Science.gov

Sample records for accelerated bone resorption

  1. Locally administered T cells from mice immunized with lipopolysaccharide (LPS) accelerate LPS-induced bone resorption.

    PubMed

    Ozaki, Yukio; Ukai, Takashi; Yamaguchi, Masayuki; Yokoyama, Miho; Haro, Esperanza R Ayón; Yoshimoto, Mayumi; Kaneko, Takashi; Yoshinaga, Miho; Nakamura, Hirotaka; Shiraishi, Chiaki; Hara, Yoshitaka

    2009-06-01

    T cells play important roles in bone destruction and osteoclastogenesis and are found in chronic destructive bone lesions. Lipopolysaccharide (LPS) is one of several pathological factors involved in inflammatory bone destruction. We previously described the importance of T cells in the inflammatory bone resorption that occurs after repeated LPS administration. However, whether local or systemic T cells are important for inflammatory bone resorption and whether immunization of host animals influences bone resorption remain unclear. The present study examines the effects of local extant T cells from LPS-immunized mice on LPS-induced bone resorption. T cells from LPS-immunized or non-immunized mice were injected together with LPS into the gingival tissues of mice with severe combined immunodeficiency disease that lack both T and B cells. We histomorphometrically evaluated bone resorption at sites of T cell injections and examined the influence of T cells from LPS-immunized mice on osteoclastogenesis in vitro. We found that locally administered T cells from LPS-immunized but not non-immunized mice accelerated LPS-induced bone resorption in vivo. Moreover, T cells from LPS-immunized mice increased osteoclastogenesis in vitro induced by receptor activator of NF-kappa B ligand and LPS and anti-tumor necrosis factor (TNF)-alpha antibody inhibited this increase. These results demonstrated that local extant T cells accelerate inflammatory bone resorption. Furthermore, T cells from LPS-immunized mice appear to elevate LPS-induced bone resorption using TNF-alpha. PMID:19437611

  2. Bacterial porins stimulate bone resorption.

    PubMed Central

    Meghji, S; Henderson, B; Nair, S P; Tufano, M A

    1997-01-01

    Porins are abundant outer membrane proteins of gram-negative bacteria involved in transport of low-molecular-mass molecules. During the past decade, porins from a number of bacteria have also been shown to have proinflammatory activities including inducing the synthesis of proinflammatory mediators (cytokines, platelet-activating factor, and nitric oxide) in cultured cells and inducing inflammation in vivo. With this range of actions, it was possible that porins could also interact with bone cells to cause aberrant bone remodeling and that this could contribute to the bone destruction seen in gram-negative bone infections. By using purified preparations of Salmonella typhimurium and Pseudomonas aeruginosa porins, in the presence of polymyxin B, it was possible to induce concentration-dependent loss of calcium from cultured murine calvaria at porin concentrations in the range of 1 to 10 nM. The mechanism of action of the porins was determined by the inclusion of inhibitors of cyclooxygenase or inflammatory cytokines in the culture media. The bone-resorbing activity of both porins was not inhibited by the cyclooxygenase inhibitor indomethacin or by neutralizing the activity of tumor necrosis factor. Indeed, relatively high concentrations of these agents produced an unexpected increase in the bone resorption induced by the porins. In contrast, porin-induced bone resorption could be inhibited by relatively high concentrations of the natural inhibitor of interleukin-1 (IL-1 receptor antagonist). It appears that these porins stimulate bone resorption by a mechanism distinct from that of lipopolysaccharide, and the possibility therefore exists that porins play a role in bone destruction in gram-negative bacterial infections of bone. PMID:9119467

  3. [Pharmacology of bone resorption inhibitor].

    PubMed

    Menuki, Kunitaka; Sakai, Akinori

    2015-10-01

    Currently, bone resorption inhibitor is mainly used for osteoporosis. A number of these agents have been developed. These pharmacological action are various. Bisphosphonate inhibit functions of the osteoclasts by inducing apoptosis. On the one hand, RANK-ligand inhibitor and selective estrogen receptor modulator inhibit formation of osteoclasts. It is important to understand these pharmacological action for the selection of the appropriate medicine. PMID:26529923

  4. Circadian Clock Regulates Bone Resorption in Mice.

    PubMed

    Xu, Cheng; Ochi, Hiroki; Fukuda, Toru; Sato, Shingo; Sunamura, Satoko; Takarada, Takeshi; Hinoi, Eiichi; Okawa, Atsushi; Takeda, Shu

    2016-07-01

    The circadian clock controls many behavioral and physiological processes beyond daily rhythms. Circadian dysfunction increases the risk of cancer, obesity, and cardiovascular and metabolic diseases. Although clinical studies have shown that bone resorption is controlled by circadian rhythm, as indicated by diurnal variations in bone resorption, the molecular mechanism of circadian clock-dependent bone resorption remains unknown. To clarify the role of circadian rhythm in bone resorption, aryl hydrocarbon receptor nuclear translocator-like (Bmal1), a prototype circadian gene, was knocked out specifically in osteoclasts. Osteoclast-specific Bmal1-knockout mice showed a high bone mass phenotype due to reduced osteoclast differentiation. A cell-based assay revealed that BMAL1 upregulated nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (Nfatc1) transcription through its binding to an E-box element located on the Nfatc1 promoter in cooperation with circadian locomotor output cycles kaput (CLOCK), a heterodimer partner of BMAL1. Moreover, steroid receptor coactivator (SRC) family members were shown to interact with and upregulate BMAL1:CLOCK transcriptional activity. Collectively, these data suggest that bone resorption is controlled by osteoclastic BMAL1 through interactions with the SRC family and binding to the Nfatc1 promoter. © 2016 American Society for Bone and Mineral Research. PMID:26841172

  5. TDAG8 activation inhibits osteoclastic bone resorption.

    PubMed

    Hikiji, Hisako; Endo, Daisuke; Horie, Kyoji; Harayama, Takeshi; Akahoshi, Noriyuki; Igarashi, Hidemitsu; Kihara, Yasuyuki; Yanagida, Keisuke; Takeda, Junji; Koji, Takehiko; Shimizu, Takao; Ishii, Satoshi

    2014-02-01

    Although the roles of acids in bone metabolism are well characterized, the function of proton-sensing receptors in bone metabolism remains to be explored. In this study, we evaluated the role of proton-sensing receptor T-cell death-associated gene 8 (TDAG8) in osteoclastic activity during bone loss after ovariectomy. Through observations of bone mineral content, we found that pathological bone resorption was significantly exacerbated in mice homozygous for a gene trap mutation in the Tdag8 gene. Furthermore, osteoclasts from the homozygous mutant mice resorbed calcium in vitro more than the osteoclasts from the heterozygous mice did. Impaired osteoclast formation under acidic conditions was ameliorated in cultures of bone marrow cells by Tdag8 gene mutation. Extracellular acidification changed the cell morphology of osteoclasts via the TDAG8-Rho signaling pathway. These results suggest that the enhancement of TDAG8 function represents a new strategy for preventing bone resorption diseases, such as osteoporosis. PMID:24221084

