesterol) and Artemisia aucheri group (1% cholesterol diet supplemented with 100 mg/kg body weight the Artemisi aucheri every other day). Biochemical factors were measured at the start, end of the first and second months of the study. At the end of the study, the aorta were removed for assessment of atherosclerotic plaques. The results indicate that Artemisia aucheri significantly reduced the level of total cholesterol, LDL cholesterol and triglycerids and increased HDL cholesterol. The degree of atherosclerotic thickness was significantly reduced in the treated group. Therefore, Artemisia aucheri is one of the useful herbal medicine for preventation of atherosclerosis and more studies in this regard is recommended.

  19. Protective role of parnaparin in reducing systemic inflammation and atherosclerotic plaque formation in ApoE-/- mice.

    PubMed

    Artico, Marco; Riganò, Rachele; Buttari, Brigitta; Profumo, Elisabetta; Ionta, Brunella; Bosco, Sandro; Rasile, Manuela; Bianchi, Enrica; Bruno, Moira; Fumagalli, Lorenzo

    2011-04-01

    Atherosclerosis is a degenerative disease whose role in the onset and development of cardiovascular pathologies and complications is of importance. Due to its silent but progressive development, and considering the endothelial, immunological and inflammatory processes that are involved in its clinical course, this still relatively unknown pathological condition has been and continues to be a matter of investigation worldwide. Our experience with previous studies on atherosclerosis led us to investigate the possible influence of a low molecular weight heparin (LMWH) - Parnaparin® on the development and clinical course of atherosclerosis in double knock-out laboratory animals (ApoE-/- mice). Our experiments demonstrated a possible role of Parnaparin (PNP) in the control of atherogenic disease. In fact, in treated mice vs. untreated ones, PNP reduced the number and the size of atherosclerotic lesions in the aortic wall, as well as the development of liver steatosis, which was massive in untreated animals and moderate in treated ones. These preliminary observations require further clinical studies, but demonstrate a possible role of Parnaparin in the control of the development and clinical evolution of atherosclerosis and liver steatosis in laboratory animals.

  20. Reheated Palm Oil Consumption and Risk of Atherosclerosis: Evidence at Ultrastructural Level

    PubMed Central

    Xian, Tan Kai; Omar, Noor Azzizah; Ying, Low Wen; Hamzah, Aniza; Raj, Santhana; Jaarin, Kamsiah; Othman, Faizah; Hussan, Farida

    2012-01-01

    Background. Palm oil is commonly consumed in Asia. Repeatedly heating the oil is very common during food processing. Aim. This study is aimed to report on the risk of atherosclerosis due to the reheated oil consumption. Material and Methods. Twenty four male Sprague Dawley rats were divided into control, fresh-oil, 5 times heated-oil and 10 times heated-oil feeding groups. Heated palm oil was prepared by frying sweet potato at 180°C for 10 minutes. The ground standard rat chows were fortified with the heated oils and fed it to the rats for six months. Results. Tunica intima thickness in aorta was significantly increased in 10 times heated-oil feeding group (P < 0.05), revealing a huge atherosclerotic plaque with central necrosis projecting into the vessel lumen. Repeatedly heated oil feeding groups also revealed atherosclerotic changes including mononuclear cells infiltration, thickened subendothelial layer, disrupted internal elastic lamina and smooth muscle cells fragmentation in tunica media of the aorta. Conclusion. The usage of repeated heated oil is the predisposing factor of atherosclerosis leading to cardiovascular diseases. It is advisable to avoid the consumption of repeatedly heated palm oil. PMID:23320039

  1. Myocardial Bridge and Acute Plaque Rupture

    PubMed Central

    Perl, Leor; Daniels, David; Schwartz, Jonathan; Tanaka, Shige; Yeung, Alan; Tremmel, Jennifer A.; Schnittger, Ingela

    2016-01-01

    A myocardial bridge (MB) is a common anatomic variant, most frequently located in the left anterior descending coronary artery, where a portion of the coronary artery is covered by myocardium. Importantly, MBs are known to result in a proximal atherosclerotic lesion. It has recently been postulated that these lesions predispose patients to acute coronary events, even in cases of otherwise low-risk patients. One such mechanism may involve acute plaque rupture. In this article, we report 2 cases of patients with MBs who presented with acute coronary syndromes despite having low cardiovascular risk. Their presentation was life-risking and both were treated urgently and studied with coronary angiographies and intravascular ultrasound. This latter modality confirmed a rupture of an atherosclerotic plaque proximal to the MB as a likely cause of the acute events. These cases, of unexplained acute coronary syndrome in low-risk patients, raise the question of alternative processes leading to the event and the role MB play as an underlying cause of ruptured plaques. In some cases, an active investigation for this entity may be warranted, due to the prognostic implications of the different therapeutic modalities, should an MB be discovered. PMID:28251167

  2. The Interaction Between IGF-1, Atherosclerosis and Vascular Aging

    PubMed Central

    Higashi, Yusuke; Quevedo, Henry C.; Tiwari, Summit; Sukhanov, Sergiy; Shai, Shaw-Yung; Anwar, Asif; Delafontaine, Patrice

    2014-01-01

    The process of vascular aging encompasses alterations in the function of endothelial (EC) and vascular smooth muscle cells (VSMCs) via oxidation, inflammation, cell senescence and epigenetic modifications, increasing the probability of atherosclerosis. Aged vessels exhibit decreased endothelial antithrombogenic properties, increased reactive oxygen species (ROS) generation and inflammatory signaling, increased migration of VSMCs to the subintimal space, impaired angiogenesis and increased elastin degradation. The key initiating step in atherogenesis is subendothelial accumulation of apolipoprotein-B containing low density lipoproteins resulting in activation of endothelial cells and recruitment of monocytes. Activated endothelial cells secrete “chemokines” that interact with cognate chemokine receptors on monocytes and promote directional migration. Recruitment of immune cells establishes a pro-inflammatory status, further causing elevated oxidative stress, which in turn triggers a series of events including apoptotic or necrotic death of vascular and non-vascular cells. Increased oxidative stress is also considered to be a key factor in mechanisms of aging-associated changes in tissue integrity and function. Experimental evidence indicates that insulin-like growth factor-1 (IGF-1) exerts anti-oxidant, anti-inflammatory and pro-survival effects on the vasculature, reducing atherosclerotic plaque burden and promoting features of atherosclerotic plaque stability. PMID:24943302

  3. 75 FR 62410 - Notice of Proposed Information Collection: Comment Request; The Multifamily Accelerated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... Information Collection: Comment Request; The Multifamily Accelerated Processing Guide AGENCY: Office of the... also lists the following information: Title of Proposal: Multifamily Accelerated Processing Guide (MAP...-0541. Description of the need for the information and proposed use: Multifamily Accelerated Processing...

  4. Incremental replacement of saturated fats by n-3 fatty acids in high-fat, high-cholesterol diets reduces elevated plasma lipid levels and arterial lipoprotein lipase, macrophages and atherosclerosis in LDLR-/- mice.

    PubMed

    Chang, Chuchun L; Torrejon, Claudia; Jung, Un Ju; Graf, Kristin; Deckelbaum, Richard J

    2014-06-01

    Effects of progressive substitution of dietary n-3 fatty acids (FA) for saturated FA (SAT) on modulating risk factors for atherosclerosis have not been fully defined. Our previous reports demonstrate that SAT increased, but n-3 FA decreased, arterial lipoprotein lipase (LpL) levels and arterial LDL-cholesterol deposition early in atherogenesis. We now questioned whether incremental increases in dietary n-3 FA can counteract SAT-induced pro-atherogenic effects in atherosclerosis-prone LDL-receptor knockout (LDLR-/-) mice and have identified contributing mechanisms. Mice were fed chow or high-fat diets enriched in SAT, n-3, or a combination of both SAT and n-3 in ratios of 3:1 (S:n-3 3:1) or 1:1 (S:n-3 1:1). Each diet resulted in the expected changes in fatty acid composition in blood and aorta for each feeding group. SAT-fed mice became hyperlipidemic. By contrast, n-3 inclusion decreased plasma lipid levels, especially cholesterol. Arterial LpL and macrophage levels were increased over 2-fold in SAT-fed mice but these were decreased with incremental replacement with n-3 FA. n-3 FA partial inclusion markedly decreased expression of pro-inflammatory markers (CD68, IL-6, and VCAM-1) in aorta. SAT diets accelerated advanced atherosclerotic lesion development, whereas all n-3 FA-containing diets markedly slowed atherosclerotic progression. Mechanisms whereby dietary n-3 FA may improve adverse cardiovascular effects of high-SAT, high-fat diets include improving plasma lipid profiles, increasing amounts of n-3 FA in plasma and the arterial wall. Even low levels of replacement of SAT by n-3 FA effectively reduce arterial lipid deposition by decreasing aortic LpL, macrophages and pro-inflammatory markers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. FABP4 inhibition suppresses PPARγ activity and VLDL-induced foam cell formation in IL-4-polarized human macrophages.

    PubMed

    Boss, Marcel; Kemmerer, Marina; Brüne, Bernhard; Namgaladze, Dmitry

    2015-06-01

    Macrophages, converted to lipid-loaded foam cells, accumulate in atherosclerotic lesions. Macrophage lipid metabolism is transcriptionally regulated by peroxisome proliferator-activated receptor gamma (PPARγ), and its target gene fatty acid binding protein 4 (FABP4) accelerates the progression of atherosclerosis in mouse models. Since expression of PPARγ and FABP4 is increased upon interleukin-4 (IL-4)-induced macrophage polarization, we aimed to investigate the role of FABP4 in human IL-4-polarized macrophages. We investigated the impact of FABP4 on PPARγ-dependent gene expression in primary human monocytes differentiated to macrophages in the presence of IL-4. IL-4 increased PPARγ and its target genes lipoprotein lipase (LPL) and FABP4 compared to non-polarized or LPS/interferon γ-stimulated macrophages. LPL expression correlated with increased very low density lipoprotein (VLDL)-induced triglyceride accumulation in IL-4-polarized macrophages, which was sensitive to inhibition of lipolysis or PPARγ antagonism. Inhibition of FABP4 during differentiation using chemical inhibitors BMS309403 and HTS01037 or FABP4 siRNA decreased the expression of FABP4 and LPL, and reduced lipid accumulation in macrophages treated with VLDL. FABP4 or LPL inhibition also reduced the expression of inflammatory mediators chemokine (C-C motif) ligand 2 (CCL2) and IL-1β in response to VLDL in IL-4-polarized macrophages. PPARγ luciferase reporter assays confirmed that FABP4 supports fatty acid-induced PPARγ activation. Our findings suggest that IL-4 induces a lipid-accumulating macrophage phenotype by activating PPARγ and subsequent LPL expression. Inhibition of FABP4 decreases VLDL-induced foam cell formation, indicating that anti-atherosclerotic effects achieved by FABP4 inhibition in mouse models may be feasible in the human system as well. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Mipomersen and other therapies for the treatment of severe familial hypercholesterolemia.

    PubMed

    Bell, Damon A; Hooper, Amanda J; Watts, Gerald F; Burnett, John R

    2012-01-01

    Familial hypercholesterolemia (FH) is an autosomal dominant condition with a population prevalence of one in 300-500 (heterozygous) that is characterized by high levels of low-density lipoprotein (LDL) cholesterol, tendon xanthomata, and premature atherosclerosis and coronary heart disease (CHD). FH is caused mainly by mutations in the LDLR gene. However, mutations in other genes including APOB and PCSK9, can give rise to a similar phenotype. Homozygous FH with an estimated prevalence of one in a million is associated with severe hypercholesterolemia with accelerated atherosclerotic CHD in childhood and without treatment, death usually occurs before the age of 30 years. Current approaches for the treatment of homozygous FH include statin-based lipid-lowering therapies and LDL apheresis. Mipomersen is a second-generation antisense oligonucleotide (ASO) targeted to human apolipoprotein B (apoB)-100. This review provides an overview of the pathophysiology and current treatment options for familial hypercholesterolemia and describes novel therapeutic strategies focusing on mipomersen, an antisense apoB synthesis inhibitor. Mipomersen is distributed mainly to the liver where it silences apoB mRNA, thereby reducing hepatic apoB-100 and giving rise to reductions in plasma total cholesterol, LDL-cholesterol, and apoB concentrations in a dose-and time-dependent manner. Mipomersen has been shown to decrease apoB, LDL-cholesterol and lipoprotein(a) in patients with heterozygous and homozygous FH on maximally tolerated lipid-lowering therapy. The short-term efficacy and safety of mipomersen has been established, however, injection site reactions are common and concern exists regarding the long-term potential for hepatic steatosis with this ASO. In summary, mipomersen given alone or in combination with standard lipid-lowering medications shows promise as an adjunct therapy in patients with homozygous or refractory heterozygous FH at high risk of atherosclerotic CHD, who are not at target or are intolerant of statins.

  7. Mipomersen and other therapies for the treatment of severe familial hypercholesterolemia

    PubMed Central

    Bell, Damon A; Hooper, Amanda J; Watts, Gerald F; Burnett, John R

    2012-01-01

    Familial hypercholesterolemia (FH) is an autosomal dominant condition with a population prevalence of one in 300–500 (heterozygous) that is characterized by high levels of low-density lipoprotein (LDL) cholesterol, tendon xanthomata, and premature atherosclerosis and coronary heart disease (CHD). FH is caused mainly by mutations in the LDLR gene. However, mutations in other genes including APOB and PCSK9, can give rise to a similar phenotype. Homozygous FH with an estimated prevalence of one in a million is associated with severe hypercholesterolemia with accelerated atherosclerotic CHD in childhood and without treatment, death usually occurs before the age of 30 years. Current approaches for the treatment of homozygous FH include statin-based lipid-lowering therapies and LDL apheresis. Mipomersen is a second-generation antisense oligonucleotide (ASO) targeted to human apolipoprotein B (apoB)-100. This review provides an overview of the pathophysiology and current treatment options for familial hypercholesterolemia and describes novel therapeutic strategies focusing on mipomersen, an antisense apoB synthesis inhibitor. Mipomersen is distributed mainly to the liver where it silences apoB mRNA, thereby reducing hepatic apoB-100 and giving rise to reductions in plasma total cholesterol, LDL-cholesterol, and apoB concentrations in a dose-and time-dependent manner. Mipomersen has been shown to decrease apoB, LDL-cholesterol and lipoprotein(a) in patients with heterozygous and homozygous FH on maximally tolerated lipid-lowering therapy. The short-term efficacy and safety of mipomersen has been established, however, injection site reactions are common and concern exists regarding the long-term potential for hepatic steatosis with this ASO. In summary, mipomersen given alone or in combination with standard lipid-lowering medications shows promise as an adjunct therapy in patients with homozygous or refractory heterozygous FH at high risk of atherosclerotic CHD, who are not at target or are intolerant of statins. PMID:23226021

  8. Stable phase post-MI patients have elevated VEGF levels correlated with inflammation markers, but not with atherosclerotic burden.

    PubMed

    ErŽen, Barbara; Šilar, Mira; Šabovič, Mišo

    2014-11-22

    The role of vascular endothelial growth factor (VEGF) in patients in the stable phase after myocardial infarction (MI) has not yet been explored. Therefore, we compared the values of VEGF in post-MI patients with those obtained in healthy controls. Furthermore, we investigated whether the values of VEGF correlate to either inflammation markers or the atherosclerotic burden. 41 male patients (on average 44 years old) in the stable phase after MI (on average 20.5 months after MI) were recruited, while 25 healthy age-matched males served as controls. Plasma levels of VEGF and several markers of inflammation were measured by standard procedures. The atherosclerotic burden was determined by the angiographic severity of coronary atherosclerosis, endothelial dysfunction (measured by ultrasound measurement of the flow mediated dilation of the brachial artery), the intima-media thickness of the common carotid artery and the ankle-brachial pressure index. VEGF values were significantly elevated in post-MI patients compared to the controls (53.8 ± 42.7 pg/ml vs. 36.3 ± 8.9 pg/ml, p = 0.014). The elevated VEGF values significantly correlated to the (increased) values of the inflammatory molecules interleukin 6 and 8 (r = 0.37, p = 0.017; and r = 0.45, p = 0.003; respectively). In contrast, no correlation was found between VEGF and the parameters of the atherosclerotic burden, although FMD and IMT were significantly impaired in patients. We found that plasma levels of VEGF are increased in the stable phase after MI and correlate with inflammation cytokines, but not with the atherosclerotic burden. Thus, this suggests that increased levels of VEGF are a part of ongoing inflammatory activity. Since VEGF in these patients stimulates neovascularization of inflamed plaques and induces their destabilization, the VEGF level can have an important negative prognostic value. Clearly, further studies are needed to clarify the role of VEGF as a prognostic marker.

  9. Association of Monocyte Chemoattractant Protein-1 with Death and Atherosclerotic Events in Chronic Kidney Disease.

    PubMed

    Gregg, L Parker; Tio, Maria Clarissa; Li, Xilong; Adams-Huet, Beverley; de Lemos, James A; Hedayati, S Susan

    2018-06-06

    Monocyte chemoattractant protein-1 -(MCP-1), a marker of inflammation and monocyte recruitment to atherosclerotic plaques, is associated with cardiovascular (CV) outcomes in patients with acute coronary syndrome. Although plasma levels are elevated in chronic kidney disease (CKD), associations with reduced kidney function or outcomes in CKD have not been explored. In this population-based, probability-sampled, longitudinal cohort of 3,257 participants, including 286 (8.8%) patients with CKD, we studied the association of plasma MCP-1 with estimated glomerular filtration rate (eGFR), albuminuria, death, and intermediate and hard CV outcomes in CKD and non-CKD individuals. Cox proportional hazards regression assessed associations of baseline MCP-1 with all-cause death and atherosclerotic events. MCP-1 was higher in CKD than non-CKD participants (p < 0.001), and negatively associated with eGFR (r = -0.23, p < 0.0001) but not albuminuria in CKD. MCP-1 was associated with pulse wave velocity and coronary artery calcification in non-CKD but not CKD individuals. At 13.5 years, there were 230 (7.7%) deaths and 168 (6.4%) atherosclerotic events in the non-CKD vs. 97 (34.0%) deaths and 62 (27.9%) events in the CKD group (p < 0.001 for each). MCP-1 was associated with death (hazards ratio [HR] 2.0 [1.4-2.9] per log-unit increase) and atherosclerotic events (1.7 [1.0-2.9]) in CKD individuals. The HR for death in CKD remained significant (1.6 [1.1-2.3]) after adjusting for CV risk factors. Although plasma MCP-1 increased with decreased eGFR, it remained an independent risk factor for death in CKD. MCP-1 did not correlate with intermediate CV outcomes, implicating pathways other than atherosclerosis in the association of MCP-1 with death in CKD. © 2018 S. Karger AG, Basel.

  10. EphA2 knockdown attenuates atherosclerotic lesion development in ApoE(-/-) mice.

    PubMed

    Jiang, Hong; Li, Xinyun; Zhang, Xiaoli; Liu, Yan; Huang, Shanying; Wang, Xiaowei

    2014-01-01

    The inflammatory response of vascular endothelial cells plays important roles in the initiation and progression of atherosclerotic lesions. EphA2 receptor activation promotes the endothelial cell inflammatory response, and its expression is increased in the endothelial cell layer of atherosclerotic plaques. However, the association between EphA2 and atherosclerosis has not been determined. Eight-week-old male ApoE(-/-) mice were systemically infected with adenoassociated virus serotype 9 carrying a small hairpin RNA specifically targeting the EphA2 gene to knock down EphA2 expression in aortic endothelial cells. These mice were then fed a high-cholesterol diet for 12 weeks. Blood was collected for the measurement of plasma lipids. The aortas were harvested to evaluate the atherosclerotic lesion size, macrophage components, and expression of proinflammatory genes using Oil Red O staining, immunofluorescence staining, and molecular biology analysis. The lesions formed in the entire aorta and aortic sinus of the ApoE(-/-) mice with EphA2 knockdown were significantly smaller than those in the control mice (10.7%±3.1% versus 25.1%±4.2%; 0.51±0.02mm(2) versus 0.85±0.03mm(2); n=10; P<.05). Furthermore, the lesions in the ApoE(-/-) mice with EphA2 knockdown displayed reduced inflammation compared with the control mice, as reflected by the decreased macrophage infiltration (8.2%±2.9% versus 22.7%±4%; n=10; P<.05); decreased nuclear factor-κβ activation; and diminished expression of vascular cell adhesion molecule-1, E-selectin, and monocyte chemotactic protein-1 (all P<.05). Our data demonstrate that the EphA2 receptor silencing attenuates the extent and inflammation of atherosclerotic lesions in ApoE(-/-) mice. Thus, EphA2 knockdown in endothelial cells represents a novel therapeutic strategy for patients with atherosclerosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Cadmium exposure and atherosclerotic carotid plaques –Results from the Malmö diet and Cancer study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagerberg, Björn, E-mail: bjorn.fagerberg@wlab.gu.se; Barregard, Lars, E-mail: lars.barregard@amm.gu.se; Sallsten, Gerd, E-mail: gerd.sallsten@amm.gu.se

    Background: Epidemiological studies indicate that cadmium exposure through diet and smoking is associated with increased risk of cardiovascular disease. There are few data on the relationship between cadmium and plaques, the hallmark of underlying atherosclerotic disease. Objectives: To examine the association between exposure to cadmium and the prevalence and size of atherosclerotic plaques in the carotid artery. Methods: A population sample of 4639 Swedish middle-aged women and men was examined in 1991–1994. Carotid plaque was determined by B-mode ultrasound. Cadmium in blood was analyzed by inductively coupled plasma mass spectrometry. Results: Comparing quartile 4 with quartile 1 of blood cadmium,more » the odds ratio (OR) for prevalence of any plaque was 1.9 (95% confidence interval 1.6–2.2) after adjustment for sex and, age; 1.4 (1.1–1.8) after additional adjustment for smoking status; 1.4 (1.1–1.7) after the addition of education level and life style factors; 1.3 (1.03–1.8) after additional adjustment for risk factors and predictors of cardiovascular disease. No effect modification by sex was found in the cadmium-related prevalence of plaques. Similarly, ORs for the prevalence of small and large plaques were after full adjustment 1.4 (1.0–2.1) and 1.4 (0.9–2.0), respectively. The subgroup of never smokers showed no association between cadmium and atherosclerotic plaques. Conclusions: These results extend previous studies on cadmium exposure and clinical cardiovascular events by adding data on the association between cadmium and underlying atherosclerosis in humans. The role of smoking remains unclear. It may both cause residual confounding and be a source of pro-atherogenic cadmium exposure. - Highlights: • Blood cadmium level is associated with atherosclerotic plaques in the carotid artery. • The results extend previous knowledge of cadmium exposure and clinical events. • The role of smoking remains unclear.« less

  12. Anti-atherosclerotic effect of Fermentum Rubrum and Gynostemma pentaphyllum mixture in high-fat emulsion- and vitamin D3-induced atherosclerotic rats.

    PubMed

    Gou, San-Hu; Liu, Bei-Jun; Han, Xiu-Feng; Wang, Li; Zhong, Chao; Liang, Shan; Liu, Hui; Qiang, Yin; Zhang, Yun; Ni, Jing-Man

    2018-05-01

    The mixture of Hongqu and gypenosides (HG) is composed of Fermentum Rubrum (Hongqu, in Chinese) and total saponins of Gynostemma pentaphyllum (Thunb.) Makino (Jiaogulan, in Chinese) in a 3.6:1 weight ratio. Both Hongqu and Jiaogulan are considered valuable traditional Chinese medicines (TCMs); they have been commonly used in China for the treatment of hyperlipidemia and related diseases for centuries. The aim of the current study was assess the anti-atherosclerotic effect of HG. Sixty-four Wistar rats were randomly divided into eight groups: normal, model, positive control (simvastatin, 1 mg/kg), Hongqu-treated (72 mg/kg), gypenoside (total saponin)-treated (20 mg/kg), and three doses HG-treated (50, 100, and 200 mg/kg). All of the rats were fed a basal diet. Additionally, the model group rats were intragastrically administered a high-fat emulsion and intraperitoneally injected with vitamin D 3 . The serum lipid profiles, oxidative stress, inflammatory cytokine, and hepatic antioxidant levels were then determined. Furthermore, the liver histopathology and arterial tissue were analyzed, and the expression of hyperlipidemia- and atherosclerosis (AS)-related genes was measured using reverse transcription-polymerase chain reaction. The AS rat model was established after 80 days. Compared to the model group, the HG-treated groups showed an obvious improvement in the serum lipid profiles, oxidative stress, and inflammatory cytokine levels, and showed markedly increased hepatic total antioxidant capacity. Moreover, the expression of genes related to lipid synthesis and inflammation reduced and that of the genes related to lipid oxidation increased in the liver and arterial tissue, which also reflected an improved health condition. the anti-atherosclerotic effects of HG were superior to those of simvastatin, Hongqu, and the gypenosides. Therefore, HG may be a useful anti-atherosclerotic TCM preparation. Copyright © 2017. Published by Elsevier Taiwan LLC.

  13. Patient-Provider Communication and Health Outcomes Among Individuals With Atherosclerotic Cardiovascular Disease in the United States: Medical Expenditure Panel Survey 2010 to 2013.

    PubMed

    Okunrintemi, Victor; Spatz, Erica S; Di Capua, Paul; Salami, Joseph A; Valero-Elizondo, Javier; Warraich, Haider; Virani, Salim S; Blaha, Michael J; Blankstein, Ron; Butt, Adeel A; Borden, William B; Dharmarajan, Kumar; Ting, Henry; Krumholz, Harlan M; Nasir, Khurram

    2017-04-01

    Consumer-reported patient-provider communication (PPC) assessed by Consumer Assessment of Health Plans Survey in ambulatory settings is incorporated as a complementary value metric for patient-centered care of chronic conditions in pay-for-performance programs. In this study, we examine the relationship of PPC with select indicators of patient-centered care in a nationally representative US adult population with established atherosclerotic cardiovascular disease. The study population consisted of a nationally representative sample of 6810 individuals (aged ≥18 years), representing 18.3 million adults with established atherosclerotic cardiovascular disease (self-reported or International Classification of Diseases, Ninth Edition diagnosis) reporting a usual source of care in the 2010 to 2013 pooled Medical Expenditure Panel Survey cohort. Participants responded to questions from Consumer Assessment of Health Plans Survey that assessed PPC, and we developed a weighted PPC composite score using their responses, categorized as 1 (poor), 2 (average), and 3 (optimal). Outcomes of interest were (1) patient-reported outcomes: 12-item Short Form physical/mental health status, (2) quality of care measures: statin and ASA use, (3) healthcare resource utilization: emergency room visits and hospital stays, and (4) total annual and out-of-pocket healthcare expenditures. Atherosclerotic cardiovascular disease patients reporting poor versus optimal were over 2-fold more likely to report poor outcomes; 52% and 26% more likely to report that they are not on statin and aspirin, respectively, had a significantly greater utilization of health resources (odds ratio≥2 emergency room visit, 1.41 [95% confidence interval, 1.09-1.81]; odds ratio≥2 hospitalization, 1.36 [95% confidence interval, 1.04-1.79]), as well as an estimated $1243 ($127-$2359) higher annual healthcare expenditure. This study reveals a strong relationship between PPC and patient-reported outcomes, utilization of evidence-based therapies, healthcare resource utilization, and expenditures among those with established atherosclerotic cardiovascular disease. © 2017 American Heart Association, Inc.

  14. Dietary micronutrient intake and atherosclerosis in systemic lupus erythematosus.

    PubMed

    Lourdudoss, C; Elkan, A-C; Hafström, I; Jogestrand, T; Gustafsson, T; van Vollenhoven, R; Frostegård, J

    2016-12-01

    The aim of this study was to investigate the role of dietary micronutrient intake in systemic lupus erythematosus (SLE). This study included 111 SLE patients and 118 age and gender-matched controls. Data on diet (food frequency questionnaires) were linked with data on Systemic Lupus Activity Measure, Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) and carotid atherosclerotic/echolucent plaque (B-mode ultrasound). Dietary micronutrient intake were compared between SLE patients and controls and in relation to lupus activity and atherosclerosis in SLE. Associations between micronutrient intake and plaque were analyzed through logistic regression, adjusted for potential confounders. Micronutrient intake did not differ between patients and controls, and between lower and higher lupus activity, apart from the fact that phosphorus was associated with SLEDAI > 6. In SLE patients, some micronutrients were associated with atherosclerotic plaque, left side. Lower intake of riboflavin and phosphorus was associated with atherosclerotic plaque, left side (odds ratio (OR) 3.06, 95% confidence interval (CI) 1.12-8.40 and OR 4.36, 95% CI 1.53-12.39, respectively). Higher intake of selenium and thiamin was inversely associated with atherosclerotic plaque, left side (OR 0.28, 95% CI 0.09-0.89 and OR 0.26, 95% CI 0.08-0.80, respectively). In addition, higher intake of thiamin was inversely associated with echolucent plaque, left side (OR 0.22, 95% CI 0.06-0.84). Lower intake of folate was inversely associated with bilateral echolucent plaque (OR 0.36, 95% CI 0.13-0.99). SLE patients did not have different dietary micronutrient intake compared to controls. Phosphorus was associated with lupus activity. Riboflavin, phosphorus, selenium and thiamin were inversely associated with atherosclerotic plaque, left side in SLE patients, but not in controls. Dietary micronutrients may play a role in atherosclerosis in SLE. © The Author(s) 2016.

