Science.gov

Sample records for accelerated bone loss

  1. Tooth loss early in life accelerates age-related bone deterioration in mice.

    PubMed

    Kurahashi, Minori; Kondo, Hiroko; Iinuma, Mitsuo; Tamura, Yasuo; Chen, Huayue; Kubo, Kin-ya

    2015-01-01

    Both osteoporosis and tooth loss are health concerns that affect many older people. Osteoporosis is a common skeletal disease of the elderly, characterized by low bone mass and microstructural deterioration of bone tissue. Chronic mild stress is a risk factor for osteoporosis. Many studies showed that tooth loss induced neurological alterations through activation of a stress hormone, corticosterone, in mice. In this study, we tested the hypothesis that tooth loss early in life may accelerate age-related bone deterioration using a mouse model. Male senescence-accelerated mouse strain P8 (SAMP8) mice were randomly divided into control and toothless groups. Removal of the upper molar teeth was performed at one month of age. Bone response was evaluated at 2, 5 and 9 months of age. Tooth loss early in life caused a significant increase in circulating corticosterone level with age. Osteoblast bone formation was suppressed and osteoclast bone resorption was activated in the toothless mice. Trabecular bone volume fraction of the vertebra and femur was decreased in the toothless mice with age. The bone quality was reduced in the toothless mice at 5 and 9 months of age, compared with the age-matched control mice. These findings indicate that tooth loss early in life impairs the dynamic homeostasis of the bone formation and bone resorption, leading to reduced bone strength with age. Long-term tooth loss may have a cumulative detrimental effect on bone health. It is important to take appropriate measures to treat tooth loss in older people for preventing and/or treating senile osteoporosis.

  2. Accelerated features of age-related bone loss in zmpste24 metalloproteinase-deficient mice.

    PubMed

    Rivas, Daniel; Li, Wei; Akter, Rahima; Henderson, Janet E; Duque, Gustavo

    2009-10-01

    Age-related bone loss is associated with changes in bone cellularity, which include marrow fat infiltration and decreasing levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although nuclear lamina alterations occur in premature aging syndromes that include changes in body fat and severe osteoporosis, the role of proteins of the nuclear lamina in age-related bone loss remains unknown. Using the Zmpste24-null progeroid mice (Zmpste24(-/-)), which exhibit nuclear lamina defects and accumulate unprocessed prelamin A, we identified several alterations in bone cellularity in vivo. We found that defective prelamin A processing induced accelerated features of age-related bone loss including lower osteoblast and osteocyte numbers and higher levels of marrow adipogenesis. In summary, processing of prelamin A could become a new approach to regulate osteoblastogenesis and bone turnover and thus for the prevention and treatment of senile osteoporosis.

  3. Cadmium accelerates bone loss in ovariectomized mice and fetal rat limb bones in culture

    SciTech Connect

    Bhattacharyya, M.H.; Whelton, B.D.; Stern, P.H.; Peterson, D.P. )

    1988-11-01

    Loss of bone mineral after ovariectomy was studied in mice exposed to dietary cadmium at 0.25, 5, or 50 ppm. Results show that dietary cadmium at 50 ppm increased bone mineral loss to a significantly greater extent in ovariectomized mice than in sham-operated controls. These results were obtained from two studies, one in which skeletal calcium content was determined 6 months after ovariectomy and a second in which {sup 45}Ca release from {sup 45}Ca-prelabeled bones was measured immediately after the start of dietary cadmium exposure. Furthermore, experiments with {sup 45}Ca-prelabeled fetal rat limb bones in culture demonstrated that Cd at 10 nM in the medium, a concentration estimated to be in the plasma of mice exposed to 50 ppm dietary Cd, strikingly increased bone resorption. These in vitro results indicate that cadmium may enhance bone mineral loss by a direct action on bone. Results of the in vivo studies are consistent with a significant role of cadmium in the etiology of Itai-Itai disease among postmenopausal women in Japan and may in part explain the increased risk of postmenopausal osteoporosis among women who smoke.

  4. Cadmium accelerates bone loss in ovariectomized mice and fetal rat limb bones in culture.

    PubMed Central

    Bhattacharyya, M H; Whelton, B D; Stern, P H; Peterson, D P

    1988-01-01

    Loss of bone mineral after ovariectomy was studied in mice exposed to dietary cadmium at 0.25, 5, or 50 ppm. Results show that dietary cadmium at 50 ppm increased bone mineral loss to a significantly greater extent in ovariectomized mice than in sham-operated controls. These results were obtained from two studies, one in which skeletal calcium content was determined 6 months after ovariectomy and a second in which 45Ca release from 45Ca-prelabeled bones was measured immediately after the start of dietary cadmium exposure. Furthermore, experiments with 45Ca-prelabeled fetal rat limb bones in culture demonstrated that Cd at 10 nM in the medium, a concentration estimated to be in the plasma of mice exposed to 50 ppm dietary Cd, strikingly increased bone resorption, from 27 +/- 2% (mean +/- SEM) 45Ca release in cultures with no added cadmium to 68 +/- 6% release in cultures containing cadmium (n = 4). These in vitro results indicate that cadmium may enhance bone mineral loss by a direct action on bone. Results of the in vivo studies are consistent with a significant role of cadmium in the etiology of Itai-Itai disease among postmenopausal women in Japan and may in part explain the increased risk of postmenopausal osteoporosis among women who smoke. Images PMID:3186759

  5. Modeling of Blood Lead Levels in Astronauts Exposed to Lead from Microgravity-Accelerated Bone Loss

    NASA Technical Reports Server (NTRS)

    Garcia, H.; James, J.; Tsuji, J.

    2014-01-01

    Human exposure to lead has been associated with toxicity to multiple organ systems. Studies of various population groups with relatively low blood lead concentrations (<10 µg/dL) have indicated associations of blood lead level with lower cognitive test scores in children, later onset of puberty in girls, and increased blood pressure and cardiovascular mortality rates in adults. Cognitive effects are considered by regulatory agencies to be the most sensitive endpoint at low doses. Although 95% of the body burden of lead is stored in the bones, the adverse effects of lead correlate with the concentration of lead in the blood better than with that in the bones. NASA has found that prolonged exposure to microgravity during spaceflight results in a significant loss of bone minerals, the extent of which varies from individual to individual and from bone to bone, but generally averages about 0.5% per month. During such bone loss, lead that had been stored in bones would be released along with calcium. The effects on the concentration of lead in the blood (PbB) of various concentrations of lead in drinking water (PbW) and of lead released from bones due to accelerated osteoporosis in microgravity, as well as changes in exposure to environmental lead before, during, and after spaceflight were evaluated using a physiologically based pharmacokinetic (PBPK) model that incorporated exposure to environmental lead both on earth and in flight and included temporarily increased rates of osteoporosis during spaceflight.

  6. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss.

    PubMed

    Turner, Russell T; Dube, Michael; Branscum, Adam J; Wong, Carmen P; Olson, Dawn A; Zhong, Xiaoying; Kweh, Mercedes F; Larkin, Iske V; Wronski, Thomas J; Rosen, Clifford J; Kalra, Satya P; Iwaniec, Urszula T

    2015-12-01

    Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover.

  7. Spaceflight-induced Bone Loss: Is there a Risk for Accelerated Osteoporosis after Return?

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2008-01-01

    The evidence-to to-date suggests that the rapid rate of site-specific bone loss in space, due to the unbalanced stimulation of bone resorption, may predispose crew members to irreversible changes in bone structure and microarchitecture. No analyses conducted in the postflight period to assess microarchitectural changes. There is no complete analysis of skeletal recovery in the postflight period to evaluate the structural changes that accompany increases in DXA aBMD. Postflight analyses based upon QCT scans performed on limited crew members indicate reductions in hip bone strength and incomplete recovery at 1 year. No recovery of trabecular vBMD after 1 year return (HRP IWG). Time course of bone loss in space unknown.

  8. Loss of Gi G-Protein-Coupled Receptor Signaling in Osteoblasts Accelerates Bone Fracture Healing.

    PubMed

    Wang, Liping; Hsiao, Edward C; Lieu, Shirley; Scott, Mark; O'Carroll, Dylan; Urrutia, Ashley; Conklin, Bruce R; Colnot, Celine; Nissenson, Robert A

    2015-10-01

    G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair.

  9. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study.

    PubMed

    Kim, Beom-Jun; Ahn, Seong Hee; Bae, Sung Jin; Kim, Eun Hee; Lee, Seung-Hun; Kim, Hong-Kyu; Choe, Jae Won; Koh, Jung-Min; Kim, Ghi Su

    2012-11-01

    Despite extensive experimental and animal evidence about the detrimental effects of iron and its overload on bone metabolism, there have been no clinical studies relating iron stores to bone loss, especially in nonpathologic conditions. In the present study, we performed a large longitudinal study to evaluate serum ferritin concentrations in relation to annualized changes in bone mineral density (BMD) in healthy Koreans. A total of 1729 subjects (940 postmenopausal women and 789 middle-aged men) aged 40 years or older who had undergone comprehensive routine health examinations with an average 3 years of follow-up were enrolled. BMD in proximal femur sites (ie, the total femur, femur neck, and trochanter) was measured with dual-energy X-ray absorptiometry using the same equipment at baseline and follow-up. The mean age of women and men in this study was 55.8 ± 6.0 years and 55.5 ± 7.8 years, respectively, and serum ferritin levels were significantly higher in men than in women (p < 0.001). The overall mean annualized rates of bone loss in the total femur, femur neck, and trochanter were -1.14%/year, -1.17%/year, and -1.51%/year, respectively, in women, and -0.27%/year, -0.34%/year, and -0.41%/year, respectively, in men. After adjustment for potential confounders, the rates of bone loss in all proximal femur sites in both genders were significantly accelerated in a dose-response fashion across increasing ferritin quartile categories (p for trend = 0.043 to <0.001). Consistently, compared with subjects in the lowest ferritin quartile category, those in the third and/or highest ferritin quartile category showed significantly faster bone loss in the total femur and femur neck in both genders (p = 0.023 to <0.001). In conclusion, these data provide the first clinical evidence that increased total body iron stores could be an independent risk factor for accelerated bone loss, even in healthy populations.

  10. Igfbp2 Deletion in Ovariectomized Mice Enhances Energy Expenditure but Accelerates Bone Loss

    PubMed Central

    DeMambro, Victoria E.; Le, Phuong T.; Guntur, Anyonya R.; Maridas, David E.; Canalis, Ernesto; Nagano, Kenichi; Baron, Roland; Clemmons, David R.

    2015-01-01

    Previously, we reported sexually dimorphic bone mass and body composition phenotypes in Igfbp2−/− mice (−/−), where male mice exhibited decreased bone and increased fat mass, whereas female mice displayed increased bone but no changes in fat mass. To investigate the interaction between IGF-binding protein (IGFBP)-2 and estrogen, we subjected Igfbp2 −/− and +/+ female mice to ovariectomy (OVX) or sham surgery at 8 weeks of age. At 20 weeks of age, mice underwent metabolic cage analysis and insulin tolerance tests before killing. At harvest, femurs were collected for microcomputed tomography, serum for protein levels, brown adipose tissue (BAT) and inguinal white adipose tissue (IWAT) adipose depots for histology, gene expression, and mitochondrial respiration analysis of whole tissue. In +/+ mice, serum IGFBP-2 dropped 30% with OVX. In the absence of IGFBP-2, OVX had no effect on preformed BAT; however, there was significant “browning” of the IWAT depot coinciding with less weight gain, increased insulin sensitivity, lower intraabdominal fat, and increased bone loss due to higher resorption and lower formation. Likewise, after OVX, energy expenditure, physical activity and BAT mitochondrial respiration were decreased less in the OVX−/− compared with OVX+/+. Mitochondrial respiration of IWAT was reduced in OVX+/+ yet remained unchanged in OVX−/− mice. These changes were associated with significant increases in Fgf21 and Foxc2 expression, 2 proteins known for their insulin sensitizing and browning of WAT effects. We conclude that estrogen deficiency has a profound effect on body and bone composition in the absence of IGFBP-2 and may be related to changes in fibroblast growth factor 21. PMID:26230658

  11. Medicines and Bone Loss

    MedlinePlus

    ... studies also show that drinking a lot of alcohol might weaken bones. Questions to ask your doctor • Do any of my medicines cause bone loss? • Are there different medicines I can take? • Do I need a bone density test? • What should I do to protect my ...

  12. Bone Loss in IBD

    MedlinePlus

    ... individuals who have used corticosteroids for some time. VITAMIN D DEFICIENCY Vitamin D is necessary for the absorption of calcium. ... small bowel involvement—are at increased risk for vitamin D deficiency. This, in turn, may result in bone loss ...

  13. What causes bone loss?

    MedlinePlus

    ... Any treatment or condition that causes calcium or vitamin D to be poorly absorbed can also lead to weak bones. Some of these are: Gastric bypass (weight-loss surgery) Cystic fibrosis Other conditions that ...

  14. Breast Cancer and Bone Loss

    MedlinePlus

    ... Balance › Breast Cancer and Bone Loss Fact Sheet Breast Cancer and Bone Loss July, 2010 Download PDFs English ... JoAnn Pinkerton, MD What is the link between breast cancer and bone loss? Certain treatments for breast cancer ...

  15. Menopause and Bone Loss

    MedlinePlus

    ... You reach your highest bone mass (size and density) at about age 30. Then, sometime between age ... your bones, your doctor may do a bone density test (DEXA scan). This test gives exact measurements ...

  16. Bone Loss in IBD

    MedlinePlus

    ... individuals who have used corticosteroids for some time. VITAMIN D DEFICIENCY Vitamin D is necessary for the absorption of calcium. ... are critical for building healthy bone. Because this vitamin is absorbed in the small intestine, people with ...

  17. Differential response of bone and kidney to ACEI in db/db mice: A potential effect of captopril on accelerating bone loss.

    PubMed

    Zhang, Yan; Li, Xiao-Li; Sha, Nan-Nan; Shu, Bing; Zhao, Yong-Jian; Wang, Xin-Luan; Xiao, Hui-Hui; Shi, Qi; Wong, Man-Sau; Wang, Yong-Jun

    2017-04-01

    The components of renin-angiotensin system (RAS) are expressed in the kidney and bone. Kidney disease and bone injury are common complications associated with diabetes. This study aimed to investigate the effects of an angiotensin-converting enzyme inhibitor, captopril, on the kidney and bone of db/db mice. The db/db mice were orally administered by gavage with captopril for 8weeks with db/+ mice as the non-diabetic control. Serum and urine biochemistries were determined by standard colorimetric methods or ELISA. Histological measurements were performed on the kidney by periodic acid-schiff staining and on the tibial proximal metaphysis by safranin O and masson-trichrome staining. Trabecular bone mass and bone quality were analyzed by microcomputed tomography. Quantitative polymerase chain reaction and immunoblotting were applied for molecular analysis on mRNA and protein expression. Captopril significantly improved albuminuria and glomerulosclerosis in db/db mice, and these effects might be attributed to the down-regulation of angiotensin II expression and the expression of its down-stream profibrotic factors in the kidney, like connective tissue growth factor and vascular endothelial growth factor. Urinary excretion of calcium and phosphorus markedly increased in db/db mice in response to captopril. Treatment with captopril induced a decrease in bone mineral density and deterioration of trabecular bone at proximal metaphysis of tibia in db/db mice, as shown in the histological and reconstructed 3-dimensional images. Even though captopril effectively reversed the diabetes-induced changes in calcium-binding protein 28-k and vitamin D receptor expression in the kidney as well as the expression of RAS components and bradykinin receptor-2 in bone tissue, treatment with captopril increased the osteoclast-covered bone surface, reduced the osteoblast-covered bone surface, down-regulated the expression of type 1 collagen and transcription factor runt-related transcription

  18. Space Radiation and Bone Loss.

    PubMed

    Willey, Jeffrey S; Lloyd, Shane A J; Nelson, Gregory A; Bateman, Ted A

    2011-01-01

    Exposure to ionizing radiation may negatively impact skeletal integrity during extended spaceflight missions to the moon, Mars, or near-Earth asteroids. However, our understanding of the effects of radiation on bone is limited when compared to the effects of weightlessness. In addition to microgravity, astronauts will be exposed to space radiation from solar and cosmic sources. Historically, radiation exposure has been shown to damage both osteoblast precursors and local vasculature within the irradiated volume. The resulting suppression of bone formation and a general state of low bone-turnover is thought to be the primary contributor to bone loss and eventual fracture. Recent investigations using mouse models have identified a rapid, but transient, increase in osteoclast activity immediately after irradiation with both spaceflight and clinically-relevant radiation qualities and doses. Together with a chronic suppression of bone formation after radiation exposure, this acute skeletal damage may contribute to long-term deterioration of bone quality, potentially increasing fracture risk. Direct evidence for the damaging effects of radiation on human bone are primarily demonstrated by the increased incidence of fractures at sites that absorb high doses of radiation during cancer therapy: exposures are considerably higher than what could be expected during spaceflight. However, both the rapidity of bone damage and the chronic nature of the changes appear similar between exposure scenarios. This review will outline our current knowledge of space and clinical exploration exposure to ionizing radiation on skeletal health.

  19. Aromatase inhibitors and bone loss.

    PubMed

    Perez, Edith A; Weilbaecher, Katherine

    2006-08-01

    The aromatase inhibitors (AIs) anastrozole (Arimidex), letrozole (Femara), and exemestane (Aromasin) are significantly more effective than the selective estrogen-receptor modulator (SERM) tamoxifen in preventing recurrence in estrogen receptor-positive early breast cancer. Aromatase inhibitors are likely to replace SERMs as first-line adjuvant therapy for many patients. However, AIs are associated with significantly more osteoporotic fractures and greater bone mineral loss. As antiresorptive agents, oral and intravenous bisphosphonates such as alendronate (Fosamax), risedronate (Actonel), ibandronate (Boniva), pamidronate (Aredia), and zoledronic acid (Zometa) have efficacy in preventing postmenopausal osteoporosis, cancer treatment-related bone loss, or skeletal complications of metastatic disease. Clinical practice guidelines recommend baseline and annual follow-up bone density monitoring for all patients initiating AI therapy. Bisphosphonate therapy should be prescribed for patients with osteoporosis (T score < -2.5) and considered on an individual basis for those with osteopenia (T score < -1). Modifiable lifestyle behaviors including adequate calcium and vitamin D intake, weight-bearing exercise, and smoking cessation should be addressed. Adverse events associated with bisphosphonates include gastrointestinal toxicity, renal toxicity, and osteonecrosis of the jaw. These safety concerns should be balanced with the potential of bisphosphonates to minimize or prevent the debilitating effects of AI-associated bone loss in patients with early, hormone receptor-positive breast cancer.

  20. Regulation of bone mineral loss during lactation

    NASA Technical Reports Server (NTRS)

    Brommage, R.; Deluca, H. F.

    1985-01-01

    The effects of varyng dietary calcium and phosphorous levels, vitamin D deficiency, oophorectomy, adrenalectomy, and simultaneous pregnancy on bone mineral loss during lactation in rats are studied. The experimental procedures and evaluations are described. The femur ash weight of lactating and nonlactating rats are calculated. The data reveals that a decrease in dietary calcium of 0.02 percent results in an increased loss of bone mineral, an increase in calcium to 1.4 percent does not lessen bone mineral loss, and bone mineral loss in vitamin D deficient rats is independent of calcium levels. It is observed that changes in dietary phosphorous level, oophorectomy, adrenalectomy, and simultaneous pragnancy do not reduce bone mineral loss during lactation. The analysis of various hormones to determine the mechanism that triggers bone mineral loss during lactation is presented.

  1. Weight Loss and Bone Mineral Density

    PubMed Central

    Hunter, Gary R.; Plaisance, Eric P.; Fisher, Gordon

    2014-01-01

    Purpose of the Review Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low BMD, fearing BMD will be decreased. Confusion exists concerning the effects weight loss has on bone health. Recent Findings Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid/large weight loss is often associated with loss of bone density, slower/smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. While dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Summary Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss. PMID:25105997

  2. Associated among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weight loss reduces co-¬morbidities of obesity but decreases bone mass. Our aims were to determine whether adequate dairy intake could prevent weight loss related bone loss and to evaluate the contribution of energy-related hormones and inflammatory markers to bone metabolism. Overweight and obese w...

  3. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we

  4. Accelerated Bone Mass Senescence After Hematopoietic Stem Cell Transplantation

    PubMed Central

    Serio, B; Pezzullo, L; Fontana, R; Annunziata, S; Rosamilio, R; Sessa, M; Giudice, V; Ferrara, I; Rocco, M; De Rosa, G; Ricci, P; Tauchmanovà, L; Montuori, N; Selleri, C.

    2013-01-01

    Osteoporosis and avascular necrosis (AVN) are long-lasting and debilitating complications of hematopoietic stem cell transplantation (HSCT). We describe the magnitude of bone loss, AVN and impairment in osteogenic cell compartment following autologous (auto) and allogeneic (allo) HSCT, through the retrospective bone damage revaluation of 100 (50 auto- and 50 allo-HSCT) long-term survivors up to 15 years after transplant. Current treatment options for the management of these complications are also outlined. We found that auto- and allo-HSCT recipients show accelerated bone mineral loss and micro-architectural deterioration during the first years after transplant. Bone mass density (BMD) at the lumbar spine, but not at the femur neck, may improve in some patients after HSCT, suggesting more prolonged bone damage in cortical bone. Phalangeal BMD values remained low for even more years, suggesting persistent bone micro-architectural alterations after transplant. The incidence of AVN was higher in allo-HSCT recipients compared to auto-HSCT recipients. Steroid treatment length, but not its cumulative dose was associated with a higher incidence of bone loss. Allo-HSCT recipients affected by chronic graft versus host disease seem to be at greater risk of continuous bone loss and AVN development. Reduced BMD and higher incidence of AVN was partly related to a reduced regenerating capacity of the normal marrow osteogenic cell compartment. Our results suggest that all patients after auto-HSCT and allo-HSCT should be evaluated for their bone status and treated with anti-resorptive therapy as soon as abnormalities are detected. PMID:23905076

  5. Prevent and cure disuse bone loss

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.

    1994-01-01

    Anabolic agents like parathyroid hormone and postagladin E-like substances were studied in dogs and rats to determine their effectiveness in the prevention and cure of bone loss due to immobilization. It was determined that postagladin E2 administration prevented immobilization while at the same time it added extra bone in a dose responsive manner. Although bone mass returns, poor trabecular architecture remains after normal ambulation recovery from immobilization. Disuse related bone loss and poor trabecular architecture were cured by post-immobilization postagladin E2 treatment.

  6. Aromatase Activity and Bone Loss in Men

    PubMed Central

    Merlotti, Daniela; Gennari, Luigi; Stolakis, Konstantinos; Nuti, Ranuccio

    2011-01-01

    Aromatase is a specific component of the cytochrome P450 enzyme system responsible for the transformation of androgen precursors into estrogens. This enzyme is encoded by the CYP19A1 gene located at chromosome 15q21.2, that is, expressed in ovary and testis, but also in many extraglandular sites such as the placenta, brain, adipose tissue, and bone. The activity of aromatase regulates the concentrations of estrogens with endocrine, paracrine, and autocrine effects on target issues including bone. Importantly, extraglandular aromatization of circulating androgen precursors is the major source of estrogen in men. Clinical and experimental evidences clearly indicate that aromatase activity and estrogen production are necessary for longitudinal bone growth, the attainment of peak bone mass, pubertal growth spurt, epiphyseal closure, and normal bone remodeling in young individuals. Moreover, with aging, individual differences in aromatase activity may significantly affect bone loss and fracture risk in men. PMID:21772971

  7. Arterial hypertension perpetuates alveolar bone loss.

    PubMed

    de Medeiros Vanderlei, Janine Montenegro Toscano Moura; Messora, Michel Reis; Fernandes, Patrícia Garani; Novaes, Arthur B; Palioto, Daniela Bazan; de Moraes Grisi, Marcio Fernando; Scombatti de Souza, Sergio Luis; Gerlach, Raquel Fernanda; Antoniali, Cristina; Taba, Mario

    2013-01-01

    Few studies have focused on the impact of hypertension on the progression of periodontitis (PD). The purpose of this study was to evaluate whether hypertension affects PD by enhancing bone loss even after the stimulus for PD induction is removed. Ligature-induced PD was created on the first mandibular molars of spontaneously hypertensive rats (SHR) and normotensive rats (Wistar Kyoto-WKY). The animals were assigned to non-ligated controls (C) and PD groups: WKY-C, WKY-PD, SHR-C, and SHR-PD. After 10 days, five animals of each group were killed and the ligatures of the other animals were removed. On the 21st day (11 days without PD induced), the remaining animals were killed. The jaws were defleshed and the amount of bone loss was measured. After 10 days, the PD groups showed more bone loss than its controls (P < .05); SHR-PD = 0.72 ± 0.05 mm, SHR-C = 0.39 ± 0.04 mm, WKY-PD = 0.75 ± 0.04 mm, and WKY-C = 0.56 ± 0.04 mm. The cumulative bone loss on day 21 (0.94 ± 0.13 mm) was significantly worse than on day 10 only in SHR-PD group (P < .05). The final bone loss differences between PD and C groups accounted for 102% (SHR) and 26% (WKY) increase in comparison with the initial control levels. Hypertension is associated with progressive alveolar bone loss even when the stimulus for PD induction is removed and it may be speculated that host condition perpetuates alveolar bone loss.

  8. Mechanisms of age-related bone loss.

    PubMed

    Mosekilde, L

    2001-01-01

    The human skeleton is formed and modelled during childhood and youth through the influence of hormones and daily mechanical usage. Around the age of 20-25 years, the skeleton achieves its maximum mass and strength. Thereafter, and throughout adult life, bone is lost at an almost constant rate due to the dynamic bone turnover process: the remodelling process. During this process, small packets of bone are renewed by teams of bone cells coupled together in time and space. In an adult human skeleton there will be 1-2 million active remodelling sites at any time point. The vast number of turnover units combined with a slightly negative balance at the completion of each process leads to the age-related loss of bone mass mentioned above and, concomitantly, to loss of structural continuity and strength. The magnitude of this loss will be determined by hormonal factors, nutrition and mechanical usage. As a consequence of the remodelling process, the bone tissue of the skeleton will always be younger than the age of the individual. However, as a consequence of the remodelling process, osteopenia and osteoporotic fractures will also occur. In this article, the remodelling-induced changes in the human spine will be used as an example of ageing bone.

  9. Periprosthetic bone loss: diagnostic and therapeutic approaches

    PubMed Central

    Cavalli, Loredana; Brandi, Maria Luisa

    2014-01-01

    Total joint replacement surgery is being performed on an increasingly large part of the population. Clinical longevity of implants depends on their osseointegration, which is influenced by the load, the characteristics of the implant and the bone-implant interface, as well as by the quality and quantity of the surrounding bone. Aseptic loosening due to periprosthetic osteolysis is the most frequent known cause of implant failure. Wear of prosthetic materials results in the formation of numerous particles of debris that cause a complex biological response. Dual-energy X-ray Absorptiometry (DXA) is regarded as an accurate method to evaluate Bone Mineral Density (BMD) around hip or knee prostheses. Further data may be provided by a new device, the Bone Microarchitecture Analysis (BMA), which combines bone microarchitecture quantification and ultra high resolution osteo-articular imaging. Pharmacological strategies have been developed to prevent bone mass loss and to extend implant survival. Numerous trials with bisphosphonates show a protective effect on periprosthetic bone mass, up to 72 months after arthroplasty. Strontium ranelate has been demonstrated to increase the osseointegration of titanium implants in treated animals with improvement of bone microarchitecture and bone biomaterial properties. PMID:25642325

  10. Tooth rotation and alveolar bone loss.

    PubMed

    Peretz, B; Machtei, E E

    1996-07-01

    Tooth rotation and periodontal breakdown has not been thoroughly studied due to lack of quantitative tools. The purpose of the present study was to examine this correlation, with respect to alveolar bone loss, from direct observation of 17 skulls. A photograph of the mandibular occlusal plane was taken from a fixed reference point, and the midcentral fossa and the extreme mesial and distal points of each tooth were marked on the photograph. A computer program established the arch form of each mandibular from the midtooth landmarks. The angle between individual teeth and the arch (at any given point) was calculated. Bone loss, indicated by the distance of the bone crest from the cementoenamel junction, was measured at six reference points around each tooth with a caliper. A positive correlation, through weak, was found between increased tooth rotation and greater bone loss. Mean bone loss of teeth with rotation of 20 degrees and greater was 4.03 mm, while that of teeth with less than 20 degrees of rotation was 3.49 mm.

  11. Soy Isoflavones and Osteoporotic Bone Loss: A Review with an Emphasis on Modulation of Bone Remodeling

    PubMed Central

    Zheng, Xi; Lee, Sun-Kyeong

    2016-01-01

    Abstract Osteoporosis is an age-related disorder that affects both women and men, although estrogen deficiency induced by menopause accelerates bone loss in older women. As the demographic shifts to a more aged population, a growing number of men and women will be afflicted with osteoporosis. Since the current drug therapies available have multiple side effects, including increased risk of developing certain types of cancer or complications, a search for potential nonpharmacologic alternative therapies for osteoporosis is of prime interest. Soy isoflavones (SI) have demonstrated potential bone-specific effects in a number of studies. This article provides a systematic review of studies on osteoporotic bone loss in relation to SI intake from diet or supplements to comprehensively explain how SI affect the modulation of bone remodeling. Evidence from epidemiologic studies supports that dietary SI attenuate menopause-induced osteoporotic bone loss by decreasing bone resorption and stimulating bone formation. Other studies have also illustrated that bone site-specific trophic and synergistic effects combined with exercise intervention might contribute to improve the bioavailability of SI or strengthen the bone-specific effects. To date, however, the effects of dietary SI on osteoporotic bone loss remain inconclusive, and study results vary from study to study. The current review will discuss the potential factors that result in the conflicting outcomes of these studies, including dosages, intervention materials, study duration, race, and genetic differences. Further well-designed studies are needed to fully understand the underlying mechanism and evaluate the effects of SI on osteoporosis in humans. PMID:26670451

  12. Vitamin C reverses hypogonadal bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiologic studies correlate low vitamin C intake with bone loss. The genetic deletion of enzymes involved in de novo vitamin C synthesis in mice, likewise, causes severe osteoporosis. However, very few studies have evaluated a protective role of this dietary supplement on the skeleton. Here, ...

  13. Pathophysiology of bone loss in disuse osteoporosis.

    PubMed

    Alexandre, Christian; Vico, Laurence

    2011-12-01

    Osteoporosis, or rather the localised bone loss observed in patients with spinal cord injury, as well as during any type of immobilisation involves various processes and structures including the direct response of the musculoskeletal system to unloading, the central and peripheral nervous systems and their effects on bone cells and on the vascular system, the bone remodelling unit in its marrow compartment and a number of local factors controlling cell-cell cross-talk as well as calciotropic hormones. The authors present a detailed review of these different mechanisms which are all involved regardless of the type of immobilisation: pathological, environmental, or experimental. These factors are interconnected and put bone at the centre of the regulation of body homeostasis. A better knowledge of these mechanisms should promote the development of preventive therapies for the often neglected osteoporotic fractures that occur in patients with spinal cord injury.

  14. Loss of Rictor with aging in osteoblasts promotes age-related bone loss

    PubMed Central

    Lai, Pinling; Song, Qiancheng; Yang, Cheng; Li, Zhen; Liu, Sichi; Liu, Bin; Li, Mangmang; Deng, Hongwen; Cai, Daozhang; Jin, Dadi; Liu, Anling; Bai, Xiaochun

    2016-01-01

    Osteoblast dysfunction is a major cause of age-related bone loss, but the mechanisms underlying changes in osteoblast function with aging are poorly understood. This study demonstrates that osteoblasts in aged mice exhibit markedly impaired adhesion to the bone formation surface and reduced mineralization in vivo and in vitro. Rictor, a specific component of the mechanistic target of rapamycin complex 2 (mTORC2) that controls cytoskeletal organization and cell survival, is downregulated with aging in osteoblasts. Mechanistically, we found that an increased level of reactive oxygen species with aging stimulates the expression of miR-218, which directly targets Rictor and reduces osteoblast bone surface adhesion and survival, resulting in a decreased number of functional osteoblasts and accelerated bone loss in aged mice. Our findings reveal a novel functional pathway important for age-related bone loss and support for miR-218 and Rictor as potential targets for therapeutic intervention for age-related osteoporosis treatment. PMID:27735936

  15. AST-induced bone loss in men with prostate cancer: exercise as a potential countermeasure.

    PubMed

    Bolam, K A; Galvão, D A; Spry, N; Newton, R U; Taaffe, D R

    2012-12-01

    Androgen suppression treatment (AST) for men with prostate cancer is associated with a number of treatment-related side effects including an accelerated rate of bone loss. This loss of bone is greatest within the first year of AST and increases the risk for fracture. Pharmaceutical treatment in the form of bisphosphonates is currently used to counter the effects of hormone suppression on bone but is costly and associated with potential adverse effects. Recently, exercise has been shown to be an important adjuvant therapy to manage a range of treatment-related toxicities and enhance aspects of quality of life for men receiving AST. We propose that physical exercise may also have an important role in not only attenuating the bone loss associated with AST but in improving bone health and reducing fracture risk. In this review, the rationale underlying exercise as a countermeasure to AST-induced bone loss is provided.

  16. Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases.

    PubMed

    Zhang, Qian; Chen, Bin; Yan, Fuhua; Guo, Jianbin; Zhu, Xiaofeng; Ma, Shouzhi; Yang, Wenrong

    2014-01-01

    Periodontitis and other bone loss diseases, decreasing bone volume and strength, have a significant impact on millions of people with the risk of tooth loss and bone fracture. The integrity and strength of bone are maintained through the balance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively, so the loss of bone results from the disruption of such balance due to increased resorption or/and decreased formation of bone. The goal of therapies for diseases of bone loss is to reduce bone loss, improve bone formation, and then keep healthy bone density. Current therapies have mostly relied on long-term medication, exercise, anti-inflammatory therapies, and changing of the life style. However there are some limitations for some patients in the effective treatments for bone loss diseases because of the complexity of bone loss. Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine, and recent studies have indicated that IL-10 can contribute to the maintenance of bone mass through inhibition of osteoclastic bone resorption and regulation of osteoblastic bone formation. This paper will provide a brief overview of the role of IL-10 in bone loss diseases and discuss the possibility of IL-10 adoption in therapy of bone loss diseases therapy.

  17. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality.

    PubMed

    Koren, Netta; Simsa-Maziel, Stav; Shahar, Ron; Schwartz, Betty; Monsonego-Ornan, Efrat

    2014-06-01

    Omega-3 fatty acids (FAs) are essential nutritional components that must be obtained from foods. Increasing evidence validate that omega-3 FAs are beneficial for bone health, and several mechanisms have been suggested to mediate their effects on bone, including alterations in calcium absorption and urinary calcium loss, prostaglandin synthesis, lipid oxidation, osteoblast formation and inhibition of osteoclastogenesis. However, to date, there is scant information regarding the effect of omega-3 FAs on the developing skeleton during the rapid growth phase. In this study we aim to evaluate the effect of exposure to high levels of omega-3 FAs on bone development and quality during prenatal and early postnatal period. For this purpose, we used the fat-1 transgenic mice that have the ability to convert omega-6 to omega-3 fatty acids and the ATDC5 chondrogenic cell line as models. We show that exposure to high concentrations of omega-3 FAs at a young age accelerates bone growth through alterations of the growth plate, associated with increased chondrocyte proliferation and differentiation. We further propose that those effects are mediated by the receptors G-protein coupled receptor 120 (GPR120) and hepatic nuclear factor 4α, which are expressed by chondrocytes in culture. Additionally, using a combined study on the structural and mechanical bone parameters, we show that high omega-3 levels contribute to superior trabecular and cortical structure, as well as to stiffer bones and improved bone quality. Most interestingly, the fat-1 model allowed us to demonstrate the role of maternal high omega-3 concentration on bone growth during the gestation and postnatal period.

  18. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect.

    PubMed

    Kasai, Takao; Matsumura, Sachiko; Iizuka, Tadashi; Shiba, Kiyotaka; Kanamori, Takeshi; Yudasaka, Masako; Iijima, Sumio; Yokoyama, Atsuro

    2011-02-11

    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  19. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect

    NASA Astrophysics Data System (ADS)

    Kasai, Takao; Matsumura, Sachiko; Iizuka, Tadashi; Shiba, Kiyotaka; Kanamori, Takeshi; Yudasaka, Masako; Iijima, Sumio; Yokoyama, Atsuro

    2011-02-01

    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  20. Interventions to prevent bone loss in astronauts during space flight.

    PubMed

    Iwamoto, Jun; Takeda, Tsuyoshi; Sato, Yoshihiro

    2005-06-01

    This paper reviews the interventions to stabilize calcium balance and bone metabolism and prevent bone loss in astronauts during space flight. Weightlessness during space flight results in calcium, vitamin D, and vitamin K deficiency, increases urinary calcium excretion, decreases intestinal calcium absorption, and increases serum calcium level, with decreased levels of serum parathyroid hormone and calcitriol. Bone resorption is increased, whereas bone formation is decreased. The loss of bone mineral density (BMD) in the spine, femoral neck and trochanter, and pelvis is 1.0-1.6% per month. High calcium intake and vitamin D supplementation during space flight does not affect bone metabolism, but prevents an elevation of serum calcium level through increased calcitriol level, while vitamin K counteracts the reduction in bone formation. However, there are no data to show the efficacy of pharmaceutical agents for prevention of development of osteoporosis in astronauts during flight, although the preventative effect of bisphosphonates, testosterone, and vitamin K2 on cancellous bone loss in the tibia or BMD loss in the hindlimb was reported in tail-suspended mature rats. It still remains uncertain whether these agents can prevent cortical bone loss caused by weightlessness in tail-suspended rats. Therefore, in addition to calcium, vitamin D, and vitamin K supplementation, agents that have both potent anti-resorptive and anabolic effects on cancellous and cortical bone may be needed to stabilize calcium balance and bone metabolism and prevent bone loss in astronauts during space flight.

  1. Homocysteine and bone loss in epilepsy.

    PubMed

    Elliott, John O; Jacobson, Mercedes P; Haneef, Zulfi

    2007-01-01

    Epidemiological studies reveal fracture incidence in epilepsy is twice that of the normal population. Much interest has been focused on Vitamin D, however, considering mixed results on non-enzyme inducing anti-epileptic drugs (AEDs) and bone mineral density (BMD) additional metabolic effects may be to blame. AEDs increase serum homocysteine (s-Hcy) by lowering blood folate levels. An association between elevated homocysteine, BMD and increased fracture incidence has been found in non-epilepsy populations. Additionally, folate and Vitamin B12 levels are independently related to bone mineral density in various non-epilepsy populations. This study supports previous research, which found elevated s-Hcy in subjects taking AEDs and that bone loss is related to the use of enzyme-inducing AEDs and changes in alkaline phosphatase. By one-way ANOVA, subjects on phenytoin monotherapy had significantly higher levels of s-Hcy than those on other AEDs (F=5.89, p=.016). Regression analyses revealed homocysteine, fracture history, length of years on AEDs, ethnicity were predictors of spine T scores. Weight and BMI were predictors of both BMD and DEXA T scores. Use of enzyme-inducing AEDs was a negative predictor of spine BMD and T scores, while phenytoin monotherapy was a positive predictor of spine BMD. Lamotrigine was found to be a negative predictor of spine T score. Ambulatory status, menopause and alcohol consumption were predictors of BMD but not T scores. In this study, persons with epilepsy who take nutritional supplementation have 25% lower s-Hcy levels than those who do not. Supplementation continues to be important in preventative epilepsy care.

  2. Vibration acceleration promotes bone formation in rodent models

    PubMed Central

    Uchida, Ryohei; Nakata, Ken; Kawano, Fuminori; Yonetani, Yasukazu; Ogasawara, Issei; Nakai, Naoya; Mae, Tatsuo; Matsuo, Tomohiko; Tachibana, Yuta; Yokoi, Hiroyuki; Yoshikawa, Hideki

    2017-01-01

    All living tissues and cells on Earth are subject to gravitational acceleration, but no reports have verified whether acceleration mode influences bone formation and healing. Therefore, this study was to compare the effects of two acceleration modes, vibration and constant (centrifugal) accelerations, on bone formation and healing in the trunk using BMP 2-induced ectopic bone formation (EBF) mouse model and a rib fracture healing (RFH) rat model. Additionally, we tried to verify the difference in mechanism of effect on bone formation by accelerations between these two models. Three groups (low- and high-magnitude vibration and control-VA groups) were evaluated in the vibration acceleration study, and two groups (centrifuge acceleration and control-CA groups) were used in the constant acceleration study. In each model, the intervention was applied for ten minutes per day from three days after surgery for eleven days (EBF model) or nine days (RFH model). All animals were sacrificed the day after the intervention ended. In the EBF model, ectopic bone was evaluated by macroscopic and histological observations, wet weight, radiography and microfocus computed tomography (micro-CT). In the RFH model, whole fracture-repaired ribs were excised with removal of soft tissue, and evaluated radiologically and histologically. Ectopic bones in the low-magnitude group (EBF model) had significantly greater wet weight and were significantly larger (macroscopically and radiographically) than those in the other two groups, whereas the size and wet weight of ectopic bones in the centrifuge acceleration group showed no significant difference compared those in control-CA group. All ectopic bones showed calcified trabeculae and maturated bone marrow. Micro-CT showed that bone volume (BV) in the low-magnitude group of EBF model was significantly higher than those in the other two groups (3.1±1.2mm3 v.s. 1.8±1.2mm3 in high-magnitude group and 1.3±0.9mm3 in control-VA group), but BV in the

  3. Prostaglandin E2 Prevents Disuse-Induced Cortical Bone Loss

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.; Akamine, T.; Ke, Hua Zhu; Li, Xiao Jian; Tang, L. Y.; Zeng, Q. Q.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloaded)-induced cortical bone loss as well as add extra bone to underloaded bones. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to simultaneous right hindlimb immobilization by bandaging and daily subcutaneous doses of 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on double-fluorescent labeled undecalcified tibial shaft sections (proximal to the tibiofibular junction). Disuse-induced cortical bone loss occurred by enlarging the marrow cavity and increasing intracortical porosity. PGE2 treatment of disuse shafts further increased intracortical porosity above that in disuse alone controls. This bone loss was counteracted by enhancement of periosteal and corticoendosteal bone formation. Stimulation of periosteal and corticoendosteal bone formation slightly enlarged the total tissue (cross-sectional) area and inhibited marrow cavity enlargement. These PGE2-induced activities netted the same percentage of cortical bone with a different distribution than the beginning and age related controls. These findings indicate the PGE2-induced increase in bone formation compensated for the disuse and PGE2-induced bone loss, and thus prevented immobilization induced bone loss.

  4. Novel Radiomitigator for Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, A-S; Shirazi-fard, Y.; Terada, M.; Alwood, J. S.; Steczina, S.; Medina, C.; Tahimic, C. G. T.; Globus, R. K.

    2016-01-01

    Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart.

  5. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    PubMed

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  6. Periarticular Bone Loss in Antigen-Induced Arthritis

    PubMed Central

    Engdahl, Cecilia; Lindholm, Catharina; Stubelius, Alexandra; Ohlsson, Claes; Carlsten, Hans; Lagerquist, Marie K

    2013-01-01

    Objective Bone loss in arthritis is a complex process characterized by bone erosions and periarticular and generalized bone loss. The antigen-induced arthritis (AIA) model is mainly used to study synovitis and joint destruction, including bone erosions; however, periarticular bone loss has been less extensively investigated. The objectives of this study were to characterize and establish AIA as a model for periarticular bone loss, and to determine the importance of NADPH oxidase 2 (NOX-2)–derived reactive oxygen species (ROS) in periarticular bone loss. Methods Arthritis was induced in mice by local injection of antigen in one knee; the other knee was used as a nonarthritis control. At study termination, the knees were collected for histologic assessment. Periarticular bone mineral density (BMD) was investigated by peripheral quantitative computed tomography. Flow cytometric analyses were performed using synovial and bone marrow cells. Results AIA resulted in decreased periarticular trabecular BMD and increased frequencies of preosteoclasts, neutrophils, and monocytes in the arthritic synovial tissue. Arthritis induction resulted in an increased capability to produce ROS. However, induction of arthritis in Ncf1*/* mice, which lack NOX-2–derived ROS, and control mice resulted in similar reductions in periarticular trabecular BMD. Conclusion The initiation of AIA resulted in periarticular bone loss associated with local effects on inflammatory cells and osteoclasts. Furthermore, based on our observations using this model, we conclude that NOX-2–derived ROS production is not essential for inflammation-mediated periarticular bone loss. Thus, AIA can be used as a model to investigate the pathogenesis of local inflammation–mediated bone loss. PMID:23918694

  7. Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss

    PubMed Central

    Calabrese, Gina; Mesner, Larry D.; Foley, Patricia L.; Rosen, Clifford J.; Farber, Charles R.

    2016-01-01

    The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss. PMID:27378017

  8. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    NASA Technical Reports Server (NTRS)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  9. Norepinephrine Regulates Condylar Bone Loss via Comorbid Factors.

    PubMed

    Jiao, K; Niu, L; Xu, X; Liu, Y; Li, X; Tay, F R; Wang, M

    2015-06-01

    Degenerative changes of condylar subchondral bone occur frequently in temporomandibular disorders. Although psychologic stresses and occlusal abnormalities have been implicated in temporomandibular disorder, it is not known if these risks represent synergistic comorbid factors that are involved in condylar subchondral bone degradation that is regulated by the sympathetic nervous system. In the present study, chronic immobilization stress (CIS), chemical sympathectomy, and unilateral anterior crossbite (UAC) were sequentially applied in a murine model. Norepinephrine contents in the subjects' serum and condylar subchondral bone were detected by ELISA; bone and cartilage remodeling parameters and related gene expression in the subchondral bone were examined. Subchondral bone loss and increased subchondral bone norepinephrine level were observed in the CIS and UAC groups. These groups exhibited decreased bone mineral density, volume fraction, and bone formation rate; decreased expressions of osterix, collagen I, and osteocalcin; but increased trabecular separation, osteoclast number and surface, and RANKL expression. Combined CIS + UAC produced more severe subchondral bone loss, higher bone norepinephrine level, and decreased chondrocyte density and cartilage thickness when compared to CIS or UAC alone. Sympathectomy simultaneously prevented subchondral bone loss and decreased bone norepinephrine level in all experimental subgroups when compared to the vehicle-treated counterparts. Norepinephrine also decreased mRNA expression of osterix, collagen I, and osteocalcin by mesenchymal stem cells at 7 and 14 d of stimulation and increased the expression of RANKL and RANKL/OPG ratio by mesenchymal stem cells at 2 h. In conclusion, CIS and UAC synergistically promote condylar subchondral bone loss and cartilage degradation; such processes are partially regulated by norepinephrine within subchondral bone.

  10. Dietary Sodium Effects on Bone Loss and Calcium Metabolism During Bed Rest

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Arnaud, Sara B.; Abrams, Steven A.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The acceleration of age-related bone loss is one of the most detrimental effects of space flight. The ability to understand and counteract this loss will be critical for crew health and safety during and after long-duration missions. Studies in healthy ambulatory individuals have linked high salt (sodium) diets, hypercalciuria, and increased renal stone risk. Dietary salt may modulate bone loss through changes in calcium metabolism and the calcium endocrine system. The research proposed here will determine the role of dietary salt in the loss of bone during simulated space flight. Calcium metabolism will be determined through calcium kinetics studies, endocrine and biochemical measurements; and estimates of the mass, distribution and mechanical properties of bone, in subjects fed low (100 mmol sodium/day) or high (250 mmol sodium/day) levels of dietary salt during 28 days of headdown tilt bedrest. This research addresses the role of dietary salt in the loss of bone and calcium in space flight, and integrates the changes in calcium metabolism with those occurring in other physiologic systems. These data will be critical for both countermeasure development, and in determination of nutritional requirements for extended-duration space flight. The potential countermeasures resulting from this research will reduce health risks due to acceleration of age-related osteoporosis and increased risk of renal stone formation..

  11. Metastasis and bone loss: advancing treatment and prevention.

    PubMed

    Coleman, Robert E; Lipton, Allan; Roodman, G David; Guise, Theresa A; Boyce, Brendon F; Brufsky, Adam M; Clézardin, Philippe; Croucher, Peter I; Gralow, Julie R; Hadji, Peyman; Holen, Ingunn; Mundy, Gregory R; Smith, Matthew R; Suva, Larry J

    2010-12-01

    Tumor metastasis to the skeleton affects over 400,000 individuals in the United States annually, more than any other site of metastasis, including significant proportions of patients with breast, prostate, lung and other solid tumors. Research on the bone microenvironment and its role in metastasis suggests a complex role in tumor growth. Parallel preclinical and clinical investigations into the role of adjuvant bone-targeted agents in preventing metastasis and avoiding cancer therapy-induced bone loss have recently reported exciting and intriguing results. A multidisciplinary consensus conference convened to review recent progress in basic and clinical research, assess gaps in current knowledge and prioritize recommendations to advance research over the next 5 years. The program addressed three topics: advancing understanding of metastasis prevention in the context of bone pathophysiology; developing therapeutic approaches to prevent metastasis and defining strategies to prevent cancer therapy-induced bone loss. Several priorities were identified: (1) further investigate the effects of bone-targeted therapies on tumor and immune cell interactions within the bone microenvironment; (2) utilize and further develop preclinical models to study combination therapies; (3) conduct clinical studies of bone-targeted therapies with radiation and chemotherapy across a range of solid tumors; (4) develop biomarkers to identify patients most likely to benefit from bone-targeted therapies; (5) educate physicians on bone loss and fracture risk; (6) define optimal endpoints and new measures of efficacy for future clinical trials; and (7) define the optimum type, dose and schedule of adjuvant bone-targeted therapy.

  12. Modeling Calcium Loss from Bones During Space Flight

    NASA Technical Reports Server (NTRS)

    Wastney, Meryl E.; Morukov, Boris V.; Larina, Irina M.; Abrams, Steven A.; Nillen, Jeannie L.; Davis-Street, Janis E.; Lane, Helen W.; Smith, Scott M.; Paloski, W. H. (Technical Monitor)

    1999-01-01

    Calcium loss from bones during space flight creates a risk for astronauts who travel into space, and may prohibit space flights to other planets. The problem of calcium loss during space flight has been studied using animal models, bed rest (as a ground-based model), and humans in-flight. In-flight studies have typically documented bone loss by comparing bone mass before and after flight. To identify changes in metabolism leading to bone loss, we have performed kinetic studies using stable isotopes of calcium. Oral (Ca-43) and intravenous (Ca-46) tracers were administered to subjects (n=3), three-times before flight, once in-flight (after 110 days), and three times post-flight (on landing day, and 9 days and 3 months after flight). Samples of blood, saliva, urine, and feces were collected for up to 5 days after isotope administration, and were analyzed for tracer enrichment. Tracer data in tissues were analyzed using a compartmental model for calcium metabolism and the WinSAAM software. The model was used to: account for carryover of tracer between studies, fit data for all studies using the minimal number of changes between studies, and calculate calcium absorption, excretion, bone calcium deposition and bone calcium resorption. Results showed that fractional absorption decreased by 50% during flight and that bone resorption and urinary excretion increased by 50%. Results were supported by changes in biochemical markers of bone metabolism. Inflight bone loss of approximately 250 mg Ca/d resulted from decreased calcium absorption combined with increased bone resorption and excretion. Further studies will assess the time course of these changes during flight, and the effectiveness of countermeasures to mitigate flight-induced bone loss. The overall goal is to enable human travel beyond low-Earth orbit, and to allow for better understanding and treatment of bone diseases on Earth.

  13. Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats.

    PubMed Central

    Kimble, R B; Vannice, J L; Bloedow, D C; Thompson, R C; Hopfer, W; Kung, V T; Brownfield, C; Pacifici, R

    1994-01-01

    Interleukin-1 (IL-1), a cytokine produced by bone marrow cells and bone cells, has been implicated in the pathogenesis of postmenopausal osteoporosis because of its potent stimulatory effects on bone resorption in vitro and in vivo. To investigate whether IL-1 plays a direct causal role in post ovariectomy bone loss, 6-mo-old ovariectomized rats were treated with subcutaneous infusions of IL-1 receptor antagonist (IL-1ra), a specific competitor of IL-1, for 4 wk, beginning either at the time of surgery or 4 wk after ovariectomy. The bone density of the distal femur was measured non invasively by dual-energy X-ray absorptiometry. Bone turnover was assessed by bone histomorphometry and by measuring serum osteocalcin, a marker of bone formation, and the urinary excretion of pyridinoline cross-links, a marker of bone resorption. Ovariectomy caused a rapid increase in bone turnover and a marked decrease in bone density which were blocked by treatment with 17 beta estradiol. Ovariectomy also increased the production of IL-1 from cultured bone marrow cells. Ovariectomy induced-bone loss was significantly decreased by IL-1ra treatment started at the time of ovariectomy and completely blocked by IL-1ra treatment begun 4 wk after ovariectomy. In both studies IL-1ra also decreased bone resorption in a manner similar to estrogen, while it had no effect on bone formation. In contrast, treatment with IL-1ra had no effect on the bone density and the bone turnover of sham-operated rats, indicating that IL-1ra specifically blocked estrogen-dependent bone loss. In conclusion, these data indicate that IL-1, or mediators induced by IL-1, play an important causal role in the mechanism by which ovariectomy induces bone loss in rats, especially following the immediate post ovariectomy period. Images PMID:8182127

  14. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects.

    PubMed

    Usui, Yuki; Aoki, Kaoru; Narita, Nobuyo; Murakami, Narumichi; Nakamura, Isao; Nakamura, Koichi; Ishigaki, Norio; Yamazaki, Hiroshi; Horiuchi, Hiroshi; Kato, Hiroyuki; Taruta, Seiichi; Kim, Yoong Ahm; Endo, Morinobu; Saito, Naoto

    2008-02-01

    Carbon nanotubes (CNTs) have been used in various fields as composites with other substances or alone to develop highly functional materials. CNTs hold great interest with respect to biomaterials, particularly those to be positioned in contact with bone such as prostheses for arthroplasty, plates or screws for fracture fixation, drug delivery systems, and scaffolding for bone regeneration. Accordingly, bone-tissue compatibility of CNTs and CNT influence on bone formation are important issues, but the effects of CNTs on bone have not been delineated. Here, it is found that multi-walled CNTs adjoining bone induce little local inflammatory reaction, show high bone-tissue compatibility, permit bone repair, become integrated into new bone, and accelerate bone formation stimulated by recombinant human bone morphogenetic protein-2 (rhBMP-2). This study provides an initial investigational basis for CNTs in biomaterials that are used adjacent to bone, including uses to promote bone regeneration. These findings should encourage development of clinical treatment modalities involving CNTs.

  15. [Bone loss in women with malignant genital neoplasms].

    PubMed

    Magnowski, Piotr; Wolski, Hubert; Magnowska, Magdalena; Nowak-Markwitz, Ewa

    2014-12-01

    Nowadays, women with genital cancers live longer due to early diagnosis and better treatment schemes. Only few studies assessed bone mass in patients with genital cancer Osteoporosis is a condition characterized by progressive loss of bone mass, weakening of the spatial structure of the bone, and increased susceptibility to fractures. Osteopenia is a condition of reduced, but not yet reaching the pathological values, bone density in relation to norms for age and sex. Metastases are the primary cause of death in cancer patients. It is estimated that approximately half of people dying due to cancer have bone metastases. Osteoporosis in neoplastic disease may occur due to bone metastases or therapy-related adverse effects, i.e. reduced bone mineral density (BMD). Bone microenvironment provides a good medium for the growth of cancer cells. BMD of the femur and spine should be measured by DXA. Computed tomography (CT) and magnetic resonance imaging (MRI) are the techniques used to detect bone metastases. Lifestyle is the key to improving the quality of life and maximize any pharmacological treatment in cancer patients. It is proposed that treatment of cancer without bone metastases does not require therapy increasing bone mass. Further studies in women treated for gynecological malignancies undergoing oophorectomy and adjuvant treatment are needed to elucidate the mechanisms associated with bone loss.

  16. Post-traumatic bone loss of the femur treated with segmental bone allograft and bone morphogenetic protein: a case report.

    PubMed

    D'Agostino, Priscilla; Stassen, Pierre; Delloye, Christian

    2007-06-01

    Reconstruction of a major bone loss remains a challenge for the orthopaedic surgeon. Most of the bone defects result from a bone tumour resection whereas a post-traumatic bone loss is more rare due to the numerous options available for bone fixation. However in high-energy trauma, the injury to bone may be so extensive as to justify removal of fragmented bone. A 57-year-old man presented with a severe injury at the thigh after a hunting accident, including a comminuted fracture of the femoral shaft. After thorough debridement, he was left with a large diaphyseal bone defect which was subsequently treated with a structural bone allograft, autogenous graft and rhBMP-7. Bone healing was achieved after several months.

  17. The Correlation between Bone Loss and Tooth Malalignment.

    DTIC Science & Technology

    1982-01-22

    to correlate periodontal bone loss and the malpositionini of mandibular anterior teeth. In the absence of gingival t.issue, a more accurate correlation ...AD-AiI 545 ARM4Y INST OF DENTAL RESEARCH WASHINGTON DC F/S 6/5 THE CORRELATION BETWEEN BONE LOSS AND TOOTH MALALIONMENT. (U) JAN 82 M A RUSSELL, L...CATALOG NUMBER .’- TITLE(and ubtite) 1 037 5. TYPE OF -ft(EPORT A PERIOD COVERED The Correlation Between Bone Loss and Tooth Suhmission of paper

  18. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    PubMed

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  19. A Novel Murine Model for Chronic Inflammatory Alveolar Bone loss

    PubMed Central

    Oz, Helieh S; Ebersole, Jeffrey L

    2009-01-01

    Objective Chronic inflammatory bowel disease (IBD) demonstrates some similarities of dysregulated chronic immunoinflammatory lesion of periodontitis. Trinitrobenzene sulfonic acid (TNBS) and dextran sodium sulphate (DSS) administered to rodents have been shown to elicit inflammatory responses that undermine the integrity of the gut epithelium similar to IBD in humans. The objective of this study was to evaluate the ability of these chemicals to elicit periodontal inflammation as a novel model for alveolar bone loss. Methods Mice were treated by oral application of TNBS 2 times/week, or with DSS in the diet over a period of 18 weeks. Alveolar bone loss was assessed on defleshed skull using morphometric measures for area of bone resorption. Results TNBS-treated animals tolerated oral administration with no clinical symptoms and gained weight similar to normal controls. In contrast, DSS exerted a systemic response including shortening of colonic tissue and liver enzyme changes. Both TNBS and DSS caused a localized action on periodontal tissues with alveolar bone loss observed in both maxilla and mandibles with progression in a time dependent manner. Bone loss was detected as early as week 7, with more severe periodontitis increasing over the 18 weeks (p<0.001). Young (7 month) and old (12 month) SCID mice were treated with TNBS for a period of 7 weeks and did not develop significant bone loss. Conclusions These data show that oral administration of TNBS and DSS provoke alveolar bone loss in concert with the autochthonous oral microbiota. PMID:19602109

  20. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    SciTech Connect

    Nurmio, Mirja; Joki, Henna; Kallio, Jenny; Maeaettae, Jorma A.; Vaeaenaenen, H. Kalervo; Toppari, Jorma; Jahnukainen, Kirsi; Laitala-Leinonen, Tiina

    2011-08-01

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.

  1. Differential Bone Loss in Mouse Models of Colon Cancer Cachexia

    PubMed Central

    Bonetto, Andrea; Kays, Joshua K.; Parker, Valorie A.; Matthews, Ryan R.; Barreto, Rafael; Puppa, Melissa J.; Kang, Kyung S.; Carson, James A.; Guise, Theresa A.; Mohammad, Khalid S.; Robling, Alexander G.; Couch, Marion E.; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2017-01-01

    Cachexia is a distinctive feature of colorectal cancer associated with body weight loss and progressive muscle wasting. Several mechanisms responsible for muscle and fat wasting have been identified, however it is not known whether the physiologic and molecular crosstalk between muscle and bone tissue may also contribute to the cachectic phenotype in cancer patients. The purpose of this study was to clarify whether tumor growth associates with bone loss using several experimental models of colorectal cancer cachexia, namely C26, HT-29, and ApcMin/+. The effects of cachexia on bone structure and strength were evaluated with dual energy X-ray absorptiometry (DXA), micro computed tomography (μCT), and three-point bending test. We found that all models showed tumor growth consistent with severe cachexia. While muscle wasting in C26 hosts was accompanied by moderate bone depletion, no loss of bone strength was observed. However, HT-29 tumor bearing mice showed bone abnormalities including significant reductions in whole-body bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th), but no declines in strength. Similarly, cachexia in the ApcMin/+ mice was associated with significant decreases in BMD, BMC, BV/TV, Tb.N, and Tb.Th as well as decreased strength. Our data suggest that colorectal cancer is associated with muscle wasting and may be accompanied by bone loss dependent upon tumor type, burden, stage and duration of the disease. It is clear that preserving muscle mass promotes survival in cancer cachexia. Future studies will determine whether strategies aimed at preventing bone loss can also improve outcomes and survival in colorectal cancer cachexia. PMID:28123369

  2. Differential Bone Loss in Mouse Models of Colon Cancer Cachexia.

    PubMed

    Bonetto, Andrea; Kays, Joshua K; Parker, Valorie A; Matthews, Ryan R; Barreto, Rafael; Puppa, Melissa J; Kang, Kyung S; Carson, James A; Guise, Theresa A; Mohammad, Khalid S; Robling, Alexander G; Couch, Marion E; Koniaris, Leonidas G; Zimmers, Teresa A

    2016-01-01

    Cachexia is a distinctive feature of colorectal cancer associated with body weight loss and progressive muscle wasting. Several mechanisms responsible for muscle and fat wasting have been identified, however it is not known whether the physiologic and molecular crosstalk between muscle and bone tissue may also contribute to the cachectic phenotype in cancer patients. The purpose of this study was to clarify whether tumor growth associates with bone loss using several experimental models of colorectal cancer cachexia, namely C26, HT-29, and Apc(Min/+). The effects of cachexia on bone structure and strength were evaluated with dual energy X-ray absorptiometry (DXA), micro computed tomography (μCT), and three-point bending test. We found that all models showed tumor growth consistent with severe cachexia. While muscle wasting in C26 hosts was accompanied by moderate bone depletion, no loss of bone strength was observed. However, HT-29 tumor bearing mice showed bone abnormalities including significant reductions in whole-body bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th), but no declines in strength. Similarly, cachexia in the Apc(Min/+) mice was associated with significant decreases in BMD, BMC, BV/TV, Tb.N, and Tb.Th as well as decreased strength. Our data suggest that colorectal cancer is associated with muscle wasting and may be accompanied by bone loss dependent upon tumor type, burden, stage and duration of the disease. It is clear that preserving muscle mass promotes survival in cancer cachexia. Future studies will determine whether strategies aimed at preventing bone loss can also improve outcomes and survival in colorectal cancer cachexia.

  3. Bilateral sudden sensorineural hearing loss following unilateral temporal bone fracture.

    PubMed

    Hunchaisri, Niran

    2009-06-01

    Temporal bone fractures usually cause unilateral sensorineural hearing loss (SNHL) by fracture that violated otic capsule of that side. Bilateral SNHL from unilateral temporal bone fracture were rarely seen. Labyrinthine concussion was considered to be the pathogenesis in these cases. This article reports an additional case of bilateral SNHL from unilateral temporal bone fracture but in a different pattern of SNHL which may result from an occlusion of the internal auditory artery.

  4. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeff; Shapiro, Jay; Lang, Tom; Smith, Scott M.; Shackelford, Linda C.; Sibonga, Jean; Evans, Harlan; Spector, Elisabeth; Ploutz-Snyder, Robert; Nakamura, Toshitaka; Kohri,Kenjiro; Ohshima, Hiroshi

    2011-01-01

    Experiment Hypothesis -- The combined effect of anti-resorptive drugs plus in-flight exercise regimen will have a measurable effect in preventing space flight induced bone mass and strength loss and reducing renal stone risk.

  5. Bed Rest and Immobilization: Risk Factors for Bone Loss

    MedlinePlus

    ... slow the rate of bone loss. The Bottom Line A lifetime of weight-bearing exercise is important ... need more information about available resources in your language or another language, contact the NIH Osteoporosis and ...