  6. Molecular and cellular basis of bone resorption.

    PubMed

    Gruber, Reinhard

    2015-02-01

    Osteoclast research has an exciting history and a challenging future. More than 3 decades ago, it became evident that bone-resorbing osteoclasts are of hematopoietic origin and are ultimately linked to the "basic multicellular unit," where they team up with the other cell types, including bone-forming osteoblasts. Since 2 decades, we have learned about the signaling pathways controlling genes relevant for osteoclastogenesis and bone resorption. It took another decade until the hypothesized "osteoclast differentiation" factor was discovered and was translated into an approved pharmacologic strategy. Here, the focus is on another molecular target, cathepsin K, a cysteine protease being released by the osteoclast into the resorption compartment. Genetic deletion and pharmacological blocking of cathepsin K reduces bone resorption but with ongoing bone formation. This observation not only holds great promise to become a new pharmacologic strategy, but it also provides new insights into the coordinated work of cells in the "basic multicellular unit" and thus, bridges the history and future of osteoclast research. This article is a short primer on osteoclast biology for readers of the special issue on odanacatib, a cathepsin K inhibitor. PMID:25223736

  7. Mechanisms of Bone Resorption in Periodontitis

    PubMed Central

    Hienz, Stefan A.; Paliwal, Sweta

    2015-01-01

    Alveolar bone loss is a hallmark of periodontitis progression and its prevention is a key clinical challenge in periodontal disease treatment. Bone destruction is mediated by the host immune and inflammatory response to the microbial challenge. However, the mechanisms by which the local immune response against periodontopathic bacteria disturbs the homeostatic balance of bone formation and resorption in favour of bone loss remain to be established. The osteoclast, the principal bone resorptive cell, differentiates from monocyte/macrophage precursors under the regulation of the critical cytokines macrophage colony-stimulating factor, RANK ligand, and osteoprotegerin. TNF-α, IL-1, and PGE2 also promote osteoclast activity, particularly in states of inflammatory osteolysis such as those found in periodontitis. The pathogenic processes of destructive inflammatory periodontal diseases are instigated by subgingival plaque microflora and factors such as lipopolysaccharides derived from specific pathogens. These are propagated by host inflammatory and immune cell influences, and the activation of T and B cells initiates the adaptive immune response via regulation of the Th1-Th2-Th17 regulatory axis. In summary, Th1-type T lymphocytes, B cell macrophages, and neutrophils promote bone loss through upregulated production of proinflammatory mediators and activation of the RANK-L expression pathways. PMID:26065002

  8. Solanum malacoxylon toxicity: inhibition of bone resorption.

    PubMed

    Santos, M N; Nunes, V A; Nunes, I J; Barros, S S; Wasserman, R H; Krook, L

    1976-10-01

    Young rabbits on high (0.57%) or low (0.24%) calcium were given an aqueous extract of Solanum malacoxylon (S.m.) leaves (20 g dried leaves/200 ml distilled water) intragastrically at 0, 12 and 36 hours. On bothe diets S.m. induced progressive hypophosphatasemia but serum calcium and phosphorus underwent only minor changes. In rabbits necropsied at 0, 12, 36, 60, 84 and 108 hours, S.m. was shown to have a negative effect on the resorbing osteocytes. With retarded osteocytic osteolysis, osteopetrosis resulted. Further regressive changes in the osteocytes resulted in osteonecrosis which was observed within 12 hours after administration of S.m. extract. The osteonecrosis, combined with retarded apposition, later resulted in osteopenia. It was concluded that the recommended dietary calcium for growing rabbits--about 0.6%--is too high. Whereas the histologic appearance of bone in rabbits fed low calcium was normal, bones from rabbits on high calcium showed retarded resorption and the rabbits had a relative hypophosphatasemia. PMID:185004

  9. Bone resorption: an actor of dental and periodontal development?

    PubMed Central

    Gama, Andrea; Navet, Benjamin; Vargas, Jorge William; Castaneda, Beatriz; Lézot, Frédéric

    2015-01-01

    Dental and periodontal tissue development is a complex process involving various cell-types. A finely orchestrated network of communications between these cells is implicated. During early development, communications between cells from the oral epithelium and the underlying mesenchyme govern the dental morphogenesis with successive bud, cap and bell stages. Later, interactions between epithelial and mesenchymal cells occur during dental root elongation. Root elongation and tooth eruption require resorption of surrounding alveolar bone to occur. For years, it was postulated that signaling molecules secreted by dental and periodontal cells control bone resorbing osteoclast precursor recruitment and differentiation. Reverse signaling originating from bone cells (osteoclasts and osteoblasts) toward dental cells was not suspected. Dental defects reported in osteopetrosis were associated with mechanical stress secondary to defective bone resorption. In the last decade, consequences of bone resorption over-activation on dental and periodontal tissue formation have been analyzed with transgenic animals (RANKTg and Opg−∕− mice). Results suggest the existence of signals originating from osteoclasts toward dental and periodontal cells. Meanwhile, experiments consisting in transitory inhibition of bone resorption during root elongation, achieved with bone resorption inhibitors having different mechanisms of action (bisphosphonates and RANKL blocking antibodies), have evidenced dental and periodontal defects that support the presence of signals originating bone cells toward dental cells. The aim of the present manuscript is to present the data we have collected in the last years that support the hypothesis of a role of bone resorption in dental and periodontal development. PMID:26594180

  10. Spontaneous Resorption of a Penetrating Orbital Bone Fracture Fragment.

    PubMed

    Campbell, Ashley A; Cunnane, Mary Elizabeth; Dunn, Gavin P; Gray, Stacy Tutt; Lefebvre, Daniel R

    2015-01-01

    The authors describe a 20-year-old man who sustained multiple facial fractures in a high-speed motor vehicle crash, including a bone fragment from a skull base fracture that penetrated the orbital soft tissues superomedially. Serial CT scans documented spontaneous resorption over a 6-month period. While it is known that autologous bone grafts used in craniofacial reconstruction exhibit variable amounts of bone resorption, the complete resorption of an intraorbital fracture fragment has not been documented in the literature. His clinical care and the report of his case were undertaken in a fashion in accordance with the principles of the Health Insurance Portability and Accountability Act regulations. PMID:24833452

  11. Gallium a unique anti-resorptive agent in bone: Preclinical studies on its mechanisms of action

    SciTech Connect

    Bockman, R.; Adelman, R.; Donnelly, R.; Brody, L.; Warrell, R. ); Jones, K.W. )

    1990-01-01

    The discovery of gallium as a new and unique agent for the treatment of metabolic bone disorders was in part fortuitous. Gallium is an exciting new therapeutic agent for the treatment of pathologic states characterized by accelerated bone resorption. Compared to other therapeutic metal compounds containing platinum or germanium, gallium affects its antiresorptive action without any evidence of a cytotoxic effect on bone cells. Gallium is unique amongst all therapeutically available antiresorptive agents in that it favors bone formation. 18 refs., 1 fig.