  15. Spatio-temporal texture (SpTeT) for distinguishing vulnerable from stable atherosclerotic plaque on dynamic contrast enhancement (DCE) MRI in a rabbit model

    PubMed Central

    Wan, Tao; Madabhushi, Anant; Phinikaridou, Alkystis; Hamilton, James A.; Hua, Ning; Pham, Tuan; Danagoulian, Jovanna; Kleiman, Ross; Buckler, Andrew J.

    2014-01-01

    Purpose: To develop a new spatio-temporal texture (SpTeT) based method for distinguishing vulnerable versus stable atherosclerotic plaques on DCE-MRI using a rabbit model of atherothrombosis. Methods: Aortic atherosclerosis was induced in 20 New Zealand White rabbits by cholesterol diet and endothelial denudation. MRI was performed before (pretrigger) and after (posttrigger) inducing plaque disruption with Russell's-viper-venom and histamine. Of the 30 vascular targets (segments) under histology analysis, 16 contained thrombus (vulnerable) and 14 did not (stable). A total of 352 voxel-wise computerized SpTeT features, including 192 Gabor, 36 Kirsch, 12 Sobel, 52 Haralick, and 60 first-order textural features, were extracted on DCE-MRI to capture subtle texture changes in the plaques over the course of contrast uptake. Different combinations of SpTeT feature sets, in which the features were ranked by a minimum-redundancy-maximum-relevance feature selection technique, were evaluated via a random forest classifier. A 500 iterative 2-fold cross validation was performed for discriminating the vulnerable atherosclerotic plaque and stable atherosclerotic plaque on per voxel basis. Four quantitative metrics were utilized to measure the classification results in separating between vulnerable and stable plaques. Results: The quantitative results show that the combination of five classes of SpTeT features can distinguish between vulnerable (disrupted plaques with an overlying thrombus) and stable plaques with the best AUC values of 0.9631 ± 0.0088, accuracy of 89.98% ± 0.57%, sensitivity of 83.71% ± 1.71%, and specificity of 94.55% ± 0.48%. Conclusions: Vulnerable and stable plaque can be distinguished by SpTeT based features. The SpTeT features, following validation on larger datasets, could be established as effective and reliable imaging biomarkers for noninvasively assessing atherosclerotic risk. PMID:24694153

  16. A uni-extension study on the ultimate material strength and extreme extensibility of atherosclerotic tissue in human carotid plaques.

    PubMed

    Teng, Zhongzhao; Feng, Jiaxuan; Zhang, Yongxue; Sutcliffe, Michael P F; Huang, Yuan; Brown, Adam J; Jing, Zaiping; Lu, Qingsheng; Gillard, Jonathan H

    2015-11-05

    Atherosclerotic plaque rupture occurs when mechanical loading exceeds its material strength. Mechanical analysis has been shown to be complementary to the morphology and composition for assessing vulnerability. However, strength and stretch thresholds for mechanics-based assessment are currently lacking. This study aims to quantify the ultimate material strength and extreme extensibility of atherosclerotic components from human carotid plaques. Tissue strips of fibrous cap, media, lipid core and intraplaque hemorrhage/thrombus were obtained from 21 carotid endarterectomy samples of symptomatic patients. Uni-extension test with tissue strips was performed until they broke or slid. The Cauchy stress and stretch ratio at the peak loading of strips broken about 2mm away from the clamp were used to characterize their ultimate strength and extensibility. Results obtained indicated that ultimate strength of fibrous cap and media were 158.3 [72.1, 259.3] kPa (Median [Inter quartile range]) and 247.6 [169.0, 419.9] kPa, respectively; those of lipid and intraplaque hemorrhage/thrombus were 68.8 [48.5, 86.6] kPa and 83.0 [52.1, 124.9] kPa, respectively. The extensibility of each tissue type were: fibrous cap - 1.18 [1.10, 1.27]; media - 1.21 [1.17, 1.32]; lipid - 1.25 [1.11, 1.30] and intraplaque hemorrhage/thrombus - 1.20 [1.17, 1.44]. Overall, the strength of fibrous cap and media were comparable and so were lipid and intraplaque hemorrhage/thrombus. Both fibrous cap and media were significantly stronger than either lipid or intraplaque hemorrhage/thrombus. All atherosclerotic components had similar extensibility. Moreover, fibrous cap strength in the proximal region (closer to the heart) was lower than that of the distal. These results are helpful in understanding the material behavior of atherosclerotic plaques. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Anti-atherosclerotic therapy based on botanicals.

    PubMed

    Orekhov, Alexander N; Sobenin, Igor A; Korneev, Nikolay V; Kirichenko, Tatyana V; Myasoedova, Veronika A; Melnichenko, Alexandra A; Balcells, Mercedes; Edelman, Elazer R; Bobryshev, Yuri V

    2013-04-01

    Natural products including botanicals for both therapy of clinical manifestations of atherosclerosis and reduction of atherosclerosis risk factors are topics of recent patents. Only a few recent patents are relevant to the direct antiatherosclerotic therapy leading to regression of atherosclerotic lesions. Earlier, using a cellular model we have developed and patented several anti-atherosclerotic drugs. The AMAR (Atherosclerosis Monitoring and Atherogenicity Reduction) study was designed to estimate the effect of two-year treatment with time-released garlic-based drug Allicor on the progression of carotid atherosclerosis in 196 asymptomatic men aged 40-74 in double-blinded placebo-controlled randomized clinical study. The primary outcome was the rate of atherosclerosis progression, measured by high-resolution B-mode ultrasonography as the increase in carotid intima-media thickness (IMT) of the far wall of common carotid arteries. The mean rate of IMT changes in Allicor-treated group (-0.022±0.007 mm per year) was significantly different (P = 0.002) from the placebo group in which there was a moderate progression of 0.015±0.008 mm at the overall mean baseline IMT of 0.931±0.009 mm. A significant correlation was found between the changes in blood serum atherogenicity (the ability of serum to induce cholesterol accumulation in cultured cells) during the study and the changes in intima-media thickness of common carotid arteries (r = 0.144, P = 0.045). Thus, the results of AMAR study demonstrate that long-term treatment with Allicor has a direct anti-atherosclerotic effect on carotid atherosclerosis and this effect is likely to be due to serum atherogenicity inhibition. The beneficial effects of other botanicals including Inflaminat (calendula, elder and violet), phytoestrogen- rich Karinat (garlic powder, extract of grape seeds, green tea leafs, hop cones, β-carotene, α-tocopherol and ascorbic acid) on atherosclerosis have also been revealed in clinical studies which enforces a view that botanicals might represent promising drugs for anti-atherosclerotic therapy.

  18. Prognostic implications of surrogate markers of atherosclerosis in low to intermediate risk patients with Type 2 Diabetes

    PubMed Central

    2012-01-01

    Background Type 2 diabetes mellitus (T2DM) patients are at increased risk of developing cardiovascular events. Unfortunately traditional risk assessment scores, including the Framingham Risk Score (FRS), have only modest accuracy in cardiovascular risk prediction in these patients. Methods We sought to determine the prognostic values of different non-invasive markers of atherosclerosis, including brachial artery endothelial function, carotid artery atheroma burden, ankle-brachial index, arterial stiffness and computed tomography coronary artery calcium score (CACS) in 151 T2DM Chinese patients that were identified low-intermediate risk from the FRS recalibrated for Chinese (<20% risk in 10 years). Patients were prospectively followed-up and presence of atherosclerotic events documented for a mean duration of 61 ± 16 months. Results A total of 17 atherosclerotic events in 16 patients (11%) occurred during the follow-up period. The mean FRS of the study population was 5.0 ± 4.6% and area under curve (AUC) from receiver operating characteristic curve analysis for prediction of atherosclerotic events was 0.59 ± 0.07 (P = 0.21). Among different vascular assessments, CACS > 40 had the best prognostic value (AUC 0.81 ± 0.06, P < 0.01) and offered significantly better accuracy in prediction compared with FRS (P = 0.038 for AUC comparisons). Combination of FRS with CACS or other surrogate vascular markers did not further improve the prognostic values over CACS alone. Multivariate Cox regression analysis identified CACS > 40 as an independent predictor of atherosclerotic events in T2DM patients (Hazards Ratio 27.11, 95% Confidence Interval 3.36-218.81, P = 0.002). Conclusions In T2DM patients identified as low-intermediate risk by the FRS, a raised CACS > 40 was an independent predictor for atherosclerotic events. PMID:22900680

  19. Digital image processing of vascular angiograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Beckenbach, E. S.; Blankenhorn, D. H.; Crawford, D. W.; Brooks, S. H.

    1975-01-01

    The paper discusses the estimation of the degree of atherosclerosis in the human femoral artery through the use of a digital image processing system for vascular angiograms. The film digitizer uses an electronic image dissector camera to scan the angiogram and convert the recorded optical density information into a numerical format. Another processing step involves locating the vessel edges from the digital image. The computer has been programmed to estimate vessel abnormality through a series of measurements, some derived primarily from the vessel edge information and others from optical density variations within the lumen shadow. These measurements are combined into an atherosclerosis index, which is found in a post-mortem study to correlate well with both visual and chemical estimates of atherosclerotic disease.

  20. Wave detection in acceleration plethysmogram.

    PubMed

    Ahn, Jae Mok

    2015-04-01

    Acceleration plethysmogram (APG) obtained from the second derivative of photoplethysmography (PPG) is used to predict risk factors for atherosclerosis with age. This technique is promising for early screening of atherosclerotic pathologies. However, extraction of the wave indices of APG signals measured from the fingertip is challenging. In this paper, the development of a wave detection algorithm including a preamplifier based on a microcontroller that can detect the a, b, c, and d wave indices is proposed. The 4(th) order derivative of a PPG under real measurements of an APG waveform was introduced to clearly separate the components of the waveform, and to improve the rate of successful wave detection. A preamplifier with a Sallen-Key low pass filter and a wave detection algorithm with programmable gain control, mathematical differentials, and a digital IIR notch filter were designed. The frequency response of the digital IIR filter was evaluated, and a pulse train consisting of a specific area in which the wave indices existed was generated. The programmable gain control maintained a constant APG amplitude at the output for varying PPG amplitudes. For 164 subjects, the mean values and standard deviation of the a wave index corresponding to the magnitude of the APG signal were 1,106.45 and ±47.75, respectively. We conclude that the proposed algorithm and preamplifier designed to extract the wave indices of an APG in real-time are useful for evaluating vascular aging in the cardiovascular system in a simple healthcare device.

  1. Absence of Chlamydia pneumoniae and signs of atherosclerotic cardiovascular disease in adolescents with systemic lupus erythematosus.

    PubMed

    Bowser, Corinna S; Kumar, Swati; Salciccioli, Louis; Kutlin, Andrei; Lazar, Jason; Rahim, Imran; Suss, Amy; Kohlhoff, Stephan; Hammerschlag, Margaret R; Moallem, Hamid Jack

    2008-05-01

    Patients with systemic lupus erythematosus (SLE) have accelerated atherogenesis. A recent study suggested that Chlamydia pneumoniae infection might also be a contributing factor in the development of atherogenesis in patients with SLE. The objective of this study was to investigate the possible association of C. pneumoniae infection with markers of atherosclerosis in adolescents with SLE compared with age-matched healthy controls. History and exam focused on cardiovascular risk factors were obtained from 20 patients with SLE and 20 age- and sex-matched controls. Laboratory studies included serum lipid profile and high-sensitivity C-reactive protein (hsCRP). Detection of C. pneumoniae in peripheral blood mononuclear cells (PBMCs) and in nasopharyngeal swab specimens was performed. Carotid Intima-Media Thickness (CIMT) was determined by sonography in all subjects. C. pneumoniae DNA was not detected in PBMCs of any of the patients or controls. Nasopharyngeal cultures were also negative for C. pneumoniae in all patients. CIMT was slightly higher in the SLE group (0.48 +/- 0.049) compared with controls (0.454 +/- 0.041, p = 0.29). There was no significant difference between the two groups in body mass index, blood pressure, hsCRP, and serum cholesterol (total, LDL and HDL). Serum triglycerides were higher in the lupus group (p = 0.03). Children and adolescents with SLE might have accelerated atherosclerosis; however, we did not observe an association with C. pneumoniae infection in this population.

  2. Management of Extracranial Carotid Artery Disease

    PubMed Central

    Ooi, Yinn Cher

    2015-01-01

    Stroke is the third leading cause of death in developed nations. Up to 88% of strokes are ischemic in nature. Extracranial carotid artery atherosclerotic disease is the third leading cause of ischemic stroke in the general population and the second most common non-traumatic cause among adults <45 years of age. The aim of this paper is to provide comprehensive, evidence-based recommendations for the management of extracranial atherosclerotic disease, including imaging for screening and diagnosis, medical management and interventional management. PMID:25439328

  3. [Expression and antagonist role of endothelin and nitric oxide synthase in atherosclerotic plaque].

    PubMed

    Song, L; Wang, D; Wang, T

    1997-02-01

    To study the pathogenetic mechanism of atherosclerotic plaque, the action of mediation and antagonism of endothelin (ET) and nitric oxide synthase (NOS) was investigated. In situ hybridization, RT-PCR on endothelin and NOS, cytochemistry on NOS were measured using the rabbit atherosclerosis model and cultured vascular smooth muscle cells (VSMC) from normal rabbit. Transcription of endothelin mRNA increased and transcription of NOS mRNA decreased in astherosclerotic plaque: compared with normal aorta, expression of ET gene in plaque was increased by 1.2 times and the expression of NOS gene was decreased by 22.2%; cytochemistry combined with image pattern analysis showed that ET could inhibit NOS protien synthesis in VSMC; type A receptor antagonist of ET could inhibit the role of ET which causes a decrease of NOS protein in VSMC. The imbalance between NOS and ET, namely abnormal increase of ET and/or obvious decrease of NOS, is related to atherosclerotic plaque formation.

  4. Spontaneous Coronary Artery Dissection: Current State of the Science: A Scientific Statement From the American Heart Association.

    PubMed

    Hayes, Sharonne N; Kim, Esther S H; Saw, Jacqueline; Adlam, David; Arslanian-Engoren, Cynthia; Economy, Katherine E; Ganesh, Santhi K; Gulati, Rajiv; Lindsay, Mark E; Mieres, Jennifer H; Naderi, Sahar; Shah, Svati; Thaler, David E; Tweet, Marysia S; Wood, Malissa J

    2018-05-08

    Spontaneous coronary artery dissection (SCAD) has emerged as an important cause of acute coronary syndrome, myocardial infarction, and sudden death, particularly among young women and individuals with few conventional atherosclerotic risk factors. Patient-initiated research has spurred increased awareness of SCAD, and improved diagnostic capabilities and findings from large case series have led to changes in approaches to initial and long-term management and increasing evidence that SCAD not only is more common than previously believed but also must be evaluated and treated differently from atherosclerotic myocardial infarction. High rates of recurrent SCAD; its association with female sex, pregnancy, and physical and emotional stress triggers; and concurrent systemic arteriopathies, particularly fibromuscular dysplasia, highlight the differences in clinical characteristics of SCAD compared with atherosclerotic disease. Recent insights into the causes of, clinical course of, treatment options for, outcomes of, and associated conditions of SCAD and the many persistent knowledge gaps are presented. © 2018 American Heart Association, Inc.

  5. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques

    PubMed Central

    Molenaar, Ger; de Waard, Vivian; Lutgens, Esther; van Eck-Smit, Berthe L. F.; de Bruin, Kora; Piek, Jan J.; Eersels, Jos L. H.; Booij, Jan; Verberne, Hein J.; Windhorst, Albert D.

    2017-01-01

    Molecular imaging of matrix metalloproteinases (MMPs) may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9) with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates) were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT) imaging that effectively targets atherosclerotic lesions in mice. PMID:29190653

  6. Optical pathology study of human abdominal aorta tissues using confocal micro resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-hui; Boydston-White, Susie; Wang, Wubao; Sordillo, Laura A.; Shi, Lingyan; Weisberg, Arel; Tomaselli, Vincent P.; Sordillo, Peter P.; Alfano, Robert R.

    2016-03-01

    Resonance Raman (RR) spectroscopic technique has a high potential for label-free and in-situ detection of biomedical lesions in vivo. This study evaluates the ability of RR spectroscopy method as an optical histopathology tool to detect the atherosclerotic plaque states of abdominal aorta in vitro. This part demonstrates the RR spectral molecular fingerprint features from different sites of the atherosclerotic abdominal aortic wall tissues. Total 57 sites of five pieces aortic samples in intimal and adventitial wall from an autopsy specimen were examined using confocal micro Raman system of WITec 300R with excitation wavelength of 532nm. The preliminary RR spectral biomarkers of molecular fingerprints indicated that typical calcified atherosclerotic plaque (RR peak at 964cm-1) tissue; fibrolipid plaque (RR peaks at 1007, 1161, 1517 and 2888cm-1) tissue, lipid pool with the fatty precipitation cholesterol) with collagen type I (RR peaks at 864, 1452, 1658, 2888 and 2948cm-1) in the soft tissue were observed and investigated.

  7. Immunochemical detection of food-derived polyphenols in the aorta: macrophages as a major target underlying the anti-atherosclerotic activity of polyphenols.

    PubMed

    Kawai, Yoshichika

    2011-01-01

    It has been suggested that polyphenol-rich diets decrease the risk of cardiovascular diseases. Although studies of the bioavailability of polyphenols, particularly their absorption and metabolism, have been reported recently, the tissue and cellular distributions underlying their biological mechanisms remain unknown. It is difficult to evaluate the specific localization of tissue and/or cellular polyphenols, because the method is limited to chromatography. To overcome these difficulties, we have developed anti-polyphenol antibodies to characterize immunohistochemically the localization of polyphenols and their metabolites in vivo. Two novel monoclonal antibodies were raised against quercetin and tea catechins, which represent flavonoid-type polyphenols distributed in foods and beverages, and are expected to exhibit anti-oxidative and anti-inflammatory activities in vivo. Using these antibodies, we identified activated macrophages as a specific target of these flavonoids during the development of atherosclerotic lesions. This review describes recent findings on the molecular actions of flavonoids that underly their anti-atherosclerotic activity in vivo.

  8. Short-term effect of severe exposure to methylmercury on atherosclerotic heart disease and hypertension mortality in Minamata.

    PubMed

    Inoue, Sachiko; Yorifuji, Takashi; Tsuda, Toshihide; Doi, Hiroyuki

    2012-02-15

    Recent studies suggest potential adverse effects of methylmercury exposure on myocardial infarction and hypertension, although the evidence is still limited. We thus evaluated this association using age-standardized mortality ratios (ASMRs) in Minamata, where severe methylmercury poisoning had occurred. We obtained mortality data from annual vital statistics and demographic statistics from census. We then compared mortality of atherosclerotic heart disease including degenerative heart disease and hypertension in Minamata-city with those in Kumamoto Prefecture, which includes Minamata city, as a control. We estimated ASMRs and 95% confidence intervals (CIs) during the period from 1953 to 1970. ASMRs of atherosclerotic heart disease were continuously decreased during the period from 1953 to 1967. In contrast, the ASMR of hypertension was significantly elevated during the period from 1963 to 1967 (SMR=1.38, CI; 1.06-1.80); but they decreased later. Although dilution is present in this ecological study, our study supports the notion that methylmercury exposure induces hypertension. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. How does juxtaluminal calcium affect critical mechanical conditions in carotid atherosclerotic plaque? An exploratory study.

    PubMed

    Zhongzhao Teng; Jing He; Sadat, Umar; Mercer, John R; Xiaoyan Wang; Bahaei, Nasim S; Thomas, Owen M; Gillard, Jonathan H

    2014-01-01

    The impact of calcification on the carotid atherosclerotic plaque vulnerability remains controversial and unclear. This study assesses the critical mechanical conditions induced by the calcium at the lumen surface, i.e., juxtaluminal calcification (JLCa), within human carotid atherosclerotic plaque. Eleven patients with evidence of JLCa were included for the analysis. The plaque geometry was reconstructed based on computed tomography and magnetic resonance images and 3-D fluid-structure interaction simulation was used for mechanical analysis. The presence of JLCa increased local stresses compared to when calcification was artificially covered with a 0.2-mm-thick fibrous cap (107.87 kPa [76.99, 129.14] versus 63.17 kPa [34.55, 75.13]; Median, [interquartile range]; ). Stretch ratio decreased from 1.18 [1.07, 1.27] to 1.13 [1.10, 1.18] (p = 0.03). The presence of JLCa significantly elevates local stress and stretch level. Further exploration of this plaque feature is warranted as a possible risk factor causing plaque vulnerability.

  10. Imaging of the Fibrous Cap in Atherosclerotic Carotid Plaque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saba, Luca, E-mail: lucasaba@tiscali.i; Potters, Fons; Lugt, Aad van der

    2010-08-15

    In the last two decades, a substantial number of articles have been published to provide diagnostic solutions for patients with carotid atherosclerotic disease. These articles have resulted in a shift of opinion regarding the identification of stroke risk in patients with carotid atherosclerotic disease. In the recent past, the degree of carotid artery stenosis was the sole determinant for performing carotid intervention (carotid endarterectomy or carotid stenting) in these patients. We now know that the degree of stenosis is only one marker for future cerebrovascular events. If one wants to determine the risk of these events more accurately, other parametersmore » must be taken into account; among these parameters are plaque composition, presence and state of the fibrous cap (FC), intraplaque haemorrhage, plaque ulceration, and plaque location. In particular, the FC is an important structure for the stability of the plaque, and its rupture is highly associated with a recent history of transient ischaemic attack or stroke. The subject of this review is imaging of the FC.« less

  11. Omega-3 fatty acids, inflammation and angiogenesis: basic mechanisms behind the cardioprotective effects of fish and fish oils.

    PubMed

    Massaro, M; Scoditti, E; Carluccio, M A; Campana, M C; De Caterina, R

    2010-02-25

    Atherosclerosis is now widely accepted to be an inflammatory disease, characterized by degenerative as well as proliferative changes and extracellular accumulation of lipid and cholesterol, in which an ongoing inflammatory reaction plays an important role both in initiation and progression/destabilization, converting a chronic process into an acute disorder. Neovascularization has also been recognized as an important process for the progression/destabilization of atherosclerotic plaques. In fact, vulnerable atherosclerotic plaques prone to rupture are characterized by an enlarged necrotic core, containing an increased number of vasa vasorum, apoptotic macrophages, and more frequent intraplaque haemorrhage. Various functional roles have been assigned to intimal microvessels, however the relationship between the process of angiogenesis and its causal association with the progression and complications of atherosclerosis are still challenging and controversial. In the past 30 years, the dietary intake of omega-3 (n-3) polyunsaturated fatty acids--mainly derived from fish--has emerged as an important way to modify cardiovascular risk through beneficial effects on all stages of atherosclerosis, including plaque angiogenesis. This review specifically focuses on the modulating effects of n-3 fatty acids on molecular events involved in early and late atherogenesis, including effects on endothelial expression of adhesion molecules, as well as pro-inflammatory and pro-angiogenic enzymes. By accumulating in endothelial membrane phospholipids, omega-3 fatty acids have been shown to decrease the transcriptional activation of several genes through an attenuation of activation of the nuclear factor-kappaB system of transcription factors. This occurs secondary to decreased generation of intracellular reactive oxygen species. This series of investigations configures a clear example of nutrigenomics--i.e., how nutrients may affect gene expression, ultimately affecting a wide spectrum of human diseases.

  12. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells.

    PubMed

    Aguilar, Edenil C; Santos, Lana Claudinez Dos; Leonel, Alda J; de Oliveira, Jamil Silvano; Santos, Elândia Aparecida; Navia-Pelaez, Juliana M; da Silva, Josiane Fernandes; Mendes, Bárbara Pinheiro; Capettini, Luciano S A; Teixeira, Lilian G; Lemos, Virginia S; Alvarez-Leite, Jacqueline I

    2016-08-01

    Butyrate is a 4-carbon fatty acid that has antiinflammatory and antioxidative properties. It has been demonstrated that butyrate is able to reduce atherosclerotic development in animal models by reducing inflammatory factors. However, the contribution of its antioxidative effects of butyrate on atherogenesis has not yet been studied. We investigated the influence of butyrate on oxidative status, reactive oxygen species (ROS) release and oxidative enzymes (NADPH oxidase and iNOS) in atherosclerotic lesions of ApoE(-/-) mice and in oxLDL-stimulated peritoneal macrophages and endothelial cells (EA.hy926). The lesion area in aorta was reduced while in the aortic valve, although lesion area was unaltered, superoxide production and protein nitrosylation were reduced in butyrate-supplemented mice. Peritoneal macrophages from the butyrate group presented a lower free radical release after zymosan stimulus. When endothelial cells were pretreated with butyrate before oxLDL stimulus, the CCL-2 and superoxide ion productions and NADPH oxidase subunit p22phox were reduced. In macrophage cultures, in addition to a reduction in ROS release, nitric oxide and iNOS expression were down-regulated. The data suggest that one mechanism related to the effect of butyrate on atherosclerotic development is the reduction of oxidative stress in the lesion site. The reduction of oxidative stress related to NADPH oxidase and iNOS expression levels associated to butyrate supplementation attenuates endothelium dysfunction and macrophage migration and activation in the lesion site. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Endothelial nitric oxide synthase overexpression restores the efficiency of bone marrow mononuclear cell-based therapy.

    PubMed

    Mees, Barend; Récalde, Alice; Loinard, Céline; Tempel, Dennie; Godinho, Marcia; Vilar, José; van Haperen, Rien; Lévy, Bernard; de Crom, Rini; Silvestre, Jean-Sébastien

    2011-01-01

    Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. CD59 Underlines the Antiatherosclerotic Effects of C-Phycocyanin on Mice

    PubMed Central

    Chu, Xian-Ming; Xu, Ying-Jie; Yang, Fan; Lv, Cong-Yi; Nie, Shu-min

    2013-01-01

    The effects of C-phycocyanin (C-PC) on atherosclerosis and the regulatory effects of CD59 gene on anti-atherosclerotic roles of C-PC were investigated. Apolipoprotein E knockout (ApoE(−/−)) mice were randomly divided into four groups: control group, C-PC treatment group, CD59 transfection group and C-PC+CD59 synergy group. The mice were fed with high-fat-diet and treated with drug intervention at the same time. Results showed the atherosclerotic mouse model was successfully established. CD59 was over-expressed in blood and tissue cells. Single CD59 or C-PC could reduce blood lipid levels and promote the expression of anti-apoptotic Bcl-2 but inhibit pro-apoptotic Fas proteins in endothelial cells. The expression levels of cell cycle protein D1 (Cyclin D1) and mRNA levels of cyclin dependent protein kinase 4 (CDK4) in smooth muscle cells were restrained by CD59 and C-PC. CD59 or C-PC alone could inhibit the formation of atherosclerotic plaque by suppressing MMP-2 protein expression. In addition, C-PC could promote CD59 expression. So both CD59 and C-PC could inhibit the progress of atherosclerosis, and the anti-atherosclerotic effects of C-PC might be fulfilled by promoting CD59 expression, preventing smooth muscle cell proliferation and the apoptosis of endothelial cells, reducing blood fat levels, and at last inhibiting the development of atherosclerosis. PMID:24319687

  15. Differences in primary cardiovascular disease prevention between the 2013 and 2016 cholesterol guidelines and impact of the 2017 hypertension guideline in the United States.

    PubMed

    Egan, Brent M; Li, Jiexiang; Davis, Robert A; Fiscella, Kevin A; Tobin, Jonathan N; Jones, Daniel W; Sinopoli, Angelo

    2018-05-18

    The US Preventive Services Task Force cholesterol guideline recommended statins for fewer adults than the 2013 American College of Cardiology/American Heart Association (ACC/AHA) guideline by setting a higher 10-year atherosclerotic cardiovascular disease threshold (≥10.0% vs ≥7.5%) and requiring concomitant diabetes mellitus, hypertension, dyslipidemia, or cigarette smoking. The 2017 ACC/AHA hypertension guideline lowered the hypertension threshold, increasing 2016 guideline statin-eligible adults. Cross-sectional data on US adults aged 40 to 75 years enabled estimated numbers for the 2013 guideline and 2016 guideline with hypertension thresholds of ≥140/≥90 mm Hg and ≥130/80 mm Hg, respectively, on: (1) untreated, statin-eligible adults for primary atherosclerotic cardiovascular disease prevention (25.40, 14.72, 15.35 million); (2) atherosclerotic cardiovascular disease events prevented annually (124 000, 70 852, 73 199); (3) number needed to treat (21, 21, 21); and (4) number needed to harm (38, 143, 143) per 1000 patient-years for incident diabetes mellitus (42 800, 6700, 7100 cases per year). Despite the lower hypertension threshold, the 2013 cholesterol guideline qualifies approximately 10 million more adults for statins and prevents approximately 50 600 more primary atherosclerotic cardiovascular disease events but induces approximately 35 700 more diabetes mellitus cases annually than the 2016 guideline. ©2018 Wiley Periodicals, Inc.