  6. The Lyme Disease Pathogen Borrelia burgdorferi Infects Murine Bone and Induces Trabecular Bone Loss

    PubMed Central

    Tang, Tian Tian; Zhang, Lucia; Bansal, Anil; Grynpas, Marc

    2016-01-01

    ABSTRACT Lyme disease is caused by members of the Borrelia burgdorferi sensu lato species complex. Arthritis is a well-known late-stage pathology of Lyme disease, but the effects of B. burgdorferi infection on bone at sites other than articular surfaces are largely unknown. In this study, we investigated whether B. burgdorferi infection affects bone health in mice. In mice inoculated with B. burgdorferi or vehicle (mock infection), we measured the presence of B. burgdorferi DNA in bones, bone mineral density (BMD), bone formation rates, biomechanical properties, cellular composition, and two- and three-dimensional features of bone microarchitecture. B. burgdorferi DNA was detected in bone. In the long bones, increasing B. burgdorferi DNA copy number correlated with reductions in areal and trabecular volumetric BMDs. Trabecular regions of femora exhibited significant, copy number-correlated microarchitectural disruption, but BMD, microarchitectural, and biomechanical properties of cortical bone were not affected. Bone loss in tibiae was not due to increased osteoclast numbers or bone-resorbing surface area, but it was associated with reduced osteoblast numbers, implying that bone loss in long bones was due to impaired bone building. Osteoid-producing and mineralization activities of existing osteoblasts were unaffected by infection. Therefore, deterioration of trabecular bone was not dependent on inhibition of osteoblast function but was more likely caused by blockade of osteoblastogenesis, reduced osteoblast survival, and/or induction of osteoblast death. Together, these data represent the first evidence that B. burgdorferi infection induces bone loss in mice and suggest that this phenotype results from inhibition of bone building rather than increased bone resorption. PMID:27956598

  7. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey A.; Shapiro, Jay; Lang, Thomas F.; Smith, Scott M.; Shackelford, Linda C.; Sibonga, Jean; Evans, Harlan; Spector, Elisabeth; Koslovskaya, Inessa

    2009-01-01

    Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss (Bisphosphonates) will determine whether antiresorptive agents, in conjunction with the routine inflight exercise program, will protect ISS crewmembers from the regional decreases in bone mineral density documented on previous ISS missions.

  8. Pathophysiology of bone loss in the female athlete.

    PubMed

    Lambrinoudaki, Irene; Papadimitriou, Dimitra

    2010-09-01

    Low bone mass is frequent among female athletes. The "female athlete triad" is a term that describes the interaction among energy availability, menstrual function, and bone metabolism that may lead to amenorrhea and osteopenia or osteoporosis. The main pathophysiologic mechanisms that lead to low bone mass in female athletes are low energy availability and functional hypothalamic amenorrhea. Increased energy expenditure and/or decreased energy intake, as well as the presence of eating disorders, are associated with low bone mass. In addition, menstrual dysfunction is quite common, especially among athletes competing in sports favoring leanness, and also associates with low bone mass. Screening for bone loss in female athletes should take place in the presence of amenorrhea or body mass index <18 kg/m(2) . Management of low bone mass aims to restore normal energy availability and nutritional habits. Hormone replacement therapy has no effect in abnormally underweight patients unless normal eating behaviors are restored.

  9. Moderate zinc supplementation during prolonged steroid therapy exacerbates bone loss in rats.

    PubMed

    Kamal, Rozy; Bansal, S C; Khandelwal, N; Rai, D V; Dhawan, D K

    2014-09-01

    The present study was conducted to understand the influence of zinc on bone mineral metabolism in prednisolone-treated rats. Disturbance in bone mineral metabolism was induced in rats by subjecting them to prednisolone treatment for a period of 8 weeks. Female rats aged 6-8 weeks weighing 150 to 200 g were divided into four treatment groups, viz., normal control, prednisolone-treated (40 mg/kg body weight orally, thrice a week), zinc-treated (227 mg/L in drinking water, daily), and combined prednisolone + zinc-treated groups. Parameters such as changes in mineral levels in the bone and serum, bone mineral density (BMD), bone mineral content (BMC), and bone 99m-technetium-labeled methylene diphosphonate ((99m)Tc-MDP) uptake were studied in various treatment groups. Prednisolone treatment caused an appreciable decrease in calcium levels both in the bone and serum and also in bone dry weight, BMC, and BMD in rats. Prednisolone-treated rats when supplemented with zinc showed further reduction in calcium levels, bone dry weight, BMD, and BMC. The study therefore revealed that moderate intake of zinc as a nutritional supplement during steroid therapy could enhance calcium deficiency in the body and accelerate bone loss.

  10. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Matsumoto, T.; Jones, J.; Shapiro, J.; Lang, T.; Shackelford, L.; Smith, S.; Evans, H.; Spector, E.; Ploutz-Snyder, R.; Sibonga, J.; Nakamura, T.; Kohri, K.; Ohshima, H.

    2011-01-01

    This poster reviews the possibility of using Bisphosphonates to counter the bone loss that is experienced during space flight. The Hypothesis that is tested in this experiment is that the combined effect of anti-resorptive drugs plus in-flight exercise regimen will attenuate space flight induced loss in bone mass and strength and reduce renal stone risk. The experiment design, the status and the results are described.

  11. Acceleration and energy loss in N = 4 SYM

    SciTech Connect

    Chernicoff, Mariano; Gueijosa, Alberto

    2009-04-20

    This contribution is based on two talks given at the XIII Mexican School of Particles and Fields. We revisit some of the results presented in [19], concerning the rate of energy loss of an accelerating quark in strongly-coupled N = 4 super-Yang-Mills.

  12. Serum Bone Biomarkers and Oral/Systemic Bone Loss in Humans

    PubMed Central

    Payne, J.B.; Stoner, J.A.; Lee, H.-M.; Nummikoski, P.V.; Reinhardt, R.A.; Golub, L.M.

    2011-01-01

    We recently reported that subantimicrobial-dose doxycycline (SDD) significantly reduced serum bone-resorption biomarkers in subgroups of post-menopausal women. We hypothesize that changes in serum bone biomarkers are associated not only with systemic bone mineral density (BMD) changes, but also with alveolar bone changes over time. One hundred twenty-eight eligible post-menopausal women with periodontitis and systemic osteopenia were randomly assigned to receive SDD or placebo tablets twice daily for two years, adjunctive to periodontal maintenance. Sera were analyzed for bone biomarkers. As expected, two-year changes in a serum bone biomarker were significantly associated with systemic BMD loss at the lumbar spine (osteocalcin, bone-turnover biomarker, p = 0.0002) and femoral neck (osteocalcin p = 0.0025). Two-year changes in serum osteocalcin and serum pyridinoline-crosslink fragment of type I collagen (ICTP; bone-resorption biomarker) were also significantly associated with alveolar bone density loss (p < 0.0001) and alveolar bone height loss (p = 0.0008), respectively. Thus, we have shown that serum bone biomarkers are associated with not only systemic BMD loss, but with alveolar bone loss as well. Clinical Trial Registration Information: Protocol registered at ClinicalTrials.gov, NCT00066027. Abbreviations: bone mineral density (BMD), bone-specific alkaline phosphatase (BSAP), computer-assisted densitometric image analysis (CADIA), confidence interval (CI), deoxypyridinoline-containing degradation fragment of the C-terminal telopeptide region of type I collagen (CTX), coefficient of variation (CV), dual-energy x-ray absorptiometry (DXA), pyridinoline-crosslink-containing degradation fragment of the C-terminal telopeptide region of type I collagen (ICTP), and subantimicrobial-dose doxycycline (SDD). PMID:21422479

  13. Bariatric surgery, bone loss, obesity and possible mechanisms.

    PubMed

    Brzozowska, M M; Sainsbury, A; Eisman, J A; Baldock, P A; Center, J R

    2013-01-01

    Bariatric surgery remains the most effective treatment for severely obese patients. However, the potential long-term effects of bariatric surgical procedures on health, including bone health, are only partially understood. The goal of this review was to present data on the impact of bariatric surgery on bone metabolism and to analyse possible reasons for the loss of bone mass that frequently occurs after bariatric surgery. Such factors include nutritional deficiencies, rapid weight loss per se, effects of fat-derived adipokines and gut-derived appetite-regulatory hormones. However, the relative roles of these factors in skeletal regulation and the mechanisms by which they work are not yet fully defined. Our review was focussed on the complex relationship between body weight, fat mass and bone mass, as well as peripheral and central mediators potentially involved in the dual regulation of both energy and bone homeostasis. We also review the data on the inverse relationship between central obesity, bone marrow fat and osteoporosis. As the number of bariatric operations increases, it is imperative to recognize mechanisms responsible for bariatric surgery-induced bone loss, with careful monitoring of bone health including long-term fracture incidence in patients undergoing these procedures.

  14. Bone loss in HIV—a contemporary review

    PubMed Central

    Hileman, Corrilynn O; Eckard, Allison Ross; McComsey, Grace A

    2015-01-01

    Purpose of the review Because of antiretroviral therapy, people are living with HIV infection longer than ever before. As this patient group ages, it is expected that medical co-morbidities such as osteoporosis and fragility fractures will increase. The purpose of this review is to address the epidemiology and what is known regarding the pathogenesis of bone loss in people living with HIV infection with a focus on recently published literature. Recent findings HIV-infected individuals are at increased risk for low bone mineral density and bone fractures. The cause of bone loss in HIV is multifactorial including traditional risk factors some of which disproportionately affect HIV-infected individuals and alterations in bone metabolism due to antiretroviral therapy (ART), HIV viral proteins and chronic inflammation. Lifestyle modification, changing ART, calcium and vitamin D supplementation and pharmacologic treatment for osteoporosis may all be employed to abrogate bone loss in this patient group. Summary Clinicians should be aware of the contributors to bone loss in people living with HIV in order to recognize high risk individuals and to take appropriate steps to address modifiable risk factors to prevent future fracture. PMID:26414081

  15. Inhibition of PPARgamma prevents type I diabetic bone marrow adiposity but not bone loss.

    PubMed

    Botolin, Sergiu; McCabe, Laura R

    2006-12-01

    Diabetes type I is associated with bone loss and increased bone adiposity. Osteoblasts and adipocytes are both derived from mesenchymal stem cells located in the bone marrow, therefore we hypothesized that if we could block adipocyte differentiation we might prevent bone loss in diabetic mice. Control and insulin-deficient diabetic BALB/c mice were chronically treated with a peroxisomal proliferator-activated receptor gamma (PPARgamma) antagonist, bisphenol-A-diglycidyl ether (BADGE), to block adipocyte differentiation. Effects on bone density, adiposity, and gene expression were measured. BADGE treatment did not prevent diabetes-associated hyperglycemia or weight loss, but did prevent diabetes-induced hyperlipidemia and effectively blocked diabetes type I-induced bone adiposity. Despite this, BADGE treatment did not prevent diabetes type I suppression of osteoblast markers (runx2 and osteocalcin) and bone loss (as determined by micro-computed tomography). BADGE did not suppress osteoblast gene expression or bone mineral density in control mice, however, chronic (but not acute) BADGE treatment did suppress osteocalcin expression in osteoblasts in vitro. Taken together, our findings suggest that BADGE treatment is an effective approach to reduce serum triglyceride and free fatty acid levels as well as bone adiposity associated with type I diabetes. The inability of BADGE treatment to prevent bone loss in diabetic mice suggests that marrow adiposity is not linked to bone density status in type I diabetes, but we cannot exclude the possibility of additional BADGE effects on osteoblasts or other bone cells, which could contribute to preventing the rescue of the bone phenotype.

  16. Associations among Endocrine, Inflammatory, and Bone Markers, Body Composition and Physical Activity to Weight Loss Induced Bone Loss

    PubMed Central

    Labouesse, Marie A.; Gertz, Erik R.; Piccolo, Brian D.; Souza, Elaine C.; Schuster, Gertrud U.; Witbracht, Megan G.; Woodhouse, Leslie R.; Adams, Sean H.; Keim, Nancy L.; Van Loan, Marta D.

    2015-01-01

    INTRODUCTION Weight loss reduces co-morbidities of obesity, but decreases bone mass. PURPOSE Our aims were to 1) determine if adequate dairy intake attenuates weight loss-induced bone loss; 2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; 3) model the contribution of these variables to post weight-loss BMD and BMC METHODS Overweight/obese women (BMI: 28–37 kg/m2) were enrolled in an energy reduced (−500 kcal/d; −2092 kJ/d) diet with adequate dairy (AD: 3–4 servings/d; n=25, 32.2 ± 8.8y) or low dairy (LD: ≤ 1 serving/d; n=26, 31.7 ± 8.4 y). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. RESULTS Following weight loss, AD intake resulted in significantly greater (p= 0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post- body fat were negatively associated with hip and lumbar spine BMC (r= −0.28, p=0.04 to −0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = −0.29 (p=0.04) to r = −0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss Factors. Pre-weight loss Factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss Factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the Factors contributed to the variance in lumbar spine BMD. CONCLUSION AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD

  17. Biochemical markers of bone turnover, hip bone loss, and fracture in older men: the MrOS study.

    PubMed

    Bauer, Douglas C; Garnero, Patrick; Harrison, Stephanie L; Cauley, Jane A; Eastell, Richard; Ensrud, Kris E; Orwoll, Eric

    2009-12-01

    We used data from the Osteoporotic Fractures in Men (MrOS) study to test the hypothesis that men with higher levels of bone turnover would have accelerated bone loss and an elevated risk of fracture. MrOS enrolled 5995 subjects >65 yr; hip BMD was measured at baseline and after a mean follow-up of 4.6 yr. Nonspine fractures were documented during a mean follow-up of 5.0 yr. Using fasting serum collected at baseline and stored at -190 degrees C, bone turnover measurements (type I collagen N-propeptide [PINP]; beta C-terminal cross-linked telopeptide of type I collagen [betaCTX]; and TRACP5b) were obtained on 384 men with nonspine fracture (including 72 hip fractures) and 947 men selected at random. Among randomly selected men, total hip bone loss was 0.5%/yr among those in the highest quartile of PINP (>44.3 ng/ml) and 0.3%/yr among those in the lower three quartiles (p = 0.01). Fracture risk was elevated among men in the highest quartile of PINP (hip fracture relative hazard = 2.13; 95% CI: 1.23, 3.68; nonspine relative hazard = 1.57, 95% CI: 1.21, 2.05) or betaCTX (hip fracture relative hazard = 1.76, 95 CI: 1.04, 2.98; nonspine relative hazard = 1.29, 95% CI: 0.99, 1.69) but not TRACP5b. Further adjustment for baseline hip BMD eliminated all associations between bone turnover and fracture. We conclude that higher levels of bone turnover are associated with greater hip bone loss in older men, but increased turnover is not independently associated with the risk of hip or nonspine fracture.

  18. [Secondary osteoporosis UPDATE. Bone loss due to bed rest and human space flight study].

    PubMed

    Ohshima, Hiroshi

    2010-05-01

    Bone loss and renal stone are significant medical concerns for bed rest subjects and space flight astronauts. Bone mineral loss occurs as secondary osteoporosis due to the unloading of weight bearing bones during bed rest and space flight. Increased bone resorption and bone metabolic uncoupling promote bone loss through the release of calcium from unloaded weight bearing bones. The rate of bone mineral loss during bed rest and space flight is about 1-2 percent per month, and recovery requires a period three or four times longer. To prevent bone loss caused by bed rest and space flight, a prophylactic countermeasure program based on scientific evidence should be developed.

  19. Numerical Studies of Ablative Mass Loss from Wind Accelerated Clouds.

    NASA Astrophysics Data System (ADS)

    Knerr, Jeffrey Matthew

    1993-01-01

    We have used numerical hydrodynamics to study the acceleration of dense gas clouds via wind ram pressure. Our goal has been to examine a model for the explanation of broad absorption lines (BALs) seen in the spectra of a certain fraction of observed QSOs. This model postulates cool dense clouds moving at very high speeds as the source of the BALs. Furthermore, it invokes simple wind ram pressure as the acceleration mechanism for the clouds. A crucial question is whether the clouds can survive potentially disruptive fluid instabilities, allowing time for acceleration to speeds comparable to the wind velocity. Linear stability arguments imply Rayleigh-Taylor (RT) instability growth occurs on time scales much shorter than the acceleration time scale. These arguments conclude acceleration via ram pressure cannot produce bulk cloud velocities in excess of the cloud's internal sound speed. Our simulations show this is simply not true. We present two-dimensional slab-symmetric simulations where clouds are accelerated to speeds close to an order of magnitude greater than their internal sound speed. Ablative mass loss by the flow of shocked wind gas around the periphery of the clouds acts to limit the growth of potentially disruptive instabilities. Simulations run at different computational grid resolutions clearly show the stabilizing effect ablation has on the evolution of the clouds. Simplified models for line profiles have been developed using mass-velocity histograms generated from the numerical simulations. There is good qualitative agreement between the simulated line profiles and observed BAL profiles.

  20. Serum markers of bone metabolism show bone loss in hibernating bears

    USGS Publications Warehouse

    Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.

    2003-01-01

    Disuse osteopenia was studied in hibernating black bears (Ursus americanus) using serum markers of bone metabolism. Blood samples were collected from male and female, wild black bears during winter denning and active summer periods. Radioimmunoassays were done to determine serum concentrations of cortisol, the carboxy-terminal cross-linked telopeptide, and the carboxy-terminal propeptide of Type I procollagen, which are markers of hone resorption and formation, respectively. The bone resorption marker was significantly higher during winter hibernation than it was in the active summer months, but the bone formation marker was unchanged, suggesting an imbalance in bone remodeling and a net bone loss during disuse. Serum cortisol was significantly correlated with the bone resorption marker, but not with the bone formation marker. The bone formation marker was four- to fivefold higher in an adolescent and a 17-year-old bear early in the remobilization period compared with the later summer months. These findings raise the possibility that hibernating black bears may minimize bone loss during disuse by maintaining osteoblastic function and have a more efficient compensatory mechanism for recovering immobilization-induced bone loss than that of humans or other animals.

  1. Loss of the PGE2 receptor EP1 enhances bone acquisition, which protects against age and ovariectomy-induced impairments in bone strength.

    PubMed

    Zhang, Minjie; Feigenson, Marina; Sheu, Tzong-jen; Awad, Hani A; Schwarz, Edward M; Jonason, Jennifer H; Loiselle, Alayna E; O'Keefe, Regis J

    2015-03-01

    PGE2 exerts anabolic and catabolic effects on bone through the discrete actions of four prostanoid receptors (EP1-4). We have previously demonstrated that loss EP1 accelerates fracture repair by enhancing bone formation. In the present study we defined the role of EP1 in bone maintenance and homeostasis during aging and in response to ovariectomy. The femur and L4 vertebrae of wild type (WT) and EP1(-/-) mice were examined at 2-months, 6-months, and 1-year of age, and in WT and EP1(-/-) mice following ovariectomy (OVX) or sham surgery. Bone volume fraction, trabecular architecture and mechanical properties were maintained during aging in EP1(-/-) mice to a greater degree than age-matched WT mice. Moreover, significant increases in bone formation rate (BFR) (+60%) and mineral apposition rate (MAR) (+50%) were observed in EP1(-/-), relative to WT, while no change in osteoclast number and osteoclast surface were observed. Following OVX, loss of EP1 was protective against bone loss in both femur and L4 vertebrae, with increased bone volume/total volume (BV/TV) (+32% in femur) and max load at failure (+10% in femur) relative to WT OVX, likely resulting from the increased bone formation rate that was observed in these mice. Taken together these studies identify inhibition of EP1 as a potential therapeutic approach to suppress bone loss in aged or post-menopausal patients.

  2. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    PubMed Central

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  3. Role of Corticosteroids in Bone Loss During Space Flight

    NASA Technical Reports Server (NTRS)

    Wronski, Thomas J.; Halloran, Bernard P.; Miller, Scott C.

    1998-01-01

    The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.

  4. Acceleration and loss of relativistic electrons during small geomagnetic storms

    DOE PAGES

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; ...

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result inmore » flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.« less

  5. Acceleration and loss of relativistic electrons during small geomagnetic storms

    SciTech Connect

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; Friedel, R. H. W.

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  6. Bone Loss During Spaceflight: Available Models and Counter-Measures

    NASA Technical Reports Server (NTRS)

    Morris, Jonathan; Bach, David; Geller, David

    2015-01-01

    There is ongoing concern for human health during spaceflights. Of particular interest is the uncoupling of bone remodeling and its resultant effect on calcium metabolism and bone loss. The calculated average loss of bone mineral density (BMD) is approximately 1-1.5% per month of spaceflight. The effect of decreased BMD on associated fractures in astronauts is not known. Currently on the International Space Station (ISS), bone loss is managed through dietary supplements and modifications and resistance exercise regimen. As the duration of space flights increases, a review of the current methods available for the prevention of bone loss is warranted. The goal of this project is to review and summarize recent studies that have focused on maintaining BMD during exposure to microgravity. Interventions were divided into physical (Table 1), nutritional (Table 2), or pharmacologic (Table 3) categories. Physical modalities included resistance exercise, low level vibration, and low intensity pulsed ultrasound. Nutritional interventions included altering protein, salt, and fat intake; and vitamin D supplementation. Pharmacologic interventions included the use of bisphosphonates and beta blockers. Studies reported outcomes based on bone density determined by DXA bone scan, micro-architecture of histology and microCT, and serum and urine markers of bone turnover. The ground analog models utilized to approximate osseous physiology in microgravity included human patients previously paralyzed or subjects confined to bedrest. Ground analog animal models include paralysis, immobilization and ovariectomies. As a result of the extensive research performed there is a multi-modality approach available for the management of BMD during spaceflight that includes resistance training, nutrition and dietary supplements. However, there is a paucity of literature describing a formalized tiered protocol to guide investigators through the progression from animal models to human patient ground

  7. The Scope of Acceleration-Induced Loss of Consciousness Research

    DTIC Science & Technology

    1991-07-04

    clinical medicine and minimal incomplete qualitative and quantitative data from aviation medicine. The study of Rossen , Kabat, Anderson published in 1946...all by acceleration physiologists. A full quntitation of all the symptoms, however, remained lacking even in the Rossen , Kabat, Anderson study. The...studies involving induction of loss of consciousness in healthy humans are extremely few in number. Besides the 1946 studies of Rossen , Kabat, and

  8. Anabolic Vitamin D Analogs as Countermeasures to Bone Loss

    NASA Technical Reports Server (NTRS)

    Li, Wei; Duncan, Randall L.; Karin, Norman J.; Farach-Carson, Mary C.

    1997-01-01

    We demonstrated for the first time that vitamin D3 influences the effect of PTH on bone cell calcium ion levels. This is a rapid effect, taking place within seconds/minutes. This may prove to be a critical contribution to our understanding of bone physiology in that these two hormones are among the most potent regulators of bone calcium content and of systemic calcium homeostasis. Together with the data gathered from the study of astronauts exposed to microgravity for extended periods, these observations suggest the interaction of vitamin D3 and PTH as a possible therapeutic target in the treatment of bone loss disorders such as osteoporosis and disuse atrophy. Chronic exposure of cultured osteoblasts to vitamin D, altered the number of voltage-sensitive Ca(+2) channels expressed. Estrogen treatment yielded a similar result, suggesting that there is overlap in the mechanism by which these hormones elicit long-term effects on bone cell calcium homeostasis.

  9. Numerical analysis of an osseointegrated prosthesis fixation with reduced bone failure risk and periprosthetic bone loss.

    PubMed

    Tomaszewski, P K; van Diest, M; Bulstra, S K; Verdonschot, N; Verkerke, G J

    2012-07-26

    Currently available implants for direct attachment of prosthesis to the skeletal system after transfemoral amputation (OPRA system, Integrum AB, Sweden and ISP Endo/Exo prosthesis, ESKA Implants AG, Germany) show many advantages over the conventional socket fixation. However, restraining biomechanical issues such as considerable bone loss around the stem and peri-prosthetic bone fractures are present. To overcome these limiting issues a new concept of the direct intramedullary fixation was developed. We hypothesize that the new design will reduce the peri-prosthetic bone failure risk and adverse bone remodeling by restoring the natural load transfer in the femur. Generic CT-based finite element models of an intact femur and amputated bones implanted with 3 analyzed implants were created and loaded with a normal walking and a forward fall load. The strain adaptive bone remodeling theory was used to predict long-term bone changes around the implants and the periprosthetic bone failure risk was evaluated by the von Mises stress criterion. The results show that the new design provides close to physiological distribution of stresses in the bone and lower bone failure risk for the normal walking as compared to the OPRA and the ISP implants. The bone remodeling simulations did not reveal any overall bone loss around the new design, as opposed to the OPRA and the ISP implants, which induce considerable bone loss in the distal end of the femur. This positive outcome shows that the presented concept has a potential to considerably improve safety of the rehabilitation with the direct fixation implants.

  10. Fractal texture analysis of the healing process after bone loss.

    PubMed

    Borowska, Marta; Szarmach, Janusz; Oczeretko, Edward

    2015-12-01

    Radiological assessment of treatment effectiveness of guided bone regeneration (GBR) method in postresectal and postcystal bone loss cases, observed for one year. Group of 25 patients (17 females and 8 males) who underwent root resection with cystectomy were evaluated. The following combination therapy of intraosseous deficits was used, consisting of bone augmentation with xenogenic material together with covering regenerative membranes and tight wound closure. The bone regeneration process was estimated, comparing the images taken on the day of the surgery and 12 months later, by means of Kodak RVG 6100 digital radiography set. The interpretation of the radiovisiographic image depends on the evaluation ability of the eye looking at it, which leaves a large margin of uncertainty. So, several texture analysis techniques were developed and used sequentially on the radiographic image. For each method, the results were the mean from the 25 images. These methods compute the fractal dimension (D), each one having its own theoretic basis. We used five techniques for calculating fractal dimension: power spectral density method, triangular prism surface area method, blanket method, intensity difference scaling method and variogram analysis. Our study showed a decrease of fractal dimension during the healing process after bone loss. We also found evidence that various methods of calculating fractal dimension give different results. During the healing process after bone loss, the surfaces of radiographic images became smooth. The result obtained show that our findings may be of great importance for diagnostic purpose.

  11. [Bone loss and bone metabolism in astronauts during long-duration space flight].

    PubMed

    Ohshima, Hiroshi

    2006-01-01

    Significant bone loss is one of the most serious medical concerns during long-duration space flight. This article provides the results of bone loss and bone metabolism obtained from American and Russian long-duration human space flight. Bone loss in astronauts before and after long-duration space flight was evaluated by dual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT). DXA revealed bone loss at rates of 0.9%/month in the lumbar spine and 1.5%/month in the femoral neck. QCT revealed cortical, trabecular and integral BMD in the femoral neck at rates of 0.5%/month, 2.5%/month, and 1.5%/month, respectively. Biochemical markers of bone resorption increased during space flight and several months after landing. Bone formation marker was unchanged during space flight, but since 3 weeks after landing it was significantly higher than before flight. A calcium kinetics study confirmed that bone resorption increased, and intestinal calcium absorption decreased during space flight.

  12. Mobilised bone marrow-derived cells accelerate wound healing.

    PubMed

    Wang, Yu; Sun, Yu; Yang, Xiao-Yan; Ji, Shi-Zhao; Han, Shu; Xia, Zhao-Fan

    2013-08-01

    Massive skin defects caused by severe burn and trauma are a clinical challenge to surgeons. Timely and effective wound closure is often hindered by the lack of skin donor site. Bone marrow-derived cells (BMDCs) have been shown to 'differentiate' into multiple tissue cells. In this study we focused on the direct manipulation of endogenous BMDCs, avoiding the immunocompatibility issues and complicated cell isolation, purification, identification and amplification procedures in vitro on wound repair. We found that mobilisation of the BMDCs into the circulation significantly increased the amount of BMDCs at the injury site which in turn accelerated healing of large open wound. We used a chimeric green fluorescent protein (GFP) mouse model to track BMDCs and to investigate their role in full-thickness skin excisional wounds. We have shown that bone marrow mobilisation by granulocyte colony stimulating factor (G-CSF) exerted multiple beneficial effects on skin repair, both by increasing the engraftment of BMDCs into the skin to differentiate into multiple skin cell types and by upregulating essential cytokine mRNAs critical to wound repair. The potential trophic effects of G-CSF on bone marrow stem cells to accelerate wound healing could have a significant clinical impact.

  13. Genistein supplementation increases bone turnover but does not prevent alcohol-induced bone loss in male mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy prote...

  14. Microthreaded Implants and Crestal Bone Loss: A Systematic Review.

    PubMed

    Al-Thobity, Ahmad; Kutkut, Ahmad; Almas, Khalid

    2016-11-21

    This systematic literature review investigated the effect of microthreaded-neck dental implants on crestal bone loss. Using the participants, interventions, comparison groups, outcomes, and study design (PICOS) system, we addressed the following focused question: Do microthreaded-neck dental implants positively affect the crestal bone level around dental implants? We searched 3 electronic databases to find articles published between January 1995 and June 2016 that contained any combination of the following keywords: dental implant, microthread, microthreaded, crestal bone level, crestal bone loss, and alveolar bone level. We excluded case reports, review articles, letters to the editor, commentaries, and articles published in a language other than English. We found a total of 70 articles. After eliminating duplicates and applying PICOS eligibility criteria, we selected only articles that reported the results of randomized controlled trials, prospective or retrospective cohort studies, case-control studies, cross-sectional studies, or other types of clinical trials that compared the microthreaded implant design to other implant designs. We were left with 23 articles for review. The 23 articles reported crestal bone loss ranging from 0.05 mm to 0.9 mm, with a range of 12 to 96 months of follow-up. Less crestal bone was lost with dental implants that had a microthreaded neck design than with machined-surface or conventional rough-surface dental implants. Thus, microthreaded dental implants are a better choice than are implants with other designs. Future studies should use standardized imaging techniques to to evaluate the placement of these implants in bone-augmented sites.

  15. Ice sheets. Volume loss from Antarctic ice shelves is accelerating.

    PubMed

    Paolo, Fernando S; Fricker, Helen A; Padman, Laurie

    2015-04-17

    The floating ice shelves surrounding the Antarctic Ice Sheet restrain the grounded ice-sheet flow. Thinning of an ice shelf reduces this effect, leading to an increase in ice discharge to the ocean. Using 18 years of continuous satellite radar altimeter observations, we have computed decadal-scale changes in ice-shelf thickness around the Antarctic continent. Overall, average ice-shelf volume change accelerated from negligible loss at 25 ± 64 cubic kilometers per year for 1994-2003 to rapid loss of 310 ± 74 cubic kilometers per year for 2003-2012. West Antarctic losses increased by ~70% in the past decade, and earlier volume gain by East Antarctic ice shelves ceased. In the Amundsen and Bellingshausen regions, some ice shelves have lost up to 18% of their thickness in less than two decades.

  16. Artemisia capillaris Alleviates Bone Loss by Stimulating Osteoblast Mineralization and Suppressing Osteoclast Differentiation and Bone Resorption.

    PubMed

    Lee, Chung-Jo; Shim, Ki-Shuk; Ma, Jin Yeul

    2016-01-01

    Artemisia capillaris has been used to treat jaundice and relieve high liver-heat in traditional medicine. In this study, we found that the administration of a water extract from A. capillaris (WEAC) to the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced bone loss model significantly prevents osteoporotic bone loss, increasing bone volume/trabecular volume by 22% and trabecular number by 24%, and decreasing trabecular separation by 29%. WEAC stimulated in vitro osteoblast mineralization from primary osteoblasts in association with increasing expression of osterix, nuclear factor of activated T cells cytoplasmic 1, and activator protein-1, as well as phosphorylation of extracellular signal-regulated kinase. In contrast to the anabolic effect of WEAC, WEAC significantly suppressed in vitro osteoclast formation from bone marrow macrophages by inhibiting the RANKL signaling pathways and bone resorption by downregulating the expression of resorption markers. Therefore, this study demonstrated that WEAC has a beneficial effect on bone loss through the regulation of osteoblast mineralization, as well as osteoclast formation and bone resorption. These results suggest that A. capillaris may be a promising herbal candidate for therapeutic agents to treat or prevent osteoporotic bone diseases.

  17. Alendronate as an Effective Countermeasure to Disuse Induced Bone loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian D.; Driscol, Theda B.; Shackelford, Linda C.; Evans, Harlan J.; Rianon, Nahid J.; Smith, Scott M.; Lai, Dejian

    2002-01-01

    Microgravity, similar to diuse immobilization on earth, causes rapid bone loss. This loss is believed to be an adaptive response to the reduced musculoskelatal forces in space and occurs gradually enough that changes occurring during short duration space flight are not a concern. Bone loss, however, will be a major impediment for long duration missions if effective countermeasures are not developed and implemented. Bed rest is used to simulate the reduced mechanical forces in humans and was used to test the hypothesis that oral alendronate would reduce the effects of long duration (17 weeks) inactivity on bone. Eight male subjects were given daily oral doses of alendronate during 17 weeks of horizontal bed rest and compared with 13 male control subjects not given the drug. Efficacy was evaluated based on measurements of bone markers, calcium balance and bone density performed before, during and after the bed rest. The results show that oral alendronate attenuates most of the characteristic changes associated with long duration bed rest and presumably space flight.

  18. Bone density in limb-immobilized beagles: An animal model for bone loss in weightlessness

    NASA Technical Reports Server (NTRS)

    Wolinsky, Ira

    1987-01-01

    Prolonged weightlessness is man in space flight results in a slow progressive demineralization of bone accompanied by an increased calcium output in the urine resulting in negative calcium balances. This possibly irreversible bone loss may constitute a serious limiting factor to long duration manned space flight. In order to seek and test preventative measures an appropriate ground based animal model simulating weightlessness is necessary. Use of the mature Beagle in limb immobilization has been documented as an excellent model for orthopedic research since this animal most closely simulates the phenomenom of bone loss with regards to growth, remodeling, structure, chemistry and mineralization. The purpose of this project is to develop a research protocol for the study of bone loss in Beagles during and after cast immobilization of a hindleg; research will then be initiated.

  19. Dried plum's unique capacity to reverse bone loss and alter bone metabolism in postmenopausal osteoporosis model.

    PubMed

    Rendina, Elizabeth; Hembree, Kelsey D; Davis, McKale R; Marlow, Denver; Clarke, Stephen L; Halloran, Bernard P; Lucas, Edralin A; Smith, Brenda J

    2013-01-01

    Interest in dried plum has increased over the past decade due to its promise in restoring bone and preventing bone loss in animal models of osteoporosis. This study compared the effects of dried plum on bone to other dried fruits and further explored the potential mechanisms of action through which dried plum may exert its osteoprotective effects. Adult osteopenic ovariectomized (OVX) C57BL/6 mice were fed either a control diet or a diet supplemented with 25% (w/w) dried plum, apple, apricot, grape or mango for 8 weeks. Whole body and spine bone mineral density improved in mice consuming the dried plum, apricot and grape diets compared to the OVX control mice, but dried plum was the only fruit to have an anabolic effect on trabecular bone in the vertebra and prevent bone loss in the tibia. Restoration of biomechanical properties occurred in conjunction with the changes in trabecular bone in the spine. Compared to other dried fruits in this study, dried plum was unique in its ability to down-regulate osteoclast differentiation coincident with up-regulating osteoblast and glutathione (GPx) activity. These alterations in bone metabolism and antioxidant status compared to other dried fruits provide insight into dried plum's unique effects on bone.

  20. Effect of bone loss in anterior shoulder instability

    PubMed Central

    Garcia, Grant H; Liu, Joseph N; Dines, David M; Dines, Joshua S

    2015-01-01

    Anterior shoulder instability with bone loss can be a difficult problem to treat. It usually involves a component of either glenoid deficiency or a Hill-Sachs lesion. Recent data shows that soft tissue procedures alone are typically not adequate to provide stability to the shoulder. As such, numerous surgical procedures have been described to directly address these bony deficits. For glenoid defects, coracoid transfer and iliac crest bone block procedures are popular and effective. For humeral head defects, both remplissage and osteochondral allografts have decreased the rates of recurrent instability. Our review provides an overview of current literature addressing these treatment options and others for addressing bone loss complicating anterior glenohumeral instability. PMID:26085984

  1. Raloxifene inhibits bone loss and improves bone strength through an Opg-independent mechanism.

    PubMed

    Yan, Mei-zhu; Xu, Yong; Gong, Yun-xia; Liu, Jian-min; Lu, Shun-yuan; Huang, Lei; Wang, Zhu-gang; Zhao, Yong-ju; Pang, Xiao-fen

    2010-02-01

    The osteoblast-derived paracrine factor osteoprotegerin (OPG) is considered to play a key role in inhibition of osteoclast formation and activity. Recently, raloxifene, a nonsteroidal benzothiophene, was found to exert anti-resorptive effects via modulating OPG expression in osteoblasts. To explore whether raloxifene regulates bone metabolism via an OPG-dependant pathway in vivo, we investigated the effects of raloxifene on bone loss in Opg-deficient mice. The results show that bone mineral density and bone strength are increased in mice deficient for Opg after treatment with raloxifene for 30 days. Histomorphometric analysis shows that raloxifene can increase bone trabecular area and decrease the number of osteoclasts in Opg (-/-) mice. Moreover, raloxifene reduces Rankl transcription and serum level of Rankl, which is dramatically increased in Opg knockout mice. These results suggest that raloxifene-induced inhibition of bone resorption may be independent of Opg pathway in mice.

  2. Aromatase inhibitor-induced bone loss increases the progression of estrogen receptor-negative breast cancer in bone and exacerbates muscle weakness in vivo.

    PubMed

    Wright, Laura E; Harhash, Ahmed A; Kozlow, Wende M; Waning, David L; Regan, Jenna N; She, Yun; John, Sutha K; Murthy, Sreemala; Niewolna, Maryla; Marks, Andrew R; Mohammad, Khalid S; Guise, Theresa A

    2017-01-31

    Aromatase inhibitors (AIs) cause muscle weakness, bone loss, and joint pain in up to half of cancer patients. Preclinical studies have demonstrated that increased osteoclastic bone resorption can impair muscle contractility and prime the bone microenvironment to accelerate metastatic growth. We hypothesized that AI-induced bone loss could increase breast cancer progression in bone and exacerbate muscle weakness associated with bone metastases. Female athymic nude mice underwent ovariectomy (OVX) or sham surgery and were treated with vehicle or AI (letrozole; Let). An OVX-Let group was then further treated with bisphosphonate (zoledronic acid; Zol). At week three, trabecular bone volume was measured and mice were inoculated with MDA-MB-231 cells into the cardiac ventricle and followed for progression of bone metastases. Five weeks after tumor cell inoculation, tumor-induced osteolytic lesion area was increased in OVX-Let mice and reduced in OVX-Let-Zol mice compared to sham-vehicle. Tumor burden in bone was increased in OVX-Let mice relative to sham-vehicle and OVX-Let-Zol mice. At the termination of the study, muscle-specific force of the extensor digitorum longus muscle was reduced in OVX-Let mice compared to sham-vehicle mice, however, the addition of Zol improved muscle function. In summary, AI treatment induced bone loss and skeletal muscle weakness, recapitulating effects observed in cancer patients. Prevention of AI-induced osteoclastic bone resorption using a bisphosphonate attenuated the development of breast cancer bone metastases and improved muscle function in mice. These findings highlight the bone microenvironment as a modulator of tumor growth locally and muscle function systemically.

  3. Weight, muscle and bone loss during space flight: another perspective.

    PubMed

    Stein, T P

    2013-09-01

    Space flight is a new experience for humans. Humans adapt if not perfectly, rather well to life without gravity. There is a reductive remodeling of the musculo-skeletal system. Protein is lost from muscles and calcium from bones with anti-gravity functions. The observed biochemical and physiological changes reflect this accommodative process. The two major direct effects of the muscle loss are weakness post-flight and the increased incidence of low back ache pre- and post-flight. The muscle protein losses are compromised by the inability to maintain energy balance inflight. Voluntary dietary intake is reduced during space flight by ~20 %. These adaptations to weightlessness leave astronauts ill-equipped for life with gravity. Exercise, the obvious counter-measure has been repeatedly tried and since the muscle and bone losses persist it is not unreasonable to assume that success has been limited at best. Nevertheless, more than 500 people have now flown in space for up to 1 year and have done remarkably well. This review addresses the question of whether enough is now known about these three problems (negative energy balance, muscle loss and bone loss) for to the risks to be considered either acceptable or correctible enough to meet the requirements for a Mars mission.

  4. Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to explore bioavailability, efficacy, and molecular mechanisms of green tea polyphenols (GTP) related to preventing bone loss in rats with chronic inflammation. A 2 (placebo vs. lipopolysaccharide, LPS) × 2 (no GTP vs. 0.5% GTP in drinking water) factorial design using ...

  5. Cortical bone loss with age in three native American populations.

    PubMed

    Ericksen, M F

    1976-11-01

    Age-related thinning of cortical bone was investigated in archaeological populations of Eskimos, Pueblos, and Arikaras. Medial-lateral cortical thickness was measured on radiographs of humerus and femur, and thickness of the anterior femoral cortex was measured directly on samples taken for histologic study. Maximum length of the bones was used to calculate indices of relative cortical thickness, in order to minimize differences due to body size and build. Bone loss in the humerus begins before middle age in all three populations and, except for Eskimo males, the same is true of the anterior femoral cortex. In general, overall female loss of cortical bone amounts to two or three times that of the males, and in the case of the humerus and the anterior cortex of the femur, this difference is evident by middle age. The weight-bearing femoral medial-lateral cortex shows less sexual difference but has the greatest number of statistically significant differences between populations and the greatest contrast between populations in pattern of loss with age. It appears that of the cortical regions studied this is the area upon which environmental factors have the greatest effect, whereas areas more subject to tensile stress, the humerus and anterior femoral cortex, are less affected by these factors.

  6. Hand osteoarthritis and bone loss: is there an inverse relationship?

    PubMed

    Weiss, Elizabeth

    2013-10-01

    An inverse relationship between osteoarthritis (OA) and bone loss has been supported in clinical research, but there has been little research on bioarchaeological skeletal remains. The current study examines 115 adults from a prehistoric hunter-gatherer population to aid in determining whether hand OA and bone loss are negatively correlated. OA lipping is scored on a four-point scale on left and right trapezia, MC1s, and MC2s and then analyzed with regard to their relationships with sex, age, right MC2 cortical index, and left and right MC1 robusticity, midshaft circumference, and midshaft diameter values. With sexes and ages combined, higher OA scores are found in individuals with greater midshaft diameters. However, lower cortical indices were found in individuals with higher right MC2 OA scores. The data presented tenuously support that bone loss is lower in individuals with more severe osteoarthritis, but age-related changes in bone deposition may make cortical index and other external shaft dimensions an unsuitable variable to examine this relationship.

  7. Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation

    PubMed Central

    Fan, Ruoxun; Zhang, Xianbin; Liu, Jun; Jia, Zhengbin; Zhu, Dong

    2016-01-01

    The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone. PMID:27403206

  8. Charged-Particle Acceleration and Energy Loss Measurements on OMEGA

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Li, C. K.; Séguin, F. H.; Ram, A. K.; Frenje, J. A.; Petrasso, R. D.; Soures, J. M.; Glebov, V. Yu.; Meyerhofer, D. D.; Roberts, S.; Sorce, C.; Stoeckl, C.; Sangster, T. C.; Phillips, T. W.

    2000-10-01

    Measurements have been made of charged fusion products produced in D ^3He-filled targets irradiated on OMEGA. Comparing the energy shifts of four particle types has probed two distinct physical processes: electrostatic acceleration in the low-density corona and energy loss in the high-density target. When the burn occurred during the laser pulse, particle energy shifts were dominated by acceleration effects. Using a simple mode, the time history of the target's electrostatic potential was found and shown to decay to zero soon after laser irradiation was complete. When the burn occurred after the pulse, particle energy shifts were dominated by energy losses in the target, allowing charged-particle stopping-power predictions to be tested. The results provide the first verification of the general form of stopping power theories over a wide velocity range. This work was supported by the U.S. DOE Office of ICF under Coop. Agreem. No. DE-FC03-92SF19460.

  9. Regulators of G protein signaling 12 promotes osteoclastogenesis in bone remodeling and pathological bone loss

    PubMed Central

    Yuan, X; Cao, J; Liu, T; Li, Y-P; Scannapieco, F; He, X; Oursler, M J; Zhang, X; Vacher, J; Li, C; Olson, D; Yang, S

    2015-01-01

    Regulators of G protein signaling (Rgs) have pivotal roles in controlling various cellular processes, such as cell differentiation. How Rgs proteins regulate osteoclast (OC) differentiation, function and bone homeostasis is poorly understood. It was previously demonstrated that Rgs12, the largest protein in the Rgs family, is predominantly expressed in OCs and regulates OC differentiation in vitro. To further understand the role and mechanism of Rgs12 in OC differentiation and bone diseases in vivo, we created OC-targeted Rgs12 knockout mice by using inducible Mx1-Cre and CD11b-Cre. Deletion of Rgs12 in hematopoietic cells or specifically in OC precursors resulted in increased bone mass with decreased OC numbers. Loss of Rgs12 impaired OC differentiation and function with impaired Ca2+ oscillations and reduced nuclear factor of activated T cells (NFAT) 2 expression. The introduction of wild-type osteoblasts did not rescue the defective osteoclastogenesis. Ectopic expression of NFAT2 rescued defective OC differentiation in CD11b;Rgs12fl/fl cells and promoted normal OC differentiation. Moreover, deletion of Rgs12 significantly inhibited pathological osteoclastogenesis and bone destruction in Rgs12-deficient mice that were subjected to ovariectomy and lipodysaccharide for bone loss. Thus our findings demonstrate that Rgs12 is an important regulator in OC differentiation and function and identify Rgs12 as a potential therapeutic target for osteoporosis and inflammation-induced bone loss. PMID:25909889

  10. Irreversible bone loss in osteomalacia. Comparison of radial photon absorptiometry with iliac bone histomorphometry during treatment.

    PubMed Central

    Parfitt, A M; Rao, D S; Stanciu, J; Villanueva, A R; Kleerekoper, M; Frame, B

    1985-01-01

    We examined the relationships between the changes in bone mineral deficit in the radius, determined by single-energy photon absorptiometry at standard proximal and distal sites, and in the ilium, determined by bone histomorphometry, during the treatment of osteomalacia of diverse etiology in 28 patients. In the ilium, relative osteoid volume decreased by 75-80% in both cortical bone (from 6.0% to 1.5%) and trabecular bone (from 30.1% to 6.6%) during a mean treatment duration of 2 yr. There was also a significant fall in iliac cortical porosity from 10.3% to 7.8%. As a result, mineralized bone volume increased by 7.5% in cortical and by 40.1% in trabecular bone; the cortical and trabecular increments were correlated (r = 0.69, P less than 0.001). The properly weighted increase for the entire tissue sample was 18.6%. By contrast, there was no change in bone mineral at either radial site, although there was a 2% increase at both sites when allowance was made for age-related bone loss during treatment. The proximal and distal age-adjusted increments was correlated (r = 0.76, P less than 0.001), but there was no correlation between the changes in any photon absorptiometric and any histomorphometric index. In that iliac cortical bone turnover in normal subjects was 7.2%/yr, we estimated the rate of bone turnover to be less than 2%/yr at both proximal and distal radial sites, including any trabecular bone present at the distal site. Compared to appropriate control subjects, the bone mineral deficits fell during treatment from 19.2% to 17.1% at the proximal radius (greater than 95% cortical bone) and from 20.5% to 18.5% at the distal radius (greater than 75% cortical bone). In the ilium the deficits, assuming attainment of normal values for osteoid volume and cortical porosity, fell from 41.7% to 36.1% in cortical and from 31.5% to 6.3% in trabecular bone, the properly weighted combined deficit falling from 38.6% to 27.7%. The irreversible iliac cortical deficit was

  11. Massive Bone Loss Due to Orchidectomy and Localized Disuse: Preventive Effects of a Biosphonsphonate

    NASA Astrophysics Data System (ADS)

    Libouban, H.; Moreau, M. F.; Chappard, D.

    2008-06-01

    Orchidectomy (ORX) and hindlimb paralysis induced by botulinum neurotoxin (BTX) were combined to see if their effects were cumulative and if bone loss could be prevented by an antiresorptive agent (risedronate) or testosterone. Four groups of mature rats were studied for 1 month: SHAM operated; ORX and right hindlimb immobilization (BTX); ORX+BTX+risedronate or testosterone. Bone loss and microarchitecture deterioration were maximized on the immobilized bone. Risedronate but not testosterone prevented trabecular bone loss but was less effective on cortical bone loss. ORX and BTX had additive effects on bone loss which can be prevented by risedronate but not testosterone.

  12. Bone loss and human adaptation to lunar gravity

    NASA Technical Reports Server (NTRS)

    Keller, T. S.; Strauss, A. M.

    1992-01-01

    Long-duration space missions and establishment of permanently manned bases on the Moon and Mars are currently being planned. The weightless environment of space and the low-gravity environments of the Moon and Mars pose an unknown challenge to human habitability and survivability. Of particular concern in the medical research community today is the effect of less than Earth gravity on the human skeleton, since the limits, if any, of human endurance in low-gravity environments are unknown. This paper provides theoretical predictions on bone loss and skeletal adaptation to lunar and other nonterrestrial-gravity environments based upon the experimentally derived relationship, density approximately (mass x gravity)(exp 1/8). The predictions are compared to skeletal changes reported during bed rest, immobilization, certrifugation, and spaceflight. Countermeasures to reduce bone losses in fractional gravity are also discussed.

  13. Secreted Wnt Signaling Inhibitors in Disuse-Induced Bone Loss

    DTIC Science & Technology

    2014-07-01

    approach for overcoming the bone loss that normally occurs with disuse. We are also investigating the efficacy of Dkk1 neutralization (and genetic...proposed to determine whether local, secreted regulators of Wnt/Lrp signaling (Sost,  Dkk1 ) modulate bone  loss in response to mechanical disuse...with muta ons in Wnt modulators (Sost‐/‐,  Dkk1 +/‐) and in wild‐type mice that are also treated with  neutralizing an body to  Dkk1  or Sost.  These

  14. Simulating Bone Loss in Microgravity Using Mathematical Formulations of Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Pennline, James A.

    2009-01-01

    Most mathematical models of bone remodeling are used to simulate a specific bone disease, by disrupting the steady state or balance in the normal remodeling process, and to simulate a therapeutic strategy. In this work, the ability of a mathematical model of bone remodeling to simulate bone loss as a function of time under the conditions of microgravity is investigated. The model is formed by combining a previously developed set of biochemical, cellular dynamics, and mechanical stimulus equations in the literature with two newly proposed equations; one governing the rate of change of the area of cortical bone tissue in a cross section of a cylindrical section of bone and one governing the rate of change of calcium in the bone fluid. The mechanical stimulus comes from a simple model of stress due to a compressive force on a cylindrical section of bone which can be reduced to zero to mimic the effects of skeletal unloading in microgravity. The complete set of equations formed is a system of first order ordinary differential equations. The results of selected simulations are displayed and discussed. Limitations and deficiencies of the model are also discussed as well as suggestions for further research.

  15. The role of the macrophage in periprosthetic bone loss

    PubMed Central

    Santerre, J. Paul; Labow, Rosalind S.; Boynton, Erin L.

    2000-01-01

    Aseptic loosening after total joint replacement remains the most common reason for long-term implant failure. Macrophages activated by submicron wear particles of the polyethylene liner used in joint replacement have been shown to be the source of periprosthetic bone loss. Understanding the role of material chemistry in macrophage activation and the subsequent effects that macrophage-derived enzymes play in the degradation of implanted biomaterials is key to developing methods for prolonging the lifespan of implantable materials. PMID:10851410

  16. Comparison between the properties of "accelerated-aged" bones and archaeological bones.

    NASA Astrophysics Data System (ADS)

    Abdel Maksoud, Gomaa

    This study focuses on the changes in the properties of bones that resulted from 'heatageing' at different temperatures and long term of exposure compared to archaeological samples. It also aims to prepare aged samples similar to archaeological samples for the experimental studies in the conservation of bone artifacts. FTIR, XRD, UV spectrophotometry, dual-energy X-ray absorptiometry, polarizing and SEM microscopes were used as analytical techniques. The results revealed that 'heat ageing' technique used at different temperatures (200oC and 300OC) and times (from 1 hour to 13 hours) affected the properties of change in colour, loss of bone density, destruction of the surface morphology, increasing the crystallinity index which, was similar with the archaeological sample after 8 and 12 hours of exposure. The study concluded that 'heat ageing' at 300°C after 8 hours can give properties close or similar to archaeological samples.

  17. NELL-1 in the treatment of osteoporotic bone loss.

    PubMed

    James, Aaron W; Shen, Jia; Zhang, Xinli; Asatrian, Greg; Goyal, Raghav; Kwak, Jin H; Jiang, Lin; Bengs, Benjamin; Culiat, Cymbeline T; Turner, A Simon; Seim Iii, Howard B; Wu, Benjamin M; Lyons, Karen; Adams, John S; Ting, Kang; Soo, Chia

    2015-06-17

    NELL-1 is a secreted, osteoinductive protein whose expression rheostatically controls skeletal ossification. Overexpression of NELL-1 results in craniosynostosis in humans and mice, whereas lack of Nell-1 expression is associated with skeletal undermineralization. Here we show that Nell-1-haploinsufficient mice have normal skeletal development but undergo age-related osteoporosis, characterized by a reduction in osteoblast:osteoclast (OB:OC) ratio and increased bone fragility. Recombinant NELL-1 binds to integrin β1 and consequently induces Wnt/β-catenin signalling, associated with increased OB differentiation and inhibition of OC-directed bone resorption. Systemic delivery of NELL-1 to mice with gonadectomy-induced osteoporosis results in improved bone mineral density. When extended to a large animal model, local delivery of NELL-1 to osteoporotic sheep spine leads to significant increase in bone formation. Altogether, these findings suggest that NELL-1 deficiency plays a role in osteoporosis and demonstrate the potential utility of NELL-1 as a combination anabolic/antiosteoclastic therapeutic for bone loss.

  18. NELL-1 in the treatment of osteoporotic bone loss

    DOE PAGES

    James, Aaron W.; Shen, Jia; Zhang, Xinli; ...

    2015-06-17

    NELL-1 is a secreted, osteoinductive protein whose expression rheostatically controls skeletal ossification. Overexpression of NELL-1 results in craniosynostosis in humans and mice, whereas lack of Nell-1 expression is associated with skeletal undermineralization. Here we show that Nell-1-haploinsufficient mice have normal skeletal development but undergo age-related osteoporosis, characterized by a reduction in osteoblast: osteoclast (OB:OC) ratio and increased bone fragility. Recombinant NELL-1 binds to integrin β1 and consequently induces Wnt/β-catenin signalling, associated with increased OB differentiation and inhibition of OC-directed bone resorption. Systemic delivery of NELL-1 to mice with gonadectomy-induced osteoporosis results in improved bone mineral density. When extended to amore » large animal model, local delivery of NELL-1 to osteoporotic sheep spine leads to significant increase in bone formation. Furthermore, these findings suggest that NELL-1 deficiency plays a role in osteoporosis and demonstrate the potential utility of NELL-1 as a combination anabolic/antiosteoclastic therapeutic for bone loss.« less

  19. NELL-1 in the treatment of osteoporotic bone loss

    SciTech Connect

    James, Aaron W.; Shen, Jia; Zhang, Xinli; Asatrian, Greg; Goyal, Raghav; Kwak, Jin H.; Jiang, Lin; Bengs, Benjamin; Culiat, Cymbeline T.; Turner, A. Simon; Seim, III, Howard B.; Wu, Benjamin M.; Lyons, Karen; Adams, John S.; Ting, Kang; Soo, Chia

    2015-06-17

    NELL-1 is a secreted, osteoinductive protein whose expression rheostatically controls skeletal ossification. Overexpression of NELL-1 results in craniosynostosis in humans and mice, whereas lack of Nell-1 expression is associated with skeletal undermineralization. Here we show that Nell-1-haploinsufficient mice have normal skeletal development but undergo age-related osteoporosis, characterized by a reduction in osteoblast: osteoclast (OB:OC) ratio and increased bone fragility. Recombinant NELL-1 binds to integrin β1 and consequently induces Wnt/β-catenin signalling, associated with increased OB differentiation and inhibition of OC-directed bone resorption. Systemic delivery of NELL-1 to mice with gonadectomy-induced osteoporosis results in improved bone mineral density. When extended to a large animal model, local delivery of NELL-1 to osteoporotic sheep spine leads to significant increase in bone formation. Furthermore, these findings suggest that NELL-1 deficiency plays a role in osteoporosis and demonstrate the potential utility of NELL-1 as a combination anabolic/antiosteoclastic therapeutic for bone loss.

  20. NELL-1 in the treatment of osteoporotic bone loss

    PubMed Central

    James, Aaron W.; Shen, Jia; Zhang, Xinli; Asatrian, Greg; Goyal, Raghav; Kwak, Jin H.; Jiang, Lin; Bengs, Benjamin; Culiat, Cymbeline T.; Turner, A. Simon; Seim III, Howard B.; Wu, Benjamin M.; Lyons, Karen; Adams, John S.; Ting, Kang; Soo, Chia

    2015-01-01

    NELL-1 is a secreted, osteoinductive protein whose expression rheostatically controls skeletal ossification. Overexpression of NELL-1 results in craniosynostosis in humans and mice, whereas lack of Nell-1 expression is associated with skeletal undermineralization. Here we show that Nell-1-haploinsufficient mice have normal skeletal development but undergo age-related osteoporosis, characterized by a reduction in osteoblast:osteoclast (OB:OC) ratio and increased bone fragility. Recombinant NELL-1 binds to integrin β1 and consequently induces Wnt/β-catenin signalling, associated with increased OB differentiation and inhibition of OC-directed bone resorption. Systemic delivery of NELL-1 to mice with gonadectomy-induced osteoporosis results in improved bone mineral density. When extended to a large animal model, local delivery of NELL-1 to osteoporotic sheep spine leads to significant increase in bone formation. Altogether, these findings suggest that NELL-1 deficiency plays a role in osteoporosis and demonstrate the potential utility of NELL-1 as a combination anabolic/antiosteoclastic therapeutic for bone loss. PMID:26082355

  1. Whey Protein Concentrate Hydrolysate Prevents Bone Loss in Ovariectomized Rats.

    PubMed

    Kim, Jonggun; Kim, Hyung Kwan; Kim, Saehun; Imm, Ji-Young; Whang, Kwang-Youn

    2015-12-01

    Milk is known as a safe food and contains easily absorbable minerals and proteins, including whey protein, which has demonstrated antiosteoporotic effects on ovariectomized rats. This study evaluated the antiosteoporotic effect of whey protein concentrate hydrolysate (WPCH) digested with fungal protease and whey protein concentrate (WPC). Two experiments were conducted to determine (1) efficacy of WPCH and WPC and (2) dose-dependent impact of WPCH in ovariectomized rats (10 weeks old). In Experiment I, ovariectomized rats (n=45) were allotted into three dietary treatments of 10 g/kg diet of WPC, 10 g/kg diet of WPCH, and a control diet. In Experiment II, ovariectomized rats (n=60) were fed four different diets (0, 10, 20, and 40 g/kg of WPCH). In both experiments, sham-operated rats (n=15) were also fed a control diet containing the same amount of amino acids and minerals as dietary treatments. After 6 weeks, dietary WPCH prevented loss of bone, physical properties, mineral density, and mineral content, and improved breaking strength of femurs, with similar effect to WPC. The bone resorption enzyme activity (tartrate resistance acid phosphatase) in tibia epiphysis decreased in response to WPCH supplementation, while bone formation enzyme activity (alkaline phosphatase) was unaffected by ovariectomy and dietary treatment. Bone properties and strength increased as the dietary WPCH level increased (10 and 20 g/kg), but there was no difference between the 20 and 40 g/kg treatment. WPCH and WPC supplementation ameliorated bone loss induced by ovariectomy in rats.

  2. Whey Protein Concentrate Hydrolysate Prevents Bone Loss in Ovariectomized Rats

    PubMed Central

    Kim, Jonggun; Kim, Hyung Kwan; Kim, Saehun; Imm, Ji-Young

    2015-01-01

    Abstract Milk is known as a safe food and contains easily absorbable minerals and proteins, including whey protein, which has demonstrated antiosteoporotic effects on ovariectomized rats. This study evaluated the antiosteoporotic effect of whey protein concentrate hydrolysate (WPCH) digested with fungal protease and whey protein concentrate (WPC). Two experiments were conducted to determine (1) efficacy of WPCH and WPC and (2) dose-dependent impact of WPCH in ovariectomized rats (10 weeks old). In Experiment I, ovariectomized rats (n=45) were allotted into three dietary treatments of 10 g/kg diet of WPC, 10 g/kg diet of WPCH, and a control diet. In Experiment II, ovariectomized rats (n=60) were fed four different diets (0, 10, 20, and 40 g/kg of WPCH). In both experiments, sham-operated rats (n=15) were also fed a control diet containing the same amount of amino acids and minerals as dietary treatments. After 6 weeks, dietary WPCH prevented loss of bone, physical properties, mineral density, and mineral content, and improved breaking strength of femurs, with similar effect to WPC. The bone resorption enzyme activity (tartrate resistance acid phosphatase) in tibia epiphysis decreased in response to WPCH supplementation, while bone formation enzyme activity (alkaline phosphatase) was unaffected by ovariectomy and dietary treatment. Bone properties and strength increased as the dietary WPCH level increased (10 and 20 g/kg), but there was no difference between the 20 and 40 g/kg treatment. WPCH and WPC supplementation ameliorated bone loss induced by ovariectomy in rats. PMID:26367331

  3. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone

    PubMed Central

    Todd, Henry; Galea, Gabriel L.; Meakin, Lee B.; Delisser, Peter J.; Lanyon, Lance E.

    2015-01-01

    Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse) mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor to

  4. Erythropoietin treatment in murine multiple myeloma: immune gain and bone loss

    PubMed Central

    Deshet-Unger, Naamit; Hiram-Bab, Sahar; Haim-Ohana, Yasmin; Mittelman, Moshe; Gabet, Yankel; Neumann, Drorit

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy, characterized by osteolytic lesions and monoclonal immunoglobulins. The anemia, accompanying the disease is often treated with recombinant human EPO. Diverse non-erythropoietic effects of EPO have led us to question its combined action on the immune system and bone in the 5T33MM mouse model. EPO administration to MM mice attenuated disease progression as demonstrated by a decrease in serum MM IgG2b, splenic CD138 expressing cells, IL-6 and RORγτ transcripts in bone marrow (BM). IFN-γ transcript levels and macrophages (F4/80+CD11b+) in the BM both increased ~1.5 fold in the EPO-treated MM mice. In-vitro, EPO stimulated phagocytosis of 5T33MM cells (+30%) by BM-derived macrophages. In contrast, high-resolution microCT analysis of distal femurs revealed EPO-associated bone loss in both healthy and 5T33MM mice. EPO significantly increased expression of the osteoclastogenic nuclear factor-kappa B ligand (RANKL) in healthy mice, but not in MM mice, likely due to antagonizing effects on MM progression. Thus, in MM, EPO may act as a double-edged-sword stimulating immune response, while accelerating bone resorption, possibly via direct action on BM macrophages. This study supports a prudent approach of treating anemia in MM patients, aiming to maintain EPO-associated anti-MM effects, while considering bone damage. PMID:27481313

  5. Accelerating loss of seagrasses across the globe threatens coastal ecosystems

    PubMed Central

    Waycott, Michelle; Duarte, Carlos M.; Carruthers, Tim J. B.; Orth, Robert J.; Dennison, William C.; Olyarnik, Suzanne; Calladine, Ainsley; Fourqurean, James W.; Heck, Kenneth L.; Hughes, A. Randall; Kendrick, Gary A.; Kenworthy, W. Judson; Short, Frederick T.; Williams, Susan L.

    2009-01-01

    Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 km2 yr−1 since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% yr−1 before 1940 to 7% yr−1 since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth. PMID:19587236

  6. Artificial Gravity as a Bone Loss Countermeasure in Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Zwart, S. R.; Crawford, G. E.; Gillman, P. L.; LeBlanc, A.; Shackelford, L. C.; Heer, M. A.

    2007-01-01

    The impact of microgravity on the human body is a significant concern for space travelers. We report here initial results from a pilot study designed to explore the utility of artificial gravity (AG) as a countermeasure to the effects of microgravity, specifically to bone loss. After an initial phase of adaptation and testing, 15 male subjects underwent 21 days of 6 head-down bed rest to simulate the deconditioning associated with space flight. Eight of the subjects underwent 1 h of centrifugation (AG, 1 gz at the heart, 2.5 gz at the feet) each day for 21 days, while 7 of the subjects served as untreated controls (CN). Blood and urine were collected before, during, and after bed rest for bone marker determinations. At this point, preliminary data are available on the first 8 subjects (6 AG, and 2 CN). Comparing the last week of bed rest to before bed rest, urinary excretion of the bone resorption marker n-telopeptide increased 95 plus or minus 59% (mean plus or minus SD) in CN but only 32 plus or minus 26% in the AG group. Similar results were found for another resorption marker, helical peptide (increased 57 plus or minus 0% and 35 plus or minus 13% in CN and AG respectively). Bone-specific alkaline phosphatase, a bone formation marker, did not change during bed rest. At this point, sample analyses are continuing, including calcium tracer kinetic studies. These initial data demonstrate the potential effectiveness of short-radius, intermittent AG as a countermeasure to the bone deconditioning that occurs during bed rest.