  12. Advanced glycation end products biphasically modulate bone resorption in osteoclast-like cells.

    PubMed

    Li, Ziqing; Li, Chaohong; Zhou, Yuhuan; Chen, Weishen; Luo, Guotian; Zhang, Ziji; Wang, Haixing; Zhang, Yangchun; Xu, Dongliang; Sheng, Puyi

    2016-03-01

    Advanced glycation end products (AGEs) disturb bone remodeling during aging, and this process is accelerated in diabetes. However, their role in modulation of osteoclast-induced bone resorption is controversial, with some studies indicating that AGEs enhance bone resorption and others showing the opposite effect. We determined whether AGEs present at different stages of osteoclast differentiation affect bone resorption differently. Based on increased levels of tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CTSK), we identified day 4 of induction as the dividing time of cell fusion stage and mature stage in RAW264.7 cell-derived osteoclast-like cells (OCLs). AGE-modified BSA (50-400 μg/ml) or control BSA (100 μg/ml) was then added at the beginning of each stage. Results showed that the presence of AGEs at the cell fusion stage reduced pit numbers, resorption area, and CTSK expression. Moreover, expression of receptor activator of nuclear factor-κB (RANK) as well as the number of TRAP-positive cells, nuclei per OCL, actin rings, and podosomes also decreased. However, the presence of AGEs at the mature stage enlarged the resorption area markedly and increased pit numbers slightly. Intriguingly, only the number of nuclei per OCL and podosomes increased. These data indicate that AGEs biphasically modulate bone resorption activity of OCLs in a differentiation stage-dependent manner. AGEs at the cell fusion stage reduce bone resorption dramatically, mainly via suppression of RANK expression in osteoclast precursors, whereas AGEs at the mature stage enhance bone resorption slightly, most likely by increasing the number of podosomes in mature OCLs. PMID:26670486

  13. Modulation of osteoclast differentiation and bone resorption by Rho GTPases

    PubMed Central

    Touaitahuata, Heiani; Blangy, Anne; Vives, Virginie

    2014-01-01

    Bone is a dynamic tissue constantly renewed through a regulated balance between bone formation and resorption. Excessive bone degradation by osteoclasts leads to pathological decreased bone density characteristic of osteolytic diseases such as post-menopausal osteoporosis or bone metastasis. Osteoclasts are multinucleated cells derived from hematopoietic stem cells via a complex differentiation process. Their unique ability to resorb bone is dependent on the formation of the actin-rich sealing zone. Within this adhesion structure, the plasma membrane differentiates into the ruffled border where protons and proteases are secreted to demineralize and degrade bone, respectively. On the bone surface, mature osteoclasts alternate between stationary resorptive and migratory phases. These are associated with profound actin cytoskeleton reorganization, until osteoclasts die of apoptosis. In this review, we highlight the role of Rho GTPases in all the steps of osteoclasts differentiation, function, and death and conclude on their interest as targets for treatment of osteolytic pathologies. PMID:24614674

  14. Peculiarities of the bone tissue resorption under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, N.; Oganov, V.; Polkovenko, O.; Nitsevich, T.

    The actual problem - peculiarities of resorptive processes in the spongiose of thingbones - we studied with the use of tranmissive electron microscopy in experiments on rats (American space station SLS-2) and on monkeys Macaca mulatt? (BION-11). Animals were onboard during 2 weeks. There was established, that the resorption happen with osteoclasts participation. They can create groups of cells. In the osteoclasts population we indicated not typical for the control (ground experiment) "giant" cells, which have on ultrathin sections 5-6 nuclei, many lysosomes, well developed "light" zone and "brush-border". The destruction of minera lized matrix in bone lacunas also happens by the way of osteolytic activity of osteocytes. Lysosome ferments of osteocytes are secreted by the eczocytosis. The osteocytic osteolysis, as well as the osteoclastic one can be seen as a physiological, gormon-dependent mechanism of resorption. The presence of a considerable number of neutrophiles, which enter in some zones of resorption is also typical. When these neutrophiles destruct, they release lysosomic ferments that dissolve the bone matrix. In some zones of resorption we noted the presence of the row from collagen fibrils, which loosed crystals , on mineralized matrix borders. The cell detritus is noted in zones of surface dissolving among crystallic conglomerates. It certificates the processes of osteogenic cells destruction that happen here. So, under the microgravity conditions in zones of adaptive remodeling of the spongiose the processes of the bone tissue resorption happen by some ways, namely: by the functional activization of osteoclasts; by the osteocytic osteolysis increasing; as a result of hydrolytic activity of neutrophiles, entering in these zones, and also by the local demineralization and further destruction of bone matrix surface zones.

  15. Study on bone resorption behavior of osteoclast under drug effect using 41Ca tracing

    NASA Astrophysics Data System (ADS)

    Kejun, Dong; Liyan, Lu; Ming, He; Yinggen, Ouyang; Yan, Xue; Chaoli, Li; Shaoyong, Wu; Xianggao, Wang; Hongtao, Shen; Jianjun, Gao; Wei, Wang; Dafu, Chen; Yonggang, Xing; Jian, Yuan; Shan, Jiang

    2013-01-01

    The mechanisms governing calcium fluxes during bone remodeling processes in Osteoporosis (OP) patients are poorly known. Understanding the changes of Osteoclasts (OC) during this dynamic transition is important to prevent and cure OP. The exploration of long-lived 41Ca (T1/2 = 1.04 × 105 years) tracer combined with AMS measurements leads to the possibility of monitoring the bone resorption behavior of OC in OP patients. In this work, the behavior of OC with the administration of Strontium Ranelate (SR), a drug for OP, was studied by using 41Ca labeled hydroxyapatite (HAP) to simulate the bone. AMS on the HI-13 tandem accelerator at CIAE was used to determine trace amounts of 41Ca. The results show that the technique of 41Ca tracing with AMS can be used to quantitatively monitor the behavior of OC in bone resorption under the effects of drugs. Experimental details and preliminary results will be presented.

  16. Pharmacological diversity among drugs that inhibit bone resorption.

    PubMed

    Russell, R Graham G

    2015-06-01

    Drugs that inhibit bone resorption ('anti-resorptives') continue to dominate the therapy of bone diseases characterized by enhanced bone destruction, including Paget's disease, osteoporosis and cancers. The historic use of oestrogens for osteoporosis led on to SERMs (Selective Estrogen Receptor Modulators, e.g. raloxifene and bazedoxifene). Currently the mainstay of treatment worldwide is still with bisphosphonates, as used clinically for over 40 years. The more recently introduced anti-RANK-ligand antibody, denosumab, is also very effective in reducing vertebral, non-vertebral and hip fractures. Odanacatib is the only cathepsin K inhibitor likely to be registered for clinical use. The pharmacological basis for the action of each of these drug classes is different, enabling choices to be made to ensure their optimal use in clinical practice. PMID:26048735

  17. Fluid pressure and flow as a cause of bone resorption

    PubMed Central

    Fahlgren, Anna

    2010-01-01

    Background Unstable implants in bone become surrounded by an osteolytic zone. This is seen around loose screws, for example, but may also contribute to prosthetic loosening. Previous animal studies have shown that such zones can be induced by fluctuations in fluid pressure or flow, caused by implant instability. Method To understand the roles of pressure and flow, we describe the 3-dimensional distribution of osteolytic lesions in response to fluid pressure and flow in a previously reported rat model of aseptic loosening. 50 rats had a piston inserted in the proximal tibia, designed to produce 20 local spikes in fluid pressure of a clinically relevant magnitude (700 mmHg) twice a day. The spikes lasted for about 0.3 seconds. After 2 weeks, the pressure was measured in vivo, and the osteolytic lesions induced were studied using micro-CT scans. Results Most bone resorption occurred at pre-existing cavities within the bone in the periphery around the pressurized region, and not under the piston. This region is likely to have a higher fluid flow and less pressure than the area just beneath the piston. The velocity of fluid flow was estimated to be very high (roughly 20 mm/s). Interpretation The localization of the resorptive lesions suggests that high-velocity fluid flow is important for bone resorption induced by instability. PMID:20718695

  18. Evidence that Resorption of Bone by Rat Peritoneal Macrophages Occurs in an Acidic Environment

    NASA Technical Reports Server (NTRS)

    Blair, H. C.