  16. Omega-3 Fatty Acids Ameliorate Atherosclerosis by Favorably Altering Monocyte Subsets and Limiting Monocyte Recruitment to Aortic Lesions

    PubMed Central

    Brown, Amanda L.; Zhu, Xuewei; Rong, Shunxing; Shewale, Swapnil; Seo, Jeongmin; Boudyguina, Elena; Gebre, Abraham K.; Alexander-Miller, Martha A.; Parks, John S.

    2012-01-01

    Objective Fish oil (FO), containing n-3 fatty acids (FAs), attenuates atherosclerosis. We hypothesized that n-3 FA-enriched oils are atheroprotective through alteration of monocyte subsets and their trafficking into atherosclerotic lesions. Methods and Results Low density lipoprotein receptor knockout (LDLr−/−) and apolipoprotein E−/− (apoE) mice were fed diets containing 10% (calories) as palm oil (PO) and 0.2% cholesterol, supplemented with an additional 10% PO, echium oil (EO; containing 18:4 n-3) or FO. Compared to PO-fed LDLr−/− mice, EO and FO significantly reduced plasma cholesterol, splenic Ly6Chi monocytosis by ~50%, atherosclerosis by 40–70%, monocyte trafficking into the aortic root by ~50%, and atherosclerotic lesion macrophage content by 30–44%. In contrast, atherosclerosis and monocyte trafficking into the artery wall was not altered by n-3 FAs in apoE−/− mice; however, Ly6Chi splenic monocytes positively correlated with aortic root intimal area across all diet groups. In apoE−/− mice, FO reduced the percentage of blood Ly6Chi monocytes, despite an average two-fold higher plasma cholesterol relative to PO. Conclusions The presence of splenic Ly6Chi monocytes parallels the appearance of atherosclerotic disease in both LDLr−/− and apoE−/− mice. Furthermore, n-3 FAs favorably alter monocyte subsets independently from effects on plasma cholesterol, and reduce monocyte recruitment into atherosclerotic lesions. PMID:22814747

  17. High purity tocotrienols attenuate atherosclerotic lesion formation in apoE-KO mice.

    PubMed

    Shibata, Akira; Kobayashi, Teiko; Asai, Akira; Eitsuka, Takahiro; Oikawa, Shinichi; Miyazawa, Teruo; Nakagawa, Kiyotaka

    2017-10-01

    Previous studies have demonstrated that tocotrienol (T3) has antiatherogenic effects. However, the T3 preparations used in those studies contained considerable amounts of tocopherol (Toc), which might affect the biological activity of T3. There is little information on the effect of highly purified T3 on atherosclerosis formation. This study investigated the effect of high-purity T3 on atherosclerotic lesion formation and the underlying mechanisms. Male apolipoprotein E knockout (apoE-KO) mice were fed a cholesterol-containing diet either alone or supplemented with T3 concentrate (Toc-free T3) or with α-Toc for 12 weeks. ApoE-KO mice fed the 0.2% T3-supplemented diet showed reduced atherosclerotic lesion formation in the aortic root. The 0.2% T3 diet induced Slc27a1 and Ldlr gene expression levels in the liver, whereas the α-Toc-supplemented diet did not affect those expression levels. T3 was predominantly deposited in fat tissue in the T3 diet-fed mice, whereas α-Toc was preferentially accumulated in liver in the α-Toc diet-fed mice. Considered together, these data demonstrate that dietary T3 exerts anti-atherosclerotic effect in apoE-KO mice. The characteristic tissue distribution and biological effects of T3, that are substantially different from those of Toc, may contribute to the antiatherogenic properties of T3. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. [Study on the effect of rhizoma Chuanxiong, radix paeoniae rubra and the compound of their active ingredients, Xiongshao Capsule, on stability of atherosclerotic plaque in ApoE(-/-) mice].

    PubMed

    Xu, Hao; Wen, Chuan; Chen, Ke-Ji

    2007-06-01

    To observe the effect of Rhizoma chuanxiong (RC), Radix Paeoniae rubra (RP) and Xiongshao Capsule (XC, a compound of their active ingredients, Chuanxingols and Paeoniflorins) on stability of atherosclerotic plaque in ApoE-/- mice and to explore the probable mechanisms. The effect of RC, RP and XC in stabilizing atherosclerotic plaque, in terms of pathologic morphology, cell composition and inflammatory reaction, in the atherosclerosis model established on ApoE-/- mice was studied by using optical microscope, immunohistochemical method and computerized imaging analysis respectively. After the ApoE-/- mice being fed with high fat diet for 26 weeks, obvious atherosclerotic lesion with typical unstable characteristics was found in their aortic root. Both RC and RP had certain effects in lowering total cholesterol and increasing the thickness of fibre cap. RC could also lower the serum triglyceride (TC) level and the lipid-core/plaque area ratio as well as reduce the macrocytic infiltration. In addition to the same effects as above mentioned, XS could also raise the levels of high density lipoprotein-cholesterol (HDL-C), lower TC/HDL-C ratio, reduce inflammatory reaction and enlarge the collagen area in plaque. The acting links of RC and RP on atherosclerosis are different, the compound of their active ingredients, XS, shows a more evident effect in intervening unstable plaque. It demonstrates the effect-enhancing power of TCM compound and is worth further studying.

  19. Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression.

    PubMed

    Wezel, Anouk; Lagraauw, H Maxime; van der Velden, Daniël; de Jager, Saskia C A; Quax, Paul H A; Kuiper, Johan; Bot, Ilze

    2015-08-01

    Activated mast cells have been identified in the intima and perivascular tissue of human atherosclerotic plaques. As mast cells have been described to release a number of chemokines that mediate leukocyte fluxes, we propose that activated mast cells may play a pivotal role in leukocyte recruitment during atherosclerotic plaque progression. Systemic IgE-mediated mast cell activation in apoE(-/-)μMT mice resulted in an increase in atherosclerotic lesion size as compared to control mice, and interestingly, the number of neutrophils was highly increased in these lesions. In addition, peritoneal mast cell activation led to a massive neutrophil influx into the peritoneal cavity in C57Bl6 mice, whereas neutrophil numbers in mast cell deficient Kit(W(-sh)/W(-sh)) mice were not affected. Within the newly recruited neutrophil population, increased levels of CXCR2(+) and CXCR4(+) neutrophils were observed after mast cell activation. Indeed, mast cells were seen to contain and release CXCL1 and CXCL12, the ligands for CXCR2 and CXCR4. Intriguingly, peritoneal mast cell activation in combination with anti-CXCR2 receptor antagonist resulted in decreased neutrophil recruitment, thus establishing a prominent role for the CXCL1/CXCR2 axis in mast cell-mediated neutrophil recruitment. Our data suggest that chemokines, and in particular CXCL1, released from activated mast cells induce neutrophil recruitment to the site of inflammation, thereby aggravating the ongoing inflammatory response and thus affecting plaque progression and destabilization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waksman, Ron; Pakala, Rajbabu; Burnett, Mary S.

    Introduction: Inflammatory and immunological responses of vascular cells are known to play significant roles in atherosclerotic plaque development. Rapamycin with antiinflammatory, immunosuppressive and antiproliferative properties has been shown to reduce neointima formation when coated on stents. This study is designed to test the potential of oral rapamycin to inhibit atherosclerotic plaque development. Methods: Eight-week-old apoE knock-out mice were fed with 0.25% cholesterol supplemented diet (control diet), control diet containing 50 {mu}g/kg rapamycin (low-dose rapamycin) or 100 {mu}g/kg rapamycin (high-dose rapamycin) for 4 or 8 weeks. Subsets of mice from each group (n=10) were weighed and euthanized. Whole blood rapamycin levelsmore » were determined using HPLC-MS/MS, and histological analyses of atherosclerotic lesions in the aortic root were performed. Results: Mice fed with high-dose rapamycin did not gain weight (18.5{+-}1.5 vs. 20.6{+-}0.9 g, P=.01). Blood levels of rapamycin 117{+-}7 pg/ml were detected in the blood of mice fed with high-dose rapamycin for 8 weeks. The plaque area in mice fed with high dose oral rapamycin is significantly less as compared to control (0.168{+-}0.008 vs. 0.326{+-}0.013 mm{sup 2}, P=.001 at 4 weeks; 0.234{+-}0.013 vs. 0.447{+-}0.011 mm{sup 2}, P=.001 at 8 weeks). Lumen area was inversely proportional to the plaque area. Conclusions: The results indicate that oral rapamycin is effective in attenuating the progression of atherosclerotic plaque in the mice.« less

  1. Glucose and insulin independently reduce the fibrinolytic potential of human vascular smooth muscle cells in culture.

    PubMed

    Pandolfi, A; Iacoviello, L; Capani, F; Vitacolonna, E; Donati, M B; Consoli, A

    1996-12-01

    Hyperglycaemia and hyperinsulinaemia have both been related to accelerated atherosclerosis in non-insulin-dependent diabetes mellitus (NIDDM). Plasma fibrinolytic potential is reduced in NIDDM and it is known that glucose and insulin can modulate plasminogen activator inhibitor (PAI-1) and tissue-plasminogen activator (t-PA) secretion and can therefore regulate local fibrinolysis. Vascular smooth muscle cells (vSMC) play an important role in the development of atherosclerotic lesions; however, the role of insulin and glucose in regulating PAI-1 and t-PA production in vSMC is presently not known. Therefore, we cultured arterial vSMC explanted from human umbilical cords and exposed them to increasing concentrations of glucose (5, 12, 20, 27, 35 mmol/l) or insulin (0.1, 0.5, 1, 10 nmol/l) in a serum free medium. After 24 h, PAI-1 and t-PA antigens and activity were evaluated in the culture medium; in cells exposed to 20 mmol/l glucose and to 0.5 nmol/l insulin PAI-1 gene expression was also evaluated. An increase in PAI-1 antigen was observed at each glucose concentration (by 138, 169, 251 and 357% as compared to 5 mmol/l glucose) which was paralleled by an increase in PAI-1 activity. t-PA concentration was also increased by glucose but its activity was sharply reduced. An increase in PAI-1 antigen was detected at each insulin level (by 121, 128, 156 and 300% as compared to no insulin). PAI-1 activity was slightly increased at the lowest insulin concentrations but markedly increased by 10 nmol/l insulin. t-PA antigen was also increased by insulin; however, its activity was markedly reduced at each concentration. As compared to control cells, PAI-1 mRNA was increased by 2.5 and 2.0 fold by 20 mmol/l glucose and 0.5 nmol/l insulin, respectively. We conclude that in human vSMC both glucose and insulin can affect the fibrinolytic balance so as to reduce fibrinolytic potential. This might contribute to decreased local fibrinolysis and thereby might accelerate the atherothrombotic process in NIDDM subjects.

  2. Improvement of endothelial function in a murine model of mild cholesterol-induced atherosclerosis by mineralocorticoid antagonism.

    PubMed

    Kratz, Mario T; Schirmer, Stephan H; Baumhäkel, Magnus; Böhm, Michael

    2016-08-01

    The renin-angiotensin-aldosterone-system (RAAS) plays a role in endothelial dysfunction and atherosclerosis. During treatment with RAAS-inhibitors, elevated aldosterone may sustain "aldosterone escape". We investigated the effects of treatment with the mineralocorticoid antagonist eplerenone (Ep) compared with ramipril (Rami) or the combination of both on oxidative stress, plaque formation and endothelial function, in atherosclerotic apolipoprotein E deficient mice (ApoE(-/-)-mice). ApoE(-/-)-mice were fed a cholesterol rich diet (21% fat, 19.5% casein, 1.25% cholesterol) for 8 weeks to produce mild atherosclerosis (i.e. plaque load 20-30%). ApoE(-/-)-mice (control), ApoE(-/-)-mice treated with Ep (25 mg/kg/day), Rami (2.5 mg/kg/day) and their combination were compared. Heart rate (HR) and blood pressure (BP) were measured using the tail-cuff-method. Endothelial function was measured in aortic rings and corpora cavernosal strips (CCs). Atherosclerotic plaque burden, collagen content, oxidative stress (Dihydroethidium (DHE) staining) and macrophages were determined. Treatments had no effects on HR and slightly reduced BP in ApoE(-/-)-mice treated with the combination of eplerenone and ramipril. Endothelium-dependent relaxation of aortic rings and CCs with carbachol was significantly improved in animals treated with Ep, Rami or their combination (p = 0.05 - p = 0.001). DHE-stained penile and aortic sections revealed a significant reduction in superoxide production in all treated groups (p = 0.035 - p = 0.001). In parallel, aortic and penile collagen content in ApoE(-/-)-mice was significantly decreased (p = 0.035 - p < 0.001) in animals treated with Ep, Rami or their combination. In agreement, there was a trend towards a reduction of aortic plaque area by treatment with Ep (-9.0 ± 3.2%) and Rami (-11.9 ± 4%). Only the treatment with the combination induced a significant reduction of the atherosclerotic plaque burden (p = 0.045). Moreover, the treatment of ApoE(-/-)-mice with Ep, Rami and their combination significantly reduced the count macrophage count in atherosclerotic plaque lesions. Ep restored endothelial function by reduction of oxidative stress, atherosclerotic macrophage content, atherosclerotic lesion size and fibrosis to the same extent as treatment with Rami or the combination. Mineralocorticoid antagonism provides vasculoprotective effects and should be clinically evaluated for vascular disease such as erectile dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Cost-effectiveness of Simvastatin plus Ezetimibe for Cardiovascular Prevention in CKD: Results of the Study of Heart and Renal Protection (SHARP)

    PubMed Central

    Mihaylova, Borislava; Schlackow, Iryna; Herrington, William; Lozano-Kühne, Jingky; Kent, Seamus; Emberson, Jonathan; Reith, Christina; Haynes, Richard; Cass, Alan; Craig, Jonathan; Gray, Alastair; Collins, Rory; Landray, Martin J.; Baigent, Colin; Collins, R.; Baigent, C.; Landray, M.J.; Bray, C.; Chen, Y.; Baxter, A.; Young, A.; Hill, M.; Knott, C.; Cass, A.; Feldt-Rasmussen, B.; Fellström, B.; Grobbee, D.E.; Grönhagen-Riska, C.; Haas, M.; Holdaas, H.; Hooi, L.S.; Jiang, L.; Kasiske, B.; Krairittichai, U.; Levin, A.; Massy, Z.A.; Tesar, V.; Walker, R.; Wanner, C.; Wheeler, D.C.; Wiecek, A.; Dasgupta, T.; Herrington, W.; Lewis, D.; Mafham, M.; Majoni, W.; Reith, C.; Emberson, J.; Parish, S.; Simpson, D.; Strony, J.; Musliner, T.; Agodoa, L.; Armitage, J.; Chen, Z.; Craig, J.; de Zeeuw, D.; Gaziano, J.M.; Grimm, R.; Krane, V.; Neal, B.; Ophascharoensuk, V.; Pedersen, T.; Sleight, P.; Tobert, J.; Tomson, C.

    2016-01-01

    Background Simvastatin, 20 mg, plus ezetimibe, 10 mg, daily (simvastatin plus ezetimibe) reduced major atherosclerotic events in patients with moderate to severe chronic kidney disease (CKD) in the Study of Heart and Renal Protection (SHARP), but its cost-effectiveness is unknown. Study Design Cost-effectiveness of simvastatin plus ezetimibe in SHARP, a randomized controlled trial. Setting & Population 9,270 patients with CKD randomly assigned to simvastatin plus ezetimibe versus placebo; participants in categories by 5-year cardiovascular risk (low, <10%; medium, 10%-<20%; or high, ≥20%) and CKD stage (3, 4, 5 not on dialysis, or on dialysis therapy). Model, Perspective, & Timeline Assessment during SHARP follow-up from the UK perspective; long-term projections. Intervention Simvastatin plus ezetimibe (2015 UK £1.19 per day) during 4.9 years’ median follow-up in SHARP; scenario analyses with high-intensity statin regimens (2015 UK £0.05-£1.06 per day). Outcomes Additional health care costs per major atherosclerotic event avoided and per quality-adjusted life-year (QALY) gained. Results In SHARP, the proportional reductions per 1 mmol/L of low-density lipoprotein (LDL) cholesterol reduction with simvastatin plus ezetimibe in all major atherosclerotic events of 20% (95% CI, 6%-32%) and in the costs of vascular hospital episodes of 17% (95% CI, 4%-28%) were similar across participant categories by cardiovascular risk and CKD stage. The 5-year reduction in major atherosclerotic events per 1,000 participants ranged from 10 in low-risk to 58 in high-risk patients and from 28 in CKD stage 3 to 36 in patients on dialysis therapy. The net cost per major atherosclerotic event avoided with simvastatin plus ezetimibe compared to no LDL-lowering regimen ranged from £157,060 in patients at low risk to £15,230 in those at high risk (£30,500-£39,600 per QALY); and from £47,280 in CKD stage 3 to £28,180 in patients on dialysis therapy (£13,000-£43,300 per QALY). In scenario analyses, generic high-intensity statin regimens were estimated to yield similar benefits at substantially lower cost. Limitations High-intensity statin-alone regimens were not studied in SHARP. Conclusions Simvastatin plus ezetimibe prevented atherosclerotic events in SHARP, but other less costly statin regimens are likely to be more cost-effective for reducing cardiovascular risk in CKD. PMID:26597925

  4. Cost-effectiveness of Simvastatin plus Ezetimibe for Cardiovascular Prevention in CKD: Results of the Study of Heart and Renal Protection (SHARP).

    PubMed

    Mihaylova, Borislava; Schlackow, Iryna; Herrington, William; Lozano-Kühne, Jingky; Kent, Seamus; Emberson, Jonathan; Reith, Christina; Haynes, Richard; Cass, Alan; Craig, Jonathan; Gray, Alastair; Collins, Rory; Landray, Martin J; Baigent, Colin

    2016-04-01

    Simvastatin, 20mg, plus ezetimibe, 10mg, daily (simvastatin plus ezetimibe) reduced major atherosclerotic events in patients with moderate to severe chronic kidney disease (CKD) in the Study of Heart and Renal Protection (SHARP), but its cost-effectiveness is unknown. Cost-effectiveness of simvastatin plus ezetimibe in SHARP, a randomized controlled trial. 9,270 patients with CKD randomly assigned to simvastatin plus ezetimibe versus placebo; participants in categories by 5-year cardiovascular risk (low, <10%; medium, 10%-<20%; or high, ≥20%) and CKD stage (3, 4, 5 not on dialysis, or on dialysis therapy). Assessment during SHARP follow-up from the UK perspective; long-term projections. Simvastatin plus ezetimibe (2015 UK £1.19 per day) during 4.9 years' median follow-up in SHARP; scenario analyses with high-intensity statin regimens (2015 UK £0.05-£1.06 per day). Additional health care costs per major atherosclerotic event avoided and per quality-adjusted life-year (QALY) gained. In SHARP, the proportional reductions per 1mmol/L of low-density lipoprotein (LDL) cholesterol reduction with simvastatin plus ezetimibe in all major atherosclerotic events of 20% (95% CI, 6%-32%) and in the costs of vascular hospital episodes of 17% (95% CI, 4%-28%) were similar across participant categories by cardiovascular risk and CKD stage. The 5-year reduction in major atherosclerotic events per 1,000 participants ranged from 10 in low-risk to 58 in high-risk patients and from 28 in CKD stage 3 to 36 in patients on dialysis therapy. The net cost per major atherosclerotic event avoided with simvastatin plus ezetimibe compared to no LDL-lowering regimen ranged from £157,060 in patients at low risk to £15,230 in those at high risk (£30,500-£39,600 per QALY); and from £47,280 in CKD stage 3 to £28,180 in patients on dialysis therapy (£13,000-£43,300 per QALY). In scenario analyses, generic high-intensity statin regimens were estimated to yield similar benefits at substantially lower cost. High-intensity statin-alone regimens were not studied in SHARP. Simvastatin plus ezetimibe prevented atherosclerotic events in SHARP, but other less costly statin regimens are likely to be more cost-effective for reducing cardiovascular risk in CKD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Quantitative assessment of atherosclerotic plaques on (18)F-FDG PET/MRI: comparison with a PET/CT hybrid system.

    PubMed

    Li, Xiang; Heber, Daniel; Rausch, Ivo; Beitzke, Dietrich; Mayerhoefer, Marius E; Rasul, Sazan; Kreissl, Michael; Mitthauser, Markus; Wadsak, Wolfgang; Hartenbach, Markus; Haug, Alexander; Zhang, Xiaoli; Loewe, Christian; Beyer, Thomas; Hacker, Marcus

    2016-07-01

    PET with (18)F-FDG has the potential to assess vascular macrophage metabolism. (18)F-FDG is most often used in combination with contrast-enhanced CT to localize increased metabolism to specific arterial lesions. Novel (18)F-FDG PET/MRI hybrid imaging shows high potential for the combined evaluation of atherosclerotic plaques, due to the superior morphological conspicuity of plaque lesions. The purpose of this study was to evaluate the reliability and accuracy of (18)F-FDG PET/MRI uptake quantification compared to PET/CT as a reference standard in patients with carotid atherosclerotic plaques. The study group comprised 34 consecutive oncological patients with carotid plaques who underwent both PET/CT and PET/MRI with (18)F-FDG on the same day. The presence of atherosclerotic plaques was confirmed by 3 T MRI scans. Maximum standardized uptake values (SUVmax) for carotid plaque lesions and the average SUV of the blood pool within the adjacent internal jugular vein were determined and target-to-blood ratios (TBRs, plaque to blood pool) were calculated. Atherosclerotic lesions with maximum colocalized focal FDG uptake were assessed in each patient. SUVmax values of carotid plaque lesions were significantly lower on PET/MRI than on PET/CT (2.3 ± 0.6 vs. 3.1 ± 0.6; P < 0.01), but were significantly correlated between PET/CT and PET/MRI (Spearman's r = 0.67, P < 0.01). In contrast, TBRmax values of plaque lesions were similar on PET/MRI and on PET/CT (2.2 ± 0.3 vs. 2.2 ± 0.3; P = 0.4), and again were significantly correlated between PET/MRI and PET/CT (Spearman's r = 0.73, P < 0.01). Considering the increasing trend in SUVmax and TBRmax values from early to delayed imaging time-points on PET/CT and PET/MRI, respectively, with continuous clearance of radioactivity from the blood, a slight underestimation of TBRmax values may also be expected with PET/MRI compared with PET/CT. SUVmax and TBRmax values are widely accepted reference parameters for estimation of the radioactivity of atherosclerotic plaques on PET/CT. However, due to a systematic underestimation of SUVmax and TBRmax with PET/MRI, the optimal cut-off values indicating the presence of inflamed plaque tissue need to be newly defined for PET/MRI.

  6. Arsenic trioxide suppresses liver X receptor β and enhances cholesteryl ester transfer protein expression without affecting the liver X receptor α in HepG2 cells.

    PubMed

    Cheng, Tain-Junn; Lin, Shu-Wen; Chen, Chih-Wei; Guo, How-Ran; Wang, Ying-Jang

    2016-10-25

    Chronic arsenic exposure is associated with cerebrovascular disease and the formation of atherosclerotic lesions. Our previous study demonstrated that arsenic trioxide (ATO) exposure was associated with atherosclerotic lesion formation through alterations in lipid metabolism in the reverse cholesterol transport process. In mouse livers, the expression of the liver X receptor β (LXR-β) and the cholesteryl ester transfer protein (CETP) was suppressed without any changes to the lipid profile. The aim of this study was to elucidate whether ATO contributes to atherosclerotic lesions by suppressing LXR-β and CETP levels in hepatocytes. HepG2 cells, human hepatocytes, were exposed to different ATO concentrations in vitro. Cell viability was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. The liver X receptor α (LXR-α), LXR-β, sterol regulatory element-binding protein-1c (SREBP-1c) and CETP protein levels were measured by Western blotting, and their mRNA levels were measured by real-time PCR. Cholesterol efflux was analyzed by flow cytometry. The results showed ATO inhibited LXR-β mRNA and protein levels with a subsequent decrease in SREBP-1c protein levels and reduced cholesterol efflux from HepG2 cells into the extracellular space without influencing LXR-α mRNA and protein levels. CETP protein levels of HepG2 cells were significantly elevated under arsenic exposure. Transfection of LXR-β shRNA did not change CETP protein levels, implying that there is no cross-talk between LXR-β and CETP. In conclusion, arsenic not only inhibits LXR-β and SREBP-1c mRNA and protein levels but also independently increases CETP protein levels in HepG2 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Identifying Vulnerable Atherosclerotic Plaque in Rabbits Using DMSA-USPIO Enhanced Magnetic Resonance Imaging to Investigate the Effect of Atorvastatin

    PubMed Central

    Li, Dongye; Wu, Weiheng; Gong, Lei; Li, Yong; Zhang, Qingdui; Zhang, Tao; Zhang, Chao; Zhang, Yu

    2015-01-01

    Background Rupture of an atherosclerotic plaque is the primary cause of acute cardiovascular and cerebrovascular syndromes. Early and non-invasive detection of vulnerable atherosclerotic plaques (VP) would be significant in preventing some aspects of these syndromes. As a new contrast agent, dimercaptosuccinic acid (DMSA) modified ultra-small super paramagnetic iron oxide (USPIO) was synthesized and used to identify VP and rupture plaque by magnetic resonance imaging (MRI). Methods Atherosclerosis was induced in male New Zealand White rabbits by feeding a high cholesterol diet (n = 30). Group A with atherosclerosis plaque (n = 10) were controls. VP was established in groups B (n = 10) and C (n = 10) using balloon-induced endothelial injury of the abdominal aorta. Adenovirus-carrying p53 genes were injected into the aortic segments rich in plaques after 8 weeks. Group C was treated with atorvastatin for 8 weeks. Sixteen weeks later, all rabbits underwent pharmacological triggering, and imaging were taken daily for 5 d after DMSA-USPIO infusion. At the first day and before being killed, serum MMP-9, sCD40L, and other lipid indicators were measured. Results DMSA-USPIO particles accumulated in VP and rupture plaques. Rupture plaques appeared as areas of hyper-intensity on DMSA-USPIO enhanced MRI, especially T2*-weighted sequences, with a signal strength peaking at 96 h. The group given atorvastatin showed few DMSA-USPIO particles and had lower levels of serum indicators. MMP-9 and sCD40L levels in group B were significantly higher than in the other 2 groups (P <0.05). Conclusion After successfully establishing a VP model in rabbits, DMSA-USPIO was used to enhance MRI for clear identification of plaque inflammation and rupture. Rupture plaques were detectable in this way probably due to an activating inflammatory process. Atorvastatin reduced the inflammatory response and stabilizing VP possibly by decreasing MMP-9 and sCD40L levels. PMID:25973795

  8. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  9. Macrophage Apoptosis and Efferocytosis in the Pathogenesis of Atherosclerosis

    PubMed Central

    Linton, MacRae F.; Babaev, Vladimir R.; Huang, Jiansheng; Linton, Edward F.; Tao, Huan; Yancey, Patricia G.

    2017-01-01

    Macrophage apoptosis and the ability of macrophages to clean up dead cells, a process called efferocytosis, are crucial determinants of atherosclerosis lesion progression and plaque stability. Environmental stressors initiate endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR). Unresolved ER stress with activation of the UPR initiates apoptosis. Macrophages are resistant to apoptotic stimuli, because of activity of the PI3K/Akt pathway. Macrophages express 3 Akt isoforms, Akt1, Akt2 and Akt3, which are products of distinct but homologous genes. Akt displays isoform-specific effects on atherogenesis, which vary with different vascular cell types. Loss of macrophage Akt2 promotes the anti-inflammatory M2 phenotype and reduces atherosclerosis. However, Akt isoforms are redundant with regard to apoptosis. c-Jun NH2-terminal kinase (JNK) is a pro-apoptotic effector of the UPR, and the JNK1 isoform opposes anti-apoptotic Akt signaling. Loss of JNK1 in hematopoietic cells protects macrophages from apoptosis and accelerates early atherosclerosis. IκB kinase α (IKKα, a member of the serine/threonine protein kinase family) plays an important role in mTORC2-mediated Akt signaling in macrophages, and IKKα deficiency reduces macrophage survival and suppresses early atherosclerosis. Efferocytosis involves the interaction of receptors, bridging molecules, and apoptotic cell ligands. Scavenger receptor class B type I is a critical mediator of macrophage efferocytosis via the Src/PI3K/Rac1 pathway in atherosclerosis. Agonists that resolve inflammation offer promising therapeutic potential to promote efferocytosis and prevent atherosclerotic clinical events. PMID:27725526

  10. Comparison of skin microvascular reactivity with hemostatic markers of endothelial dysfunction and damage in type 2 diabetes

    PubMed Central

    Beer, Sandra; Feihl, François; Ruiz, Juan; Juhan-Vague, Irène; Aillaud, Marie-Françoise; Wetzel, Sandrine Golay; Liaudet, Lucas; Gaillard, Rolf C; Waeber, Bernard

    2008-01-01

    Aim: Patients with non-insulin-dependent diabetes mellitus (NIDDM) are at increased cardiovascular risk due to an accelerated atherosclerotic process. The present study aimed to compare skin microvascular function, pulse wave velocity (PWV), and a variety of hemostatic markers of endothelium injury [von Willebrand factor (vWF), plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (t-PA), tissue factor pathway inhibitor (TFPI), and the soluble form of thrombomodulin (s-TM)] in patients with NIDDM. Methods: 54 patients with NIDDM and 38 sex- and age-matched controls were studied. 27 diabetics had no overt micro- and/or macrovascular complications, while the remainder had either or both. The forearm skin blood flow was assessed by laser-Doppler imaging, which allowed the measurement of the response to iontophoretically applied acetylcholine (endothelium-dependent vasodilation) and sodium nitroprusside (endothelium-independent vasodilation), as well as the reactive hyperemia triggered by the transient occlusion of the circulation. Results: Both endothelial and non-endothelial reactivity were significantly blunted in diabetics, regardless of the presence or the absence of vascular complications. Plasma vWF, TFPI and s-TM levels were significantly increased compared with controls only in patients exhibiting vascular complications. Concentrations of t-PA and PAI-1 were significantly increased in the two groups of diabetics versus controls. Conclusion: In NIDDM, both endothelium-dependent and -independent microvascular skin reactivity are impaired, whether or not underlying vascular complications exist. It also appears that microvascular endothelial dysfunction is not necessarily associated in NIDDM with increased circulating levels of hemostatic markers of endothelial damage known to reflect a hypercoagulable state. PMID:19337558

  11. In-vivo and in-situ detection of atherosclerotic plaques using full-range complex-conjugate-free spectral domain optical coherence tomography in the murine carotid

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Wicks, Robert; Zhang, Kang; Zhao, Mingtao; Tyler, Betty M.; Hwang, Lee; Pradilla, Gustavo; Kang, Jin U.