  7. Fractionated Stereotactic Radiotherapy of Vestibular Schwannomas Accelerates Hearing Loss

    SciTech Connect

    Rasmussen, Rune; Claesson, Magnus; Stangerup, Sven-Eric; Roed, Henrik; Christensen, Ib Jarle; Caye-Thomasen, Per; Juhler, Marianne

    2012-08-01

    Objective: To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hearing preservation was also investigated. Methods and Materials: Forty-two patients receiving FSRT between 1997 and 2008 with a minimum follow-up of 2 years were included. All patients received 54 Gy in 27-30 fractions during 5.5-6.0 weeks. Clinical and audiometry data were collected prospectively. From a 'wait-and-scan' group, 409 patients were selected as control subjects, matched by initial audiometric parameters. Radiation dose to the cochlea was measured using the original treatment plan and then related to changes in acoustic parameters. Results: Actuarial 2-, 4-, and 10-year tumor control rates were 100%, 91.5%, and 85.0%, respectively. Twenty-one patients had serviceable hearing before FSRT, 8 of whom (38%) retained serviceable hearing at 2 years after FSRT. No patients retained serviceable hearing after 10 years. At 2 years, hearing preservation rates in the control group were 1.8 times higher compared with the group receiving FSRT (P=.007). Radiation dose to the cochlea was significantly correlated to deterioration of the speech reception threshold (P=.03) but not to discrimination loss. Conclusion: FSRT accelerates the naturally occurring hearing loss in patients with vestibular schwannoma. Our findings, using fractionation of radiotherapy, parallel results using single-dose radiation. The radiation dose to the cochlea is correlated to hearing loss measured as the speech reception threshold.

  8. Comparison of Bone Loss around Bone Platform Shift and Non-Bone Platform Shift Implants After 12 Months

    PubMed Central

    Rokn, Amir Reza; Badri, Samareh; Rasouli Ghahroudi, Amir Alireza; Manasheof, Rebeca; Kharazi Fard, Mohamad Javad; Barikani, Hamidreza

    2015-01-01

    Objectives: The aim of the present randomized clinical trial was to evaluate marginal bone loss around two types of implants modified at the neck area: Nobel Active and Nobel Replace Groovy, both manufactured by Nobel Biocare. Materials and Methods: A total of 25 Nobel Active and 21 Nobel Replace Groovy implants were included in the present study. The implants were placed based on the relevant protocol and patient inclusion and exclusion criteria. The amount of bone loss around implants was compared at 6 and 12-month intervals using digital periapical radiographs. Results: The mean bone loss values in the Nobel Active and Nobel Replace Groovy groups were 0.682 mm and 0.645 mm, respectively, with no statistically significant difference based on the results of independent t-test (P=0.802). Conclusion: Use of both implant types yielded favorable results, with high durability. The two implant types exhibited no superiority over each other in terms of bone loss. PMID:26622270

  9. Both spontaneous Ins2(+/-) and streptozotocin-induced type I diabetes cause bone loss in young mice.

    PubMed

    Coe, Lindsay M; Zhang, Jing; McCabe, Laura R

    2013-04-01

    The adolescent skeleton undergoes accelerated growth determining overall bone density, length, and quality. Diseases such as type 1 diabetes (T1D), most often diagnosed in adolescents, can alter bone processes and promote bone loss. Studies examining type 1 diabetic (T1D) bone pathologies typically utilize adult mice and rely on pharmacologic models such as streptozotocin (STZ)-induced diabetic rodents. To test the effect of T1D on adolescent bone growth/density we used a novel juvenile genetic model (Ins2(+/-) mice) that spontaneously develop T1D at approximately 5 weeks of age and compared our findings with STZ-induced T1D mice. Compared to controls, both Ins2(+/-) and STZ-induced T1D mice displayed blood glucose levels greater than 300 mg/dl and reduced body, fat and muscle mass as well as femur trabecular bone density. STZ mice exhibited greater bone loss compared to Ins2(+/-) mice despite having lower blood glucose levels. Cortical bone was affected in STZ but not Ins2(+/-) mice. Osteocalcin serum protein and bone RNA levels decreased in both models. Consistent with studies in adult mice, STZ adolescent mice displayed increased marrow adiposity, however this was not observed in the Ins2(+/-) mice. Reduced femur length, decreased growth plate thickness and decreased collagen II expression in both model simplies impaired cartilage formation. In summary, both pharmacologic and spontaneous adolescent T1D mice demonstrated a bone synthesis and growth defect. STZ appears to cause a more severe phenotype. Thus, the Ins2(+/-) mouse could serve as a useful model to study adolescent T1D bone loss with fewer complications.

  10. Prostaglandin E2 Prevents Bone Loss and Adds Extra Bone to Immobilized Distal Femoral Metaphysis in Female Rats

    NASA Technical Reports Server (NTRS)

    Akamine, T.; Jee, W. S. S.; Ke, H. Z.; Li, X. J.; Lin, B. Y.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloading)-induced cancellous bone loss. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to right hindlimb immobilization by bandaging and simultaneously treated subcutaneously daily with 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on the cancellous bone using double-fluorescent labeled, 20 micron thick, undecalcified distal femoral metaphysis sections. We found that PGE2 administration not only prevented disuse-induced bone loss, but also added extra bone to disuse cancellous bone in a dose-response manner. PGE2 prevented the disuse-induced osteopenia by stimulating more bone formation than and shortening the period of bone remodeling. It activated woven bone formation, stimulated lamellar bone formation, and increased the eroded bone surface above that caused by disuse alone. While underloading increased the remodeling period (sigma), PGE2 treatment of underloaded bone shortened the time for osteoclastic bone resorption and bone remodeling, and thus reduced the remodeling space. The study shows that PGE2 is a powerful anabolic agent that prevents disuse-induced osteopenia and adds extra bone to these same bones.

  11. Bone turnover markers in peripheral blood and marrow plasma reflect trabecular bone loss but not endocortical expansion in aging mice.

    PubMed

    Shahnazari, Mohammad; Dwyer, Denise; Chu, Vivian; Asuncion, Frank; Stolina, Marina; Ominsky, Michael; Kostenuik, Paul; Halloran, Bernard

    2012-03-01

    We examined age-related changes in biochemical markers and regulators of osteoblast and osteoclast activity in C57BL/6 mice to assess their utility in explaining age-related changes in bone. Several recently discovered regulators of osteoclasts and osteoblasts were also measured to assess concordance between their systemic levels versus their levels in marrow plasma, to which bone cells are directly exposed. MicroCT of 6-, 12-, and 24-month-old mice indicated an early age-related loss of trabecular bone volume and surface, followed by endocortical bone loss and periosteal expansion. Trabecular bone loss temporally correlated with reductions in biomarkers of bone formation and resorption in both peripheral blood and bone marrow. Endocortical bone loss and periosteal bone gain were not reflected in these protein biomarkers, but were well correlated with increased expression of osteocalcin, rank, tracp5b, and cathepsinK in RNA extracted from cortical bone. While age-related changes in bone turnover markers remained concordant in blood versus marrow, aging led to divergent changes in blood versus marrow for the bone cell regulators RANKL, OPG, sclerostin, DKK1, and serotonin. Bone expression of runx2 and osterix increased progressively with aging and was associated with an increase in the number of osteoprogenitors and osteoclast precursors. In summary, levels of biochemical markers of bone turnover in blood and bone marrow plasma were predictive of an age-related loss of trabecular surfaces in adult C57BL/6 mice, but did not predict gains in cortical surfaces resulting from cortical expansion. Unlike these turnover markers, a panel of bone cell regulatory proteins exhibited divergent age-related changes in marrow versus peripheral blood, suggesting that their circulating levels may not reflect local levels to which osteoclasts and osteoblasts are directly exposed.

  12. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss

    PubMed Central

    Kim, Tae-Ho; Park, Eui Kyun; Huh, Man-Il; Kim, Hong Kyun; Kim, Shin-Yoon; Lee, Sang-Han

    2016-01-01

    Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica) extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr) cocoons spun by Rhus javanica (Bell.) Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr) or 100% ethanolic extract (eeGr) on ovariectomy- (OVX-) induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT) was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks) augmented the inhibition of femoral bone mineral density (BMD), bone mineral content (BMC), and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss. PMID:27313644

  13. Bone Density Loss Is Associated With Blood Cell Counts.

    PubMed

    Valderrábano, Rodrigo J; Lui, Li-Yung; Lee, Jennifer; Cummings, Steven R; Orwoll, Eric S; Hoffman, Andrew R; Wu, Joy Y

    2017-02-01

    Hematopoiesis depends on a supportive microenvironment. Preclinical studies in mice have demonstrated that osteoblasts influence the development of blood cells, particularly erythrocytes, B lymphocytes, and neutrophils. However, it is unknown whether osteoblast numbers or function impact blood cell counts in humans. We tested the hypothesis that men with low BMD or greater BMD loss have decreased circulating erythrocytes and lymphocytes and increased myeloid cells. We performed a cross-sectional analysis and prospective analysis in the Osteoporotic Fractures in Men (MrOS) study, a multisite longitudinal cohort study. A total of 2571 community-dwelling men (≥65 years) who were able to walk without assistance, did not have a hip replacement or fracture, and had complete blood counts (CBCs) at the third study visit were analyzed. Multivariable (MV)-adjusted logistic regression estimated odds of white blood cell (WBC) subtypes (highest and lowest quintile versus middle), and anemia (clinically defined) associated with BMD by DXA scan (at visit 3), annualized percent BMD change (baseline to visit 3), and high BMD loss (>0.5%/year, from baseline to visit 3) at the femoral neck (FN) and total hip (TH). MV-adjusted models included age, BMI, cancer history, smoking status, alcohol intake, corticosteroid use, self-reported health, thiazide use, and physical activity. At visit 3 greater TH BMD loss (per 1 SD) was associated with increased odds of anemia, high neutrophils, and low lymphocytes. Annualized BMD loss of >0.5% was associated with increased odds of anemia, high neutrophils, and low lymphocytes. Similar results were observed for FN BMD regarding anemia and lymphocytes. We conclude that community-dwelling older men with declining hip BMD over about 7 years had increased risks of anemia, lower lymphocyte count, and higher neutrophil count, consistent with preclinical studies. Bone health and hematopoiesis may have greater interdependency than previously recognized.

  14. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...

  15. Osteoarticular and Total Elbow Allograft Reconstruction With Severe Bone Loss

    PubMed Central

    Busfield, Benjamin T.; Khorshad, Daniel S.; Hornicek, Francis J.; Mankin, Henry J.

    2008-01-01

    Osteoarticular allograft reconstruction is an option in patients with massive periarticular elbow bone loss secondary to tumor surgery or trauma. Our consecutive series consisted of 18 patients with tumors and one patient with trauma. Reconstruction consisted of 16 hemiarticular allografts and three total elbow osteoarticular allografts; patients had a minimum followup of 2 years (mean, 9.9 years; range, 2–12 years). For patients who had hemiarticular allografts, 14 of 16 were able to return to their preoperative level of occupational function, with one patient experiencing failure of the allograft from infection. For the three patients who had total elbow allograft reconstructions, all had degenerative changes develop after surgery and two of the allografts failed. Complications occurred in six of 19 patients. Hemiarticular elbow allograft reconstruction is useful for limb salvage with massive bone loss. Total elbow allograft reconstructions have a high failure rate in the mid-term. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196394

  16. Treatment of excessive bone loss from both crus bones with internal bone transport using an intramedullary nail. Case report.

    PubMed

    Bereza, Przemysław; Wojciechowski, Piotr; Kusz, Damian

    2013-01-01

    We present a case report of a 16-year-old patient who suffered multisite and multiorgan injuries following a road accident. The most prominent musculoskeletal problem was a bilateral crush injury of the crus in combination with open fractures. The aim of this study is to present the possibilities and available methods of treatment of patients with extensive posttraumatic and postinflammatory bone loss of the lower limbs that make it possible to avoid amputation. We used intramedullary nailing and internal bone transport to reconstruct continuity and leg length of both crus bones. The treatment was complicated by poor vascularity and emerging complications. After several months and multi-stage treatment the patient was able to walk with full weight-bearing without crutches. Importantly, the patient is satisfied with the outcome of the treatment and does not consider herself disabled. The study presents our approach to the dilemma of choosing between prolonged reconstruction surgery and amputation as a final method.

  17. Alpha-1 antitrypsin gene therapy prevented bone loss in ovariectomy induced osteoporosis mouse model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osteoporosis is a major healthcare burden affecting mostly postmenopausal women characterized by compromised bone strength and increased risk of fragility fracture. Although pathogenesis of this disease is complex, elevated proinflammatory cytokine production is clearly involved in bone loss at meno...

  18. Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption.

    PubMed Central

    Jilka, R L; Takahashi, K; Munshi, M; Williams, D C; Roberson, P K; Manolagas, S C

    1998-01-01

    Loss of sex steroids causes an increase in both the resorption and formation of bone, with the former exceeding the latter. Based on evidence that the increased bone resorption after estrogen loss is due to an increase in osteoclastogenesis, we hypothesized that estrogen loss also stimulates osteoblastogenesis. We report that the number of mesenchymal osteoblast progenitors in the murine bone marrow was increased two- to threefold between 2 and 8 wk after ovariectomy and returned to control levels by 16 wk. Circulating osteocalcin, as well as osteoclastogenesis and the rate of bone loss, followed a very similar temporal pattern. Inhibition of bone resorption by administration of the bisphosphonate alendronate led to a decrease of the absolute number of osteoblast progenitors; however, it did not influence the stimulating effect of ovariectomy on osteoblastogenesis or osteoclastogenesis. These observations indicate that the increased bone formation that follows loss of estrogen can be explained, at least in part, by an increase in osteoblastogenesis. Moreover, they strongly suggest that unlike normal bone remodeling, whereby osteoblast development is stimulated by factors released from the bone matrix during osteoclastic resorption, estrogen deficiency unleashes signals that can stimulate the differentiation of osteoblast progenitors in a fashion that is autonomous from the need created by bone resorption, and therefore, inappropriate. PMID:9576759

  19. The Science and Practice of Bone Health in Oncology: Managing Bone Loss and Metastasis in Patients With Solid Tumors

    PubMed Central

    Lipton, Allan; Uzzo, Robert; Amato, Robert J.; Ellis, Georgiana K.; Hakimian, Behrooz; Roodman, G. David; Smith, Matthew R.

    2011-01-01

    Cancer and its treatment can compromise bone health, leading to fracture, pain, loss of mobility, and hypercalcemia of malignancy. Bone metastasis occurs frequently in advanced prostate and breast cancers, and bony manifestations are commonplace in multiple myeloma. Osteoporosis and osteopenia may be consequences of androgen-deprivation therapy for prostate cancer, aromatase inhibition for breast cancer, or chemotherapy-induced ovarian failure. Osteoporotic bone loss and bone metastasis ultimately share a pathophysiologic pathway that stimulates bone resorption by increasing the formation and activity of osteoclasts. Important mediators of pathologic bone metabolism include substances produced by osteoblasts, such as RANKL, the receptor activator of nuclear factor kappa B ligand, which spurs osteoclast differentiation from myeloid cells. Available therapies are targeted to various steps in cascade of bone metastasis. PMID:19878635

  20. Diet-induced weight loss: the effect of dietary protein on bone.

    PubMed

    Tang, Minghua; O'Connor, Lauren E; Campbell, Wayne W

    2014-01-01

    High-protein (>30% of energy from protein or >1.2 g/kg/day) and moderately high-protein (22% to 29% of energy from protein or 1.0 to 1.2 g/kg/day) diets are popular for weight loss, but the effect of dietary protein on bone during weight loss is not well understood. Protein may help preserve bone mass during weight loss by stimulating insulin-like growth factor 1, a potent bone anabolism stimulator, and increasing intestinal calcium absorption. Protein-induced acidity is considered to have minimal effect on bone resorption in adults with normal kidney function. Both the quantity and predominant source of protein influence changes in bone with diet-induced weight loss. Higher-protein, high-dairy diets may help attenuate bone loss during weight loss.

  1. The osteogenic effects of swimming, jumping, and vibration on the protection of bone quality from disuse bone loss.

    PubMed

    Falcai, M J; Zamarioli, A; Okubo, R; de Paula, F J A; Volpon, J B

    2015-06-01

    We assessed and compared the effects of swimming, jumping, and vibration therapies on the prevention of bone loss because of unloading. Eighty Wistar rats were randomly divided into eight groups: S, permanent hind limb-suspended rats; CON, control rats; S + Swim, unloading interrupted by swimming exercise; S + C(Swim), suspension interrupted by regular weight-bearing with the same duration as in the S + Swim protocol; S + Jump, unloading interrupted by jumping exercise; S + C(Jump), suspension interrupted for regular weight-bearing as in the S + Jump group; S + Vibr, unloading interrupted by vibration; and S + C(Vibr), suspension with interruptions for regular weight-bearing with the same protocol as that used for the S + Vibr rats. At the end of the experiment, the bone mineral density, bone strength, histomorphometric parameters, and serum levels of the bone markers were analyzed. The hind limb-suspended rats exhibited bone quality loss. In contrast, the trained rats showed a significant increase in bone mass, bone strength, bone formation, and serum levels of bone markers compared with the respective controls. Although we did not find a significant difference among the three physical exercises, the osteogenic effect of vibration was slightly lower than that of swimming and jumping. Thus, all physical exercises were efficient in preventing bone loss because of unloading and preserving bone quality.

  2. Bone loss of vertebral bodies at the operative segment after cervical arthroplasty: a potential complication?

    PubMed

    Heo, Dong Hwa; Lee, Dong Chan; Oh, Jong Yang; Park, Choon Keun

    2017-02-01

    OBJECTIVE Bony overgrowth and spontaneous fusion are complications of cervical arthroplasty. In contrast, bone loss or bone remodeling of vertebral bodies at the operation segment after cervical arthroplasty has also been observed. The purpose of this study is to investigate a potential complication-bone loss of the anterior portion of the vertebral bodies at the surgically treated segment after cervical total disc replacement (TDR)-and discuss the clinical significance. METHODS All enrolled patients underwent follow-up for more than 24 months after cervical arthroplasty using the Baguera C disc. Clinical evaluations included recording demographic data and measuring the visual analog scale and Neck Disability Index scores. Radiographic evaluations included measurements of the functional spinal unit's range of motion and changes such as bone loss and bone remodeling. The grading of the bone loss of the operative segment was classified as follows: Grade 1, disappearance of the anterior osteophyte or small minor bone loss; Grade 2, bone loss of the anterior portion of the vertebral bodies at the operation segment without exposure of the artificial disc; or Grade 3, significant bone loss with exposure of the anterior portion of the artificial disc. RESULTS Forty-eight patients were enrolled in this study. Among them, bone loss developed in 29 patients (Grade 1 in 15 patients, Grade 2 in 6 patients, and Grade 3 in 8 patients). Grade 3 bone loss was significantly associated with postoperative neck pain (p < 0.05). Bone loss was related to the motion preservation effect of the operative segment after cervical arthroplasty in contrast to heterotopic ossification. CONCLUSIONS Bone loss may be a potential complication of cervical TDR and affect early postoperative neck pain. However, it did not affect mid- to long-term clinical outcomes or prosthetic failure at the last follow-up. Also, this phenomenon may result in the motion preservation effect in the operative segment

  3. Bone Loss Triggered by the Cytokine Network in Inflammatory Autoimmune Diseases

    PubMed Central

    Amarasekara, Dulshara Sachini; Yu, Jiyeon; Rho, Jaerang

    2015-01-01

    Bone remodeling is a lifelong process in vertebrates that relies on the correct balance between bone resorption by osteoclasts and bone formation by osteoblasts. Bone loss and fracture risk are implicated in inflammatory autoimmune diseases such as rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, and systemic lupus erythematosus. The network of inflammatory cytokines produced during chronic inflammation induces an uncoupling of bone formation and resorption, resulting in significant bone loss in patients with inflammatory autoimmune diseases. Here, we review and discuss the involvement of the inflammatory cytokine network in the pathophysiological aspects and the therapeutic advances in inflammatory autoimmune diseases. PMID:26065006

  4. Secreted Wnt Signaling Inhibitors in Disuse-Induced Bone Loss

    DTIC Science & Technology

    2011-05-01

    regulators of Wnt/Lrp signaling (Sost,  Dkk1 ) modulate bone loss in response to mechanical  disuse. Furthermore, we proposed to test whether these...induced paralysis of the quadriceps, hamstrings, and soleus) in one hindlimb of a series of mice  with mutations in Wnt modulators (Sost‐/‐,  Dkk1 ...and in wild‐type mice that are also treated with  neutralizing antibody to  Dkk1  or Sost (or both).  These experiments have the potential to reveal new

  5. Alfacalcidol versus plain vitamin D in inflammation induced bone loss.

    PubMed

    Scharla, Stephan H; Schacht, Erich; Lempert, Uta G

    2005-09-01

    Inflammatory diseases lead to systemic osteoporosis. Causal factors include increased circulating concentrations of inflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), glucocorticoid medication, and reduced physical activity. In addition, disturbances of vitamin D metabolism play an important role for the development of inflammation induced osteoporosis. Therefore, D-hormone analogs offer an important treatment option. 1,25-dihydroxyvitamin D (D-hormone) prevented bone loss in the rat model of inflammation mediated osteopenia and in an arthritis model. One explanation is that animals and humans with inflammatory diseases exhibit markedly reduced circulating concentrations of D-hormone, partly the result of inhibition of renal 1-alpha-hydroxylase by TNF-alpha. In addition, the number of vitamin D receptors is reduced by glucocorticoids. Moreover, D-hormone has pleiotropic effects not only on calcium homoeostasis but also on muscle (improving power), the nervous system, and the immune system. D-hormone inhibits the release of cytokines (IL-1, IL-6, TNF-alpha) from macrophages and stimulates osteoprotegerin secretion in vitro and improves arthritis in animal models. This article reviews the interaction between inflammatory disease and vitamin D metabolism, summarizes the rationale for the therapeutic use of alfacalcidol, and provides recent data from controlled clinical trials comparing the effect of alfacalcidol versus plain vitamin D in secondary osteoporosis. Alfacalcidol, but not plain vitamin D, has pleiotropic effects improving bone and muscle metabolism and clinical symptoms in patients with rheumatoid arthritis.

  6. High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment.

    PubMed

    Shu, Lei; Beier, Eric; Sheu, Tzong; Zhang, Hengwei; Zuscik, Michael J; Puzas, Edward J; Boyce, Brendan F; Mooney, Robert A; Xing, Lianping

    2015-04-01

    Obesity is a severe health problem in children, afflicting several organ systems including bone. However, the role of obesity on bone homeostasis and bone cell function in children has not been studied in detail. Here we used young mice fed a high-fat diet (HFD) to model childhood obesity and investigate the effect of HFD on the phenotype of cells within the bone marrow environment. Five-week-old male mice were fed a HFD for 3, 6, and 12 weeks. Decreased bone volume was detected after 3 weeks of HFD treatment. After 6 and 12 weeks, HFD-exposed mice had less bone mass and increased osteoclast numbers. Bone marrow cells, but not spleen cells, from HFD-fed mice had increased osteoclast precursor frequency, elevated osteoclast formation, and bone resorption activity, as well as increased expression of osteoclastogenic regulators including RANKL, TNF, and PPAR-gamma. Bone formation rate and osteoblast and adipocyte numbers were also increased in HFD-fed mice. Isolated bone marrow cells also had a corresponding elevation in the expression of positive regulators of osteoblast and adipocyte differentiation. Our findings indicate that in juvenile mice, HFD-induced bone loss is mainly due to increased osteoclast bone resorption by affecting the bone marrow microenvironment. Thus, targeting osteoclast formation may present a new therapeutic approach for bone complications in obese children.

  7. Paradoxical Response to Mechanical Unloading in Bone Loss, Microarchitecture, and Bone Turnover Markers

    PubMed Central

    Sun, Xiaodi; Yang, Kaiyun; Wang, Chune; Cao, Sensen; Merritt, Mackenzie; Hu, Yingwei; Xu, Xin

    2015-01-01

    Background: Sclerostin, encoded by the SOST gene, has been implicated in the response to mechanical loading in bone. Some studies demonstrated that unloading leads to up-regulated SOST expression, which may induce bone loss. Purpose: Most reported studies regarding the changes caused by mechanical unloading were only based on a single site. Considering that the longitudinal bone growth leads to cells of different age with different sensitivity to unloading, we hypothesized that bone turnover in response to unloading is site specific. Methods: We established a disuse rat model by sciatic neurectomy in tibia. In various regions at two time-points, we evaluated the bone mass and microarchitecture in surgically-operated rats and control rats by micro-Computed Tomography (micro-CT) and histology, sclerostin/SOST by immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and quantitative reverse transcription polymerase chain reaction (qPCR), tartrate resistant acid phosphatase 5b (TRAP 5b) by ELISA and TRAP staining, and other bone markers by ELISA. Results: Micro-CT and histological analysis confirmed bone volume in the disuse rats was significantly decreased compared with those in the time-matched control rats, and microarchitecture also changed 2 and 8 weeks after surgery. Compared with the control groups, SOST mRNA expression in the diaphysis was down-regulated at both week 2 and 8. On the contrary, the percentage of sclerostin-positive osteocytes showed an up-regulated response in the 5 - 6 mm region away from the growth plate, while in the 2.5 - 3.5 mm region, the percentage was no significant difference. Nevertheless, in 0.5 - 1.5 mm region, the percentage of sclerostin-positive osteocytes decreased after 8 weeks, consistent with serum SOST level. Besides, the results of TRAP also suggested that the expression in response to unloading may be opposite in different sites or system. Conclusion: Our data indicated that unloading-induced changes in bone

  8. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

    PubMed Central

    Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified

  9. Animal Models of Bone Loss in Inflammatory Arthritis: from Cytokines in the Bench to Novel Treatments for Bone Loss in the Bedside-a Comprehensive Review.

    PubMed

    Alves, C Henrique; Farrell, Eric; Vis, Marijn; Colin, Edgar M; Lubberts, Erik

    2016-08-01

    Throughout life, bone is continuously remodelled. Bone is formed by osteoblasts, from mesenchymal origin, while osteoclasts induce bone resorption. This process is tightly regulated. During inflammation, several growth factors and cytokines are increased inducing osteoclast differentiation and activation, and chronic inflammation is a condition that initiates systemic bone loss. Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease that is characterised by active synovitis and is associated with early peri-articular bone loss. Peri-articular bone loss precedes focal bone erosions, which may progress to bone destruction and disability. The incidence of generalised osteoporosis is associated with the severity of arthritis in RA and increased osteoporotic vertebral and hip fracture risk. In this review, we will give an overview of different animal models of inflammatory arthritis related to RA with focus on bone erosion and involvement of pro-inflammatory cytokines. In addition, a humanised endochondral ossification model will be discussed, which can be used in a translational approach to answer osteoimmunological questions.

  10. Loss of endogenous bone morphogenetic protein-6 aggravates renal fibrosis.

    PubMed

    Dendooven, Amélie; van Oostrom, Olivia; van der Giezen, Dionne M; Leeuwis, Jan Willem; Snijckers, Cristel; Joles, Jaap A; Robertson, Elizabeth J; Verhaar, Marianne C; Nguyen, Tri Q; Goldschmeding, Roel

    2011-03-01

    Bone morphogenetic protein-6 (BMP-6) suppresses inflammatory genes in renal proximal tubular cells and regulates iron metabolism by inducing hepcidin. In diabetic patients, an increase of myofibroblast progenitor cells (MFPCs), also known as fibrocytes, was found to be associated with decreased BMP-6 expression. We hypothesized that loss of endogenous BMP-6 would aggravate renal injury and fibrosis. Wild type (WT) and BMP-6 null mice underwent unilateral ureteral obstruction. In WT mice, ureteral obstruction down-regulated BMP-6. Obstructed kidneys of BMP-6 null mice showed more casts (1.5-fold), epithelial necrosis (1.4-fold), and brush border loss (1.3-fold). This was associated with more inflammation (1.8-fold more CD45(+) cells) and more pronounced overexpression of profibrotic genes for αSMA (2.0-fold), collagen I (6.8-fold), fibronectin (4.3-fold), CTGF (1.8-fold), and PAI-1 (3.8-fold), despite similar BMP-7 expression. Also, 1.3-fold more MFPCs were obtained from BMP-6 null than from WT mononuclear cell cultures, but in vivo only very few MFPCs were observed in obstructed kidneys, irrespective of BMP-6 genotype. The obstructed kidneys of BMP-6 null mice showed 2.2-fold more iron deposition, in association with 3.3-fold higher expression of the oxidative stress marker HO-1. Thus, ureteral obstruction leads to down-regulation of BMP-6 expression, and BMP-6 deficiency aggravates tubulointerstitial damage and fibrosis independent of BMP-7. This process appears to involve loss of both direct anti-inflammatory and antifibrotic action and indirect suppressive effects on renal iron deposition, oxidative stress, and MFPCs.

  11. Loss of Endogenous Bone Morphogenetic Protein-6 Aggravates Renal Fibrosis

    PubMed Central

    Dendooven, Amélie; van Oostrom, Olivia; van der Giezen, Dionne M.; Willem Leeuwis, Jan; Snijckers, Cristel; Joles, Jaap A.; Robertson, Elizabeth J.; Verhaar, Marianne C.; Nguyen, Tri Q.; Goldschmeding, Roel

    2011-01-01

    Bone morphogenetic protein-6 (BMP-6) suppresses inflammatory genes in renal proximal tubular cells and regulates iron metabolism by inducing hepcidin. In diabetic patients, an increase of myofibroblast progenitor cells (MFPCs), also known as fibrocytes, was found to be associated with decreased BMP-6 expression. We hypothesized that loss of endogenous BMP-6 would aggravate renal injury and fibrosis. Wild type (WT) and BMP-6 null mice underwent unilateral ureteral obstruction. In WT mice, ureteral obstruction down-regulated BMP-6. Obstructed kidneys of BMP-6 null mice showed more casts (1.5-fold), epithelial necrosis (1.4-fold), and brush border loss (1.3-fold). This was associated with more inflammation (1.8-fold more CD45+ cells) and more pronounced overexpression of profibrotic genes for αSMA (2.0-fold), collagen I (6.8-fold), fibronectin (4.3-fold), CTGF (1.8-fold), and PAI-1 (3.8-fold), despite similar BMP-7 expression. Also, 1.3-fold more MFPCs were obtained from BMP-6 null than from WT mononuclear cell cultures, but in vivo only very few MFPCs were observed in obstructed kidneys, irrespective of BMP-6 genotype. The obstructed kidneys of BMP-6 null mice showed 2.2-fold more iron deposition, in association with 3.3-fold higher expression of the oxidative stress marker HO-1. Thus, ureteral obstruction leads to down-regulation of BMP-6 expression, and BMP-6 deficiency aggravates tubulointerstitial damage and fibrosis independent of BMP-7. This process appears to involve loss of both direct anti-inflammatory and antifibrotic action and indirect suppressive effects on renal iron deposition, oxidative stress, and MFPCs. PMID:21356359

  12. Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration

    PubMed Central

    Sato, Ayako; Kajiya, Hiroshi; Mori, Nana; Sato, Hironobu; Fukushima, Tadao; Kido, Hirofumi

    2017-01-01

    The initial step of bone regeneration requires the migration of osteogenic cells to defective sites. Our previous studies suggest that a salmon DNA-based scaffold can promote the bone regeneration of calvarial defects in rats. We speculate that the salmon DNA may possess osteoinductive properties, including the homing of migrating osteogenic cells. In the present study, we investigated the influence of the salmon DNA on osteoblastic differentiation and induction of osteoblast migration using MG63 cells (human preosteoblasts) in vitro. Moreover, we analyzed the bone regeneration of a critical-sized in vivo calvarial bone defect (CSD) model in rats. The salmon DNA enhanced both mRNA and protein expression of the osteogenesis-related factors, runt-related transcription factor 2 (Runx2), alkaline phosphatase, and osterix (OSX) in the MG63 cells, compared with the cultivation using osteogenic induction medium alone. From the histochemical and immunohistochemical assays using frozen sections of the bone defects from animals that were implanted with DNA disks, many cells were found to express aldehyde dehydrogenase 1, one of the markers for mesenchymal stem cells. In addition, OSX was observed in the replaced connective tissue of the bone defects. These findings indicate that the DNA induced the migration and accumulation of osteogenic cells to the regenerative tissue. Furthermore, an in vitro transwell migration assay showed that the addition of DNA enhanced an induction of osteoblast migration, compared with the medium alone. The implantation of the DNA disks promoted bone regeneration in the CSD of rats, compared with that of collagen disks. These results indicate that the salmon DNA enhanced osteoblastic differentiation and induction of migration, resulting in the facilitation of bone regeneration. PMID:28060874

  13. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation

    NASA Astrophysics Data System (ADS)

    Hirata, Eri; Ménard-Moyon, Cécilia; Venturelli, Enrica; Takita, Hiroko; Watari, Fumio; Bianco, Alberto; Yokoyama, Atsuro

    2013-11-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF-CNT) showed the same effect as FGF alone. In addition, FGF-CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF-CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF-CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications.

  14. [Plea for accelerated rehabilitation after ligament plasty of the knee by a bone-patellar tendon-bone graft].

    PubMed

    Boileau, P; Rémi, M; Lemaire, M; Rousseau, P; Desnuelle, C; Argenson, C

    1999-09-01

    Knee rehabilitation after ACL repair with bone-tendon-bone graft is still controversial. While there was a tendency to protect the graft and the donor site in the eighties, actual tendency is to propose more aggressive, so called accelerated rehabilitation protocol. An extensive analysis of the literature shows that this accelerated rehabilitation is justified because of histologic, biomechanic, surgical and clinical arguments. This accelerated rehabilitation is based on seven reasons, at least: 1) the necrosis of the graft, initially observed in animals, does not seem to be as important in humans as demonstrated by histological studies after in vivo biopsies; 2) the use of solid bone-tendon-bone graft, whose resistance is maximum in the early post-operative period and is superior to the resistance of the ACL; 3) the more precise positioning (more "isometric") because of optic magnification allowed by arthroscopy; 4) the absence of graft impingement, routinely controlled, because of a more posterior tibial placement of the graft and the eventual notch-plasty; 5) the solid and confident fixation of the graft because of interference screws; 6) anterior knee pain are less important when early constraints are applied on the knee; 7) finally, undisciplined and demanding patients who refuse all protection for the graft and the donor site, have good and stable results regarding stability of the knees. Early constraints on the knee after bone-tendon-bone graft and interference fixation give better tolerance on the extension mechanism without compromising integrity of the graft and knee stability. Appropriate level of constraints on the ACL graft and the donor site guides the collagenic reorganisation process. Early restoration of normal hyperextension, decreased knee pain and maintenance of muscular trophicity, allowing patients to go back to sport at 4 months, are the most evident benefits of this accelerated rehabilitation. These considerations cannot be applied to the

  15. The combined effects of X-ray radiation and hindlimb suspension on bone loss.

    PubMed

    Xu, Dan; Zhao, Xin; Li, Yi; Ji, Yinli; Zhang, Jiangyan; Wang, Jufang; Xie, Xiaodong; Zhou, Guangming

    2014-07-01

    Outer space is a complex environment with various phenomena that negatively affect bone metabolism, including microgravity and highly energized ionizing radiation. In the present study, we used four groups of male Wistar rats treated with or without four-week hindlimb suspension after 4 Gy of X-rays to test whether there is a combined effect for hindlimb suspension and X-ray radiation. We tested trabecular parameters and some cytokines of the bone as leading indicators of bone metabolism. The results showed that hindlimb suspension and X-ray radiation could cause a significant increase in bone loss. Hindlimb suspension caused a 56.6% bone loss (P = 0.036), while X-ray radiation caused a 30.7% (P = 0.041) bone loss when compared with the control group. The combined factors of hindlimb suspension and X-rays exerted a combined effect on bone mass, with a reduction of 64.8% (P = 0.003).

  16. Denosumab, a RANK ligand inhibitor, for the management of bone loss in cancer patients.

    PubMed

    Yee, Andrew J; Raje, Noopur S

    2012-01-01

    Bone loss is a common side effect of cancer treatments, especially antihormonal treatments used in the treatment of breast and prostate cancer. Denosumab is a monoclonal antibody given subcutaneously that inhibits osteoclast activity by targeting the RANK ligand. It is effective in settings ranging from preventing skeletal-related complications in cancer patients with metastatic disease to increasing bone mineral density in patients with osteoporosis. In cancer patients with early stage disease, denosumab can attenuate bone loss from antihormonal treatments, and in prostate cancer, may reduce disease progression. Here, we will discuss the important role denosumab may play in the management of bone loss in patients with cancer.

  17. Vitamin K supplementation does not prevent bone loss in ovariectomized Norway rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite plausible biological mechanisms, the differential abilities of phylloquinone (PK) and menaquinones (MKn) to prevent bone loss remain controversial. The objective of the current study was to compare the effects of PK, menaquinone-4 (MK-4) and menaquinone-7(MK-7) on the rate of bone loss in o...

  18. Alcohol-induced bone loss is blocked in p47phox -/- mice lacking functional nadph oxidases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic ethanol (EtOH) consumption produces bone loss. Previous data suggest a role for NADPH oxidase enzymes (Nox) since the pan-Nox inhibitor diphenylene iodonium (DPI) blocks EtOH-induced bone loss in rats. The current study utilized mice in which Nox enzymes 1,2,3 and 5 are inactivated as a resu...

  19. S-Ketoprofen Inhibits Tenotomy-Induced Bone Loss and Dynamics in Weanling Rats

    NASA Technical Reports Server (NTRS)

    Zeng, Q. Q.; Jee, W. S. S.; Ke, H. Z.; Wechter, W. J.

    1993-01-01

    The objects of this study were to determine whether S-ketoprofen, a non-steroidal anti-inflammatory drug (NSAID), can prevent immobilization (tenotomy)-induced bone loss in weanling rats. Forty five 4 week-old Sprague-Dawley female rats were either sham-operated or subjected to knee tenotomy and treated simultaneously with 0, 0.02, 0.1, 0.5 or 2.5 mg of S-ketoprofen/kg per day for 21 days. We then studied double-fluorescent labeled proximal tibial longitudinal sections and tibial shaft cross sections using static and dynamic histomorphometry. Less cancellous bone mass in proximal tibial metaphyses was found in tenotomized controls than in basal (36%) and sham-operated (54%) controls. This was due to the inhibition of age-related bone gain and induced bone loss due to increased bone resorption and decreased bone formation. S-ketoprofen prevented both the inhibition of age-related bone gain and the stimulation of bone loss at the 2.5 mg/kg per day dose level, while it only prevented bone loss at the 0.5 mg/kg dose levels. In cancellous bone, dynamic histomorphometry showed that S-ketoprofen prevented the tenotomy induced decrease in bone formation and increase in bone resorption. In the tibial shaft, tenotomy inhibited the enlargement of total tissue area by depressing periosteal bone formation, and thus inhibited age-related cortical bone gain. S-ketoprofen treatment did not prevent this change at all dose levels, but reduced marrow cavity area to increase cortical bone area at the 0.1, 0.5 and 2.5 mg/kg per dose levels compared to tenotomy controls. However, the cortical bone area in the 0.1 and 0.5 mg dose-treated treated tenotomy rats was still lower than in the age-related controls. S-ketoprofen also prevented the increase in endocortical eroded perimeter induced by tenotomy. In summary, tenotomy inhibited age-related bone gain and stimulated bone loss in cancellous bone sites, and only inhibited age-related bone gain in cortical bone sites. S

  20. A new beam loss detector for low-energy proton and heavy-ion accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  1. Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) show microstructural bone loss during hibernation but preserve bone macrostructural geometry and strength.

    PubMed

    McGee-Lawrence, Meghan E; Stoll, Danielle M; Mantila, Emily R; Fahrner, Bryna K; Carey, Hannah V; Donahue, Seth W

    2011-04-15

    Lack of activity causes bone loss In most animals. Hibernating bears have physiological processes to prevent cortical and trabecular bone loss associated with reduced physical activity, but different mechanisms of torpor among hibernating species may lead to differences in skeletal responses to hibernation. There are conflicting reports regarding whether small mammals experience bone loss during hibernation. To investigate this phenomenon, we measured cortical and trabecular bone properties in physically active and hibernating juvenile and adult 13-lined ground squirrels (Ictidomys tridecemlineatus, previous genus name Spermophilus). Cortical bone geometry, strength and mineral content were similar in hibernating compared with active squirrels, suggesting that hibernation did not cause macrostructural cortical bone loss. Osteocyte lacunar size increased (linear regression, P=0.001) over the course of hibernation in juvenile squirrels, which may indicate an osteocytic role in mineral homeostasis during hibernation. Osteocyte lacunar density and porosity were greater (+44 and +59%, respectively; P<0.0001) in hibernating compared with active squirrels, which may reflect a decrease in osteoblastic activity (per cell) during hibernation. Trabecular bone volume fraction in the proximal tibia was decreased (-20%; P=0.028) in hibernating compared with physically active adult squirrels, but was not different between hibernating and active juvenile squirrels. Taken together, these data suggest that 13-lined ground squirrels may be unable to prevent microstructural losses of cortical and trabecular bone during hibernation, but importantly may possess a biological mechanism to preserve cortical bone macrostructure and strength during hibernation, thus preventing an increased risk of bone fracture during remobilization in the spring.

  2. Multiple projection DEXA scanner for precision bone and muscle loss measurements and analysis during prolonged spaceflight

    NASA Astrophysics Data System (ADS)

    Charles, H. K.; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2000-01-01

    Bone structural information derived from DEXA data is shown to be relevant in explaining BMD loss versus strength-related observations in both aging populations and individuals exposed to microgravity for prolonged periods. Commercial DEXA instruments are limited (and not optimized) to make these critical structural measurements. Progress on the development of a multiple projection DEXA scanner system for making precision bone and muscle loss measurements and their resultant implications on bone strength and fracture risk is described. .

  3. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model

    PubMed Central

    Britton, Robert A.; Irwin, Regina; Quach, Darin; Schaefer, Laura; Zhang, Jing; Lee, Taehyung; Parameswaran, Narayanan; McCabe, Laura R.

    2014-01-01

    Estrogen deficiency is a major risk factor for osteoporosis that is associated with bone inflammation and resorption. Half of women over the age of 50 will experience an osteoporosis related fracture in their lifetime, thus novel therapies are needed to combat post-menopausal bone loss. Recent studies suggest an important role for gut-bone signaling pathways and the microbiota in regulating bone health. Given that the bacterium Lactobacillus reuteri ATCC PTA 6475 (L. reuteri) secretes beneficial immunomodulatory factors, we examined if this candidate probiotic could reduce bone loss associated with estrogen deficiency in an ovariectomized (Ovx) mouse menopausal model. Strikingly, L. reuteri treatment significantly protected Ovx mice from bone loss. Osteoclast bone resorption markers and activators (Trap5 and RANKL) as well as osteoclastogenesis are significantly decreased in L. reuteri treated mice. Consistent with this, L. reuteri suppressed Ovx-induced increases in bone marrow CD4+ T-lymphocytes (which promote osteoclastogenesis) and directly suppressed osteoclastogenesis in vitro. We also identif ied that L. reuteri treatment modifies microbial communities in the Ovx mouse gut. Together, our studies demonstrate that L. reuteri treatment suppresses bone resorption and loss associated with estrogen deficiency. Thus, L. reuteri treatment may be a straightforward and cost-effective approach to reduce post-menopausal bone loss. PMID:24677054

  4. Alveolar bone loss in osteoporosis: a loaded and cellular affair?

    PubMed Central

    Jonasson, Grethe; Rythén, Marianne

    2016-01-01

    Maxillary and mandibular bone mirror skeletal bone conditions. Bone remodeling happens at endosteal surfaces where the osteoclasts and osteoblasts are situated. More surfaces means more cells and remodeling. The bone turnover rate in the mandibular alveolar process is probably the fastest in the body; thus, the first signs of osteoporosis may be revealed here. Hormones, osteoporosis, and aging influence the alveolar process and the skeletal bones similarly, but differences in loading between loaded, half-loaded, and unloaded bones are important to consider. Bone mass is redistributed from one location to another where strength is needed. A sparse trabeculation in the mandibular premolar region (large intertrabecular spaces and thin trabeculae) is a reliable sign of osteopenia and a high skeletal fracture risk. Having dense trabeculation (small intertrabecular spaces and well-mineralized trabeculae) is generally advantageous to the individual because of the low fracture risk, but may imply some problems for the clinician. PMID:27471408

  5. Peptide-induced de novo bone formation after tooth extraction prevents alveolar bone loss in a murine tooth extraction model.

    PubMed

    Arai, Yuki; Aoki, Kazuhiro; Shimizu, Yasuhiro; Tabata, Yasuhiko; Ono, Takashi; Murali, Ramachandran; Mise-Omata, Setsuko; Wakabayashi, Noriyuki

    2016-07-05

    Tooth extraction causes bone resorption of the alveolar bone volume. Although recombinant human bone morphogenetic protein 2 (rhBMP-2) markedly promotes de novo bone formation after tooth extraction, the application of high-dose rhBMP-2 may induce side effects, such as swelling, seroma, and an increased cancer risk. Therefore, reduction of the necessary dose of rhBMP-2 which can still obtain sufficient bone mass is necessary by developing a new osteogenic reagent. Recently, we showed that the systemic administration of OP3-4 peptide, which was originally designed as a bone resorption inhibitor, had osteogenic ability both in vitro and in vivo. This study evaluated the ability of the local application of OP3-4 peptide to promote bone formation in a murine tooth extraction model with a very low-dose of BMP. The mandibular incisor was extracted from 10-week-old C57BL6/J male mice and a gelatin hydrogel containing rhBMP-2 with or without OP3-4 peptide (BMP/OP3-4) was applied to the socket of the incisor. Bone formation inside the socket was examined radiologically and histologically at 21 days after the extraction. The BMP/OP3-4-group showed significant bone formation inside the mandibular extraction socket compared to the gelatin-hydrogel-carrier-control group or rhBMP-2-applied group. The BMP/OP3-4-applied mice showed a lower reduction of alveolar bone and fewer osteoclast numbers, suggesting that the newly formed bone inside the socket may prevent resorption of the cortical bone around the extraction socket. Our data revealed that OP3-4 peptide promotes BMP-mediated bone formation inside the extraction socket of mandibular bone, resulting in preservation from the loss of alveolar bone.

  6. Dried Plum’s Unique Capacity to Reverse Bone Loss and Alter Bone Metabolism in Postmenopausal Osteoporosis Model

    PubMed Central

    Rendina, Elizabeth; Hembree, Kelsey D.; Davis, McKale R.; Marlow, Denver; Clarke, Stephen L.; Halloran, Bernard P.; Lucas, Edralin A.; Smith, Brenda J.

    2013-01-01

    Interest in dried plum has increased over the past decade due to its promise in restoring bone and preventing bone loss in animal models of osteoporosis. This study compared the effects of dried plum on bone to other dried fruits and further explored the potential mechanisms of action through which dried plum may exert its osteoprotective effects. Adult osteopenic ovariectomized (OVX) C57BL/6 mice were fed either a control diet or a diet supplemented with 25% (w/w) dried plum, apple, apricot, grape or mango for 8 weeks. Whole body and spine bone mineral density improved in mice consuming the dried plum, apricot and grape diets compared to the OVX control mice, but dried plum was the only fruit to have an anabolic effect on trabecular bone in the vertebra and prevent bone loss in the tibia. Restoration of biomechanical properties occurred in conjunction with the changes in trabecular bone in the spine. Compared to other dried fruits in this study, dried plum was unique in its ability to down-regulate osteoclast differentiation coincident with up-regulating osteoblast and glutathione (GPx) activity. These alterations in bone metabolism and antioxidant status compared to other dried fruits provide insight into dried plum’s unique effects on bone. PMID:23555991

  7. Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading.

    PubMed

    Lloyd, Shane A; Lewis, Gregory S; Zhang, Yue; Paul, Emmanuel M; Donahue, Henry J

    2012-11-01

    Connexin 43 (Cx43) is the most abundant gap junction protein in bone and has been demonstrated as an integral component of skeletal homeostasis. In the present study, we sought to further refine the role of Cx43 in the response to mechanical unloading by subjecting skeletally mature mice with a bone-specific deletion of Cx43 (cKO) to 3 weeks of mechanical unloading via hindlimb suspension (HLS). The HLS model was selected to recapitulate the effects of skeletal unloading due to prolonged bed rest, reduced activity associated with aging, and spaceflight microgravity. At baseline, the cortical bone of cKO mice displayed an osteopenic phenotype, with expanded cortices, decreased cortical thickness, decreased bone mineral density, and increased porosity. There was no baseline trabecular phenotype. After 3 weeks of HLS, wild-type (WT) mice experienced a substantial decline in trabecular bone volume fraction, connectivity density, trabecular thickness, and trabecular tissue mineral density. These deleterious effects were attenuated in cKO mice. Conversely, there was a similar and significant amount of cortical bone loss in both WT and cKO. Interestingly, mechanical testing revealed a greater loss of strength and rigidity for cKO during HLS. Analysis of double-label quantitative histomorphometry data demonstrated a substantial decrease in bone formation rate, mineralizing surface, and mineral apposition rate at both the periosteal and endocortical surfaces of the femur after unloading of WT mice. This suppression of bone formation was not observed in cKO mice, in which parameters were maintained at baseline levels. Taken together, the results of the present study indicate that Cx43 deficiency desensitizes bone to the effects of mechanical unloading, and that this may be due to an inability of mechanosensing osteocytes to effectively communicate the unloading state to osteoblasts to suppress bone formation. Cx43 may represent a novel therapeutic target for investigation as

  8. Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation

    PubMed Central

    Mehdikhani-Nahrkhalaji, Mehdi; Fathi, Mohammad Hossein; Mortazavi, Vajihesadat; Mousavi, Sayed Behrouz; Akhavan, Ali; Haghighat, Abbas; Hashemi-Beni, Batool; Razavi, Sayed Mohammad; Mashhadiabbas, Fatemeh

    2015-01-01

    Background: The aim of this study was to evaluate the interaction of bioactive and biodegradable poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) and poly (lactide-co-glycolide)/bioactive glass (PBG) nanocomposite coatings with bone. Materials and Methods: Sol-gel derived 58S bioactive glass nanoparticles, 50/50 wt% poly (lactic acid)/poly (glycolic acid) and hydroxyapatite nanoparticles were used to prepare the coatings. The nanocomposite coatings were characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy. Mechanical stability of the prepared nanocomposite coatings was studied during intramedullary implantation of coated Kirschner wires (K-wires) into rabbit tibia. Titanium mini-screws coated with nanocomposite coatings and without coating were implanted intramedullary in rabbit tibia. Bone tissue interaction with the prepared nanocomposite coatings was evaluated 30 and 60 days after surgery. The non-parametric paired Friedman and Kruskal-Wallis tests were used to compare the samples. For all tests, the level of significance was P < 0.05. Results: The results showed that nanocomposite coatings remained stable on the K-wires with a minimum of 96% of the original coating mass. Tissue around the coated implants showed no adverse reactions to the coatings. Woven and trabecular bone formation were observed around the coated samples with a minimum inflammatory reaction. PBG nanocomposite coating induced more rapid bone healing than PBGHA nanocomposite coating and titanium without coating (P < 0.05). Conclusion: It was concluded that PBG nanocomposite coating provides an ideal surface for bone formation and it could be used as a candidate for coating dental and orthopedic implants. PMID:25709681

  9. Femoral Head Bone Loss Following Short and Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Blaber, E. A.; Cheng-Campbell, M.; Almeida, E. A. C.

    2016-01-01

    Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31% decrease in bone volume ratio, a 14% decrease in trabecular thickness, and a 20% decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1.This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration

  10. Femoral Head Bone Loss Following Short and Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Blaber, Elizabeth A.; Cheng-Campbell, Margareth A.; Almeida, Eduardo A. C.

    2016-01-01

    Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31 decrease in bone volume ratio, a 14 decrease in trabecular thickness, and a 20 decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1. This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration

  11. Prevention and Treatment of Bone Loss after a Spinal Cord Injury: A Systematic Review

    PubMed Central

    Ashe, Maureen C.; Craven, Cathy; Eng, Janice J.; Krassioukov, Andrei

    2012-01-01

    Preserving and maintaining bone mass after a spinal cord injury (SCI) is crucial to decrease the risk of fragility or low trauma fractures— significant health events that occur as a result of minimal trauma such as falling during transfers or from a standing height or less. There is an increased risk for low trauma fractures after a SCI especially in the lower extremity. Therefore, purpose of this systematic review was to appraise the literature to provide clinical guidance for the optimization of bone health after SCI. The key research questions focused on prevention of acute bone loss and effective treatment of established low bone mass with long-standing SCI (≥ 1year). We report moderate evidence for the treatment of bone loss using pharmacology; however, non-pharmacological evidence for preventing and treating bone loss is limited. PMID:22767990

  12. Prevention and Treatment of Bone Loss after a Spinal Cord Injury: A Systematic Review.

    PubMed

    Ashe, Maureen C; Craven, Cathy; Eng, Janice J; Krassioukov, Andrei

    2007-01-01

    Preserving and maintaining bone mass after a spinal cord injury (SCI) is crucial to decrease the risk of fragility or low trauma fractures- significant health events that occur as a result of minimal trauma such as falling during transfers or from a standing height or less. There is an increased risk for low trauma fractures after a SCI especially in the lower extremity. Therefore, purpose of this systematic review was to appraise the literature to provide clinical guidance for the optimization of bone health after SCI. The key research questions focused on prevention of acute bone loss and effective treatment of established low bone mass with long-standing SCI (≥ 1year). We report moderate evidence for the treatment of bone loss using pharmacology; however, non-pharmacological evidence for preventing and treating bone loss is limited.

  13. Prostaglandin E2 Prevents Ovariectomy-Induced Cancellous Bone Loss in Rats

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Li, Mei; Jee, Webster S. S.

    1992-01-01

    The object of this study was to determine whether prostaglandin E2, (PGE2) can prevent ovariectomy induced cancellous bone loss. Thirty-five 3-month-old female Sprague-Dawley rats were divided into two groups. The rats in the first group were ovariectomized (OVX) while the others received sham operation (sham-OVX). The OVX group was further divided into three treatment groups. The daily doses for the three groups were 0,1 and 6 mg PGE2/kg for 90 days. Bone histomorphometric analyses were performed on double-fluorescent-labeled undecalcified proximal tibial metaphysis (PTM). We confirmed that OVX induces massive cancellous bone loss (-80%) and a higher bone turnover (+143%). The new findings from the present study demonstrate that bone loss due to ovarian hormone deficiency can be prevented by a low-dose (1 mg) daily administration of PGE2. Furthermore, a higher-dose (6 mg) daily administration of PGE2 not only prevents bone loss but also adds extra bone to the proximal tibial metaphyses. PGE, at the 1-mg dose level significantly increased trabecular bone area, trabecular width, trabecular node density, density of node to node, ratio of node to free end, and thus significantly decreased trabecular separation from OVX controls. At this dose level, these same parameters did not differ significantly from sham-OVX controls. However, at the 6-mg dose level PGE2, there were significant increases in trabecular bone area, trabecular width, trabecular node density, density of node to node, and ratio of node to free end, while there was significant decrease in trabecular separation from both OVX and sham-operated controls. The changes in indices of trabecular bone microanatomical structure indicated that PGE2 prevented bone loss as well as the disconnection of existing trabeculae. In summary, PGE2, administration to OVX rats decreased bone turnover and increased bone formation parameters resulting in a positive bone balance that prevented bone loss (in both lower and higher

  14. Does vitamin D deficiency contribute to post-burn bone loss?

    PubMed

    Klein, Gordon L

    2012-01-01

    Burn injury results in the acute loss of bone as well as the development of progressive vitamin D deficiency. Bone loss occurs acutely due to resorption, which is then followed by apoptosis of osteoblasts preventing repair of the bone loss. The acute resorption is due to a combination of the inflammatory response and the stress response to the burn injury. The resultant production of inflammatory cytokines and endogenous glucocorticoids initially stimulate the osteoblasts to produce RANK ligand, which stimulates marrow stem cell differentiation into osteoclasts. As the stress response persists for approximately one year post-burn the glucocorticoids produced by the body will cause osteoblast apoptosis and adynamic bone, impairing the ability of bone to recover its resorptive losses. The vitamin D deficiency is due to the failure to supplement the diet of burn patients with vitamin D on discharge from hospital and to failure of the skin to make normal quantities of vitamin D on sunlight exposure. Because the bone resorption can be prevented by the acute administration of bisphosphonates it is unlikely that vitamin D deficiency is responsible for the early-onset bone loss following burns. However, because a deficit in trabecular bone remains for at least two years post-burn, it is possible that vitamin D deficiency prevents the recovery of trabecular bone density over the long term.

  15. Deficiency of ATP6V1H Causes Bone Loss by Inhibiting Bone Resorption and Bone Formation through the TGF-β1 Pathway

    PubMed Central

    Duan, Xiaohong; Liu, Jin; Zheng, Xueni; Wang, Zhe; Zhang, Yanli; Hao, Ying; Yang, Tielin; Deng, Hongwen

    2016-01-01

    Vacuolar-type H +-ATPase (V-ATPase) is a highly conserved, ancient enzyme that couples the energy of ATP hydrolysis to proton transport across vesicular and plasma membranes of eukaryotic cells. Previously reported mutations of various V-ATPase subunits are associated with increased bone density. We now show that haploinsufficiency for the H subunit of the V1 domain (ATP6V1H) is associated with osteoporosis in humans and mice. A genome-wide SNP array analysis of 1625 Han Chinese found that 4 of 15 tag SNPs (26.7%) within ATP6V1H were significantly associated with low spine bone mineral density. Atp6v1h+/- knockout mice generated by the CRISPR/Cas9 technique had decreased bone remodeling and a net bone matrix loss. Atp6v1h+/- osteoclasts showed impaired bone formation and increased bone resorption. The increased intracellular pH of Atp6v1h+/- osteoclasts downregulated TGF-β1 activation, thereby reducing induction of osteoblast formation but the bone mineralization was not altered. However, bone formation was reduced more than bone resorption. Our data provide evidence that partial loss of ATP6V1H function results in osteoporosis/osteopenia. We propose that defective osteoclast formation triggers impaired bone formation by altering bone remodeling. In the future, ATP6V1H might, therefore, serve as a target for the therapy of osteoporosis. PMID:27924156

  16. Regulation of osteoclast homeostasis and inflammatory bone loss by MFG-E81

    PubMed Central

    Abe, Toshiharu; Shin, Jieun; Hosur, Kavita; Udey, Mark C.; Chavakis, Triantafyllos; Hajishengallis, George

    2014-01-01

    The glycoprotein milk fat globule-EGF factor 8 (MFG-E8) is expressed in several tissues and mediates diverse homeostatic functions. However, whether MFG-E8 plays a role in bone homeostasis has not been established. Here we show for the first time that osteoclasts express and are regulated by MFG-E8. Bone marrow-derived osteoclast precursors (OCPs) from MFG-E8–deficient (Mfge8−/−) mice underwent increased RANKL-induced osteoclastogenesis leading to enhanced resorption pit formation as compared with wild-type controls. Consistently, exogenously added MFG-E8 inhibited RANKL-induced osteoclastogenesis from mouse or human OCPs. Upon induction of experimental periodontitis, an oral inflammatory disease characterized by loss of bone support of the dentition, Mfge8−/− mice exhibited higher numbers of osteoclasts and more bone loss than wild-type controls. Accordingly, local microinjection of anti-MFG-E8 mAb exacerbated periodontal bone loss in wild-type mice. Conversely, microinjection of MFG-E8 inhibited bone loss in experimental mouse periodontitis. In comparison to wild-type controls, Mfge8−/− mice also experienced >60% more naturally occurring chronic periodontal bone loss. In conclusion, MFG-E8 is a novel homeostatic regulator of osteoclasts and could be exploited therapeutically to treat periodontitis and perhaps other immunological disorders associated with inflammatory bone loss. PMID:24958900

  17. TLR2 signaling and Th2 responses drive Tannerella forsythia-induced periodontal bone loss.

    PubMed

    Myneni, Srinivas R; Settem, Rajendra P; Connell, Terry D; Keegan, Achsah D; Gaffen, Sarah L; Sharma, Ashu

    2011-07-01

    Periodontal disease (PD) is a chronic inflammation of the tooth-supporting soft tissue and alveolar bone due to infection by a select group of gram-negative microbes, which leads to tooth loss if untreated. Because mice deficient in CD4(+) cells are resistant to infection-induced alveolar bone loss, Th cells have been implicated in bone-destructive processes during PD. However, the extent to which different Th cell subtypes play roles in pathogenesis or host protection remains to be defined and is likely to vary depending on the dominant microorganism involved. By far, Porphyromonas gingivalis is the best-studied periodontal microbe in PD. Although the gram-negative anaerobe Tannerella forsythia is also a vital contributor to periodontal bone loss, almost nothing is known about immune responses to this organism. Previous studies from our laboratory revealed that T. forsythia induces periodontal bone loss in mice and that this bone loss depends on the bacterially expressed BspA protein. In this study, we showed that T. forsythia activates murine APCs primarily through TLR2-dependent signaling via BspA. Furthermore, T. forsythia infection causes a pronounced Th2 bias, evidenced by T cell expression of IL-5, but not IFN-γ or IL-17, in draining lymph nodes. Consistently, deficiencies in TLR2 or STAT6 result in resistance to T. forsythia-induced alveolar bone loss. Thus, TLR2 signaling and Th2 cells play pathogenic roles in T. forsythia-induced alveolar bone destruction.

  18. AQP9: a novel target for bone loss induced by microgravity.

    PubMed

    Bu, Guoyun; Shuang, Feng; Wu, Ye; Ren, Dongfeng; Hou, Shuxun

    2012-03-23

    The aim of current study was to elucidate whether aquaporin-9 (AQP9) expression was involved in the progression of bone loss induced by microgravity. We used the hind-limb suspension (HLS) mice model to simulate microgravity and induce bone loss. It was found that HLS exposure decreased femur bone mineral density (BMD), and enhanced femur AQP9 mRNA and protein levels. Then, the relationship between AQP9 mRNA expression and BMD was studied and it was showed that femur AQP9 mRNA level was negatively related to femur BMD in mice exposed to HLS. We sought to exam the function of AQP9 in the femur using the AQP9-null mice. It was found that AQP9 knockout attenuated bone loss and inhibited osteoclastogenesis under the condition of HLS exposure, but had no similar effect on bone under normal physiological conditions. In addition, it was found that exposure to simulated hypergravity or exercise training, main countermeasures against microgravity, reduced AQP9 mRNA and protein levels in femur of mice. Moreover, it was found that both aging and estrogen deprivation, another two risk factors of bone loss, had no significant effect on femur AQP9 expression. In conclusion, AQP9 plays an important role in the development of microgravity-induced bone loss, and may be a potential target for the prevention or management of microgravity-induced bone loss.

  19. Cyclical behavior of bone remodeling and bone loss in healthy women after menopause: results of a prospective study.

    PubMed

    Mazzuoli, G; Marinucci, D; D'erasmo, E; Acca, M; Pisani, D; Rinaldi, M G; Bianchi, G; Diacinti, D; Minisola, S

    2002-12-01

    Annual changes in lumbar bone mineral density (LBMD) and bone remodeling markers were measured in 238 healthy pre- and postmenopausal women, aged 45-74 years. The subjects were divided into groups according to their menstrual status and years since menopause. The results obtained indicate that bone loss is not a constant process over time but rather exhibits cyclical damping oscillations. When the log-linear trend of LBMD decrement was transformed into a constant by considering annual percentage changes, the presence of a cyclical component of 7 years was evident. By employing a harmonic regression model, the cyclical component was also statistically significant on baseline data. The cyclical behavior of LBMD decrement corresponded to an analogous behavior of the bone remodeling markers. These results suggest that a lack of estrogen acts as a synchronizer on bone remodeling by triggering a latent cyclical rhythm of bone loss that persists throughout life after menopause. The existence of a chronobiological rhythm of bone loss starting after menopause, if confirmed, could have important clinical implications.

  20. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that

  1. Suppression of Sclerostin Alleviates Radiation-Induced Bone Loss by Protecting Bone-Forming Cells and Their Progenitors Through Distinct Mechanisms.