    1985-01-01

    Skeletal loss in space, like any form of osteoporosis, reflects a relative imbalance of the activities of cells resorbing (degrading) or forming bone. Consequently, prevention of weightlessness induced bone loss may theoretically be accomplished by (1) stimulating bone formation or (2) inhibiting bone resorption. This approach, however, requires fundamental understanding of the mechanisms by which cells form or degrade bone, information not yet at hand. An issue central to bone resorption is the pH at which resorption takes place. The pH dependent spectral shift of a fluorescent dye (fluorescein isothiocyanate) conjugated to bone matrix was used to determine the pH at the resorptive cell bone matrix interface. Devitalized rat bone was used as the substrate, and rat peritoneal macrophages were used as the bone resorbing cells. The results suggest that bone resorption is the result of generation of an acidic microenvironment at the cell matrix junction.

  19. Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion.

    PubMed

    Nabavi, Noushin; Khandani, Arian; Camirand, Anne; Harrison, Rene E

    2011-11-01

    Exposure to microgravity has been associated with several physiological changes in astronauts, including an osteoporosis-like loss in bone mass. Despite many in vivo and in vitro studies in both microgravity and simulated microgravity conditions, the mechanism for bone loss is still not clear. The lack of weight-bearing forces makes microgravity an ideal physical stimulus to assess bone cell responses. In this work, we conduct a unique investigation of the effects of microgravity on bone-producing osteoblasts and, in parallel, on bone-resorbing osteoclasts. An increase in total number of discrete resorption pits is observed in osteoclasts that experienced microgravity versus ground controls. We further show that osteoblasts exposed to 5 days of microgravity have shorter and wavier microtubules (MTs), smaller and fewer focal adhesions, and thinner cortical actin and stress fibers. Space-flown osteoblasts present extended cell shapes as well as significantly more disrupted and often fragmented or condensed nuclei. The absence of gravitational forces therefore causes both an increase in bone resorption by osteoclasts, and a decrease in osteoblast cellular integrity. The observed effects on both major bone cell types likely accelerate bone loss in microgravity environments, and additionally offer a potential explanation to the development of disuse osteoporosis on Earth. PMID:21839189

  20. 3H-tetracycline as a proxy for 41Ca for measuring dietary perturbations of bone resorption

    NASA Astrophysics Data System (ADS)

    Weaver, Connie; Cheong, Jennifer; Jackson, George; Elmore, David; McCabe, George; Martin, Berdine

    2007-06-01

    Our group is interested in evaluating early effects of dietary interventions on bone loss. Postmenopausal women lose bone following reduction in estrogen which leads to increased risk of fracture. Traditional means of monitoring bone loss and effectiveness of treatments include changes in bone density, which takes 6 months to years to observe effects, and changes in biochemical markers of bone turnover, which are highly variable and lack specificity. Prelabeling bone with 41Ca and measuring urinary 41Ca excretion with accelerator mass spectrometry provides a sensitive, specific, and rapid approach to evaluating effectiveness of treatment. To better understand 41Ca technology as a tool for measuring effective treatments on reducing bone resorption, we perturbed bone resorption by manipulating dietary calcium in rats. We used 3H-tetracycline (3H-TC) as a proxy for 41Ca and found that a single dose is feasible to study bone resorption. Suppression of bone resorption, as measured by urinary 3H-TC, by dietary calcium was observed in rats stabilized after ovariectomy, but not in recently ovariectomized rats.

  1. Molecular Aspects of Bone Resorption in β-Thalassemia Major

    PubMed Central

    Saki, Najmaldin; Abroun, Saeid; Salari, Fatemeh; Rahim, Fakher; Shahjahani, Mohammad; Javad, Mohammadi-Asl

    2015-01-01

    β-thalassemia is the most common single gene disorder worldwide, in which hemoglobin β-chain production is decreased. Today, the life expectancy of thalassemic patients is increased because of a variety of treatment methods; however treatment related complications have also increased. The most common side effect is osteoporosis, which usually occurs in early adulthood as a consequence of increased bone resorption. Increased bone resorption mainly results from factors such as delayed puberty, diabetes mellitus, hypothyroidism, ineffective hematopoiesis as well as hyperplasia of the bone marrow, parathyroid gland dysfunction, toxic effect of iron on osteoblasts, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) deficiency. These factors disrupt the balance between osteoblasts and osteoclasts by interfering with various molecular mechanisms and result in decreased bone density. Given the high prevalence of osteopenia and osteoporosis in thalassemic patients and complexity of their development process, the goal of this review is to evaluate the molecular aspects involved in osteopenia and osteoporosis in thalassemic patients, which may be useful for therapeutic purposes. PMID:26199898

  2. Fingolimod suppresses bone resorption in female patients with multiple sclerosis.

    PubMed

    Miyazaki, Yusei; Niino, Masaaki; Kanazawa, Ippei; Suzuki, Masako; Mizuno, Masanori; Hisahara, Shin; Fukazawa, Toshiyuki; Takahashi, Eri; Amino, Itaru; Ochi, Ryutaro; Nakamura, Masakazu; Akimoto, Sachiko; Minami, Naoya; Fujiki, Naoto; Doi, Shizuki; Shimohama, Shun; Terayama, Yasuo; Kikuchi, Seiji

    2016-09-15

    Fingolimod is a sphingosine-1-phosphate receptor agonist used to inhibit the inflammatory activity of multiple sclerosis (MS), and has been shown to suppress osteoporosis in mouse models. In this study, levels of bone turnover markers were quantified in serum and urine samples from MS patients treated with fingolimod. Compared with untreated MS patients and healthy controls, fingolimod-treated MS patients had a significantly lower level of the bone resorption marker type I collagen cross-linked N-telopeptide in urine. This finding was prominent in female but was not seen in male subjects. Our results suggest that fingolimod may have a beneficial effect on bone mass loss in female MS patients. PMID:27609272

  3. Echistatin is a potent inhibitor of bone resorption in culture.

    PubMed

    Sato, M; Sardana, M K; Grasser, W A; Garsky, V M; Murray, J M; Gould, R J

    1990-10-01

    The venom protein, s-echistatin, originally derived from the saw-scaled viper Echis carinatus, was found to be a potent inhibitor of bone resorption by isolated osteoclasts. This Arg24-Gly25-Asp26-(RGD)-containing protein inhibited the excavation of bone slices by rat osteoclasts (IC50 = 0.1 nM). It also inhibited the release of [3H]proline from labeled bone particles by chicken osteoclasts (IC50 = 100 nM). By comparison, the tetrapeptide Arg-Gly-Asp-Ser (RGDS) inhibited resorption by rat or chicken osteoclasts with an IC50 of 0.1 mM while ala24-echistatin was inactive. Video microscopy showed that rat osteoclast attachment to substrate was more sensitive to s-echistatin than was the attachment of mononuclear cells or chicken osteoclasts. The difference in sensitivity of rat and chicken osteoclasts to s-echistatin may be due to differences between receptors on rat and chicken osteoclasts for s-echistatin. Antibody localization of echistatin on these cells showed much greater echistatin binding to rat osteoclasts than to chicken osteoclasts. Laser scanning confocal microscopy after immunohistochemical staining showed that s-echistatin binds to osteoclasts, that s-echistatin receptors are most abundant at the osteoclast/glass interface, and that s-echistatin colocalizes with vinculin. Confocal interference reflection microscopy of osteoclasts incubated with s-echistatin, demonstrated colocalization of s-echistatin with the outer edges of clusters of grey contacts at the tips of some lamellipodia. Identification of the echistatin receptor as an integrin was confirmed by colocalization of echistatin fluorescence with staining for an alpha-like subunit. Attachment of bone particles labeled with [3H]proline to chicken osteoclasts confirmed that the mechanism of action of echistatin was to inhibit osteoclast binding to bone presumably by disrupting adhesion structures. These data demonstrate that osteoclasts bind to bone via an RGD-sequence as an obligatory step in bone

  4. Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption.