    2013-03-01

    Carotid endarterectomy is a common vascular surgical procedure which may help prevent patients' risk of having a stroke. A high resolution real-time imaging technique that can detect the position and size of vascular plaques would provide great value to reduce the risk level and increase the surgical outcome. Optical coherence tomography (OCT), as a high resolution high speed noninvasive imaging technique, was evaluated in this study. Twenty-four 24-week old apolipoprotein E-deficient (ApoE-/-) mice were divided into three groups with 8 in each. One served as the control group fed with normal diet. One served as the study group fed with high-fat diet to induce atherosclerosis. The last served as the treatment group fed with both high-fat diet and medicine to treat atherosclerosis. Full-range, complex-conjugate-free spectral-domain OCT was used to image the mouse aorta near the neck area in-vivo with aorta exposed to the imaging head through surgical procedure. 2D and 3D images of the area of interest were presented real-time through graphics processing unit accelerated algorithm. In-situ imaging of all the mice after perfusion were performed again to validate the invivo detection result and to show potential capability of OCT if combined with surgical saline flush. Later all the imaged arteries were stained with H and E to perform histology analysis. Preliminary results confirmed the accuracy and fast imaging speed of OCT imaging technique in determining atherosclerosis.

  12. Prothrombotic changes in diabetes mellitus.

    PubMed

    Morel, Olivier; Jesel, Laurence; Abbas, Malak; Morel, Nicolas

    2013-07-01

    Although our understanding of vascular pathology has greatly improved in recent years, the cellular and molecular mechanisms underlying the enhanced thrombotic propensity in type 2 diabetes mellitus (T2DM) remain incompletely characterized. Detrimental interactions between activated vascular cells (i.e., platelets, leukocytes, endothelial cells) and the vulnerable atheromatous plaque are a major determinant of the increased atherothrombotic burden in T2DM patients. Endothelial damage and accelerated senescence, impairment of the endothelial progenitor cell repair system, plaque neovascularization and inflammation, decreased clearance of detrimental molecules within the plaque, and increased expression of matrix metalloproteinases may collectively contribute to intraplaque hemorrhage and subsequent rupture. Notably, recent data demonstrates the central importance of the tissue factor-microparticle-mediated pathway in diabetic thrombophilia and cardiovascular complications. Acting as detrimental amplifiers of various biological responses (including thrombogenicity and plaque remodeling), microparticles have also emerged as a key marker of global vascular damage in T2DM patients. Available evidence suggests that targeting the tissue factor-microparticle pathway may be a promising approach for reducing the burden of the atherosclerotic complications of diabetes. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. A system for rapid analysis of the femoral blood velocity waveform at the bedside.

    PubMed

    Capper, W L; Amoore, J N; Clifford, P C; Immelman, E J; Harries-Jones, E P

    1986-01-01

    The shape of the arterial blood velocity waveform varies with atherosclerotic disease and several methods of quantifying the shape in order to predict the severity of the disease have been described. These methods include pulsatility index, the Laplace transform method, and principal component analysis. This paper describes the development of a system which allows the operator to acquire, display, and store waveforms from each limb and then to quantify the waveforms at the bedside within a few minutes. The system includes a 10 MHz bi-directional Doppler unit, an instantaneous mean frequency processor, and an Apple II microcomputer fitted with an accelerator card. Both the Laplace transform parameters and the pulsatility index are computed and each result is printed in tabular form together with the averaged results of five waveforms from each limb. The printout is suitable for inclusion in the patient's folder. In initial clinical studies Laplace transform analysis exhibited a good correlation with aorto-iliac stenosis as assessed angiographically (R = 0.73 P less than 0.001 t test).

  14. Advanced Glycation End Products Enhance Macrophages Polarization into M1 Phenotype through Activating RAGE/NF-κB Pathway

    PubMed Central

    Jin, Xian; Yao, Tongqing; Zhou, Zhong'e; Zhu, Jian; Zhang, Song; Hu, Wei; Shen, Chengxing

    2015-01-01

    Atherosclerotic lesions are accelerated in patients with diabetes. M1 (classically activated in contrast to M2 alternatively activated) macrophages play key roles in the progression of atherosclerosis. Since advanced glycation end products (AGEs) are major pathogenic factors and active inflammation inducers in diabetes mellitus, this study assessed the effects of AGEs on macrophage polarization. The present study showed that AGEs significantly promoted macrophages to express IL-6 and TNF-α. M1 macrophage markers such as iNOS and surface markers including CD11c and CD86 were significantly upregulated while M2 macrophage markers such as Arg1 and CD206 remained unchanged after AGEs stimulation. AGEs significantly increased RAGE expression in macrophages and activated NF-κB pathway, and the aforementioned effects were partly abolished by administration of anti-RAGE antibody or NF-κB inhibitor PDTC. In conclusion, our results suggest that AGEs enhance macrophage differentiation into proinflammatory M1 phenotype at least partly via RAGE/NF-κB pathway activation. PMID:26114112

  15. Optimal healing environments for chronic cardiovascular disease.

    PubMed

    Marshall, Debra A; Walizer, Elaine; Vernalis, Marina N

    2004-01-01

    A substantial increase in chronic cardiovascular disease is projected for the next several decades. This is attributable to an aging population and accelerated rates of obesity and diabetes. Despite technological advances that have improved survival for acute events, there is suboptimal translation of research knowledge for prevention and treatment of chronic cardiovascular illness. Beginning with a brief review of the demographics and pathogenesis of atherosclerotic cardiovascular disease, this paper discusses the obstacles and approaches to optimal care of patients with chronic cardiovascular disease. The novel concept of an optimal healing environment (OHE) is defined and explored as a model for integrative cardiac health care. Aspects generally underexamined in cardiac care such as intrapersonal/interpersonal characteristics of the health care provider and patient, mind/body/spirit wholeness and healing versus curing are discussed, as is the impact psychosocial factors may have on atherosclerosis and cardiovascular health. Information from research on the impact of an OHE might renew the healing mission in medicine, reveal new approaches for healing the heart and establish the importance of a heart-mind-body connection.

  16. Advanced Oxidation Protein Products-Modified Albumin Induces Differentiation of RAW264.7 Macrophages into Dendritic-Like Cells Which Is Modulated by Cell Surface Thiols.

    PubMed

    Garibaldi, Silvano; Barisione, Chiara; Marengo, Barbara; Ameri, Pietro; Brunelli, Claudio; Balbi, Manrico; Ghigliotti, Giorgio

    2017-01-10

    Local accumulation of Advanced Oxidation Protein Products (AOPP) induces pro-inflammatory and pro-fibrotic processes in kidneys and is an independent predictor of renal fibrosis and of rapid decline of eGFR in patients with chronic kidney disease (CKD). In addition to kidney damage, circulating AOPP may be regarded as mediators of systemic oxidative stress and, in this capacity, they might play a role in the progression of atherosclerotic damage of arterial walls. Atherosclerosis is a chronic inflammatory disease that involves activation of innate and adaptive immunity. Dendritic cells (DCs) are key cells in this process, due to their role in antigen presentation, inflammation resolution and T cell activation. AOPP consist in oxidative modifications of proteins (such as albumin and fibrinogen) that mainly occur through myeloperoxidase (MPO)-derived hypochlorite (HOCl). HOCl modified proteins have been found in atherosclerotic lesions. The oxidizing environment and the shifts in cellular redox equilibrium trigger inflammation, activate immune cells and induce immune responses. Thus, surface thiol groups contribute to the regulation of immune functions. The aims of this work are: (1) to evaluate whether AOPP-proteins induce activation and differentiation of mature macrophages into dendritic cells in vitro; and (2) to define the role of cell surface thiol groups and of free radicals in this process. AOPP-proteins were prepared by in vitro incubation of human serum albumin (HSA) with HOCl. Mouse macrophage-like RAW264.7 were treated with various concentrations of AOPP-HSA with or without the antioxidant N -acetyl cysteine (NAC). Following 48 h of HSA-AOPP treatment, RAW264.7 morphological changes were evaluated by microscopic observation, while markers of dendritic lineage and activation (CD40, CD86, and MHC class II) and allogeneic T cell proliferation were evaluated by flow cytometry. Cell surface thiols were measured by AlexaFluor-maleimide binding, and ROS production was assessed as DCF fluorescence by flow cytometry. HSA-AOPP induced the differentiation of RAW264.7 cells into a dendritic-like phenotype, as shown by morphological changes, by increased CD40, CD86 and MHC class II surface expression and by induction of T cell proliferation. The cell surface thiols dose dependently decreased following HSA-AOPP treatment, while ROS production increased. NAC pre-treatment enhanced the amount of cell surface thiols and prevented their reduction due to treatment with AOPP. Both ROS production and RAW264.7 differentiation into DC-like cells induced by HSA-AOPP were reduced by NAC. Our results highlight that oxidized plasma proteins modulate specific immune responses of macrophages through a process involving changes in the thiol redox equilibrium. We suggest that this mechanism may play a role in determining the rapid progression of the atherosclerotic process observed in CKD patients.

  17. Endovascular revascularization for aortoiliac atherosclerotic disease

    PubMed Central

    Aggarwal, Vikas; Waldo, Stephen W; Armstrong, Ehrin J

    2016-01-01

    Atherosclerotic iliac artery disease is increasingly being treated with endovascular techniques. A number of new stent technologies can be utilized with high long-term patency, including self-expanding stents, balloon-expandable stents, and covered stents, but comparative data on these stent types and in more complex lesions are lacking. This article provides a review of currently available iliac stent technologies, as well as complex procedural aspects of iliac artery interventions, including approaches to the treatment of iliac bifurcation disease, long segment occlusions, choice of stent type, and treatment of iliac artery in-stent restenosis. PMID:27099509

  18. Intravascular Raman spectroscopic catheter for molecular diagnosis of atherosclerotic coronary disease

    NASA Astrophysics Data System (ADS)

    Komachi, Yuichi; Sato, Hidetoshi; Tashiro, Hideo

    2006-10-01

    An intravascular catheter for Raman spectroscopic detection and analysis of coronary atherosclerotic disease has been developed. The catheter, having an outer diameter of 2 mm, consisted of a side-view-type micro-Raman probe, an imaging fiber bundle, a working channel (injection drain), and a balloon. By inflating the balloon, the probe was brought close to the inner wall of a modeled blood flow system and detected a phantom target buried in the wall. Results obtained demonstrate the possibility of using the spectroscopic catheter for molecular diagnosis of coronary lesions.

  19. Fiber optic label-free biophotonic diagnostic tool for cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Rius, Cristina; Ackermann, Tobias N.; Dorado, Beatriz; Muñoz-Berbel, Xavier; Andrés, Vicente; Llobera, Andreu

    2015-06-01

    A label-free compact method for performing photonic characterization of "healthy" versus "diseased" arteries has been developed. It permits the detection of atherosclerotic lesion in living mouse arteries. Using this prototype, we observed that the spectral response (photonic fingerprint, PIN) obtained from aortas of wild-type mice differs from the response of ApoE-KO mice fed with high-fat diet (an atheroprone mouse model). Benchmark of the results against gold standard was performed by staining the aortas with Oil-Red-O to visualize atherosclerotic plaques.

  20. Metabolomic and Genomic Markers of Atherosclerosis as Related to Oxidative Stress, Inflammation, and Vascular Function in Twin Astronauts

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Rana, Brinda K.; Stenger, Michael B.; Sears, Dorothy D.; Smith, Scott M.; Macias, Brandon R.; Hargens, Alan R.; Sharma, Kumar; De Vivo, Immaculata

    2016-01-01

    Background: Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. Astronauts participating in long-duration missions may be at an increased risk of oxidative stress and inflammatory damage due to radiation, psychological stress, altered physical activity, nutritional insufficiency, and hyperoxia during extravehicular activity. By studying one identical twin during his 1-year ISS mission and one ground-based twin, this work extends a current NASA-funded investigation to determine whether these spaceflight factors contribute to an accelerated progression of atherosclerosis. This study of twins affords a unique opportunity to examine the spaceflight-related atherosclerosis risk independent of the confounding factors associated with different genotypes. Purpose: The purpose of this investigation is to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and determine if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. These physiological and biochemical data will be extended by using an exploratory approach to investigate the relationship between intermediate phenotypes and risk factors for atherosclerosis and the metabolomic signature from plasma and urine samples. Since metabolites are often the indirect products of gene expression, we will simultaneously assess gene expression and DNA methylation in leukocytes. Hypothesis: We predict that the space-flown twin will experience elevated biomarkers of oxidative stress and inflammatory damage, altered arterial structure and function, accelerated telomere shortening, dysregulation of genes associated with oxidative stress and inflammation, and a metabolic profile shift that is associated with elevated atherosclerosis risk factors. Conversely, these will not be observed in the ground-based twin. Methods: We will measure blood and urine biomarkers of oxidative stress and inflammation as well as arterial structure and function (carotid intima-medial thickness and brachial artery flow-mediated dilation) in one twin astronaut before, during, and after long-duration spaceflight and in his twin serving as a ground-based control. Furthermore, we will measure metabolomics (targeted and untargeted approaches) and genomic markers (DNA methylation, mRNA gene expression, telomere length) to elucidate the molecular mechanisms involved. A panel of biomarkers of oxidative and inflammatory stress will be measured in venous blood samples and 24-hour (in-flight) and 48-hour (pre- and post-flight) urine pools twice before flight, early (flight days 15 and 60) and late (2 weeks before landing) during the mission, and early in the post-flight recovery phase (approximately 3-5 days after landing). Arterial structure, assessed from measures of intima-media thickness, will be measured at the same times. Arterial function will be assessed using brachial flow-mediated dilation, a well-validated measure used to assess endothelium-dependent vasodilation and a sensitive predictor of atherosclerotic risk, only before and after spaceflight. Discussion: Pre- and in-flight data collection is in progress for the space-flown twin, and similar data have been obtained from the ground-based twin. Blood and urine samples will be batch processed when received from ISS after the conclusion of the 1-year mission. Results from these individual subjects will be compared to the larger complement of subjects participating in the companion study currently ongoing in ISS astronauts.

  1. REVIEWS OF TOPICAL PROBLEMS: Acceleration of cosmic rays by shock waves

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Krymskiĭ, G. F.

    1988-01-01

    Theoretical work on various processes by which shock waves accelerate cosmic rays is reviewed. The most efficient of these processes, Fermi acceleration, is singled out for special attention. A linear theory for this process is presented. The results found on the basis of nonlinear models of Fermi acceleration, which incorporate the modification of the structure caused by the accelerated particles, are reported. There is a discussion of various possibilities for explaining the generation of high-energy particles observed in interplanetary and interstellar space on the basis of a Fermi acceleration mechanism. The acceleration by shock waves from supernova explosions is discussed as a possible source of galactic cosmic rays. The most important unresolved questions in the theory of acceleration of charged particles by shock waves are pointed out.

  2. Evaluation of a fluorescence feedback system for guidance of laser angioplasty.

    PubMed

    Deckelbaum, L I; Desai, S P; Kim, C; Scott, J J

    1995-01-01

    Laser-induced fluorescence spectroscopy (LIFS) may be capable of guiding laser angioplasty by discriminating normal and atherosclerotic artery and by determining catheter-tissue environment. Previous optical multichannel analyzer based LIFS systems have been expensive and cumbersome. To simplify LIFS, a system based on photomultiplier tubes was developed and evaluated. Tissue fluorescence was induced by a helium cadmium laser (wavelength = 325 nm, power = 0.2-0.5 mW), collected by clinical multifiber laser angioplasty catheters and directed through one of two filters (10 nm bandpass, 380 nm or 440 nm peak transmission) to a photomultiplier tube. An LIFS ratio was defined as the relative intensity at 380:440 nm after calibration with an elastin fluorescence spectrum; 157 coronary artery cadaveric specimens were evaluated spectroscopically and histologically. To evaluate the utility of LIFS to optimize catheter position by determining catheter-tissue contact, by determining saline dilution of blood, and by orienting eccentric multifiber catheters a new variable, the total fluorescence intensity (TFI) was defined as the sum of arterial fluorescence intensities at 380 nm and 440 nm. TFI was recorded in vitro through multifiber catheters from 20 arterial specimens in vitro in blood and evaluated as a function of the catheter-to-tissue distance (d) over a range from 0 to 400 mu. Defining normal specimens as those with an intimal thickness < or = 200 mu, and atherosclerotic as those with an intimal thickness > 200 mu, 47/50 (94%) normal and 85/107 (79%) atherosclerotic specimens were correctly classified using a threshold LIFS ratio of 2.0. Mean (+/- SE) normal ratio was 1.76 +/- 0.02 and mean atherosclerotic ratio was 2.78 +/- 0.08 (P < or = 0.01). The classification accuracy of atherosclerotic specimens increased with intimal thickness so that 95% of atherosclerotic specimens (69/73) with intimal thickness > or = 400 mu were correctly classified. TFI was capable of determining catheter-tissue contact as maximal TFI was recorded with the catheter in contact with the tissue (d = 0 mu) and decreased markedly with distance (to 52 +/- 6% at d = 100 mu, 19 +/- 4% at d = 200 mu, and 3 +/- 1% at d = 300 mu). TFI was recorded from ten arterial specimens in blood/saline mixtures ranging in hematocrit from 0% (saline) to 50% (whole blood). TFI was capable of detecting saline hemodilution of blood as TFI decreased markedly at higher hematocrits such that TFI could only by recorded at hematocrits < 10% for catheter-to-tissue distances > or = 300 mu. TFI was recorded through ecentric multifiber catheters from 25 arterial specimens and eval-uated as a function of the degree of catheter-tissue overlap. TFI was capable of detecting maximal catheter-tissue overlap as TFI correlated linearly with the area (A) of overlap (TFI = 1.12 A + .07, r = 0.92). By discriminating atherosclerotic from normal tissue and by confirming catheter-tissue contact and saline hemodilution, fluorescence feedback should minimize irradiation of normal tissue and/or blood and enhance the safety and efficacy of laser angioplasty.

  3. Absence of accelerated atherosclerotic disease progression after intracoronary infusion of bone marrow derived mononuclear cells in patients with acute myocardial infarction--angiographic and intravascular ultrasound--results from the TErapia Celular Aplicada al Miocardio Pilot study.

    PubMed

    Arnold, Roman; Villa, Adolfo; Gutiérrez, Hipólito; Sánchez, Pedro L; Gimeno, Federico; Fernández, Maria E; Gutiérrez, Oliver; Mota, Pedro; Sánchez, Ana; García-Frade, Javier; Fernández-Avilés, Francisco; San Román, Jose A

    2010-06-01

    We tried to evaluate a putative negative effect on coronary atherosclerosis in patients receiving intracoronary infusion of unfractionated bone marrow mononuclear cells (BMMC) following an acute ST-elevation myocardial infarction. Peripheral blood mononuclear cells or enriched CD133(+) BMMC have been associated with accelerated atherosclerosis of the distal segment of the infarct related artery (IRA). Thirty-seven patients with ST-elevation myocardial infarction from the TECAM pilot study underwent intracoronary infusion of autologous BMMC 9 +/- 3.1 days after onset of symptoms. We compared angiographic changes from baseline to 9 months of follow-up in the distal non-stented segment of the IRA, as well as in the contralateral coronary artery, with a matched control group. A subgroup of 15 treated patients underwent additional IVUS within the distal segment of the IRA. No difference between stem cell and control group were found regarding changes in minimum lumen diameter (0.006 +/- 0.42 vs 0.06 +/- 0.41 mm, P = ns) and the percentage of stenosis (-2.68 +/- 12.33% vs -1.78 +/- 8.75%, P = ns) at follow-up. Likewise, no differences were seen regarding changes in the contralateral artery (minimum lumen diameter -0.004 +/- 0.54 mm vs -0.06 +/- 0.35 mm, P = ns). In the intravascular ultrasound substudy, no changes were demonstrated comparing baseline versus follow-up in maximum area stenosis and plaque volume. In this pilot study, analysis of a subgroup of patients found that intracoronary injection of unfractionated BMMC in patients with acute ST-elevation myocardial infarction was not associated with accelerated atherosclerosis progression at mid term. Prospective, randomised studies in large cohorts with long-term angiographic and intravascular ultrasound follow-up are necessary to determine the safety of this therapy. Copyright 2010 Mosby, Inc. All rights reserved.

  4. Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture.

    PubMed

    Bobryshev, Y V; Killingsworth, M C; Lord, R S A; Grabs, A J

    2008-10-01

    Plaque rupture is the most common type of plaque complication and leads to acute ischaemic events such as myocardial infarction and stroke. Calcification has been suggested as a possible indicator of plaque instability. Although the role of matrix vesicles in the initial stages of arterial calcification has been recognized, no studies have yet been carried out to examine a possible role of matrix vesicles in plaque destabilization. Tissue specimens selected for the present study represented carotid specimens obtained from patients undergoing carotid endarterectomy. Serial frozen cross-sections of the tissue specimens were cut and mounted on glass slides. The thickness of the fibrous cap (FCT) in each advanced atherosclerotic lesion, containing a well developed lipid/necrotic core, was measured at its narrowest sites in sets of serial sections. According to established criteria, atherosclerotic plaque specimens were histologically subdivided into two groups: vulnerable plaques with thin fibrous caps (FCT <100 microm) and presumably stable plaques, in which fibrous caps were thicker than 100 microm. Twenty-four carotid plaques (12 vulnerable and 12 presumably stable plaques) were collected for the present analysis of matrix vesicles in fibrous caps. In order to provide a sufficient number of representative areas from each plaque, laser capture microdissection (LCM) was carried out. The quantification of matrix vesicles in ultrathin sections of vulnerable and stable plaques revealed that the numbers of matrix vesicles were significantly higher in fibrous caps of vulnerable plaques than those in stable plaques (8.908+0.544 versus 6.208+0.467 matrix vesicles per 1.92 microm2 standard area; P= 0.0002). Electron microscopy combined with X-ray elemental microanalysis showed that some matrix vesicles in atherosclerotic plaques were undergoing calcification and were characterized by a high content of calcium and phosphorus. The percentage of calcified matrix vesicles/microcalcifications was significantly higher in fibrous caps in vulnerable plaques compared with that in stable plaques (6.705+/-0.436 versus 5.322+/-0494; P= 0.0474). The findings reinforce a view that the texture of the extracellular matrix in the thinning fibrous cap of atherosclerotic plaque is altered and this might contribute to plaque destabilization.

  5. Physical frailty in older adults is associated with metabolic and atherosclerotic risk factors and cognitive impairment independent of muscle mass.

    PubMed

    Lee, J S W; Auyeung, T-W; Leung, J; Kwok, T; Leung, P-C; Woo, J

    2011-12-01

    Metabolic and atherosclerotic diseases are known risk factors for disability in old age, and can result in sarcopenia as well as cognitive impairment, which are both components of frailty syndrome. As muscle loss increases with ageing, it is unclear whether muscle loss per se, or the diseases themselves, are the underlying cause of physical frailty in those suffering from these diseases. We tested the hypothesis that metabolic and atherosclerotic diseases and cognitive impairment are associated with physical frailty independent of muscle loss in old age, and further examined their impact on the relationship between physical frailty and mortality. Prospective. Community. 4000 community dwelling Chinese elderly ≥65 years. Diabetes, hypertension, stroke, heart disease, cognitive impairment, smoking, physical activity, waist hip ratio (WHR) and ankle-brachial index (ABI)) were recorded. Physical frailty measurements (grip-strength, chair-stands, stride length and 6-metre walks) were summarized into a composite frailty score (0-20), 0 being the most frail) according to quartiles of performance. Appendicular muscle mass (ASM) was measured using dual X-ray absorptiometry. Relationships between the score and covariates were analyzed. Cox regression was used to study the impact of metabolic and atnerosclerotic risk factors on the relationship between physical frailty and 6-year mortality. After adjustment for ASM, all metabolic diseases and indexes, and cognitive impairment were significantly associated with the composite physical frailty score in univariate analysis. In multivariate analysis, cognitive impairment, high WHR, diabetes, stroke and heart disease were all independently associated with higher physical frailty with adjustment for age, physical activity level and ASM. Hypertension was associated with physical frailty in men but not in women. In Cox regression, increased physical frailty was associated with higher 6-year mortality. The impact of metabolic and atherosclerotic risk factors was however only modest after adjustment for age and cognitive function. Metabolic and atherosclerotic diseases and high WHR, was associated with physical frailty, independent of their adverse effect on cognitive function and muscle mass.

  6. Molecular Imaging of Inflammation in Atherosclerosis

    PubMed Central

    Wildgruber, Moritz; Swirski, Filip K.; Zernecke, Alma

    2013-01-01

    Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within the last decades, several cellular and molecular players have been identified that promote atherosclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that inflammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and prone to rupture, however, remain unknown and the identification of the vulnerable plaque remains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer minimal information about the underlying biology and potential risk for rupture. New imaging technologies are therefore being developed, and in the preclinical setting have enabled new and dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular imaging has the potential to track biological processes, such as the activity of cellular and molecular biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will review the potential of established and new molecular imaging technologies in the setting of atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging approaches into the clinic. PMID:24312156

  7. The association between pre-hypertension status and oxidative stress markers related to atherosclerotic disease: the ATTICA study.

    PubMed

    Chrysohoou, Christina; Panagiotakos, Demosthenes B; Pitsavos, Christos; Skoumas, John; Economou, Manolis; Papadimitriou, Lambros; Stefanadis, Christodoulos

    2007-05-01

    We sought to evaluate the association between pre-hypertension status and oxidative stress markers (total antioxidant capacity (TAC) and oxidized low density lipoprotein (LDL)), in a random sample of cardiovascular disease-free adults. The ATTICA study is a cross-sectional population-based survey that conducted in Attica region during 2001-2002. Based on a multistage and stratified random sampling, 1514 men and 1528 women (18-89 years old) were enrolled. The survey included a detailed interview; blood samples collected after 12h of fasting and, among other clinical measurements, status of blood pressure levels was evaluated. Six hundred and fifty-three men (43%) and 535 women (35%) were defined as pre-hypertensives. Both systolic and diastolic blood pressures were inversely correlated with TAC (p<0.001) and positively correlated to oxidized LDL (p<0.001). Particularly, compared to normotensive subjects, pre-hypertensives had 7% lower TAC levels (p<0.001) and 15% higher oxidized LDL levels (p<0.05), after correcting for multiple comparisons and adjusting for age, body mass index, blood lipids, glucose, food groups consumed and other potential confounders. Studying a large sample of cardiovascular disease-free adults, we revealed an association of pre-hypertension with oxidative stress markers linking to atherosclerotic process.

  8. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice

    PubMed Central

    Olszanecki, Rafał; Totoń-Żurańska, Justyna; Stachowicz, Aneta; Suski, Maciej; Gębska, Anna; Gajda, Mariusz; Jawień, Jacek; Korbut, Ryszard

    2017-01-01

    Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation. PMID:28777310

  9. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice.

    PubMed

    Wiśniewska, Anna; Olszanecki, Rafał; Totoń-Żurańska, Justyna; Kuś, Katarzyna; Stachowicz, Aneta; Suski, Maciej; Gębska, Anna; Gajda, Mariusz; Jawień, Jacek; Korbut, Ryszard

    2017-08-04

    Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation.