    PubMed

    Chandra, Abhishek; Lin, Tiao; Young, Tiffany; Tong, Wei; Ma, Xiaoyuan; Tseng, Wei-Ju; Kramer, Ina; Kneissel, Michaela; Levine, Michael A; Zhang, Yejia; Cengel, Keith; Liu, X Sherry; Qin, Ling

    2017-02-01

    Focal radiotherapy is frequently associated with skeletal damage within the radiation field. Our previous in vitro study showed that activation of Wnt/β-catenin pathway can overcome radiation-induced DNA damage and apoptosis of osteoblastic cells. Neutralization of circulating sclerostin with a monoclonal antibody (Scl-Ab) is an innovative approach for treating osteoporosis by enhancing Wnt/β-catenin signaling in bone. Together with the fact that focal radiation increases sclerostin amount in bone, we sought to determine whether weekly treatment with Scl-Ab would prevent focal radiotherapy-induced osteoporosis in mice. Micro-CT and histomorphometric analyses demonstrated that Scl-Ab blocked trabecular bone structural deterioration after radiation by partially preserving osteoblast number and activity. Consistently, trabecular bone in sclerostin null mice was resistant to radiation via the same mechanism. Scl-Ab accelerated DNA repair in osteoblasts after radiation by reducing the number of γ-H2AX foci, a DNA double-strand break marker, and increasing the amount of Ku70, a DNA repair protein, thus protecting osteoblasts from radiation-induced apoptosis. In osteocytes, apart from using similar DNA repair mechanism to rescue osteocyte apoptosis, Scl-Ab restored the osteocyte canaliculi structure that was otherwise damaged by radiation. Using a lineage tracing approach that labels all mesenchymal lineage cells in the endosteal bone marrow, we demonstrated that radiation damage to mesenchymal progenitors mainly involves shifting their fate to adipocytes and arresting their proliferation ability but not inducing apoptosis, which are different mechanisms from radiation damage to mature bone forming cells. Scl-Ab treatment partially blocked the lineage shift but had no effect on the loss of proliferation potential. Taken together, our studies provide proof-of-principle evidence for a novel use of Scl-Ab as a therapeutic treatment for radiation-induced osteoporosis and

  2. Bone Marrow Transplantation Improves Autoinflammation and Inflammatory Bone Loss in SH3BP2 Knock-In Cherubism Mice

    PubMed Central

    Yoshitaka, Teruhito; Kittaka, Mizuho; Ishida, Shu; Mizuno, Noriyoshi; Mukai, Tomoyuki; Ueki, Yasuyoshi

    2014-01-01

    Cherubism (OMIM#118400) is a genetic disorder in children characterized by excessive jawbone destruction with proliferation of fibro-osseous lesions containing a large number of osteoclasts. Mutations in the SH3-domain binding protein 2 (SH3BP2) are responsible for cherubism. Analysis of the knock-in (KI) mouse model of cherubism showed that homozygous cherubism mice (Sh3bp2KI/KI) spontaneously develop systemic autoinflammation and inflammatory bone loss and that cherubism is a TNF-α-dependent hematopoietic disorder. In this study, we investigated whether bone marrow transplantation (BMT) is effective for the treatment of inflammation and bone loss in Sh3bp2KI/KI mice. Bone marrow (BM) cells from wild-type (Sh3bp2+/+) mice were transplanted to 6-week-old Sh3bp2KI/KI mice with developing inflammation and to 10-week-old Sh3bp2KI/KI mice with established inflammation. Six-week-old Sh3bp2KI/KI mice transplanted with Sh3bp2+/+ BM cells exhibited improved body weight loss, facial swelling, and survival rate. Inflammatory lesions in the liver and lung as well as bone loss in calvaria and mandibula were ameliorated at 10 weeks after BMT compared to Sh3bp2KI/KI mice transplanted with Sh3bp2KI/KI BM cells. Elevation of serum TNF-α levels was not detected after BMT. BMT was effective for up to 20 weeks in 6-week-old Sh3bp2KI/KI mice transplanted with Sh3bp2+/+ BM cells. BMT also ameliorated the inflammation and bone loss in 10-week-old Sh3bp2KI/KI mice. Thus our study demonstrates that BMT improves the inflammation and bone loss in cherubism mice. BMT may be effective for the treatment of cherubism patients. PMID:25445458

  3. Reveromycin A Administration Prevents Alveolar Bone Loss in Osteoprotegerin Knockout Mice with Periodontal Disease

    PubMed Central

    Mizuno, Manami; Miyazawa, Ken; Tabuchi, Masako; Tanaka, Miyuki; Yoshizako, Mamoru; Minamoto, Chisato; Torii, Yasuyoshi; Tamaoka, Yusuke; Kawatani, Makoto; Osada, Hiroyuki; Maeda, Hatsuhiko; Goto, Shigemi

    2015-01-01

    Chronic periodontal disease is characterized by alveolar bone loss and inflammatory changes. Reveromycin A (RMA) was recently developed and is a unique agent for inhibiting osteoclast activity. This study analysed the effects of RMA in an experimental mouse model of periodontitis involving osteoprotegerin (OPG)-knockout mice, specifically, whether it could control osteoclasts and reduce inflammation in periodontal tissue. We examined wild-type (WT) and OPG knockout mice (OPG KO) ligated with wire around contact points on the left first and second molars. RMA was administered twice a day to half of the mice. Using micro-computed tomography, we measured the volume of alveolar bone loss between the first and second molars, and also performed histological analysis. The OPG KO RMA+ group had significantly decreased osteoclast counts, alveolar bone loss, attachment loss, and inflammatory cytokine expression 8 weeks after ligation. Thus, RMA may reduce alveolar bone loss and inflamed periodontal tissues in patients with periodontitis. PMID:26561427

  4. Reveromycin A Administration Prevents Alveolar Bone Loss in Osteoprotegerin Knockout Mice with Periodontal Disease.

    PubMed

    Mizuno, Manami; Miyazawa, Ken; Tabuchi, Masako; Tanaka, Miyuki; Yoshizako, Mamoru; Minamoto, Chisato; Torii, Yasuyoshi; Tamaoka, Yusuke; Kawatani, Makoto; Osada, Hiroyuki; Maeda, Hatsuhiko; Goto, Shigemi

    2015-11-12

    Chronic periodontal disease is characterized by alveolar bone loss and inflammatory changes. Reveromycin A (RMA) was recently developed and is a unique agent for inhibiting osteoclast activity. This study analysed the effects of RMA in an experimental mouse model of periodontitis involving osteoprotegerin (OPG)-knockout mice, specifically, whether it could control osteoclasts and reduce inflammation in periodontal tissue. We examined wild-type (WT) and OPG knockout mice (OPG KO) ligated with wire around contact points on the left first and second molars. RMA was administered twice a day to half of the mice. Using micro-computed tomography, we measured the volume of alveolar bone loss between the first and second molars, and also performed histological analysis. The OPG KO RMA+ group had significantly decreased osteoclast counts, alveolar bone loss, attachment loss, and inflammatory cytokine expression 8 weeks after ligation. Thus, RMA may reduce alveolar bone loss and inflamed periodontal tissues in patients with periodontitis.

  5. Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone.

    PubMed

    Zacchetti, Giovanna; Dayer, Romain; Rizzoli, René; Ammann, Patrick

    2014-01-01

    Rapid bone defect filling with normal bone is a challenge in orthopaedics and dentistry. Strontium ranelate (SrRan) has been shown to in vitro decrease bone resorption and increase bone formation, and represents a potential agent with the capacity to accelerate bone defect filling. In this study, bone tibial defects of 2.5 mm in diameter were created in 6-month-old female rats orally fed SrRan (625 mg/kg/d; 5/7 days) or vehicle for 4, 8, or 12 weeks (10 rats per group per time point) from the time of surgery. Tibias were removed. Micro-architecture was determined by micro-computed tomography (µCT) and material level properties by nanoindentation analysis. µCT analysis showed that SrRan administration significantly improved microarchitecture of trabecular bone growing into the defect after 8 and 12 weeks of treatment compared to vehicle. SrRan treatment also accelerated the growth of cortical bone over the defect, but with different kinetics compared to trabecular bone, as the effects were already significant after 4 weeks. Nanoindentation analysis demonstrated that SrRan treatment significantly increased material level properties of both trabecular bone and cortical bone filling the defect compared to vehicle. SrRan accelerates the filling of bone defect by improving cortical and trabecular bone microarchitecture both quantitatively and qualitatively.

  6. Systemic Treatment with Strontium Ranelate Accelerates the Filling of a Bone Defect and Improves the Material Level Properties of the Healing Bone

    PubMed Central

    Zacchetti, Giovanna; Rizzoli, René

    2014-01-01

    Rapid bone defect filling with normal bone is a challenge in orthopaedics and dentistry. Strontium ranelate (SrRan) has been shown to in vitro decrease bone resorption and increase bone formation, and represents a potential agent with the capacity to accelerate bone defect filling. In this study, bone tibial defects of 2.5 mm in diameter were created in 6-month-old female rats orally fed SrRan (625 mg/kg/d; 5/7 days) or vehicle for 4, 8, or 12 weeks (10 rats per group per time point) from the time of surgery. Tibias were removed. Micro-architecture was determined by micro-computed tomography (µCT) and material level properties by nanoindentation analysis. µCT analysis showed that SrRan administration significantly improved microarchitecture of trabecular bone growing into the defect after 8 and 12 weeks of treatment compared to vehicle. SrRan treatment also accelerated the growth of cortical bone over the defect, but with different kinetics compared to trabecular bone, as the effects were already significant after 4 weeks. Nanoindentation analysis demonstrated that SrRan treatment significantly increased material level properties of both trabecular bone and cortical bone filling the defect compared to vehicle. SrRan accelerates the filling of bone defect by improving cortical and trabecular bone microarchitecture both quantitatively and qualitatively. PMID:25243150

  7. Guidance for the management of breast cancer treatment-induced bone loss: a consensus position statement from a UK Expert Group.

    PubMed

    Reid, David M; Doughty, Julie; Eastell, Richard; Heys, Steven D; Howell, Anthony; McCloskey, Eugene V; Powles, Trevor; Selby, Peter; Coleman, Robert E

    2008-01-01

    In postmenopausal women, the use of aromatase inhibitors increases bone turnover and induces bone loss at sites rich in trabecular bone at an average rate of 1-3% per year leading to an increase in fracture incidence compared to that seen during tamoxifen use. The bone loss is much more marked in young women with treatment-induced ovarian suppression followed by aromatase inhibitor therapy (average 7-8% per annum). Pre-treatment with tamoxifen for 2-5 years may reduce the clinical significance of the adverse bone effects associated with aromatase inhibitors, particularly if this leads to a shortening in the duration of exposure to an aromatase inhibitor. However, skeletal status should still be assessed at the commencement of aromatase inhibitor therapy. The rate of bone loss in women who experience a premature menopause before the age of 45 or are receiving ovarian suppression therapy is accelerated by the concomitant use of aromatase inhibitors. These patients are considered to be at high risk of clinically important bone loss and should have a baseline dual energy X-ray absorptiometry (DXA) assessment of bone mineral density (BMD). Randomised clinical trials in postmenopausal women indicate that bisphosphonates prevent the bone loss and accelerated bone turnover associated with aromatase inhibitor therapy and are a promising strategy for the prevention and treatment of osteoporosis in this setting. Treatment initiation recommendations are based on a combination of risk factors for osteoporotic fracture and BMD levels. Bisphosphonates, along with a healthy lifestyle and adequate intake of calcium and vitamin D are the treatments of choice to prevent bone loss. Due to the rate of bone loss associated with breast cancer treatments, and uncertainties about the interaction between aromatase inhibitor use and BMD for fracture risk, the threshold for intervention has been set at a higher level than that generally recommended for postmenopausal osteoporosis. Management

  8. Male Astronauts Have Greater Bone Loss and Risk of Hip Fracture Following Long Duration Spaceflights than Females

    NASA Technical Reports Server (NTRS)

    Ellman, Rachel; Sibonga, Jean; Bouxsein, Mary

    2010-01-01

    This slide presentation reviews bone loss in males and compares it to female bone loss during long duration spaceflight. The study indicates that males suffer greater bone loss than females and have a greater risk of hip fracture. Two possible reason for the greater male bone loss are that the pre-menopausal females have the estrogen protection and the greater strength of men max out the exercise equipment that provide a limited resistance to 135 kg.

  9. Possible methods for the prevention of bone loss in persons with epilepsy.

    PubMed

    Elliott, John O

    2009-06-01

    Various antiepileptic drugs are known to cause bone mineral density (BMD) loss in persons with epilepsy. In general population studies, physical activity has a profound effect on bone health. Vitamin D deficiency, common in persons with epilepsy, is also associated with various chronic health conditions and osteoporosis in the general population. People with epilepsy would benefit from interventional research focused on the prevention of BMD loss. Exercise, healthy dietary habits and nutritional supplementation are important for the development and maintenance of bone health as well as for the prevention of comorbid conditions that are common in epilepsy. Consensus guidelines are needed for the prevention, screening and treatment of BMD loss in epilepsy.

  10. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  11. Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse

    PubMed Central

    Kondo, Hisataka; Yumoto, Kenji; Alwood, Joshua S.; Mojarrab, Rose; Wang, Angela; Almeida, Eduardo A. C.; Searby, Nancy D.; Limoli, Charles L.

    2010-01-01

    Exposure of astronauts in space to radiation during weightlessness may contribute to subsequent bone loss. Gamma irradiation of postpubertal mice rapidly increases the number of bone-resorbing osteoclasts and causes bone loss in cancellous tissue; similar changes occur in skeletal diseases associated with oxidative stress. Therefore, we hypothesized that increased oxidative stress mediates radiation-induced bone loss and that musculoskeletal disuse changes the sensitivity of cancellous tissue to radiation exposure. Musculoskeletal disuse by hindlimb unloading (1 or 2 wk) or total body gamma irradiation (1 or 2 Gy of 137Cs) of 4-mo-old, male C57BL/6 mice each decreased cancellous bone volume fraction in the proximal tibiae and lumbar vertebrae. The extent of radiation-induced acute cancellous bone loss in tibiae and lumbar vertebrae was similar in normally loaded and hindlimb-unloaded mice. Similarly, osteoclast surface in the tibiae increased 46% as a result of irradiation, 47% as a result of hindlimb unloading, and 64% as a result of irradiation + hindlimb unloading compared with normally loaded mice. Irradiation, but not hindlimb unloading, reduced viability and increased apoptosis of marrow cells and caused oxidative damage to lipids within mineralized tissue. Irradiation also stimulated generation of reactive oxygen species in marrow cells. Furthermore, injection of α-lipoic acid, an antioxidant, mitigated the acute bone loss caused by irradiation. Together, these results showed that disuse and gamma irradiation, alone or in combination, caused a similar degree of acute cancellous bone loss and shared a common cellular mechanism of increased bone resorption. Furthermore, irradiation, but not disuse, may increase the number of osteoclasts and the extent of acute bone loss via increased reactive oxygen species production and ensuing oxidative damage, implying different molecular mechanisms. The finding that α-lipoic acid protected cancellous tissue from the

  12. Monoaxial distraction of ulna to second metacarpal followed by single bone forearm in massive post infective radial bone loss

    PubMed Central

    Pal, Jitendra N; Banik, Rajeeb

    2012-01-01

    Introduction: Radial bone loss associated with gross manus valgus deformity can be managed by open reduction internal fixation using intervening strut bone graft, callus distraction using ring or monoaxial fixator, and achieving union by distraction histogenesis. These methods are particularly suitable when bone loss is small. Single or staged procedure is described for congenital as well as in acquired extensive bone loss of radius. Distraction through radial proximal to distal segments, to achieve reduction of distal radio-ulnar joint (DRUJ), is also described in acquired cases. In the present series, functional results of distraction through ulna to 2nd metacarpal is studied alongwith, functional status of hand, stability of wrist, level of patient's satisfaction are also studied. Materials and Methods: 7 unilateral cases of radial loss (M = 5, F = 2) affecting 4 right hands of mean age 17 years (range 9 to 24 years) were included in this study. They were treated by distracting through ulna to 2nd metacarpal to achieve DRUJ alignment in first stage. Subsequently ulna was osteotomised and translated to distal stump of radius. It was then fixed to the distal radial remnant in 30° pronation in dominant and 30° supination non dominant hands. Results: Union was achieved in all cases associated with beneficial cross union of distal ulna. Hand functions improved near to normal, with fully corrected stable wrist joint, hypertrophied ulna and without recurrence. All of them had practically complete loss of forearm rotations, however patients were fully satisfied. Conclusion: This method is particularly suitable when associated with 6 cm or more radial bone loss. But when loss is small, sacrifice of one bone may not be justifiable. PMID:23325973

  13. Salvianolic Acid B Prevents Bone Loss in Prednisone-Treated Rats through Stimulation of Osteogenesis and Bone Marrow Angiogenesis

    PubMed Central

    Cui, Liao; Li, Ting; Liu, Yuyu; Zhou, Le; Li, Pinghua; Xu, Bilian; Huang, Lianfang; Chen, Yan; Liu, Yanzhi; Tian, Xiaoyan; Jee, Webster S. S.; Wu, Tie

    2012-01-01

    Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2) In vitro study: In concentration from 10−6 mol/L to 10−7 mol/L, Sal B stimulated bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased β-catenin mRNA expression with

  14. Salvianolic acid B prevents bone loss in prednisone-treated rats through stimulation of osteogenesis and bone marrow angiogenesis.

    PubMed

    Cui, Liao; Li, Ting; Liu, Yuyu; Zhou, Le; Li, Pinghua; Xu, Bilian; Huang, Lianfang; Chen, Yan; Liu, Yanzhi; Tian, Xiaoyan; Jee, Webster S S; Wu, Tie

    2012-01-01

    Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2) In vitro study: In concentration from 10(-6) mol/L to 10(-7) mol/L, Sal B stimulated bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased β-catenin mRNA expression with

  15. Early loss of subchondral bone following microfracture is counteracted by bone marrow aspirate in a translational model of osteochondral repair

    PubMed Central

    Gao, Liang; Orth, Patrick; Müller-Brandt, Kathrin; Goebel, Lars K. H.; Cucchiarini, Magali; Madry, Henning

    2017-01-01

    Microfracture of cartilage defects may induce alterations of the subchondral bone in the mid- and long-term, yet very little is known about their onset. Possibly, these changes may be avoided by an enhanced microfracture technique with additional application of bone marrow aspirate. In this study, full-thickness chondral defects in the knee joints of minipigs were either treated with (1) debridement down to the subchondral bone plate alone, (2) debridement with microfracture, or (3) microfracture with additional application of bone marrow aspirate. At 4 weeks after microfracture, the loss of subchondral bone below the defects largely exceeded the original microfracture holes. Of note, a significant increase of osteoclast density was identified in defects treated with microfracture alone compared with debridement only. Both changes were significantly counteracted by the adjunct treatment with bone marrow. Debridement and microfracture without or with bone marrow were equivalent regarding the early cartilage repair. These data suggest that microfracture induced a substantial early resorption of the subchondral bone and also highlight the potential value of bone marrow aspirate as an adjunct to counteract these alterations. Clinical studies are warranted to further elucidate early events of osteochondral repair and the effect of enhanced microfracture techniques. PMID:28345610

  16. Bone loss during the acute stage following burn injury.

    PubMed

    Leblebici, Berrin; Sezgin, Nurzen; Ulusan, Serife Nur; Tarim, Akin M; Akman, M Nafiz; Haberal, Mehmet A

    2008-01-01

    The aim of this study was to investigate the effect of burn injury on bone metabolism and bone densitometry in the early period. Twenty-one patients with >25% total body surface area (TBSA) burns and 20 healthy controls participated. TBSA burned, ambulation, and functional status were recorded. After 30 days, we measured bone mineral densities of the L1-L4 vertebrae, the left distal forearm, and the left proximal femur in the patients. At 1 and 4 weeks after the burn, changes in bone turnover were assessed in patients by changes in deoxypyridinoline levels in the urine and osteocalcin in the serum and compared with the values of control group. In patients, Z-scores < -1 were found in 71.42% of left distal forearm, 23.80% of left proximal femur, and in 42.85% of L1-L4 vertebrae measurements. No significant correlations existed between Z-scores and TBSA, Functional Ambulation Scale, or Functional Independent Measure. When compared with controls, there was no statistically significant decrease of osteocalcin (a marker of bone formation) levels in patients 1 and 4 weeks after burn injury. However, when compared with controls, a statistically significant difference was found regarding deoxypyridinoline (a marker for bone resorption) in patients 1 and 4 weeks after burn injury (P < .001 and P < .001, respectively). Decreases in bone mineral density occurred during the first month following burn injury, which seemed to be linked with increases in bone resorption during this period. No correlation existed between reduction in bone mineral density and functional status.

  17. Accelerated Loss of TCR Repertoire Diversity in Common Variable Immunodeficiency

    PubMed Central

    Wong, Gabriel K.; Millar, David; Penny, Sarah; Heather, James M.; Mistry, Punam; Buettner, Nico; Bryon, Jane; Huissoon, Aarnoud P.

    2016-01-01

    Although common variable immunodeficiency (CVID) has long been considered as a group of primary Ab deficiencies, growing experimental data now suggest a global disruption of the entire adaptive immune response in a segment of patients. Oligoclonality of the TCR repertoire was previously demonstrated; however, the manner in which it relates to other B cell and T cell findings reported in CVID remains unclear. Using a combination approach of high-throughput TCRβ sequencing and multiparametric flow cytometry, we compared the TCR repertoire diversity between various subgroups of CVID patients according to their B cell immunophenotypes. Our data suggest that the reduction in repertoire diversity is predominantly restricted to those patients with severely reduced class-switched memory B cells and an elevated level of CD21lo B cells (Freiburg 1a), and may be driven by a reduced number of naive T cells unmasking underlying memory clonality. Moreover, our data indicate that this loss in repertoire diversity progresses with advancing age far exceeding the expected physiological rate. Radiological evidence supports the loss in thymic volume, correlating with the decrease in repertoire diversity. Evidence now suggests that primary thymic failure along with other well-described B cell abnormalities play an important role in the pathophysiology in Freiburg group 1a patients. Clinically, our findings emphasize the integration of combined B and T cell testing to identify those patients at the greatest risk for infection. Future work should focus on investigating the link between thymic failure and the severe reduction in class-switched memory B cells, while gathering longitudinal laboratory data to examine the progressive nature of the disease. PMID:27481850

  18. Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss

    PubMed Central

    Jeney, Viktória

    2017-01-01

    Diseases/conditions with diverse etiology, such as hemoglobinopathies, hereditary hemochromatosis and menopause, could lead to chronic iron accumulation. This condition is frequently associated with a bone phenotype; characterized by low bone mass, osteoporosis/osteopenia, altered microarchitecture and biomechanics, and increased incidence of fractures. Osteoporotic bone phenotype constitutes a major complication in patients with iron overload. The purpose of this review is to summarize what we have learnt about iron overload-associated bone loss from clinical studies and animal models. Bone is a metabolically active tissue that undergoes continuous remodeling with the involvement of osteoclasts that resorb mineralized bone, and osteoblasts that form new bone. Growing evidence suggests that both increased bone resorption and decreased bone formation are involved in the pathological bone-loss in iron overload conditions. We will discuss the cellular and molecular mechanisms that are involved in this detrimental process. Fuller understanding of this complex mechanism may lead to the development of improved therapeutics meant to interrupt the pathologic effects of excess iron on bone. PMID:28270766

  19. Acceleration slope of exercise-induced impacts is a determinant of changes in bone density.

    PubMed

    Heikkinen, Riikka; Vihriälä, Erkki; Vainionpää, Aki; Korpelainen, Raija; Jämsä, Timo

    2007-01-01

    High acceleration levels (>4g) seen during impact exercises have been shown to increase bone mineral density (BMD) in premenopausal women. The aim of this study was to examine how the other acceleration signal characteristics, i.e. the slope, area and energy of the signal are related to changes in bone density, using long-term quantification of physical activity. Daily physical activity was continuously assessed with a waist-worn accelerometer-based body movement monitor in 64 premenopausal women participating in a 12-month population-based exercise trial. The daily number of exercise-induced impacts at different slope, area and energy levels of the acceleration signal was analyzed. Physical activity inducing slopes 1000 m/s(3), acceleration peak areas 2m/s or signal energies 75 m(2)/s(3) was associated with BMD change in the hip (p<0.05). Impacts with the smallest slopes (<1000 m/s(3)) were positively associated with changes in calcaneal speed of ultrasound, while impacts with slopes 1500 m/s(3) or areas 4m/s were positively correlated with broadband ultrasound attenuation changes (p<0.05). We conclude that the acceleration slope of exercise-induced impacts is an important determinant of bone density. The slope threshold for improving BMD at the hip is 1000 m/s(3), which can be achieved during normal exercise including fast movements such as running and jumping.

  20. Associations of genetic lactase non-persistence and sex with bone loss in young adulthood.

    PubMed

    Laaksonen, Marika M L; Impivaara, Olli; Sievänen, Harri; Viikari, Jorma S A; Lehtimäki, Terho J; Lamberg-Allardt, Christel J E; Kärkkäinen, Merja U M; Välimäki, Matti; Heikkinen, Jorma; Kröger, Liisa M; Kröger, Heikki P J; Jurvelin, Jukka S; Kähönen, Mika A P; Raitakari, Olli T

    2009-05-01

    Some studies have reported that after attainment of peak bone mass (PBM), slow bone loss may occur in both men and women; however, findings are inconsistent. Genetic factors play a significant role in bone loss, but the available evidence is conflicting. Genetic lactase non-persistence (lactase C/C(-13910) genotype) is suggested to increase risk for inadequate calcium intake predisposing to poorer bone health. We investigated whether this genotype is associated with PBM and bone loss in young Finnish adults. Subjects belong to the Cardiovascular Risk in Young Finns Study that is an ongoing multi-centre follow-up of atherosclerosis risk factors. From the original cohort, randomly selected subjects aged 20-29 participated in baseline bone mineral density (BMD) measurements (n=358), and in follow-up measurements 12 years later (n=157). Bone mineral content (BMC) and BMD at lumbar spine (LS) and femoral neck (FN) were measured at baseline and follow-up with dual energy X-ray absorptiometry (DXA). Lactase C/T(-13910) polymorphism was determined by PCR and allele-specific fluorogenic probes. Information on lifestyle was elicited with questionnaires. During the follow-up, bone loss at both bone sites was greater in males (LS BMD: -1.1%, FN BMD: -5.2%) than in females (LS BMD: +2.1%, FN BMD: -0.7%) (both bone sites p=0.001). Younger age predicted greater loss of FN BMC and BMD in females (p=0.013 and p=0.001, respectively). Increased calcium intake predicted FN BMD gain in both sexes (in females B=0.007 g/cm(2)/mg, p=0.002; in males B=0.006, p=0.045), and increased physical activity LS BMD gain in females (B=0.091 g/cm(2)/physical activity point, p=0.023). PBM did not differ between the lactase genotypes, but males with the CC(-13910) genotype seemed to be prone to greater bone loss during the follow-up (LS BMD: C/C vs. T/T p=0.081). In conclusion, bone loss in young adulthood was more common in males than in females and seemed to occur mainly at the femoral neck. Young

  1. Inflammation, bone loss and fracture risk in spondyloarthritis

    PubMed Central

    Briot, Karine; Roux, Christian

    2015-01-01

    Osteoporosis (ie, low bone mineral density) is common in ankylosing spondylitis, related to both systemic inflammation and decreased mobility. Vertebral fracture risk is increased; acute back pain in these patients is not always a flare-up of the disease, as it can be related to bone complications. Intervertebral disc fractures in the ankylosed spine are associated with severe neurological complications. As expected from pathophysiology, treatments effective against inflammation have a positive effect on bone, and prospective open studies have shown that tumour-necrosis-factor blockers can improve bone mineral density at the spine and the hip. There is so far no evidence of a decreased risk of fractures with such treatment. PMID:26509065

  2. Prevention of alveolar bone loss in an osteoporotic animal model via interference of semaphorin 4d.

    PubMed

    Zhang, Y; Wei, L; Miron, R J; Zhang, Q; Bian, Z

    2014-11-01

    Semaphorin 4d (Sema4d) has been proposed as a novel target gene for the treatment of osteoporosis. Recently, we fabricated a site-specific bone-targeting system from polymeric nanoparticles that demonstrates an ability to prevent bone loss in an osteoporotic model by interfering with Sema4d gene expression using small interference RNA (siRNA) molecules. The aim of the present investigation was to determine the effects of this targeting system on the periodontium, an area of high bone turnover. We demonstrated, by single photon emission computed tomography, that intravenous injection of this molecule in ovariectomized Balb/C mice is able to target alveolar bone peaking 4 hr post-injection. We then compared, by histological analysis, the bone volume/total volume (BV/TV), alveolar bone height loss, immunohistochemical expression of Sema4d, and total number of osteoclasts in mandibular alveolar bone. Four treatment modalities were compared as follows: (1) sham-operated, (2) OVX-operated, (3) OVX+estrogen replacement therapy, and (4) OVX+siRNA-Sema4d animals. The results from the present study demonstrate that an osteoporotic condition significantly increases alveolar bone height loss, and that the therapeutic effects via bone-targeting systems featuring interference of Sema4d are able to partly counteract alveolar bone loss caused by osteoporosis. While the future therapeutic demand for the large number of patients suffering from osteoporosis faces many challenges, we demonstrate within the present study an effective drug-delivery moiety with anabolic effects on the bone remodeling cycle able to locate and target alveolar bone regeneration.

  3. Sclerostin antibody prevented progressive bone loss in combined ovariectomized and concurrent functional disuse.

    PubMed

    Zhang, Dongye; Hu, Minyi; Chu, Timothy; Lin, Liangjun; Wang, Jingyu; Li, Xiaodong; Ke, Hua Zhu; Qin, Yi-Xian

    2016-06-01

    Osteoporosis is characterized by low bone mass and compromised trabecular architecture, and is commonly occurred in post-menopausal women with estrogen deficiency. In addition, prolonged mechanical unloading, i.e., long term bed rest, can exaggerate the bone loss. Sclerostin is a Wnt signaling antagonist and acts as a negative regulator for bone formation. A sclerostin-neutralizing antibody (Scl-Ab) increased bone mineral density in women with postmenopausal osteoporosis and healthy men. The objective of this study was to characterize the condition of bone loss in ovariectomized (OVX) rats with concurrent mechanical unloading and evaluate the effect of sclerostin antibody treatment in mitigating the prospective severe bone loss conditions in this model. Four-month-old OVX- or sham-operated female SD rats were used in this study. They were subjected to functional disuse induced by hind-limb suspension (HLS) or free ambulance after 2days of arrival. Subcutaneous injections with either vehicle or Scl-Ab at 25mg/kg were made twice per week for 5weeks from the time of HLS. μCT analyses demonstrated a significant decrease in distal metaphyseal trabecular architecture integrity with HLS, OVX and HLS+OVX (bone volume fraction decreased by 29%, 71% and 87% respectively). The significant improvements of various trabecular bone parameters (bone volume fraction increased by 111%, 229% and 297% respectively as compared with placebo group) with the administration of Scl-Ab are associated with stronger mechanical property and increased bone formation by histomorphometry. These results together indicate that Scl-Ab prevented the loss of trabecular bone mass and cortical bone strength in OVX rat model with concurrent mechanical unloading. The data suggested that monoclonal sclerostin-neutralizing antibody represents a promising therapeutic approach for severe osteoporosis induced by estrogen deficiency with concurrent mechanical unloading.

  4. Accuracy of Cone Beam Computed Tomography for Detection of Bone Loss

    PubMed Central

    Goodarzi Pour, Daryoush; Soleimani Shayesteh, Yadollah

    2015-01-01

    Objectives: Bone assessment is essential for diagnosis, treatment planning and prediction of prognosis of periodontal diseases. However, two-dimensional radiographic techniques have multiple limitations, mainly addressed by the introduction of three-dimensional imaging techniques such as cone beam computed tomography (CBCT). This study aimed to assess the accuracy of CBCT for detection of marginal bone loss in patients receiving dental implants. Materials and Methods: A study of diagnostic test accuracy was designed and 38 teeth from candidates for dental implant treatment were selected. On CBCT scans, the amount of bone resorption in the buccal, lingual/palatal, mesial and distal surfaces was determined by measuring the distance from the cementoenamel junction to the alveolar crest (normal group: 0–1.5mm, mild bone loss: 1.6–3mm, moderate bone loss: 3.1–4.5mm and severe bone loss: >4.5mm). During the surgical phase, bone loss was measured at the same sites using a periodontal probe. The values were then compared by McNemar’s test. Results: In the buccal, lingual/palatal, mesial and distal surfaces, no significant difference was observed between the values obtained using CBCT and the surgical method. The correlation between CBCT and surgical method was mainly based on the estimation of the degree of bone resorption. CBCT was capable of showing various levels of resorption in all surfaces with high sensitivity, specificity, positive predictive value and negative predictive value compared to the surgical method. Conclusion: CBCT enables accurate measurement of bone loss comparable to surgical exploration and can be used for diagnosis of bone defects in periodontal diseases in clinical settings. PMID:26877741

  5. Disruption of PTH Receptor 1 in T Cells Protects against PTH-Induced Bone Loss

    PubMed Central

    Tawfeek, Hesham; Bedi, Brahmchetna; Li, Jau-Yi; Adams, Jonathan; Kobayashi, Tatsuya; Weitzmann, M. Neale; Kronenberg, Henry M.; Pacifici, Roberto

    2010-01-01

    Background Hyperparathyroidism in humans and continuous parathyroid hormone (cPTH) treatment in mice cause bone loss by regulating the production of RANKL and OPG by stromal cells (SCs) and osteoblasts (OBs). Recently, it has been reported that T cells are required for cPTH to induce bone loss as the binding of the T cell costimulatory molecule CD40L to SC receptor CD40 augments SC sensitivity to cPTH. However it is unknown whether direct PTH stimulation of T cells is required for cPTH to induce bone loss, and whether T cells contribute to the bone catabolic activity of PTH with mechanisms other than induction of CD40 signaling in SCs. Methodology/Principal Findings Here we show that silencing of PTH receptor 1 (PPR) in T cells blocks the bone loss and the osteoclastic expansion induced by cPTH, thus demonstrating that PPR signaling in T cells is central for PTH-induced reduction of bone mass. Mechanistic studies revealed that PTH activation of the T cell PPR stimulates T cell production of the osteoclastogenic cytokine tumor necrosis factor α (TNF). Attesting to the relevance of this effect, disruption of T cell TNF production prevents PTH-induced bone loss. We also show that a novel mechanism by which TNF mediates PTH induced osteoclast formation is upregulation of CD40 expression in SCs, which increases their RANKL/OPG production ratio. Conclusions/Significance These findings demonstrate that PPR signaling in T cells plays an essential role in PTH induced bone loss by promoting T cell production of TNF. A previously unknown effect of TNF is to increase SC expression of CD40, which in turn increases SC osteoclastogenic activity by upregulating their RANKL/OPG production ratio. PPR-dependent stimulation of TNF production by T cells and the resulting TNF regulation of CD40 signaling in SCs are potential new therapeutic targets for the bone loss of hyperparathyroidism. PMID:20808842

  6. NADPH oxidases are critical targets for prevention of ethanol-induced bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanisms through which chronic alcohol consumption induce bone loss and osteoporosis are largely unknown. Ethanol increases expression and activates NADPH (nicotinamide adenine dinucleotide phosphate) oxidase enzymes (Nox) in osteoblasts leading to accumulation of reactive oxygen spe...

  7. Bone graft

    MedlinePlus

    Autograft - bone; Allograft - bone; Fracture - bone graft; Surgery - bone graft; Autologous bone graft ... Fuse joints to prevent movement Repair broken bones (fractures) that have bone loss Repair injured bone that ...

  8. Antiresorptive therapy in the management of cancer treatment-induced bone loss.

    PubMed

    Garg, Ashwani; Leitzel, Kim; Ali, Suhail; Lipton, Allan

    2015-04-01

    Cancer treatment-induced bone loss treatment has an important role to prevent bone loss-related events like fracture, significant morbidity, mortality, disfigurement and loss of self-esteem, and health-care expenditure. Numerous factors, including treatment regimens and bone metastasis, increase the risk of osteoporosis or local bone destruction in most breast and prostate cancer patients. Cytotoxic chemotherapies, radiation, and hormonal therapies can lead to premature menopause and decrease bone mineral density. Over 60 % of breast cancer patients within 1 year of beginning postoperative adjuvant chemotherapy experience ovarian failure. Also, ovarian ablation and aromatase inhibitors used to treat breast cancer and orchiectomy and androgen deprivation therapy (ADT; to treat prostate cancer) cause substantial bone loss. In this article, we will focus mainly on antiresorptive therapy in the management of cancer treatment-induced bone loss (CTIBL). An understanding of CTIBL is critical for determining how to assess the risk and identify which patients may benefit from preventive therapy.

  9. A combination of methotrexate and zoledronic acid prevents bone erosions and systemic bone mass loss in collagen induced arthritis

    PubMed Central

    2009-01-01

    Introduction Osteoclasts play a key role in the pathogenesis of bone erosion and systemic bone mass loss during rheumatoid arthritis (RA). In this study, we aimed to determine the effect of methotrexate (MTX) and zoledronic acid (ZA), used alone or in combination, on osteoclast-mediated bone erosions and systemic bone mass loss in a rat model of collagen induced arthritis (CIA). We hypothesized that MTX and ZA could have an additive effect to prevent both bone erosion and systemic bone loss. Methods Arthritis was induced in 64 female Sprague-Dawley rats. After the clinical onset of CIA, rats were assigned to treatment with MTX (1 mg/kg/week), ZA (100 μg/kg twice weekly), both treatments at the same regimens, or vehicle. Arthritis score and paw thickness were recorded twice weekly. The rats were sacrificed on D28 and hind paws were removed for radiographic, histological and immunohistochemical analysis. The effects of treatments on osteoclastogenesis were determined by Tartrate resistant acid phosphatase (TRAP) staining. Micro-CT of the tibia was carried out for histomorphometric analysis. Bone mass density was evaluated by densitometry. Results MTX significantly decreased the severity of CIA, whereas ZA slightly exacerbated it. When these two drugs were used in combination, MTX prevented the pro-inflammatory effect of ZA. The combination of ZA with MTX was more effective than MTX alone for reducing structural joint damage with a dramatic decrease of osteoclasts' number in the eroded joints. However, MTX alone also significantly reduced the number of osteoclasts and the number of CD68+ mononuclear cells. ZA alone, or ZA with MTX, significantly increased the systemic bone mass density measured by densitometry and bone volume on histomorphometric analysis. Conclusions A combination of MTX and ZA prevented both bone erosion and systemic bone loss in a rat model of arthritis. Both treatments independently decreased the number of osteoclasts in the eroded joint. However

  10. Inhibition of Bone Loss by Cissus quadrangularis in Mice: A Preliminary Report

    PubMed Central

    Banu, Jameela; Varela, Erika; Bahadur, Ali N.; Soomro, Raheela; Kazi, Nishu; Fernandes, Gabriel

    2012-01-01

    Women drastically loose bone during and after menopause leading to osteoporosis, a disease characterized by low bone mass increasing the risk of fractures with minor trauma. Existing therapies mainly reduce bone resorption, however, all existing drugs have severe side effects. Recently, the focus is to identify alternative medicines that can prevent and treat osteoporosis with minimal or no side effects. We used Cissus quadrangularis (CQ), a medicinal herb, to determine its effects on bone loss after ovariectomy in C57BL/6 mice. Two-month old mice were either sham operated or ovariectomized and fed CQ diet. After eleven weeks, mice were sacrificed and the long bones scanned using pQCT and μCT. In the distal femoral metaphysis, femoral diaphysis, and proximal tibia, control mice had decreased cancellous and cortical bone, while CQ-fed mice showed no significant differences in the trabecular number, thickness, and connectivity density, between Sham and OVX mice, except for cortical bone mineral content in the proximal tibia. There were no changes in the bone at the tibio-fibular junction between groups. We conclude that CQ effectively inhibited bone loss in the cancellous and cortical bones of femur and proximal tibia in these mice. PMID:22779034

  11. Beam losses and beam halos in accelerators for new energy sources

    SciTech Connect

    Jameson, R.A.

    1995-12-31

    Large particle accelerators are proposed as drivers for new ways to produce electricity from nuclear fusion and fission reactions. The accelerators must be designed to deliver large particle beam currents to a target facility with very little beam spill along the accelerator itself, in order that accelerator maintenance can be accomplished without remote manipulators. Typically, particle loss is preceded by the formation of a tenuous halo of particles around the central beam core, caused by beam dynamics effects, often coupled with the slight imperfections inevitable in a practical design. If the halo becomes large enough, particles may be scraped off along the accelerator. The tolerance for beam spill in different applications is discussed, halo mechanisms and recent work to explore and understand their dynamics are reviewed, and possible directions for future investigation are outlined. 17 refs., 10 figs.

  12. Adipose-Derived Mesenchymal Stem Cells Prevent Systemic Bone Loss in Collagen-Induced Arthritis

    PubMed Central

    Garimella, Manasa G.; Kour, Supinder; Piprode, Vikrant; Mittal, Monika; Kumar, Anil; Rani, Lekha; Pote, Satish T.; Mishra, Gyan C.; Chattopadhyay, Naibedya

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory synovitis leading to joint destruction and systemic bone loss. The inflammation-induced bone loss is mediated by increased osteoclast formation and function. Current antirheumatic therapies primarily target suppression of inflammatory cascade with limited or no success in controlling progression of bone destruction. Mesenchymal stem cells (MSCs) by virtue of their tissue repair and immunomodulatory properties have shown promising results in various autoimmune and degenerative diseases. However, the role of MSCs in prevention of bone destruction in RA is not yet understood. In this study, we investigated the effect of adipose-derived MSCs (ASCs) on in vitro formation of bone-resorbing osteoclasts and pathological bone loss in the mouse collagen-induced arthritis (CIA) model of RA. We observed that ASCs significantly inhibited receptor activator of NF-κB ligand (RANKL)–induced osteoclastogenesis in both a contact-dependent and -independent manner. Additionally, ASCs inhibited RANKL-induced osteoclastogenesis in the presence of proinflammatory cytokines such as TNF-α, IL-17, and IL-1β. Furthermore, treatment with ASCs at the onset of CIA significantly reduced clinical symptoms and joint pathology. Interestingly, ASCs protected periarticular and systemic bone loss in CIA mice by maintaining trabecular bone structure. We further observed that treatment with ASCs reduced osteoclast precursors in bone marrow, resulting in decreased osteoclastogenesis. Moreover, ASCs suppressed autoimmune T cell responses and increased the percentages of peripheral regulatory T and B cells. Thus, we provide strong evidence that ASCs ameliorate inflammation-induced systemic bone loss in CIA mice by reducing osteoclast precursors and promoting immune tolerance. PMID:26538398

  13. A case of hepatitis C-associated osteosclerosis: accelerated bone turnover controlled by pulse steroid therapy

    PubMed Central

    Nishida, Shuhei; Itasaka, Mina; Matsuda, Hirofumi; Ohtou, Takeshi; Yamaguchi, Yasuhiro; Inaba, Daisuke; Tamiya, Sadahiro; Nakano, Tetsuo

    2016-01-01

    Summary Hepatitis C-associated osteosclerosis (HCAO), a very rare disorder in which an extremely rapid bone turnover occurs and results in osteosclerosis, was acknowledged in 1990s as a new clinical entity with the unique bone disorder and definite link to chronic type C hepatitis, although the pathogenesis still remains unknown. Affected patients suffer from excruciating deep bone pains. We report the 19th case of HCAO with diagnosis confirmed by bone biopsy, and treated initially with a bisphosphonate, next with corticosteroids and finally with direct acting antivirals (DAA: sofosbuvir and ribavirin) for HCV infection. Risedronate, 17.5 mg/day for 38 days, did not improve the patient’s symptoms or extremely elevated levels of bone markers, which indicated hyper-bone-formation and coexisting hyper-bone-resorption in the patient. Next, intravenous methylprednisolone pulse therapy followed by high-dose oral administration of prednisolone evidently improved them. DAA therapy initiated after steroid therapy successfully achieved sustained virological response, but no additional therapeutic effect on them was observed. Our results strongly suggested that the underlying immunological alteration is the crucial key to clarify the pathogenesis of HCAO. Bone mineral density of lumbar vertebrae of the patient was increased by 14% in four-month period of observation. Clarification of the mechanisms that develop osteosclerosis in HCAO might lead to a new therapeutic perspective for osteoporosis. Learning points: HCAO is an extremely rare bone disorder, which occurs exclusively in patients affected with HCV, of which only 18 cases have been reported since 1992 and pathogenesis still remains unclear. Pathophysiology of HCAO is highly accelerated rates of both bone formation and bone resorption, with higher rate of formation than that of resorption, which occur in general skeletal leading to the diffuse osteosclerosis with severe bone pains. Steroid therapy including

  14. Influence of bone osteocalcin levels on bone loss induced by ovariectomy in rats.

    PubMed

    Hara, Kuniko; Kobayashi, Masatoshi; Akiyama, Yasuhiro

    2007-01-01

    To investigate the role of osteocalcin (OC) in bones, bone parameters in warfarin (WF)-treated rats after ovariectomy (OVX) were compared with those in intact rats. Rats were divided into an intact group and WF-treated group. Warfarin was orally given to rats for 16 weeks, and then OVX was performed and rats in the WF-treated groups continued receiving WF. Twelve weeks after OVX, bone properties were observed. The diaphysial bone OC level in the WF group was 10%-14% of the normal level at the preoperative point and 12 weeks after surgery. On comparison of the intact and WF groups before surgery, no significant differences were noted in bone mass parameters or mechanical properties, but 12 weeks after surgery, the diaphysial bone mineral content (BMC), bone area, and cortical thickness (Cth) were significantly higher in the WF-sham group than in the intact-sham group. Ovariectomy significantly decreased the diaphysial BMC, bone mineral density (BMD), Cth, and maximum load, and increased the endosteal perimeter in the WF group. In the intact group, no such OVX-induced changes were noted, and the metaphysial bone area and the endosteal and periosteal perimeters were increased by OVX. The CO(3)/PO(4) ratio in the femur measured by Fourier-transform infrared imaging using reflection preparations was higher in the WF-sham group than the intact-sham group, and higher in the intact-OVX group than the intact-sham group, but no significant difference was noted between the WF-sham and WF-OVX groups. It has been reported that CO(3)(-) is contained in new bone and decreases with mineral maturation. These data suggest that long-term reduction in bone OC levels may induce the formation of immature bone, which is easily resorbed with changes in bone metabolism such as OVX, and that OC may be one of the factors affecting bone turnover.

  15. Precision bone and muscle loss measurements by advanced, multiple projection DEXA (AMPDXA) techniques for spaceflight applications

    NASA Technical Reports Server (NTRS)

    Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.

    2001-01-01

    An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.

  16. Bone loss in revision total knee arthroplasty: graft options and adjuncts.

    PubMed

    Stulberg, S David

    2003-04-01

    The treatment of small bone defects in revision total knee arthroplasty should make immediate full weight bearing and full therapy possible, provide long-term stability for the implants, and restore bone stock. These objectives are achieved with bone grafts if the defects are cavitary or small (involving less than one fourth of the cortical rim) segmental defects. These objectives are achieved with porous metal augments if the defects are segmental and involve more than one fourth of the cortical rim. The treatment of bone loss on the femur must allow the re-establishment of the distal and posterior joint lines as well as provide a firm fixation base for the implants.

  17. Vitamin K supplementation does not prevent bone loss in ovariectomized Norway rats

    PubMed Central

    2012-01-01

    Background Despite plausible biological mechanisms, the differential abilities of phylloquinone (PK) and menaquinones (MKn) to prevent bone loss remain controversial. The objective of the current study was to compare the effects of PK, menaquinone-4 (MK-4) and menaquinone-7 (MK-7) on the rate of bone loss in ovariectomized (OVX) Norway rats. A secondary aim was to compare the effects of vitamin K with those of bisphosphonates (BP) on bone loss. Methods Rats (n = 96) were randomized to 6 dosing groups [n = 16/group; Sham; OVX; OVX + BP (100 μg/kg/100 μg/mL saline sc); OVX + PK; OVX + MK-4; and OVX + MK-7] for 6 wk. Equimolar daily doses of 107 mg PK/kg, 147 mg MK-4/kg, and 201 mg MK-7/kg diet were provided. Results BP significantly increased bone strength and bone mineral density (BMD) vs. OVX (P < 0.05). However, PK, MK-4 or MK-7 did not change bone strength or BMD compared to the OVX group. Whereas supplementation of PK, MK-4 and MK-7 increased serum and tibia concentrations of each respective form, PK concentrations were consistently higher despite equimolar intakes. Conclusion PK, MK-4, and MK-7 do not appear to prevent bone loss in OVX rats when administered concurrent with adequate intake of other nutrients. PMID:22348311

  18. Myeloid thrombomodulin lectin-like domain inhibits osteoclastogenesis and inflammatory bone loss.

    PubMed

    Cheng, Tsung-Lin; Lai, Chao-Han; Shieh, Shyh-Jou; Jou, Yin-Bo; Yeh, Jwu-Lai; Yang, Ai-Lun; Wang, Yan-Hsiung; Wang, Chau-Zen; Chen, Chung-Hwan; Shi, Guey-Yueh; Ho, Mei-Ling; Wu, Hua-Lin

    2016-06-17

    Osteoclastogenesis is an essential process during bone metabolism which can also be promoted by inflammatory signals. Thrombomodulin (TM), a transmembrane glycoprotein, exerts anti-inflammatory activities such as neutralization of proinflammatory high-mobility group box 1 (HMGB1) through TM lectin-like domain. This study aimed to identify the role of myeloid TM (i.e., endogenous TM expression on the myeloid lineage) in osteoclastogenesis and inflammatory bone loss. Using human peripheral blood mononuclear cells and mouse bone marrow-derived macrophages, we observed that the protein levels of TM were dramatically reduced as these cells differentiated into osteoclasts. In addition, osteoclastogenesis and extracellular HMGB1 accumulation were enhanced in primary cultured monocytes from myeloid-specific TM-deficient mice (LysMcre/TM(flox/flox)) and from TM lectin-like domain deleted mice (TM(LeD/LeD)) compared with their respective controls. Micro-computerized tomography scans showed that ovariectomy-induced bone loss was more pronounced in TM(LeD/LeD) mice compared with controls. Finally, the inhibiting effects of recombinant TM lectin-like domain (rTMD1) on bone resorption in vitro, and bone loss in both the ovariectomized model and collagen antibody-induced arthritis model has been detected. These findings suggested that the myeloid TM lectin-like domain may inhibit osteoclastogenesis by reducing HMGB1 signaling, and rTMD1 may hold therapeutic potential for inflammatory bone loss.

  19. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity. PMID:27626477

  20. The cellular basis of bone turnover and bone loss: a rebuttal of the osteocytic resorption--bone flow theory.

    PubMed

    Parfitt, A M

    1977-01-01

    There is now sufficient evidence to conclude that the osteocytic resorption--bone flow theory of bone turnove is untenable. According to this theory bone is resorbed not from the surface by osteoclasts but from within by osteocytes, towards which bone flows through tissue space away from bone forming surfaces. The need to invoke resorption by osteocytes stems from the belief that too few osteoclasts are present to account for normal bone resoption, a belief which reflects unawareness of the enormous capacity of the osteoclast and the rapidity of its advance. The belief that osteocytes resorb substantial amounts of bone rests on invalid conclusions from indirect techniques, various artifacts of specimen processing and unawareness of the microscopic characteristics of woven bone. Osteocytes enlarge their lacunae by resorbing bone only as a prelude to resorption from the surface, the osteocyte and osteoclast working together as a resorbing unit. The belief that bone can flow is incompatible both with the physical properties of bone and with a substantial body of evidence relating to Haversian remodelling; the experimental data purporting to demonstrate such flow can all be explained by conventional concepts of bone turnover.

  1. Twelve-Minute Daily Yoga Regimen Reverses Osteoporotic Bone Loss

    PubMed Central

    Lu, Yi-Hsueh; Rosner, Bernard; Chang, Gregory

    2016-01-01

    Objective: Assess the effectiveness of selected yoga postures in raising bone mineral density (BMD). Methods: Ten-year study of 741 Internet-recruited volunteers comparing preyoga BMD changes with postyoga BMD changes. Outcome Measures: Dual-energy x-ray absorptiometric scans. Optional radiographs of hips and spine and bone quality study (7 Tesla). Results: Bone mineral density improved in spine, hips, and femur of the 227 moderately and fully compliant patients. Monthly gain in BMD was significant in spine (0.0029 g/cm2, P = .005) and femur (0.00022 g/cm2, P = .053), but in 1 cohort, although mean gain in hip BMD was 50%, large individual differences raised the confidence interval and the gain was not significant for total hip (0.000357 g/cm2). No yoga-related serious injuries were imaged or reported. Bone quality appeared qualitatively improved in yoga practitioners. Conclusion: Yoga appears to raise BMD in the spine and the femur safely. PMID:27226695

  2. Assessing bone loss in micro-gravity: a fuzzy approach.

    PubMed

    Zobel, Bruno Beomonte; Del Vescovo, Riccardo; Oliva, Gabriele; Russo, Valentina; Setola, Roberto

    2012-12-01

    A prolonged stay in microgravity has various negative effects on the human body; one of these problems is a noticeable demineralization of bone tissues. Such effects are quite similar to those experienced by subjects on earth affected by osteoporosis; therefore it seems quite straightforward to adopt a similar pharmacological therapy during the stay in the space. In this paper a first step in the identification of a monitoring procedure for the bone demineralization in microgravity, as well as some guidelines for the choice of adequate therapies are given. Such a procedure is based on a mathematical model of the interaction of the most relevant blood and urine indicators of bone demineralization. Specifically, some bone metabolites have been identified, which are relevant to the phenomena and are feasible to be evaluated in the space. Moreover, a model to foresee the evolution of these parameters in the space, depending on the therapy chosen, is provided. The model is derived from the experience of doctors and experts, hence it is based mainly on linguistic information; such an information is codified by means of fuzzy numbers, in order to take into account their uncertainty.

  3. Protective effect of Pycnogenol® on ovariectomy-induced bone loss in rats.

    PubMed

    Mei, Lin; Mochizuki, Miyako; Hasegawa, Noboru

    2012-01-01

    Pycnogenol® (PYC) is a natural plant extract from the bark of Pinus pinaster and has potent antioxidant activities. The protective effect of PYC on bone loss was studied in multiparous ovariectomized (OVX) female rats. Pycnogenol® (30 or 15 mg/kg body weight/day) was administered orally to 8-month-old OVX rats for 3 months. At the end of the experiment, bone strength was measured by a three-point bending test and bone mineral density was estimated by peripheral quantitative computed tomography. Ovariectomy significantly decreased femur bone strength and bone density. Supplementation with PYC suppressed the bone loss induced by OVX. The OVX treatment significantly increased serum osteocalcin (OC) and C-terminal telopeptide of type I collagen (CTx). Supplementation with PYC reduced the serum OC and CTx in OVX rats to a level similar to that of the sham-operated group. The results indicated that orally administered PYC can decrease the bone turnover rate in OVX rats, resulting in positive effects on the biomechanical strength of bone and bone mineral density.

  4. Low Magnitude, High Frequency Signals Could Reduce Bone Loss During Spaceflight

    NASA Astrophysics Data System (ADS)

    Hawkey, A.

    The removal of gravitational loading results in a loss of homeostasis of the skeleton. This leads to significant losses of bone mass during long-duration missions in space. Conventional exercise countermeasures, such as running and resistance training, have only limited effectiveness in reducing the rate at which bone is demineralised in microgravity. Bone loss, therefore, remains a major concern and if not annulled could be so severe as to jeopardise an extended human presence in space. In addition, current exercise regimes occupy valuable crew time, and astronauts often find the equipment cumbersome and uncomfortable to use. Recent studies suggest that exposing the body to short periods (<20mins) of low magnitude (<1g), high frequency (15-35Hz) signals (vibration) everyday could reduce, even prevent, bone loss during conditions such as osteoporo- sis on earth. The new vibration therapy treatment could also have several advantages over existing exercise countermeasures used in spaceflight due to it being very simple to operate, relatively inexpensive, and requiring only short periods of time `training', unlike the complicated, expensive and time-consuming devices currently used. This review highlights the detrimen- tal effects that microgravity has on the strength and integrity of bone, how current countermeasures are ineffective at stemming this level of deterioration, and how new vibration techniques could significantly reduce space-induced bone loss.

  5. Does a high dietary acid content cause bone loss, and can bone loss be prevented with an alkaline diet?

    PubMed

    Hanley, David A; Whiting, Susan J

    2013-01-01

    A popular concept in nutrition and lay literature is that of the role of a diet high in acid or protein in the pathogenesis of osteoporosis. A diet rich in fruit and vegetable intake is thought to enhance bone health as the result of its greater potassium and lower "acidic" content than a diet rich in animal protein and sodium. Consequently, there have been a number of studies of diet manipulation to enhance potassium and "alkaline" content of the diet to improve bone density or other parameters of bone health. Although acid loading or an acidic diet featuring a high protein intake may be associated with an increase in calciuria, the evidence supporting a role of these variables in the development of osteoporosis is not consistent. Similarly, intervention studies with a more alkaline diet or use of supplements of potassium citrate or bicarbonate have not consistently shown a bone health benefit. In the elderly, inadequate protein intake is a greater problem for bone health than protein excess.

  6. Baseline observations from the POSSIBLE EU® study: characteristics of postmenopausal women receiving bone loss medications

    PubMed Central

    Cooper, Cyrus; Roux, Christian; Díez-Pérez, Adolfo; Guillemin, Francis; Jonsson, Bengt; Ortolani, Sergio; Pfeilschifter, Johannes; Horne, Rob; Kakad, Shilpa; Shepherd, Susan; Möller, Gerd; Marciniak, Anne; Martinez, Luc

    2010-01-01

    Summary Prospective Observational Scientific Study Investigating Bone Loss Experience in Europe (POSSIBLE EU®) is an ongoing longitudinal cohort study that utilises physician- and patient-reported measures to describe the characteristics and management of postmenopausal women on bone loss therapies. We report the study design and baseline characteristics of 3,402 women recruited from general practice across five European countries. Purpose The POSSIBLE EU® is a study describing the characteristics and management of postmenopausal women receiving bone loss medications. Methods Between 2005 and 2008, general practitioners enrolled postmenopausal women initiating, switching or continuing treatment with bone loss treatment in France, Germany, Italy, Spain and the UK. Patients and physicians completed questionnaires at study entry and at 3-month intervals, for 1 year. Results Of 3,402 women enrolled (mean age 68.2 years [SD] 9.83), 96% were diagnosed with low bone mass; 55% of these using dual energy X-ray absorptiometry. Most women (92%) had comorbidities. Mean minimum T score (hip or spine) at diagnosis was −2.7 (SD 0.89; median −2.7 [interquartile range, −3.2, −2.2]) indicating low bone mineral density. Almost 40% of the women had prior fractures in adulthood, mostly non-vertebral, non-hip in nature, 30% of whom had at least two fractures and more than half experienced moderate/severe pain or fatigue. Bisphosphonates were the most common type of bone loss treatment prescribed in the 12 months preceding the study. Conclusions POSSIBLE EU® characterises postmenopausal women with low bone mass, exhibiting a high rate of prevalent fracture, substantial bone fragility and overall comorbidity burden. Clinical strategies for managing osteoporosis in this population varied across the five participating European countries, reflecting their different guidelines, regulations and standards of care. PMID:21258637

  7. Mechanisms of Radiation-Induced Bone Loss and Effects on Prostate Cancer Bone Metastases

    DTIC Science & Technology

    2013-06-01

    and in vivo bone imaging [months 6-10]. b. Determine apoptosis of bone cells (OT, OB & OC) by quantifying TUNEL staining [months 6-10]. Animal...Zoledronic acid will be used as positive control for inhibition of apoptosis and also inhibition of resorption [month 10]. c. Perform in vivo bone imaging ...described and presented in Task 3. Task 5: Image calvarial osteocytes in real-time after single dose exposure of 2 Gy [months 6-12] A single dose of

  8. Polar bears (Ursus maritimus), the most evolutionary advanced hibernators, avoid significant bone loss during hibernation.

    PubMed

    Lennox, Alanda R; Goodship, Allen E

    2008-02-01

    Some hibernating animals are known to reduce muscle and bone loss associated with mechanical unloading during prolonged immobilisation,compared to humans. However, here we show that wild pregnant polar bears (Ursus maritimus) are the first known animals to avoid significant bone loss altogether, despite six months of continuous hibernation. Using serum biochemical markers of bone turnover, we showed that concentrations for bone resorption are not significantly increased as a consequence of hibernation in wild polar bears. This is in sharp contrast to previous studies on other hibernating species, where for example, black bears (Ursus americanus), show a 3-4 fold increase in serum bone resorption concentrations posthibernation,and must compensate for this loss through rapid bone recovery on remobilisation, to avoid the risk of fracture. In further contrast to black bears, serum concentrations of bone formation markers were highly significantly increased in pregnant female polar bears compared to non-pregnant,thus non-hibernating females both prior to and after hibernation. However, bone formation concentrations in new mothers were significantly reduced compared to pre-hibernation concentrations. The de-coupling of bone turnover in favour of bone formation prior to hibernation, suggests that wild polar bears may posses a unique physiological mechanism for building bone in protective preparation against expected osteopenia associated with disuse,starvation, and hormonal drives to mobilise calcium for reproduction, during hibernation. Understanding this physiological mechanism could have profound implications for a natural solution for the prevention of osteoporosis in animals subjected to captivity with inadequate space for exercise,humans subjected to prolonged bed rest while recovering from illness, or astronauts exposed to antigravity during spaceflight.© 2008 Elsevier Inc. All rights reserved.

  9. Tail-suspended mice lacking calponin H1 experience decreased bone loss.

    PubMed

    Yotsumoto, Naoki; Takeoka, Michiko; Yokoyama, Minesuke

    2010-07-01

    Calponin h1 (CNh1) is an actin-binding protein originally isolated from vascular smooth muscle and has been reported to suppress bone formation. We are therefore curious how CNh1 is involved in bone loss that is caused by space flight in microgravity. We assessed the effects of tail suspension (TS) in C57BL/6J wild (CN+/+) and CNh1-deleted (CN-/-) mice to elucidate the role of CNh1 in bone loss under weightless conditions. Bone mineral density (BMD) of tibiae was measured by single energy X-ray absorptiometry, and bone volume fraction (BV/TV), mineral apposition rate (MAR), and bone formation rate (BFR/BS) were measured by bone histomorphometry. BMD, BV/TV, MAR, and BFR/BS were lower in CN+/+ mice with TS than in those without. In the CN-/- group, however, the decrease in each of these parameters by TS was ameliorated. Decreases in serum osteocalcin levels by TS in CN+/+ mice were attenuated in CN-/- mice. Furthermore, urinary deoxypyridinolin (DPD), an indicator of bone resorption, was increased in CN+/+ mice following TS, but not in CN-/- mice. In transfection experiments, the degree of induction of bone formation markers, alkaline phosphatase (ALP) activity and bone morphogenetic protein (BMP)-4 mRNA expression, under stimulation with BMP-2, was lower in MC3T3-E1 mouse osteoblast-like cells expressing CNh1 than that in mock transfected cells. Notably, the BMP-2-induced ALP activity was decreased by CNh1 expression, which was partially rescued by treatment with the Rho kinase inhibitor Y27632. Taken together, these results indicate that CNh1 is responsible for weightlessness-induced bone loss in part through Rho signaling pathway.

  10. The Role of IL-1β in the Bone Loss during Rheumatic Diseases

    PubMed Central

    Ruscitti, Piero; Cipriani, Paola; Carubbi, Francesco; Liakouli, Vasiliki; Di Benedetto, Paola; Berardicurti, Onorina; Alesse, Edoardo; Giacomelli, Roberto

    2015-01-01

    Several inflammatory diseases have been associated with increased bone resorption and fracture rates and different studies supported the relation between inflammatory cytokines and osteoclast activity. The main factor required for osteoclast activation is the stimulation by receptor activator of nuclear factor kappa-B ligand (RANKL) expressed on osteoblasts. In this context, interleukin- (IL-) 1β, one of the most powerful proinflammatory cytokines, is a strong stimulator of in vitro and in vivo bone resorption via upregulation of RANKL that stimulates the osteoclastogenesis. The resulting effects lead to an imbalance in bone metabolism favouring bone resorption and osteoporosis. In this paper, we review the available literature on the role of IL-1β in the pathogenesis of bone loss. Furthermore, we analysed the role of IL-1β in bone resorption during rheumatic diseases and, when available, we reported the efficacy of anti-IL-1β therapy in this field. PMID:25954061

  11. A Losing Battle: Weight Regain Does Not Restore Weight Loss-Induced Bone Loss in Postmenopausal Women

    PubMed Central

    Villalon, Karen L.; Gozansky, Wendolyn S.; Van Pelt, Rachael E.; Wolfe, Pam; Jankowski, Catherine M.; Schwartz, Robert S.; Kohrt, Wendy M.

    2013-01-01

    Previously, we reported significant bone mineral density (BMD) loss in postmenopausal women after modest weight loss. It remains unclear whether the magnitude of BMD change in response to weight loss is appropriate (i.e., proportional to weight loss) and whether BMD is recovered with weight regain. We now report changes in BMD after a 1-year follow-up. Subjects (n = 23) in this secondary analysis were postmenopausal women randomized to placebo as part of a larger trial. They completed a 6-month exercise-based weight loss program and returned for follow-up at 18 months. Dual-energy X-ray absorptiometry (DXA) was performed at baseline, 6, and 18 months. At baseline, subjects were aged 56.8 ± 5.4 years (mean ± s.d.), 10.0 ± 9.2 years postmenopausal, and BMI was 29.6 ± 4.0 kg/m2. They lost 3.9 ± 3.5 kg during the weight loss intervention. During follow-up, they regained 2.9 ± 3.9 kg. Six months of weight loss resulted in a significant decrease in lumbar spine (LS) (−1.7 ± 3.5%; P = 0.002) and hip (−0.04 ± 3.5%; P = 0.03) BMD that was accompanied by an increase in a biomarker of bone resorption (serum C-terminal telopeptide of type I collagen, CTX: 34 ± 54%; P = 0.08). However, weight regain was not associated with LS (0.05 ± 3.8%; P = 0.15) or hip (−0.6 ± 3.0%; P = 0.81) bone regain or decreased bone resorption (CTX: −3 ± 37%; P = 0.73). The findings suggest that BMD lost during weight reduction may not be fully recovered with weight regain in hormone-deficient, postmenopausal women. Future studies are needed to identify effective strategies to prevent bone loss during periods of weight loss. PMID:21852813

  12. Dysregulated B cell expression of RANKL and OPG correlates with loss of bone mineral density in HIV infection.

    PubMed

    Titanji, Kehmia; Vunnava, Aswani; Sheth, Anandi N; Delille, Cecile; Lennox, Jeffrey L; Sanford, Sara E; Foster, Antonina; Knezevic, Andrea; Easley, Kirk A; Weitzmann, M Neale; Ofotokun, Ighovwerha

    2014-10-01

    HIV infection is associated with high rates of osteopenia and osteoporosis, but the mechanisms involved are unclear. We recently reported that bone loss in the HIV transgenic rat model was associated with upregulation of B cell expression of the key osteoclastogenic cytokine receptor-activator of NF-κB ligand (RANKL), compounded by a simultaneous decline in expression of its physiological moderator, osteoprotegerin (OPG). To clinically translate these findings we performed cross-sectional immuno-skeletal profiling of HIV-uninfected and antiretroviral therapy-naïve HIV-infected individuals. Bone resorption and osteopenia were significantly higher in HIV-infected individuals. B cell expression of RANKL was significantly increased, while B cell expression of OPG was significantly diminished, conditions favoring osteoclastic bone resorption. The B cell RANKL/OPG ratio correlated significantly with total hip and femoral neck bone mineral density (BMD), T- and/or Z-scores in HIV infected subjects, but revealed no association at the lumbar spine. B cell subset analyses revealed significant HIV-related increases in RANKL-expressing naïve, resting memory and exhausted tissue-like memory B cells. By contrast, the net B cell OPG decrease in HIV-infected individuals resulted from a significant decline in resting memory B cells, a population containing a high frequency of OPG-expressing cells, concurrent with a significant increase in exhausted tissue-like memory B cells, a population with a lower frequency of OPG-expressing cells. These data validate our pre-clinical findings of an immuno-centric mechanism for accelerated HIV-induced bone loss, aligned with B cell dysfunction.