    PubMed

    Miyazaki, Tsuyoshi; Iwasawa, Mitsuyasu; Nakashima, Tomoki; Mori, Shuuichi; Shigemoto, Kazuhiro; Nakamura, Hiroaki; Katagiri, Hideki; Takayanagi, Hiroshi; Tanaka, Sakae

    2012-11-01

    Osteoclasts, highly differentiated bone-resorbing cells of hematopoietic origin, have two conflicting tendencies: a lower capacity to survive and a higher capacity to execute energy-consuming activities such as bone resorption. Here, we report that when compared with their precursors, mature mitochondria-rich osteoclasts have lower levels of intracellular ATP, which is associated with receptor activator of nuclear factor κ-B ligand (RANKL)-induced Bcl-x(L) down-regulation. Severe ATP depletion, caused by disrupting mitochondrial transcription factor A (Tfam) gene, leads to increased bone-resorbing activity despite accelerated apoptosis. Although AMP-activated protein kinase (AMPK) activation by ATP depletion is not involved in the regulation of osteoclast function, the release of ATP from intracellular stores negatively regulates bone-resorbing activity through an autocrine/paracrine feedback loop by altering cytoskeletal structures. Furthermore, osteoclasts derived from aged mice exhibit reduced mitochondrial DNA (mtDNA) and intracellular ATP levels with increased bone-resorbing activity, implicating the possible involvement of age-related mitochondrial dysfunction in osteoporosis. Thus, our study provides evidence for a mechanism underlying the control of cellular functions by reciprocal changes in intracellular and extracellular ATP, which regulate the negative correlation between osteoclast survival and bone resorption. PMID:22988253

  5. Assessment of bone formation and bone resorption in osteoporosis: a comparison between tetracycline-based iliac histomorphometry and whole body /sup 85/Sr kinetics

    SciTech Connect

    Reeve, J.; Arlot, M.E.; Chavassieux, P.M.; Edouard, C.; Green, J.R.; Hesp, R.; Tellez, M.; Meunier, P.J.

    1987-12-01

    Bone formation and resorption have been measured in patients with idiopathic osteoporosis by histomorphometry of 7.5-mm trephine biopsies and in the whole body by 85Sr radiotracer methodology and calcium balances. The studies were synchronized and most were preceded by double in vivo tetracycline labeling. Correlations between histological and kinetic bone formation indices were better when better when based on the extent of double tetracycline labels than on measurements of osteoid by visible light microscopy. Correction of the kinetic data for long-term exchange, using 5 months' serial whole body counting of retained 85Sr, improved the fit of the kinetic to the histological data. A statistical analysis of the measurement uncertainties showed that the residual scatter in the best correlations (between exchange-corrected bone formation rates and double-labeled osteoid surface indices) could be attributed to measurement imprecision alone. The exchange-corrected resorption rate correlated fairly well with iliac trabecular resorption surfaces, and using a volume referent rather than a surface referent for the histological index improved the statistical fit when patients with therapeutically accelerated bone turnover were included. A much better correlation was obtained by including osteoid volume acting as an independent predictor of bone resorption in a bivariate regression with a resorption surface index. The residual errors could then be accounted for by known measurement uncertainties. Whereas osteoid taking a double label closely predicted the kinetic rate of bone formation, further analysis suggested that osteoid that took no label or a single label was more closely related to bone resorption, presumably as a secondary result of the coupling of bone formation to bone resorption.

  6. A supra-cellular model for coupling of bone resorption to formation during remodeling: lessons from two bone resorption inhibitors affecting bone formation differently.

    PubMed

    Jensen, Pia Rosgaard; Andersen, Thomas Levin; Pennypacker, Brenda L; Duong, Le T; Engelholm, Lars H; Delaissé, Jean-Marie

    2014-01-10

    The bone matrix is maintained functional through the combined action of bone resorbing osteoclasts and bone forming osteoblasts, in so-called bone remodeling units. The coupling of these two activities is critical for securing bone replenishment and involves osteogenic factors released by the osteoclasts. However, the osteoclasts are separated from the mature bone forming osteoblasts in time and space. Therefore the target cell of these osteoclastic factors has remained unknown. Recent explorations of the physical microenvironment of osteoclasts revealed a cell layer lining the bone marrow and forming a canopy over the whole remodeling surface, spanning from the osteoclasts to the bone forming osteoblasts. Several observations show that these canopy cells are a source of osteoblast progenitors, and we hypothesized therefore that they are the likely cells targeted by the osteogenic factors of the osteoclasts. Here we provide evidence supporting this hypothesis, by comparing the osteoclast-canopy interface in response to two types of bone resorption inhibitors in rabbit lumbar vertebrae. The bisphosphonate alendronate, an inhibitor leading to low bone formation levels, reduces the extent of canopy coverage above osteoclasts. This effect is in accordance with its toxic action on periosteoclastic cells. In contrast, odanacatib, an inhibitor preserving bone formation, increases the extent of the osteoclast-canopy interface. Interestingly, these distinct effects correlate with how fast bone formation follows resorption during these respective treatments. Furthermore, canopy cells exhibit uPARAP/Endo180, a receptor able to bind the collagen made available by osteoclasts, and reported to mediate osteoblast recruitment. Overall these observations support a mechanism where the recruitment of bone forming osteoblasts from the canopy is induced by osteoclastic factors, thereby favoring initiation of bone formation. They lead to a model where the osteoclast-canopy interface is

  7. Effect of cadmium on bone resorption in cultured fetal bone

    SciTech Connect

    Miyahara, T.; Miyakoshi, M.; Kozuka, H.

    1980-08-01

    Itai-itai disease which occurred in Toyama Prefecture, Japan, was thought to be due, at least partly, to chronic cadmium poisoning. Patients suffered severe pain in the waist, back and joints as well as kyphosis spinal column. In addition, x-ray film of these patients revealed abnormalities in the humerus and ribs. These bone lesions have been considered to be caused secondarily by dysfunction of other tissues, especially that of the kidneys, but there are some reports that the bone lesions appear before the occurrence of pathological changes in the kidneys of Cd-administered rat. It is currently unclear whether bone lesions by Cd are due to the direct action on the bone or indirect action which is caused by dysfunction of the kidney or intestine. To clarify the direct action of Cd on the bone, we studied the effect of Cd on the ossification of chick-embryo cultured bones biochemically and histologically. The results showed that Cd inhibited the bone matrix formation and brought about a malfunction in the ossification process. In the present work the effect of Cd on demineralization was studied using /sup 45/Ca-prelabeled bone in tissue culture and low levels of Cd were found to stimulate /sup 45/Ca from the bone.