  10. Atherectomy using a solid-state laser at 355 nm wavelength.

    PubMed

    Herzog, Amir; Oszkinis, Grzegorz; Planer, David; Ziaja, Krzysztof; Kruszyna, Łukasz; Stanisić, Michał Goran; Ziaja, Damian; Ishaaya, Amiel A; Kuczmik, Wacław

    2017-10-01

    Peripheral arterial disease (PAD), caused by atherosclerotic processes, is allied with an increased risk of ischemic events, limb loss, and death. Recently, the use of a solid-state laser at 355 nm within a hybrid catheter was suggested for that purpose. In this work, short nanosecond pulses of a solid-state laser at 355 nm delivered through a hybrid catheter, composed of optical fibers and a blunt mechanical blade, are used to conduct a pre-clinical study and two clinical cases. The pre-clinical study consisted of an atherosclerotic calcified cadaveric leg and a porcine in vivo trial within the iliac artery, respectively. The clinical cases include chronic total occlusions with a calcified lesion. The occluded cadaveric leg is recanalized successfully and no evidence of thermal necrosis is indicated in the histopathology analysis of the porcine study. No arterial wall damage is demonstrated on the animals' treated arteries and no significant impact on blood count and biochemistry analysis is noted in the animal trial. Successful recanalization of the occluded arteries followed by balloon angioplasty is obtained in both clinical cases. Our work constitutes a proof of concept for using a solid-state pulsed laser at 355 nm in atherectomy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Kinetic modeling of low density lipoprotein oxidation in arterial wall and its application in atherosclerotic lesions prediction.

    PubMed

    Karimi, Safoora; Dadvar, Mitra; Modarress, Hamid; Dabir, Bahram

    2013-01-01

    Oxidation of low-density lipoprotein (LDL) is one of the major factors in atherogenic process. Trapped oxidized LDL (Ox-LDL) in the subendothelial matrix is taken up by macrophage and leads to foam cell generation creating the first step in atherosclerosis development. Many researchers have studied LDL oxidation using in vitro cell-induced LDL oxidation model. The present study provides a kinetic model for LDL oxidation in intima layer that can be used in modeling of atherosclerotic lesions development. This is accomplished by considering lipid peroxidation kinetic in LDL through a system of elementary reactions. In comparison, characteristics of our proposed kinetic model are consistent with the results of previous experimental models from other researches. Furthermore, our proposed LDL oxidation model is added to the mass transfer equation in order to predict the LDL concentration distribution in intima layer which is usually difficult to measure experimentally. According to the results, LDL oxidation kinetic constant is an important parameter that affects LDL concentration in intima layer so that existence of antioxidants that is responsible for the reduction of initiating rates and prevention of radical formations, have increased the concentration of LDL in intima by reducing the LDL oxidation rate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model.

    PubMed Central

    Han, D. K.; Haudenschild, C. C.; Hong, M. K.; Tinkle, B. T.; Leon, M. B.; Liau, G.

    1995-01-01

    Apoptosis is a physiological cell death process important for normal development and involved in many pathological conditions. In atherosclerosis, pathological accumulation of cells in the intima has been attributed to the migration and proliferation of smooth muscle cells, macrophages, and lymphocytes. In this report, we explored the possibility that apoptosis may also contribute to the pathogenesis of this disease. We examined 35 human atherosclerotic lesion samples and identified a substantial number of cells undergoing apoptosis in 25 of the samples. Furthermore, in a rat vascular injury model, apoptotic cells were specifically identified in the neointima. The presence of apoptotic cells was demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, nuclear staining with propidium iodide, and electron microscopy. Immunostaining with cell-type-specific markers and subsequent terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling analysis on the same sample revealed that the majority of the apoptotic cells were modulated smooth muscle cells as well as macrophages. These results indicate that apoptosis occurs in cells of the injured blood vessel as well as the advanced atherosclerotic lesion and that physiological cell death may have an important role in determining the course of atherogenesis. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:7639326

  13. Classification of human coronary atherosclerotic plaques using ex vivo high-resolution multicontrast-weighted MRI compared with histopathology.

    PubMed

    Li, Tao; Li, Xin; Zhao, Xihai; Zhou, Weihua; Cai, Zulong; Yang, Li; Guo, Aitao; Zhao, Shaohong

    2012-05-01

    The objective of our study was to evaluate the feasibility of ex vivo high-resolution multicontrast-weighted MRI to accurately classify human coronary atherosclerotic plaques according to the American Heart Association classification. Thirteen human cadaver heart specimens were imaged using high-resolution multicontrast-weighted MR technique (T1-weighted, proton density-weighted, and T2-weighted). All MR images were matched with histopathologic sections according to the landmark of the bifurcation of the left main coronary artery. The sensitivity and specificity of MRI for the classification of plaques were determined, and Cohen's kappa analysis was applied to evaluate the agreement between MRI and histopathology in the classification of atherosclerotic plaques. One hundred eleven MR cross-sectional images obtained perpendicular to the long axis of the proximal left anterior descending artery were successfully matched with the histopathologic sections. For the classification of plaques, the sensitivity and specificity of MRI were as follows: type I-II (near normal), 60% and 100%; type III (focal lipid pool), 80% and 100%; type IV-V (lipid, necrosis, fibrosis), 96.2% and 88.2%; type VI (hemorrhage), 100% and 99.0%; type VII (calcification), 93% and 100%; and type VIII (fibrosis without lipid core), 100% and 99.1%, respectively. Isointensity, which indicates lipid composition on histopathology, was detected on MRI in 48.8% of calcified plaques. Agreement between MRI and histopathology for plaque classification was 0.86 (p < 0.001). Ex vivo high-resolution multicontrast-weighted MRI can accurately classify advanced atherosclerotic plaques in human coronary arteries.

  14. p62-enriched inclusion bodies in macrophages protect against atherosclerosis

    PubMed Central

    Sergin, Ismail; Bhattacharya, Somashubhra; Emanuel, Roy; Esen, Emel; Stokes, Carl J.; Evans, Trent D.; Arif, Batool; Curci, John A.; Razani, Babak

    2016-01-01

    Autophagy is a catabolic cellular mechanism that degrades dysfunctional proteins and organelles. Atherosclerotic plaque formation is enhanced in mice with macrophages that cannot undergo autophagy because of a deficiency of an autophagy component such as ATG5. We showed that exposure of macrophages to atherogenic lipids led to an increase in the abundance of the autophagy chaperone p62, which colocalized with polyubiquitinated proteins in cytoplasmic inclusions. p62 accumulation was increased in ATG5-null macrophages, which had large cytoplasmic ubiquitin-positive p62 inclusions. Aortas from atherosclerotic mice and plaques from human endarterectomy samples showed increased abundance of p62 and polyubiquitinated proteins that co-localized with plaque macrophages, suggesting that p62-enriched protein aggregates were characteristic of atherosclerosis. The formation of the cytoplasmic inclusions depended on p62 because lipid-loaded p62-null macrophages accumulated polyubiquitinated proteins in a diffuse cytoplasmic pattern. The failure of these aggregates to form was associated with increased secretion of IL-1β and enhanced macrophage apoptosis, which depended on the p62 ubiquitin-binding domain and at least partly involved p62-mediated clearance of NLRP3 inflammasomes. Consistent with our in vitro observations, p62-deficient mice formed greater numbers of more complex atherosclerotic plaques, and p62 deficiency further increased atherosclerotic plaque burden in mice with a macrophage-specific ablation of ATG5. Together, these data suggested that sequestration of cytotoxic ubiquitinated proteins by p62 protects against atherogenesis, a condition in which the clearance of protein aggregates is disrupted. PMID:26732762

  15. RP105 deficiency attenuates early atherosclerosis via decreased monocyte influx in a CCR2 dependent manner.

    PubMed

    Wezel, Anouk; van der Velden, Daniël; Maassen, Johanna M; Lagraauw, H Maxime; de Vries, Margreet R; Karper, Jacco C; Kuiper, Johan; Bot, Ilze; Quax, Paul H A

    2015-01-01

    Toll like receptor 4 (TLR4) plays a key role in inflammation and previously it was established that TLR4 deficiency attenuates atherosclerosis. RadioProtective 105 (RP105) is a structural homolog of TLR4 and an important regulator of TLR4 signaling, suggesting that RP105 may also be an important effector in atherosclerosis. We thus aimed to determine the role of RP105 in atherosclerotic lesion development using RP105 deficient mice on an atherosclerotic background. Atherosclerosis was induced in Western-type diet fed low density lipoprotein receptor deficient (LDLr(-/-)) and LDLr/RP105 double knockout (LDLr(-/-)/RP105(-/-)) mice by means of perivascular carotid artery collar placement. Lesion size was significantly reduced by 58% in LDLr(-/-)/RP105(-/-) mice, and moreover, plaque macrophage content was markedly reduced by 40%. In a model of acute peritonitis, monocyte influx was almost 3-fold reduced in LDLr(-/-)/RP105(-/-) mice (P = 0.001), while neutrophil influx remained unaltered, suggestive of an altered migratory capacity of monocytes upon deletion of RP105. Interestingly, in vitro stimulation of monocytes with LPS induced a downregulation of CCR2, a chemokine receptor crucially involved in monocyte influx to atherosclerotic lesions, which was more pronounced in LDLr(-/-)/RP105(-/-) monocytes as compared to LDLr(-/-) monocytes. We here show that RP105 deficiency results in reduced early atherosclerotic plaque development with a marked decrease in lesional macrophage content, which may be due to disturbed migration of RP105 deficient monocytes resulting from CCR2 downregulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice[S

    PubMed Central

    Babaev, Vladimir R.; Hebron, Katie E.; Wiese, Carrie B.; Toth, Cynthia L.; Ding, Lei; Zhang, Youmin; May, James M.; Fazio, Sergio; Vickers, Kasey C.; Linton, MacRae F.

    2014-01-01

    Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr−/− mice reconstituted with Akt1−/− fetal liver cells (Akt1−/−→Ldlr−/−) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr−/−). In contrast, Akt2−/−→Ldlr−/− mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr−/− mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2−/−→Ldlr−/− mice had smaller aortic lesions compared with WT→Ldlr−/− and Akt1−/−→Ldlr−/− mice. Importantly, Akt2−/−→Ldlr−/− mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6Chi and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2−/− mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis. PMID:25240046

  17. Effect of intraplaque angiogenesis to atherosclerotic rupture-prone plaque induced by high shear stress in rabbit model

    PubMed Central

    Qiu, Juhui; Lei, Daoxi; Hu, Jianjun; Yin, Tieying; Zhang, Kang; Yu, Donghong

    2017-01-01

    Abstract Atherosclerotic prone-rupture plaque is mainly localized in the region of the entrance to the stenosis with high shear stress and the reasons are largely unknown. Our hypothesis is that such a distribution of cells in atherosclerotic plaque may depend on the angiogenesis. Silastic collars induced regions of high shear stress (20.68 ± 5.27 dynes/cm2) in the upstream flow and low shear stress (12.25 ± 1.28 dynes/cm2) in the downstream flow in carotid arteries. Compared with the low shear stress region, plaques in the high shear stress region showed more intraplaque haemorrhaging, less collagen and higher apoptotic rates of vascular smooth muscle cells; endothelial cells (ECs) in the high shear stress region were characterized with integrity and high endothelial nitric oxide synthase (eNOS) expression (1570.3 ± 345.5% vs 172.9 ± 49.9%). The number of intraplaque microvessels is very high in the high shear stress region (15 ± 1.8 n/mm2 vs 3.5 ± 0.4 n/mm2), and the microvessels in the plaque show ECs were abnormal, with membrane blebs, intracytoplasmic vacuoles and leukocyte infiltration. Our current study reveals that the integrity of the endothelium and the vulnerability of atherosclerotic plaques are simultaneously localized in high shear stress regions, and we provide evidence for the first time that microvessels in the intraplaque maybe responsible for rupture-prone plaque formation in the high shear stress region. PMID:28798867

  18. Detection of inflamed atherosclerotic lesions with diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) and positron-emission tomography.

    PubMed

    Elmaleh, D R; Fischman, A J; Tawakol, A; Zhu, A; Shoup, T M; Hoffmann, U; Brownell, A-L; Zamecnik, P C

    2006-10-24

    Diadenosine-5',5'''-P(1),P(4)-tetraphosphate (Ap(4)A) and its analog P(2),P(3)-monochloromethylene diadenosine-5',5'''-P(1),P(4)-tetraphosphate (AppCHClppA) are competitive inhibitors of adenosine diphosphate-induced platelet aggregation, which plays a central role in arterial thrombosis and plaque formation. In this study, we evaluate the imaging capabilities of positron-emission tomography (PET) with P(2),P(3)-[(18)F]monofluoromethylene diadenosine-5',5'''-P(1),P(4)-tetraphosphate ([(18)F]AppCHFppA) to detect atherosclerotic lesions in male New Zealand White rabbits. Three to six months after balloon injury to the aorta, the rabbits were injected with [(18)F]AppCHFppA, and microPET imaging showed rapid accumulation of this radiopharmaceutical in the atherosclerotic abdominal aorta, with lesions clearly visible 30 min after injection. Computed tomographic images were coregistered with PET images to improve delineation of aortoiliac tracer activity. Plaque macrophage density, quantified by immunostaining with RAM11 against rabbit macrophages, correlated with PET measurements of [(18)F]AppCHFppA uptake (r = 0.87, P < 0.0001), whereas smooth-muscle cell density, quantified by immunostaining with 1A4 against smooth muscle actin, did not. Biodistribution studies of [(18)F]AppCHFppA in normal rats indicated typical adenosine dinucleotide behavior with insignificant myocardial uptake and fast kidney clearance. The accumulation of [(18)F]AppCHFppA in macrophage-rich atherosclerotic plaques can be quantified noninvasively with PET. Hence, [(18)F]AppCHFppA holds promise for the noninvasive characterization of vascular inflammation.

  19. Identification of Atherosclerotic Plaques in Carotid Artery by Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rocha, Rick; Villaverde, Antonio Balbin; Silveira, Landulfo; Costa, Maricília Silva; Alves, Leandro Procópio; Pasqualucci, Carlos Augusto; Brugnera, Aldo

    2008-04-01

    The aim of this work was to identify the presence of atherosclerotic plaques in carotid artery using the Fluorescence Spectroscopy. The most important pathogeny in the cardiovascular disorders is the atherosclerosis, which may affect even younger individuals. With approximately 1.2 million heart attacks and 750,000 strokes afflicting an aging American population each year, cardiovascular disease remains the number one cause of death. Carotid artery samples were obtained from the Autopsy Service at the University of São Paulo (São Paulo, SP, Brazil) taken from cadavers. After a histopathological analysis the 60 carotid artery samples were divided into two groups: normal (26) and atherosclerotic plaques (34). Samples were irradiated with the wavelength of 488 nm from an Argon laser. A 600 μm core optical fiber, coupled to the Argon laser, was used for excitation of the sample, whereas another 600 optical fiber, coupled to the spectrograph entrance slit, was used for collecting the fluorescence from the sample. Measurements were taken at different points on each sample and then averaged. Fluorescence spectra showed a single broad line centered at 549 nm. The fluorescence intensity for each sample was calculated by subtracting the intensity at the peak (550 nm) and at the bottom (510 nm) and then data were statistically analyzed, looking for differences between both groups of samples. ANOVA statistical test showed a significant difference (p<0,05) between both types of tissues, with regard to the fluorescence peak intensities. Our results indicate that this technique could be used to detect the presence of the atherosclerotic in carotid tissue.

  20. Antioxidant and anti-atherogenic activities of three Piper species on atherogenic diet fed hamsters.

    PubMed

    Agbor, Gabriel A; Vinson, Joe A; Sortino, Julianne; Johnson, Robert

    2012-05-01

    Atherogenic diet is known to induce high plasma lipid concentration, oxidative stress and early atherosclerosis. Antioxidants have potentials to counter the effect of atherogenic diet. The present research aims at evaluating the antioxidant and anti-atherosclerotic activities of three Piper species (Piper guineense, Piper nigrum and Piper umbellatum) on atherogenic diet fed hamsters. Hamsters divided into 8 groups: normal control, atherosclerotic control and six test groups. The normal animals fed normal rodent chow, the atherosclerotic control animals fed the same rodent chow supplemented with 0.2% cholesterol and 10% coconut oil (high cholesterol diet). The 6 test groups' animals fed same diet as the atherosclerotic control group but with additional supplementation of 2 graded doses (1 and 0.25 mg/kg body weight, o.p.) of plant extracts for 12 weeks. The atherogenic diet induced a collapse of the erythrocyte antioxidant defense system (significant decrease in superoxide dismutase, catalase and glutathione peroxidase activities). Atherogenic diet also induced an increase in plasma total cholesterol, triglyceride, thiobarbituric acid reactive substances (TBARS), oxidation of low density lipoprotein cholesterol (LDL) and accumulation of foam cells in the aorta a hall mark for atherosclerosis. Administration of the Piper species prevented the collapse of the antioxidant system and the increase of plasma parameters maintaining them towards normality. The Piper species also prevented LDL oxidation by increasing the time (lag time) for its oxidation. The results suggest that these Piper species have significant antioxidant and anti-atherogenic effect against atherogenic diet intoxication. Copyright © 2010 Elsevier GmbH. All rights reserved.

  1. Apoptosis does not mediate macrophage depletion in rabbit atherosclerotic plaques after dietary lipid lowering.

    PubMed

    Martinet, Wim; Croons, Valerie; Herman, Arnold G; De Meyer, Guido R Y

    2009-08-01

    Unstable atherosclerotic plaques are characterized by a thin fibrous cap that contains few smooth muscle cells (SMCs) and numerous foam cells of macrophage origin. Previously we and others demonstrated that macrophages disappear from atherosclerotic plaques after dietary lipid lowering. However, it remains unclear whether loss of macrophages after lipid lowering occurs via increased apoptosis, decreased macrophage replication and/or recruitment, or via a combination of both. Rabbits were fed a diet supplemented with cholesterol (0.3%) for 24 weeks followed by a normal diet for 4, 12, or 24 weeks. After 24 weeks of cholesterol supplement, plaques showed apoptosis in both macrophages and SMCs, as determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling. Cell replication (Ki-67 immunolabeling) was predominantly present in macrophages. After 24 weeks of cholesterol withdrawal, the thickness and areas of the plaques were unchanged. Nevertheless, plaques showed a considerable loss of macrophages. This event was associated with a reduced immunoreactivity for vascular cell adhesion molecule-1 (VCAM-1) in the endothelial cells starting 4 weeks after cholesterol withdrawal. Apoptosis did not increase after lipid lowering but showed a steady decline. Apart from decreased VCAM-1 expression, a strong decrease in Ki-67 immunolabeling was observed after 12 weeks of cholesterol withdrawal. Our findings suggest that loss of macrophages in atherosclerotic plaques after dietary lipid lowering is not related to induction of macrophage apoptosis but mainly a consequence of impaired monocyte recruitment followed by decreased macrophage replication. This information is essential for understanding the effects of aggressive lipid lowering on plaque stability.

  2. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jing-Hsien; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; Tsai, Chia-Wen

    Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu{sup 2+}-induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foammore » cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression.« less

  3. Preclinical carotid atherosclerosis in patients with rheumatoid arthritis.

    PubMed

    Roman, Mary J; Moeller, Elfi; Davis, Adrienne; Paget, Stephen A; Crow, Mary K; Lockshin, Michael D; Sammaritano, Lisa; Devereux, Richard B; Schwartz, Joseph E; Levine, Daniel M; Salmon, Jane E

    2006-02-21

    Rheumatoid arthritis is associated with increased morbidity and mortality because of cardiovascular disease, independent of traditional risk factors. To determine the prevalence of preclinical atherosclerosis in patients with rheumatoid arthritis and to identify clinical and biological markers for atherosclerotic disease in this patient population. Matched, cross-sectional study. Hospital for Special Surgery in New York City. 98 consecutive outpatients with rheumatoid arthritis who were followed by rheumatologists and 98 controls matched on age, sex, and ethnicity. Cardiovascular risk factor ascertainment and carotid ultrasonography in all participants; disease severity, disease treatment, and inflammatory markers in patients with rheumatoid arthritis. Despite a more favorable risk factor profile, patients with rheumatoid arthritis had a 3-fold increase in carotid atherosclerotic plaque (44% vs. 15%; P < 0.001). The relationship between rheumatoid arthritis and carotid atherosclerotic plaque remained after accounting for age, serum cholesterol levels, smoking history, and hypertensive status; adjusted predicted prevalence was 7.4% (95% CI, 3.4% to 15.2%) for the control group and 38.5% (CI, 25.4% to 53.5%) for patients with rheumatoid arthritis. Age (P < 0.001) and current cigarette use (P < 0.014) were also significantly associated with carotid atherosclerotic plaque. Among patients with rheumatoid arthritis, atherosclerosis was related to age, hypertension status, and use of tumor necrosis factor-alpha inhibitors (a possible marker of disease severity). The study had a cross-sectional design, and inflammatory markers were determined only once. Patients with rheumatoid arthritis have a high prevalence of preclinical atherosclerosis independent of traditional risk factors, suggesting that chronic inflammation and, possibly, disease severity are atherogenic in this population.

  4. Pseudolaric acid B attenuates atherosclerosis progression and inflammation by suppressing PPARγ-mediated NF-κB activation.

    PubMed

    Li, Tan; Wang, Wei; Li, Yu-Xiu; Li, Xiao; Ji, Wen-Jie; Ma, Yong-Qiang; Chen, Hong; Zhao, Ji-Hong; Zhou, Xin

    2018-06-01

    Atherosclerosis is a progressive disease of large arteries characterized with chronic inflammation and aberrant immune response. Pseudolaric acid B (PB) has been found to exert multiple effects by inhibiting inflammatory response. However, there is no comprehensive assessment of the effects of PB on atherosclerosis using relevant in vivo and in vitro models. Male ApoE -/- mice were treated with PB orally with a high fat diet (HFD) to clarify its anti-atherosclerotic activities. RAW264.7 macrophage line, a well-accepted cell model of atherosclerosis, was used to investigate anti-inflammatory effects and molecular mechanisms of PB. PB significantly attenuated atherosclerotic lesions by modulating plasma lipid profiles as well as inhibiting inflammatory responses in macrophages of atherosclerotic mice. Meanwhile, PB markedly suppressed the expression of pro-inflammatory cytokines, and regulated cholesterol efflux related genes in oxidative low density lipoprotein (ox-LDL)-loaded macrophages. The cellular uptake of Dil-labeled ox-LDL was significantly inhibited by PB either. Moreover, the ability of PB to suppress nuclear factor kappa B (NF-κB) and activate peroxisome proliferator-activated receptor gamma (PPARγ) was confirmed using luciferase reporter assays. Conversely, the selective PPARγ antagonist GW9662 reversed the influence of PB in macrophages. Together, these findings indicate that PB exerts its protective effects on atherosclerosis by inhibiting macrophage-mediated inflammatory response and cellular ox-LDL uptake, and promoting cholesterol efflux by suppressing NF-κB activation PPARγ-dependently. Therefore, PB may be a promising agent for inflammatory and atherosclerotic diseases. Copyright © 2018. Published by Elsevier B.V.

  5. Vertebral artery ostium atherosclerotic plaque as a potential source of posterior circulation ischemic stroke: result from borgess medical center vertebral artery ostium stenting registry.

    PubMed

    Al-Ali, Firas; Barrow, Tom; Duan, Li; Jefferson, Anne; Louis, Susan; Luke, Kim; Major, Kevin; Smoker, Sandy; Walker, Sarah; Yacobozzi, Margaret

    2011-09-01

    Although atherosclerotic plaque in the carotid and coronary arteries is accepted as a cause of ischemia, vertebral artery ostium (VAO) atherosclerotic plaque is not widely recognized as a source of ischemic stroke. We seek to demonstrate its implication in some posterior circulation ischemia. This is a nonrandomized, prospective, single-center registry on consecutive patients presenting with posterior circulation ischemia who underwent VAO stenting for significant atherosclerotic stenosis. Diagnostic evaluation and imaging studies determined the likelihood of this lesion as the symptom source (highly likely, probable, or highly unlikely). Patients were divided into 4 groups in decreasing order of severity of clinical presentation (ischemic stroke, TIA then stroke, TIA, asymptomatic), which were compared with the morphological and hemodynamic characteristics of the VAO plaque. Clinical follow-up 1 year after stenting assessed symptom recurrence. One hundred fourteen patients underwent stenting of 127 lesions; 35% of the lesions were highly likely the source of symptoms, 53% were probable, and 12% were highly unlikely. Clinical presentation correlated directly with plaque irregularity and presence of clot at the VAO, as did bilateral lesions and presence of tandem lesions. Symptom recurrence at 1 year was 2%. Thirty-five percent of the lesions were highly likely the source of the symptoms. A direct relationship between some morphological/hemodynamic characteristics and the severity of clinical presentation was also found. Finally, patients had a very low rate of symptom recurrence after treatment. These 3 observations point strongly to VAO plaque as a potential source of some posterior circulation stroke.

  6. Detection of High-Risk Atherosclerotic Plaque

    PubMed Central

    Fleg, Jerome L.; Stone, Gregg W.; Fayad, Zahi A.; Granada, Juan F.; Hatsukami, Thomas S.; Kolodgie, Frank D.; Ohayon, Jacques; Pettigrew, Roderic; Sabatine, Marc S.; Tearney, Guillermo; Waxman, Sergio; Domanski, Michael J.; Srinivas, Pothur R.; Narula, Jagat

    2013-01-01

    The leading cause of major morbidity and mortality in most countries around the world is atherosclerotic cardiovascular disease, most commonly caused by thrombotic occlusion of a high-risk coronary plaque resulting in myocardial infarction or cardiac death, or embolization from a high-risk carotid plaque resulting in stroke. The lesions prone to result in such clinical events are termed vulnerable or high-risk plaques, and their identification may lead to the development of pharmacological and mechanical intervention strategies to prevent such events. Autopsy studies from patients dying of acute myocardial infarction or sudden death have shown that such events typically arise from specific types of atherosclerotic plaques, most commonly the thin-cap fibroatheroma. However, the search in human beings for vulnerable plaques before their becoming symptomatic has been elusive. Recently, the PROSPECT (Providing Regional Observations to Study Predictors of Events in the Coronary Tree) study demonstrated that coronary plaques that are likely to cause future cardiac events, regardless of angiographic severity, are characterized by large plaque burden and small lumen area and/or are thin-cap fibroatheromas verified by radiofrequency intravascular ultrasound imaging. This study opened the door to identifying additional invasive and noninvasive imaging modalities that may improve detection of high-risk atherosclerotic lesions and patients. Beyond classic risk factors, novel biomarkers and genetic profiling may identify those patients in whom noninvasive imaging for vulnerable plaque screening, followed by invasive imaging for risk confirmation is warranted, and in whom future pharmacological and/or device-based focal or regional therapies may be applied to improve long-term prognosis. PMID:22974808

  7. Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus.

    PubMed

    Yahagi, Kazuyuki; Kolodgie, Frank D; Lutter, Christoph; Mori, Hiroyoshi; Romero, Maria E; Finn, Aloke V; Virmani, Renu

    2017-02-01

    The continuing increase in the prevalence of diabetes mellitus in the general population is predicted to result in a higher incidence of cardiovascular disease. Although the mechanisms of diabetes mellitus-associated progression of atherosclerosis are not fully understood, at clinical and pathological levels, there is an appreciation of increased disease burden and higher levels of arterial calcification in these subjects. Plaques within the coronary arteries of patients with diabetes mellitus generally exhibit larger necrotic cores and significantly greater inflammation consisting mainly of macrophages and T lymphocytes relative to patients without diabetes mellitus. Moreover, there is a higher incidence of healed plaque ruptures and positive remodeling in hearts from subjects with type 1 diabetes mellitus and type 2 diabetes mellitus, suggesting a more active atherogenic process. Lesion calcification in the coronary, carotid, and other arterial beds is also more extensive. Although the role of coronary artery calcification in identifying cardiovascular disease and predicting its outcome is undeniable, our understanding of how key hormonal and physiological alterations associated with diabetes mellitus such as insulin resistance and hyperglycemia influence the process of vascular calcification continues to grow. Important drivers of atherosclerotic calcification in diabetes mellitus include oxidative stress, endothelial dysfunction, alterations in mineral metabolism, increased inflammatory cytokine production, and release of osteoprogenitor cells from the marrow into the circulation. Our review will focus on the pathophysiology of type 1 diabetes mellitus- and type 2 diabetes mellitus-associated vascular disease with particular focus on coronary and carotid atherosclerotic calcification. © 2016 American Heart Association, Inc.

  8. Experience With Intravascular Ultrasound Imaging Of Human Atherosclerotic Arteries

    NASA Astrophysics Data System (ADS)

    Mallery, John A.; Gessert, James M.; Maciel, Mario; Tobis, John M.; Griffith, James M.; Berns, Michael W.; Henry, Walter L.