  13. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013.

    PubMed

    Seo, Ki-Weon; Wilson, Clark R; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr(2). Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr(2). However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr(2). Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr(2).

  14. Disuse bone loss in hindquarter suspended rats: partial weightbearing, exercise and ibandronate treatment as countermeasures

    NASA Technical Reports Server (NTRS)

    Schultheis, L.; Ruff, C. B.; Rastogi, S.; Bloomfield, S.; Hogan, H. A.; Fedarko, N.; Thierry-Palmer, M.; Ruiz, J.; Bauss, F.; Shapiro, J. R.

    2000-01-01

    The purpose of this study was to evaluate potential countermeasures for bone loss during long-term space missions in the hindquarter suspended rat, including partial weight bearing (surrogate for artificial gravity) episodic full weight bearing (2 hour/day full weight bearing) and treatment with the third generation bisphosphonate ibandronate (Roche). Graded mechanical loading was studied by housing the animals on a novel servo controlled force plate system which permitted the titration of mechanical force at varying frequency and amplitude and different levels of weight bearing. The force plate, which forms the cage floor, is a glass platform supported by an 18" diameter speaker cone filled with expanding polyurethane foam. An infrared optical sensor attached to the speaker cone yields a voltage linearly related to vertical displacement of the glass platform. The dynamic force on the paw was computed as a product of the apparent mass of the animal on the platform at rest and the acceleration of the platform determined from the second derivative of the optical sensor output. The mass of the animal on the platform was varied by adjusting tension on the tether suspending the animal. Mechanical impact loading was titrated with the force plate resonating at different frequencies, including 3 Hz and 16 Hz.

  15. A statistical method (cross-validation) for bone loss region detection after spaceflight

    PubMed Central

    Zhao, Qian; Li, Wenjun; Li, Caixia; Chu, Philip W.; Kornak, John; Lang, Thomas F.

    2010-01-01

    Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes. PMID:20632144

  16. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    PubMed

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  17. MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation.

    PubMed

    Ko, Jih-Yang; Chuang, Pei-Chin; Ke, Huei-Jin; Chen, Yu-Shan; Sun, Yi-Chih; Wang, Feng-Sheng

    2015-12-01

    Glucocorticoid treatment reportedly increases the morbidity of osteoporotic or osteonecrotic disorders. Exacerbated bone acquisition and escalated marrow adipogenesis are prominent pathological features of glucocorticoid-mediated skeletal disorders. MicroRNAs reportedly modulate tissue metabolism and remodeling. This study was undertaken to investigate the biological roles of microRNA-29a (miR-29a) in skeletal and fat metabolism in the pathogenesis of glucocorticoid-induced osteoporosis. Transgenic mice overexpressing miR-29a precursor or wild-type mice were given methylprednisolone. Bone mass, microarchitecture and histology were assessed by dual energy X-ray absorptiometry, μCT and histomorphometry. Differential gene expression and signaling components were delineated by quantitative RT-PCR and immunoblotting. Glucocorticoid treatment accelerated bone loss and marrow fat accumulation in association with decreased miR-29a expression. The miR-29a transgenic mice had high bone mineral density, trabecular microarchitecture and cortical thickness. miR-29a overexpression mitigated the glucocorticoid-induced impediment of bone mass, skeletal microstructure integrity and mineralization reaction and attenuated fatty marrow histopathology. Ex vivo, miR-29a increased osteogenic differentiation capacity and alleviated the glucocorticoid-induced promotion of adipocyte formation in primary bone-marrow mesenchymal progenitor cell cultures. Through inhibition of histone deacetylase 4 (HDAC4) expression, miR-29a restored acetylated Runx2 and β-catenin abundances and reduced RANKL, leptin and glucocorticoid receptor expression in glucocorticoid-mediated osteoporosis bone tissues. Taken together, glucocorticoid suppression of miR-29a signaling disturbed the balances between osteogenic and adipogenic activities, and thereby interrupted bone formation and skeletal homeostasis. miR-29a inhibition of HDAC4 stabilized the acetylation state of Runx2 and β-catenin that ameliorated the

  18. Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains

    NASA Astrophysics Data System (ADS)

    Harig, Christopher; Simons, Frederik J.

    2015-04-01

    While multiple data sources have confirmed that Antarctica is losing ice at an accelerating rate, different measurement techniques estimate the details of its geographically highly variable mass balance with different levels of accuracy, spatio-temporal resolution, and coverage. Some scope remains for methodological improvements using a single data type. In this study we report our progress in increasing the accuracy and spatial resolution of time-variable gravimetry from the Gravity Recovery and Climate Experiment (GRACE). We determine the geographic pattern of ice mass change in Antarctica between January 2003 and June 2014, accounting for glacio-isostatic adjustment (GIA) using the IJ05_R2 model. Expressing the unknown signal in a sparse Slepian basis constructed by optimization to prevent leakage out of the regions of interest, we use robust signal processing and statistical estimation methods. Applying those to the latest time series of monthly GRACE solutions we map Antarctica's mass loss in space and time as well as can be recovered from satellite gravity alone. Ignoring GIA model uncertainty, over the period 2003-2014, West Antarctica has been losing ice mass at a rate of - 121 ± 8 Gt /yr and has experienced large acceleration of ice mass losses along the Amundsen Sea coast of - 18 ± 5 Gt /yr2, doubling the mass loss rate in the past six years. The Antarctic Peninsula shows slightly accelerating ice mass loss, with larger accelerated losses in the southern half of the Peninsula. Ice mass gains due to snowfall in Dronning Maud Land have continued to add about half the amount of West Antarctica's loss back onto the continent over the last decade. We estimate the overall mass losses from Antarctica since January 2003 at - 92 ± 10 Gt /yr.

  19. Composite Bone and Soft Tissue Loss Treated with Distraction Histiogenesis

    DTIC Science & Technology

    2010-01-01

    Mahuluxmivala, J., Nadarajah, R., Allen, P. W., et al. Ilizarov external fixator: acute shortening and lengthening versus bone transport in the management of...Presented at the Limb Lengthening and Reconstruction Society Annual Meeting 2006,William Beaumont Army Medical Center, Texas Tech University Health... lengthening by the Ilizarov technique. Clin. Orthop. Relat. Res. 250:81– 104, 1990. 28 JOURNAL OF SURGICAL ORTHOPAEDIC ADVANCES

  20. Effects of Resveratrol Supplementation on Methotrexate Chemotherapy-Induced Bone Loss

    PubMed Central

    Lee, Alice M. C.; Shandala, Tetyana; Soo, Pei Pei; Su, Yu-Wen; King, Tristan J.; Chen, Ke-Ming; Howe, Peter R.; Xian, Cory J.

    2017-01-01

    Intensive cancer chemotherapy is known to cause bone defects, which currently lack treatments. This study investigated the effects of polyphenol resveratrol (RES) in preventing bone defects in rats caused by methotrexate (MTX), a commonly used antimetabolite in childhood oncology. Young rats received five daily MTX injections at 0.75 mg/kg/day. RES was orally gavaged daily for seven days prior to, and during, five-day MTX administration. MTX reduced growth plate thickness, primary spongiosa height, trabecular bone volume, increased marrow adipocyte density, and increased mRNA expression of the osteogenic, adipogenic, and osteoclastogenic factors in the tibial bone. RES at 10 mg/kg was found not to affect bone health in normal rats, but to aggravate the bone damage in MTX-treated rats. However, RES supplementation at 1 mg/kg preserved the growth plate, primary spongiosa, bone volume, and lowered the adipocyte density. It maintained expression of genes involved in osteogenesis and decreased expression of adipogenic and osteoclastogenic factors. RES suppressed osteoclast formation ex vivo of bone marrow cells from the treated rats. These data suggest that MTX can enhance osteoclast and adipocyte formation and cause bone loss, and that RES supplementation at 1 mg/kg may potentially prevent these bone defects. PMID:28282956

  1. Systemic Administration of Allogeneic Mesenchymal Stem Cells Does Not Halt Osteoporotic Bone Loss in Ovariectomized Rats

    PubMed Central

    Sun, Yuxin; Lin, Sien; Gu, Weidong; Liu, Yamei; Zhang, Jinfang; Chen, Lin; Li, Gang

    2016-01-01

    Mesenchymal stem cells (MSCs) have innate ability to self-renew and immunosuppressive functions, and differentiate into various cell types. They have become a promising cell source for treating many diseases, particular for bone regeneration. Osteoporosis is a common metabolic bone disorder with elevated systemic inflammation which in turn triggers enhanced bone loss. We hypothesize that systemic infusion of MSCs may suppress the elevated inflammation in the osteoporotic subjects and slow down bone loss. The current project was to address the following two questions: (1) Will a single dose systemic administration of allogenic MSCs have any effect on osteoporotic bone loss? (2) Will multiple administration of allogenic MSCs from single or multiple donors have similar effect on osteoporotic bone loss? 18 ovariectomized (OVX) rats were assigned into 3 groups: the PBS control group, MSCs group 1 (receiving 2x106 GFP-MSCs at Day 10, 46, 91 from the same donor following OVX) and MSCs group 2 (receiving 2x106 GFP-MSCs from three different donors at Day 10, 46, 91). Examinations included Micro-CT, serum analysis, mechanical testing, immunofluorescence staining and bone histomorphometry analysis. Results showed that BV/TV at Day 90, 135, BMD of TV and trabecular number at Day 135 in the PBS group were significantly higher than those in the MSCs group 2, whereas trabecular spacing at Day 90, 135 was significantly smaller than that in MSCs group 2. Mechanical testing data didn’t show significant difference among the three groups. In addition, the ELISA assay showed that level of Rantes in serum in MSCs group 2 was significantly higher than that of the PBS group, whereas IL-6 and IL-10 were significantly lower than those of the PBS group. Bone histomorphometry analysis showed that Oc.S/BS and Oc.N/BS in the PBS group were significant lower than those in MSCs group 2; Ob.S/BS and Ob.N/BS did not show significant difference among the three groups. The current study

  2. Nutrient loss accelerated by clear-cutting of a forest ecosystem

    USGS Publications Warehouse

    Bormann, F.H.; Likens, G.E.; Fisher, D.W.; Pierce, R.S.

    1968-01-01

    The forest of a small watershed-ecosystem was cut in order to determine the effects of removal of vegetation on nutrient cycles. Relative to undisturbed ecosystems, the cut ecosystem exhibited accelerated loss of nutrients: nitrogen lost during the first year after cutting was equivalent to the amount annually turned over in an undisturbed system, and losses of cations were 3 to 20 times greater than from comparable undisturbed systems. Possible causes of the pattern of nutrient loss from the cut ecosystem are discussed.

  3. Accelerated bone turnover identifies hemiplegic patients at higher risk of demineralization.

    PubMed

    Del Puente, A; Pappone, N; Servodio Iammarrone, C; Esposito, A; Scarpa, R; Costa, L; Caso, F; Bardoscia, A; Del Puente, A

    2016-01-01

    Immobilization osteoporosis represents a severe complication in hemiplegic patients (HPs), causing fragility fractures, which may occur during rehabilitation reducing functional recovery and survival. The aim of the study was to investigate determinants of bone loss, independent from length of immobilization, which may be useful in early identification of HPs at higher risk of demineralization. Forty-eight HPs of both sexes underwent anthropometric measurements, evaluation of scores of spasticity and of lower limb motory capacity. Laboratory tests were performed. On serum: calcium; phosphorus; creatinine; ALP; iPTH; 25(OH) vitamin-D; sex hormones; Δ4-androstenedione; DHEA-S; insulin; IGF-1; FT3; FT4; TSH; c-AMP. On urine: c-AMP and calcium/creatinine ratio. Two bone turnover markers were measured: serum osteocalcin (BGP) and urinary deoxypyridinoline (DPD). Bone mineral density was determined at both femoral necks, defining a percentage difference in bone loss between paretic and non-paretic limb, thus controlling for the complex cofactors involved. Only bone turnover markers significantly and directly correlated with the entity of demineralization, controlling for age, sex and length of immobilization in the multivariate analysis (BGP coefficient estimate=0.008; SE=0.003; p=0.020; DPD coefficient estimate=0.005; SE=0.002; p=0.036). BGP and DPD are not dependent on anthropometric and endocrine-metabolic parameters, disability patterns and duration of immobilization, thus represent independent determinants of the degree of demineralization. A cutoff was defined for BGP and DPD above which subjects show significantly greater risk of demineralization. The immobilization event generates more severe bone loss when it occurs in subjects with higher bone turnover. BGP and DPD measurements may be of primary importance for early identification of HPs at risk, with relevant preventive implications.

  4. Ladder-Climbing Training Prevents Bone Loss and Microarchitecture Deterioration in Diet-Induced Obese Rats.

    PubMed

    Tang, Liang; Gao, Xiaohang; Yang, Xiaoying; Liu, Chentao; Wang, Xudan; Han, Yanqi; Zhao, Xinjuan; Chi, Aiping; Sun, Lijun

    2016-01-01

    Resistance exercise has been proved to be effective in improving bone quality in both animal and human studies. However, the issue about whether resistance exercise can inhibit obesity-induced bone loss has not been previously investigated. In the present study, we have evaluated the effects of ladder-climbing training, one of the resistance exercises, on bone mechanical properties and microarchitecture in high-fat (HF) diet-induced obese rats. Twenty-four rats were randomly assigned to the Control, HF + sedentary (HF-S) and HF + ladder-climbing training (HF-LCT) groups. Rats in the HF-LCT group performed ladder-climbing training for 8 weeks. The results showed that ladder-climbing training significantly reduced body and fat weight, and increased muscle mass along with a trend toward enhanced muscle strength in diet-induced obese rats. MicroCT analysis demonstrated that obesity-induced bone loss and architecture deterioration were significantly mitigated by ladder-climbing training, as evidenced by increased trabecular bone mineral density, bone volume over total volume, trabecular number and thickness, and decreased trabecular separation and structure model index. However, neither HF diet nor ladder-climbing training had an impact on femoral biomechanical properties. Moreover, ladder-climbing training significantly increased serum adiponectin, decreased serum leptin, TNF-α, IL-6 levels, and downregulated myostatin (MSTN) expression in diet-induced obese rats. Taken together, ladder-climbing training prevents bone loss and microarchitecture deterioration in diet-induced obese rats through multiple mechanisms including increasing mechanical loading on bone due to improved skeletal muscle mass and strength, regulating the levels of myokines and adipokines, and suppressing the release of pro-inflammatory cytokines. It indicates that resistance exercise may be a promising therapy for treating obesity-induced bone loss.

  5. Osteoimmunology: Major and Costimulatory Pathway Expression Associated with Chronic Inflammatory Induced Bone Loss

    PubMed Central

    Crotti, Tania N.; Dharmapatni, Anak A. S. S. K.; Alias, Ekram; Haynes, David R.

    2015-01-01

    The field of osteoimmunology has emerged in response to the range of evidences demonstrating the close interrelationship between the immune system and bone metabolism. This is pertinent to immune-mediated diseases, such as rheumatoid arthritis and periodontal disease, where there are chronic inflammation and local bone erosion. Periprosthetic osteolysis is another example of chronic inflammation with associated osteolysis. This may also involve immune mediation when occurring in a patient with rheumatoid arthritis (RA). Similarities in the regulation and mechanisms of bone loss are likely to be related to the inflammatory cytokines expressed in these diseases. This review highlights the role of immune-related factors influencing bone loss particularly in diseases of chronic inflammation where there is associated localized bone loss. The importance of the balance of the RANKL-RANK-OPG axis is discussed as well as the more recently appreciated role that receptors and adaptor proteins involved in the immunoreceptor tyrosine-based activation motif (ITAM) signaling pathway play. Although animal models are briefly discussed, the focus of this review is on the expression of ITAM associated molecules in relation to inflammation induced localized bone loss in RA, chronic periodontitis, and periprosthetic osteolysis, with an emphasis on the soluble and membrane bound factor osteoclast-associated receptor (OSCAR). PMID:26064999

  6. Bone loss in ovariectomized rats: dominant role for estrogen but apparently not for FSH.

    PubMed

    Rouach, V; Katzburg, S; Koch, Y; Stern, N; Somjen, D

    2011-01-01

    Estrogen deficiency as the sole factor underlying post-menopausal osteoporosis was challenged, in light of reports that both follicular stimulation hormone (FSH) receptor and FSHβ knockout mice were resistant to bone loss, suggesting a detrimental role for FSH. We assessed whether lowering FSH levels by gonadotropin realizing (GnRH) analog decapeptyl in ovariectomized female rats (OVX) affects bone. Wistar-derived 25 days old OVX female rats were injected for 10 weeks with estradiol-17β (E(2)), with GnRH analog (decapeptyl) or with both. FSH and luteinizing hormone (LH) serum levels were markedly increased in OVX rats, with smaller growth plates with disrupted architecture; heavy infiltration of bone marrow with numerous adipocytes and reduced thickness of cortical bone. In OVX rats treated with E(2), FSH, and LH levels were intermediate, the tibia was similar to that of intact rats, but there was reduced thickness of cortical bone. In decapeptyl treated OVX rats, FSH and LH levels were suppressed, the organization of growth plate and the trabecular bone were disrupted, and there were fewer proliferative and chondroblastic cells and a large adipocytes population in bone marrow, but an increased trabecular bone volume (TBV). In the E(2) + decapeptyl treatment, FSH and LH levels were suppressed, with partially restored growth plate architecture and improved TBV. In conclusion, E(2) deficiency is the dominant factor impairing bone loss in OVX and concomitant changes in FSH/LH levels achieved by decapeptyl have some modulating, though complex role in this setting. The role of high FSH levels in post-menopausal bone loss requires further investigation using combined sub-optimal doses of the different hormones.

  7. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats

    PubMed Central

    Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model. PMID:27997588

  8. Alendronate and Resistive Exercise Countermeasures Against Bed Rest-Induced Bone Loss: Biochemical Markers of Bone and Calcium Metabolism

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Nillen, Jeannie L.; Davis-Street, Janis E.; DeKerlegand, Diane E.; LeBlanc, Adrian; Shackelford, Linda C.

    2001-01-01

    Weightlessness-induced bone loss must be counteracted to ensure crew health during extendedduration space missions. Studies were conducted to assess two bone loss countermeasures in a ground-based model: horizontal bed rest. Following a 3-wk ambulatory adaptation period, male and female subjects (aged 21-56 y) completed a 17-wk bed rest protocol. Subjects were assigned to one of three treatments: alendronate (ALEN; 10 mg/d, n=6), resistive exercise (RE; 1.5 h/d, 6 d/wk, n=8), or control (CN; no countermeasure, n=8). Dietary intake was adjusted to maintain body weight. Endocrine and biochemical indices were measured in blood and urine using standard laboratory methods. All data reported are expressed as percent change from individual pre-bedrest data. Serum calcium changed little during bed rest, and tended to decrease (4-8%) in ALEN subjects. In RE subjects, bone alkaline phosphatase and osteocalcin were increased >65 and >30%, respectively, during bed rest, while these were unchanged or decreased in ALEN and CN subjects. Urinary calcium was increased 50% in CN subjects, but was unchanged or decreased in both ALEN and RE groups. Urinary n-telopeptide excretion was increased 40-50% in CN and RE subjects, but decreased 20% in ALEN subjects. Pyridinium crosslink and deoxypyridinoline excretion were increased 20-50% during bed rest. These data suggest that RE countermeasures are effective at increasing markers of bone formation in an analog of weightlessness, while ALEN reduces markers of bone resorption. Counteracting the bone loss of space flight may require both pharmacologic and exercise countermeasures.

  9. Acceleration of the Greenland ice sheet mass loss as observed by GRACE: Confidence and sensitivity

    NASA Astrophysics Data System (ADS)

    Svendsen, P. L.; Andersen, O. B.; Nielsen, A. A.

    2013-02-01

    We examine the scale and spatial distribution of the mass change acceleration in Greenland and its statistical significance, using processed gravimetric data from the GRACE mission for the period 2002-2011. Three different data products - the CNES/GRGS, DMT-1b and GGFC GRACE solutions - have been used, all revealing an accelerating mass loss in Greenland, though with significant local differences between the three datasets. Compensating for leakage effects, we obtain acceleration values of -18.6 Gt/yr2 for CNES/GRGS, -8.8 Gt/yr2 for DMT-1b, and -14.8 Gt/yr2 for GGFC. We find considerable mass loss acceleration in the Canadian Arctic Archipelago, some of which will leak into the values for Greenland, depending on the approach used, and for our computations the leakage has been estimated at up to -4.7 Gt/yr2. The length of the time series of the GRACE data makes a huge difference in establishing an acceleration of the data. For both 10-day and monthly GRACE solutions, an observed acceleration on the order of 10-20 Gt/yr2 is shown to require more than 5 yrs of data to establish with statistical significance. In order to provide an independent evaluation, ICESat laser altimetry data have been smoothed to match the resolution of the GRACE solutions. This gives us an estimated upper bound for the acceleration of about -29.7 Gt/yr2 for the period 2003-2009, consistent with the acceleration values and corresponding confidence intervals found with GRACE data.

  10. Decursin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss.

    PubMed

    Wang, Xin; Zheng, Ting; Kang, Ju-Hee; Li, Hua; Cho, Hyewon; Jeon, Raok; Ryu, Jae-Ha; Yim, Mijung

    2016-03-05

    Osteoclasts are the only cells capable of breaking down bone matrix, and excessive activation of osteoclasts is responsible for bone-destructive diseases. In this study, we investigated the effects of decursin from extract of Angelica gigas root on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation using mouse bone marrow-derived macrophages (BMMs). Decursin inhibited RANKL-induced osteoclast formation without cytotoxicity. In particular, decursin maintains the characteristics of macrophages by blocking osteoclast differentiation by RANKL. Furthermore, the RANKL-stimulated bone resorption was diminished by decursin. Mechanistically, decursin blocked the RANKL-triggered ERK mitogen-activated protein kinases (MAPK) phosphorylation, which results in suppression of c-Fos and the nuclear factor of activated T cells (NFATc1) expression. In accordance with the in vitro study, decursin reduced lipopolysaccharide (LPS)- or ovariectomy (OVX)-induced bone loss in vivo. Therefore, decursin exerted an inhibitory effect on osteoclast formation and bone loss in vitro and in vivo. Decursin could be useful for the treatment of bone diseases associated with excessive bone resorption.

  11. Osteocyte-viability-based simulations of trabecular bone loss and recovery in disuse and reloading.

    PubMed

    Wang, Hong; Ji, Baohua; Liu, X Sherry; van Oers, René F M; Guo, X Edward; Huang, Yonggang; Hwang, Keh-Chih

    2014-01-01

    Osteocyte apoptosis is known to trigger targeted bone resorption. In the present study, we developed an osteocyte-viability-based trabecular bone remodeling (OVBR) model. This novel remodeling model, combined with recent advanced simulation methods and analysis techniques, such as the element-by-element 3D finite element method and the ITS technique, was used to quantitatively study the dynamic evolution of bone mass and trabecular microstructure in response to various loading and unloading conditions. Different levels of unloading simulated the disuse condition of bed rest or microgravity in space. The amount of bone loss and microstructural deterioration correlated with the magnitude of unloading. The restoration of bone mass upon the reloading condition was achieved by thickening the remaining trabecular architecture, while the lost trabecular plates and rods could not be recovered by reloading. Compared to previous models, the predictions of bone resorption of the OVBR model are more consistent with physiological values reported from previous experiments. Whereas osteocytes suffer a lack of loading during disuse, they may suffer overloading during the reloading phase, which hampers recovery. The OVBR model is promising for quantitative studies of trabecular bone loss and microstructural deterioration of patients or astronauts during long-term bed rest or space flight and thereafter bone recovery.

  12. Age-related bone loss in the LOU/c rat model of healthy ageing.

    PubMed

    Duque, Gustavo; Rivas, Daniel; Li, Wei; Li, Ailian; Henderson, Janet E; Ferland, Guylaine; Gaudreau, Pierrette

    2009-03-01

    Inbred albino Louvain (LOU) rats are considered a model of healthy aging due to their increased longevity in the absence of obesity and with a low incidence of common age-related diseases. In this study, we characterized the bone phenotype of male and female LOU rats at 4, 20 and 27 months of age using quantitative micro computed tomographic (mCT) imaging, histology and biochemical analysis of circulating bone biomarkers. Bone quality and morphometry of the distal femora, assessed by mCT, was similar in male and female rats at 4 months of age and deteriorated over time. Histochemical staining of undecalcified bone showed a significant reduction in cortical and trabecular bone by 20 months of age. The reduction in mineralized tissue was accompanied by reduced numbers of osteoblasts and osteoclasts and a significant increase in marrow adiposity. Biochemical markers of bone turnover, C-telopeptide and osteocalcin, correlated with the age-related bone loss whereas the calciotropic hormones PTH and vitamin D remained unchanged over time. In summary, aged LOU rats exhibit low-turnover bone loss and marrow fat infiltration, which are the hallmarks of senile osteoporosis, and thus represent a novel model in which to study the molecular mechanisms leading to this disorder.

  13. Effect of venlafaxine on bone loss associated with ligature-induced periodontitis in Wistar rats

    PubMed Central

    2010-01-01

    Background The present study investigated the effects of venlafaxine, an antidepressant drug with immunoregulatory properties on the inflammatory response and bone loss associated with experimental periodontal disease (EPD). Materials and Methods Wistar rats were subjected to a ligature placement around the second upper left molar. The treated groups received orally venlafaxine (10 or 50 mg/kg) one hour before the experimental periodontal disease induction and daily for 10 days. Vehicle-treated experimental periodontal disease and a sham-operated (SO) controls were included. Bone loss was analyzed morphometrically and histopathological analysis was based on cell influx, alveolar bone, and cementum integrity. Lipid peroxidation quantification and immunohistochemistry to TNF-α and iNOS were performed. Results Experimental periodontal disease rats showed an intense bone loss compared to SO ones (SO = 1.61 ± 1.36; EPD = 4.47 ± 1.98 mm, p < 0.001) and evidenced increased cellular infiltration and immunoreactivity for TNF-α and iNOS. Venlafaxine treatment while at low dose (10 mg/kg) afforded no significant protection against bone loss (3.25 ± 1.26 mm), a high dose (50 mg/kg) caused significantly enhanced bone loss (6.81 ± 3.31 mm, p < 0.05). Venlafaxine effectively decreased the lipid peroxidation but showed no significant change in TNF-α or iNOS immunoreactivity. Conclusion The increased bone loss associated with high dose venlafaxine may possibly be a result of synaptic inhibition of serotonin uptake. PMID:20546603

  14. Rapid loss of bone mass and strength in mice after abdominal irradiation.

    PubMed

    Jia, Dan; Gaddy, Dana; Suva, Larry J; Corry, Peter M

    2011-11-01

    Localized irradiation is a common treatment modality for malignancies in the pelvic-abdominal cavity. We report here on the changes in bone mass and strength in mice 7-14 days after abdominal irradiation. Male C57BL/6 mice of 10-12 weeks of age were given a single-dose (0, 5, 10, 15 or 20 Gy) or fractionated (3 Gy × 2 per day × 7.5 days) X rays to the abdomen and monitored daily for up to 14 days. A decrease in the serum bone formation marker and ex vivo osteoblast differentiation was detected 7 days after a single dose of radiation, with little change in the serum bone resorption marker and ex vivo osteoclast formation. A single dose of radiation elicited a loss of bone mineral density (BMD) within 14 days of irradiation. The BMD loss was up to 4.1% in the whole skeleton, 7.3% in tibia, and 7.7% in the femur. Fractionated abdominal irradiation induced similar extents of BMD loss 10 days after the last fraction: 6.2% in the whole skeleton, 5.1% in tibia, and 13.8% in the femur. The loss of BMD was dependent on radiation dose and was more profound in the trabecula-rich regions of the long bones. Moreover, BMD loss in the total skeleton and the femurs progressed with time. Peak load and stiffness in the mid-shaft tibia from irradiated mice were 11.2-14.2% and 11.5-25.0% lower, respectively, than sham controls tested 7 days after a single-dose abdominal irradiation. Our data demonstrate that abdominal irradiation induces a rapid loss of BMD in the mouse skeleton. These effects are bone type- and region-specific but are independent of radiation fractionation. The radiation-induced abscopal damage to the skeleton is manifested by the deterioration of biomechanical properties of the affected bone.

  15. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangming; Wang, Ping; Wang, Ya

    2015-11-01

    Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts.

  16. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss

    PubMed Central

    Zhang, Xiangming; Wang, Ping; Wang, Ya

    2016-01-01

    Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts. PMID:26553637

  17. Fusobacterium nucleatum and Tannerella forsythia induce synergistic alveolar bone loss in a mouse periodontitis model.

    PubMed

    Settem, Rajendra P; El-Hassan, Ahmed Taher; Honma, Kiyonobu; Stafford, Graham P; Sharma, Ashu

    2012-07-01

    Tannerella forsythia is strongly associated with chronic periodontitis, an inflammatory disease of the tooth-supporting tissues, leading to tooth loss. Fusobacterium nucleatum, an opportunistic pathogen, is thought to promote dental plaque formation by serving as a bridge bacterium between early- and late-colonizing species of the oral cavity. Previous studies have shown that F. nucleatum species synergize with T. forsythia during biofilm formation and pathogenesis. In the present study, we showed that coinfection of F. nucleatum and T. forsythia is more potent than infection with either species alone in inducing NF-κB activity and proinflammatory cytokine secretion in monocytic cells and primary murine macrophages. Moreover, in a murine model of periodontitis, mixed infection with the two species induces synergistic alveolar bone loss, characterized by bone loss which is greater than the additive alveolar bone losses induced by each species alone. Further, in comparison to the single-species infection, mixed infection caused significantly increased inflammatory cell infiltration in the gingivae and osteoclastic activity in the jaw bones. These data show that F. nucleatum subspecies and T. forsythia synergistically stimulate the host immune response and induce alveolar bone loss in a murine experimental periodontitis model.

  18. FSH aggravates bone loss in ovariectomised rats with experimental periapical periodontitis

    PubMed Central

    Qian, Hua; Guan, Xiaoyue; Bian, Zhuan

    2016-01-01

    Periapical bone loss is one of the prominent pathological and clinical features of periapical periodontitis. Previous studies have demonstrated that follicle-stimulating hormone (FSH) could directly affect skeletal remodelling by stimulating the formation and the function of osteoclasts in vitro and in vivo. However, the effect of FSH on periapical bone loss remained to be fully elucidated. In the current study, a rat model was established in order to verify the effect of FSH in experimental periapical lesions. It was identified that FSH aggravated the bone loss of periapical lesions. In addition, RANKL-, TRAP-, TNF-α- and IL-1β-positive cells were increased significantly in FSH-treated groups, which indicated that the function of FSH in bone loss may be mediated through the increasing activity of osteoclasts and the increased secretion of inflammatory cytokines. The results of the current study suggested that FSH, independent of oestrogen, may aggravate periapical bone loss by FSH receptors, which may serve an important role in the immune and inflammatory response of the host to root canal and periradicular infection during menopause. PMID:27510616

  19. Arthritis-induced alveolar bone loss is associated with changes in the composition of oral microbiota.

    PubMed

    Corrêa, Jôice Dias; Saraiva, Adriana Machado; Queiroz-Junior, Celso Martins; Madeira, Mila Fernandes Moreira; Duarte, Poliana Mendes; Teixeira, Mauro Martins; Souza, Danielle Glória; da Silva, Tarcília Aparecida

    2016-06-01

    Rheumatoid arthritis (RA) and periodontitis (PD) are chronic inflammatory disorders that cause bone loss. PD tends to be more prevalent and severe in RA patients. Previous experimental studies demonstrated that RA triggers alveolar bone loss similarly to PD. The aim of this study was to investigate if arthritis-induced alveolar bone loss is associated with modification in the oral microbiota. Checkerboard DNA-DNA hybridization was employed to analyze forty oral bacterial species in 3 groups of C57BL/6 mice: control (n = 12; without any challenge); Y4 (n = 8; received oral inoculation of Aggregatibacter Actinomycetemcomitans strain FDC Y4) and AIA group (n = 12; chronic antigen-induced arthritis). The results showed that AIA and Y4 group exhibited similar patterns of bone loss. The AIA group exhibited higher counts of most bacterial species analyzed with predominance of Gram-negative species similarly to infection-induced PD. Prevotella nigrescens and Treponema denticola were detected only in the Y4 group whereas Campylobacter showae, Streptococcus mitis and Streptococcus oralis were only found in the AIA group. Counts of Parvimonas micra, Selenomonas Noxia and Veillonella parvula were greater in the AIA group whereas Actinomyces viscosus and Neisseira mucosa were in large proportion in Y4 group. In conclusion, AIA is associated with changes in the composition of the oral microbiota, which might account for the alveolar bone loss observed in AIA mice.

  20. CCR2 elimination in mice results in larger and stronger tibial bones but bone loss is not attenuated following ovariectomy or muscle denervation.

    PubMed

    Mader, Tara L; Novotny, Susan A; Lin, Angela S; Guldberg, Robert E; Lowe, Dawn A; Warren, Gordon L

    2014-11-01

    Bone loss due to age and disuse contributes to osteoporosis and increases fracture risk. It has been hypothesized that such bone loss can be attenuated by modulation of the C-C chemokine receptor 2 (CCR2) and/or its ligands. The objectives of this study were to examine the effects of genetic elimination of CCR2 on cortical and trabecular bones in the mouse tibia and how bone loss was impacted following disuse and estrogen loss. Female CCR2 knockout (CCR2(-/-)) and wildtype mice underwent ovariectomy (OVX) or denervation of musculature adjacent to the tibia (DEN) to induce bone loss. Cortical and trabecular structural properties as well as mechanical properties (i.e., strength) of tibial bones were measured. Compared to wildtype mice, CCR2(-/-) mice had tibiae that were up to 9% larger and stronger; these differences could be explained mainly by the 17% greater body mass (P < 0.001) of CCR2(-/-) mice. The majority of the tibia's structural and functional responses to OVX and DEN were similar regardless of the lack or presence of CCR2, indicating that CCR2 is not protective against bone loss per se. These findings indicate that while CCR2(-/-) mice do have larger and stronger bones than do wildtype mice, there is minimal evidence that CCR2 elimination provides protection against bone loss during disuse and estrogen loss.

  1. Association of testosterone and bone mineral density with tooth loss in men with chronic periodontitis.

    PubMed

    Singh, Balendra P; Makker, Annu; Tripathi, Arvind; Singh, Man M; Gupta, Vivek

    2011-09-01

    A study was conducted to compare the mean testosterone and bone mineral density (BMD) levels in men with and without tooth loss. Two hundred three male subjects aged 30-65 years satisfying the study criteria were selected and then examined for bone mineral density, testosterone level, clinical attachment loss, probing pocket depth, tooth mobility and tooth loss due to periodontal disease. Statistical analysis was performed using the Statistical Package for Social Sciences (version 15.0) (SPSS Inc., Chicago, Ill, USA), and differences were considered to be significant at P < 0.05. Independent sample "t" test was used to compare the results, and receiver-operator curve (ROC) analysis was performed to obtain the cut-off. The mean testosterone level in subjects without tooth loss was 4.41 ± 2.57, whereas that in subjects with tooth loss was 2.79 ± 1.15 (P = 0.001). The mean BMD in subjects without tooth loss was 0.99 ± 0.13, whereas that in subjects with tooth loss was 0.96 ± 0.12 (P = 0.046). The testosterone level and BMD in subjects with tooth loss were significantly lower than those in subjects without tooth loss. Testosterone is a good predictor of tooth loss, but its efficiency decreases with increasing tooth loss. BMD is not a good predictor of tooth loss.

  2. Glycemic control and alveolar bone loss progression in type 2 diabetes.

    PubMed

    Taylor, G W; Burt, B A; Becker, M P; Genco, R J; Shlossman, M

    1998-07-01

    This study tested the hypothesis that the risk for alveolar bone loss is greater, and bone loss progression more severe, for subjects with poorly controlled (PC) type 2 diabetes mellitus (type 2 DM) compared to those without type 2 DM or with better controlled (BC) type 2 DM. The PC group had glycosylated hemoglobin (HbA1) > or = 9%; the BC group had HbA1 < 9%. Data from the longitudinal study of the oral health of residents of the Gila River Indian Community were analyzed. Of the 359 subjects, aged 15 to 57 with less than 25% radiographic bone loss at baseline, 338 did not have type 2 DM, 14 were BC, and 7 were PC. Panoramic radiographs were used to assess interproximal bone level. Bone scores (scale 0-4) corresponding to bone loss of 0%, 1% to 24%, 25% to 49%, 50% to 74%, or > or = 75% were used to identify the worst bone score (WBS) in the dentition. Change in worst bone score at follow-up, the outcome, was specified on a 4-category ordinal scale as no change, or a 1-, 2-, 3-, or 4-category increase over baseline WBS (WBS1). Poorly controlled diabetes, age, calculus, time to follow-up examination, and WBS1 were statistically significant explanatory variables in ordinal logistic regression models. Poorly controlled type 2 DM was positively associated with greater risk for a change in bone score (compared to subjects without type 2 DM) when the covariates were included in the model. The cumulative odds ratio (COR) at each threshold of the ordered response was 11.4 (95% CI = 2.5, 53.3). When contrasted with subjects with BC type 2 DM, the COR for those in the PC group was 5.3 (95% CI = 0.8, 53.3). The COR for subjects with BC type 2 DM was 2.2 (95% CI = 0.7, 6.5), when contrasted to those without type 2 DM. These results suggest that poorer glycemic control leads to both an increased risk for alveolar bone loss and more severe progression over those without type 2 DM, and that there may be a gradient, with the risk for bone loss progression for those with better

  3. Single-Limb Irradiation Induces Local and Systemic Bone Loss in a Murine Model.

    PubMed

    Wright, Laura E; Buijs, Jeroen T; Kim, Hun-Soo; Coats, Laura E; Scheidler, Anne M; John, Sutha K; She, Yun; Murthy, Sreemala; Ma, Ning; Chin-Sinex, Helen J; Bellido, Teresita M; Bateman, Ted A; Mendonca, Marc S; Mohammad, Khalid S; Guise, Theresa A

    2015-07-01

    Increased fracture risk is commonly reported in cancer patients receiving radiotherapy, particularly at sites within the field of treatment. The direct and systemic effects of ionizing radiation on bone at a therapeutic dose are not well-characterized in clinically relevant animal models. Using 20-week-old male C57Bl/6 mice, effects of irradiation (right hindlimb; 2 Gy) on bone volume and microarchitecture were evaluated prospectively by microcomputed tomography and histomorphometry and compared to contralateral-shielded bone (left hindlimb) and non-irradiated control bone. One week postirradiation, trabecular bone volume declined in irradiated tibias (-22%; p < 0.0001) and femurs (-14%; p = 0.0586) and microarchitectural parameters were compromised. Trabecular bone volume declined in contralateral tibias (-17%; p = 0.003), and no loss was detected at the femur. Osteoclast number, apoptotic osteocyte number, and marrow adiposity were increased in irradiated bone relative to contralateral and non-irradiated bone, whereas osteoblast number was unchanged. Despite no change in osteoblast number 1 week postirradiation, dynamic bone formation indices revealed a reduction in mineralized bone surface and a concomitant increase in unmineralized osteoid surface area in irradiated bone relative to contralateral and non-irradiated control bone. Further, dose-dependent and time-dependent calvarial culture and in vitro assays confirmed that calvarial osteoblasts and osteoblast-like MC3T3 cells were relatively radioresistant, whereas calvarial osteocyte and osteocyte-like MLO-Y4 cell apoptosis was induced as early as 48 hours postirradiation (4 Gy). In osteoclastogenesis assays, radiation exposure (8 Gy) stimulated murine macrophage RAW264.7 cell differentiation, and coculture of irradiated RAW264.7 cells with MLO-Y4 or murine bone marrow cells enhanced this effect. These studies highlight the multifaceted nature of radiation-induced bone loss by demonstrating direct

  4. Subchondral bone loss following orthodontically induced cartilage degradation in the mandibular condyles of rats.

    PubMed

    Jiao, Kai; Niu, Li-Na; Wang, Mei-Qing; Dai, Juan; Yu, Shi-Bin; Liu, Xiao-Dong; Wang, Jun

    2011-02-01

    Osteoarthritis (OA) is a degenerative joint disease generally characterized by progressive cartilage degradation and subchondral bone changes. Subchondral bone changes have been proposed to initiate or accompany with cartilage degradation in OA. The purpose of this study was to characterize cartilage damage, subchondral bone remodeling, and the possible mechanism involved in these morphological changes in our reported rat model with OA-like lesions in the mandibular condyle. In experimental groups, the dental occlusion was orthodontically disturbed. By histological analysis, transmission electron microscopy (TEM), micro-CT scanning and serum tests, changes in condylar cartilage and subchondral bone were analyzed at 8 and 12 weeks after treatment. The mRNA and protein levels of bone pro-resorptive and pro-formative factors by chondrocytes were investigated. Increased degraded cartilage areas and obvious cartilage calcification were observed in 8- and 12-week treated (EXP) groups compared to the age-matched controls. Subchondral bone loss, characterized as decreased bone mineral density (BMD), bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), but increased trabecular separation (Tb.Sp), was observed in the 12-week but not the 8-week EXP group, respectively, versus their age-matched controls. The subchondral bone loss in the 12-week EXP group was accompanied with decreased new bone formation rate, but increased serum carboxy terminal telopeptides (CTXs), and increased osteoclast numbers and proportion of surface area in the subchondral bone regions. Increased mRNA and protein levels of M-CSF, VEGF, RUNX and RANKL/OPG ratio, but decreased OPG, were found in condylar cartilage in the 12-week EXP group versus its age-matched controls, and those of RANKL/OPG ratios were significantly higher in the 12-week EXP group than the 8-week EXP. In addition, increased mRNA levels of VEGF, RUNX and RANKL/OPG ratio, but decreased OPG, were also found in condylar

  5. Diet-induced obesity, gut microbiota and bone, including alveolar bone loss.

    PubMed

    Eaimworawuthikul, Sathima; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-07

    Obesity is a major risk factor for several pathologies, including jaw bone resorption. The underlying mechanisms involved in pathological conditions resulting from obesity include chronic systemic inflammation and the development of insulin resistance. Although numerous studies have indicated the importance of the role of gut microbiota in the pathogenesis of inflammation and insulin resistance in obesity, only a few studies have established a relationship between obesity, gut microbiota and status of the jaw bone. This review aims to summarize current findings relating to these issues, focusing on the role of obesity and gut microbiota on jaw bone health, including possible mechanisms which can explain this link.

  6. Swimming Activity Prevents the Unloading Induced Loss of Bone Mass, Architecture, and Strength in Rats

    PubMed Central

    Falcai, Maurício J.; Leoni, Graziela Bianchi; de Sousa Neto, Manoel Damião; Volpon, Jose B.

    2015-01-01

    We investigated whether swimming activity associated with a three-week period of hypoactivity could prevent the deleterious effects of disuse on the tibias of tail-suspended rats. Forty Wistar rats were divided into five groups: (HS) permanently hindlimb suspension rats; (HS + Swim) rats submitted to unloading interrupted by swimming exercise; (HS + WB) hindlimb suspension rats with interruption for regular weight bearing for the same length of time as the HS+Swim rats; (Control) control rats that were allowed regular cage activities; and (Control + Swim) control rats that underwent swimming exercise. At the end of the experiment, bone mineral density, bone strength, and trabecular quantification were analyzed. The hindlimb-suspended rats exhibited bone quality loss (significant decrease in BMD, bone strength, and deterioration of trabecular and cortical bone architecture; decrease in BV/TV, TbN, TbTh, ConnD, CtV, and CtTh; and increase in TbSp) when compared to control rats. In contrast, trained rats showed a significant increase of 43% in bone mass, 29% in bone strength, 58% in trabecular thickness, 85% in bone volume, 27% in trabeculae number, and 30% in cortical volume, when compared to the hindlimb-suspended rats. We conclude that swimming activity not only ameliorates but also fully prevents the deleterious effects on bone quality in osteopenic rats. PMID:26090414

  7. Calcium regulation and bone mass loss after total gastrectomy in pigs.

    PubMed Central

    Maier, G W; Kreis, M E; Zittel, T T; Becker, H D

    1997-01-01

    OBJECTIVE: Total gastrectomy often results in postgastrectomy bone disease with decreased bone mass and increased fracture risk. To further elucidate the mechanisms of postgastrectomy bone disease, the authors investigated calcium metabolism and bone mineral density after total gastrectomy in pigs. SUMMARY BACKGROUND DATA: Postgastrectomy bone disease can present as osteomalacia, osteoporosis in excess of normal aging, or a combination of both. The underlying mechanisms are insufficiently understood and need further investigation. METHODS: Growing minipigs were gastrectomized and compared with fed-matched, sham-operated control p gs for 1 year. Calcium absorption, serum calcium, parathyroid hormone, 25-(OH)-vitamin D, 1,25-(OH)2-vitamin D, alkaline phosphatase, and computed tomography bone mineral density were measured in three monthly intervals. RESULTS: Total gastrectomy resulted in impaired calcium absorption, reduced serum calcium and 25-(OH)-vitamin D, increased parathyroid hormone and 1,25-(OH)2-vitamin, and reduced bone mineral density compared with fed-matched, sham-operated control pigs. CONCLUSIONS: The authors data indicate that a reduced serum calcium activates counter-regulatory mechanisms, resulting in calcium mobilization from the bone. Possibly, calcium and vitamin D supplementation after total gastrectomy might prevent postgastrectomy bone mass loss. PMID:9065295

  8. Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis

    PubMed Central

    Weng, Tujun; Xie, Yangli; Yi, Lingxian; Huang, Junlan; Luo, Fengtao; Du, Xiaolan; Chen, Liang; Liu, Chongyang; Chen, Di; Chen, Lin

    2014-01-01

    Objective To investigate the role of Vhl in maintaining the integrity of articular cartilage and in the development of experimental osteoarthritis (OA). Method Histology of articular cartilage and subchondral bone in both Vhl cKO and WT mice were analyzed by histopathology and micro-CT. Articular cartilage destruction and proteoglycan loss were scored in aged (12-month-old) mice as well as in mice with surgically induced OA. Apoptosis of cartilage in age-related and surgically induced OA was detected with TUNNEL assay. Expressions of VHL, Fas, LC-3, HIF-1α, HIF-2α, p-mTOR and MMP-13 in the knee joints were analyzed by immunostaining. Results No gross differences in cartilage were observed between Vhl cKO and WT mice at age 4 months. However, Vhl cKO mice displayed accelerated age-associated spontaneous OA and surgically induced OA. Cartilage destruction and proteoglycan loss were observed in the absence of Vhl. In addition, inactivation of Vhl resulted in up-regulation of HIF-2α and increased chondrocyte apoptosis and decreased expression of autophagy during OA development. Immunohistochemical staining also showed that Vhl deficiency led to increased expression of Fas, p-mTOR and MMP-13, and those genes were associated with cell apoptosis, autophagy and cartilage matrix breakdown, respectively. Conclusion Loss of Vhl in adult articular cartilage is associated with earlier dysregulation of cartilage homeostasis, characterized by an increased chondrocyte apoptosis, compromised chondrocyte autophagy, and an accelerated age-related and surgery-induced OA development. These results highlight the novel role of Vhl in maintaining joint homeostasis and OA development. PMID:24999110

  9. Dynamic Hydraulic Flow Stimulation on Mitigation of Trabecular Bone Loss in a Rat Functional Disuse Model

    PubMed Central

    Hu, Minyi; Cheng, Jiqi; Qin, Yi-Xian

    2012-01-01

    Bone fluid flow (BFF) has been demonstrated as a critical regulator in mechanotransductive signaling and bone adaptation. Intramedullary pressure (ImP) and matrix strain have been identified as potential generator to regulate BFF. To elevate in vivo oscillatory BFF using ImP, a dynamic hydraulic stimulation (DHS) approach was developed. The objective of this study was to evaluate the effects of DHS on mitigation of bone loss and structural alteration in a rat hindlimb suspension (HLS) functional disuse model. Sixty-one 5-month old female Sprague-Dawley rats were divided into five groups: 1) baseline control, 2) age-matched control, 3) HLS, 4) HLS + static loading, and 5) HLS + DHS. Hydraulic flow stimulation was carried out daily on a “10 min on-5min off-10min on” loading regime, 5 days/week, for total of 4 weeks in the tibial region. The metaphyseal trabecular regions of the proximal tibiae were analyzed using µCT and histomorphometry. Four weeks of HLS resulted in a significant loss of trabecular bone, leading to structural deterioration. HLS with static loading alone was not sufficient to attenuate the bone loss. Bone quantity and microarchitecture were significantly improved by applying DHS loading, resulting increase of 83% in bone volume fraction, 25% in trabecular number and mitigation of -26% in trabecular separation compared to HLS control. Histomorphometry analysis on trabecular mineralization coincided with the µCT analysis, in which DHS loading yielded increases of 34% in histomorphometric BV/TV, 121% in MS/BS, 190% in BFR/BS and 146% in BFR/BV, compared to the HLS control. Overall, the data demonstrated that dynamic hydraulic flow loading has potentials to provide regulatory signals for mitigating bone loss induced by functional disuse. This approach may provide a new alternative mechanical intervention for future clinical treatment for osteoporosis. PMID:22820398

  10. Dynamic hydraulic flow stimulation on mitigation of trabecular bone loss in a rat functional disuse model.

    PubMed

    Hu, Minyi; Cheng, Jiqi; Qin, Yi-Xian

    2012-10-01

    Bone fluid flow (BFF) has been demonstrated as a critical regulator in mechanotransductive signaling and bone adaptation. Intramedullary pressure (ImP) and matrix strain have been identified as potential generators to regulate BFF. To elevate in vivo oscillatory BFF using ImP, a dynamic hydraulic stimulation (DHS) approach was developed. The objective of this study was to evaluate the effects of DHS on mitigation of bone loss and structural alteration in a rat hindlimb suspension (HLS) functional disuse model. Sixty-one 5-month old female Sprague-Dawley rats were divided into five groups: 1) baseline control, 2) age-matched control, 3) HLS, 4) HLS+static loading, and 5) HLS+DHS. Hydraulic flow stimulation was carried out daily on a "10 min on-5 min off-10 min on" loading regime, 5 days/week, for a total of 4 weeks in the tibial region. The metaphyseal trabecular regions of the proximal tibiae were analyzed using μCT and histomorphometry. Four weeks of HLS resulted in a significant loss of trabecular bone, leading to structural deterioration. HLS with static loading alone was not sufficient to attenuate the bone loss. Bone quantity and microarchitecture were significantly improved by applying DHS loading, resulting increase of 83% in bone volume fraction, 25% in trabecular number and mitigation of 26% in trabecular separation compared to HLS control. Histomorphometry analysis on trabecular mineralization coincided with the μCT analysis, in which DHS loading yielded increases of 34% in histomorphometric BV/TV, 121% in MS/BS, 190% in BFR/BS and 146% in BFR/BV, compared to the HLS control. Overall, the data demonstrated that dynamic hydraulic flow loading has potentials to provide regulatory signals for mitigating bone loss induced by functional disuse. This approach may provide a new alternative mechanical intervention for future clinical treatment for osteoporosis.

  11. Computational Analysis of Artificial Gravity as a Possible Countermeasure to Spaceflight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Mulugeta, L.; Werner, C. R.; Pennline, J. A.

    2015-01-01

    During exploration class missions, such as to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Data has shown that astronauts lose bone mass at a rate of 1% to 2% a month in microgravity, particularly in lower extremities such as the proximal femur. Exercise countermeasures have not completely eliminated bone loss from long duration spaceflight missions, which leaves astronauts susceptible to early onset osteoporosis and greater risk of fracture. Introduction of the Advanced Resistive Exercise Device and other large exercise devices on the International Space Station (ISS), coupled with improved nutrition, has further minimized bone loss. However, unlike the ISS, exploration vehicles will have very limited volume and power available to accommodate such capabilities. Therefore, novel concepts like artificial gravity systems are being explored as a means to provide sufficient load stimulus to the musculoskeletal system to mitigate bone changes that may lead to early onset osteoporosis and increased risk of fracture. Currently, there is minimal data available to drive further research and development efforts to appropriately explore such options. Computational modeling can be leveraged to gain insight on the level of osteoprotection that may be achieved using artificial gravity produced by a spinning spacecraft or centrifuge. With this in mind, NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone both for gravitational unloading condition and the equivalent of 1g daily load stimulus. Using this model, it is possible to simulate vBMD changes in trabecular and cortical bone under different gravity conditions. In this presentation, we will discuss our preliminary findings regarding if and how artificial gravity may be used to mitigate spaceflight induced bone loss.

  12. A computer model of the energy-current loss instabilities in a recirculating accelerator system

    NASA Astrophysics Data System (ADS)

    Edighoffer, J. A.; Kim, K.-J.

    1995-04-01

    The computer program called ESRA (energy stability in a recirculating accelerator FELs) has been written to model bunches of particles in longitudinal phase space traversing a recirculating accelerator and the associated rf changes and aperture current losses. This code addresses stability issues and determines the transport, noise, feedback and other parameters for which these FEL systems are stable or unstable. A representative system is modeled, the Novosibirisk high power FEL race-track microtron for photochemical research. The system is stable with prudent choice of parameters.

  13. Virgin Coconut Oil Supplementation Prevents Bone Loss in Osteoporosis Rat Model

    PubMed Central

    Hayatullina, Zil; Muhammad, Norliza; Mohamed, Norazlina; Soelaiman, Ima-Nirwana

    2012-01-01

    Oxidative stress and free radicals have been implicated in the pathogenesis of osteoporosis. Therefore, antioxidant compounds have the potential to be used in the prevention and treatment of the disease. In this study, we investigated the effects of virgin coconut oil (VCO) on bone microarchitecture in a postmenopausal osteoporosis rat model. VCO is a different form of coconut oil as it is rich with antioxidants. Three-month-old female rats were randomly grouped into baseline, sham-operated, ovariectomized control (Ovx), and ovariectomized rats fed with 8% VCO in their diet for six weeks (Ovx+VCO). Bone histomorphometry of the right femora was carried out at the end of the study. Rats supplemented with VCO had a significantly greater bone volume and trabecular number while trabecular separation was lower than the Ovx group. In conclusion, VCO was effective in maintaining bone structure and preventing bone loss in estrogen-deficient rat model. PMID:23024690

  14. Virgin coconut oil supplementation prevents bone loss in osteoporosis rat model.

    PubMed

    Hayatullina, Zil; Muhammad, Norliza; Mohamed, Norazlina; Soelaiman, Ima-Nirwana

    2012-01-01

    Oxidative stress and free radicals have been implicated in the pathogenesis of osteoporosis. Therefore, antioxidant compounds have the potential to be used in the prevention and treatment of the disease. In this study, we investigated the effects of virgin coconut oil (VCO) on bone microarchitecture in a postmenopausal osteoporosis rat model. VCO is a different form of coconut oil as it is rich with antioxidants. Three-month-old female rats were randomly grouped into baseline, sham-operated, ovariectomized control (Ovx), and ovariectomized rats fed with 8% VCO in their diet for six weeks (Ovx+VCO). Bone histomorphometry of the right femora was carried out at the end of the study. Rats supplemented with VCO had a significantly greater bone volume and trabecular number while trabecular separation was lower than the Ovx group. In conclusion, VCO was effective in maintaining bone structure and preventing bone loss in estrogen-deficient rat model.

  15. Manganese-mediated acceleration of age-related hearing loss in mice

    PubMed Central

    Ohgami, Nobutaka; Yajima, Ichiro; Iida, Machiko; Li, Xiang; Oshino, Reina; Kumasaka, Mayuko Y.; Kato, Masashi

    2016-01-01

    Despite the fact that manganese (Mn) is known to be a neurotoxic element relevant to age-related disorders, the risk of oral exposure to Mn for age-related hearing loss remains unclear. In this study, we orally exposed wild-type young adult mice to Mn (Mn-exposed WT-mice) at 1.65 and 16.50 mg/L for 4 weeks. Mn-exposed WT-mice showed acceleration of age-related hearing loss. Mn-exposed WT-mice had neurodegeneration of spiral ganglion neurons (SGNs) with increased number of lipofuscin granules. Mn-exposed WT-mice also had increased hypoxia-inducible factor-1 alpha (Hif-1α) protein with less hydroxylation at proline 564 and decreased c-Ret protein in SGNs. Mn-mediated acceleration of age-related hearing loss involving neurodegeneration of SGNs was rescued in RET-transgenic mice carrying constitutively activated RET. Thus, oral exposure to Mn accelerates age-related hearing loss in mice with Ret-mediated neurodegeneration of SGNs. PMID:27824154

  16. Management of Humeral and Glenoid Bone Loss in Recurrent Glenohumeral Instability

    PubMed Central

    Rusen, Jamie; Leiter, Jeff; Chahal, Jaskarndip; MacDonald, Peter

    2014-01-01

    Recurrent shoulder instability and resultant glenoid and humeral head bone loss are not infrequently encountered in the population today, specifically in young, athletic patients. This review on the management of bone loss in recurrent glenohumeral instability discusses the relevant shoulder anatomy that provides stability to the shoulder joint, relevant history and physical examination findings pertinent to recurrent shoulder instability, and the proper radiological imaging choices in its workup. Operative treatments that can be used to treat both glenoid and humeral head bone loss are outlined. These include coracoid transfer procedures and allograft/autograft reconstruction at the glenoid, as well as humeral head disimpaction/humeroplasty, remplissage, humeral osseous allograft reconstruction, rotational osteotomy, partial humeral head arthroplasty, and hemiarthroplasty on the humeral side. Clinical outcomes studies reporting general results of these techniques are highlighted. PMID:25136461

  17. Bisphosphonate as a Countermeasure to Space Flight-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Spector, Elisabeth; LeBlanc, A.; Sibonga, J.; Matsumoto, T.; Jones, J.; Smith, S. M.; Shackelford, L.; Shapiro, J.; Lang, T.; Evans, H.; Spector, E.; Nakamura, T.; Kohri, K.; Ohshima, H.

    2009-01-01

    The purpose of this research is to determine whether anti-resorptive pharmaceuticals such as bisphosphonates, in conjunction with the routine in-flight exercise program, will protect ISS crewmembers from the regional decreases in bone mineral density and bone strength and the increased renal stone risk documented on previous long-duration space flights [1-3]. Losses averaged 1 to 2 percent per month in such regions as the lumbar spine and hip. Although losses showed significant heterogeneity among individuals and between bones within a given subject, space flight-induced bone loss was a consistent finding. More than 90 percent of astronauts and cosmonauts on long-duration flights (average 171 days) aboard Mir and the ISS, had a minimum 5 percent loss in at least one skeletal site, 40 percent of them had a 10 percent or greater loss in at least one skeletal site, and 22 percent of the Mir cosmonauts experienced a 15 to 20 percent loss in at least one site. These losses occurred even though the crewmembers performed time-consuming in-flight exercise regimens. Moreover, a recent study of 16 ISS astronauts using quantitative computed tomography (QCT) demonstrated trabecular bone losses from the hip averaging 2.3 percent per month [4]. These losses were accompanied by significant losses in hip bone strength that may not be recovered quickly [5]. This rapid loss of bone mass results from a combination of increased and uncoupled remodeling, as demonstrated by increased resorption with little or no change in bone formation markers [6-7]. This elevated remodeling rate likely affects the cortical and trabecular architecture and may lead to irreversible changes. In addition to bone loss, the resulting hypercalciuria increases renal stone risk. Therefore, it is logical to attempt to attenuate this increased remodeling with anti-resorption drugs such as bisphosphonates. Success with alendronate was demonstrated in a bed rest study [8]. This work has been extended to space

  18. Management of humeral and glenoid bone loss in recurrent glenohumeral instability.

    PubMed

    Mascarenhas, Randy; Rusen, Jamie; Saltzman, Bryan M; Leiter, Jeff; Chahal, Jaskarndip; Romeo, Anthony A; MacDonald, Peter

    2014-01-01

    Recurrent shoulder instability and resultant glenoid and humeral head bone loss are not infrequently encountered in the population today, specifically in young, athletic patients. This review on the management of bone loss in recurrent glenohumeral instability discusses the relevant shoulder anatomy that provides stability to the shoulder joint, relevant history and physical examination findings pertinent to recurrent shoulder instability, and the proper radiological imaging choices in its workup. Operative treatments that can be used to treat both glenoid and humeral head bone loss are outlined. These include coracoid transfer procedures and allograft/autograft reconstruction at the glenoid, as well as humeral head disimpaction/humeroplasty, remplissage, humeral osseous allograft reconstruction, rotational osteotomy, partial humeral head arthroplasty, and hemiarthroplasty on the humeral side. Clinical outcomes studies reporting general results of these techniques are highlighted.

  19. Trabecular metal cup without augments for acetabular revision in case of extensive bone loss and low bone-prosthesis contact.

    PubMed

    Pierannunzii, L; Mambretti, A; D'Imporzano, M

    2011-01-01

    Current evidences in revision hip arthroplasty suggest to treat severe acetabular bone loss with dedicated implants, such as anti-protrusio cages, stemmed cups, modular systems supplied with iliac flanges and obturatory hook. However recent literature is reporting satisfactory outcomes with simple elliptical Trabecular Metal cups. Purpose of the study was to evaluate mid-term results of such a surgical procedure. All hip revisions performed from 2008 to 2009 with implantation of a TMT multi-hole acetabular cup without augmentations were retrospectively reviewed. The cases with low-degree acetabular bone loss (stage I and II according to GIR classification), with surgical report poorly describing the bone defect, with inadequate pre- and post-operative x-rays were ruled out. Twenty-five cases were identified, but four were lost to follow-up. The twenty-one patients were 71 year-old on average (from 60 to 82), with stage IV bone loss in 6 cases and stage III bone loss in 15 cases. Mean interval from surgery to evaluation was 20.9 months (from 13 to 30). The evaluation included bone-prosthesis contact estimation, component position, survivorship, complications, final Harris Hip Score, presence of periprosthetic radiolucencies. Host bone-prosthesis contact was estimated to be about 35%. Only three implant were subsequently reoperated (for infection, early migration, recurrent dislocation). The HHS among non-reoperated 18 patients was 81.96 on average (from 63.44 to 95.82). Six cases showed thin radiolucencies in one of the three Charnley zones, while three cases showed radiolucencies in two. None of these images was evolutive, thus they were not considered signs of loosening. The mid-term results of this series confirm the hypothesis that a porous tantalum acetabular cup is an effective option to deal with difficult acetabular revisions. Although no extra-acetabular fixation device is available, the very high surface friction guaranteed by the material and the

  20. Bone Loss in Space: Shuttle/MIR Experience and Bed Rest Countermeasure Program

    NASA Technical Reports Server (NTRS)

    Shackelford, L. C.; LeBlanc, A.; Feiveson, A.; Oganov, V.

    1999-01-01

    Loss of bone mineral during space flight was documented in the 1970's Skylab missions. The USSR space program made similar observations in the 1980's. The Institute of Biomedical Problems in Moscow and NASA JSC in 1989 began to collect pre- and post-flight bone mineral density (BMD) using Hologic QDR 1000 DEXA scanners transferred from JSC to Moscow and Star City. DEXA whole body, hip, and lumbar spine scans were performed prior to and during the first week after return from 4- to 6-month missions (plus one 8-month mission and one 14- month mission) on the Mir space station. These data documented the extent and regional nature of bone loss during long duration space flight. Of the 18 cosmonauts participating in this study between 1990 and 1995, seven flew two missions. BMD scans prior to the second flight compared to the first mission preflight scans indicated that recovery was possibly delayed or incomplete. Because of these findings, NASA and IBMP initiated the study "Bone Mineral Loss and Recovery After Shuttle/Mir Flights" in 1995 to evaluate bone recovery during a 3-year post-flight period. All of the 14 participants thus far evaluated lost bone in at least one region of the spine and lower extremities during flight. Of the 14, only one to date has exhibited full return to baseline BNM values in all regions. The current study will continue until the last participant has reached full bone recovery in all regions, has reached a plateau, or until three years after the flight (2001 for the last mission of the program). Bone mineral density losses in space and difficulty in returning to baseline indicate a need for countermeasure development. In late 1996 NASA JSC and Baylor College of Medicine were approved to conduct two countermeasure studies during 17 weeks of bed rest. In 1997 the studies were begun in the bed rest facility established by NASA, Baylor College of Medicine, and The Methodist Hospital in Houston. To date, three bed rest controls, five resistive

  1. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis.