  8. Heterotopic new bone formation causes resorption of the inductive bone matrix

    SciTech Connect

    Nilsson, O.S.; Persson, P.E.; Ekelund, A. )

    1990-08-01

    The bone matrix of growing rats was labeled by multiple injections of 3H-proline, and demineralized bone matrix (DBM) was prepared. The DBM was allotransplanted heterotopically into growing rats. New bone formation was induced in and around the implants. The new bone formation was accompanied by a decrease in the content of 3H; 20 and 30 days after implantation, 72% and 46%, respectively, of the activity remained in the implants. Daily injections of indomethacin (2 mg/kg) inhibited calcium uptake by about 20% at 20 and 30 days and inhibited the release of 3H from the DBM to a similar degree. Heterotopic bone induction by DBM is accompanied by matrix resorption, and inhibition of the new bone formation decreases the resorption of DBM.

  9. Bone resorption facilitates osteoblastic bone metastatic colonization by cooperation of insulin-like growth factor and hypoxia.

    PubMed

    Kuchimaru, Takahiro; Hoshino, Takuya; Aikawa, Tomoya; Yasuda, Hisataka; Kobayashi, Tatsuya; Kadonosono, Tetsuya; Kizaka-Kondoh, Shinae

    2014-05-01

    Bone metastasis is a multistep process that includes cancer cell dissemination, colonization, and metastatic growth. Furthermore, this process involves complex, reciprocal interactions between cancer cells and the bone microenvironment. Bone resorption is known to be involved in both osteolytic and osteoblastic bone metastasis. However, the precise roles of the bone resorption in the multistep process of osteoblastic bone metastasis remain unidentified. In this study, we show that bone resorption plays important roles in cancer cell colonization during the initial stage of osteoblastic bone metastasis. We applied bioluminescence/X-ray computed tomography multimodal imaging that allows us to spatiotemporally analyze metastasized cancer cells and bone status in osteoblastic bone metastasis models. We found that treatment with receptor activator of factor-κB ligand (RANKL) increased osteoblastic bone metastasis when given at the same time as intracardiac injection of cancer cells, but failed to increase metastasis when given 4 days after cancer cell injection, suggesting that RANKL-induced bone resorption facilitates growth of cancer cells colonized in the bone. We show that insulin-like growth factor-1 released from the bone during bone resorption and hypoxia-inducible factor activity in cancer cells cooperatively promoted survival and proliferation of cancer cells in bone marrow. These results suggest a mechanism that bone resorption and hypoxic stress in the bone microenvironment cooperatively play an important role in establishing osteoblastic metastasis. PMID:24597654

  10. Interleukin-1-induced acute bone resorption facilitates the secretion of fibroblast growth factor 23 into the circulation.

    PubMed

    Yamazaki, Miwa; Kawai, Masanobu; Miyagawa, Kazuaki; Ohata, Yasuhisa; Tachikawa, Kanako; Kinoshita, Saori; Nishino, Jin; Ozono, Keiichi; Michigami, Toshimi

    2015-05-01

    Fibroblast growth factor 23 (FGF23), a central regulator of phosphate and vitamin D metabolism, is mainly produced by osteocytes in bone and exerts its effects on distant organs. Despite its endocrine function, the mechanism controlling serum FGF23 levels is not fully understood. Here we tested the hypothesis that osteoclastic bone resorption may play a role in regulating circulating levels of FGF23, using a mouse model where injections of interleukin (IL)-1β into the subcutaneous tissue over the calvaria induced rapid bone resorption. A significant amount of FGF23 was detected in the extracts from mouse bones, which supports the idea that FGF23 stays in bone for a while after its production. IL-1β-induced bone resorption was associated with elevated serum FGF23 levels, an effect abolished by pre-treatment with pamidronate. Fgf23 expression was not increased in either the calvariae or tibiae of IL-1β-injected mice, which suggests that IL-1β facilitated the entry of FGF23 protein into circulation by accelerating bone resorption rather than increasing its gene expression. The direct effect of IL-1β on bone was confirmed when it increased FGF23 levels in the conditioned media of mouse calvariae in organ culture. Repeated treatment of the cultured calvariae with IL-1β led to a refractory phase, where FGF23 was not mobilized by IL-1β anymore. Consistent with the in vivo results, treatment with IL-1β failed to increase Fgf23 mRNA in isolated primary osteocytes and osteoblasts. These results suggest that FGF23 produced by osteocytes remains in bone, and that rapid bone resorption facilitates its entry into the bloodstream. PMID:24996526

  11. Deletion of FGFR3 in Osteoclast Lineage Cells Results in Increased Bone Mass in Mice by Inhibiting Osteoclastic Bone Resorption.

    PubMed

    Su, Nan; Li, Xiaogang; Tang, Yubin; Yang, Jing; Wen, Xuan; Guo, Jingyuan; Tang, Junzhou; Du, Xiaolan; Chen, Lin

    2016-09-01

    Fibroblast growth factor receptor 3 (FGFR3) participates in bone remodeling. Both Fgfr3 global knockout and activated mice showed decreased bone mass with increased osteoclast formation or bone resorption activity. To clarify the direct effect of FGFR3 on osteoclasts, we specifically deleted Fgfr3 in osteoclast lineage cells. Adult mice with Fgfr3 deficiency in osteoclast lineage cells (mutant [MUT]) showed increased bone mass. In a drilled-hole defect model, the bone remodeling of the holed area in cortical bone was also impaired with delayed resorption of residual woven bone in MUT mice. In vitro assay demonstrated that there was no significant difference between the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts derived from wild-type and Fgfr3-deficient bone marrow monocytes, suggesting that FGFR3 had no remarkable effect on osteoclast formation. The bone resorption activity of Fgfr3-deficient osteoclasts was markedly decreased accompanying with downregulated expressions of Trap, Ctsk, and Mmp 9. The upregulated activity of osteoclastic bone resorption by FGF2 in vitro was also impaired in Fgfr3-deficient osteoclasts, indicating that FGFR3 may participate in the regulation of bone resorption activity of osteoclasts by FGF2. Reduced adhesion but not migration in osteoclasts with Fgfr3 deficiency may be responsible for the impaired bone resorption activity. Our study for the first time genetically shows the direct positive regulation of FGFR3 on osteoclastic bone resorption. © 2016 American Society for Bone and Mineral Research. PMID:26990430