    1989-08-01

    Normal human arteries have a well-defined structure on intravascular images. The intima appears very thin and is most likely represented by a bright reflection arising from the internal elastic lamina. The smooth muscle tunica media is echo-lucent on the ultrasound image and appears as a dark band separating the intima from the adventitia. The adventitia is a brightly reflective layer of variable thickness. The thickness of the intima, and therefore of the atherosclerotic plaque can be accurately measured from the ultrasound images and correlates well with histology. Calcification within the wall of arteries is seen as bright echo reflection with shadowing of the peripheral wall. Fibrotic regions are highly reflective but do not shadow. Necrotic liquid regions within advanced atherosclerotic plaques are seen on ultrasound images as large lucent zones surrounded by echogenic tissue. Imaging can be performed before and after interventional procedures, such as laser angioplasty, balloon angioplasty and atherectomy. Intravascular ultrasound appears to provide an imaging modality for identifying the histologic characteristics of diseased arteries and for quantifying plaque thickness. It might be possible to perform such quantification to evaluate the results of interventional procedures.

  9. Diagnosis of vulnerable atherosclerotic plaques by time-resolved fluorescence spectroscopy and ultrasound imaging.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Shung, K K; Sun, L; Marcu, L

    2006-01-01

    In this study, time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonography were applied to detect vulnerable (high-risk) atherosclerotic plaque. A total of 813 TR-LIFS measurements were taken from carotid plaques of 65 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified by histopathology as thin, fibrotic, calcified, low-inflamed, inflamed and necrotic lesions. Spectral and time-resolved parameters (normalized intensity values and Laguerre expansion coefficients) were extracted from the TR-LIFS data. Feature selection for classification was performed by either analysis of variance (ANOVA) or principal component analysis (PCA). A stepwise linear discriminant analysis algorithm was developed for detecting inflamed and necrotic lesion, representing the most vulnerable plaques. These vulnerable plaques were detected with high sensitivity (>80%) and specificity (>90%). Ultrasound (US) imaging was obtained in 4 carotid plaques in addition to TR-LIFS examination. Preliminary results indicate that US provides important structural information of the plaques that could be combined with the compositional information obtained by TR-LIFS, to obtain a more accurate diagnosis of vulnerable atherosclerotic plaque.

  10. Application of the laguerre deconvolution method for time-resolved fluorescence spectroscopy to the characterization of atherosclerotic plaques.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Marcu, L

    2005-01-01

    This study investigates the ability of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) to detect inflammation in atherosclerotic lesion, a key feature of plaque vulnerability. A total of 348 TR-LIFS measurements were taken from carotid plaques of 30 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as Early, Fibrotic/Calcified or Inflamed lesions. A stepwise linear discriminant analysis algorithm was developed using spectral and TR features (normalized intensity values and Laguerre expansion coefficients at discrete emission wavelengths, respectively). Features from only three emission wavelengths (390, 450 and 500 nm) were used in the classifier. The Inflamed lesions were discriminated with sensitivity > 80% and specificity > 90 %, when the Laguerre expansion coefficients were included in the feature space. These results indicate that TR-LIFS information derived from the Laguerre expansion coefficients at few selected emission wavelengths can discriminate inflammation in atherosclerotic plaques. We believe that TR-LIFS derived Laguerre expansion coefficients can provide a valuable additional dimension for the detection of vulnerable plaques.

  11. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis

    PubMed Central

    Roth Flach, Rachel J.; Skoura, Athanasia; Matevossian, Anouch; Danai, Laura V.; Zheng, Wei; Cortes, Christian; Bhattacharya, Samit K.; Aouadi, Myriam; Hagan, Nana; Yawe, Joseph C.; Vangala, Pranitha; Menendez, Lorena Garcia; Cooper, Marcus P.; Fitzgibbons, Timothy P.; Buckbinder, Leonard; Czech, Michael P.

    2015-01-01

    Signalling pathways that control endothelial cell (EC) permeability, leukocyte adhesion and inflammation are pivotal for atherosclerosis initiation and progression. Here we demonstrate that the Sterile-20-like mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which has been implicated in inflammation, is abundantly expressed in ECs and in atherosclerotic plaques from mice and humans. On the basis of endothelial-specific MAP4K4 gene silencing and gene ablation experiments in Apoe−/− mice, we show that MAP4K4 in ECs markedly promotes Western diet-induced aortic macrophage accumulation and atherosclerotic plaque development. Treatment of Apoe−/− and Ldlr−/− mice with a selective small-molecule MAP4K4 inhibitor also markedly reduces atherosclerotic lesion area. MAP4K4 silencing in cultured ECs attenuates cell surface adhesion molecule expression while reducing nuclear localization and activity of NFκB, which is critical for promoting EC activation and atherosclerosis. Taken together, these results reveal that MAP4K4 is a key signalling node that promotes immune cell recruitment in atherosclerosis. PMID:26688060

  12. ANMCO/ISS/AMD/ANCE/ARCA/FADOI/GICR-IACPR/SICI-GISE/SIBioC/SIC/SICOA/SID/SIF/SIMEU/SIMG/SIMI/SISA Joint Consensus Document on cholesterol and cardiovascular risk: diagnostic-therapeutic pathway in Italy.

    PubMed

    Gulizia, Michele Massimo; Colivicchi, Furio; Ricciardi, Gualtiero; Giampaoli, Simona; Maggioni, Aldo Pietro; Averna, Maurizio; Graziani, Maria Stella; Ceriotti, Ferruccio; Mugelli, Alessandro; Rossi, Francesco; Medea, Gerardo; Parretti, Damiano; Abrignani, Maurizio Giuseppe; Arca, Marcello; Perrone Filardi, Pasquale; Perticone, Francesco; Catapano, Alberico; Griffo, Raffaele; Nardi, Federico; Riccio, Carmine; Di Lenarda, Andrea; Scherillo, Marino; Musacchio, Nicoletta; Panno, Antonio Vittorio; Zito, Giovanni Battista; Campanini, Mauro; Bolognese, Leonardo; Faggiano, Pompilio Massimo; Musumeci, Giuseppe; Pusineri, Enrico; Ciaccio, Marcello; Bonora, Enzo; Cantelli Forti, Giorgio; Ruggieri, Maria Pia; Cricelli, Claudio; Romeo, Francesco; Ferrari, Roberto; Maseri, Attilio

    2017-05-01

    Atherosclerotic cardiovascular disease still represents the leading cause of death in Western countries. A wealth of scientific evidence demonstrates that increased blood cholesterol levels have a major impact on the outbreak and progression of atherosclerotic plaques. Moreover, several cholesterol-lowering pharmacological agents, including statins and ezetimibe, have proved effective in improving clinical outcomes. This document focuses on the clinical management of hypercholesterolaemia and has been conceived by 16 Italian medical associations with the support of the Italian National Institute of Health. The authors discuss in detail the role of hypercholesterolaemia in the genesis of atherosclerotic cardiovascular disease. In addition, the implications for high cholesterol levels in the definition of the individual cardiovascular risk profile have been carefully analysed, while all available therapeutic options for blood cholesterol reduction and cardiovascular risk mitigation have been explored. Finally, this document outlines the diagnostic and therapeutic pathways for the clinical management of patients with hypercholesterolaemia.

  13. Fluorescence multispectral imaging-based diagnostic system for atherosclerosis.

    PubMed

    Ho, Cassandra Su Lyn; Horiuchi, Toshikatsu; Taniguchi, Hiroaki; Umetsu, Araya; Hagisawa, Kohsuke; Iwaya, Keiichi; Nakai, Kanji; Azmi, Amalina; Zulaziz, Natasha; Azhim, Azran; Shinomiya, Nariyoshi; Morimoto, Yuji

    2016-08-20

    Composition of atherosclerotic arterial walls is rich in lipids such as cholesterol, unlike normal arterial walls. In this study, we aimed to utilize this difference to diagnose atherosclerosis via multispectral fluorescence imaging, which allows for identification of fluorescence originating from the substance in the arterial wall. The inner surface of extracted arteries (rabbit abdominal aorta, human coronary artery) was illuminated by 405 nm excitation light and multispectral fluorescence images were obtained. Pathological examination of human coronary artery samples were carried out and thickness of arteries were calculated by measuring combined media and intima thickness. The fluorescence spectra in atherosclerotic sites were different from those in normal sites. Multiple regions of interest (ROI) were selected within each sample and a ratio between two fluorescence intensity differences (where each intensity difference is calculated between an identifier wavelength and a base wavelength) from each ROI was determined, allowing for discrimination of atherosclerotic sites. Fluorescence intensity and thickness of artery were found to be significantly correlated. These results indicate that multispectral fluorescence imaging provides qualitative and quantitative evaluations of atherosclerosis and is therefore a viable method of diagnosing the disease.

  14. Mitofusin 2 decreases intracellular lipids in macrophages by regulating peroxisome proliferator-activated receptor-γ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chun; Ge, Beihai; He, Chao

    2014-07-18

    Highlights: • Mfn2 decreases cellular lipid accumulation by activating cholesterol transporters. • PPARγ is involved in the Mfn2-mediated increase of cholesterol transporter expressions. • Inactivation of ERK1/2 and p38 is involved in Mfn2-induced PPARγ expression. - Abstract: Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, anmore » effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease.« less

  15. No evidence of association between NOD2/CARD15 gene polymorphism and atherosclerotic events after renal transplantation

    PubMed Central

    Courivaud, Cécile; Ferrand, Christophe; Deschamps, Marina; Tiberghien, Pierre; Chalopin, Jean-Marc; Duperrier, Anne; Saas, Philippe; Ducloux, Didier

    2006-01-01

    Stable renal transplant recipients (RTR) display high rates of atherosclerotic events (AE). Innate immunity and especially vascular inflammation play a role in the pathogenesis of atherosclerosis. It is illustrated both by an increased occurrence of post-renal transplant cardiovascular events in patients with elevated levels of C-reactive protein and by a correlation between post-transplant AE and Toll-like receptor-4 Asp299Gly polymorphism. Here, we analyze the influence NOD2/CARD15 gene polymorphism since NOD2 can modulate macrophage pro-inflammatory activity and macrophage is present in early atherosclerotic lesions. The incidence of single nucleotide polymorphism (SNP) in the three major polymorphic region of NOD2 gene (SNP8, SNP12 and SNP13) was assessed in 182 RTR and the correlation between such polymorphism and the development of AE was analyzed. No correlation was observed between NOD2 gene polymorphism and the occurrence of AE after renal transplantation. NOD2 gene polymorphism thus does not appear to influence cardiovascular complications in RTR. PMID:16641610

  16. Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.

    PubMed

    Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M

    2006-04-01

    The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p < 0.001). This suggests that use of ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.

  17. Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis

    PubMed Central

    Mortensen, Martin B.; Kjolby, Mads; Gunnersen, Stine; Larsen, Jakob V.; Palmfeldt, Johan; Falk, Erling; Nykjaer, Anders; Bentzon, Jacob F.

    2014-01-01

    Genome-wide association studies have identified a link between genetic variation at the human chromosomal locus 1p13.3 and coronary artery disease. The gene encoding sortilin (SORT1) has been implicated as the causative gene within the locus, as sortilin regulates hepatic lipoprotein metabolism. Here we demonstrated that sortilin also directly affects atherogenesis, independent of its regulatory role in lipoprotein metabolism. In a mouse model of atherosclerosis, deletion of Sort1 did not alter plasma cholesterol levels, but reduced the development of both early and late atherosclerotic lesions. We determined that sortilin is a high-affinity receptor for the proinflammatory cytokines IL-6 and IFN-γ. Moreover, macrophages and Th1 cells (both of which mediate atherosclerotic plaque formation) lacking sortilin had reduced secretion of IL-6 and IFN-γ, but not of other measured cytokines. Transfer of sortilin-deficient BM into irradiated atherosclerotic mice reduced atherosclerosis and systemic markers of inflammation. Together, these data demonstrate that sortilin influences cytokine secretion and that targeting sortilin in immune cells attenuates inflammation and reduces atherosclerosis. PMID:25401472

  18. ANMCO/ISS/AMD/ANCE/ARCA/FADOI/GICR-IACPR/SICI-GISE/SIBioC/SIC/SICOA/SID/SIF/SIMEU/SIMG/SIMI/SISA Joint Consensus Document on cholesterol and cardiovascular risk: diagnostic–therapeutic pathway in Italy

    PubMed Central

    Colivicchi, Furio; Ricciardi, Gualtiero; Giampaoli, Simona; Maggioni, Aldo Pietro; Averna, Maurizio; Graziani, Maria Stella; Ceriotti, Ferruccio; Mugelli, Alessandro; Rossi, Francesco; Medea, Gerardo; Parretti, Damiano; Abrignani, Maurizio Giuseppe; Arca, Marcello; Perrone Filardi, Pasquale; Perticone, Francesco; Catapano, Alberico; Griffo, Raffaele; Nardi, Federico; Riccio, Carmine; Di Lenarda, Andrea; Scherillo, Marino; Musacchio, Nicoletta; Panno, Antonio Vittorio; Zito, Giovanni Battista; Campanini, Mauro; Bolognese, Leonardo; Faggiano, Pompilio Massimo; Musumeci, Giuseppe; Pusineri, Enrico; Ciaccio, Marcello; Bonora, Enzo; Cantelli Forti, Giorgio; Ruggieri, Maria Pia; Cricelli, Claudio; Romeo, Francesco; Ferrari, Roberto; Maseri, Attilio

    2017-01-01

    Abstract Atherosclerotic cardiovascular disease still represents the leading cause of death in Western countries. A wealth of scientific evidence demonstrates that increased blood cholesterol levels have a major impact on the outbreak and progression of atherosclerotic plaques. Moreover, several cholesterol-lowering pharmacological agents, including statins and ezetimibe, have proved effective in improving clinical outcomes. This document focuses on the clinical management of hypercholesterolaemia and has been conceived by 16 Italian medical associations with the support of the Italian National Institute of Health. The authors discuss in detail the role of hypercholesterolaemia in the genesis of atherosclerotic cardiovascular disease. In addition, the implications for high cholesterol levels in the definition of the individual cardiovascular risk profile have been carefully analysed, while all available therapeutic options for blood cholesterol reduction and cardiovascular risk mitigation have been explored. Finally, this document outlines the diagnostic and therapeutic pathways for the clinical management of patients with hypercholesterolaemia. PMID:28751833

  19. Flow in Atherosclerotic Blood Vessels

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Stroud, Jenn S.

    2000-11-01

    Atherosclerotic lesions occur in arteries where there are major changes in flow structure, e.g. bifurcations and junctions. The reduction of vessel lumen alters the flow, including the mechanical forces on the walls. We have examined the flow in carotid artery bifurcations with realistic plaque contours. The unsteady, incompressible, Navier-Stokes equations are solved in finite-volume form. Steady and pulsatile flows have been analyzed for laminar and turbulent flows, using for the latter a low-Reynolds number k- ɛ model and a k-ω model. Non-Newtonian viscosity is also considered using a power-law model. In general the very irregular contours of the vessels lead to recirculating regions, strong spatial variations of wall shear stresses, and in some cases, vortex shedding. Even steady inlet flow exhibits fluctuating, unsteady behavior. Neither turbulence models captures all the physics of the flow. The flow, in fact, appears to be transitional and not fully turbulent. For unsteady flow, there are also strong temporal variations of normal and shear stresses, which together with the strong spatial variations, has important implications for the onset and progression of atherosclerotic disease.

  20. Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces.

    PubMed

    Busse, Rudi; Fleming, Ingrid

    2003-01-01

    Endothelial cells, which are situated at the interface between blood and the vessel wall, have a crucial role in controlling vascular tone and homeostasis, particularly in determining the expression of pro-atherosclerotic and anti-atherosclerotic genes. Many of these effects are mediated by changes in the generation and release of endothelium-derived autacoids [from the Greek autos (self) and akos (remedy)], which are generally short-lived and locally acting. In vivo, endothelial cells are constantly subjected to mechanical stimulation, which in turn determines the acute production of autacoids and the levels of autacoid-producing enzymes.

  1. HDL and CER-001 Inverse-Dose Dependent Inhibition of Atherosclerotic Plaque Formation in apoE-/- Mice: Evidence of ABCA1 Down-Regulation

    PubMed Central

    Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Cholez, Guy; Ackermann, Rose; Sy, Gavin; Keyserling, Constance; Lalwani, Narendra; Paolini, John F.; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi

    2015-01-01

    Objective CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and charged phospholipids that was designed to mimic the beneficial properties of nascent pre-ß HDL. In this study, we have evaluated the dose-dependent regulation of ABCA1 expression in vitro and in vivo in the presence of CER-001 and native HDL (HDL3). Methods and Results CER-001 induced cholesterol efflux from J774 macrophages in a dose-dependent manner similar to natural HDL. A strong down-regulation of the ATP-binding cassette A1 (ABCA1) transporter mRNA (- 50%) as well as the ABCA1 membrane protein expression (- 50%) was observed at higher doses of CER-001 and HDL3 compared to non-lipidated apoA-I. In vivo, in an apoE-/- mouse “flow cessation model,” in which the left carotid artery was ligatured to induce local inflammation, the inhibition of atherosclerotic plaque burden progression in response to a dose-range of every-other-day CER-001 or HDL in the presence of a high-fat diet for two weeks was assessed. We observed a U-shaped dose-response curve: inhibition of the plaque total cholesterol content increased with increasing doses of CER-001 or HDL3 up to a maximum inhibition (- 51%) at 5 mg/kg; however, as the dose was increased above this threshold, a progressively less pronounced inhibition of progression was observed, reaching a complete absence of inhibition of progression at doses of 20 mg/kg and over. ABCA1 protein expression in the same atherosclerotic plaque was decreased by-45% and-68% at 50 mg/kg for CER-001 and HDL respectively. Conversely, a-12% and 0% decrease in ABCA1 protein expression was observed at the 5 mg/kg dose for CER-001 and HDL respectively. Conclusions These data demonstrate that high doses of HDL and CER-001 are less effective at slowing progression of atherosclerotic plaque in apoE-/- mice compared to lower doses, following a U-shaped dose-response curve. A potential mechanism for this phenomenon is supported by the observation that high doses of HDL and CER-001 induce a rapid and strong down-regulation of ABCA1 both in vitro and in vivo. In conclusion, maximally efficient HDL- or CER-001-mediated cholesterol removal from atherosclerotic plaque is achieved by maximizing macrophage-mediated efflux from the plaque while minimizing dose-dependent down-regulation of ABCA1 expression. These observations may help define the optimal dose of HDL mimetics for testing in clinical trials of atherosclerotic burden regression. PMID:26335690

  2. HDL and CER-001 Inverse-Dose Dependent Inhibition of Atherosclerotic Plaque Formation in apoE-/- Mice: Evidence of ABCA1 Down-Regulation.

    PubMed

    Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Cholez, Guy; Ackermann, Rose; Sy, Gavin; Keyserling, Constance; Lalwani, Narendra; Paolini, John F; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi

    2015-01-01

    CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and charged phospholipids that was designed to mimic the beneficial properties of nascent pre-ß HDL. In this study, we have evaluated the dose-dependent regulation of ABCA1 expression in vitro and in vivo in the presence of CER-001 and native HDL (HDL3). CER-001 induced cholesterol efflux from J774 macrophages in a dose-dependent manner similar to natural HDL. A strong down-regulation of the ATP-binding cassette A1 (ABCA1) transporter mRNA (- 50%) as well as the ABCA1 membrane protein expression (- 50%) was observed at higher doses of CER-001 and HDL3 compared to non-lipidated apoA-I. In vivo, in an apoE-/- mouse "flow cessation model," in which the left carotid artery was ligatured to induce local inflammation, the inhibition of atherosclerotic plaque burden progression in response to a dose-range of every-other-day CER-001 or HDL in the presence of a high-fat diet for two weeks was assessed. We observed a U-shaped dose-response curve: inhibition of the plaque total cholesterol content increased with increasing doses of CER-001 or HDL3 up to a maximum inhibition (- 51%) at 5 mg/kg; however, as the dose was increased above this threshold, a progressively less pronounced inhibition of progression was observed, reaching a complete absence of inhibition of progression at doses of 20 mg/kg and over. ABCA1 protein expression in the same atherosclerotic plaque was decreased by-45% and-68% at 50 mg/kg for CER-001 and HDL respectively. Conversely, a-12% and 0% decrease in ABCA1 protein expression was observed at the 5 mg/kg dose for CER-001 and HDL respectively. These data demonstrate that high doses of HDL and CER-001 are less effective at slowing progression of atherosclerotic plaque in apoE-/- mice compared to lower doses, following a U-shaped dose-response curve. A potential mechanism for this phenomenon is supported by the observation that high doses of HDL and CER-001 induce a rapid and strong down-regulation of ABCA1 both in vitro and in vivo. In conclusion, maximally efficient HDL- or CER-001-mediated cholesterol removal from atherosclerotic plaque is achieved by maximizing macrophage-mediated efflux from the plaque while minimizing dose-dependent down-regulation of ABCA1 expression. These observations may help define the optimal dose of HDL mimetics for testing in clinical trials of atherosclerotic burden regression.

  3. Transient aerodynamic characteristics of vans during the accelerated overtaking process

    NASA Astrophysics Data System (ADS)

    Liu, Li-ning; Wang, Xing-shen; Du, Guang-sheng; Liu, Zheng-gang; Lei, Li

    2018-04-01

    This paper studies the influence of the accelerated overtaking process on the vehicles' transient aerodynamic characteristics, through 3-D numerical simulations with dynamic meshes and sliding interface technique. Numerical accuracy is verified by experimental results. The aerodynamic characteristics of vehicles in the uniform overtaking process and the accelerated overtaking process are compared. It is shown that the speed variation of the overtaking van would influence the aerodynamic characteristics of the two vans, with greater influence on the overtaken van than on the overtaking van. The simulations of three different accelerated overtaking processes show that the greater the acceleration of the overtaking van, the larger the aerodynamic coefficients of the overtaken van. When the acceleration of the overtaking van increases by 1 m/s2, the maximum drag force, side force and yawing moment coefficients of the overtaken van all increase by more than 6%, to seriously affect the power performance and the stability of the vehicles. The analysis of the pressure fields under different accelerated conditions reveals the cause of variations of the aerodynamic characteristics of vehicles.

  4. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Wang; Chaoshu, Tang; Key Laboratory of Molecular Cardiovascular Medicine, Ministry of Education

    2010-05-28

    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H{sub 2}S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H{sub 2}S and inflammatory processes. The role of H{sub 2}S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosismore » and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H{sub 2}S in atherosclerosis.« less

  5. Histone deacetylases and atherosclerosis.

    PubMed

    Zheng, Xia-xia; Zhou, Tian; Wang, Xin-An; Tong, Xiao-hong; Ding, Jia-wang

    2015-06-01

    Atherosclerosis is the most common pathological process that leads to cardiovascular diseases, a disease of large- and medium-sized arteries that is characterized by a formation of atherosclerotic plaques consisting of necrotic cores, calcified regions, accumulated modified lipids, smooth muscle cells (SMCs), endothelial cells, leukocytes, and foam cells. Recently, the question about how to suppress the occurrence of atherosclerosis and alleviate the progress of cardiovascular disease becomes the hot topic. Accumulating evidence suggests that histone deacetylases(HDACs) play crucial roles in arteriosclerosis. This review summarizes the effect of HDACs and HDAC inhibitors(HDACi) on the progress of atherosclerosis. Copyright © 2015. Published by Elsevier Ireland Ltd.

  6. Micro-optical fiber probe for use in an intravascular Raman endoscope.

    PubMed

    Komachi, Yuichi; Sato, Hidetoshi; Aizawa, Katsuo; Tashiro, Hideo

    2005-08-01

    We believe that we have developed the narrowest optical-fiber Raman probe ever reported, 600 microm in total diameter, that can be inserted into coronary arteries. The selection of suitable optical fibers, filters, and a processing method is discussed. Custom-made filters attached to the front end of a probe eliminate the background Raman signals of the optical fiber itself. The experimental evaluation of various optical fibers is carried out for the selection of suitable fibers. Measurement of the Raman spectra of an atherosclerotic lesion of a rabbit artery in vitro demonstrates the excellent performance of the micro-Raman probe.

  7. Co-expression of p53 and MDM2 in human atherosclerosis: implications for the regulation of cellularity of atherosclerotic lesions.

    PubMed

    Ihling, C; Haendeler, J; Menzel, G; Hess, R D; Fraedrich, G; Schaefer, H E; Zeiher, A M

    1998-07-01

    Atherosclerosis is a fibroproliferative disease of the arterial intima. It was recently found that wild-type p53 (wt p53) accumulates in human atherosclerotic tissue. Wt p53 is a cell cycle regulator involved in DNA repair, DNA synthesis, cell differentiation, and apoptosis and might therefore make an important contribution to the cellularity of atherosclerotic plaques. The product of the MDM2 gene is a nuclear protein which forms a complex with p53, thereby inhibiting the negative regulatory effects of wt p53 on cell cycle progression. In order to address a potential role of the interaction of p53 with MDM2 for the regulation of cellularity in atherosclerotic tissue, 22 carotid atheromatous plaques from patients undergoing endarterectomy were studied to determine the presence of p53 immunoreactivity (IR), MDM2 IR, cell proliferation as evidenced by MIB1/Ki-67 IR and DNA fragmentation by in situ terminal transferase-mediated dUTP 3' end labelling (TUNEL), as a marker for apoptosis. p53 IR localized to areas with evidence of chronic inflammation (22/22) and was observed in virtually all cell types in 68.79 +/- 7.51 per cent of the nuclei. p53 staining in the control tissue from human internal mammary arteries was present in 0.2 +/- 0.29 per cent of the cells (P < or = 0.002). MDM2 IR was present in all cases (22/22) in macrophages and smooth muscle cells (SMCs) in 60.53 +/- 8.32 per cent of the nuclei (controls: 0.8 +/- 0.65 per cent, P < or = 0.002) and co-localized with p53 IR as shown by examination of adjacent sections and by double immunofluorescence labelling. Importantly, co-immunoprecipitation and western blot analysis revealed that p53 and MDM2 were physically associated, indicating that MDM2-p53 complex formation takes place in vivo in human atherosclerotic tissue. Positive TUNEL staining and MIB1/Ki-67 IR present in 3.01 +/- 1.27 per cent of the nuclei (controls: 0 per cent, P < or = 0.002) localized to the same plaque compartments as p53 IR and MDM2 IR. Thus, the fate of cells with p53 accumulation may depend on the interaction and the stoichiometry of the p53 and MDM2 proteins. Cells were indeed found with strong p53 accumulation and nuclear morphology typical for apoptosis and there were a few MIB1/Ki-67-positive cells with co-expression of MDM2, indicating a possible role for MDM2 in reversing the negative regulatory effects of p53 for cell cycle progression. The nuclear co-localization of p53 IR with MDM2 IR and the co-immunoprecipitation assay indicate the presence of p53-MDM2 complex formation in vivo in human atherosclerotic tissue. The destiny of individual p53 and MDM2-co-expressing cells either to undergo p53-dependent apoptosis or to re-enter the cycle of cell proliferation may depend on the relative ratios of the two proteins. p53 and MDM2 may therefore play an important role in regulating cellularity and inflammatory activity in human atherosclerotic plaques.

  8. Quantitative T1 and T2* carotid atherosclerotic plaque imaging using a three-dimensional multi-echo phase-sensitive inversion recovery sequence: a feasibility study.

    PubMed

    Fujiwara, Yasuhiro; Maruyama, Hirotoshi; Toyomaru, Kanako; Nishizaka, Yuri; Fukamatsu, Masahiro

    2018-06-01

    Magnetic resonance imaging (MRI) is widely used to detect carotid atherosclerotic plaques. Although it is important to evaluate vulnerable carotid plaques containing lipids and intra-plaque hemorrhages (IPHs) using T 1 -weighted images, the image contrast changes depending on the imaging settings. Moreover, to distinguish between a thrombus and a hemorrhage, it is useful to evaluate the iron content of the plaque using both T 1 -weighted and T 2 *-weighted images. Therefore, a quantitative evaluation of carotid atherosclerotic plaques using T 1 and T 2 * values may be necessary for the accurate evaluation of plaque components. The purpose of this study was to determine whether the multi-echo phase-sensitive inversion recovery (mPSIR) sequence can improve T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of an IPH. T 1 and T 2 * values measured using mPSIR were compared to values from conventional methods in phantom and in vivo studies. In the phantom study, the T 1 and T 2 * values estimated using mPSIR were linearly correlated with those of conventional methods. In the in vivo study, mPSIR demonstrated higher T 1 contrast between the IPH phantom and sternocleidomastoid muscle than the conventional method. Moreover, the T 1 and T 2 * values of the blood vessel wall and sternocleidomastoid muscle estimated using mPSIR were correlated with values measured by conventional methods and with values reported previously. The mPSIR sequence improved T 1 contrast while simultaneously providing accurate T 1 and T 2 * values of the neck region. Although further study is required to evaluate the clinical utility, mPSIR may improve carotid atherosclerotic plaque detection and provide detailed information about plaque components.

  9. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE-/- mice.