    PubMed

    Devareddy, Latha; Hooshmand, Shirin; Collins, Julie K; Lucas, Edralin A; Chai, Sheau C; Arjmandi, Bahram H

    2008-10-01

    The objective of the present study was to explore the bone protective role of blueberry in an ovariectomized rat model. Thirty 6-month-old female Sprague-Dawley rats were either sham-operated (Sham) or ovariectomized (Ovx) and divided into three groups: Sham, Ovx (control), Ovx+blueberry (5% blueberry w/w). After 100 days of treatment, rats were euthanized, and blood and tissues were collected. Bone mineral density (BMD) and content of whole body, right tibia, right femur and fourth lumbar vertebra were assessed via dual-energy X-ray absorptiometry. As expected, Ovx resulted in loss of whole-body, tibial, femoral, and 4th lumbar BMD by approximately 6%. Blueberry treatment was able to prevent the loss of whole-body BMD and had an intermediary effect on prevention of tibial and femoral BMD when compared to either Sham or Ovx controls. The bone-protective effects of blueberry may be due to suppression of Ovx-induced increase in bone turnover, as evident by lowered femoral mRNA levels of alkaline phosphatase, collagen type I and tartrate-resistant acid phosphatase to the Sham levels. Similarly, serum osteocalcein levels were also lower in the blueberry group when compared to the Ovx control group, albeit not significantly. In summary, our findings indicate that blueberry can prevent bone loss as seen by the increases in BMD and favorable changes in biomarkers of bone metabolism.

  2. Vitamin D and ibandronate prevent cancellous bone loss associated with binge alcohol treatment in male rats.

    PubMed

    Wezeman, Frederick H; Juknelis, Dainius; Himes, Ryan; Callaci, John J

    2007-10-01

    Decreased bone mass and bone strength can result from excess alcohol consumption in humans and alcohol treatment in the rat. Although the specific mechanism is unknown, the damaging effects of alcohol abuse modulate the bone remodeling cycle and increase bone turnover. Chronic alcohol consumption models have shown an inhibition of bone formation. We previously reported that binge alcohol treatment increases bone resorption and that alcohol-induced damage can be prevented by treatments with intermittent parathyroid hormone and bisphosphonates. In this study, we hypothesized that an effective dose of vitamin D (cholecalciferol) or a single dose of ibandronate would prevent bone loss caused by binge alcohol treatment in male rats. Forty-eight adult (450 gram) male Sprague-Dawley rats were randomly assigned to 6 treatment groups (n=8): (a) saline i.p., 3 days/week (C); (b) binge alcohol, 3 g/kg i.p., 3 days/week (A); (c) vitamin D, 5,000 IU/kg daily s.c. (D); (d) binge alcohol and vitamin D (AD); (e) ibandronate (120 microg, given as a single i.p. injection (I)); and (f) alcohol and ibandronate (AI) . After 4 weeks of treatment, proximal tibia and L3 and L4 vertebrae were analyzed for bone mineral density (BMD) by quantitative computerized tomography and compressive strength-to-failure using an Instron materials testing machine. Type I collagen cross-linked c-telopeptide, calcium, and 25-OH vitamin D levels were measured in serum collected at the time of sacrifice. Binge alcohol significantly decreased cancellous BMD by 58% in tibia and 23% in lumbar spine (p<0.05). Binge alcohol treatment decreased L3 and L4 compressive strength-to-failure by 21% (p<.05). Treatment with vitamin D at 5,000 IU/kg/day prevented alcohol-induced bone loss, significantly increasing both tibial and vertebral cancellous BMD values (161% increase in tibia and 40% increase in vertebra, respectively, p<0.05) compared to alcohol alone groups. Pre-treatment with the single dose of 120 microg

  3. A Review on Current Osteoporosis Research: With Special Focus on Disuse Bone Loss

    PubMed Central

    Lau, Roy Yuen-chi; Guo, Xia

    2011-01-01

    Osteoporosis is a multifactorial skeletal disorder characterized by decreased bone mass and deteriorated microarchitecture that lead to increased risk of fracture. The disuse osteoporosis refers to bone mass decrements under conditions of decreased mechanical loading, including decreased ground force reaction, muscular contraction, and microgravity-related bone loss in astronauts after space flights. Although there are many effective treatments available for primary osteoporosis, there is a lack of effective treatments for disuse osteoporosis. This is because that the aetiology, pathophysiology, and resultant pathology of disuse osteoporosis differ from those of primary osteoporosis. The objective of this paper is to examine the unique pathology and underlying pathophysiology of disuse osteoporosis. PMID:21876833

  4. Nitidine chloride prevents OVX-induced bone loss via suppressing NFATc1-mediated osteoclast differentiation

    PubMed Central

    Liu, Qian; Wang, Tao; Zhou, Lin; Song, Fangming; Qin, An; Feng, Hao Tian; Lin, Xi Xi; Lin, Zhen; Yuan, Jin Bo; Tickner, Jennifer; Liu, Hua Gang; Zheng, Ming Hao; Xu, Jiake; Zhao, Jin Min

    2016-01-01

    Nitidine chloride (NC), a bioactive alkaloid isolated from Zanthoxylum nitidum, has been used as a herbal ingredient in toothpaste that prevents cavities for decades. It also displays potential antitumor and anti-inflammation properties. However, its anticatabolic effect on bone is not known. We investigated the effect of NC on osteoclastogenesis, bone resorption and RANKL-induced NF-κB and NFATc1 signalling. In mouse-derived bone marrow monocytes (BMMs), NC suppressed RANKL-induced multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation and bone resorption in a dose dependent manner. NC attenuated the expression of osteoclast marker genes including cathepsin K, D2, calcitonin receptor, NFATc1, and TRAP. Further, NC inhibited RANKL-activated NF-κB and NFATc1 signalling pathways. In vivo study revealed that NC abrogated oestrogen deficiency-induced bone loss in ovariectomized mice. Histological analysis showed that the number of osteoclasts was significantly lower in NC-treated groups. Collectively, our data demonstrate that NC suppressed osteoclastogenesis and prevented OVX-induced bone loss by inhibiting RANKL-induced NF-κB and NFATc1 signalling pathways. NC may be a natural and novel treatment for osteoclast-related bone lytic diseases. PMID:27821837

  5. Advances in measurements of periodontal bone and attachment loss.

    PubMed

    Jeffcoat, M K; Reddy, M S

    2000-01-01

    Periodontal probing and measurements using intraoral radiographs are widely utilized clinical techniques to measure attachment and bone levels, respectively. Determination of progressive disease, healing, or regeneration in clinical studies may require maximal sensitivity and attention to measurement error in order to assure that changes detected by new methodology are accurate. Both types of methods are susceptible to errors due to resolution, repeatability, and accuracy of the technique. While both probing and radiographic methods are useful in clinical trials they vary widely with respect to these errors. For example, manual probing is repeatable to within 1 mm better than 90% of the time, and state-of-the-art radiographic methods, such as digital subtraction radiography, can detect as little as 1 mg of bony change.

  6. Losartan increases bone mass and accelerates chondrocyte hypertrophy in developing skeleton

    PubMed Central

    Rianon, Nahid; Rajagopal, Abbhirami; Munivez, Elda; Bertin, Terry; Dawson, Brian; Chen, Yuqing; Jiang, Ming-Ming; Lee, Brendan; Yang, Tao; Bae, Yangjin

    2015-01-01

    Angiotensin receptor blockers (ARBs) are a group of anti-hypertensive drugs that are widely used to treat pediatric hypertension. Recent application of ARBs to treat diseases such as Marfan syndrome or Alport syndrome has shown positive outcomes in animal and human studies, suggesting a broader therapeutic potential for this class of drugs. Multiple studies have reported a benefit of ARBs on adult bone homeostasis; however, its effect on the growing skeleton in children is unknown. We investigated the effect of Losartan, an ARB, in regulating bone mass and cartilage during development in mice. Wild type mice were treated with Losartan from birth until 6 weeks of age, after which bones were collected for microCT and histomorphometric analyses. Losartan increased trabecular bone volume vs. tissue volume (a 98% increase) and cortical thickness (a 9% increase) in 6-weeks old wild type mice. The bone changes were attributed to decreased osteoclastogenesis as demonstrated by reduced osteoclast number per bone surface in vivo and suppressed osteoclast differentiation in vitro. At the molecular level, Angiotensin II-induced ERK1/2 phosphorylation in RAW cells was attenuated by Losartan. Similarly, RANKL-induced ERK1/2 phosphorylation was suppressed by Losartan, suggesting a convergence of RANKL and angiotensin signaling at the level of ERK1/2 regulation. To assess the effect of Losartan on cartilage development, we examined the cartilage phenotype of wild type mice treated with Losartan in utero from conception to 1 day of age. Growth plates of these mice showed an elongated hypertrophic chondrocyte zone and increased Col10a1 expression level, with minimal changes in chondrocyte proliferation. Altogether, inhibition of the angiotensin pathway by Losartan increases bone mass and accelerates chondrocyte hypertrophy in growth plate during skeletal development. PMID:25779879

  7. Losartan increases bone mass and accelerates chondrocyte hypertrophy in developing skeleton.

    PubMed

    Chen, Shan; Grover, Monica; Sibai, Tarek; Black, Jennifer; Rianon, Nahid; Rajagopal, Abbhirami; Munivez, Elda; Bertin, Terry; Dawson, Brian; Chen, Yuqing; Jiang, Ming-Ming; Lee, Brendan; Yang, Tao; Bae, Yangjin

    2015-05-01

    Angiotensin receptor blockers (ARBs) are a group of anti-hypertensive drugs that are widely used to treat pediatric hypertension. Recent application of ARBs to treat diseases such as Marfan syndrome or Alport syndrome has shown positive outcomes in animal and human studies, suggesting a broader therapeutic potential for this class of drugs. Multiple studies have reported a benefit of ARBs on adult bone homeostasis; however, its effect on the growing skeleton in children is unknown. We investigated the effect of Losartan, an ARB, in regulating bone mass and cartilage during development in mice. Wild type mice were treated with Losartan from birth until 6 weeks of age, after which bones were collected for microCT and histomorphometric analyses. Losartan increased trabecular bone volume vs. tissue volume (a 98% increase) and cortical thickness (a 9% increase) in 6-weeks old wild type mice. The bone changes were attributed to decreased osteoclastogenesis as demonstrated by reduced osteoclast number per bone surface in vivo and suppressed osteoclast differentiation in vitro. At the molecular level, Angiotensin II-induced ERK1/2 phosphorylation in RAW cells was attenuated by Losartan. Similarly, RANKL-induced ERK1/2 phosphorylation was suppressed by Losartan, suggesting a convergence of RANKL and angiotensin signaling at the level of ERK1/2 regulation. To assess the effect of Losartan on cartilage development, we examined the cartilage phenotype of wild type mice treated with Losartan in utero from conception to 1 day of age. Growth plates of these mice showed an elongated hypertrophic chondrocyte zone and increased Col10a1 expression level, with minimal changes in chondrocyte proliferation. Altogether, inhibition of the angiotensin pathway by Losartan increases bone mass and accelerates chondrocyte hypertrophy in growth plate during skeletal development.

  8. Comparison between inverted and unprocessed digitized radiographic imaging in periodontal bone loss measurements.

    PubMed

    Scaf, Gulnara; Morihisa, Olívia; Loffredo, Leonor de Castro Monteiro

    2007-12-01

    The advances in digital imaging technology in dentistry have provided an alternative to film-based radiography and have given new options to detect periodontal bone loss. The purpose of this study was to compare inverted and unprocessed digitized radiographic imaging in periodontal bone loss measurements. Thirty-five film-based periapical radiographs of patients suffering from moderate to advanced untreated periodontal bone loss associated to lower premolar and molars was selected from the department files, with 40 bone loss areas. The film-based radiographs were digitized with a flatbed scanner with a transparency and radiograph adapter used for transilluminating the radiograph imaging. Digitization was performed at 600 dpi and in gray scale. The images were digitized using Image Tool software by applying image inversion, that is, transformation of radiopaque structures into radiolucent structures and vice-versa. The digital data were saved as JPEG files. The images were displayed on a 15-inch and 24-bit video monitor under reduced room lighting. One calibrated examiner performed all radiographic measurements, three times, from the cementoenamel junction to the most apical extension of the bone loss, in both types of image (inverted and unprocessed). Brightness and contrast were adjusted according to the examiner's individual demand. Intraclass correlation coefficient was used to compare the measurements from both types of images. The means of radiographic measurements, in mm, for inverted and unprocessed digitized imaging were 6.4485 and 6.3790, respectively. The intraclass correlation coefficient was significant (0.99) The inverted and unprocessed digitized radiographic images were reliable and there was no difference in the diagnostic accuracy between these images regarding periodontal bone loss measurements.

  9. Periodontal disease exacerbates systemic ovariectomy-induced bone loss in mice.

    PubMed

    Anbinder, Ana Lia; Moraes, Renata M; Lima, Gabriela M G; Oliveira, Felipe E; Campos, Débora R C; Rossoni, Rodnei D; Oliveira, Luciane D; Junqueira, Juliana C; Ma, Yun; Elefteriou, Florent

    2016-02-01

    Periodontal pathogens and/or inflammatory products from periodontitis participate in the development or progression of systemic diseases. In this context, periodontitis acts as a modifying factor to systemic health, including diabetes and cardiovascular diseases. Osteoporosis is an increasingly prevalent condition in our aging population and considered a risk factor for periodontal disease, but the effect of periodontitis on systemic bone homeostasis is unknown. We thus evaluated the effects of experimental periodontitis (EP) on systemic bone loss and the influence of estrogen deficiency in this context, using a mouse model of combined periodontitis and osteoporosis. Experimental periodontitis (EP) was induced by a ligature insertion around the mandibular first molars and Porphyromonas gingivalis infection. Three-dimensional microcomputed tomographic analyses performed 48days following infection revealed that EP and ovariectomy (OVX) induced a significantly higher femoral and mandibular bone loss compared to EP or OVX alone. EP alone did not induce systemic bone loss. In addition, the EP+OVX and EP groups showed significantly higher levels of tumor necrosis factor (TNF)-α than OVX and control groups at end point. These results suggest that periodontitis could be a risk factor for systemic bone loss, especially in post-menopausal women, and warrant further clinical investigations to confirm this association and propose adapted prophylactic and curative therapies.

  10. Circulating microRNAs Correlated with Bone Loss Induced by 45 Days of Bed Rest

    PubMed Central

    Ling, Shukuan; Zhong, Guohui; Sun, Weijia; Liang, Fengji; Wu, Feng; Li, Hongxing; Li, Yuheng; Zhao, Dingsheng; Song, Jinping; Jin, Xiaoyan; Wu, Xiaorui; Song, Hailin; Li, Qi; Li, Yinghui; Chen, Shanguang; Xiong, Jianghui; Li, Yingxian

    2017-01-01

    The purpose of this study was to find the circulating microRNAs (miRNAs) co-related with bone loss induced by bed rest, and testify whether the selected miRNAs could reflect the bone mineral status of human after bed-rest. We analyzed plasma miRNA levels of 16 subjects after 45 days of −6° head-down tilt bed rest, which is a reliable model for the simulation of microgravity. We characterize the circulating miRNA profile in individuals after bed rest and identify circulating miRNAs which can best reflect the level of bone loss induced by bed rest. Expression profiling of circulating miRNA revealed significant downregulation of 37 miRNAs and upregulation of 2 miRNAs, while only 11 of the downregulated miRNAs were further validated in a larger volunteer cohort using qPCR. We found that 10 of these 11 miRNAs (miR-103, 130a, 1234, 1290, 151-5p, 151-3p, 199a-3p, 20a, 363, and 451a) had ROC curve that distinguished the status after bed rest. Importantly, significant positive correlations were identified between bone loss parameters and several miRNAs, eventually miR-1234 showed clinical significance in detecting the bone loss of individuals after 45 days of bed rest. PMID:28261104

  11. B Cell IgD Deletion Prevents Alveolar Bone Loss Following Murine Oral Infection.

    PubMed

    Baker, Pamela J; Boutaugh, Nicole Ryan; Tiffany, Michaela; Roopenian, Derry C

    2009-01-01

    Periodontal disease is one of the most common infectious diseases of humans. Immune responses to infection trigger loss of alveolar bone from the jaw and eventual tooth loss. We investigated the contribution of B cell IgD to alveolar bone loss by comparing the response of B cell normal BALB/cJ mice and IgD deficient BALB/c-Igh-5(-/-J) mice to oral infection with Porphyromonas gingivalis, a gram-negative periodontopathic bacterium from humans. P. gingivalis-infected normal mice lost bone. Specific antibody to P. gingivalis was lower and oral colonization was higher in IgD deficient mice; yet bone loss was completely absent. Infection increased the proportion of CD69(+) activated B cells and CD4(+) T cells in immune normal mice compared to IgD deficient mice. These data suggest that IgD is an important mediator of alveolar bone resorption, possibly through antigen-specific coactivation of B cells and CD4(+) T cells.

  12. A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss.

    PubMed

    Aoki, Kazuhiro; Saito, Hiroaki; Itzstein, Cecile; Ishiguro, Masaji; Shibata, Tatsuya; Blanque, Roland; Mian, Anower Hussain; Takahashi, Mariko; Suzuki, Yoshifumi; Yoshimatsu, Masako; Yamaguchi, Akira; Deprez, Pierre; Mollat, Patrick; Murali, Ramachandran; Ohya, Keiichi; Horne, William C; Baron, Roland

    2006-06-01

    Activating receptor activator of NF-kappaB (RANK) and TNF receptor (TNFR) promote osteoclast differentiation. A critical ligand contact site on the TNFR is partly conserved in RANK. Surface plasmon resonance studies showed that a peptide (WP9QY) that mimics this TNFR contact site and inhibits TNF-alpha-induced activity bound to RANK ligand (RANKL). Changing a single residue predicted to play an important role in the interaction reduced the binding significantly. WP9QY, but not the altered control peptide, inhibited the RANKL-induced activation of RANK-dependent signaling in RAW 264.7 cells but had no effect on M-CSF-induced activation of some of the same signaling events. WP9QY but not the control peptide also prevented RANKL-induced bone resorption and osteoclastogenesis, even when TNFRs were absent or blocked. In vivo, where both RANKL and TNF-alpha promote osteoclastogenesis, osteoclast activity, and bone loss, WP9QY prevented the increased osteoclastogenesis and bone loss induced in mice by ovariectomy or low dietary calcium, in the latter case in both wild-type and TNFR double-knockout mice. These results suggest that a peptide that mimics a TNFR ligand contact site blocks bone resorption by interfering with recruitment and activation of osteoclasts by both RANKL and TNF.

  13. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    PubMed

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  14. Limb salvage after infected knee arthroplasty with bone loss and extensor mechanism deficiency using a modular segmental replacement system.

    PubMed

    Namdari, Surena; Milby, Andrew H; Garino, Jonathan P

    2011-09-01

    Multiple total knee arthroplasty revisions pose significant surgical challenges, such as bone loss and soft tissue compromise. For patients with bone loss and extensor mechanism insufficiency after total knee arthroplasty, arthrodesis is a treatment option for the avoidance of amputation. However, arthrodesis is both difficult to achieve in situations with massive bone loss and potentially undesirable due to the dramatic shortening that follows. Although intramedullary nailing for knee arthrodesis has been widely reported, this technique has traditionally relied on the achievement of bony union. We report a case of a patient with massive segmental bone loss in which a modular intercalary prosthesis was used for arthrodesis to preserve limb length without bony union.

  15. High-impact exercise in rats prior to and during suspension can prevent bone loss

    PubMed Central

    Yanagihara, G.R.; Paiva, A.G.; Gasparini, G.A.; Macedo, A.P.; Frighetto, P.D.; Volpon, J.B.; Shimano, A.C.

    2016-01-01

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension. PMID:26840705

  16. High-impact exercise in rats prior to and during suspension can prevent bone loss.

    PubMed

    Yanagihara, G R; Paiva, A G; Gasparini, G A; Macedo, A P; Frighetto, P D; Volpon, J B; Shimano, A C

    2016-03-01

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension.

  17. Loss of insulin receptor in osteoprogenitor cells impairs structural strength of bone.

    PubMed

    Thrailkill, Kathryn; Bunn, R Clay; Lumpkin, Charles; Wahl, Elizabeth; Cockrell, Gael; Morris, Lindsey; Kahn, C Ronald; Fowlkes, John; Nyman, Jeffry S

    2014-01-01

    Type 1 diabetes mellitus (T1D) is associated with decreased bone mineral density, a deficit in bone structure, and subsequently an increased risk of fragility fracture. These clinical observations, paralleled by animal models of T1D, suggest that the insulinopenia of T1D has a deleterious effect on bone. To further examine the action of insulin signaling on bone development, we generated mice with an osteoprogenitor-selective (osterix-Cre) ablation of the insulin receptor (IR), designated OIRKO. OIRKO mice exhibited an 80% decrease in IR in osteoblasts. Prenatal elimination of IR did not affect fetal survival or gross morphology. However, loss of IR in mouse osteoblasts resulted in a postnatal growth-constricted phenotype. By 10-12 weeks of age, femurs of OIRKO mice were more slender, with a thinner diaphyseal cortex and, consequently, a decrease in whole bone strength when subjected to bending. In male mice alone, decreased metaphyseal trabecular bone, with thinner and more rodlike trabeculae, was also observed. OIRKO mice did not, however, exhibit abnormal glucose tolerance. The skeletal phenotype of the OIRKO mouse appeared more severe than that of previously reported bone-specific IR knockdown models, and confirms that insulin receptor expression in osteoblasts is critically important for proper bone development and maintenance of structural integrity.

  18. Lymphatic Endothelial Cells Produce M-CSF, Causing Massive Bone Loss in Mice.

    PubMed

    Wang, Wensheng; Wang, Hua; Zhou, Xichao; Li, Xing; Sun, Wen; Dellinger, Michael; Boyce, Brendan F; Xing, Lianping

    2017-01-04

    Gorham-Stout disease (GSD) is a rare bone disorder characterized by aggressive osteolysis associated with lymphatic vessel invasion within bone marrow cavities. The etiology of GSD is not known, and there is no effective therapy or animal model for the disease. Here, we investigated if lymphatic endothelial cells (LECs) affect osteoclasts (OCs) to cause a GSD osteolytic phenotype in mice. We examined the effect of a mouse LEC line on osteoclastogenesis in co-cultures. LECs significantly increased receptor activator of NF-κB ligand (RANKL)-mediated OC formation and bone resorption. LECs expressed high levels of macrophage colony-stimulating factor (M-CSF), but not RANKL, interleukin-6 (IL-6), and tumor necrosis factor (TNF). LEC-mediated OC formation and bone resorption were blocked by an M-CSF neutralizing antibody or Ki20227, an inhibitor of the M-CSF receptor, c-Fms. We injected LECs into the tibias of wild-type (WT) mice and observed massive osteolysis on X-ray and micro-CT scans. Histology showed that LEC-injected tibias had significant trabecular and cortical bone loss and increased OC numbers. M-CSF protein levels were significantly higher in serum and bone marrow plasma of mice given intra-tibial LEC injections. Immunofluorescence staining showed extensive replacement of bone and marrow by podoplanin+ LECs. Treatment of LEC-injected mice with Ki20227 significantly decreased tibial bone destruction. In addition, lymphatic vessels in a GSD bone sample were stained positively for M-CSF. Thus, LECs cause bone destruction in vivo in mice by secreting M-CSF, which promotes OC formation and activation. Blocking M-CSF signaling may represent a new therapeutic approach for treatment of patients with GSD. Furthermore, tibial injection of LECs is a useful mouse model to study GSD. © 2017 American Society for Bone and Mineral Research.

  19. Fenfluramine treatment in female rats accelerates the weight loss associated with activity-based anorexia.

    PubMed

    Atchley, Deann P D; Eckel, Lisa A

    2005-02-01

    Serotonin plays an important role in controlling food intake and regulating body weight. Thus, altered serotonergic function may be involved in the etiology of anorexia nervosa. To investigate this hypothesis, we examined whether activation of the serotonin system increases the severity of activity-based anorexia, an animal model of anorexia nervosa in which food-restricted rats are housed with access to running wheels. This paradigm promotes symptoms of anorexia nervosa, including hypophagia, hyperactivity, and weight loss. Food-restricted rats received injections of a serotonin agonist, fenfluramine, or saline 1.5 h prior to their daily 2-h period of food access. A third saline-injected group was pair-fed to the fenfluramine group. Drug treatment and food restriction were terminated following a 25% weight loss. During food restriction, each group developed symptoms of activity-based anorexia. Although similar reductions in food intake were observed in fenfluramine-treated and pair-fed rats, only fenfluramine-treated rats displayed an accelerated rate of weight loss, relative to saline-treated rats. Thus, some other nonanorexic aspect of fenfluramine, perhaps its influence on metabolism, must underlie the accelerated rate of weight loss in this group. Our results suggest that increased activation of the serotonin system exacerbates the weight loss associated with activity-based anorexia.

  20. RANKL synthesized by articular chondrocytes contributes to juxta-articular bone loss in chronic arthritis

    PubMed Central

    2012-01-01

    Introduction The receptor activator nuclear factor-kappaB ligand (RANKL) diffuses from articular cartilage to subchondral bone. However, the role of chondrocyte-synthesized RANKL in rheumatoid arthritis-associated juxta-articular bone loss has not yet been explored. This study aimed to determine whether RANKL produced by chondrocytes induces osteoclastogenesis and juxta-articular bone loss associated with chronic arthritis. Methods Chronic antigen-induced arthritis (AIA) was induced in New Zealand (NZ) rabbits. Osteoarthritis (OA) and control groups were simultaneously studied. Dual X-ray absorptiometry of subchondral knee bone was performed before sacrifice. Histological analysis and protein expression of RANKL and osteoprotegerin (OPG) were evaluated in joint tissues. Co-cultures of human OA articular chondrocytes with peripheral blood mononuclear cells (PBMCs) from healthy donors were stimulated with macrophage-colony stimulating factor (M-CSF) and prostaglandin E2 (PGE2), then further stained with tartrate-resistant acid phosphatase. Results Subchondral bone loss was confirmed in AIA rabbits when compared with controls. The expression of RANKL, OPG and RANKL/OPG ratio in cartilage were increased in AIA compared to control animals, although this pattern was not seen in synovium. Furthermore, RANKL expression and RANKL/OPG ratio were inversely related to subchondral bone mineral density. RANKL expression was observed throughout all cartilage zones of rabbits and was specially increased in the calcified cartilage of AIA animals. Co-cultures demonstrated that PGE2-stimulated human chondrocytes, which produce RANKL, also induce osteoclasts differentiation from PBMCs. Conclusions Chondrocyte-synthesized RANKL may contribute to the development of juxta-articular osteoporosis associated with chronic arthritis, by enhancing osteoclastogenesis. These results point out a new mechanism of bone loss in patients with rheumatoid arthritis. PMID:22709525

  1. Cohesive finite element modeling of age-related toughness loss in human cortical bone.

    PubMed

    Ural, Ani; Vashishth, Deepak

    2006-01-01

    Although the age-related loss of bone quality has been implicated in bone fragility, a mechanistic understanding of the relationship is necessary for developing diagnostic and treatment modalities in the elderly population at risk of fracture. In this study, a finite element based cohesive zone model is developed and applied to human cortical bone in order to capture the experimentally shown rising crack growth behavior and age-related loss of bone toughness. The cohesive model developed here is based on a traction-crack opening displacement relationship representing the fracture processes in the vicinity of a propagating crack. The traction-displacement curve, defining the cohesive model, is composed of ascending and descending branches that incorporate material softening and nonlinearity. The results obtained indicate that, in contrast to initiation toughness, the finite element simulations of crack growth in compact tension (CT) specimens successfully capture the rising R-curve (propagation toughness) behavior and the age-related loss of bone toughness. In close correspondence with the experimentally observed decrease of 14-15% per decade, the finite element simulation results show a decrease of 13% in the R-curve slope per decade. The success of the simulations is a result of the ability of cohesive models to capture and predict the parameters related to bone fracture by representing the physical processes occurring in the vicinity of a propagating crack. These results illustrate that fracture mechanisms in the process zone control bone toughness and any modification to these would cause age-related toughness loss.

  2. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery

    PubMed Central

    Mei, Feng; Lehmann-Horn, Klaus; Shen, Yun-An A; Rankin, Kelsey A; Stebbins, Karin J; Lorrain, Daniel S; Pekarek, Kara; A Sagan, Sharon; Xiao, Lan; Teuscher, Cory; von Büdingen, H-Christian; Wess, Jürgen; Lawrence, J Josh; Green, Ari J; Fancy, Stephen PJ; Zamvil, Scott S; Chan, Jonah R

    2016-01-01

    Demyelination in MS disrupts nerve signals and contributes to axon degeneration. While remyelination promises to restore lost function, it remains unclear whether remyelination will prevent axonal loss. Inflammatory demyelination is accompanied by significant neuronal loss in the experimental autoimmune encephalomyelitis (EAE) mouse model and evidence for remyelination in this model is complicated by ongoing inflammation, degeneration and possible remyelination. Demonstrating the functional significance of remyelination necessitates selectively altering the timing of remyelination relative to inflammation and degeneration. We demonstrate accelerated remyelination after EAE induction by direct lineage analysis and hypothesize that newly formed myelin remains stable at the height of inflammation due in part to the absence of MOG expression in immature myelin. Oligodendroglial-specific genetic ablation of the M1 muscarinic receptor, a potent negative regulator of oligodendrocyte differentiation and myelination, results in accelerated remyelination, preventing axonal loss and improving functional recovery. Together our findings demonstrate that accelerated remyelination supports axonal integrity and neuronal function after inflammatory demyelination. DOI: http://dx.doi.org/10.7554/eLife.18246.001 PMID:27671734

  3. Sustained mitogen-activated protein kinase activation with Aggregatibacter actinomycetemcomitans causes inflammatory bone loss.

    PubMed

    Dunmyer, J; Herbert, B; Li, Q; Zinna, R; Martin, K; Yu, H; Kirkwood, K L

    2012-10-01

    Aggregatibacter actinomycetemcomitans is a gram-negative facultative capnophile involved in pathogenesis of aggressive forms of periodontal disease. In the present study, we interrogated the ability of A. actinomycetemcomitans to stimulate innate immune signaling and cytokine production and established that A. actinomycetemcomitans causes bone loss in a novel rat calvarial model. In vitro studies indicated that A. actinomycetemcomitans stimulated considerable production of soluble cytokines, tumor necrosis factor-α, interleukin-6 and interleukin-10 in both primary bone marrow-derived macrophages and NR8383 macrophages. Immunoblot analysis indicated that A. actinomycetemcomitans exhibits sustained activation of all major mitogen-activated protein kinase (MAPK) pathways, as well as the negative regulator of MAPK signaling, MAPK phosphatase-1 (MKP-1), for at least 8 h. In a rat calvarial model of inflammatory bone loss, high and low doses of formalin-fixed A. actinomycetemcomitans were microinjected into the supraperiosteal calvarial space for 1-2 weeks. Histological staining and micro-computed tomography of rat calvariae revealed a significant increase of inflammatory and fibroblast infiltrate and increased bone resorption as measured by total lacunar pit formation. From these data, we provide new evidence that fixed whole cell A. actinomycetemcomitans stimulation elicits a pro-inflammatory host response through sustained MAPK signaling, leading to enhanced bone resorption within the rat calvarial bone.

  4. Prevention of bone loss in ovariectomized rats: the effect of Salvia miltiorrhiza extracts.

    PubMed

    Chae, H J; Chae, S W; Yun, D H; Keum, K S; Yoo, S K; Kim, H R

    2004-02-01

    The preventive effect of Salvia miltiorrhiza extracts (SMEs) on the progress of bone loss induced by ovariectomy (OVX) was studied in rats. We measured body weight and bone histomorphometry in sham, OVX or SMEs-administered OVX rats. From light microscopic analyses, a porous or erosive appearances were observed on the surface of trabecular bone of tibia in OVX rats, whereas those of the same bone in sham rats and in SMEs-administered rats were composed of fine particles. The trabecular bone area and trabecular thickness in OVX rats decreased by 50% from those in sham rats, these decreases were completely inhibited by administration of SMEs for 7 weeks. In this study, the mechanical strength in femur neck was significantly enhanced by the treatment of SMEs for 7 weeks. In OVX rats, free T3 was normal in all cases, whereas free T4 was significantly increased. Although there was no difference between OVX and SMEs-administered rats in T3 level, we have found significant difference between them in T4 level. These results strongly suggest that SMEs are effective in preventing the development of bone loss induced by OVX in rats.

  5. Prevention of Bone Loss in a Model of Postmenopausal Osteoporosis through Adrenomedullin Inhibition

    PubMed Central

    Martínez-Herrero, Sonia; Larrayoz, Ignacio M.; Ochoa-Callejero, Laura; Fernández, Luis J.; Allueva, Alexis; Ochoa, Ignacio; Martínez, Alfredo

    2016-01-01

    Despite recent advances in the understanding and treatment options for osteoporosis, this condition remains a serious public health issue. Adrenomedullin (AM) is a regulatory peptide with reported activity on bone remodeling. To better understand this relationship we built an inducible knockout for AM. An outstanding feature of knockout mice is their heavier weight due, in part, to the presence of denser bones. The femur of knockout animals was denser, had more trabeculae, and a thicker growth plate than wild type littermates. The endocrine influence of AM on bone seems to be elicited through an indirect mechanism involving, at least, the regulation of insulin, glucose, ghrelin, and calcitonin gene-related peptide (CGRP). To confirm the data we performed a pharmacological approach using the AM inhibitor 16311 in a mouse model of osteoporosis. Ovariectomized females showed significant bone mass loss, whereas ovariectomized females treated with 16311 had similar bone density to sham operated females. In conclusion, we propose the use of AM inhibitors for the treatment of osteoporosis and other conditions leading to the loss of bone mass. PMID:27445864

  6. Dried plum diet protects from bone loss caused by ionizing radiation

    SciTech Connect

    Schreurs, A. -S.; Shirazi-Fard, Y.; Shahnazari, M.; Alwood, J. S.; Truong, T. A.; Tahimic, C. G. T.; Limoli, C. L.; Turner, N. D.; Halloran, B.; Globus, R. K.

    2016-02-11

    Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or antiinflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss. Dried plum was most effective in reducing the expression of genes related to bone resorption (Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Furthermore, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth.

  7. Dried plum diet protects from bone loss caused by ionizing radiation

    DOE PAGES

    Schreurs, A. -S.; Shirazi-Fard, Y.; Shahnazari, M.; ...

    2016-02-11

    Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or antiinflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss.more » Dried plum was most effective in reducing the expression of genes related to bone resorption (Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Furthermore, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth.« less

  8. Dried plum diet protects from bone loss caused by ionizing radiation.

    PubMed

    Schreurs, A-S; Shirazi-Fard, Y; Shahnazari, M; Alwood, J S; Truong, T A; Tahimic, C G T; Limoli, C L; Turner, N D; Halloran, B; Globus, R K

    2016-02-11

    Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or anti-inflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss. Dried plum was most effective in reducing the expression of genes related to bone resorption (Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Thus, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth.

  9. Increased EZH2 and decreased osteoblastogenesis during local irradiation-induced bone loss in rats

    PubMed Central

    Guo, Changjun; Li, Changwei; Yang, Kai; Kang, Hui; Xu, Xiaoya; Xu, Xiangyang; Deng, Lianfu

    2016-01-01

    Radiation therapy is commonly used to treat cancer patients but exhibits adverse effects, including insufficiency fractures and bone loss. Epigenetic regulation plays an important role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Here, we reported local bone changes after single-dose exposure to 137CS irradiation in rats. Femur bone mineral density (BMD) and trabecular bone volume in the tibia were significantly decreased at 12 weeks after irradiation. Micro-CT results showed that tBMD, Tb.h and Tb.N were also significantly reduced at 12 weeks after irradiation exposure. ALP-positive OB.S/BS was decreased by 42.3% at 2 weeks after irradiation and was decreased by 50.8% at 12 weeks after exposure. In contrast to the decreased expression of Runx2 and BMP2, we found EZH2 expression was significantly increased at 2 weeks after single-dose 137CS irradiation in BMSCs. Together, our results demonstrated that single-dose 137CS irradiation induces BMD loss and the deterioration of bone microarchitecture in the rat skeleton. Furthermore, EZH2 expression increased and osteoblastogenesis decreased after irradiation. The underlying mechanisms warrant further investigation. PMID:27499068

  10. Dried plum diet protects from bone loss caused by ionizing radiation

    PubMed Central

    Schreurs, A.-S.; Shirazi-Fard, Y.; Shahnazari, M.; Alwood, J. S.; Truong, T. A.; Tahimic, C. G. T.; Limoli, C. L.; Turner, N. D.; Halloran, B.; Globus, R. K.

    2016-01-01

    Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or anti-inflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss. Dried plum was most effective in reducing the expression of genes related to bone resorption (Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Thus, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth. PMID:26867002

  11. A hypomagnetic field aggravates bone loss induced by hindlimb unloading in rat femurs.

    PubMed

    Jia, Bin; Xie, Li; Zheng, Qi; Yang, Peng-fei; Zhang, Wei-ju; Ding, Chong; Qian, Ai-rong; Shang, Peng

    2014-01-01

    A hypomagnetic field is an extremely weak magnetic field--it is considerably weaker than the geomagnetic field. In deep-space exploration missions, such as those involving extended stays on the moon and interplanetary travel, astronauts will experience abnormal space environments involving hypomagnetic fields and microgravity. It is known that microgravity in space causes bone loss, which results in decreased bone mineral density. However, it is unclear whether hypomagnetic fields affect the skeletal system. In the present study, we aimed to investigate the complex effects of a hypomagnetic field and microgravity on bone loss. To study the effects of hypomagnetic fields on the femoral characteristics of rats in simulated weightlessness, we established a rat model of hindlimb unloading that was exposed to a hypomagnetic field. We used a geomagnetic field-shielding chamber to generate a hypomagnetic field of <300 nT. The results show that hypomagnetic fields can exacerbate bone mineral density loss and alter femoral biomechanical characteristics in hindlimb-unloaded rats. The underlying mechanism might involve changes in biological rhythms and the concentrations of trace elements due to the hypomagnetic field, which would result in the generation of oxidative stress responses in the rat. Excessive levels of reactive oxygen species would stimulate osteoblasts to secrete receptor activator of nuclear factor-κB ligand and promote the maturation and activation of osteoclasts and thus eventually cause bone resorption.

  12. A Hypomagnetic Field Aggravates Bone Loss Induced by Hindlimb Unloading in Rat Femurs

    PubMed Central

    Jia, Bin; Xie, Li; Zheng, Qi; Yang, Peng-fei; Zhang, Wei-ju; Ding, Chong; Qian, Ai-rong; Shang, Peng

    2014-01-01

    A hypomagnetic field is an extremely weak magnetic field—it is considerably weaker than the geomagnetic field. In deep-space exploration missions, such as those involving extended stays on the moon and interplanetary travel, astronauts will experience abnormal space environments involving hypomagnetic fields and microgravity. It is known that microgravity in space causes bone loss, which results in decreased bone mineral density. However, it is unclear whether hypomagnetic fields affect the skeletal system. In the present study, we aimed to investigate the complex effects of a hypomagnetic field and microgravity on bone loss. To study the effects of hypomagnetic fields on the femoral characteristics of rats in simulated weightlessness, we established a rat model of hindlimb unloading that was exposed to a hypomagnetic field. We used a geomagnetic field-shielding chamber to generate a hypomagnetic field of <300 nT. The results show that hypomagnetic fields can exacerbate bone mineral density loss and alter femoral biomechanical characteristics in hindlimb-unloaded rats. The underlying mechanism might involve changes in biological rhythms and the concentrations of trace elements due to the hypomagnetic field, which would result in the generation of oxidative stress responses in the rat. Excessive levels of reactive oxygen species would stimulate osteoblasts to secrete receptor activator of nuclear factor-κB ligand and promote the maturation and activation of osteoclasts and thus eventually cause bone resorption. PMID:25157571

  13. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.

    PubMed

    Makowski, Alexander J; Uppuganti, Sasidhar; Wadeer, Sandra A; Whitehead, Jack M; Rowland, Barbara J; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S

    2014-05-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness.

  14. The Loss of Activating Transcription Factor 4 (ATF4) Reduces Bone Toughness and Fracture Toughness

    PubMed Central

    Makowski, Alexander J.; Uppuganti, Sasidhar; Waader, Sandra A.; Whitehead, Jack M.; Rowland, Barbara J.; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S.

    2014-01-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of the seimportant factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4−/− littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4−/− mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4−/− mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1 Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also maintaining bone toughness and fracture toughness. PMID:24509412

  15. Novel Receptor-Based Countermeasures to Microgravity-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    OMalley, Bert W.

    1999-01-01

    The biological actions mediated by the estrogen receptor (ER), vitamin D receptor (VDR) and Ca(sup 2+) (sub o) -sensing receptor (CaR) play key roles in the normal control of bone growth and skeletal turnover that is necessary for skeletal health. These receptors act by controlling the differentiation and/or function of osteoblasts and osteoclasts, and other cell types within the bone and bone marrow microenvironment. The appropriate use of selective ER modulators (SERMS) which target bone, vitamin D analogs that favor bone formation relative to resorption, and CaR agonists may both stimulate osteoblastogenesis and inhibit osteoclastogenesis and the function of mature osteoclasts, should make it possible to prevent the reduction in bone formation and increase in bone resorption that normally contribute to the bone loss induced by weightlessness. Indeed, there may be synergistic interactions among these receptors that enhance the actions of any one used alone. Therefore, we proposed to: 1) assess the in vitro ability of novel ER, VDR and CaR agonists, alone or in combination, to modulate osteoblastogenesis and mature osteoblast function under conditions of 1g and simulated microgravity; 2) assess the in vitro ability of novel ER, VDR and CaR agonists, alone or in combination, to modulate osteoclastogenesis and bone resorption under conditions of lg and simulated microgravity; and 3) carry out baseline studies on the skeletal localization of the CaR in normal rat bone as well as the in vivo actions of our novel ER- and VDR-based therapeutics in the rat in preparation for their use, alone or in combination, in well-established ground-based models of microgravity and eventually in space flight.

  16. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

    PubMed

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2013-11-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1(f/f);Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous outgrowths developed on the lateral side of mutant growth plates over time that resembled exostotic characteristic of children with Hereditary Multiple Exostoses, a syndrome caused by Ext mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss

  17. Estimation of Age Using Alveolar Bone Loss: Forensic and Anthropological Applications.

    PubMed

    Ruquet, Michel; Saliba-Serre, Bérengère; Tardivo, Delphine; Foti, Bruno

    2015-09-01

    The objective of this study was to utilize a new odontological methodological approach based on radiographic for age estimation. The study was comprised of 397 participants aged between 9 and 87 years. A clinical examination and a radiographic assessment of alveolar bone loss were performed. Direct measures of alveolar bone level were recorded using CT scans. A medical examination report was attached to the investigation file. Because of the link between alveolar bone loss and age, a model was proposed to enable simple, reliable, and quick age estimation. This work added new arguments for age estimation. This study aimed to develop a simple, standardized, and reproducible technique for age estimation of adults of actual populations in forensic medicine and ancient populations in funeral anthropology.

  18. Loss of rotator cuff tendon-to-bone interface pressure after reattachment using a suture anchor.

    PubMed

    Brassart, Nicolas; Sanghavi, Sanjay; Hansen, Ulrich N; Emery, Roger J; Amis, Andrew A

    2008-01-01

    The purpose of this study was to examine the tendon-to-bone interface pressure, contact area, and force after reattaching a tendon to bone by use of a suture and suture anchor. Repairs were made in 8 ovine shoulders in vitro, by use of 3 suture types in each: Ethibond, polydioxanone, or Orthocord. A Tekscan pressure sensor was placed between the tendon and bone and monitored for 1 hour after the repair. The principal finding was a significant loss of approximately 60% of the contact parameters immediately after the suture was tied, followed by further significant loss over the next hour to a mean of only 14% of the initial readings. We concluded that pressure measurement systems that only record the initial maximum pressure would yield overly optimistic results for the actual repair pressure after the repair is completed. The Tekscan system, however, allowed us to monitor pressure reductions that occurred both during and after the repair.

  19. The Bony Bankart Lesion: How to Measure the Glenoid Bone Loss

    PubMed Central

    Skupiński, Jarosław; Piechota, Małgorzata Zofia; Wawrzynek, Wojciech; Maczuch, Jarosław; Babińska, Anna

    2017-01-01

    Summary An osseous Bankart lesion is commonly seen in patients with an anterior shoulder dislocation. It is defined as a detachment of the anteroinferior labrum associated with a glenoid rim fracture. Radiological studies are crucial not only for detecting glenoid bone defects but also for measuring the amount of bone loss. The precise quantification of the bony defect is crucial for the therapeutic desicion-making and clinical outcomes. Although we know that major glenoid bone loss requires surgical intervention, none of the studies performed so far answered the question what size of the defect should be an indication for open surgery procedures. Moreover, there is still no consensus on the exact percentage of glenoid loss that results in a higher risk of re-dislocations. In our opinion, there is a strong need for a consensus on universally accepted measuring techniques of the glenoid defect as well as on algorithms with validated glenoid bone loss threshold values for therapeutic decision-making. In this study, we review the techniques described so far in the literature and try to assess if any of these techniques should be treated as a leading method of detecting and quantifying osseous glenoid lesions. PMID:28243338

  20. Evaluation of Implant Collar Surfaces for Marginal Bone Loss: A Systematic Review and Meta-Analysis

    PubMed Central

    2016-01-01

    Background. It is important to understand the influence of different collar designs on peri-implant marginal bone loss, especially in the critical area. Objectives. The purpose of the present systematic review and meta-analysis was to compare dental implants with different collar surfaces, evaluating marginal bone loss and survival rates of implants. Methods. Eligibility criteria included clinical human studies, randomized controlled trials, and prospective and retrospective studies, which evaluated dental implants with different collar surface in the same study. Results. Twelve articles were included, with a total of 492 machined, 319 rough-surfaced, and 352 rough-surfaced microthreaded neck implants. There was less marginal bone loss at implants with rough-surfaced and rough-surfaced microthreaded neck than at machined-neck implants (difference in means: 0.321, 95% CI: 0.149 to 0.493; p < 0.01). Conclusion. Rough and rough-surfaced microthreaded implants are considered a predictable treatment for preserving early marginal bone loss. PMID:27493957

  1. Bone Loss in Obesity and Obstructive Sleep Apnea: A Review of Literature

    PubMed Central

    Chakhtoura, Marlene; Nasrallah, Mona; Chami, Hassan

    2015-01-01

    Introduction: Obstructive sleep apnea (OSA) is a common sleep-related respiratory disorder. It is associated with many endocrinopathies including hypogonadotropic hypogonadism, hypercortisolism, and glucose intolerance that may lead to bone loss with secondary osteoporosis. Methods: We report the case of a 41-year-old man who presented with bilateral 9th rib fractures and was found to have obstructive sleep apnea and osteoporosis. We also present a literature review on this topic. Results: OSA can lead to bone loss through various mechanisms. Some are shared with obesity, including hypogonadism, altered adrenergic tone, inflammation, oxidative stress, vitamin D deficiency and diabetes mellitus; others are specific to OSA, such as hypoxia and altered glucocorticoids regulation. Conclusion: There are no guidelines on screening for osteoporosis in OSA. Further research is needed to assess the incidence of bone loss and fractures in OSA. Citation: Chakhtoura M, Nasrallah M, Chami H. Bone loss in obesity and obstructive sleep apnea: a review of literature. J Clin Sleep Med 2015;11(5):575–580. PMID:25580607

  2. Suppression of NADPH oxidases prevents chronic ethanol-induced bone loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the molecular mechanisms through which chronic excessive alcohol consumption induces osteopenia and osteoporosis are largely unknown, potential treatments for prevention of alcohol-induced bone loss remain unclear. We have previously demonstrated that, chronic ethanol (EtOH) treatment leads to...

  3. Model of the mechanism of Ca loss by bones under microgravity and earth conditions.

    PubMed

    Suvorova, Elena I; Buffat, Philippe A

    2002-01-01

    A comparative characterization of crystal structure, morphology, sizes, and orientation in Ca phosphate precipitation from aqueous solutions, the mineral phase in bones, and mineral deposits on cardiac valves has been performed by high-resolution transmission electron microscopy to model possible mechanisms of Ca loss by bones. Physiological changes occurring in organisms can lead to deep perturbations of the natural calcium phosphate supersaturation and its local distribution, which in turn influences the phase composition, morphology, and organization of the mineral phase. Formation of crystals with larger size or of two distinct phases instead of the single hydroxyapatite one can result in the deterioration of the Ca balance in bone and tissue destruction as well as the possible misorientation (or spread of orientation) between HAP crystals newly formed in the bone.

  4. Feeding Blueberry Diets in Early Life Prevent Senescence of Osteoblasts and Bone Loss in Ovariectomized Adult Female Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Appropriate nutrition during early development is essential for optimal bone mass accretion; however, linkage between early nutrition, childhood bone mass and prevention of bone loss later in life has not been extensively studied. In this report, we show that feeding a high quality diet supplemented...

  5. Feeding blueberry diets during early development is sufficient to prevent senescence of osteoblasts and bone loss in adulthood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Appropriate nutrition during early development is essential for optimal bone mass accretion; however, linkage between early nutrition, childhood bone mass and prevention of bone loss later in life has not been extensively studied. In this report, we show that feeding a high quality diet supplemented...

  6. Oolong tea drinking could help prevent bone loss in postmenopausal Han Chinese women.

    PubMed

    Wang, Guibin; Liu, Guibin; Liu, Liu Hongmei; Zhao, Huanli; Zhang, Fengfang; Li, Shufa; Chen, Yang; Zhang, Zhenchun

    2014-11-01

    The aim of this study was to analyze the relationship between oolong tea drinking and bone mineral density in postmenopausal Han Chinese women, while living and diet habits, fertility, disease elements and other baseline conditions were controlled. One group included 124 cases who routinely drank oolong tea, and the other included 556 who did not drink tea. Data were collected on participant age, lifestyle habits, fertility condition, disease elements, and lumbar, and hip bone densities. It was found that the bone densities of the greater trochanteric bone in tea drinkers were higher (0.793 ± 0.119 kg/cm(2)) than that in non-tea drinkers (0.759 ± 0.116 kg/cm(2), F = 6.248, p = 0.013). Similarly, the bone density of Ward's triangular bone in tea drinkers was higher (0.668 ± 0.133 kg/cm(2)) than that in non-tea drinkers (0.637 ± 0.135 kg/cm(2), F = 6.152, p = 0.013). Oolong tea drinking could help prevent bone loss in postmenopausal Chinese women.

  7. Treatment with resveratrol attenuates sublesional bone loss in spinal cord-injured rats

    PubMed Central

    Wang, Hua-Dong; Shi, Ya-Min; Li, Li; Guo, Ji-Dong; Zhang, Yu-Peng; Hou, Shu-Xun

    2013-01-01

    BACKGROUND AND PURPOSE Sublesional osteoporosis predisposes individuals with spinal cord injury (SCI) to an increased risk of low-trauma fracture. The aim of the present work was to investigate the effect of treatment with resveratrol (RES) on sublesional bone loss in spinal cord-injured rats. EXPERIMENTAL APPROACH Complete SCI was generated by surgical transaction of the cord at the T10–12 level. Treatment with RES (400 mg·kg−1 body mass per day−1, intragastrically) was initiated 12 h after the surgery for 10 days. Then, blood was collected and femurs and tibiae were removed for evaluation of the effects of RES on bone tissue after SCI. KEY RESULTS Treatment of SCI rats with RES prevented the reduction of bone mass including bone mineral content and bone mineral density in tibiae, preserved bone structure including trabecular bone volume fraction, trabecular number, and trabecular thickness in tibiae, and preserved mechanical strength including ultimate load, stiffness, and energy in femurs. Treatment of SCI rats with RES enhanced femoral total sulfhydryl content, reduced femoral malondialdehyde and IL-6 mRNA levels. Treatment of SCI rats with RES suppressed the up-regulation of mRNA levels of PPARγ, adipose-specific fatty-acid-binding protein and lipoprotein lipase, and restored mRNA levels of Wnt1, low-density lipoprotein-related protein 5, Axin2, ctnnb1, insulin-like growth factor 1 (IGF-1) and receptor for IGF-1 in femurs and tibiae. CONCLUSIONS AND IMPLICATIONS Treatment with RES attenuated sublesional bone loss in spinal-cord-injured rats, associated with abating oxidative stress, attenuating inflammation, depressing PPARγ signalling, and restoring Wnt/β-catenin and IGF-1 signalling. PMID:23848300

  8. Organic Dust, Lipopolysaccharide, and Peptidoglycan Inhalant Exposures Result in Bone Loss/Disease

    PubMed Central

    Dusad, Anand; Thiele, Geoff M.; Klassen, Lynell W.; Gleason, Angela M.; Bauer, Christopher; Mikuls, Ted R.; Duryee, Michael J.; West, William W.; Romberger, Debra J.

    2013-01-01

    Skeletal health consequences associated with chronic inflammatory respiratory disease, and particularly chronic obstructive pulmonary disease (COPD), contribute to overall disease morbidity. Agricultural environmental exposures induce significant airway diseases, including COPD. However, animal models to understand inhalant exposure–induced lung injury and bone disease have not been described. Using micro–computed tomography (micro-CT) imaging technology and histology, bone quantity and quality measurements were investigated in mice after repetitive intranasal inhalation exposures to complex organic dust extracts (ODEs) from swine confinement facilities. Comparison experiments with LPS and peptidoglycan (PGN) alone were also performed. After 3 weeks of repetitive ODE inhalation exposure, significant loss of bone mineral density and trabecular bone volume fraction was evident, with altered morphological microarchitecture changes in the trabecular bone, compared with saline-treated control animals. Torsional resistance was also significantly reduced. Compared with saline treatment, ODE-treated mice demonstrated decreased collagen and proteoglycan content in their articular cartilage, according to histopathology. Significant bone deterioration was also evident after repetitive intranasal inhalant treatment with LPS and PGN. These findings were not secondary to animal distress, and not entirely dependent on the degree of induced lung parenchymal inflammation. Repetitive LPS treatment demonstrated the most pronounced changes in bone parameters, and PGN treatment resulted in the greatest lung parenchymal inflammatory changes. Collectively, repetitive inhalation exposures to noninfectious inflammatory agents such as complex organic dust, LPS, and PGN resulted in bone loss. This animal model may contribute to efforts toward understanding the mechanisms and evaluating the therapeutics associated with adverse skeletal health consequences after subchronic airway injury

  9. Effect of weight loss on bone health in overweight/obese postmenopausal breast cancer survivors

    PubMed Central

    Toriola, Adetunji T.; Liu, Jingxia; Ganz, Patricia A.; Colditz, Graham A.; Yang, Lin; Izadi, Sonya; Naughton, Michael J.; Schwartz, Anna L.; Wolin, Kathleen Y.

    2015-01-01

    Purpose Current guidelines recommend weight loss in obese cancer survivors. Weight loss, however, has adverse effects on bone health in obese individuals without cancer but this has not been evaluated in breast cancer survivors. We investigated the associations of intentional weight loss with bone mineral density (BMD) and bone turn over markers in overweight/obese postmenopausal breast cancer survivors. Methods Participants were overweight/obese breast cancer survivors (N=81) with stage I, II or IIIA disease enrolled in the St. Louis site of a multi-site Exercise and Nutrition to Enhance Recovery and Good health for You (ENERGY) study; a randomized controlled clinical trial designed to achieve a sustained ≥7% loss in body weight at 2 years. Weight loss was achieved through dietary modification with the addition of physical activity. Generalized estimating equations were used to assess differences in mean values between follow-up and baseline. Results Mean weight decreased by 3% and 2.3% between baseline and 6-month follow-up, and 12-month follow-up, respectively. There were decreases in osteocalcin (10.6%, p-value<0.001), PINP (14.5%, p-value<0.001), NTx (19.2% p-value<0.001), and RANK (48.5%, p-value<0.001), but not BALP and CTX-1 levels between baseline and 12-month follow-up. No significant changes occurred in mean T-scores, pelvis and lumbar spine BMD between baseline and 12-month follow-up. Conclusion A 2.3% weight loss over 12 months among overweight/obese women with early stage breast cancer does not appear to have deleterious effect on bone health, and might even have beneficial effect. These findings warrant confirmation, particularly among breast cancer survivors with a larger magnitude of weight loss. PMID:26175059

  10. Severity and pattern of bone mineral loss in endocrine causes of osteoporosis as compared to age-related bone mineral loss

    PubMed Central

    Dutta, D; Dharmshaktu, P; Aggarwal, A; Gaurav, K; Bansal, R; Devru, N; Garga, UC; Kulshreshtha, B

    2016-01-01

    Background: Data are scant on bone health in endocrinopathies from India. This study evaluated bone mineral density (BMD) loss in endocrinopathies [Graves’ disease (GD), type 1 diabetes mellitus (T1DM), hypogonadotrophic hypogonadism (HypoH), hypergonadotropic hypogonadism (HyperH), hypopituitarism, primary hyperparathyroidism (PHPT)] as compared to age-related BMD loss [postmenopausal osteoporosis (PMO), andropause]. Materials and Methods: Retrospective audit of records of patients >30 years age attending a bone clinic from August 2014 to January 2016 was done. Results: Five-hundred and seven records were screened, out of which 420 (females:male = 294:126) were analyzed. A significantly higher occurrence of vitamin D deficiency and insufficiency was noted in T1DM (89.09%), HyperH (85%), and HypoH (79.59%) compared to age-related BMD loss (60.02%; P < 0.001). The occurrence of osteoporosis among females and males was 55.41% and 53.97%, respectively, and of osteopenia among females and males was 28.91% and 32.54%, respectively. In females, osteoporosis was significantly higher in T1DM (92%), HyperH (85%), and HypoH (59.26%) compared to PMO (49.34%; P < 0.001). Z score at LS, TF, NOF, and greater trochanter (GT) was consistently lowest in T1DM women. Among men, osteoporosis was significantly higher in T1DM (76.67%) and HypoH (54.55%) compared to andropause (45.45%; P = 0.001). Z score at LS, TF, NOF, GT, and TR was consistently lowest in T1DM men. In GD, the burden of osteoporosis was similar to PMO and andropause. BMD difference among the study groups was not significantly different after adjusting for body mass index (BMI) and vitamin D. Conclusion: Low bone mass is extremely common in endocrinopathies, warranting routine screening and intervention. Concomitant vitamin D deficiency compounds the problem. Calcium and vitamin D supplementations may improve bone health in this setting. PMID:27241810

  11. Interdependence of muscle atrophy and bone loss induced by mechanical unloading.

    PubMed

    Lloyd, Shane A; Lang, Charles H; Zhang, Yue; Paul, Emmanuel M; Laufenberg, Lacee J; Lewis, Gregory S; Donahue, Henry J

    2014-01-01

    Mechanical unloading induces muscle atrophy and bone loss; however, the time course and interdependence of these effects is not well defined. We subjected 4-month-old C57BL/6J mice to hindlimb suspension (HLS) for 3 weeks, euthanizing 12 to 16 mice on day (D) 0, 7, 14, and 21. Lean mass was 7% to 9% lower for HLS versus control from D7-21. Absolute mass of the gastrocnemius (gastroc) decreased 8% by D7, and was maximally decreased 16% by D14 of HLS. mRNA levels of Atrogin-1 in the gastroc and quadriceps (quad) were increased 99% and 122%, respectively, at D7 of HLS. Similar increases in MuRF1 mRNA levels occurred at D7. Both atrogenes returned to baseline by D14. Protein synthesis in gastroc and quad was reduced 30% from D7-14 of HLS, returning to baseline by D21. HLS decreased phosphorylation of SK61, a substrate of mammalian target of rapamycin (mTOR), on D7-21, whereas 4E-BP1 was not lower until D21. Cortical thickness of the femur and tibia did not decrease until D14 of HLS. Cortical bone of controls did not change over time. HLS mice had lower distal femur bone volume fraction (-22%) by D14; however, the effects of HLS were eliminated by D21 because of the decline of trabecular bone mass of controls. Femur strength was decreased approximately 13% by D14 of HLS, with no change in tibia mechanical properties at any time point. This investigation reveals that muscle atrophy precedes bone loss during unloading and may contribute to subsequent skeletal deficits. Countermeasures that preserve muscle may reduce bone loss induced by mechanical unloading or prolonged disuse. Trabecular bone loss with age, similar to that which occurs in mature astronauts, is superimposed on unloading. Preservation of muscle mass, cortical structure, and bone strength during the experiment suggests muscle may have a greater effect on cortical than trabecular bone.

  12. Arctic Ground Squirrels Limit Bone Loss during the Prolonged Physical Inactivity Associated with Hibernation.

    PubMed

    Wojda, Samantha J; Gridley, Richard A; McGee-Lawrence, Meghan E; Drummer, Thomas D; Hess, Ann; Kohl, Franziska; Barnes, Brian M; Donahue, Seth W

    2016-01-01

    Prolonged disuse (e.g., physical inactivity) typically results in increased bone porosity, decreased mineral density, and decreased bone strength, leading to increased fracture risk in many mammals. However, bears, marmots, and two species of ground squirrels have been shown to preserve macrostructural bone properties and bone strength during long seasons of hibernation while they remain mostly inactive. Some small hibernators (e.g., 13-lined ground squirrels) show microstructural bone loss (i.e., osteocytic osteolysis) during hibernation, which is not seen in larger hibernators (e.g., bears and marmots). Arctic ground squirrels (Urocitellus parryii) are intermediate in size between 13-lined ground squirrels and marmots and are perhaps the most extreme rodent hibernator, hibernating for up to 8 mo annually with body temperatures below freezing. The goal of this study was to quantify the effects of hibernation and inactivity on cortical and trabecular bone properties in arctic ground squirrels. Cortical bone geometrical properties (i.e., thickness, cross-sectional area, and moment of inertia) at the midshaft of the femur were not different in animals sampled over the hibernation and active seasons. Femoral ultimate stress tended to be lower in hibernators than in summer animals, but toughness was not affected by hibernation. The area of osteocyte lacunae was not different between active and hibernating animals. There was an increase in osteocytic lacunar porosity in the hibernation group due to increased lacunar density. Trabecular bone volume fraction in the proximal tibia was unexpectedly greater in the hibernation group than in the active group. This study shows that, similar to other hibernators, arctic ground squirrels are able to preserve many bone properties during hibernation despite being physically inactive for up to 8 mo.

  13. Polycythemia is associated with bone loss and reduced osteoblast activity in mice

    PubMed Central

    Casu, C.; Yang, Z.; Crielaard, B.; Shim, J. H.; Rivella, S.; Vogiatzi, M. G.