  12. Bone Balance within a Cortical BMU: Local Controls of Bone Resorption and Formation

    PubMed Central

    Smith, David W.; Gardiner, Bruce S.; Dunstan, Colin

    2012-01-01

    Maintaining bone volume during bone turnover by a BMU is known as bone balance. Balance is required to maintain structural integrity of the bone and is often dysregulated in disease. Consequently, understanding how a BMU controls bone balance is of considerable interest. This paper develops a methodology for identifying potential balance controls within a single cortical BMU. The theoretical framework developed offers the possibility of a directed search for biological processes compatible with the constraints of balance control. We first derive general control constraint equations and then introduce constitutive equations to identify potential control processes that link key variables that describe the state of the BMU. The paper describes specific local bone volume balance controls that may be associated with bone resorption and bone formation. Because bone resorption and formation both involve averaging over time, short-term fluctuations in the environment are removed, leaving the control systems to manage deviations in longer-term trends back towards their desired values. The length of time for averaging is much greater for bone formation than for bone resorption, which enables more filtering of variability in the bone formation environment. Remarkably, the duration for averaging of bone formation may also grow to control deviations in long-term trends of bone formation. Providing there is sufficient bone formation capacity by osteoblasts, this leads to an extraordinarily robust control mechanism that is independent of either osteoblast number or the cellular osteoid formation rate. A complex picture begins to emerge for the control of bone volume. Different control relationships may achieve the same objective, and the ‘integration of information’ occurring within a BMU may be interpreted as different sets of BMU control systems coming to the fore as different information is supplied to the BMU, which in turn leads to different observable BMU behaviors

  13. LEPTIN REGULATION OF BONE RESORPTION BY THE SYMPATHETIC NERVOUS SYSTEM AND CART

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via beta2-adrenergic receptors (Adrb...

  14. RNA therapeutics targeting osteoclast-mediated excessive bone resorption

    PubMed Central

    Wang, Yuwei; Grainger, David W

    2011-01-01

    RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique developed with dramatically increasing utility for both scientific and therapeutic purposes. Short interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many therapeutic applications, and commonly used as a tool for elucidating disease-associated genes. Osteoporosis and their associated osteoporotic fragility fractures in both men and women are rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New therapeutics are needed for this increasing patient population. This review describes the diversity of molecular targets suitable for RNAi-based gene knock-down in osteoclasts to control osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted siRNA delivery and efficient gene silencing, and describe opportunities and challenges of introducing siRNA as a therapeutic approach to hard and connective tissue disorders. PMID:21945356

  15. Impact of bone lead and bone resorption on plasma and whole blood lead levels during pregnancy.

    PubMed

    Téllez-Rojo, Martha María; Hernández-Avila, Mauricio; Lamadrid-Figueroa, Héctor; Smith, Donald; Hernández-Cadena, Leticia; Mercado, Adriana; Aro, Antonio; Schwartz, Joel; Hu, Howard

    2004-10-01

    The authors tested the hypotheses that maternal bone lead burden is associated with increasing maternal whole blood and plasma lead levels over the course of pregnancy and that this association is modified by rates of maternal bone resorption. A total of 193 Mexican women were evaluated (1997-1999) in the first, second, and third trimesters of pregnancy. Whole blood lead and plasma lead levels were measured in each trimester. Urine was analyzed for cross-linked N-telopeptides (NTx) of type I collagen, a biomarker of bone resorption. Patella and tibia lead levels were measured at 4 weeks postpartum. The relation between whole blood, plasma, and bone lead and NTx was assessed using mixed models. Plasma lead concentrations followed a U-shape, while NTx levels increased significantly during pregnancy. In a multivariate model, the authors observed a significant and positive interaction between NTx and bone lead when plasma lead was used as the outcome variable. Dietary calcium intake was inversely associated with plasma lead. Results for whole blood lead were similar but less pronounced. These results confirm previous evidence that bone resorption increases during pregnancy, with a consequential significant release of lead from bone, constituting an endogenous source of prenatal exposure. They also provide a rationale for testing strategies (e.g., nutritional supplementation with calcium) aimed at decreasing prenatal lead exposure. PMID:15383411

  16. [Inhibitory effect of 8-prenylnaringenin on osteoclastogensis of bone marrow cells and bone resorption activity].

    PubMed

    Lü, Xiang; Zhou, Ying; Chen, Ke-Ming; Zhao, Zhi; Zhou, Jian; Ma, Xiao-Ni

    2013-03-01

    This study is to investigate the effect of 8-prenylnaringenin (8-PNG) on osteoclastogensis of bone marrow cells and bone resorption activity of osteoclasts. Osteoclasts were separated from long bone marrow of newborn rabbits and cultured in alpha-MEM containing 10% FBS. 8-PNG was added into culture media at 1 x 10(-7), 1 x 10(-6), 1 x 10(-5) mol xL(-1), separately. 17beta-Estradiol (E2, 1 x 10(-7) mol x L(-7)) was used as positive control. T RAP staining and TRAP activity measurement were performed after 5 days, and the bone resorption pits were analyzed after 7 days. Annexin V staining for the detection of apoptotic osteoclasts was performed after 2, 4, 8, 12, 24, 36 and 48 h separately. The mRNA expression level of TRAP and cathepsin K (CTSK) was measured by real-time RT-PCR. 8-PNG significantly reduced the number of osteoclasts which was TRAP staining positive and with more than three nucleus, the area and number of bone resorption pits decreased obviously in 8-PNG-supplemented groups. The apoptosis rate peaked earlier in the 8-PNG-supplemented groups and the mRNA expression level of TRAP and CTSK decreased significantly. All these inhibitory effects were in a dose dependent manner, the highest effect was obtained by 1 x 10(-5) mol x L(-1) 8-PNG. 8-PNG inhibits bone resorption activity of osteoclasts by inducing osteoclast apoptosis and inhibiting the gene expression and enzyme activity including TRAP and CTSK, and restrains bone marrow cells to osteoclast differentiation. PMID:23724646

  17. [Effect of osthol on apoptosis and bone resorption of osteoclasts cultured in vitro].

    PubMed

    Ming, Lei-Guo; Wang, Ming-Gang; Chen, Ke-Ming; Zhou, Jian; Han, Gui-Qiu; Zhu, Rui-Qing

    2012-02-01

    This study is to investigate the effect of osthol on osteoclasts' activity, bone resorption as well as apoptosis in vitro, and explore the mechanism of osthol in preventing osteoporosis. Osteoclasts were separated from long-limb bones of new born rabbits, cultured in 24-well plate with glass slices and bone slices, and treated by 1 x 10(-5) mol x L(-1) osthol. Osteoclasts were identified by observing live cells with phase contrast microscope, HE staining, TRAP staining and toluidine blue staining of bone resorption pits. The numbers of bone resorption pits were counted as well as the surface area of bone resorption on bone slice. Osteoclasts were stained with acridine orange to detect the cell apoptosis. The ratio of apoptotic osteoclasts was observed under fluorescence microscope. The gene expression of RANKL, OPG, TRAP and p-JNK1/2 protein expression were examined using real time PCR and Western blotting, respectively. Comparing with the control group without osthol, the rates of apoptotic osteoclasts increased obviously and the number and area of bone resorption pits decreased evidently with 1 x 10(-5) mol x L(-1) osthol. There is significant difference between control group and experiment group treated by 1 x 10(-5) mol x L(-1) osthol. Therefore, the osthol through RANK+RANKL/TRAF6/Mkk/JNK signal pathway inhibits the osteoclasts activity, enhances osteoclasts apoptotic and inhibits the bone resorption. PMID:22512027

  18. Impairment of osteoclastic bone resorption in rapidly growing female p47phox knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone formation is dependent on the activity and differentiation of osteoblasts; whereas resorption of preexisting mineralized bone matrix by osteoclasts is necessary not only for bone development but also for regeneration and remodeling. Bone remodeling is a process in which osteoblasts and osteocla...