    PubMed

    Chan, Yee Kwan; Brar, Manreetpal Singh; Kirjavainen, Pirkka V; Chen, Yan; Peng, Jiao; Li, Daxu; Leung, Frederick Chi-Ching; El-Nezami, Hani

    2016-11-08

    Atherosclerosis appears to have multifactorial causes - microbial component like lipopolysaccharides (LPS) and other pathogen associated molecular patterns may be plausible factors. The gut microbiota is an ample source of such stimulants, and its dependent metabolites and altered gut metagenome has been an established link to atherosclerosis. In this exploratory pilot study, we aimed to elucidate whether microbial intervention with probiotics L. rhamnosus GG (LGG) or pharmaceuticals telmisartan (TLM) could improve atherosclerosis in a gut microbiota associated manner. Atherosclerotic phenotype was established by 12 weeks feeding of high fat (HF) diet as opposed to normal chow diet (ND) in apolipoprotein E knockout (ApoE -/- ) mice. LGG or TLM supplementation to HF diet was studied. Both LGG and TLM significantly reduced atherosclerotic plaque size and improved various biomarkers including endotoxin to different extents. Colonial microbiota analysis revealed that TLM restored HF diet induced increase in Firmicutes/Bacteroidetes ratio and decrease in alpha diversity; and led to a more distinct microbial clustering closer to ND in PCoA plot. Eubacteria, Anaeroplasma, Roseburia, Oscillospira and Dehalobacteria appeared to be protective against atherosclerosis and showed significant negative correlation with atherosclerotic plaque size and plasma adipocyte - fatty acid binding protein (A-FABP) and cholesterol. LGG and TLM improved atherosclerosis with TLM having a more distinct alteration in the colonic gut microbiota. Altered bacteria genera and reduced alpha diversity had significant correlations to atherosclerotic plaque size, plasma A-FABP and cholesterol. Future studies on such bacterial functional influence in lipid metabolism will be warranted.

  10. AHA classification of coronary and carotid atherosclerotic plaques by grating-based phase-contrast computed tomography.

    PubMed

    Hetterich, Holger; Webber, Nicole; Willner, Marian; Herzen, Julia; Birnbacher, Lorenz; Hipp, Alexander; Marschner, Mathias; Auweter, Sigrid D; Habbel, Christopher; Schüller, Ulrich; Bamberg, Fabian; Ertl-Wagner, Birgit; Pfeiffer, Franz; Saam, Tobias

    2016-09-01

    To evaluate the potential of grating-based phase-contrast computed-tomography (gb-PCCT) to classify human carotid and coronary atherosclerotic plaques according to modified American Heart Association (AHA) criteria. Experiments were carried out at a laboratory-based set-up consisting of X-ray tube (40 kVp), grating-interferometer and detector. Eighteen human carotid and coronary artery specimens were examined. Histopathology served as the standard of reference. Vessel cross-sections were classified as AHA lesion type I/II, III, IV/V, VI, VII or VIII plaques by two independent reviewers blinded to histopathology. Conservative measurements of diagnostic accuracies for the detection and differentiation of plaque types were evaluated. A total of 127 corresponding gb-PCCT/histopathology sections were analyzed. Based on histopathology, lesion type I/II was present in 12 (9.5 %), III in 18 (14.2 %), IV/V in 38 (29.9 %), VI in 16 (12.6 %), VII in 34 (26.8 %) and VIII in 9 (7.0 %) cross-sections. Sensitivity, specificity and positive and negative predictive value were ≥0.88 for most analyzed plaque types with a good level of agreement (Cohen's kappa = 0.90). Overall, results were better in carotid (kappa = 0.97) than in coronary arteries (kappa = 0.85). Inter-observer agreement was high with kappa = 0.85, p < 0.0001. These results indicate that gb-PCCT can reliably classify atherosclerotic plaques according to modified AHA criteria with excellent agreement to histopathology. • Different atherosclerotic plaque types display distinct morphological features in phase-contrast CT. • Phase-contrast CT can detect and differentiate AHA plaque types. • Calcifications caused streak artefacts and reduced sensitivity in type VI lesions. • Overall agreement was higher in carotid than in coronary arteries.

  11. Enzyme-Sensitive MR Imaging Targeting Myeloperoxidase Identifies Active Inflammation in Experimental Rabbit Atherosclerotic Plaques

    PubMed Central

    Ronald, John A.; Chen, John W.; Chen, Yuanxin; Hamilton, Amanda M.; Rodriguez, Elisenda; Reynolds, Fred; Hegele, Robert A.; Rogers, Kem A.; Querol, Manel; Bogdanov, Alexei; Weissleder, Ralph; Rutt, Brian K.

    2009-01-01

    Background Inflammation undermines the stability of atherosclerotic plaques, rendering them susceptible to acute rupture, the cataclysmic event that underlies clinical expression of this disease. Myeloperoxidase (MPO) is a central inflammatory enzyme secreted by activated macrophages, and is involved in multiple stages of plaque destabilization and patient outcome. We report here that a unique functional in vivo magnetic resonance (MR) agent can visualize MPO activity in atherosclerotic plaques in a rabbit model. Methods and Results We performed MR imaging of the thoracic aorta of New Zealand white (NZW) rabbits fed a cholesterol (n=11) or normal (n=4) diet up to 2 hours after injection of the MPO sensor bis-5HT-DTPA(Gd) (MPO(Gd)), the conventional agent, DTPA(Gd), or an MPO (Gd) analog, bis-tyr-DTPA(Gd), as controls. Delayed MPO(Gd) images (2 hour post injection) showed focal areas of increased contrast (>2-fold) in diseased wall, but not in normal wall (p=0.84), compared to both DTPA(Gd) (n=11; p<0.001) and bis-tyr-DTPA(Gd) (n=3; p<0.05). Biochemical assays confirmed that diseased wall possessed three-fold elevated MPO activity compared to normal wall (p<0.01). Areas detected by MPO(Gd) imaging co-localized and correlated with MPO-rich areas infiltrated by macrophages on histopathological evaluations (r=0.91, p<0.0001). While macrophages were the main source of MPO, not all macrophages secreted MPO, suggesting that distinct subpopulations contribute differently to atherogenesis and supporting our functional approach. Conclusions Our study represents a unique approach in the detection of inflammation in atherosclerotic plaques by examining macrophage function and the activity of an effector enzyme, to noninvasively provide both anatomic and functional information in vivo. PMID:19652086

  12. Comparison of Gadofluorine-M and Gd-DTPA for Non-Invasive Staging of Atherosclerotic Plaque Stability Using MRI

    PubMed Central

    Ronald, John A.; Chen, Yuanxin; Belisle, Andre J.-L.; Hamilton, Amanda M.; Rogers, Kem A.; Hegele, Robert A.; Misselwitz, Bernd; Rutt, Brian K.

    2009-01-01

    Background Inflammation and neovascularization play critical roles in the stability of atherosclerotic plaques. Whole-body quantitative assessment of these plaque features may improve patient risk-stratification for life-threatening thromboembolic events and direct appropriate intervention. Here we determined the utility of the MR contrast agent Gadofluorine-M (GdF) for staging plaque stability and compared this to the conventional agent Gd-DTPA. Methods and Results 5 control and 7 atherosclerotic rabbits were sequentially imaged following administration of Gd-DTPA (0.2 mmol/kg) and GdF (0.1 mmol/kg) using a T1-weighted pulse sequence on a 3T MRI scanner. Diseased aortic wall could be distinguished from normal wall based on wall-to-muscle contrast-to-noise values following GdF administration. RAM-11 (macrophages) and CD-31 (endothelial cells) immunostaining of MR-matched histological sections revealed that GdF accumulation was related to the degree of inflammation at the surface of plaques and the extent of core neovascularization. Importantly, an MR measure of GdF accumulation at both 1 and 24 hours post-injection, but not Gd-DTPA at peak enhancement, was shown to correlate with a quantitative histological morphology index related to these two plaque features. Conclusions GdF-enhanced MRI of atherosclerotic plaques allows non-invasive quantitative information about plaque composition to be acquired at multiple time points post-injection (within 1 and up to 24 hours post-injection). This dramatically widens the imaging window for assessing plaque stability that is currently attainable with clinically approved MR agents, therefore opening the possibility of whole-body (including coronary) detection of unstable plaques in the future and potentially improved mitigation of cataclysmic cardiovascular events. PMID:19808597

  13. Follicular B Cells Promote Atherosclerosis via T Cell-Mediated Differentiation Into Plasma Cells and Secreting Pathogenic Immunoglobulin G.

    PubMed

    Tay, Christopher; Liu, Yu-Han; Kanellakis, Peter; Kallies, Axel; Li, Yi; Cao, Anh; Hosseini, Hamid; Tipping, Peter; Toh, Ban-Hock; Bobik, Alex; Kyaw, Tin

    2018-05-01

    B cells promote or protect development of atherosclerosis. In this study, we examined the role of MHCII (major histocompatibility II), CD40 (cluster of differentiation 40), and Blimp-1 (B-lymphocyte-induced maturation protein) expression by follicular B (FO B) cells in development of atherosclerosis together with the effects of IgG purified from atherosclerotic mice. Using mixed chimeric Ldlr -/- mice whose B cells are deficient in MHCII or CD40, we demonstrate that these molecules are critical for the proatherogenic actions of FO B cells. During development of atherosclerosis, these deficiencies affected T-B cell interactions, germinal center B cells, plasma cells, and IgG. As FO B cells differentiating into plasma cells require Blimp-1, we also assessed its role in the development of atherosclerosis. Blimp-1-deficient B cells greatly attenuated atherosclerosis and immunoglobulin-including IgG production, preventing IgG accumulation in atherosclerotic lesions; Blimp-1 deletion also attenuated lesion proinflammatory cytokines, apoptotic cell numbers, and necrotic core. To determine the importance of IgG for atherosclerosis, we purified IgG from atherosclerotic mice. Their transfer but not IgG from nonatherosclerotic mice into Ldlr -/- mice whose B cells are Blimp-1-deficient increased atherosclerosis; transfer was associated with IgG accumulating in atherosclerotic lesions, increased lesion inflammatory cytokines, apoptotic cell numbers, and necrotic core size. The mechanism by which FO B cells promote atherosclerosis is highly dependent on their expression of MHCII, CD40, and Blimp-1. FO B cell differentiation into IgG-producing plasma cells also is critical for their proatherogenic actions. Targeting B-T cell interactions and pathogenic IgG may provide novel therapeutic strategies to prevent atherosclerosis and its adverse cardiovascular complications. © 2018 American Heart Association, Inc.

  14. Evaluation of the Combined Effect of Recombinant High-Density Lipoprotein Carrier and the Encapsulated Lovastatin in RAW264.7 Macrophage Cells Based on the Median-Effect Principle.

    PubMed

    Jiang, Cuiping; Zhao, Yi; Yang, Yun; He, Jianhua; Zhang, Wenli; Liu, Jianping

    2018-03-05

    Recombinant high-density lipoprotein (rHDL) displays a similar anti-atherosclerotic effect with native HDL and could also be served as a carrier of cardiovascular drug for atherosclerotic plaque targeting. In our previous studies, rHDL has shown a more potent anti-atherosclerotic efficacy as compared to the other conventional nanoparticles with a payload of lovastatin (LS). Therefore, we hypothesized that a synergistic anti-atherosclerotic effect of the rHDL carrier and the encapsulated LS might exist. In this study, the dose-effect relationships and the combined effect of the rHDL and LS were quantitatively evaluated in RAW 264.7 macrophage cells using the median-effect analysis, in which the rHDL carrier was regarded as a drug combined. Median-effect analysis suggested that rHDL and LS exerted a desirable synergistic inhibition on the oxLDL internalization at a ratio of 6:1 ( D m,LS : D m,rHDL ) in RAW 264.7 macrophage cells. About 50% of the reduction on the intracellular lipid contents was found when RAW264.7 cells were treated with LS-loaded rHDLs at their respective median-effect dose ( D m ) concentrations and a synergistic effect on the mediating cholesterol efflux was also observed, which verified the accuracy of the results obtained from the median-effect analysis. The mechanism underlying the synergistic effect of the rHDL carrier and the drug might be attributed to their potent inhibitory effects on SR-A expression. In conclusion, the median-effect analysis was proven to be a feasible method to quantitatively evaluate the synergistic effect of the biofunctional carrier and the drug encapsulated.

  15. Use of Low-dose Aspirin as Secondary Prevention of Atherosclerotic Cardiovascular Disease Among US Adults (From the National Health Interview Survey, 2012)

    PubMed Central

    Fang, Jing; George, Mary G.; Gindi, Renee M.; Hong, Yuling; Yang, Quanhe; Ayala, Carma; Ward, Brian W.; Loustalot, Fleetwood

    2015-01-01

    Current guidelines recommend that adults with atherosclerotic cardiovascular disease take low-dose aspirin or other antiplatelet medications as secondary prevention of recurrent cardiovascular events. Yet, no national level assessment of low-dose aspirin use for secondary prevention of cardiovascular disease has been reported among a community-based population. Using data from the 2012 National Health Interview Survey, we assessed low-dose aspirin use among those with atherosclerotic cardiovascular disease. We estimated the prevalence ratios of low-dose aspirin use, adjusting for sociodemographic status, health insurance, and cardiovascular risk factors. Among those with atherosclerotic cardiovascular disease (n=3,068), 76% had been instructed to take aspirin, and 88% of those were following this advice. Of those not advised, 11% took aspirin on this own. Overall, 70% were taking aspirin (including those who followed their health care provider's advice and those who were not advised but took aspirin on their own). Logistic regression models showed that women, non-Hispanic blacks and Hispanics, those aged 40–64 years, with a high school education or with some college, or with fewer cardiovascular disease risk factors were less likely to take aspirin than men, non-Hispanic whites, those aged ≥65 years, with a college education or higher, or with all four selected cardiovascular disease risk factors, respectively. Additional analyses conducted among those with coronary heart disease only (n=2,007) showed similar patterns. In conclusion, use of low-dose aspirin for secondary prevention was 70%, with high reported adherence to health care providers' advice to take low-dose aspirin (88%), and significant variability within subgroups. PMID:25670639

  16. Searching for polycystic ovary syndrome in postmenopausal women: evidence of a dose-effect association with prevalent cardiovascular disease.

    PubMed

    Krentz, Andrew J; von Mühlen, Denise; Barrett-Connor, Elizabeth

    2007-01-01

    To test the hypothesis that polycystic ovary syndrome (PCOS) is associated with an increased risk of atherosclerotic cardiovascular disease (CVD) in older postmenopausal women. Cross-sectional study of community-dwelling non-estrogen-using postmenopausal-white women (N=713; mean+/-SD age, 73.8+/-7.9 years; mean body mass index, 24.0+/-3.5 kg/m) participating in the Rancho Bernardo Study. A putative PCOS phenotype was defined as the presence of three or more of the following features: (1) recalled history of irregular menses, (2) symptomatic premenopausal hyperandrogenism or biochemical evidence of current biochemical hyperandrogenism, (3) history of infertility or miscarriage, (4) central obesity, or (5) insulin resistance. Atherosclerotic CVD was determined from clinical history, electrocardiography, and structured interviews using validated techniques. The analysis was stratified by diabetes status, ascertained from medical history or 75-g oral glucose tolerance tests. The PCOS phenotype was present in 9.3% of the entire cohort and 5.8% of nondiabetic women. The prevalence of CVD was similar between women with the phenotype and unaffected women (27.3% vs 24.4%). Among women with intact ovaries and no diabetes, there was a stepwise graded association between an increasing number of features of the PCOS phenotype (ie, none to three or more) and prevalent CVD (P=0.02). A similar association was also observed for coronary heart disease alone (P=0.03). Among nondiabetic postmenopausal women with intact ovaries, prevalent atherosclerotic CVD is associated with features of a putative PCOS phenotype. This finding supports the thesis that PCOS increases the risk of atherosclerotic CVD after menopause.

  17. Searching for Polycystic Ovary Syndrome in Postmenopausal Women: Evidence for a Dose-Effects Association with Prevalent Cardiovascular Disease

    PubMed Central

    Krentz, Andrew J.; von Mühlen, Denise; Barrett-Connor, Elizabeth

    2007-01-01

    Objective To test the hypothesis that polycystic ovary syndrome (PCOS) is associated with an increased risk of atherosclerotic cardiovascular disease (CVD) in older postmenopausal women. Design Cross-sectional study of community-dwelling non-estrogen-using postmenopausal Caucasian women (n=713) mean (± SD) age 73.8 ± 7.9 years, mean body mass index 24.0 ± 3.5 kg/m2 participating in the Rancho Bernardo Study. A putative PCOS phenotype was defined as the presence of ≥3 features: (1) recalled history of irregular menses, (2) symptomatic premenopausal hyperandrogenism or biochemical evidence of current biochemical hyperandrogenism, (3) history of infertility or miscarriage, (4) central obesity, or (5) biochemical insulin resistance. Atherosclerotic CVD was determined from clinical history, electrocardiography, and structured interviews using validated techniques. The analysis was stratified by diabetes status, ascertained from medical history or 75 g oral glucose tolerance tests. Results The PCOS phenotype was present in 9.3% of the entire cohort and 5.8% of non-diabetic women. The prevalence of CVD was similar between women with the phenotype compared to non-affected women (27.3%, vs. 24.4%). Among women with intact ovaries and no diabetes there was a stepwise graded association between an increasing number of features of the PCOS phenotype (i.e., 0 – ≥3) and prevalent CVD (p=0.02) and coronary heart disease alone (p=0.03). Conclusions – Among non-diabetic postmenopausal women with intact ovaries, prevalent atherosclerotic CVD is associated with features of a putative PCOS phenotype. This finding supports the thesis that PCOS increases the risk of atherosclerotic CVD years after menopause. PMID:17245231

  18. Macrophage Liver Kinase B1 Inhibits Foam Cell Formation and Atherosclerosis.

    PubMed

    Liu, Zhaoyu; Zhu, Huaiping; Dai, Xiaoyan; Wang, Cheng; Ding, Ye; Song, Ping; Zou, Ming-Hui

    2017-10-13

    LKB1 (liver kinase B1) is a serine/threonine kinase and tumor suppressor, which regulates the homeostasis of hematopoietic cells and immune responses. Macrophages transform into foam cells upon taking-in lipids. No role for LKB1 in foam cell formation has previously been reported. We sought to establish the role of LKB1 in atherosclerotic foam cell formation. LKB1 expression was examined in human carotid atherosclerotic plaques and in western diet-fed atherosclerosis-prone Ldlr -/- and ApoE -/- mice. LKB1 expression was markedly reduced in human plaques when compared with nonatherosclerotic vessels. Consistently, time-dependent reduction of LKB1 levels occurred in atherosclerotic lesions in western diet-fed Ldlr -/- and ApoE -/- mice. Exposure of macrophages to oxidized low-density lipoprotein downregulated LKB1 in vitro. Furthermore, LKB1 deficiency in macrophages significantly increased the expression of SRA (scavenger receptor A), modified low-density lipoprotein uptake and foam cell formation, all of which were abolished by blocking SRA. Further, we found LKB1 phosphorylates SRA resulting in its lysosome degradation. To further investigate the role of macrophage LKB1 in vivo, ApoE -/- LKB1 fl/fl LysM cre and ApoE -/- LKB1 fl/fl mice were fed with western diet for 16 weeks. Compared with ApoE -/- LKB1 fl/fl wild-type control, ApoE -/- LKB1 fl/fl LysM cre mice developed more atherosclerotic lesions in whole aorta and aortic root area, with markedly increased SRA expression in aortic root lesions. We conclude that macrophage LKB1 reduction caused by oxidized low-density lipoprotein promotes foam cell formation and the progression of atherosclerosis. © 2017 American Heart Association, Inc.

  19. Irgm1 promotes M1 but not M2 macrophage polarization in atherosclerosis pathogenesis and development.

    PubMed

    Fang, Shaohong; Xu, Yanwen; Zhang, Yun; Tian, Jiangtian; Li, Ji; Li, Zhaoying; He, Zhongze; Chai, Ruikai; Liu, Fang; Zhang, Tongshuai; Yang, Shuang; Pei, Chunying; Liu, Xinxin; Lin, Peng; Xu, Hongwei; Yu, Bo; Li, Hulun; Sun, Bo

    2016-08-01

    Atherosclerosis is a chronic inflammatory vascular disease related to macrophages uptake of low-density lipoprotein and their subsequent transformation into foam cells. M1 (inflammatory)/M2 (anti-inflammatory) balance was suggested to impact disease progression. In this study, we investigated whether the immunity related GTPase (Irgm1) regulates macrophage polarization during atherosclerosis development. We used apolipoprotein E (ApoE) knockout and Irgm1 haplodeficient mice and induced atherosclerosis with high-cholesterol diet for the indicated months. Atherosclerotic arteries were collected from patients undergoing vascular surgery, to determine the lesional expression of Irgm1 and distribution of M1/M2 populations. Our results showed that IRGM/Irgm1 expression was increased in atherosclerotic artery samples (1.7-fold, p=0.0045) compared with non-atherosclerotic arteries, which was consistent with findings in the murine experimental atherosclerosis model (1.9-fold, p=0.0002). IRGM/Irgm1 expression was mostly found in lesional M1 macrophages. Haplodeficiency of Irgm1 in ApoE(-/-) mice resulted in reduced infiltrating M1 macrophages in atheroma (94%, p=0.0002) and delayed development of atherosclerotic plaques. In vitro experiments also confirmed that Irgm1 haplodeficiency reduced iNOS expression of polarized M1 macrophages (81%, p=0.0034), with negligible impact on the M2 phenotype. Moreover, we found that Irgm1 haplodeficiency in mice significantly reduced expression level of M1 function-related transcription factors, interferon regulatory factor (Irf) 5 and Irf8, but not Irf4, an M2-related transcription factor. This study shows that Irgm1/IRGM participates in the polarization of M1 macrophage and promotes development of atheroma in murine experimental atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis.

    PubMed

    Akyildiz, Ali C; Hansen, Hendrik H G; Nieuwstadt, Harm A; Speelman, Lambert; De Korte, Chris L; van der Steen, Antonius F W; Gijsen, Frank J H

    2016-04-01

    Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components. Iliac arteries with plaques were excised from 6 atherosclerotic pigs and subjected to an inflation test with pressures ranging from 10 to 120 mmHg. The arteries were imaged with high frequency 40 MHz ultrasound. Deformation maps of the plaques were reconstructed by cross correlation of the ultrasound radiofrequency data. Subsequently, the arteries were perfusion fixed for histology and structural components were identified. The histological data were registered to the ultrasound data to construct FE model of the plaques. Material properties of the arterial wall and the intima of the atherosclerotic plaques were estimated using a grid search method. The computed displacement fields showed good agreement with the measured displacement fields, implying that the FE models were able to capture local inhomogeneities within the plaque. On average, nonlinear stiffening of both the wall and the intima was observed, and the wall of the atheroslcerotic porcine iliac arteries was markedly stiffer than the intima (877 ± 459 vs. 100 ± 68 kPa at 100 mmHg). The large spread in the data further illustrates the wide variation of the material properties. We demonstrated the feasibility of a mixed experimental-numerical framework to determine the material properties of arterial wall and intima of atherosclerotic plaques from intact arteries, and concluded that, due to the observed variation, plaque specific properties are required for accurate stress simulations.

  1. Targeting Tumor Necrosis Factor-α with Adalimumab: Effects on Endothelial Activation and Monocyte Adhesion

    PubMed Central

    Oberoi, Raghav; Schuett, Jutta; Schuett, Harald; Koch, Ann-Kathrin; Luchtefeld, Maren

    2016-01-01

    Objective It is well known that atherosclerotic inflammatory vascular disease is critically driven by oxidized lipids and cytokines. In this regard, tumor necrosis factor (TNF)-α is known as a crucial mediator of early pro-atherosclerotic events. Epidemiologic data suggest that blockade of TNF-α has beneficial effects on vascular outcomes in patients with rheumatoid arthritis, however, detailed mechanistic studies are still lacking. This study aims to elucidate effects of TNF-α blockade by adalimumab–which is approved for several inflammatory disorders–on endothelial activation and monocyte adhesion under pro-atherosclerotic conditions. Methods and Results Phorbol myristate acetate (PMA) differentiated THP-1 macrophages were stimulated with oxidized low density lipoprotein and subsequent analysis of this conditioned media (oxLDL CM) revealed a strong release of TNF-α. The TNF-α rich supernatant led to activation of human umbilical vein endothelial cells (HUVEC) as shown by enhanced expression of major adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin which was suppressed by the TNF-α inhibitor adalimumab. Accordingly, adalimumab effectively prevented THP-1 monocyte adhesion to endothelial cells under static as well as under flow conditions. Furthermore, adalimumab suppressed endothelial leakage as shown by Evan's blue diffusion across a confluent endothelial monolayer. Of note, after intraperitoneal injection we detected abundant deposition of fluorophore-labelled adalimumab in atherosclerotic plaques of hypercholesterolemic mice. Conclusion Our results show that adalimumab prevents major inflammatory effects of TNF-α on endothelial activation, endothelial monocyte adhesion, endothelial leakage and therefore extends the therapeutic options of adalimumab to limit vascular inflammation. PMID:27467817

  2. Detection of inflamed atherosclerotic lesions with diadenosine-5′,5‴-P1,P4-tetraphosphate (Ap4A) and positron-emission tomography

    PubMed Central

    Elmaleh, D. R.; Fischman, A. J.; Tawakol, A.; Zhu, A.; Shoup, T. M.; Hoffmann, U.; Brownell, A.-L.; Zamecnik, P. C.

    2006-01-01

    Diadenosine-5′,5‴-P1,P4-tetraphosphate (Ap4A) and its analog P2,P3-monochloromethylene diadenosine-5′,5‴-P1,P4-tetraphosphate (AppCHClppA) are competitive inhibitors of adenosine diphosphate-induced platelet aggregation, which plays a central role in arterial thrombosis and plaque formation. In this study, we evaluate the imaging capabilities of positron-emission tomography (PET) with P2,P3-[18F]monofluoromethylene diadenosine-5′,5‴-P1,P4-tetraphosphate ([18F]AppCHFppA) to detect atherosclerotic lesions in male New Zealand White rabbits. Three to six months after balloon injury to the aorta, the rabbits were injected with [18F]AppCHFppA, and microPET imaging showed rapid accumulation of this radiopharmaceutical in the atherosclerotic abdominal aorta, with lesions clearly visible 30 min after injection. Computed tomographic images were coregistered with PET images to improve delineation of aortoiliac tracer activity. Plaque macrophage density, quantified by immunostaining with RAM11 against rabbit macrophages, correlated with PET measurements of [18F]AppCHFppA uptake (r = 0.87, P < 0.0001), whereas smooth-muscle cell density, quantified by immunostaining with 1A4 against smooth muscle actin, did not. Biodistribution studies of [18F]AppCHFppA in normal rats indicated typical adenosine dinucleotide behavior with insignificant myocardial uptake and fast kidney clearance. The accumulation of [18F]AppCHFppA in macrophage-rich atherosclerotic plaques can be quantified noninvasively with PET. Hence, [18F]AppCHFppA holds promise for the noninvasive characterization of vascular inflammation. PMID:17038498

  3. Alternation of histone and DNA methylation in human atherosclerotic carotid plaques.

    PubMed

    Greißel, A; Culmes, M; Napieralski, R; Wagner, E; Gebhard, H; Schmitt, M; Zimmermann, A; Eckstein, H-H; Zernecke, A; Pelisek, J

    2015-08-01

    Little is known about epigenetics and its possible role in atherosclerosis. We here analysed histone and DNA methylation and the expression of corresponding methyltransferases in early and advanced human atherosclerotic carotid lesions in comparison to healthy carotid arteries. Western Blotting was performed on carotid plaques from our biobank with early (n=60) or advanced (n=60) stages of atherosclerosis and healthy carotid arteries (n=12) to analyse di-methylation patterns of histone H3 at positions K4, K9 and K27. In atherosclerotic lesions, di-methylation of H3K4 was unaltered and that of H3K9 and H3K27 significantly decreased compared to control arteries. Immunohistochemistry revealed an increased appearance of di-methylated H3K4 in smooth muscle cells (SMCs), a decreased expression of di-methylated H3K9 in SMCs and inflammatory cells, and reduced di-methylated H3K27 in inflammatory cells in advanced versus early atherosclerosis. Expression of corresponding histone methyltransferases MLL2 and G9a was increased in advanced versus early atherosclerosis. Genomic DNA hypomethylation, as determined by PCR for methylated LINE1 and SAT-alpha, was observed in early and advanced plaques compared to control arteries and in cell-free serum of patients with high-grade carotid stenosis compared to healthy volunteers. In contrast, no differences in DNA methylation were observed in blood cells. Expression of DNA-methyltransferase DNMT1 was reduced in atherosclerotic plaques versus controls, DNMT3A was undetectable, and DNMT3B not altered. DNA-demethylase TET1 was increased in atherosclerosisc plaques. The extent of histone and DNA methylation and expression of some corresponding methyltransferases are significantly altered in atherosclerosis, suggesting a possible contribution of epigenetics in disease development.