    2017-01-01

    Summary Increased fragility has been described in humans with polycythemia vera (PV). Herein, we describe an osteoporotic phenotype associated with decreased osteoblast activity in a mouse model of PV and another mouse of polycythemia and elevated circulating erythropoietin (EPO). Our results are important for patients with PV or those treated with recombinant EPO (rEPO). Introduction PV and other myeloproliferative syndromes have been recently associated with an increased risk for fractures. However, the presence of osteoporosis in these patients has not been well documented. EPO, a hormone primarily known to stimulate erythropoiesis, has been shown recently to regulate bone homeostasis in mice. The aim of this study was to examine the bone phenotype of a mouse model of PV and compare it to that of animals with polycythemia caused by elevated circulating EPO. Methods Bone mass and remodeling were evaluated by micro-computed tomography and histomorphometry. The JAK2V617F knock-in mouse, a model of human PV, manifests polycythemia and low circulating EPO levels. Results from this mouse were compared to wild type (wt) controls and the tg6 transgenic mouse that shows polycythemia caused by increased constitutive expression of EPO. Results Compared to wt, both JAK2V617F and tg6 mice had a decrease in trabecular bone mass. Tg6 mice showed an additional modest decrease in cortical thickness and cortical bone volume per tissue volume (P<0.01) suggesting a more severe bone phenotype than JAK2V617F. Decreased osteoblast numbers and bone formation along with normal osteoclast numbers and activity were found in both mice. Conclusions This study indicates that PV is associated with low bone mass and decreased osteoblast activity in mice. Our results support future studies of osteoporosis in affected humans. Polycythemia caused by chronically elevated circulating EPO also results in bone loss, and implications on patients treated with rEPO should be evaluated. PMID:26650379

  14. Dietary 2-oxoglutarate prevents bone loss caused by neonatal treatment with maximal dexamethasone dose.

    PubMed

    Dobrowolski, Piotr; Tomaszewska, Ewa; Muszyński, Siemowit; Blicharski, Tomasz; Pierzynowski, Stefan G

    2017-04-01

    Synthetic glucocorticoids (GCs) are widely used in the variety of dosages for treatment of premature infants with chronic lung disease, respiratory distress syndrome, allergies, asthma, and other inflammatory and autoimmune conditions. Yet, adverse effects such as glucocorticoid-induced osteoporosis and growth retardation are recognized. Conversely, 2-oxoglutarate (2-Ox), a precursor of glutamine, glutamate, and collagen amino acids, exerts protective effects on bone development. Our aim was to elucidate the effect of dietary administered 2-Ox on bone loss caused by neonatal treatment with clinically relevant maximal therapeutic dexamethasone (Dex) dose. Long bones of neonatal female piglets receiving Dex, Dex+2-Ox, or untreated were examined through measurements of mechanical properties, density, mineralization, geometry, histomorphometry, and histology. Selected hormones, bone turnover, and growth markers were also analyzed. Neonatal administration of clinically relevant maximal dose of Dex alone led to over 30% decrease in bone mass and the ultimate strength ( P < 0.001 for all). The length (13 and 7% for femur and humerus, respectively) and other geometrical parameters (13-45%) decreased compared to the control ( P < 0.001 for all). Dex impaired bone growth and caused hormonal imbalance. Dietary 2-Ox prevented Dex influence and vast majority of assessed bone parameters were restored almost to the control level. Piglets receiving 2-Ox had heavier, denser, and stronger bones; higher levels of growth hormone and osteocalcin concentration; and preserved microarchitecture of trabecular bone compared to the Dex group. 2-Ox administered postnatally had a potential to maintain bone structure of animals simultaneously treated with maximal therapeutic doses of Dex, which, in our opinion, may open up a new opportunity in developing combined treatment for children treated with GCs. Impact statement The present study has showed, for the first time, that dietary 2

  15. Current concepts in the management of recurrent anterior gleno-humeral joint instability with bone loss

    PubMed Central

    Ramhamadany, Eamon; Modi, Chetan S

    2016-01-01

    The management of recurrent anterior gleno-humeral joint instability is challenging in the presence of bone loss. It is often seen in young athletic patients and dislocations related to epileptic seizures and may involve glenoid bone deficiency, humeral bone deficiency or combined bipolar lesions. It is critical to accurately identify and assess the amount and position of bone loss in order to select the most appropriate treatment and reduce the risk of recurrent instability after surgery. The current literature suggests that coracoid and iliac crest bone block transfers are reliable for treating glenoid defects. The treatment of humeral defects is more controversial, however, although good early results have been reported after arthroscopic Remplissage for small defects. Larger humeral defects may require complex reconstruction or partial resurfacing. There is currently very limited evidence to support treatment strategies when dealing with bipolar lesions. The aim of this review is to summarise the current evidence regarding the best imaging modalities and treatment strategies in managing this complex problem relating particularly to contact athletes and dislocations related to epileptic seizures. PMID:27335809

  16. Selection of an appropriate animal model for study of bone loss in weightlessness

    NASA Technical Reports Server (NTRS)

    Wolinsky, I.

    1986-01-01

    Prolonged weightlessness in space flight results in a slow progressive demineralization of bone accompanied by an increased calcium output in the urine resulting in negative calcium balances. This possibly irreversible bone loss may constitute a serious limiting factor to long duration manned space flight. A number of preventative measures have been suggested, i.e., exercise during flight, dietary calcium supplements, use of specific prophylactic drugs. In order to facilitate research in these areas it is necessary to develop appropriate ground-based animal models that simulate the human condition of osteoporsis. An appropriate animal model would permit bone density studies, calcium balance studies, biochemical analyses, ground-based simulation models of weightlessness (bed rest, restraint, immobilization) and the planning of inflight experiments. Several animal models have been proposed in the biomedical research literature, but have inherent deficiencies. The purpose of this project was to evaluate models in the literature and determine which of these most closely simulates the phenomenon of bone loss in humans with regard to growth, bone remodeling, structural, chemical and mineralization similarities to human. This was accomplished by a comprehensive computer assisted literature search and report. Three animal models were examined closely for their relative suitability: the albino rat, monkey, and Beagle.

  17. Glucosamines Attenuate Bone Loss Due to Menopause by Regulating Osteoclast Function in Ovariectomized Mice.

    PubMed

    Asai, Hironobu; Nakatani, Sachie; Kato, Takuya; Shimizu, Tatsuo; Mano, Hiroshi; Kobata, Kenji; Wada, Masahiro

    2016-01-01

    The effect of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) on bone metabolism in ovariectomized (OVX) mice was studied. After 12 weeks of feeding with 0.2% GlcN and 0.2% GlcNAc, the femoral bone mineral density in OVX mice was significantly increased compared with that in OVX mice fed the control diet. Histomorphometric analysis of the tibia indicated that the rates of osteogenesis and bone resorption were reduced due to the GlcN diet. The erosion depth of osteoclasts on the tibia in GlcN- and GlcNAc-fed OVX mice was significantly lower than that in the control OVX mice. The number of tartrate-resistant acid phosphatase-positive osteoclasts induced from bone marrow stem cells isolated from GlcN-fed OVX mice was significantly lower than that from control OVX mice. A loss of uterine weight and higher serum calcium concentration in the GlcN- and GlcNAc-fed OVX mice were observed. The results suggest that the intake of GlcN suppresses bone loss by inhibiting osteoclast differentiation and activity in a nonestrogenic manner.

  18. Preventive Effects of Collagen Peptide from Deer Sinew on Bone Loss in Ovariectomized Rats

    PubMed Central

    Zhang, He; Dong, Ying; Qi, Bin; Liu, Li; Zhou, Guangxin; Bai, Xueyuan; Yang, Chunhui; Zhao, Daqing; Zhao, Yu

    2014-01-01

    Deer sinew (DS) has been used traditionally for various illnesses, and the major active constituent is collagen. In this study, we assessed the effects of collagen peptide from DS on bone loss in the ovariectomized rats. Wister female rats were randomly divided into six groups as follows: sham-operated (SHAM), ovariectomized control (OVX), OVX given 1.0 mg/kg/week nylestriol (OVX + N), OVX given 0.4 g/kg/day collagen peptide (OVX + H), OVX given 0.2 g/kg/day collagen peptide (OXV + M), and OVX given 0.1 g/kg/day collagen peptide (OXV + L), respectively. After 13 weeks of treatment, the rats were euthanized, and the effects of collagen peptide on body weight, uterine weight, bone mineral density (BMD), serum biochemical indicators, bone histomorphometry, and bone mechanics were observed. The data showed that BMD and concentration of serum hydroxyproline were significantly increased and the levels of serum calcium, phosphorus, and alkaline phosphatase were decreased. Besides, histomorphometric parameters and mechanical indicators were improved. However, collagen peptide of DS has no effect on estradiol level, body weight, and uterine weight. Therefore, these results suggest that the collagen peptide supplementation may also prevent and treat bone loss. PMID:25101135

  19. Infrared laser therapy after surgically assisted rapid palatal expansion to diminish pain and accelerate bone healing.

    PubMed

    Abreu, Marcelo Emir Requia; Viegas, Vinicius Nery; Pagnoncelli, Rogerio Miranda; de Lima, Eduardo Martinelli Santayama; Farret, Alessandro Marchiori; Kulczynski, Fernando Zugno; Farret, Marcel Marchiori

    2010-01-01

    The aim of this study was to illustrate how gallium arsenite aluminum diode laser (824 nm) irradiation can reduce postsurgical edema and discomfort and accelerate sutural osseous regeneration after surgically assisted rapid palatal expansion (SARPE). An adult patient with an 8-mm transverse maxillary discrepancy was treated with SARPE. Infrared laser therapy was started on the 7th postoperative day, with a total of eight sessions at intervals of 48 hours. The laser probe spot had a size of 0.2827 cm2 and was positioned in contact with the following (bilateral) points: infraorbital foramen, nasal alar, nasopalatine foramen, median palatal suture at the height of the molars, and transverse palatine suture distal to the second molars. The laser was run in continuous mode with a power of 100 mW and a fluency of 1.5 J/cm2 for 20 seconds at each point. Subsequently, an absence of edema and pain was observed. Further, fast bone regeneration in the median palatal suture could be demonstrated by occlusal radiographs. These findings suggest that laser therapy can accelerate bone regeneration of the median palatal suture in patients who have undergone SARPE.

  20. Simplified Tai Chi Resistance Training versus Traditional Tai Chi in Slowing Bone Loss in Postmenopausal Women

    PubMed Central

    Wang, Huiru; Yu, Bo; Chen, Wenhua; Lu, Yingzhi; Yu, Dinghai

    2015-01-01

    Background. This study examined whether simplified Tai Chi resistance training is superior to traditional Tai Chi in slowing bone loss in postmenopausal women. Methods. This prospective trial included 119 postmenopausal women (age: 52–65 years). Subjects were randomly assigned to participate in a traditional Tai Chi program (TTC, n = 40), a simplified Tai Chi resistance training program (TCRT, n = 40), or a blank control group (routine activity, n = 39). The TTC involved traditional Yang Style Tai Chi. The primary outcome was the change of lumbar bone mass density (L2–L4) at 12 months over the baseline. Femoral neck and Ward's triangle were also measured using dual-energy X-ray absorptiometry. Results. The L2–L4 density was significantly lower at 12 months in comparison to the baseline in the blank control group. In both the TCRT and TTC groups, the L2–L4 density was comparable to the baseline. There was a trend for less bone loss in the TCRT than in the TTC group. Similar findings were observed with femoral neck and Ward's triangle. Conclusion. Simplified Tai Chi resistance training could slow bone loss in menopausal women. The results also suggested, but did not confirm, superiority to traditional Tai Chi. PMID:26136808

  1. Rac-null leukocytes are associated with increased inflammation-mediated alveolar bone loss.

    PubMed

    Sima, Corneliu; Gastfreund, Shoshi; Sun, Chunxiang; Glogauer, Michael

    2014-02-01

    Periodontitis is characterized by altered host-biofilm interactions that result in irreversible inflammation-mediated alveolar bone loss. Genetic and epigenetic factors that predispose to ineffective control of biofilm composition and maintenance of tissue homeostasis are not fully understood. We elucidated how leukocytes affect the course of periodontitis in Rac-null mice. Mouse models of acute gingivitis and periodontitis were used to assess the early inflammatory response and patterns of chronicity leading to loss of alveolar bone due to inflammation in Rac-null mice. Leukocyte margination was differentially impaired in these mice during attachment in conditional Rac1-null (granulocyte/monocyte lineage) mice and during rolling and attachment in Rac2-null (all blood cells) mice. Inflammatory responses to subgingival ligatures, assessed by changes in peripheral blood differential leukocyte numbers, were altered in Rac-null compared with wild-type mice. In response to persistent subgingival ligature-mediated challenge, Rac-null mice had increased loss of alveolar bone with patterns of resorption characteristic of aggressive forms of periodontitis. These findings were partially explained by higher osteoclastic coverage of the bone-periodontal ligament interface in Rac-null compared with wild-type mice. In conclusion, this study demonstrates that leukocyte defects, such as decreased endothelial margination and tissue recruitment, are rate-limiting steps in the periodontal inflammatory process that lead to more aggressive forms of periodontitis.

  2. Odanacatib, A Cathepsin K-Specific Inhibitor, Inhibits Inflammation and Bone Loss Caused by Periodontal Diseases

    PubMed Central

    Hao, Liang; Chen, Jianwei; Zhu, Zheng; Reddy, Michael S.; Mountz, John D.; Chen, Wei; Li, Yi-Ping

    2015-01-01

    Background Periodontitis is a bacteria-induced inflammatory disease mainly affecting periodontal tissues, leading to periodontal inflammation, bone breakdown, and loss of the tooth. The main obstacle for treating periodontitis effectively is the difficulty in finding a target that can inhibit bone loss and inflammation simultaneously. Recent studies showed that cathepsin K (CTSK) might have functions in the immune system besides its role in osteoclasts. Thus, targeting CTSK would have a potential therapeutic effect in both the bone system and the immune system during the progression of periodontitis. Methods In the current study, a small molecular inhibitor (odanacatib [ODN]) is explored to inhibit the function of CTSK in a bacteria-induced periodontitis mouse model. Results The application of ODN decreased the number of osteoclasts, macrophages, and T cells, as well as the expression of Toll-like receptors (TLRs) in the periodontitis lesion area. Furthermore, lack of CTSK inhibited the expression of TLR4, TLR5, and TLR9 and their downstream cytokine signaling in the gingival epithelial cells in periodontitis lesions, demonstrating that the innate immune response was inhibited in periodontitis. Conclusion The present results show that inhibition of CTSK can prevent bone loss and the immune response during the progression of periodontitis, indicating that CTSK is a promising target for treating inflammatory diseases such as periodontitis by affecting both osteoclasts and the immune system. PMID:25879791

  3. Simplified Tai Chi Resistance Training versus Traditional Tai Chi in Slowing Bone Loss in Postmenopausal Women.

    PubMed

    Wang, Huiru; Yu, Bo; Chen, Wenhua; Lu, Yingzhi; Yu, Dinghai

    2015-01-01

    Background. This study examined whether simplified Tai Chi resistance training is superior to traditional Tai Chi in slowing bone loss in postmenopausal women. Methods. This prospective trial included 119 postmenopausal women (age: 52-65 years). Subjects were randomly assigned to participate in a traditional Tai Chi program (TTC, n = 40), a simplified Tai Chi resistance training program (TCRT, n = 40), or a blank control group (routine activity, n = 39). The TTC involved traditional Yang Style Tai Chi. The primary outcome was the change of lumbar bone mass density (L2-L4) at 12 months over the baseline. Femoral neck and Ward's triangle were also measured using dual-energy X-ray absorptiometry. Results. The L2-L4 density was significantly lower at 12 months in comparison to the baseline in the blank control group. In both the TCRT and TTC groups, the L2-L4 density was comparable to the baseline. There was a trend for less bone loss in the TCRT than in the TTC group. Similar findings were observed with femoral neck and Ward's triangle. Conclusion. Simplified Tai Chi resistance training could slow bone loss in menopausal women. The results also suggested, but did not confirm, superiority to traditional Tai Chi.

  4. Mechanisms of Radiation-Induced Bone Loss and Effect on Prostate Cancer Bone Metastases

    DTIC Science & Technology

    2012-06-01

    Develop intravital multiphoton fluorescence microscopy (IVFM) for real-time imaging of osteocytes in calvariae of transgenic mice using i) GFP to...OT, OB counting) and in vivo bone imaging (months 6-10) 8 20 week old female C57Bl/6 mice (n=30) were used in this experiment. The mice were...divided into 2 groups. One group (group A, n=15) was imaged twice by microCT during the experiment that included a baseline microCT that was given 2 days

  5. Association of osteoprotegerin and bone loss after adjuvant chemotherapy in early-stage breast cancer

    PubMed Central

    Oostra, Drew R.; Lustberg, Maryam B.; Reinbolt, Raquel E.; Pan, Xueliang; Wesolowski, Robert; Shapiro, Charles L.

    2015-01-01

    Purpose Chemotherapy induced ovarian failure (CIOF) results in rapid bone loss. Receptor Activator of Nuclear Factor Kappa-B (RANK)-RANK ligand (RANK-L) signaling balances bone resorption and formation. Osteoprotegerin (OPG) acts as a decoy receptor for RANK, interrupting osteoclast activation and bone resorption. This study examined the relationship between OPG and bone loss in women with CIOF. Methods Premenopausal women with stage I/II breast cancers receiving adjuvant chemotherapy were evaluated at chemotherapy initiation, 6 and 12 months. Bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), follicle stimulating hormone (FSH), ionized calcium, osteocalcin, and OPG were serially measured. CIOF was defined as a negative pregnancy test, FSH levels >30 MIU/mL, and ≥3 months of amenorrhea. Results Forty women were enrolled; 31 (77.5%) met CIOF criteria. BMD significantly decreased (p < 0.001) in the CIOF group at both time points: LS BMD decreased from a median of 0.993 g/cm2 to 0.976 g/cm2 and 0.937 g/cm2 at 6 and 12 months, respectively. OPG was significantly elevated at 6 months (median increase 0.30 pmol/L, p = 0.015) and then decreased at 12 months to levels still above baseline (median difference 0.2 pmol/L, p = 0.70). Conclusions In what was likely a compensatory response to rapid bone loss, CIOF patients’ OPG levels increased at 6 months and then decreased at 12 months to values greater than baseline assessments. This phenomenon is described in other diseases, but never before in CIOF. PMID:25575458

  6. Bone loss over one year of training and competition in female cyclists

    PubMed Central

    Sherk, Vanessa D; Barry, Daniel W; Villalon, Karen L; Hansen, Kent C; Wolfe, Pamela; Kohrt, Wendy M

    2014-01-01

    Objective To observe changes in hip, spine, and tibia bone characteristics in female cyclists over the course of 1 year of training. Design Prospective observational study Setting Laboratory Participants Female cyclists (n=14) aged 26-41 years with at least 1 year of competition history and intent to compete in 10 or more races in the coming year. Assessment of Risk Factors Women who train and compete in road cycling as their primary sport. Main Outcome Measures Total body fat-free and fat mass, and lumbar spine and proximal femur areal bone mineral density (aBMD) and bone mineral content (BMC) assessments by DXA. Volumetric BMD (vBMD) and BMC of the tibia were measured by pQCT at sites corresponding to 4%, 38%, 66%, and 96% of tibia length. Time points were baseline and after 12 months of training and competition. Results Weight and body composition did not change significantly over 12 months. Total hip aBMD and BMC decreased by −1.4±1.9% and −2.1±2.3% (p<0.02), subtrochanter aBMD and BMC decreased by −2.1±2.0% and −3.3±3.7% (p<0.01). There was a significant decrease in lumbar spine BMC (−1.1±1.9%; p=0.03). There were no significant bone changes in the tibia (p>0.11). Conclusions Bone loss in female cyclists was site-specific and similar in magnitude to losses previously reported in male cyclists. Research is needed to understand the mechanisms for bone loss in cyclists. PMID:24326929

  7. Testosterone Plus Finasteride Prevents Bone Loss Without Prostate Growth in a Rodent Spinal Cord Injury Model.

    PubMed

    Yarrow, Joshua F; Phillips, Ean G; Conover, Christine F; Bassett, Taylor E; Chen, Cong; Teurlings, Tyler; Vasconez, Andrea; Alerte, Jonathan; Prock, Hannah M; Jiron, Jessica M; Flores, Micah; Aguirre, J Ignacio; Borst, Stephen E; Ye, Fan

    2017-03-24

    We have reported that testosterone-enanthate (TE) prevents the musculoskeletal decline occurring acutely after spinal cord injury (SCI), but results in a near doubling of prostate mass. Our purpose was to test the hypothesis that administration of TE plus finasteride (FIN, type II 5α-reductase inhibitor) would prevent the chronic musculoskeletal deficits in our rodent severe contusion SCI model, without inducing prostate enlargement. Forty-three 16-week old male Sprague-Dawley rats received: (1) SHAM surgery (T9 laminectomy), (2) severe (250 kdyne) contusion SCI, (3) SCI+TE (7.0mg/week, i.m.) or (4) SCI+TE+FIN (5mg/kg/day, s.c.). At 8 weeks post-surgery, SCI animals exhibited reduced serum testosterone and levator ani/bulbocavernosus (LABC) muscle mass, effects that were prevented by TE. Cancellous and cortical (periosteal) bone turnover (assessed via histomorphometry) were elevated after SCI, resulting in reduced distal femur cancellous and cortical bone mass (assessed via microcomputed tomography). TE treatment normalized cancellous and cortical bone turnover and maintained cancellous bone mass at the level of SHAM animals, but produced prostate enlargement. FIN co-administration did not inhibit the TE-induced musculoskeletal effects, but prevented prostate growth. Neither drug regimen prevented SCI-induced cortical bone loss, although no differences in whole bone strength were present among groups. Our findings indicate that TE+FIN prevented the chronic cancellous bone deficits and LABC muscle loss in SCI animals without inducing prostate enlargement, which provides rationale for the inclusion of TE+FIN in multimodal therapeutic interventions intended to alleviate the musculoskeletal decline after SCI.

  8. Bone mineral loss and recovery after 17 weeks of bed rest

    NASA Technical Reports Server (NTRS)

    Leblanc, A. D.; Schneider, V. S.; Evans, H. J.; Engelbretson, D. A.; Krebs, J. M.; LaBlanc, A. D. (Principal Investigator)

    1990-01-01

    The purpose of this work was to determine the rate and extent of bone loss and recovery from long-term disuse and in particular from disuse after exposure to weightlessness. For this purpose, bed rest is used to simulate the reduced stress and strain on the skeleton. This study reports on the bone loss and recovery after 17 weeks of continuous bed rest and 6 months of reambulation in six normal male volunteers. Bone regions measured were the lumbar spine, hip, tibia, forearm, calcaneus, total body, and segmental regions from the total-body scan. The total body, lumbar spine, femoral neck, trochanter, tibia, and calcaneus demonstrated significant loss, p less than 0.05. Expressed as the percentage change from baseline, these were 1.4, 3.9, 3.6, 4.6, 2.2, and 10.4, respectively. Although several areas showed positive slopes during reambulation, only the calcaneus was significant (p less than 0.05), with nearly 100% recovery. Segmental analysis of the total-body scans showed significant loss (p less than 0.05) in the lumbar spine, total spine, pelvis, trunk, and legs. During reambulation, the majority of the regions demonstrated positive slopes, although only the pelvis and trunk were significant (p less than 0.05). Potential redistribution of bone mineral was observed: during bed rest the bone mineral increased in the skull of all subjects. The change in total BMD and calcium from calcium balance were significantly (p less than 0.05) correlated, R = 0.88.

  9. Can we stop bone loss and prevent hip fractures in the elderly?

    PubMed

    Meunier, P J; Chapuy, M C; Arlot, M E; Delmas, P D; Duboeuf, F

    1994-01-01

    The two main determinants of hip fractures are falls and bone loss leading to an intrinsic femoral fragility. Substantial femoral bone loss continues throughout old age, with a continuous and exponential increase in the risk of hip fracture; thus any reduction or arrest of this loss will induce an important reduction in the incidence of hip fracture. Preventive measures may be achieved during childhood by increasing peak bone mass with calcium and exercise, by using long-term estrogen replacement therapy after menopause, but also by using vitamin D and calcium supplements for late prevention in the elderly. Vitamin D insufficiency and a deficit in calcium intake are very common in the elderly living either in institutions or at home and the cumulative response to these deficits is a negative calcium balance which stimulates parathyroid hormone secretion. This senile secondary hyperparathyroidism is one of the determinants of femoral bone loss and can be reversed by calcium and vitamin D supplements. We have shown in a 3-year controlled prospective study that the daily use of supplements (1.2 g calcium and 800 IU vitamin D3) given in a large population of 3270 elderly ambulatory women living in nursing homes reduced the number of hip fractures by 23% (intention-to-treat analysis). In parallel, serum parathyroid hormone concentrations were reduced by 28% and low baseline serum 25-hydroxyvitamin D concentration returned to normal values. After 18 months of treatment the bone density of the total proximal femoral region had increased by 2.7% in the vitamin D3-calcium group and decreased by 4.6% in the placebo group (p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Preventive effect of ferulic acid on bone loss in ovariectomized rats.

    PubMed

    Sassa, Shuji; Kikuchi, Takashi; Shinoda, Hisashi; Suzuki, Satoe; Kudo, Hideki; Sakamoto, Shinobu

    2003-01-01

    An extract from corn germ induced a positive response in the pigeon crop sack test, used for the detection of prolactin-like substances. One of the substances extracted was identified as ferulic acid, which was reported to affect serum gonadotropin levels in ovariectomized male rats. To evaluate the effects of ferulic acid on bone loss, ovariectomized female rats of the Sprague-Dawley strain at age 35 weeks were given ferulic acid and/or 17a-ethynylestradiol daily for 8 weeks, and serum hormone levels and tibial bone mineral density were measured. In metaphysis of the tibia, which was abundant in cancellous bone and more reflective of BMD than whole tibia, the BMD was markedly reduced by ovariectomy and enhanced by the treatment with estrogen or ferulic acid in the ovariectomized rats. The treatment slightly increased the serum levels of estrogen and progesterone and alkaline phosphatase activity, which was reduced by estrogentreatment, i.e. the mechanism of bone formation by ferulic acid was suggested to be different from that by estrogens. These results indicate that ferulic acid promotes bone remodeling, leading to a predominantly osteoblastic phase, besides bone resorption by osteoclasts.

  11. Amphibian skull evolution: the developmental and functional context of simplification, bone loss and heterotopy.

    PubMed

    Schoch, Rainer R

    2014-12-01

    Despite their divergent morphology, extant and extinct amphibians share numerous features in the timing and spatial patterning of dermal skull elements. Here, I show how the study of these features leads to a deeper understanding of morphological evolution. Batrachians (salamanders and frogs) have simplified skulls, with dermal bones appearing rudimentary compared with fossil tetrapods, and open cheeks resulting from the absence of other bones. The batrachian skull bones may be derived from those of temnospondyls by truncation of the developmental trajectory. The squamosal, quadratojugal, parietal, prefrontal, parasphenoid, palatine, and pterygoid form rudimentary versions of their homologs in temnospondyls. In addition, failure to ossify and early fusion of bone primordia both result in the absence of further bones that were consistently present in Paleozoic tetrapods. Here, I propose a new hypothesis explaining the observed patterns of bone loss and emargination in a functional context. The starting observation is that jaw-closing muscles are arranged in a different way than in ancestors from the earliest ontogenetic stage onwards, with muscles attaching to the dorsal side of the frontal, parietal, and squamosal. The postparietal and supratemporal start to ossify in a similar way as in branchiosaurids, but are fused to neighboring elements to form continuous attachment areas for the internal adductor. The postfrontal, postorbital, and jugal fail to ossify, as their position is inconsistent with the novel arrangement of adductor muscles. Thus, rearrangement of adductors forms the common theme behind cranial simplification, driven by an evolutionary flattening of the skull in the batrachian stem.

  12. Spaceflight-induced bone loss alters failure mode and reduces bending strength in murine spinal segments.

    PubMed

    Berg-Johansen, Britta; Liebenberg, Ellen C; Li, Alfred; Macias, Brandon R; Hargens, Alan R; Lotz, Jeffrey C

    2016-01-01

    Intervertebral disc herniation rates are quadrupled in astronauts following spaceflight. While bending motions are main contributors to herniation, the effects of microgravity on the bending properties of spinal discs are unknown. Consequently, the goal of this study was to quantify the bending properties of tail discs from mice with or without microgravity exposure. Caudal motion segments from six mice returned from a 30-day Bion M1 mission and eight vivarium controls were loaded to failure in four-point bending. After testing, specimens were processed using histology to determine the location of failure, and adjacent motion segments were scanned with micro-computed tomography (μCT) to quantify bone properties. We observed that spaceflight significantly shortened the nonlinear toe region of the force-displacement curve by 32% and reduced the bending strength by 17%. Flight mouse spinal segments tended to fail within the growth plate and epiphyseal bone, while controls tended to fail at the disc-vertebra junction. Spaceflight significantly reduced vertebral bone volume fraction, bone mineral density, and trabecular thickness, which may explain the tendency of flight specimens to fail within the epiphyseal bone. Together, these results indicate that vertebral bone loss during spaceflight may degrade spine bending properties and contribute to increased disc herniation risk in astronauts.

  13. Ionizing Radiation and Bone Loss: Space Exploration and Clinical Therapy Applications.

    PubMed

    Willey, Jeffrey S; Lloyd, Shane A J; Nelson, Gregory A; Bateman, Ted A

    2011-03-01

    Damage to normal, nontumor bone tissue following therapeutic irradiation increases the risk of fracture among cancer patients. For example, women treated for various pelvic tumors have been shown to have a greater than 65% increased incidence of hip fracture by 5 years postradiotherapy. Another practical situation in which exposure to ionizing radiation may negatively impact skeletal integrity is during extended spaceflight missions. There is a limited understanding of how spaceflight-relevant doses and types of radiation can influence astronaut bone health, particularly when combined with the significant effects of mechanical unloading experienced in microgravity. Historically, negative effects on osteoblasts have been studied. Radiation exposure has been shown to damage osteoblast precursors. Damage to local vasculature has been observed, ranging from decreased lumen diameter to complete ablation within the irradiated volume, causing a state of hypoxia. These effects result in suppression of bone formation and a general state of low bone turnover. More recently, however, we have demonstrated in pre-clinical mouse models, a very rapid but transient increase in osteoclast activity after exposure to spaceflight and clinically relevant radiation doses. Combined with long-term suppression of bone formation, this skeletal damage may cause long-term deficits. This review will present a broad set of literature outlining our current set knowledge of both clinical therapy and space exploration exposure to ionizing radiation. Additionally, we will discuss prevention of the initial osteoclast-mediated bone loss, the need to promote normal bone turnover and long-term quality of bone tissue, and our hypothesized molecular mechanisms.

  14. miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice

    PubMed Central

    Hu, Cheng-Hu; Sui, Bing-Dong; Du, Fang-Ying; Shuai, Yi; Zheng, Chen-Xi; Zhao, Pan; Yu, Xiao-Rui; Jin, Yan

    2017-01-01

    MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro. However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21−/−) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21−/− mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo. Besides, miR-21−/− mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21−/− mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis. PMID:28240263

  15. Combined effects of soy isoflavone and fish oil on ovariectomy-induced bone loss in mice.

    PubMed

    Uchida, Raina; Chiba, Hiroshige; Ishimi, Yoshiko; Uehara, Mariko; Suzuki, Kazuharu; Kim, Hyounju; Matsumoto, Akiyo

    2011-07-01

    Both soy isoflavone and n-3 polyunsaturated fatty acids are known to reduce the levels of bone-resorbing cytokines; however, the synergistic effects of these food ingredients have not been examined yet. This study was performed to elucidate the effect of concomitant intake of soy isoflavone and fish oil on bone mass in ovariectomized mice. Eight-week-old ddY female mice were subjected to ovariectomy (OVX) or sham surgery, and then fed an AIN-93G with safflower oil (So) as a control lipid source, isoflavone-supplemented safflower oil (So + I), fish oil instead of safflower oil (Fo) or isoflavone-supplemented fish oil (Fo + I) for 4 weeks. Femoral bone mineral density was significantly decreased by OVX; however, this decrease was inhibited by the intake of isoflavone and/or fish oil. Histomorphometric analyses showed that bone volume and trabecular thickness in the distal femoral trabecular bone were significantly lower in the So group than in the sham group, but those were restored in the Fo + I groups. The number of osteoclasts was significantly decreased by isoflavone intake. The increased rate of bone resorption after OVX was inhibited by isoflavone and/or fish oil. The serum concentration of tumor necrosis factor alpha was increased after OVX, but was significantly lower with the combination of isoflavone with fish oil than isoflavone or fish oil alone. The results of this study indicated that the intakes of soy isoflavone and/or fish oil might have ameliorating effects on bone loss due to OVX. Further, the concomitant intake of soy isoflavone and fish oil at a low dose showed better effects on cytokines related with bone resorption.

  16. Methanolic extract of Cuminum cyminum inhibits ovariectomy-induced bone loss in rats.

    PubMed

    Shirke, Sarika S; Jadhav, Sanket R; Jagtap, Aarti G

    2008-11-01

    Several animal and clinical studies have shown that phytoestrogens, plant-derived estrogenic compounds, can be useful in treating postmenopausal osteoporosis. Phytoestrogens and phytoestrogen-containing plants are currently under active investigation for their role in estrogen-related disorders. The present study deals with anti-osteoporotic evaluation of phytoestrogen-rich plant Cuminum cyminum, commonly known as cumin. Adult Sprague-Dawley rats were bilaterally ovariectomized (OVX) and randomly assigned to 3 groups (10 rats/group). Additional 10 animals were sham operated. OVX and sham control groups were orally administered with vehicle while the other two OVX groups were administered 0.15 mg/kg estradiol and 1 g/kg of methanolic extract of Cuminum cyminum fruits (MCC) in two divided doses for 10 weeks. At the end of the study blood, bones and uteri of the animals were collected. Serum was evaluated for calcium, phosphorus, alkaline phosphatase and tartarate resistant acid phosphatase. Bone density, ash density, mineral content and mechanical strength of bones were evaluated. Scanning electron microscopic (SEM) analysis of bones (tibia) was performed. Results were analyzed using ANOVA and Tukeys multiple comparison test. MCC (1 g/kg, p.o.) significantly reduced urinary calcium excretion and significantly increased calcium content and mechanical strength of bones in comparison to OVX control. It showed greater bone and ash densities and improved microarchitecture of bones in SEM analysis. Unlike estradiol it did not affect body weight gain and weight of atrophic uterus in OVX animals. MCC prevented ovariectomy-induced bone loss in rats with no anabolic effect on atrophic uterus. The osteoprotective effect was comparable with estradiol.

  17. Accidental beam loss in superconducting accelerators: Simulations, consequences of accidents and protective measures

    SciTech Connect

    Drozhdin, A.; Mokhov, N.; Parker, B.

    1994-02-01

    The consequences of an accidental beam loss in superconducting accelerators and colliders of the next generation range from the mundane to rather dramatic, i.e., from superconducting magnet quench, to overheating of critical components, to a total destruction of some units via explosion. Specific measures are required to minimize and eliminate such events as much as practical. In this paper we study such accidents taking the Superconducting Supercollider complex as an example. Particle tracking, beam loss and energy deposition calculations were done using the realistic machine simulation with the Monte-Carlo codes MARS 12 and STRUCT. Protective measures for minimizing the damaging effects of prefire and misfire of injection and extraction kicker magnets are proposed here.

  18. Cdk2 loss accelerates precursor differentiation and remyelination in the adult central nervous system

    PubMed Central

    Caillava, Céline; Vandenbosch, Renaud; Jablonska, Beata; Deboux, Cyrille; Spigoni, Giulia; Gallo, Vittorio; Malgrange, Brigitte

    2011-01-01

    The specific functions of intrinsic regulators of oligodendrocyte progenitor cell (OPC) division are poorly understood. Type 2 cyclin-dependent kinase (Cdk2) controls cell cycle progression of OPCs, but whether it acts during myelination and repair of demyelinating lesions remains unexplored. Here, we took advantage of a viable Cdk2−/− mutant mouse to investigate the function of this cell cycle regulator in OPC proliferation and differentiation in normal and pathological conditions. During central nervous system (CNS) development, Cdk2 loss does not affect OPC cell cycle, oligodendrocyte cell numbers, or myelination. However, in response to CNS demyelination, it clearly alters adult OPC renewal, cell cycle exit, and differentiation. Importantly, Cdk2 loss accelerates CNS remyelination of demyelinated axons. Thus, Cdk2 is dispensable for myelination but is important for adult OPC renewal, and could be one of the underlying mechanisms that drive adult progenitors to differentiate and thus regenerate myelin. PMID:21502361

  19. PDGF-B gene therapy accelerates bone engineering and oral implant osseointegration.

    PubMed

    Chang, P-C; Seol, Y-J; Cirelli, J A; Pellegrini, G; Jin, Q; Franco, L M; Goldstein, S A; Chandler, L A; Sosnowski, B; Giannobile, W V

    2010-01-01

    Platelet-derived growth factor-BB (PDGF-BB) stimulates repair of healing-impaired chronic wounds such as diabetic ulcers and periodontal lesions. However, limitations in predictability of tissue regeneration occur due, in part, to transient growth factor bioavailability in vivo. Here, we report that gene delivery of PDGF-B stimulates repair of oral implant extraction socket defects. Alveolar ridge defects were created in rats and were treated at the time of titanium implant installation with a collagen matrix containing an adenoviral (Ad) vector encoding PDGF-B (5.5 x 10(8) or 5.5 x 10(9) pfu ml(-1)), Ad encoding luciferase (Ad-Luc; 5.5 x 10(9) pfu ml(-1); control) or recombinant human PDGF-BB protein (rhPDGF-BB, 0.3 mg ml(-1)). Bone repair and osseointegration were measured through backscattered scanning electron microscopy, histomorphometry, micro-computed tomography and biomechanical assessments. Furthermore, a panel of local and systemic safety assessments was performed. Results indicated that bone repair was accelerated by Ad-PDGF-B and rhPDGF-BB delivery compared with Ad-Luc, with the high dose of Ad-PDGF-B more effective than the low dose. No significant dissemination of the vector construct or alteration of systemic parameters was noted. In summary, gene delivery of Ad-PDGF-B shows regenerative and safety capabilities for bone tissue engineering and osseointegration in alveolar bone defects comparable with rhPDGF-BB protein delivery in vivo.

  20. Association of bone turnover markers with volumetric bone loss, periosteal apposition, and fracture risk in older men and women: the AGES-Reykjavik longitudinal study.

    PubMed

    Marques, E A; Gudnason, V; Lang, T; Sigurdsson, G; Sigurdsson, S; Aspelund, T; Siggeirsdottir, K; Launer, L; Eiriksdottir, G; Harris, T B

    2016-12-01

    Association between serum bone formation and resorption markers and cortical and trabecular bone loss and the concurrent periosteal apposition in a population-based cohort of 1069 older adults was assessed. BTM levels moderately reflect the cellular events at the endosteal and periosteal surfaces but are not associated with fracture risk.

  1. Exercise Countermeasures for Bone Loss During Space Flight: A Method for the Study of Ground Reaction Forces and Their Implications for Bone Strain

    NASA Technical Reports Server (NTRS)

    Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.

    1999-01-01

    The human zero-gravity locomotion simulator and the cadaver simulator offer a powerful combination for the study of the implications of exercise for maintaining bone quality during space flight. Such studies, when compared with controlled in-flight exercise programs, could help in the identification of a strain threshold for the prevention of bone loss during space flight.

  2. Severe Bone Loss as Part of the Life History Strategy of Bowhead Whales

    PubMed Central

    George, John C.; Stimmelmayr, Raphaela; Suydam, Robert; Usip, Sharon; Givens, Geof; Sformo, Todd; Thewissen, J. G. M.

    2016-01-01

    The evolution of baleen constituted a major evolutionary change that made it possible for baleen whales to reach enormous body sizes while filter feeding on tiny organisms and migrating over tremendous distances. Bowhead whales (Balaena mysticetus) live in the Arctic where the annual cycle of increasing and decreasing ice cover affects their habitat, prey, and migration. During the nursing period, bowheads grow rapidly; but between weaning and approximately year 5, bowhead whales display sustained baleen and head growth while limiting growth in the rest of their bodies. During this period, they withdraw resources from the skeleton, in particular the ribs, which may lose 40% of bone mass. Such dramatic changes in bones of immature mammals are rare, although fossil cetaceans between 40 and 50 million years ago show an array of rib specializations that include bone loss and are usually interpreted as related to buoyancy control. PMID:27333180

  3. PULSED FOCUSED ULTRASOUND TREATMENT OF MUSCLE MITIGATES PARALYSIS-INDUCED BONE LOSS IN THE ADJACENT BONE: A STUDY IN A MOUSE MODEL

    PubMed Central

    Poliachik, Sandra L.; Khokhlova, Tatiana D.; Wang, Yak-Nam; Simon, Julianna C.; Bailey, Michael R.

    2015-01-01

    Bone loss can result from bed rest, space flight, spinal cord injury or age-related hormonal changes. Current bone loss mitigation techniques include pharmaceutical interventions, exercise, pulsed ultrasound targeted to bone and whole body vibration. In this study, we attempted to mitigate paralysis-induced bone loss by applying focused ultrasound to the midbelly of a paralyzed muscle. We employed a mouse model of disuse that uses onabotulinumtoxinA-induced paralysis, which causes rapid bone loss in 5 d. A focused 2 MHz transducer applied pulsed exposures with pulse repetition frequency mimicking that of motor neuron firing during walking (80 Hz), standing (20 Hz), or the standard pulsed ultrasound frequency used in fracture healing (1 kHz). Exposures were applied daily to calf muscle for 4 consecutive d. Trabecular bone changes were characterized using micro-computed tomography. Our results indicated that application of certain focused pulsed ultrasound parameters was able to mitigate some of the paralysis-induced bone loss. PMID:24857416

  4. Total glucosides of paeony prevents juxta-articular bone loss in experimental arthritis

    PubMed Central

    2013-01-01

    Background Total glucosides of paeony (TGP) is a biologically active compound extracted from Paeony root. TGP has been used in rheumatoid arthritis therapy for many years. However, the mechanism by which TGP prevents bone loss has been less explored. Methods TGP was orally administered for 3 months to New Zealand rabbits with antigen-induced arthritis (AIA). Digital x-ray knee images and bone mineral density (BMD) measurements of the subchondral knee bone were performed before sacrifice. Chondrocytes were observed using transmission electron microscopy (TEM). Histological analysis and mRNA expression of receptor activator of nuclear factor-B ligand (RANKL) and osteoprotegerin (OPG) were evaluated in joint tissues. Results The BMD value in TGP rabbits was significantly higher compared with that seen in the AIA model rabbits. In addition, the subchondral bone plate was almost completely preserved by TGP treatment, while there was a decrease in bone plate integrity in AIA rabbits. There was less damage to the chondrocytes of the TGP treated group. Immunohistochemical examination of the TGP group showed that a higher percentage of TGP treated chondrocytes expressed OPG as compared to the chondrocytes isolated from AIA treated animals. In contrast, RANKL expression was significantly decreased in the TGP treated group compared to the AIA group. In support of the immunohistochemistry data, the expression of RANKL mRNA was decreased and OPG mRNA expression was enhanced in the TGP group when compared to that of the AIA model group. Conclusion These results reveal that TGP suppresses juxta-articular osteoporosis and prevents subchondral bone loss. The decreased RANKL and increased OPG expression seen in TGP treated animals could explain how administration of TGP maintains higher BMD. PMID:23870279

  5. Pyogenic granuloma associated with periodontal abscess and bone loss - A rare case report

    PubMed Central

    Panseriya, Bhrugesh J.; Hungund, Shital

    2011-01-01

    A diverse group of the pathologic process can produce the enlargement of soft tissues in the oral cavity and often present a diagnostic challenge. This soft tissue enlargement may represent a variation of the normal anatomic structure, inflammatory reaction, cyst, neoplasm, and developmental anomalies. A group of reactive hyperplasias, which develop in response to chronic recurring tissue injury that stimulates an excessive tissue repair response. The pyogenic granuloma (PG) is a reactive enlargement that is an inflammatory response to local irritation such as calculus, a fractured tooth, rough dental restoration, and foreign materials or hormonal (pregnancy tumor) and rarely associated with bone loss. This paper presents a rare case of PG associated with periodontal abscess and bone loss in a 30-year-old male. PMID:22090773

  6. sFRP4-dependent Wnt signal modulation is critical for bone remodeling during postnatal development and age-related bone loss

    PubMed Central

    Haraguchi, Ryuma; Kitazawa, Riko; Mori, Kiyoshi; Tachibana, Ryosuke; Kiyonari, Hiroshi; Imai, Yuuki; Abe, Takaya; Kitazawa, Sohei

    2016-01-01

    sFRP4 is an extracellular Wnt antagonist that fine-tunes its signal activity by direct binding to Wnts. Bone fragility under oxidative stress by diabetes and aging is partly related to the suppression of the Wnt signal through upregulated sFRP4. Here, to explore the functions of sFRP4 as a balancer molecule in bone development and remodeling, we analyzed the sFRP4 knock-in mouse strain. X-gal and immunohistochemically stained signals in sFRP4-LacZ heterozygous mice were detectable in restricted areas, mostly in osteoblasts and osteoclasts, of the femoral diaphysis after neonatal and postnatal stages. Histological and μCT analyses showed increased trabecular bone mass with alteration of the Wnt signal and osteogenic activity in sFRP4 mutants; this augmented the effect of the buildup of trabecular bone during the ageing period. Our results indicate that sFRP4 plays a critical role in bone development and remodeling by regulating osteoblasts and osteoclasts, and that its functional loss prevents age-related bone loss in the trabecular bone area. These findings imply that sFRP4 functions as a key potential endogenous balancer of the Wnt signaling pathway by efficiently having direct influence on both bone formation and bone absorption during skeletal bone development and maintenance through remodeling. PMID:27117872

  7. Early Detection of Tibial Cartilage Degradation and Cancellous Bone Loss in an Ovariectomized Rat Model

    PubMed Central

    Wang, Yinong; Liu, Zhiwei; Chen, Wufan

    2017-01-01

    This study aimed to investigate degradation of the articular cartilage and loss of the cancellous bone in an ovariectomized (OVX) rat model simulating early human menopausal stage. Fourteen health female Sprague-Dawley rats were randomly divided into two groups (n = 7 per group): an OVX group that underwent bilateral ovariectomy to create an OVX model with low estrogen levels and a sham group in which only the periovarian fatty tissue was exteriorized. All the animals were sacrificed at 3 weeks after ovariectomy. The left tibiae were harvested. The articular cartilage at medial tibial plateau (MTP) and lateral tibial plateau (LTP) was assessed with quantitative high-frequency ultrasound. The cancellous bone was evaluated with micro-CT. The results indicated that, in comparison with the sham rats, the OVX rats exhibited significant alterations in acoustic parameters of the articular cartilage but insignificant changes in microarchitectural parameters of the cancellous bone in early stage of low estrogen levels. The results of this study suggest that cartilage degradation induced by estrogen reduction was detected earlier with quantitative ultrasound than that of the cancellous bone loss in 3 wk OVX rats. PMID:28182095

  8. Epidemiologic Analyses of Risk Factors for Bone Loss and Recovery Related to Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean; Amin, Shreyasee

    2010-01-01

    AIM 1: To investigate the risk of microgravity exposure on long-term changes in bone health and fracture risk. compare data from crew members ("observed") with what would be "expected" from Rochester Bone Health Study. AIM 2: To provide a summary of current evidence available on potential risk factors for bone loss, recovery & fracture following long-duration space flight. integrative review of all data pre, in-, and post-flight across disciplines (cardiovascular, nutrition, muscle, etc.) and their relation to bone loss and recovery

  9. D-hormones for prevention of bone loss after organ transplant.

    PubMed

    Sambrook, Philip N

    2005-09-01

    In addition to bisphosphonates, D-hormones appear to be effective agents in the prevention of post-transplant osteoporosis. In this article studies on D-hormone agents for prevention of post-transplant bone loss are reviewed. Potential reduction in immunosuppressive requirements with D-hormone is an additional consideration. Based upon available evidence, prophylaxis should involve a bisphosphonate, with D-hormone considered as adjunctive or alternative therapy.

  10. Stimulation of Osteoclast Formation by RANKL Requires Interferon Regulatory Factor-4 and Is Inhibited by Simvastatin in a Mouse Model of Bone Loss

    PubMed Central

    Nakashima, Yoshiki; Haneji, Tatsuji

    2013-01-01

    Diseases of bone loss are a major public health problem. Here, we report the novel therapeutic action of simvastatin in osteoclastogenesis and osteoprotection, demonstrated by the ability of simvastatin to suppress osteoclast formation in vitro and in vivo. We found that in vitro, IRF4 expression is upregulated during osteoclast differentiation induced by RANKL (receptor activator of nuclear factor-κB ligand), while simvastatin blocks RANKL-induced osteoclastogenesis and decreases expression of NFATc1 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1), IRF4 and osteoclast markers. We also show that IRF4 acts in cooperation with NFATc2 and NF-κB on the promoter region of NFATc1 to accelerate its initial transcription during the early stage of osteoclastogenesis. Moreover, our study using IRF4 siRNA knockdown directly demonstrates the requirement for IRF4 in NFATc1 mRNA transcription and its necessity in RANKL-induced osteoclast differentiation. Our results suggest that the reduction in osteoclastogenesis is partly due to the inhibition of IRF4 production in RANKL-induced osteoclast differentiation. To investigate the in vivo effects of simvastatin in RANKL-treated mice, we examined the bone mineral density (BMD) of a mouse model of bone loss, and found that simvastatin significantly reduced bone loss by suppressing osteoclast numbers in vivo, even in the presence of high concentrations of RANKL. These results suggest that the depletion of osteoclasts is not due to the reduction in RANKL produced by osteoblasts in vivo. The results are consistent with the hypothesis that simvastatin blocks RANKL-induced IRF4 expression in osteoclastogenesis. We propose that the expression of IRF4 by osteoclasts could be a promising new therapeutic target in bone-loss diseases. PMID:24039733

  11. Inactivity-induced bone loss is not exacerbated by moderate energy restriction

    NASA Astrophysics Data System (ADS)

    Heer, M.; Boese, A.; Baecker, N.; Zittermann, A.; Smith, S. M.

    Severe energy restriction leads to decreased bone mineral density (BMD) in postmenopausal women, adolescent females, and in male athletes. Astronauts in space also lose bone mass, and most of them have reduced energy intake (about 25 % below requirements). The aim of our study was to examine if bone loss in space is partly induced by moderate energy restriction. Physiological changes of space flight were simulated by 6 head-down tilt bed rest (HDBR). Nine healthy male subjects (age: 23.6 ± 3.0 years; BMI: 23.0 ± 2.9 kg/m2, mean ± SD) finished four study phases, two of normocaloric nutrition, either ambulatory or HDBR, and two of hypocaloric nutrition, either ambulatory or HDBR. Urine samples (24 h) were analyzed for calcium excretion (UCaV) and bone resorption markers (C-Telopeptide, CTX, and N-Telopeptide, NTX). Serum calcium, parathyroid hormone (PTH) and bone formation markers (Procollagen-I-C-terminal-Peptide, PICP, Procollagen-I-N-terminal-Peptide, PINP, and bone-specific alkaline phosphatase, bAP) were analyzed. No significant changes in serum calcium or PTH were noted either during HDBR or during hypocaloric nutrition. PICP, but not PINP or bAP, decreased significantly during HDBR (normocaloric: p<0.02; hypocaloric: p<0.005). UCaV increased significantly over time (p<0.01) but no difference between HDBR or hypocaloric nutrition or both (p<0.26) occurred. Both CTX and NTX excretion significantly increased with HDBR (CTX: p<0.05; NTX: p<0.05), but were unaffected by hypocaloric nutrition in ambulatory and HDBR phases. In conclusion, moderate energy restriction did not exaggerate bone resorption during HDBR.

  12. Conception on the cell mechanisms of bone tissue loss under spase flight conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia; Oganov, Victor; Kabitskaya, Olga

    in rehabilitation of the resorbed bone tissue. This sequence of events is considered as a mechanism of bone tissue loss which underlies the development of osteopenia and osteoporosis under the mechanical loading deficit.

  13. Low-dosage micronized 17 beta-estradiol prevents bone loss in postmenopausal women

    NASA Technical Reports Server (NTRS)

    Ettinger, B.; Genant, H. K.; Steiger, P.; Madvig, P.

    1992-01-01

    With the use of a double-blind, randomized, dose-ranging design, we tested during an 18-month period the degree of protection against postmenopausal bone loss afforded by micronized 17 beta-estradiol in dosages of 0.5, 1.0, and 2.0 mg. All subjects received supplementation to ensure a minimum of 1500 mg calcium daily. Fifty-one subjects completed at least 1 year of follow-up bone density measurements by quantitative computed tomography and by single- and dual-photon absorptiometry. In the placebo group spinal trabecular bone density decreased 4.9% annually (p less than 0.001), whereas in those taking micronized 17 beta-estradiol bone density tended to increase (annual increases of 0.3% in the 0.5 mg micronized 17 beta-estradiol group, 1.8% in the 1.0 mg micronized 17 beta-estradiol group, and 2.5% in the 2.0 mg micronized 17 beta-estradiol group). After completing the double-blind phase, 41 subjects completed an additional 18 months of follow-up while taking 1.0 mg micronized 17 beta-estradiol. During this time one third of the subjects were randomly assigned to discontinue calcium supplements. Among those who previously received placebo, trabecular bone density increased 4.3% annually, whereas among those who had used micronized 17 beta-estradiol, trabecular bone density response was inversely related to the dosage previously used. Additionally and independently, the level of calcium intake showed a statistically significant correlation with the change in spinal trabecular bone density (r = 0.37, p = 0.02). We conclude that micronized 17 beta-estradiol has a continuous skeletal dose-response effect in the range of 0.5 to 2.0 mg and that calcium intake positively modifies the skeletal response to 1.0 mg micronized 17 beta-estradiol.

  14. Simulated Interventions to Ameliorate Age-Related Bone Loss Indicate the Importance of Timing

    PubMed Central

    Proctor, Carole J.; Gartland, Alison

    2016-01-01

    Bone remodeling is the continuous process of bone resorption by osteoclasts and bone formation by osteoblasts, in order to maintain homeostasis. The activity of osteoclasts and osteoblasts is regulated by a network of signaling pathways, including Wnt, parathyroid hormone (PTH), RANK ligand/osteoprotegrin, and TGF-β, in response to stimuli, such as mechanical loading. During aging there is a gradual loss of bone mass due to dysregulation of signaling pathways. This may be due to a decline in physical activity with age and/or changes in hormones and other signaling molecules. In particular, hormones, such as PTH, have a circadian rhythm, which may be disrupted in aging. Due to the complexity of the molecular and cellular networks involved in bone remodeling, several mathematical models have been proposed to aid understanding of the processes involved. However, to date, there are no models, which explicitly consider the effects of mechanical loading, the circadian rhythm of PTH, and the dynamics of signaling molecules on bone remodeling. Therefore, we have constructed a network model of the system using a modular approach, which will allow further modifications as required in future research. The model was used to simulate the effects of mechanical loading and also the effects of different interventions, such as continuous or intermittent administration of PTH. Our model predicts that the absence of regular mechanical loading and/or an impaired PTH circadian rhythm leads to a gradual decrease in bone mass over time, which can be restored by simulated interventions and that the effectiveness of some interventions may depend on their timing. PMID:27379013

  15. Reduction of Dietary Acid Load as a Potential Countermeasure for Bone Loss Associated with Spaceflight

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Watts, S. M.; Sams, C. F.; Whitson, P. A.; Smith, S. M.

    2006-01-01

    In several studies we tested the concepts that diet can alter acid-base balance and that reducing the dietary acid load has a positive effect on maintenance of bone. In study 1, (n = 11, 60-90 d bed rest), the renal acid load of the diet was estimated from its chemical composition, and was positively correlated with urinary markers of bone resorption (P less than 0.05); that is, the greater the acid load, the greater the excretion of bone resorption markers. In study 2, in males (n = 8, 30 d bed rest), an estimate of the ratio of nonvolatile acid precursors to base precursors in the diet was positively correlated (P less than 0.05) with markers of bone resorption. In study 3, for 28 d subjects received either a placebo (n = 6) or an essential amino acid supplement (n = 7) that included methionine, a known acid precursor. During bed rest (28 d), urinary calcium was greater than baseline levels in the supplemented group but not the control group (P less than 0.05), and in the supplemented group, urinary pH decreased (P less than 0.05). In study 4, less bone resorption occurred in space crew members who received potassium citrate (n = 6) during spaceflight of 4-6 months than in crew members who received placebo or were not in the study (n = 8) (P less than 0.05). Reducing acid load has the potential to mitigate increased bone resorption during spaceflight, and may serve as a bone loss countermeasure.

  16. Exercise and pharmacological countermeasures for bone loss during long-duration space flight.

    PubMed

    Cavanagh, Peter R; Licata, Angelo A; Rice, Andrea J

    2005-06-01

    Bone loss in the lower extremities and lumbar spine is an established consequence of long-duration human space flight. Astronauts typically lose as much bone mass in the proximal femur in 1 month as postmenopausal women on Earth lose in 1 year. Pharmacological interventions have not been routinely used in space, and countermeasure programs have depended solely upon exercise. However, it is clear that the osteogenic stimulus from exercise has been inadequate to maintain bone mass, due to insufficient load or duration. Attention has therefore been focused on several pharmacological interventions that have been successful in preventing or attenuating osteoporosis on Earth. Anti-resorptives are the class of drugs most commonly used to treat osteoporosis in postmenopausal women, notably alendronate sodium, risedronate sodium, zoledronic acid, and selective estrogen receptor modulators, such as raloxifene. There has also been considerable recent interest in anabolic agents such as parathyroid hormone (PTH) and teriparatide (rhPTH [1-34]). Vitamin D and calcium supplementation have also been used. Recent studies of kindreds with abnormally high bone mineral density have provided insight into the genetic regulation of bone mass. This has led to potential therapeutic interventions based on the LRP5, Wnt and BMP2 pathways. Another target is the RANK-L/osteoprotegerin signaling pathway, which influences bone turnover by regulating osteoclast formation and maturation. Trials using such therapies in space are being planned. Among the factors to be considered are dose-response relationships, bone quality, post-use recovery, and combination therapies--all of which may have unique characteristics when the drugs are used in space.

  17. Loss of transcription factor early growth response gene 1 results in impaired endochondral bone repair.

    PubMed

    Reumann, Marie K; Strachna, Olga; Yagerman, Sarah; Torrecilla, Daniel; Kim, Jihye; Doty, Stephen B; Lukashova, Lyudmila; Boskey, Adele L; Mayer-Kuckuk, Philipp

    2011-10-01

    Transcription factors that play a role in ossification during development are expected to participate in postnatal fracture repair since the endochondral bone formation that occurs in embryos is recapitulated during fracture repair. However, inherent differences exist between bone development and fracture repair, including a sudden disruption of tissue integrity followed by an inflammatory response. This raises the possibility that repair-specific transcription factors participate in bone healing. Here, we assessed the consequence of loss of early growth response gene 1 (EGR-1) on endochondral bone healing because this transcription factor has been shown to modulate repair in vascularized tissues. Model fractures were created in ribs of wild type (wt) and EGR-1(-/-) mice. Differences in tissue morphology and composition between these two animal groups were followed over 28 post fracture days (PFDs). In wt mice, bone healing occurred in healing phases characteristic of endochondral bone repair. A similar healing sequence was observed in EGR-1(-/-) mice but was impaired by alterations. A persistent accumulation of fibrin between the disconnected bones was observed on PFD7 and remained pronounced in the callus on PFD14. Additionally, the PFD14 callus was abnormally enlarged and showed increased deposition of mineralized tissue. Cartilage ossification in the callus was associated with hyper-vascularity and -proliferation. Moreover, cell deposits located in proximity to the callus within skeletal muscle were detected on PFD14. Despite these impairments, repair in EGR-1(-/-) callus advanced on PFD28, suggesting EGR-1 is not essential for healing. Together, this study provides genetic evidence that EGR-1 is a pleiotropic regulator of endochondral fracture repair.

  18. Exercise and pharmacological countermeasures for bone loss during long-duration space flight

    NASA Technical Reports Server (NTRS)

    Cavanagh, Peter R.; Licata, Angelo A.; Rice, Andrea J.

    2005-01-01

    Bone loss in the lower extremities and lumbar spine is an established consequence of long-duration human space flight. Astronauts typically lose as much bone mass in the proximal femur in 1 month as postmenopausal women on Earth lose in 1 year. Pharmacological interventions have not been routinely used in space, and countermeasure programs have depended solely upon exercise. However, it is clear that the osteogenic stimulus from exercise has been inadequate to maintain bone mass, due to insufficient load or duration. Attention has therefore been focused on several pharmacological interventions that have been successful in preventing or attenuating osteoporosis on Earth. Anti-resorptives are the class of drugs most commonly used to treat osteoporosis in postmenopausal women, notably alendronate sodium, risedronate sodium, zoledronic acid, and selective estrogen receptor modulators, such as raloxifene. There has also been considerable recent interest in anabolic agents such as parathyroid hormone (PTH) and teriparatide (rhPTH [1-34]). Vitamin D and calcium supplementation have also been used. Recent studies of kindreds with abnormally high bone mineral density have provided insight into the genetic regulation of bone mass. This has led to potential therapeutic interventions based on the LRP5, Wnt and BMP2 pathways. Another target is the RANK-L/osteoprotegerin signaling pathway, which influences bone turnover by regulating osteoclast formation and maturation. Trials using such therapies in space are being planned. Among the factors to be considered are dose-response relationships, bone quality, post-use recovery, and combination therapies--all of which may have unique characteristics when the drugs are used in space.

  19. Subantimicrobial Dose Doxycycline Effects on Alveolar Bone Loss in Postmenopausal Women

    PubMed Central

    Payne, Jeffrey B.; Stoner, Julie A.; Nummikoski, Pirkka V.; Reinhardt, Richard A.; Goren, Arthur D.; Wolff, Mark S.; Lee, Hsi-ming; Lynch, James C.; Valente, Robert; Golub, Lorne M.

    2007-01-01

    Aim: Determine efficacy of two-year continuous subantimicrobial dose doxycycline (SDD; 20 mg bid) on alveolar bone in postmenopausal osteopenic, estrogen-deficient women undergoing periodontal maintenance in a two-year double-blind, placebo-controlled, randomized clinical trial. Materials and Methods: 128 subjects randomized to SDD or placebo (n=64 each). Posterior vertical bite-wings taken at baseline, one and two years for alveolar bone density (ABD), using radiographic absorptiometry (RA) and computer-assisted densitometric image analysis (CADIA), and alveolar bone height (ABH). Statistical analyses utilized Generalized Estimating Equations; primary analyses were intent-to-treat (ITT). Results presented as SDD versus placebo. Results: Under ITT, there was no statistically-significant effect of SDD on ABD loss (RA: p=0.8; CADIA: p=0.2) or ABH loss (p=0.2). Most sites (81−95%) were inactive. For subgroup analyses, mean CADIA was higher with SDD for non-smokers (p=0.05) and baseline probing depths ≥ 5 mm (p =0.003). SDD was associated with 29% lower odds of more progressive ABH loss in women > 5 years postmenopausal (p=0.05) and 36% lower among protocol-adherent subjects (p =0.03). Conclusion: In postmenopausal osteopenic women with periodontitis, SDD did not differ overall from placebo. Based on exploratory subgroup analyses, additional research is needed to determine the usefulness of SDD in non-smokers, subjects > 5 years postmenopausal and in deeper pockets. PMID:17716313

  20. [Space flight/bedrest immobilization and bone. Bisphosphonate and the loss of bone mineral due to space flight or prolonged bed rest].

    PubMed

    Endo, Itsuro; Matsumoto, Toshio

    2012-12-01

    Bone mass and strength are maintained by appropriate weight bearing. The loss of bone mineral due to space flight or prolonged bed rest has been recognized by space scientists and physicians. In spite of the wealth of knowledge obtained thus far, many questions remain unanswered regarding the mechanism of bone loss as well as the factors affecting these skeletal processes. Bisphosphonates have a potential to become countermeasures against space flight-induced or disuse osteoporosis. In this review, the effect and the possible role of biphosphonates on the prevention and treatment of unloading-induced osteoporosis are summarized and future prospects are discussed.

  1. Dietary Polyphenols, Berries, and Age-Related Bone Loss: A Review Based on Human, Animal, and Cell Studies

    PubMed Central

    Hubert, Patrice A.; Lee, Sang Gil; Lee, Sun-Kyeong; Chun, Ock K.

    2014-01-01

    Bone loss during aging has become an increasing public health concern as average life expectancy has increased. One of the most prevalent forms of age-related bone disease today is osteoporosis in which the body slows down bone formation and existing bone is increasingly being resorbed by the body to maintain the calcium balance. Some causes of this bone loss can be attributed to dysregulation of osteoblast and osteoclast activity mediated by increased oxidative stress through the aging process. Due to certain serious adverse effects of the currently available therapeutic agents that limit their efficacy, complementary and alternative medicine (CAM) has garnered interest as a natural means for the prevention of this debilitating disease. Natural antioxidant supplementation, a type of CAM, has been researched to aid in reducing bone loss caused by oxidative stress. Naturally occurring polyphenols, such as anthocyanins rich in berries, are known to have anti-oxidative properties. Several studies have been reviewed to determine the impact polyphenol intake—particularly that of berries—has on bone health. Studies reveal a positive association of high berry intake and higher bone mass, implicating berries as possible inexpensive alternatives in reducing the risk of age related bone loss. PMID:26784669

  2. Optimal management of cancer treatment-induced bone loss: considerations for elderly patients.

    PubMed

    Tipples, Karen; Robinson, Anne

    2011-11-01

    Hormone manipulation, commonly used in breast and prostate cancer, can result in significant bone loss. In multiple myeloma (MM), corticosteroids play an important role in therapy but increase the risk of fracture over that expected for any given bone mineral density. These adverse effects on the skeletal system are particularly relevant in the elderly population, in whom osteoporosis can significantly affect not only quality of life but also survival. The associated health and social care costs are becoming increasingly important. Screening with dual energy x-ray absorptiometry (DXA) scans and lifestyle advice on smoking, alcohol and dietary intake are essential parts of the management of patients with cancer treatment-induced bone loss. The value of exercise also cannot be underestimated. A careful drug review should be carried out to eliminate agents that may potentially exacerbate bone toxicity. Therapies to address bone toxicities include bisphosphonates, which have been shown to play an increasingly important role in preventing declines in bone health. The issues of compliance when oral agents are used should not be underestimated. Renal toxicity and osteonecrosis of the jaw are relevant toxicities, especially in the elderly. Cardiac toxicity has not been proven, but there is evidence to suggest that the suppression of bone turnover seen with some, although not all, bisphosphonates is not reversed following cessation of treatment. The implications of this finding need to be borne in mind when treating elderly patients. The possibility of atypical fractures in patients taking bisphosphonates also needs to be given consideration, although this remains a rare complication. Recently, the receptor activator of nuclear factor-κB ligand (RANKL) ligand antibody denosumab has been shown to be of value in fracture prevention, and its subcutaneous route of administration offers a potential advantage. Oncologists should also remember that tamoxifen, which has little

  3. Combination chemotherapy with cyclophosphamide, epirubicin and 5-fluorouracil causes trabecular bone loss, bone marrow cell depletion and marrow adiposity in female rats.

    PubMed

    Fan, Chiaming; Georgiou, Kristen R; McKinnon, Ross A; Keefe, Dorothy M K; Howe, Peter R C; Xian, Cory J

    2016-05-01

    The introduction of anthracyclines to adjuvant chemotherapy has increased survival rates among breast cancer patients. Cyclophosphamide, epirubicin and 5-fluorouracil (CEF) combination therapy is now one of the preferred regimens for treating node-positive breast cancer due to better survival with less toxicity involved. Despite the increasing use of CEF, its potential in causing adverse skeletal effects remains unclear. Using a mature female rat model mimicking the clinical setting, this study examined the effects of CEF treatment on bone and bone marrow in long bones. Following six cycles of CEF treatment (weekly intravenous injections of cyclophosphamide at 10 mg/kg, epirubicin at 2.5 mg/kg and 5-flurouracil at 10 mg/kg), a significant reduction in trabecular bone volume was observed at the metaphysis, which was associated with a reduced serum level of bone formation marker alkaline phosphatase (ALP), increased trends of osteoclast density and osteoclast area at the metaphysis, as well as an increased size of osteoclasts being formed from the bone marrow cells ex vivo. Moreover, a severe reduction of bone marrow cellularity was observed following CEF treatment, which was accompanied by an increase in marrow adipose tissue volume. This increase in marrow adiposity was associated with an expansion in adipocyte size but not in marrow adipocyte density. Overall, this study indicates that six cycles of CEF chemotherapy may induce some bone loss and severe bone marrow damage. Mechanisms for CEF-induced bone/bone marrow pathologies and potential preventive strategies warrant further investigation.

  4. Domain loss facilitates accelerated evolution and neofunctionalization of duplicate snake venom metalloproteinase toxin genes.

    PubMed

    Casewell, Nicholas R; Wagstaff, Simon C; Harrison, Robert A; Renjifo, Camila; Wüster, Wolfgang

    2011-09-01

    Gene duplication is a key mechanism for the adaptive evolution and neofunctionalization of gene families. Large multigene families often exhibit complex evolutionary histories as a result of frequent gene duplication acting in concordance with positive selection pressures. Alterations in the domain structure of genes, causing changes in the molecular scaffold of proteins, can also result in a complex evolutionary history and has been observed in functionally diverse multigene toxin families. Here, we investigate the role alterations in domain structure have on the tempo of evolution and neofunctionalization of multigene families using the snake venom metalloproteinases (SVMPs) as a model system. Our results reveal that the evolutionary history of viperid (Serpentes: Viperidae) SVMPs is repeatedly punctuated by domain loss, with the single loss of the cysteine-rich domain, facilitating the formation of P-II class SVMPs, occurring prior to the convergent loss of the disintegrin domain to form multiple P-I SVMP structures. Notably, the majority of phylogenetic branches where domain loss was inferred to have occurred exhibited highly significant evidence of positive selection in surface-exposed amino acid residues, resulting in the neofunctionalization of P-II and P-I SVMP classes. These results provide a valuable insight into the mechanisms by which complex gene families evolve and detail how the loss of domain structures can catalyze the accelerated evolution of novel gene paralogues. The ensuing generation of differing molecular scaffolds encoded by the same multigene family facilitates gene neofunctionalization while presenting an evolutionary advantage through the retention of multiple genes capable of encoding functionally distinct proteins.

  5. Cadmium effects on bone metabolism: accelerated resorption in ovariectomized, aged beagles.

    PubMed

    Sacco-Gibson, N; Chaudhry, S; Brock, A; Sickles, A B; Patel, B; Hegstad, R; Johnston, S; Peterson, D; Bhattacharyya, M

    1992-04-01

    The purpose of this study was to evaluate, in an animal whose skeleton is comparable to humans, the combined effects of estrogen depletion and Cd exposure on bone resorption by monitoring skeletal release of 45Ca and to determine whether Cd-induced bone resorption occurred independent of osteotropic hormone changes and renal dysfunction. Cd exposure following ovariectomy or sham surgery was for 7 months: 1 month by oral ingestion of capsules (1, 5, 15, 50 ppm) and 6 months via drinking water (15 ppm). Serum and fecal 45Ca were increased at 1 week following ovariectomy (OV) (54 +/- 9% and 122 +/- 40%, respectively), but this response was attenuated by 2 weeks. Five of seven exposed dogs had increased serum and fecal 45Ca during the 50-ppm Cd capsule period (15-40% and 15-190%, respectively). Serum 45Ca levels in OV/+Cd dogs showed a significant and consistent increase within 1 week of initiating each of three separate Cd.H2O exposure cycles. Blood Cd levels increased over time from 2 to 15 micrograms/l, coinciding with the elevated serum 45Ca concentrations. No correlation was observed between serum 45Ca increases and parathyroid hormone, 1,25-(OH)2-vitamin D, or calcitonin. No effects of ovariectomy and/or Cd were observed in total serum Ca, calciotropic hormone concentrations, serum or urinary phosphorus and creatinine, creatinine clearance, or urinary specific gravity. Urinary Cd concentrations ranged from 7 to 50 micrograms/l in exposed dogs but were not detectable in nonexposed dogs. Urinary protein concentrations showed no differences between groups. Cd increased bone resorption (skeletal 45Ca release) in ovariectomized and sham-operated dogs without renal dysfunction or calciotropic hormone interaction. Based on our results, Cd is an exogenous factor which exacerbates bone mineral loss in postmenopausal osteoporosis.

  6. Supplementary vitamin C does not accelerate bone healing in a rat tibia fracture model

    PubMed Central

    Giordano, Vincenzo; Albuquerque, Rodrigo Pires e; do Amaral, Ney Pecegueiro; Chame, Cristiano Curcio; de Souza, Fabio; Apfel, Mara Íbis Rodrigues

    2012-01-01

    Objective To investigate the role of ascorbic acid supplementation on bone healing after rat tibia fracture. Methods Thirty male Wistar rats were randomly divided into Vitamin C (Group A) and sham (Group B) groups (15 rats each). Group A received 200 mg intraperitoneally per kg per day of ascorbic acid and Group B was given saline 5 ml per kg per day intraperitoneally once a day. The animals were caged in pairs and allowed free access to tap water and a standard rodent chow ad libitum. Fractures were produced manually, they were not stabilized, and unprotected weight-bearing was allowed. At two, four, and six weeks post-fracture, the rats in both groups were anesthetized and sacrificed by cervical dislocation. Callus tissue was dissected, prepared, and analyzed histologically. Histomorphological analysis was performed at six weeks post-fracture and the extent of fracture healing was determined using a five-point scale. Results There were no histological and histomorphological differences between drug-treated animals and the sham in the three different stages studied. By six weeks post-fracture, the five animals of each group had a complete bone union. Conclusion Under the studied conditions, intraperitoneal Vitamin C supplementation does not accelerate the fracture healing process after experimental tibia fracture in rats. Level of evidence: Level 2, individual study with experimental design. PMID:24453572

  7. The Effects of Weight Loss on Relative Bone Mineral Density in Premenopausal Women

    PubMed Central

    Hamilton, Kara C.; Fisher, Gordon; Roy, Jane L.; Gower, Barbara A.; Hunter, Gary R.

    2012-01-01

    Heavier individuals have higher bone mineral density (BMD) than individuals of lower body weight, but it is unclear whether BMD changes in proportion to body weight during weight loss. This study compared BMD relative to body weight following a ~6 months weight loss program and a one year weight maintenance phase in premenopausal women and determined whether African American (AA) and European-American (EA) women’s BMD respond similarly during weight loss. Premenopausal women (n=115, 34 ± 5 yrs.) were evaluated in an overweight state (BMI between 27–30 kg/m2), following an 800 kcal/day diet/exercise program designed to reduce BMI <25 kg/m2, and one year following weight loss. Results indicated that BMD relative to body weight (Z-scores) increased after weight loss, but decreased during the one year weight maintenance phase. All one year follow up BMD Z-scores were increased (except L1) compared to baseline measurements (P < 0.05). These sites included the hip neck (+0.088, P=0.014), total hip (+0.099, P=0.001), L2 (+0.127, P=0.013), L3 (+0.135, P=0.014), and L4 (+0.199, P=0.002). AAs had significantly higher absolute BMD at all sites (P<0.05) compared to EAs, but no time by race interactions were evident during weight loss (except in L3). These results may indicate that weight loss is safe with regard to bone health for overweight premenopausal women. PMID:23404937

  8. Herbacetin inhibits RANKL-mediated osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo.

    PubMed

    Li, Liang; Sapkota, Mahesh; Kim, Se-woong; Soh, Yunjo

    2016-04-15

    Herbacetin is an active flavonol (a type of flavonoid) that has various biologic effects such as antioxidant, antitumor, and anti-inflammatory activities. However, one of its novel effects remains to be investigated, that is, the induction of osteoclastogenesis by the receptor activator of nuclear factor-κB ligand (RANKL). In this study, we examined the effects and mechanisms of action of herbacetin on osteoclastogenesis in RANKL-treated bone marrow-derived macrophages (BMMs) and murine macrophage RAW264.7 cells in vitro and on lipopolysaccharide (LPS)-induced bone destruction in vivo. Herbacetin significantly inhibited RANKL-induced osteoclast formation and differentiation in BMMs and RAW264.7 cells in a dose-dependent manner. Moreover, the suppressive effect of herbacetin resulted in a decrease in osteoclast-related genes, including RANK, tartrate-resistant acid phosphatase, cathepsin K, and matrix metalloproteinase-2 and -9 (MMP-9). Consistent with mRNA results, we confirmed that herbacetin treatment downregulated protein expression of MMP-9 and cathepsin K. Herbacetin also decreased induction of the osteoclastogenic transcription factor c-Fos and nuclear factor of activated T cells c1 (NFATc1) and blocked RANKL-mediated activation of Jun N-terminal kinase (JNK) and nuclear factor-κB. Herbacetin clearly inhibited the bone resorption activity of osteoclasts on plates coated with fluorescein-labeled calcium phosphate. More importantly, the application of herbacetin significantly reduced LPS-induced inflammatory bone loss in mice in vivo. Taken together, our results indicate that herbacetin has potential for use as a therapeutic agent in disorders associated with bone loss.

  9. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands

    USGS Publications Warehouse

    Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S.

    2011-01-01

    Climate change has increased the area affected by forest fires each year in boreal North America. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult to assess. Here, we examined the depth of ground-layer combustion in 178 sites dominated by black spruce in Alaska, using data collected from 31 fire events between 1983 and 2005. We show that the depth of burning increased as the fire season progressed when the annual area burned was small. However, deep burning occurred throughout the fire season when the annual area burned was large. Depth of burning increased late in the fire season in upland forests, but not in peatland and permafrost sites. Simulations of wildfire-induced carbon losses from Alaskan black spruce stands over the past 60 years suggest that ground-layer combustion has accelerated regional carbon losses over the past decade, owing to increases in burn area and late-season burning. As a result, soils in these black spruce stands have become a net source of carbon to the atmosphere, with carbon emissions far exceeding decadal uptake.

  10. Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts.

    PubMed

    Heathcote, Adam J; Filstrup, Christopher T; Downing, John A

    2013-01-01

    Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha(-1). Sediment deposition from erosion increased >6-fold, from 149 g m(-2) yr(-1) in 1850 to 986 g m(-2) yr(-1) by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm(-1) at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation.

  11. Racial Differences in Bone Loss and Relation to Menopause Among HIV-infected and Uninfected Women

    PubMed Central

    Sharma, Anjali; Flom, Peter L.; Rosen, Clifford J.; Schoenbaum, Ellie E.

    2015-01-01

    Objective To characterize changes in bone mineral density (BMD) according to race among HIV-infected and uninfected women, and to evaluate the relationship between race and menopause-related bone loss. Methods Dual x-ray absorptiometry measured BMD on study entry and a minimum of 18 months later in 246 HIV-infected and 219 HIV-uninfected women in the Menopause Study. Linear regression analyses determined percent annual BMD change at total hip (TH), femoral neck (FN), and lumbar spine (LS) after adjusting for potential confounders. Race-stratified and HIV-infected subgroup analyses were performed. Results At baseline, mean age was 45 years, 19% of women were postmenopausal. HIV-infected women were more likely to be black (58% vs. 38%), and had lower BMI and less cigarette exposure when compared to HIV-uninfected women. Women who were perimenopausal at baseline and postmenopausal at follow-up had the greatest TH bone loss (−1.68%/yr, p<.0001) followed by those postmenopausal throughout (−1.02%/yr, p=.007). We found a significant interaction between HIV status and race in multivariate analyses of BMD change at the FN and TH. In race-stratified analyses, HIV infection was associated with TH BMD loss in non-black women. Black women experienced greater menopause-associated decline in TH BMD compared with non-black women. Conclusions The association of HIV and BMD differs strikingly by race, as do the effects of the menopausal transition on bone. Determining the extent to which the effect of HIV on fracture risk varies by race will be crucial to identify HIV-infected women at greatest risk for osteoporotic fracture, particularly as they enter menopause. PMID:25896953

  12. Biophotonics and Bone Biology

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory; Fischer, David; Asipauskas, Marius; Chauhan, Chirag; Compitello, Nicole; Burke, Jamie; Tate, Melissa Knothe

    2004-01-01

    One of the more-serious side effects of extended space flight is an accelerated bone loss [Bioastronautics Critical Path Roadmap, http://research.hq.nasa.gov/code_u/bcpr/index.cfm]. Rates of bone loss are highest in the weight-bearing bones of the hip and spine regions, and the average rate of bone loss as measured by bone mineral density measurements is around 1.2% per month for persons in a microgravity environment. It shows that an extrapolation of the microgravity induced bone loss rates to longer time scales, such as a 2.5 year round-trip to Mars (6 months out at 0 g, 1.5 year stay on Mars at 0.38 g, 6 months back at 0 g), could severely compromise the skeletal system of such a person.

  13. Amphibian skull evolution: The developmental and functional context of simplification, bone loss and heterotopy.

    PubMed

    Schoch, Rainer R

    2014-11-10

    Despite their divergent morphology, extant and extinct amphibians share numerous features in the timing and spatial patterning of dermal skull elements. Here, I show how the study of these features leads to a deeper understanding of morphological evolution. Batrachians (salamanders and frogs) have simplified skulls, with dermal bones appearing rudimentary compared with fossil tetrapods, and open cheeks resulting from the absence of other bones. The batrachian skull bones may be derived from those of temnospondyls by truncation of the developmental trajectory. The squamosal, quadratojugal, parietal, prefrontal, parasphenoid, palatine, and pterygoid form rudimentary versions of their homologs in temnospondyls. In addition, failure to ossify and early fusion of bone primordia both result in the absence of further bones that were consistently present in Paleozoic tetrapods. Here, I propose a new hypothesis explaining the observed patterns of bone loss and emargination in a functional context. The starting observation is that jaw-closing muscles are arranged in a different way than in ancestors from the earliest ontogenetic stage onwards, with muscles attaching to the dorsal side of the frontal, parietal, and squamosal. The postparietal and supratemporal start to ossify in a similar way as in branchiosaurids, but are fused to neighboring elements to form continuous attachment areas for the internal adductor. The postfrontal, postorbital, and jugal fail to ossify, as their position is inconsistent with the novel arrangement of adductor muscles. Thus, rearrangement of adductors forms the common theme behind cranial simplification, driven by an evolutionary flattening of the skull in the batrachian stem. J. Exp. Zool. (Mol. Dev. Evol.) 9999B: XX-XX, 2014. © 2014 Wiley Periodicals, Inc.

  14. Effects of electromagnetic fields on bone loss in hyperthyroidism rat model.

    PubMed

    Liu, Chaoxu; Zhang, Yingchi; Fu, Tao; Liu, Yang; Wei, Sheng; Yang, Yong; Zhao, Dongming; Zhao, Wenchun; Song, Mingyu; Tang, Xiangyu; Wu, Hua

    2017-02-01

    Optimal therapeutics for hyperthyroidism-induced osteoporosis are still lacking. As a noninvasive treatment, electromagnetic fields (EMF) have been proven to be effective for treating osteoporosis in non-hyperthyroidism conditions. We herein systematically evaluated the reduced effects of EMF on osteoporosis in a hyperthyroidism rat model. With the use of Helmholtz coils and an EMF stimulator, 15 Hz/1 mT EMF was generated. Forty-eight 5-month-old male Sprague-Dawley rats were randomly divided into four different groups: control, levothyroxine treated (L-T4), EMF exposure + levothyroxine (EMF + L-T4), and EMF exposure without levothyroxine administration (EMF). All rats were treated with L-T4 (100 mg/day) except those in control and EMF groups. After 12 weeks, the results obtained from bone mineral density analyses and bone mechanical measurements showed significant differences between L-T4 and EMF + L-T4 groups. Micro CT and bone histomorphometric analyses indicated that trabecular bone mass and architecture in distal femur and proximal tibia were augmented and restored partially in EMF + L-T4 group. In addition, bone thyroid hormone receptors (THR) expression of hyperthyroidism rats was attenuated in EMF + L-T4 group, compared to control group, which was not observed in L-T4 group. According to these results, we concluded that 15 Hz/1 mT EMF significantly inhibited bone loss and micro architecture deterioration in hyperthyroidism rats, which might occur due to reduced THR expression caused by EMF exposure. Bioelectromagnetics. 38:137-150, 2017. © 2016 Wiley Periodicals, Inc.

  15. Treatment And Results Of Combined Mild Bone Loss Instability With The Modified Laterjet

    PubMed Central

    Yang, Justin Shu; Mazzocca, Augustus D.; Arciero, Robert A.

    2015-01-01

    Objectives: Recurrent anterior glenohumeral dislocation in the setting of an engaging Hill-Sachs lesion is high. The Latarjet procedure has been well-described for restoring glenohumeral stability in patients with over 25% glenoid bone loss. However, the treatment for patients with combined humeral head and mild (<25%) glenoid bone loss remains unclear. We report on the outcomes of the modified Latarjet for this population. Methods: Modified Latarjet was performed in twenty three patients with recurrent anterior shoulder instability, engaging Hill-Sachs by exam confirmed with arthroscopy, and less than 25% anterior glenoid bone loss. The mean follow-up was 3.5 years. All patients were assessed for their risk of recurrence using the Instability Severity Index Score (ISIS), had pre-operative 3D imaging to assess humeral and glenoid bone loss. Single Assessment Numeric Evaluation (SANE), Western Ontario Shoulder Instability Index (WOSI), recurrence rate, radiographs, range of motion and dynamometer strength were used to assess outcomes. Results: Average pre-operative instability severity index score was 6.2 (range 4-9). Pre-operative glenoid bone loss averaged 15.1% (range 5-25%). The humeral defect averaged 40.4% in width and 13.7% in depth on axial computed tomography scan, with an average Hill-Sachs angle of 28°. The mean WOSI index was 457 of 2100 (range 0-1398). The mean SANE score was 81.2 (range 60-100). Five out of ten competitive athletes returned to play for at least one season. There were no recurrent dislocation and three patients had a single episode of recurrent subluxation. Loss of external rotation at the side averaged 8°, and there was no significant loss of abduction. Subscapularis, abduction and external rotation strength averaged greater than 85% of the contralateral shoulder. Fourteen patients on average had 1.4 (range 1-4) previous open or arthroscopic stabilization procedures prior to the Latarjet, nine others had Latarjet done primarily. WOSI

  16. An in vitro study of ultrasound signal loss across simple fractures in cortical bone mimics and bovine cortical bone samples.

    PubMed

    Dodd, S P; Cunningham, J L; Miles, A W; Gheduzzi, S; Humphrey, V F

    2007-03-01

    Measurements have been performed on Sawbones and bovine cortical bone samples at 200 kHz using an axial transmission technique to investigate the factors that determine how ultrasonic waves propagate across a simulated fracture. The peak amplitude of the first arrival signal (FAS) was studied. Results taken from intact specimens were compared with those produced when a simple transverse fracture was introduced. These fracture simulation experiments were found to be consistent with Finite Difference modelling of the experimental conditions. The peak amplitude showed a characteristic variation across the fracture caused by interference between reradiated and scattered/diffracted waves at the fracture site and a net Fracture Transmission Loss (FTL). For small fracture gaps, the change in amplitude was sensitive to the presence of the fracture. This sensitivity suggests that this parameter could be a good quantitative indicator for the fracture healing process assuming the relative change in this parameter brought about by healing is measurable.

  17. Quantitative Computerized Assessment of the Degree of Acetabular Bone Deficiency: Total radial Acetabular Bone Loss (TrABL)

    PubMed Central

    Gelaude, Frederik; Clijmans, Tim; Delport, Hendrik

    2011-01-01

    A novel quantitative, computerized, and, therefore, highly objective method is presented to assess the degree of total radical acetabular bone loss. The method, which is abbreviated to “TrABL”, makes use of advanced 3D CT-based image processing and effective 3D anatomical reconstruction methodology. The output data consist of a ratio and a graph, which can both be used for direct comparison between specimens. A first dataset of twelve highly deficient hemipelves, mainly Paprosky types IIIB, is used as illustration. Although generalization of the findings will require further investigation on a larger population, it can be assumed that the presented method has the potential to facilitate the preoperative use of existing classifications and related decision schemes for treatment selection in complex revision cases. PMID:22013539

  18. The relationship between blood lead levels and periodontal bone loss in the United States, 1988-1994.

    PubMed Central

    Dye, Bruce A; Hirsch, Rosemarie; Brody, Debra J

    2002-01-01

    An association between bone disease and bone lead has been reported. Studies have suggested that lead stored in bone may adversely affect bone mineral metabolism and blood lead (PbB) levels. However, the relationship between PbB levels and bone loss attributed to periodontal disease has never been reported. In this study we examined the relationship between clinical parameters that characterize bone loss due to periodontal disease and PbB levels in the U.S. population. We used data from the Third National Health and Nutritional Examination Survey (NHANES III), 1988-1994, for the analyses. A total of 10,033 participants 20-69 years of age who completed a periodontal examination and had whole blood tested for lead were examined. Four types of periodontal disease measures were used to indicate oral bone loss: periodontal pocket depth, attachment loss extent, attachment loss severity, and the presence of dental furcations. We found that dental furcations were the best periodontal bone loss indicator for PbB levels (p = 0.005) in a multivariate linear regression model adjusting for sex, age, race/ethnicity, educational attainment, poverty status, smoking, and age of home. Furthermore, after additional modeling, we found a smoking and dental furcation interaction (p = 0.034). Subsequent stratified analyses indicated that current and past smoking is an effect modifier for dental furcations on PbB levels. These findings indicate that increased PbB levels may be associated with advanced periodontal bone loss, particularly among people with a history of smoking. PMID:12361924

  19. Resistance exercise as a countermeasure to disuse-induced bone loss

    NASA Technical Reports Server (NTRS)

    Shackelford, L. C.; LeBlanc, A. D.; Driscoll, T. B.; Evans, H. J.; Rianon, N. J.; Smith, S. M.; Spector, E.; Feeback, D. L.; Lai, D.

    2004-01-01

    During spaceflight, skeletal unloading results in loss of bone mineral density (BMD). This occurs primarily in the spine and lower body regions. This loss of skeletal mass could prove hazardous to astronauts on flights of long duration. In this study, intense resistance exercise was used to test whether a training regimen would prevent the loss of BMD that accompanies disuse. Nine subjects (5 men, 4 women) participated in a supine maximal resistance exercise training program during 17 wk of horizontal bed rest. These subjects were compared with 18 control subjects (13 men, 5 women) who followed the same bed rest protocol without exercise. Determination of treatment effect was based on measures of BMD, bone metabolism markers, and calcium balance obtained before, during, and after bed rest. Exercisers and controls had significantly (P < 0.05) different means, represented by the respective following percent changes: lumbar spine BMD, +3% vs. -1%; total hip BMD, +1% vs. -3%; calcaneus BMD, +1% vs. -9%; pelvis BMD, -0.5% vs. -3%; total body BMD, 0% vs. -1%; bone-specific alkaline phosphatase, +64% vs. 0%; alkaline phosphatase, +31% vs. +5%; osteocalcin, +43% vs. +10%; 1,25 dihydroxyvitamin D, +12% vs. -15%; parathyroid hormone intact molecule, +18% vs. -25%; and serum and ionized calcium, -1% vs. +1%. The difference in net calcium balance was also significant (+21 mg/day vs. -199 mg/day, exercise vs. control). The gastrocnemius and soleus muscle volumes decreased significantly in the exercise group, but the loss was significantly less than observed in the control group. The results indicate that resistance exercise had a positive treatment effect and thus might be useful as a countermeasure to prevent the deleterious skeletal changes associated with long-duration spaceflight.

  20. Synergistic Effect of Green Tea Polyphenols and Vitamin D on Chronic Inflammation-Induced Bone Loss in Female Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent study demonstrated a bone-protective role of green tea polyphenols (GTPs), extracted from green tea, in chronic inflammation-induced bone loss of female rats through reduction of inflammation and oxidative stress. This study further examines effects of GTPs in conjunction with vitamin D (...

  1. Synergistic effects of green tea polyphenols and alphacalcidol on chronic inflammation-induced bone loss in female rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Summary: Studies suggest that green tea polyphenols (GTP) or alphacalcidol is promising agent for preventing bone loss. Findings that GTP supplementation in the drinking water plus alphacalcidol administration resulted in increased bone mass via a decrease of oxidative stress and inflammation sugges...

  2. Loss of functional NADPH oxidase-2 protects against alcohol-induced bone resorption in female p47phox-/- mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In bone, oxidant signaling through NADPH oxidase (NOX)-derived reactive oxygen species (ROS) is an important stimulus for osteoclast differentiation and activity. We have previously demonstrated that chronic alcohol abuse produces bone loss through NOX-dependent mechanisms. In the current study, s...

  3. The prevalence of osteoporosis and the rate of bone loss in Korean adults: the Chungju metabolic disease cohort (CMC) study.

    PubMed

    Lim, Y; Jo, K; Ha, H-S; Yim, H-W; Yoon, K-H; Lee, W-C; Son, H-Y; Baek, K H; Kang, M-I

    2017-04-01

    Because the rate of bone loss is an important risk factor for fracture, we studied longitudinal changes in bone mineral density (BMD). Although the BMD of the hip decreased over time, spine BMD remained largely stable or increased. Therefore, spine BMD may not be appropriate for assessing BMD change.

  4. Accelerating Plasma Mirrors to Investigate the Black Hole Information Loss Paradox.

    PubMed

    Chen, Pisin; Mourou, Gerard

    2017-01-27

    The question of whether Hawking evaporation violates unitarity, and therefore results in the loss of information, has remained unresolved since Hawking's seminal discovery. To date, the investigations have remained mostly theoretical since it is almost impossible to settle this paradox through direct astrophysical black hole observations. Here, we point out that relativistic plasma mirrors can be accelerated drastically and stopped abruptly by impinging intense x-ray pulses on solid plasma targets with a density gradient. This is analogous to the late time evolution of black hole Hawking evaporation. A conception of such an experiment is proposed and a self-consistent set of physical parameters is presented. Critical issues, such as how the black hole unitarity may be preserved, can be addressed through the entanglement between the analog Hawking radiation photons and their partner modes.

  5. Accelerating Plasma Mirrors to Investigate the Black Hole Information Loss Paradox

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Mourou, Gerard

    2017-01-01

    The question of whether Hawking evaporation violates unitarity, and therefore results in the loss of information, has remained unresolved since Hawking's seminal discovery. To date, the investigations have remained mostly theoretical since it is almost impossible to settle this paradox through direct astrophysical black hole observations. Here, we point out that relativistic plasma mirrors can be accelerated drastically and stopped abruptly by impinging intense x-ray pulses on solid plasma targets with a density gradient. This is analogous to the late time evolution of black hole Hawking evaporation. A conception of such an experiment is proposed and a self-consistent set of physical parameters is presented. Critical issues, such as how the black hole unitarity may be preserved, can be addressed through the entanglement between the analog Hawking radiation photons and their partner modes.

  6. TUSC3 Loss Alters the ER Stress Response and Accelerates Prostate Cancer Growth in vivo

    NASA Astrophysics Data System (ADS)

    Horak, Peter; Tomasich, Erwin; Vaňhara, Petr; Kratochvílová, Kateřina; Anees, Mariam; Marhold, Maximilian; Lemberger, Christof E.; Gerschpacher, Marion; Horvat, Reinhard; Sibilia, Maria; Pils, Dietmar; Krainer, Michael

    2014-01-01

    Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular.

  7. TUSC3 Loss Alters the ER Stress Response and Accelerates Prostate Cancer Growth in vivo

    PubMed Central

    Horak, Peter; Tomasich, Erwin; Vaňhara, Petr; Kratochvílová, Kateřina; Anees, Mariam; Marhold, Maximilian; Lemberger, Christof E.; Gerschpacher, Marion; Horvat, Reinhard; Sibilia, Maria; Pils, Dietmar; Krainer, Michael

    2014-01-01

    Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular. PMID:24435307

  8. Loss of CDH1 and Pten accelerates cellular invasiveness and angiogenesis in the mouse uterus.

    PubMed

    Lindberg, Mallory E; Stodden, Genna R; King, Mandy L; MacLean, James A; Mann, Jordan L; DeMayo, Francesco J; Lydon, John P; Hayashi, Kanako

    2013-07-01

    E-cadherin (CDH1) is a cell adhesion molecule that coordinates key morphogenetic processes regulating cell growth, cell proliferation, and apoptosis. Loss of CDH1 is a trademark of the cellular event epithelial to mesenchymal transition, which increases the metastatic potential of malignant cells. PTEN is a tumor-suppressor gene commonly mutated in many human cancers, including endometrial cancer. In the mouse uterus, ablation of Pten induces epithelial hyperplasia, leading to endometrial carcinomas. However, loss of Pten alone does not affect longevity until around 5 mo. Similarly, conditional ablation of Cdh1 alone does not predispose mice to cancer. In this study, we characterized the impact of dual Cdh1 and Pten ablation (Cdh1(d/d) Pten(d/d)) in the mouse uterus. We observed that Cdh1(d/d) Pten(d/d) mice died at Postnatal Days 15-19 with massive blood loss. Their uteri were abnormally structured with curly horns, disorganized epithelial structure, and increased cell proliferation. Co-immunostaining of KRT8 and ACTA2 showed invasion of epithelial cells into the myometrium. Further, the uteri of Cdh1(d/d) Pten(d/d) mice had prevalent vascularization in both the endometrium and myometrium. We also observed reduced expression of estrogen and progesterone receptors, loss of cell adherens, and tight junction molecules (CTNNB1 and claudin), as well as activation of AKT in the uteri of Cdh1(d/d) Pten(d/d) mice. However, complex hyperplasia was not found in the uteri of Cdh1(d/d) Pten(d/d) mice. Collectively, these findings suggest that ablation of Pten with Cdh1 in the uterus accelerates cellular invasiveness and angiogenesis and causes early death.

  9. Probiotics (Bifidobacterium longum) Increase Bone Mass Density and Upregulate Sparc and Bmp-2 Genes in Rats with Bone Loss Resulting from Ovariectomy

    PubMed Central

    Parvaneh, Kolsoom; Ebrahimi, Mahdi; Sabran, Mohd Redzwan; Karimi, Golgis; Hwei, Angela Ng Min; Abdul-Majeed, Saif; Ahmad, Zuraini; Ibrahim, Zuriati; Jamaluddin, Rosita

    2015-01-01

    Probiotics are live microorganisms that exert beneficial effects on the host, when administered in adequate amounts. Mostly, probiotics affect the gastrointestinal (GI) tract of the host and alter the composition of gut microbiota. Nowadays, the incidence of hip fractures due to osteoporosis is increasing worldwide. Ovariectomized (OVX) rats have fragile bone due to estrogen deficiency and mimic the menopausal conditions in women. Therefore, this study aimed to examine the effects of Bifidobacterium longum (B. longum) on bone mass density (BMD), bone mineral content (BMC), bone remodeling, bone structure, and gene expression in OVX rats. The rats were randomly assigned into 3 groups (sham, OVX, and the OVX group supplemented with 1 mL of B. longum 108–109 colony forming units (CFU)/mL). B. longum was given once daily for 16 weeks, starting from 2 weeks after the surgery. The B. longum supplementation increased (p < 0.05) serum osteocalcin (OC) and osteoblasts, bone formation parameters, and decreased serum C-terminal telopeptide (CTX) and osteoclasts, bone resorption parameters. It also altered the microstructure of the femur. Consequently, it increased BMD by increasing (p < 0.05) the expression of Sparc and Bmp-2 genes. B. longum alleviated bone loss in OVX rats and enhanced BMD by decreasing bone resorption and increasing bone formation. PMID:26366421

  10. Role of odanacatib in reducing bone loss due to endodontic disease: An overview

    PubMed Central

    Bahuguna, Rachana; Jain, Atul; Khan, Suleman Abbas; Arvind, M. S.

    2016-01-01

    Aims and Objectives: Through a comprehensive literature review, this article provides an overview of the potential role of odanacatib (ODN) in reducing bone loss due to endodontic disease. Materials and Methods: A literature review was performed in PubMed Central, MEDLINE, Cochrane Library, and EBSCO databases. The articles identified included those published between 2002 and 2016. Based on the predetermined inclusion and exclusion criteria, out of 237 articles found, 50 were selected for this review. Results: Cathepsin K (CstK), which is indispensible to the immune system, also plays an important role in osteoclastic bone resorption. ODN, which is an orally active, selective, and effective inhibitor of CstK, decreases bone resorption by selectively inhibiting proteolysis of matrix proteins by CstK, without affecting other osteoclastic activity or osteoblast viability. Conclusion: The goal of endodontic treatment is to achieve a clinically asymptomatic state along with formation of reparative bone. This process could take 6 months or longer, hence, an earlier reversal of the resorption process could lead to faster healing and resolution of the periapical lesion. Use of ODN can be of help in achieving this goal. PMID:28217533

  11. High dietary calcium intake does not counteract disuse-induced bone loss

    NASA Astrophysics Data System (ADS)

    Baecker, N.; Boese, A.; Smith, S. M.; Heer, M.

    Reduction of mechanical stress on bone inhibits osteoblast-mediated bone formation, increases osteoclast-mediated bone resorption, and leads to what has been called disuse osteoporosis. Prolonged therapeutic bed rest, immobilization and space flight are common causes of disuse osteoporosis. There are sufficient data supporting the use of calcium in combination with vitamin D in the prevention and treatment of postmenopausal osteoporosis. In our study we examined the potential of high dietary calcium intake as a nutrition therapy for disuse-induced bone loss during head-down bed rest in healthy young men. In 2 identical metabolic ward, head-down bed rest (HDBR) experiments (crossover design), we studied the effect of high dietary calcium intake (2000 mg/d) in comparison to the recommended calcium intake of 1000 mg/d on markers of bone turnover. Experiment A (EA) was a 6-day randomized, controlled HDBR study. Experiment B (EB) was a 14-day randomized, controlled HDBR study. In both experiments, the test subjects stayed under well-controlled environmental conditions in our metabolic ward. Subjects' diets in the relevant study phases (HDBR versus Ambulatory Control) of EA and EB were identical except for the calcium intake. The subjects obtained 2000 mg/d Calcium in EA and 2000 mg/d in EB. Blood was drawn at baseline, before entering the relevant intervention period, on day 5 in study EA, and on days 6, 11 and 14 in study EB. Serum calcium, bone formation markers - Procollagen-I-C-Propeptide (PICP) and bone alkaline phosphatase (bAP) were analyzed in serum. 24h-urine was collected throughout the studies for determination of the excretion of calcium (UCaV) and a bone resorption marker, C-terminal telopeptide of collagen type I (UCTX). In both studies, serum calcium levels were unchanged. PICP tended to decrease in EA (p=0.08). In EB PICP decreased significantly over time (p=0.003) in both the control and HDBR periods, and tended to further decrease in the HDBR period (p

  12. An experimental demonstration that early-life competitive disadvantage accelerates telomere loss.

    PubMed

    Nettle, Daniel; Monaghan, Pat; Gillespie, Robert; Brilot, Ben; Bedford, Thomas; Bateson, Melissa

    2015-01-07

    Adverse experiences in early life can exert powerful delayed effects on adult survival and health. Telomere attrition is a potentially important mechanism in such effects. One source of early-life adversity is the stress caused by competitive disadvantage. Although previous avian experiments suggest that competitive disadvantage may accelerate telomere attrition, they do not clearly isolate the effects of competitive disadvantage from other sources of variation. Here, we present data from an experiment in European starlings (Sturnus vulgaris) that used cross-fostering to expose siblings to divergent early experience. Birds were assigned either to competitive advantage (being larger than their brood competitors) or competitive disadvantage (being smaller than their brood competitors) between days 3 and 12 post-hatching. Disadvantage did not affect weight gain, but it increased telomere attrition, leading to shorter telomere length in disadvantaged birds by day 12. There were no effects of disadvantage on oxidative damage as measured by plasma lipid peroxidation. We thus found strong evidence that early-life competitive disadvantage can accelerate telomere loss. This could lead to faster age-related deterioration and poorer health in later life.

  13. Revision of tibial TKA components: bone loss is independent of cementing type and technique: an in vitro cadaver study

    PubMed Central

    2011-01-01

    Background Different bone cements and various cementation techniques can lead to different bone loss in revision surgery. We investigated the degree of tibial bone loss depending on different cements and techniques. Methods 30 tibia specimens were matched into three groups (10 each). In all cases Genesis II tibia component were implanted. In two groups, the tibia base plate alone was cemented with Palacos® R+G and Refobacin® Bone Cement R. In the third group, both tibial base plate and tibial stem were cemented with Palacos® R+G. Afterwards, the specimens were axial loaded with 2000 N for 10,000 cycles. Tibial components were explanted and the required time to explantation was recorded. Bone loss after explantation was measured by CT. Results On CT, there was no significant difference in bone loss between cementing techniques (p = 0.077; 95% CI -1.14 - 21.03) or the cements themselves (p = 0.345; 95% CI -6.05 - 16.70). The required time to explantation was 170.6 ± 54.89, 228.7 ± 84.5, and 145.7 ± 73.0 seconds in the first, second, and third groups, respectively. Conclusions Cement technique and type do not influence tibial bone loss in simulated revision surgery of the tibial component in knee arthroplasty. PMID:21219621

  14. Soluble Rank Ligand Produced by Myeloma Cells Causes Generalised Bone Loss in Multiple Myeloma

    PubMed Central

    Lawson, Michelle Anne; Yong, Kwee; Rabin, Neil; Perry, Mark; Vanderkerken, Karen; Croucher, Peter Ian

    2012-01-01

    demonstrate that soluble RANKL produced by myeloma cells causes generalised bone loss, suggesting that targeting RANKL may prevent osteoporosis in patients with myeloma. PMID:22952578

  15. Epidemic typhus fever and hearing loss: a histological study (Hallpike collection of temporal bone sections).

    PubMed

    Friedmann, I; Frohlich, A; Wright, A

    1993-04-01

    Hearing loss as a frequent complication of louse-borne epidemic typhus fever has been well documented in the reports of ENT specialists serving in both the Allied and the German armies in the last war. The present paper describes the characteristic histopathological features as noted in sections of the temporal bones from five British soldiers who died in 1944 of typhus fever during the last war in Eastern Asia. The VIIIth nerve showed multiple 'typhus nodules' and there was extensive interstitial neuritis of the VIIIth nerve and demyelination of the nerve fibres. There were also widely scattered aggregations of mononuclear cells in the inner ear. This unique study was based on the Hallpike collection of temporal bone sections.

  16. Synergistic attenuation of ovariectomy-induced bone loss by combined use of fish oil and 17β-oestradiol.

    PubMed

    Jin, Youri; Lee, Myoungsook; Park, Yongsoon

    2017-02-01

    Oestrogen and n-3 PUFA, especially EPA and DHA, have been reported to have beneficial effects on bone loss. Thus, the purpose of the present study was to investigate the synergistic bone-protective mechanism of combined treatments of EPA+DHA supplementation and oestrogen injection in ovariectomised rats. Rats were fed a modified American Institute of Nutrition-93G diet with 0 %, 1 % or 2 % n-3 PUFA (EPA+DHA) relative to the total energy intake for 12 weeks. Rats were surgically ovariectomised at week 8, and after a 1-week recovery period rats were injected with either 17β-oestradiol-3-benzoate (E2) or maize oil for the last 3 weeks. Combined use of n-3 PUFA and E2 synergistically increased femoral cortical bone volume, bone mineral content and the bone expression of runt-related transcription factor 2 (RUNX2), but decreased the bone expression of IL-1β. Both n-3 PUFA and E2 decreased the bone expressions of IL-7, TNF-α and PPAR-γ, and increased the bone expression of oestrogen receptor-α. n-3 PUFA in the presence of E2 and E2 alone significantly decreased the bone expressions of IL-1β and IL-6 and increased the bone expression of RUNX2. E2 significantly decreased the serum levels of bone turnover markers and the bone expression of receptor activator of NF-κB ligand, but decreased the bone expression of osteoprotegerin. The combined use of n-3 PUFA and E2 exerted synergistic bone-protective efficacy through up-regulation of RUNX2, an essential transcription factor for bone formation, as well as the suppression of bone-resorbing cytokine IL-1β.

  17. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data

    NASA Astrophysics Data System (ADS)

    Velicogna, I.; Sutterley, T. C.; van den Broeke, M. R.

    2014-11-01

    We use Gravity Recovery and Climate Experiment (GRACE) monthly gravity fields to determine the regional acceleration in ice mass loss in Greenland and Antarctica for 2003-2013. We find that the total mass loss is controlled by only a few regions. In Greenland, the southeast and northwest generate 70% of the loss (280±58 Gt/yr) mostly from ice dynamics, the southwest accounts for 54% of the total acceleration in loss (25.4±1.2 Gt/yr2) from a decrease in surface mass balance (SMB), followed by the northwest (34%), and we find no significant acceleration in the northeast. In Antarctica, the Amundsen Sea (AS) sector and the Antarctic Peninsula account for 64% and 17%, respectively, of the total loss (180±10 Gt/yr) mainly from ice dynamics. The AS sector contributes most of the acceleration in loss (11±4 Gt/yr2), and Queen Maud Land, East Antarctica, is the only sector with a significant mass gain due to a local increase in SMB (63±5 Gt/yr).

  18. Inactivation of Vhl in Osteochondral Progenitor Cells Causes High Bone Mass Phenotype and Protects Against Age-Related Bone Loss in Adult Mice

    PubMed Central

    Weng, Tujun; Xie, Yangli; Huang, Junlan; Luo, Fengtao; Yi, Lingxian; He, Qifen; Chen, Di; Chen, Lin

    2014-01-01

    Previous studies have shown that disruption of von Hippel–Lindau gene (Vhl) coincides with activation of hypoxia-inducible factor α (HIFα) signaling in bone cells and plays an important role in bone development, homeostasis, and regeneration. It is known that activation of HIF1α signaling in mature osteoblasts is central to the coupling between angiogenesis and bone formation. However, the precise mechanisms responsible for the coupling between skeletal angiogenesis and osteogenesis during bone remodeling are only partially elucidated. To evaluate the role of Vhl in bone homeostasis and the coupling between vascular physiology and bone, we generated mice lacking Vhl in osteochondral progenitor cells (referred to as Vhl cKO mice) at postnatal and adult stages in a tamoxifen-inducible manner and changes in skeletal morphology were assessed by micro–computed tomography (µCT), histology, and bone histomorphometry. We found that mice with inactivation of Vhl in osteochondral progenitor cells at the postnatal stage largely phenocopied that of mice lacking Vhl in mature osteoblasts, developing striking and progressive accumulation of cancellous bone with increased microvascular density and bone formation. These were accompanied with a significant increase in osteoblast proliferation, upregulation of differentiation marker Runx2 and osteocalcin, and elevated expression of vascular endothelial growth factor (VEGF) and phosphorylation of Smad1/5/8. In addition, we found that Vhl deletion in osteochondral progenitor cells in adult bone protects mice from aging-induced bone loss. Our data suggest that the VHL-mediated signaling in osteochondral progenitor cells plays a critical role in bone remodeling at postnatal/adult stages through coupling osteogenesis and angiogenesis. © 2014 American Society for Bone and Mineral Research. PMID:23999831

  19. Expression of SOFAT by T- and B-lineage cells may contribute to bone loss

    PubMed Central

    JARRY, CHRISTIAN R.; MARTINEZ, ELIZABETH F.; PERUZZO, DAIANE C.; CARREGARO, VANESSA; SACRAMENTO, LAÍS A.; ARAÚJO, VERA C.; WEITZMANN, M. NEALE; NAPIMOGA, MARCELO H.

    2016-01-01

    A novel T cell-secreted cytokine, termed secreted osteoclastogenic factor of activated T cells (SOFAT) that induces osteoclastic bone resorption in a RANKL-independent manner, has been described. Our group have previously reported that SOFAT is highly expressed in gingival tissues of patients with chronic periodontitis suggesting a putative role in the bone loss associated with periodontal disease. The aim of the present study was to identify other potential cellular sources of SOFAT in the bone resorptive lesions of patients with periodontal disease. Gingival tissues were biopsied from systemically healthy subjects without periodontal disease (n=5) and patients with chronic periodontitis (n=5), and the presence of SOFAT was analyzed by immunohistochemistry and immunofluorescence staining. The present data demonstrated marked SOFAT staining in diseased periodontal tissues that was predominantly associated with the lymphocytic infiltration of gingival tissues. Notably, in addition to CD3+ T cells, B-lineage cells including plasma cells also exhibited strong staining for SOFAT. As SOFAT has not previously been reported in B-lineage cells, splenic T cells and B cells were further purified from BALB/c mice and activated using CD3/CD28 and lipopolysaccharide, respectively. SOFAT was quantified by reverse transcription-quantitative polymerase chain reaction and was shown to be significantly expressed (P<0.05) in both activated T cells and B cells compared with unstimulated cells. These data support a putative role of SOFAT in the bone loss associated with chronic periodontal disease. In addition, to the best of our knowledge, this study demonstrates for the first time that in addition to T cells, B-lineage cells may also be a significant source of SOFAT in inflammatory states. PMID:27035849

  20. Pamidronate in the prevention of bone loss after liver transplantation: a randomized controlled trial.

    PubMed

    Monegal, Ana; Guañabens, Núria; Suárez, María Jesús; Suárez, Francisco; Clemente, Gerardo; García-González, Miguel; De la Mata, Manuel; Serrano, Trinidad; Casafont, Fernando; Tome, Santiago; Torne, Santiago; Barrios, Cesar; Navasa, Miquel

    2009-02-01

    Rapid bone loss and high rates of fractures occur following liver transplantation. To analyze the effect of intravenous pamidronate on bone loss after liver transplantation. A randomized, double-blind, placebo-controlled study was performed. Seventy-nine patients were randomized to two groups of treatment: the pamidronate group (n = 38) was treated with 90 mg/IV of pamidronate within the first 2 weeks and at 3 months after transplantation; the placebo group (n = 41) received glucose infusions at the same time points. All patients received calcium and vitamin D. Bone mineral density (BMD) at the lumbar spine (L(2)-L(4)) and proximal femur using dual energy X-ray absorptiometry and also spinal X-rays were performed before, and at 6 and 12 months after liver transplantation. Biochemical and hormonal determinations were performed previous to transplantation, at 24 h before and after treatment, as well as at 6 and 12 months after liver transplantation. At 12 months after transplantation, there were significant differences in lumbar BMD changes (6 months: pamidronate 1.6% vs. placebo 0.8%, P = NS; 12 months: pamidronate 2.9% vs. placebo 1%, P < 0.05). Femoral neck BMD decreased in the pamidronate- and placebo groups during the first 6 months (6 months: pamidronate -3.1% vs. placebo -2.9%, P = NS; 12 months: pamidronate -3.2% vs. placebo -3.1%, P = NS). BMD at the trochanter remained stable in the pamidronate group, whilst a reduction was observed in the placebo group at 6 months (6 months: pamidronate -0.7% vs. placebo -3.7%, P < 0.05; 12 months: pamidronate -0.5% vs. placebo -1.2%, P = NS). Moreover, no significant differences in the incidence of fractures, serum parathyroid hormone and serum 25-hydroxyvitamin D values between both groups were found. Pamidronate did not increase the risk of serious adverse events. The results of this study show that 90 mg of intravenous pamidronate within the first 2 weeks and at 3 months following liver transplantation preserve lumbar

  1. Anabolic steroids reduce spinal cord injury-related bone loss in rats associated with increased Wnt signaling

    PubMed Central

    Sun, Li; Pan, Jiangping; Peng, Yuanzhen; Wu, Yong; Li, Jianghua; Liu, Xuan; Qin, Yiwen; Bauman, William A.; Cardozo, Christopher; Zaidi, Mone; Qin, Weiping

    2013-01-01

    Background Spinal cord injury (SCI) causes severe bone loss. At present, there is no practical treatment to delay or prevent bone loss in individuals with motor-complete SCI. Hypogonadism is common in men after SCI and may exacerbate bone loss. The anabolic steroid nandrolone reduces bone loss due to microgravity or nerve transection. Objective To determine whether nandrolone reduced bone loss after SCI and, if so, to explore the mechanisms of nandrolone action. Methods Male rats with complete transection of the spinal cord were administered nandrolone combined with a physiological replacement dose of testosterone, or vehicle, beginning on day 29 after SCI and continued for 28 days. Results SCI reduced distal femoral and proximal tibial bone mineral density (BMD) by 25 and 16%, respectively, at 56 days. This bone loss was attenuated by nandrolone. In ex vivo osteoclasts cultures, SCI increased mRNA levels for tartrate-resistant acid phosphatase (TRAP) and calcitonin receptor; nandrolone-normalized expression levels of these transcripts. In ex vivo osteoblast cultures, SCI increased receptor activator of NF-kB ligand (RANKL) mRNA levels but did not alter osteoprotegerin (OPG) mRNA expression; nandrolone-increased expression of OPG and OPG/RANKL ratio. SCI reduced mRNA levels of Wnt signaling-related genes Wnt3a, low-density lipoprotein receptor-related protein 5 (LRP5), Fzd5, Tcf7, and ectodermal-neural cortex 1 (ENC1) in osteoblasts, whereas nandrolone increased expression of each of these genes. Conclusions The results demonstrate that nandrolone reduces bone loss after SCI. A potential mechanism is suggested by our findings wherein nandrolone modulates genes for differentiation and activity of osteoclasts and osteoblasts, at least in part, through the activation of Wnt signaling. PMID:24090150

  2. Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss

    PubMed Central

    Maekawa, Tomoki; Hajishengallis, George

    2014-01-01

    Background and Objective An increasing body of evidence suggests that the use of probiotic bacteria is a promising intervention approach for the treatment of inflammatory diseases with polymicrobial etiology. The objective of this study was to determine whether Lactobacillus brevis CD2 could inhibit periodontal inflammation and bone loss in experimental periodontitis. Materials and Methods Periodontitis was induced by placing a silk ligature around the second maxillary molar of mice treated with L. brevis CD2 (8×105 CFU in 1-mm2 lyopatch) or placebo, which were placed between the gingiva and the buccal mucosa in the vicinity of the ligated teeth. The mice were euthanized after 5 days and bone loss was measured morphometrically, gingival expression of proinflammatory cytokines was determined by quantitative real-time PCR, and CFU counts of periodontitis-associated bacteria were determined after aerobic and anaerobic culture. To determine the role of arginine deiminase released by L. brevis CD2, soluble extracts with or without formamidine (arginine deiminase inhibitor) were tested in in vitro cellular activation assays. Results Mice topically treated with L. brevis CD2 displayed significantly decreased bone loss and lower expression of TNF, IL-1β, IL-6, and IL-17A as compared to placebo-treated mice. Moreover, L. brevis CD2-treated mice displayed lower counts of anaerobic bacteria but higher counts of aerobic bacteria than placebo-treated mice. In in vitro assays, the anti-inflammatory effects of soluble L. brevis CD2 extracts were heavily dependent on the presence of functional arginine deiminase, an enzyme that can inhibit nitric oxide synthesis. Conclusion These data provide proof-of-concept that the probiotic L. brevis CD2 can inhibit periodontitis through modulatory effects on the host response and the periodontal microbiota. PMID:24483135

  3. Diet induced weight loss accelerates onset of negative alliesthesia in obese women

    PubMed Central

    Frankham, Patrick; Gosselin, Caroline; Cabanac, Michel

    2005-01-01

    hedonic studies that showed delayed or absent negative alliesthesia in participants when below their initial body weight. Therefore, it is hypothesized that the accelerated onset of negative alliesthesia observed in our obese participants after weight loss is suggestive of a lowered body weight set-point. Factors inherent to the weight loss diet studied here, such as mild energetic restriction, lowered palatability, and diet composition, may have played a role in this experimental outcome. PMID:16232316

  4. β2-adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis

    PubMed Central

    Jiao, Kai; Niu, Li-Na; Li, Qi-hong; Ren, Gao-tong; Zhao, Chang-ming; Liu, Yun-dong; Tay, Franklin R.; Wang, Mei-qing

    2015-01-01

    The present study tested whether activation of the sympathetic tone by aberrant joint loading elicits abnormal subchondral bone remodeling in temporomandibular joint (TMJ) osteoarthritis. Abnormal dental occlusion was created in experimental rats, which were then intraperitoneally injected by saline, propranolol or isoproterenol. The norepinephrine contents, distribution of sympathetic nerve fibers, expression of β-adrenergic receptors (β-ARs) and remodeling parameters in the condylar subchondral bone were investigated. Mesenchymal stem cells (MSCs) from condylar subchondral bones were harvested for comparison of their β-ARs, pro-osteoclastic gene expressions and pro-osteoclastic function. Increases in norepinephrine level, sympathetic nerve fiber distribution and β2-AR expression were observed in the condylar subchondral bone of experimental rats, together with subchondral bone loss and increased osteoclast activity. β-antagonist (propranolol) suppressed subchondral bone loss and osteoclast hyperfunction while β-agonist (isoproterenol) exacerbated those responses. MSCs from experimental condylar subchondral bone expressed higher levels of β2-AR and RANKL; norepinephrine stimulation further increased their RANKL expression and pro-osteoclastic function. These effects were blocked by inhibition of β2-AR or the PKA pathway. RANKL expression by MSCs decreased after propranolol administration and increased after isoproterenol administration. It is concluded that β2-AR signal-mediated subchondral bone loss in TMJ osteoarthritisis associated with increased RANKL secretion by MSCs. PMID:26219508

  5. High-Dose Vitamin D and Calcium Attenuates Bone Loss with Antiretroviral Therapy Initiation

    PubMed Central

    Overton, Edgar Turner; Chan, Ellen S.; Brown, Todd T.; Tebas, Pablo; McComsey, Grace A.; Melbourne, Kathleen M.; Napoli, Andrew; Hardin, William Royce; Ribaudo, Heather J.; Yin, Michael T.

    2015-01-01

    Background Antiretroviral therapy (ART) initiation for HIV-1 infection is associated with 2-6% loss in bone mineral density (BMD). Objective To evaluate vitamin D3 (4000 IU daily) plus calcium (1000 mg calcium carbonate daily) supplementation on bone loss associated with ART initiation. Design 48-week prospective, randomized, double-blind, placebo-controlled study. Setting Thirty nine AIDS Clinical Trials Network research units. Participants ART-naïve HIV-infected adults. Measurements BMD by dual-energy X-ray absorptiometry (DXA); 25-hydroxy vitamin D (25(OH)D) levels, parathyroid hormone (PTH), phosphate metabolism, markers of bone turnover and systemic inflammation. Results 165 eligible subjects were randomized (79 Vitamin D/calcium (VitD/Cal); 86 placebo); 142 subjects with evaluable DXA data were included in the primary analysis. The study arms were well-balanced at baseline: median age 33 years; 90% male; 33% non-Hispanic black; median CD4 count 341 cells/mm3; and median 25(OH)D 23 ng/mL (57 nmol/L). At 48 weeks, subjects receiving placebo had greater decline in total hip BMD than VitD/Cal: −3.19% median change (1st-3rd quartile (Q1, Q3) −5.12%, −1.02%) vs. (−1.46% −3.16%,−0.40%). respectively (p=0.001). Lumbar spine BMD loss for the two groups was similar: −2.91% (−4.84%, −1.06%) vs. −1.41% (−3.78%, 0.00%), (p=0.085). At week 48, 90% of participants achieved HIV-1 RNA <50 copies/mL. Levels of 25(OH)D3 increased in the VitD/Cal but not the placebo group: median change of 24.5 (14.6, 37.8) vs. 0.7 (−5.3, 4.3) ng/mL, respectively (p<0.001). Additionally, increases in markers of bone turnover were blunted in the VitD/Cal group. Limitations No international sites were included; only 48 weeks of follow up Conclusion Vitamin D/calcium supplementation mitigates the loss of BMD seen with initiation of efavirenz/emtricitabine/tenofovir, particularly at the total hip, which is the site of greatest concern for fragility fracture. Primary Funding

  6. A short treatment with an antibody to sclerostin can inhibit bone loss in an ongoing model of colitis.

    PubMed

    Eddleston, Alison; Marenzana, Massimo; Moore, Adrian R; Stephens, Paul; Muzylak, Mariusz; Marshall, Diane; Robinson, Martyn K

    2009-10-01

    Chronic inflammation leads to bone loss, and increased fracture rates have been reported in a number of human chronic inflammatory conditions. The study reported here investigates the skeletal effects of dosing a neutralizing antibody to the bone regulatory protein sclerostin in a mouse model of chronic colitis. When dosed prophylactically, an antibody to sclerostin (Scl-AbI) did not reduce the weight loss or histological changes associated with colitis but did prevent inflammation-induced bone loss. At the end of the experiment, Scl-AbI-treated animals had a significantly higher femoral BMD (+27%, p < 0.05) than control antibody (Cntrl-Ab)-treated animals. In a second experiment, treatment with Scl-AbI was delayed until colitis had developed, by which time the mechanical properties of femurs in colitic animals were significantly worse than those of healthy age-matched control mice (maximum load, -26%, p < 0.05; energy, -37%, p < 0.05; ultimate strength, -33%, p < 0.05; elastic modulus, -17%, p < 0.05). A short treatment with Scl-AbI halted bone loss and reversed the decline of both intrinsic and extrinsic mechanical properties of the femur such that, after 19 days of treatment, the bone mechanical properties in the Scl-AbI-treated animals were not significantly different from those of noncolitic age-matched controls. Serum markers of bone formation and resorption suggested that the antibody to sclerostin stimulated osteoblast activity and inhibited osteoclast-mediated bone resorption.

  7. Prevention and treatment of bone loss in patients with nonmetastatic breast or prostate cancer who receive hormonal ablation therapy.

    PubMed

    Limburg, Connie; Maxwell, Cathy; Mautner, Beatrice

    2014-04-01

    Hormone ablation therapy is a mainstay in the treatment of breast and prostate cancers. However, aromatase inhibitors (AIs) used in postmenopausal women with breast cancer and androgen-deprivation therapy (ADT) used in men with prostate cancer contribute to substantial bone loss, thereby increasing the risk of osteoporotic fractures. Evidence-based guidelines, therefore, urge oncology practices to screen these patients for bone loss and, if needed, provide treatment to maintain bone health. In addition to lifestyle modification and calcium or vitamin D supplementation, bone protection strategies include treatment with bisphosphonates and denosumab, a monoclonal antibody against RANK ligand. Identification of patients at greater risk for bone loss and fracture and proper interventions can reduce fracture rates. Oncology nurses can play an important role in screening these patients. The purpose of this article is to inform oncology nurses about the effects of cancer treatment on bone health, review current prevention and treatment options for cancer treatment-induced bone loss, and discuss recommendations for identifying high-risk individuals.

  8. Use of an optical comparator for radiographic measurement of bone loss around endosseous implants: a pilot study.

    PubMed

    Siddiqui, A A; Caudill, R; Beatty, K

    1995-01-01

    A technique for the measurement of bone loss around endosseous implants using an optical comparator was investigated. Five operators were asked to measure the mesial and distal alveolar bone levels around a screw type dental implant on a periapical radiograph mounted on an optical comparator. The known size of a threaded implant was used as a reference. The bone loss around the implant was calculated by taking the average of the mesial and distal measurements. Statistical analysis at the 95 percent confidence level demonstrated that there was no significant difference among the measurements. Although the initial results are encouraging, additional research is necessary with a larger sample size to validate the accuracy of optical comparator readings and compare the efficacy of this technique with other currently used methods for determining bone loss around root form implants.

  9. Raloxifene preserves phenytoin and sodium valproate induced bone loss by modulating serum estradiol and TGF-β3 content in bone of female mice.

    PubMed

    Anwar, Md Jamir; Radhakrishna, K V; Sharma, Abhay; Vohora, Divya

    2014-10-01

    Antiepileptic drugs (AEDs)-induced adverse consequences on bone are now well recognized. Despite this, there is limited data on the effect of anti-osteoporotic therapies on AEDs-induced bone loss. We hypothesize that estrogen deprivation following phenytoin (PHT) and sodium valproate (SVP) therapy could lead to adverse bony effects. Both PHT and SVP inhibit human aromatase enzyme and stimulate microsomal catabolism of oestrogens. Estrogen deficiency states are known to reduce the deposition of transforming growth factor-β (TGF-β3), a bone matrix protein, having anti-osteoclastic property. Thus, an attempt was made to investigate the effect of raloxifene, a selective oestrogen receptor modulator, in comparison with calcium and vitamin D3 (CVD) supplementation, on PHT and SVP-induced alterations in bone in mice and to unravel the role of estradiol and TGF-β3 in mediation of bony effects by either AEDs or raloxifene. Further, the effect of raloxifene on seizures and on the antiepileptic efficacy of PHT and SVP was investigated. Swiss strains of female mice were treated with PHT (35 mg/kg, p.o.) and SVP (300 mg/kg, p.o.) for 120 days to induce bone loss as evidenced by reduced bone mineral density (BMD) and altered bone turnover markers (BTMs) in lumbar bones (alkaline phosphatase, tartarate resistant acid phosphatase, hydroxyproline) and urine (calcium). The bone loss was accompanied by reduced serum estradiol levels and bone TGF-β3 content. Preventive and therapeutic treatment with raloxifene ameliorated bony alterations and was more effective than CVD. It also significantly restored estradiol and TGF-β3 levels. Deprived estrogen levels (that in turn reduced lumbar TGF-β3 content) following PHT and SVP, thus, might represent one of the various mechanisms of AEDs-induced bone loss. Raloxifene preserved the bony changes without interfering with antiepileptic efficacy of these drugs, and hence raloxifene could be a potential therapeutic option in the management of

  10. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss.

    PubMed Central

    Parfitt, A M; Mathews, C H; Villanueva, A R; Kleerekoper, M; Frame, B; Rao, D S

    1983-01-01

    We devised a new method for examining the structural changes that occur in trabecular bone in aging and in osteoporosis. With simultaneous measurement of total perimeter and bone area in thin sections, indirect indices of mean trabecular plate thickness (MTPT) and mean trabecular plate density (MTPD) can be derived, such that trabecular bone volume = MTPD X MTPT. MTPD is an index of the probability that a scanning or test line will intersect a structural element of bone, and is the reciprocal of the mean distance between the midpoints of structural elements, multiplied by pi/2. We applied this method to iliac bone samples from 78 normal subjects, 100 patients with vertebral fracture, and 50 patients with hip fracture. The reduction in trabecular bone volume observed in normal subjects with increasing age was mainly due to a reduction in plate density, with no significant decrease in plate thickness. The further reduction in trabecular bone volume observed in patients with osteoporotic vertebral fracture was mainly due to a further reduction in plate density. There was a relatively smaller reduction in plate thickness that was statistically significant in males but not in females. Only in patients with hip fracture did trabecular thinning contribute substantially to the additional loss of trabecular bone in osteoporosis relative to age. These data indicate that age-related bone loss occurs principally by a process that removes entire structural elements of bone; those that remain are more widely separated and some may undergo compensatory thickening, but most slowly become reduced in thickness. We propose that the process of removal is initiated by increased depth of osteoclastic resorption cavities which leads to focal perforation of trabecular plates; this is followed by progressive enlargement of the perforations with conversion of plates to rods. The resulting structural changes are more severe in osteoporotic patients than in normal subjects, but have been

  11. Conjugated linoleic acid prevents ovariectomy-induced bone loss in mice by modulating both osteoclastogenesis and osteoblastogenesis

    PubMed Central

    Rahman, Md Mizanur; Fernandes, Gabriel; Williams, Paul

    2014-01-01

    Postmenopausal osteoporosis due to estrogen deficiency is associated with severe morbidity and mortality. Beneficial effects of conjugated linoleic acid (CLA) on bone mineral density (BMD) have been reported in mice, rats and humans, but the effect of long term CLA supplementation against ovariectomy-induced bone loss in mice and the mechanisms underlying this effect have not been studied yet. Eight weeks old ovariectomized (Ovx) and sham operated C57BL/6 mice were fed either a diet containing 0.5% safflower oil (SFO) or 0.5% CLA for 24 weeks to examine BMD, bone turn over markers and osteotropic factors. Bone marrow (BM) cells were cultured to determine the effect on inflammation, osteoclastogenesis, and osteoblastogenesis. SFO/Ovx mice had significantly lower femoral, tibial and lumbar BMD compared to SFO/Sham mice; whereas, no difference was found between CLA/OVX and CLA/Sham mice. CLA inhibited bone resorption markers whereas enhanced bone formation markers in Ovx mice as compared to SFO fed mice. RT-PCR and FACS analyses of splenocytes revealed that CLA inhibited pro-osteoclastogenic RANKL and stimul