  4. An Evaluation of the Numbers and Locations of Coronary Artery Disease with Some of the Major Atherosclerotic Risk Factors in Patients with Coronary Artery Disease

    PubMed Central

    Naghshtabrizi, Behshad; Moradi, Abbas; Amiri, Jalaleddin; Aarabi, Sepide

    2017-01-01

    Introduction Despite definite recognition of major atherosclerotic risk factors, the relationship between the pattern of coronary artery disease and these risk factors is unknown. Aim The aim of this study was to identify the relationship between some of the major atherosclerotic risk factors and the number and pattern of coronary artery disease in patients with coronary artery disease who presented to Farshchian Heart University Hospital, Hamadan, Iran. Materials and Methods In this descriptive cross-sectional study, we investigated some of the major atherosclerotic risk factors and their relationships with the type of coronary artery disease in terms of number and location of disease. A total of 1100 patients were enrolled with coronary artery disease confirmed by selective coronary angiography from 2010-2014. A p-value<0.05 was considered statistically significant. Results A total of 1100 patients enrolled in this study. The patient population consisted of 743 (67.5%) males and 357 (32.5%) females. A meaningful relationship existed between ageing, diabetes mellitus, hypertension and 3-Vessel Disease (3VD, p<0.001) as well as between hyperlipidemia and Single Vessel Disease (SVD, p<0.001). Patients diagnosed with diabetes mellitus, hypertension, and hyperlipidemia showed greater potential to develop coronary artery disease at the proximal section of the coronary arteries. Conclusion Based on the relationship between some of the major risk factors and the pattern of coronary artery disease in the current study, prospective studies should investigate other risk factors. We recommend that a plan should be developed to reduce adjustable risk factors such as diabetes mellitus, hypertension and hyperlipidemia in order to decrease coronary artery disease. PMID:28969179

  5. Characterization of the europium tetracycline complex as a biomarker for atherosclerosis

    NASA Astrophysics Data System (ADS)

    Courrol, Lilia C.; da Silva, Mônica N.; Sicchieri, Leticia B.

    2016-04-01

    Atherosclerosis is a narrowing of the arteries caused by an increase of atheromatous plaque: material formed by macrophage cells containing cholesterol and fatty acids, calcium and a variable amount of fibrous connective tissue. The elation between vulnerable plaques and cardiovascular events can be determined using plaque biomarkers. In this work, atherosclerotic plaques stained with different molar ratios of europium, in a potential plaque biomarker, europium tetracycline complex, were studied by fluorescence microscopy. The tetracycline antibiotic used was chlortetracycline. The growth of atherosclerotic plaque was followed during 60 days in New Zealand rabbits divided in two groups: an experimental group (EG), with nine animals and a control group (CG) with three animals. The animals in the EG received a diet with 1% of cholesterol and the animals of GC received a normal diet. The aortic arch of the animals with 60 days were cut in the vertical plane in 6 μm thick slices, which were mounted on glass slides and stained with hematoxylin an eosin and europium chlortetracycline complex (EuCTc). The fluorescence images were obtained exciting the EuCTc absorption band with a filter cube D (BP 355 - 425) and the emission was collected with a LP 470 suppression filter. Light intensity, detector gain and acquisition time were fixed for comparisons. The 20× magnified images were collected with 12 bit (or 4096 gray tones) resolution. The mean value of gray scale for each molar ratio of EuCTc was different, indicating that the complex interacts with the components of atherosclerotic plaque and the best molar ratio was 1.5 EuCTc. These results indicate the potential use of the EuCTc biomarker for atherosclerotic plaque characterization.

  6. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    PubMed

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Calcification at orifices of aortic arch branches is a reliable and significant marker of stenosis at carotid bifurcation and intracranial arteries.

    PubMed

    Yamada, Shigeki; Hashimoto, Kenji; Ogata, Hideki; Watanabe, Yoshihiko; Oshima, Marie; Miyake, Hidenori

    2014-02-01

    Simple rating scale for calcification in the cervical arteries and the aortic arch on multi-detector computed tomography angiography (MDCTA) was evaluated its reliability and validity. Additionally, we investigated where is the most representative location for evaluating the calcification risk of carotid bifurcation stenosis and atherosclerotic infarction in the overall cervical arteries covering from the aortic arch to the carotid bifurcation. The aortic arch and cervical arteries among 518 patients (292 men, 226 women) were evaluated the extent of calcification using a 4-point grading scale for MDCTA. Reliability, validity and the concomitant risk with vascular stenosis and atherosclerotic infarction were assessed. Calcification was most frequently observed in the aortic arch itself, the orifices from the aortic arch, and the carotid bifurcation. Compared with the bilateral carotid bifurcations, the aortic arch itself had a stronger inter-observer agreement for the calcification score (Fleiss' kappa coefficients; 0.77), but weaker associations with stenosis and atherosclerotic infarction. Calcification at the orifices of the aortic arch branches had a stronger inter-observer agreement (0.74) and enough associations with carotid bifurcation stenosis and intracranial stenosis. In addition, the extensive calcification at the orifices from the aortic arch was significantly associated with atherosclerotic infarction, similar to the calcification at the bilateral carotid bifurcations. The orifices of the aortic arch branches were the novel representative location of the aortic arch and overall cervical arteries for evaluating the calcification extent. Thus, calcification at the aortic arch should be evaluated with focus on the orifices of 3 main branches. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Aqueous extract of Piper sarmentosum decreases atherosclerotic lesions in high cholesterolemic experimental rabbits

    PubMed Central

    2010-01-01

    Background Piper sarmentosum (P.s) has flavonoid component in its leaves which has antioxidative effect. To date, its effect on atherosclerosis has not been studied histologically. Aim The study aimed to investigate the effect of P.s on atherosclerotic changes in hypercholesterolemic rabbits. Methods Forty two male New Zealand white rabbits were divided into seven groups. C - control group fed normal rabbit chow, CH - cholesterol diet (1% cholesterol), W1 - 1% cholesterol with water extract of P.s (62.5 mg/kg), W2 - 1% cholesterol with water extract of P.s (125 mg/kg), W3 - 1% cholesterol with water extract of P.s (250 mg/kg), W4 - 1% cholesterol with water extract of P.s (500 mg/kg) and Smv - 1% cholesterol supplemented with simvistatin drug (1.2 mg/kg). All rabbits were treated for 10 weeks. Following 10 weeks of supplementation, the animals were sacrificed and the aortic tissue was taken for histological study. Results Rabbits fed only with high cholesterol diet 1% cholesterol (CH) showed focal fatty streak lesions compared to the C group and 1% cholesterol supplemented with simvistatin drug (Smv) group. Atherosclerotic lesions in the 1% cholesterol group supplemented with P.s (500 mg/kg) i.e. W4 group showed significant reduction (30 ± 6.0%, p < 0.05) in fatty streak compared to the high cholesterol group (85.6 ± 4.1%) under Sudan IV stain. The atherosclerotic lesions under transmission electron microscope showed reduction in foam cells in the treatment groups compared to the CH groups. Conclusion Administration of P.s extract has protective effect against atheroscleros PMID:20433693

  9. Transmission of Atherosclerosis Susceptibility with Gut Microbial Transplantation*

    PubMed Central

    Gregory, Jill C.; Buffa, Jennifer A.; Org, Elin; Wang, Zeneng; Levison, Bruce S.; Zhu, Weifei; Wagner, Matthew A.; Bennett, Brian J.; Li, Lin; DiDonato, Joseph A.; Lusis, Aldons J.; Hazen, Stanley L.

    2015-01-01

    Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility. PMID:25550161

  10. Progressive Cortical Neuronal Damage and Chronic Hemodynamic Impairment in Atherosclerotic Major Cerebral Artery Disease.

    PubMed

    Yamauchi, Hiroshi; Kagawa, Shinya; Kishibe, Yoshihiko; Takahashi, Masaaki; Higashi, Tatsuya

    2016-06-01

    Cross-sectional studies suggest that chronic hemodynamic impairment may cause selective cortical neuronal damage in patients with atherosclerotic internal carotid artery or middle cerebral artery occlusive disease. The purpose of this longitudinal study was to determine whether the progression of cortical neuronal damage, evaluated as a decrease in central benzodiazepine receptors (BZRs), is associated with hemodynamic impairment at baseline or hemodynamic deterioration during follow-up. We evaluated the distribution of BZRs twice using positron emission tomography and (11)C-flumazenil over time in 80 medically treated patients with atherosclerotic internal carotid artery or middle cerebral artery occlusive disease that had no ischemic episodes during follow-up. Using 3D stereotactic surface projections, we quantified abnormal decreases in the BZRs in the cerebral cortex within the middle cerebral artery distribution and correlated changes in the BZR index with the mean hemispheric values of hemodynamic parameters obtained from (15)O gas positron emission tomography. In the hemisphere affected by arterial disease, the BZR index in 40 patients (50%) was increased during follow-up (mean 26±20 months). In multivariable logistic regression analyses, increases in the BZR index were associated with the decreased cerebral blood flow at baseline and an increased oxygen extraction fraction during follow-up. Increases in the oxygen extraction fraction during follow-up were associated with a lack of statin use. In patients with atherosclerotic internal carotid artery or middle cerebral artery disease, the progression of cortical neuronal damage was associated with hemodynamic impairment at baseline and hemodynamic deterioration during follow-up. Statin use may be beneficial against hemodynamic deterioration and therefore neuroprotective. © 2016 American Heart Association, Inc.

  11. Detection of Sequence-Specific Tyrosine Nitration of Manganese SOD and SERCA in Cardiovascular Disease and Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shanqin; Ying, Jia; Jiang, Bingbing

    2006-06-01

    Nitration of protein tyrosine residues (nY) is a marker of oxidative stress and may alter the biological activity of the modified proteins. The aim of this study was to develop antibodies towards site-specific nY-modified proteins and to use histochemical and immunoblotting to demonstrate protein nitration in tissues. Affinity-purified polyclonal antibodies towards peptides with known nY sites in MnSOD nY-34 and of two adjacent nY in the sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA2 di-nY-294,295) were developed. Kidneys from rats infused with angiotensin II with known MnSOD nY and aorta from atherosclerotic rabbits and aging rat skeletal and cardiac sarcoplasmic reticulum withmore » known SERCA di-nY were used for positive controls. Staining for MnSOD nY-34 was most intense in distal renal tubules and collecting ducts. Staining of atherosclerotic aorta for SERCA2 di-nY was most intense in atherosclerotic plaques. Aging rat skeletal muscle and atherosclerotic aorta and cardiac atrium from human diabetic patients also stained positively. Staining was decreased by sodium dithionite that chemically reduces nitrotyrosine to aminotyrosine, and the antigenic nY-peptide blocked staining for each respective nY site, but not for the other. As previously demonstrated, immunoblotting failed to detect these modified proteins in whole tissue lysates, but did when the proteins were concentrated. Immunohistochemical staining for specific nY-modified tyrosine residues offers the ability to assess the effects of oxidant stress associated with pathological conditions on individual proteins whose function may be affected in specific tissue sites.« less

  12. Is triglyceride/HDL ratio a reliable screening test for assessment of atherosclerotic risk in patients with chronic inflammatory disease?

    PubMed

    Keles, Nursen; Aksu, Feyza; Aciksari, Gonul; Yilmaz, Yusuf; Demircioglu, Kenan; Kostek, Osman; Cekin, Muhammed Esad; Kalcik, Macit; Caliskan, Mustafa

    2016-01-01

    The term chronic inflammatory disease (CID) refers to a category of inflammatory diseases that includes Ankylosing spondylitis (AS) and familial Mediterranean fever (FMF). The incidence of adverse cardiovascular events is greater among patients with CID, though they may not have conventional atherosclerotic risk factors. Endothelial dysfunction is one of the underlying fundamental mechanisms that trigger development of atherosclerotic alterations in arteries, and flow-mediated dilatation (FMD) is a noninvasive method to determine endothelial dysfunction. Recent studies have shown a relationship between high triglyceride high-density lipoprotein cholesterol (TG/HDL-C) ratio and coronary atherosclerosis. Many studies have demonstrated that patients with CID have lower FMD values compared to healthy population, indicating endothelial dysfunction. However TG/HDL ratio and its relationship to FMD in patients with CID has not been investigated. The present study investigated whether TG/HDL ratio in CID patients differs from that of healthy population, and its relationship to FMD in patients with CID. A total of 58 patients with CID and a group of 58 healthy volunteer individuals were enrolled in the study. FMD measurements were taken with high resolution ultrasound (US), and TG/HDL ratios were calculated. Patients with CID had significantly higher TG/HDL-C ratio (2.5 [2.2-2.8] vs 2.3 [2.1-2.5]; p=0.03) and lower FMD values (5.2 [4.2-6.3] vs 6.7 [6.3-9.7]; p<0.001), compared to healthy group, and a negative correlation was found between FMD levels and TG/HDL ratio of the study population. Higher TG/HDL ratio and lower FMD values found in CID patients may reflect increased atherosclerotic risk.

  13. Is triglyceride/HDL ratio a reliable screening test for assessment of atherosclerotic risk in patients with chronic inflammatory disease?

    PubMed Central

    Keles, Nursen; Aksu, Feyza; Aciksari, Gonul; Yilmaz, Yusuf; Demircioglu, Kenan; Kostek, Osman; Cekin, Muhammed Esad; Kalcik, Macit; Caliskan, Mustafa

    2016-01-01

    OBJECTIVE: The term chronic inflammatory disease (CID) refers to a category of inflammatory diseases that includes Ankylosing spondylitis (AS) and familial Mediterranean fever (FMF). The incidence of adverse cardiovascular events is greater among patients with CID, though they may not have conventional atherosclerotic risk factors. Endothelial dysfunction is one of the underlying fundamental mechanisms that trigger development of atherosclerotic alterations in arteries, and flow-mediated dilatation (FMD) is a noninvasive method to determine endothelial dysfunction. Recent studies have shown a relationship between high triglyceride high-density lipoprotein cholesterol (TG/HDL-C) ratio and coronary atherosclerosis. Many studies have demonstrated that patients with CID have lower FMD values compared to healthy population, indicating endothelial dysfunction. However TG/HDL ratio and its relationship to FMD in patients with CID has not been investigated. The present study investigated whether TG/HDL ratio in CID patients differs from that of healthy population, and its relationship to FMD in patients with CID. METHODS: A total of 58 patients with CID and a group of 58 healthy volunteer individuals were enrolled in the study. FMD measurements were taken with high resolution ultrasound (US), and TG/HDL ratios were calculated. RESULTS: Patients with CID had significantly higher TG/HDL-C ratio (2.5 [2.2–2.8] vs 2.3 [2.1–2.5]; p=0.03) and lower FMD values (5.2 [4.2–6.3] vs 6.7 [6.3–9.7]; p<0.001), compared to healthy group, and a negative correlation was found between FMD levels and TG/HDL ratio of the study population. CONCLUSION: Higher TG/HDL ratio and lower FMD values found in CID patients may reflect increased atherosclerotic risk. PMID:28058384

  14. Racial differences in thoracic aorta atherosclerosis among ischemic stroke patients.

    PubMed

    Gupta, Vishal; Nanda, Navin C; Yesilbursa, Dilek; Huang, Wen Ying; Gupta, Vijaya; Li, Qing; Gomez, Camilo R

    2003-02-01

    Atherosclerosis of the thoracic aorta is an independent risk factor for stroke. There is little information on the impact of race in the prevalence of thoracic aorta atherosclerotic plaques among ischemic stroke patients. This study was an attempt to objectively assess the prevalence, thickness, and burden of thoracic aorta atherosclerotic plaques in a large population of ischemic stroke patients and to compare the differences between American blacks and whites. This is a retrospective study of clinical data and transesophageal echocardiography (TEE) of 1553 ischemic stroke patients (664 blacks, 889 whites) over a period of 4.5 years. Atherosclerotic plaque prevalence, thickness, morphology, and burden (sum of maximum thickness in ascending aorta [AA], aortic arch [AO], and descending aorta [DA]) were assessed with TEE. Charts were reviewed for clinical information. Age and sex were similar among blacks and whites. Analyses of clinical data found that blacks had significantly higher hypertension (odds ratio [OR], 2.61; P<0.0001) and diabetes mellitus (OR, 1.99; P<0.0001) and significantly lower coronary artery disease (OR, 0.75; P=0.017) and carotid artery disease (OR, 0.62; P=0.0008) compared with whites. TEE showed that whites had significantly greater plaque prevalence (AA: OR, 1.37; P=0.04; AO: OR, 1.26; P=0.03; DA: OR, 1.39; P=0.002) and plaque burden (blacks, 4.28 mm; whites, 4.97 mm; P=0.007). Whites also had a trend of increased complex plaques and plaques >4 mm thick in all regions of the thoracic aorta. Among ischemic stroke patients, blacks had a lower prevalence of extra cranial atherosclerotic disease even though they had significantly higher hypertension and diabetes mellitus compared with whites. This difference cannot be explained by the existing risk factors in ischemic stroke patients.

  15. Ischemic stroke subtype incidence among whites, blacks, and Hispanics: the Northern Manhattan Study.

    PubMed

    White, Halina; Boden-Albala, Bernadette; Wang, Cuiling; Elkind, Mitchell S V; Rundek, Tanja; Wright, Clinton B; Sacco, Ralph L

    2005-03-15

    Stroke incidence is greater in blacks than in whites; data on Hispanics are limited. Comparing subtype-specific ischemic stroke incidence rates may help to explain race-ethnic differences in stroke risk. The aim of this population-based study was to determine ischemic stroke subtype incidence rates for whites, blacks, and Hispanics living in one community. A comprehensive stroke surveillance system incorporating multiple overlapping strategies was used to identify all cases of first ischemic stroke occurring between July 1, 1993, and June 30, 1997, in northern Manhattan. Ischemic stroke subtypes were determined according to a modified NINDS scheme, and age-adjusted, race-specific incidence rates calculated. The annual age-adjusted incidence of first ischemic stroke per 100,000 was 88 (95% CI, 75 to 101) in whites, 149 (95% CI, 132 to 165) in Hispanics, and 191 (95% CI, 160 to 221) in blacks. Among blacks compared with whites, the relative rate of intracranial atherosclerotic stroke was 5.85 (95% CI, 1.82 to 18.73); extracranial atherosclerotic stroke, 3.18 (95% CI, 1.42 to 7.13); lacunar stroke, 3.09 (95% CI, 1.86 to 5.11); and cardioembolic stroke, 1.58 (95% CI, 0.99 to 2.52). Among Hispanics compared with whites, the relative rate of intracranial atherosclerotic stroke was 5.00 (95% CI, 1.69 to 14.76); extracranial atherosclerotic stroke, 1.71 (95% CI, 0.80 to 3.63); lacunar stroke, 2.32 (95% CI, 1.48 to 3.63); and cardioembolic stroke, 1.42 (95% CI, 0.97 to 2.09). The high ischemic stroke incidence among blacks and Hispanics compared with whites is due to higher rates of all ischemic stroke subtypes.

  16. Gadolinium Enhancement in Intracranial Atherosclerotic Plaque and Ischemic Stroke: A Systematic Review and Meta-Analysis.

    PubMed

    Gupta, Ajay; Baradaran, Hediyeh; Al-Dasuqi, Khalid; Knight-Greenfield, Ashley; Giambrone, Ashley E; Delgado, Diana; Wright, Drew; Teng, Zhongzhao; Min, James K; Navi, Babak B; Iadecola, Costantino; Kamel, Hooman

    2016-08-15

    Gadolinium enhancement on high-resolution magnetic resonance imaging (MRI) has been proposed as a marker of inflammation and instability in intracranial atherosclerotic plaque. We performed a systematic review and meta-analysis to summarize the association between intracranial atherosclerotic plaque enhancement and acute ischemic stroke. We searched the medical literature to identify studies of patients undergoing intracranial vessel wall MRI for evaluation of intracranial atherosclerotic plaque. We recorded study data and assessed study quality, with disagreements in data extraction resolved by a third reader. A random-effects odds ratio was used to assess whether, in any given patient, cerebral infarction was more likely in the vascular territory supplied by an artery with MRI-detected plaque enhancement as compared to territory supplied by an artery without enhancement. We calculated between-study heterogeneity using the Cochrane Q test and publication bias using the Begg-Mazumdar test. Eight articles published between 2011 and 2015 met inclusion criteria. These studies provided information about plaque enhancement characteristics from 295 arteries in 330 patients. We found a significant positive relationship between MRI enhancement and cerebral infarction in the same vascular territory, with a random effects odds ratio of 10.8 (95% CI 4.1-28.1, P<0.001). No significant heterogeneity (Q=11.08, P=0.14) or publication bias (P=0.80) was present. Intracranial plaque enhancement on high-resolution vessel wall MRI is strongly associated with ischemic stroke. Evaluation for plaque enhancement on MRI may be a useful test to improve diagnostic yield in patients with ischemic strokes of undetermined etiology. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. I4, a synthetic anti-diabetes agent, attenuates atherosclerosis through its lipid-lowering, anti-inflammatory and anti-apoptosis properties.

    PubMed

    Ma, Lingman; Qian, Lifen; Ying, Qidi; Zhang, Yan; Zhou, Changlin; Wu, Guanzhong

    2017-01-15

    Here, we investigated whether I 4 , which was initially developed as a hypoglycemic agent, possesses anti-atherosclerotic activity and attempted to elucidate the probable mechanism of action underlying this activity. ApoE -/- mice were fed a Western diet and simultaneously administered I 4 , glimepiride, or pioglitazone once daily for 12 weeks, and the atherosclerotic vascular lesions, lipid content, and expression levels of LOX-1, ICAM-1, VCAM-1 and Bax/Bcl-2 in mouse aortas were assessed. RAW264.7 macrophage-derived foam cells were obtained via ox-LDL stimulation to investigate the lipid-lowering, anti-atherosclerotic inflammation and anti-apoptotic effect of I 4 . The data indicated that I 4 significantly decreased the lipid accumulation in the circulation and tissue, especially for TG and FFA levels (p < 0.05 vs model group), alleviating the arterial and liver lesions induced by lipotoxicity. Its lipid-reducing effects may due to LOX-1and CD36 expression suppression. I 4 , at doses of 20 mg/kg and 10 mg/kg, significantly decreased serum IL-6, IL-1β, and TNF-α production and suppressed the expression of p-ERK, p-p38, VCAM-1 and ICAM-1 protein. I 4 attenuated atherosclerotic inflammation by blocking NF-κB nuclear translocation, suppressing MAPK/NF-κB signaling pathway and diminishing NF-κB-VCAM-1 promoter region binding. Additionally, I 4 suppressed p-p53 and cleaved-caspase-3 expression to inhibit foam cell apoptosis induced by ox-LDL uptake. Overall, I 4 exerts potent inhibitory effects on atherosclerosis onset and development. Copyright © 2016. Published by Elsevier Ireland Ltd.

  18. Ezetimibe Attenuates Atherosclerosis Associated with Lipid Reduction and Inflammation Inhibition.

    PubMed

    Tie, Chunmiao; Gao, Kanglu; Zhang, Na; Zhang, Songzhao; Shen, Jiali; Xie, Xiaojie; Wang, Jian-An

    2015-01-01

    Ezetimibe, as a cholesterol absorption inhibitor, has been shown protecting against atherosclerosis when combined with statin. However, side by side comparison has not been made to evaluate the beneficial effects of ezetimibe alone versus statin. Herein, the study aimed to test whether ezetimibe alone would exhibit similar effects as statin and the combination therapy would be necessary in a moderate lesion size. ApoE-/- male mice that were fed a saturated-fat supplemented diet were randomly assigned to different therapeutic regimens: vehicle, ezetimibe alone (10 mg/kg/day), atorvastatin (20 mg/kg/day) or combination of ezetimibe and atorvastatin through the drinking water. On 28 days, mice were sacrificed and aorta and sera were collected to analyze the atherosclerotic lesion and blood lipid and cholesterol levels. As a result, ezetimibe alone exerted similar protective effects on atherosclerotic lesion sizes as atorvastatin, which was mediated by lowering serum cholesterol concentrations, inhibiting macrophage accumulation in the lesions and reducing circulatory inflammatory cytokines, such as monocyte chemoattractant protein (MCP-1) and tumor necrosis factor (TNF-α). In contrast to ezetimibe administration, atorvastatin alone attenuated atherosclerotic lesion which is dependent on its anti-inflammation effects. There were no significance differences in lesion areas and serum concentrations of cholesterol, oxidized LDL and inflammatory cytokines between combination therapy and monotherapy (either ezetimibe or atorvastatin). There were significant correlations between the lesion areas and serum concentrations of cholesterol, MCP-1 and TNF-α, respectively. However, there were no significant correlations between the lesion areas and serum concentrations of TGF-β1 and oxLDL. Ezetimibe alone played the same protection against a moderate atherosclerotic lesion as atorvastatin, which was associated with lowering serum cholesterol, decreasing circulating inflammatory cytokines, and inhibiting macrophage accumulation in the lesions.

  19. Ezetimibe Attenuates Atherosclerosis Associated with Lipid Reduction and Inflammation Inhibition

    PubMed Central

    Tie, Chunmiao; Gao, Kanglu; Zhang, Na; Zhang, Songzhao; Shen, Jiali; Xie, Xiaojie; Wang, Jian-an

    2015-01-01

    Background Ezetimibe, as a cholesterol absorption inhibitor, has been shown protecting against atherosclerosis when combined with statin. However, side by side comparison has not been made to evaluate the beneficial effects of ezetimibe alone versus statin. Herein, the study aimed to test whether ezetimibe alone would exhibit similar effects as statin and the combination therapy would be necessary in a moderate lesion size. Methods and Results ApoE-/- male mice that were fed a saturated-fat supplemented diet were randomly assigned to different therapeutic regimens: vehicle, ezetimibe alone (10 mg/kg/day), atorvastatin (20 mg/kg/day) or combination of ezetimibe and atorvastatin through the drinking water. On 28 days, mice were sacrificed and aorta and sera were collected to analyze the atherosclerotic lesion and blood lipid and cholesterol levels. As a result, ezetimibe alone exerted similar protective effects on atherosclerotic lesion sizes as atorvastatin, which was mediated by lowering serum cholesterol concentrations, inhibiting macrophage accumulation in the lesions and reducing circulatory inflammatory cytokines, such as monocyte chemoattractant protein (MCP-1) and tumor necrosis factor (TNF-α). In contrast to ezetimibe administration, atorvastatin alone attenuated atherosclerotic lesion which is dependent on its anti-inflammation effects. There were no significance differences in lesion areas and serum concentrations of cholesterol, oxidized LDL and inflammatory cytokines between combination therapy and monotherapy (either ezetimibe or atorvastatin). There were significant correlations between the lesion areas and serum concentrations of cholesterol, MCP-1 and TNF-α, respectively. However, there were no significant correlations between the lesion areas and serum concentrations of TGF-β1 and oxLDL. Conclusions Ezetimibe alone played the same protection against a moderate atherosclerotic lesion as atorvastatin, which was associated with lowering serum cholesterol, decreasing circulating inflammatory cytokines, and inhibiting macrophage accumulation in the lesions. PMID:26555472

  20. Tet methylcytosine dioxygenase 2 inhibits atherosclerosis via upregulation of autophagy in ApoE−/− mice

    PubMed Central

    Peng, Juan; Yang, Qin; Li, A-Fang; Li, Rong-Qing; Wang, Zuo; Liu, Lu-Shan; Ren, Zhong; Zheng, Xi-Long; Tang, Xiao-Qing; Li, Guo-Hua; Tang, Zhi-Han; Jiang, Zhi-Sheng; Wei, Dang-Heng

    2016-01-01

    Tet methylcytosine dioxygenase 2 (TET2) mediates the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). The loss of TET2 is associated with advanced atherosclerotic lesions. Our previous study showed that TET2 improves endothelial cell function by enhancing endothelial cell autophagy. Accordingly, this study determined the role of TET2 in atherosclerosis and potential mechanisms. In ApoE−/− mice fed high-fat diet, TET2 overexpression markedly decreased atherosclerotic lesions with uniformly increased level of 5hmC and decreased level of 5mC in genomic DNA. TET2 overexpression also promoted autophagy and downregulated inflammation factors, such as vascular cell adhesion molecule 1, intercellular adhesion molecule 1, monocyte chemotactic protein 1, and interleukin-1. Consistently, TET2 knockdown with small hairpin RNA (shRNA) in ApoE−/− mice decreased 5hmC and increased 5mC levels in atherosclerotic lesions. Meanwhile, autophagy was inhibited and atherosclerotic lesions progressed with an unstable lesion phenotype characterized by large lipid core, macrophage accumulation, and upregulated inflammation factor expression. Experiments with the cultured endothelial cells revealed that oxidized low-density lipoprotein (ox-LDL) inhibited endothelial cell autophagy. TET2 shRNA strengthened impaired autophagy and autophagic flux in the ox-LDL-treated endothelial cells. TET2 overexpression reversed these effects by decreasing the methylation level of the Beclin 1 promoter, which contributed to the downregulation of inflammation factors. Overall, we identified that TET2 was downregulated during the pathogenesis of atherosclerosis. The downregulation of TET2 promotes the methylation of the Beclin 1 promoter, leading to endothelial cell autophagy, impaired autophagic flux, and inflammatory factor upregulation. Upregulation of TET2 may be a novel therapeutic strategy for treating atherosclerosis. PMID:27821816

Top