  19. Control of Bone Resorption by Semaphorin 4D Is Dependent on Ovarian Function

    PubMed Central

    Dacquin, Romain; Domenget, Chantal; Kumanogoh, Atsushi; Kikutani, Hitoshi; Jurdic, Pierre; Machuca-Gayet, Irma

    2011-01-01

    Osteoporosis is one of the most common bone pathologies, which are characterized by a decrease in bone mass. It is well established that bone mass, which results from a balanced bone formation and bone resorption, is regulated by many hormonal, environmental and genetic factors. Here we report that the immune semaphorin 4D (Sema4D) is a novel factor controlling bone resorption. Sema4D-deficient primary osteoclasts showed impaired spreading, adhesion, migration and resorption due to altered ß3 integrin sub-unit downstream signaling. In apparent accordance with these in vitro results, Sema4D deletion in sexually mature female mice led to a high bone mass phenotype due to defective bone resorption by osteoclasts. Mutant males, however, displayed normal bone mass and the female osteopetrotic phenotype was only detected at the onset of sexual maturity, indicating that, in vivo, this intrinsic osteoclast defect might be overcome in these mice. Using bone marrow cross transplantation, we confirmed that Sema4D controls bone resorption through an indirect mechanism. In addition, we show that Sema4D −/− mice were less fertile than their WT littermates. A decrease in Gnrh1 hypothalamic expression and a reduced number of ovarian follicles can explain this attenuated fertility. Interestingly, ovariectomy abrogated the bone resorption phenotype in Sema4D −/− mice, providing the evidence that the observed high bone mass phenotype is strictly dependent on ovarian function. Altogether, this study reveals that, in vivo, Sema4D is an indirect regulator of bone resorption, which acts via its effect on reproductive function. PMID:22046317

  20. An automatic early stage alveolar-bone-resorption evaluation method on digital dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Katsumata, Akitoshi; Muramatsu, Chisako; Hara, Takeshi; Suzuki, Hiroki; Fujita, Hiroshi

    2014-03-01

    Periodontal disease is a kind of typical dental diseases, which affects many adults. The presence of alveolar bone resorption, which can be observed from dental panoramic radiographs, is one of the most important signs of the progression of periodontal disease. Automatically evaluating alveolar-bone resorption is of important clinic meaning in dental radiology. The purpose of this study was to propose a novel system for automated alveolar-bone-resorption evaluation from digital dental panoramic radiographs for the first time. The proposed system enables visualization and quantitative evaluation of alveolar bone resorption degree surrounding the teeth. It has the following procedures: (1) pre-processing for a test image; (2) detection of tooth root apices with Gabor filter and curve fitting for the root apex line; (3) detection of features related with alveolar bone by using image phase congruency map and template matching and curving fitting for the alveolar line; (4) detection of occlusion line with selected Gabor filter; (5) finally, evaluation of the quantitative alveolar-bone-resorption degree in the area surrounding teeth by simply computing the average ratio of the height of the alveolar bone and the height of the teeth. The proposed scheme was applied to 30 patient cases of digital panoramic radiographs, with alveolar bone resorption of different stages. Our initial trial on these test cases indicates that the quantitative evaluation results are correlated with the alveolar-boneresorption degree, although the performance still needs further improvement. Therefore it has potential clinical practicability.

  1. The bone resorption inhibitors odanacatib and alendronate affect post-osteoclastic events differently in ovariectomized rabbits.

    PubMed

    Jensen, Pia Rosgaard; Andersen, Thomas Levin; Pennypacker, Brenda L; Duong, Le T; Delaissé, Jean-Marie

    2014-02-01

    Odanacatib (ODN) is a bone resorption inhibitor which differs from standard antiresorptives by its ability to reduce bone resorption without decreasing bone formation. What is the reason for this difference? In contrast with other antiresorptives, such as alendronate (ALN), ODN targets only the very last step of the resorption process. We hypothesize that ODN may therefore modify the remodeling events immediately following osteoclastic resorption. These events belong to the reversal phase and include recruitment of osteoblasts, which is critical for connecting bone resorption to formation. We performed a histomorphometric study of trabecular remodeling in vertebrae of estrogen-deficient rabbits treated or not with ODN or ALN, a model where ODN, but not ALN, was previously shown to preserve bone formation. In line with our hypothesis, we found that ODN treatment compared to ALN results in a shorter reversal phase, faster initiation of osteoid deposition on the eroded surfaces, and higher osteoblast recruitment. The latter is reflected by higher densities of mature bone forming osteoblasts and an increased subpopulation of cuboidal osteoblasts. Furthermore, we found an increase in the interface between osteoclasts and surrounding osteoblast-lineage cells. This increase is expected to favor the osteoclast-osteoblast interactions required for bone formation. Regarding bone resorption itself, we show that ODN, but not ALN, treatment results in shallower resorption lacunae, a geometry favoring bone stiffness. We conclude that, compared to standard antiresorptives, ODN shows distinctive effects on resorption geometry and on reversal phase activities which positively affect osteoblast recruitment and may therefore favor bone formation. PMID:24085265

  2. [Reducing bone resorption by cathepsin K inhibitor and treatment of osteoporosis].

    PubMed

    Watanabe, Reiko; Okazaki, Ryo

    2014-01-01

    Cathepsin K is a lysosomal cysteine protease, secreted from osteoclasts. It plays a major role in the osteoclastic bone resorption by cleaving type 1 collagen, the major bone matrix protein, under acidic pH. In cathepsin K knockout mice, bone mineral density (BMD) is increased, bone resorption is decreased without reduction in the number of osteoclast whereas bone formation is decreased. Based on these results, cathepsin K inhibitors have been developed for the treatment of osteoporosis. Odanacatib is one of them and is perhaps closest for launching. In phase 1 and 2 trials, it markedly reduced bone resorption with a transient reduction in bone formation, thus resulted in a robust increase in both trabecular and cortical BMD in osteoporotics. Currently, Odanacatib is in phase 3 fracture prevention trial, of which results are anticipated in 2014. PMID:24369281

  3. Alendronate distributed on bone surfaces inhibits osteoclastic bone resorption in vitro and in experimental hypercalcemia models.

    PubMed

    Azuma, Y; Sato, H; Oue, Y; Okabe, K; Ohta, T; Tsuchimoto, M; Kiyoki, M

    1995-02-01

    Alendronate is an aminobisphosphonate that acts as a potent inhibitor of osteoclastic bone resorption. To understand the mechanism of action of alendronate in vivo, in this study we investigated the relationship between distribution of [14C]-alendronate in rat bone and its effects on bone resorption in vitro or in rat hypercalcemic models. A single IV dose of 0.05 approximately 1.25 mg/kg inhibited the increase in plasma calcium level induced by bovine PTH or 1 alpha(OH)D3. The minimal effective dose of pamidronate (1.25 mg/kg) and etidronate (over 31.25 mg/kg) were at least 5 times and 25 times, respectively, higher than the dose of alendronate in the rat hypercalcemic model prepared by 1 alpha(OH)D3. The relative potencies of compounds in the hypercalcemic rat models reflected those of inhibitory effects on bone resorption in vitro. We conducted the ivory-slice assay under two conditions: (a) addition of a given bisphosphonate after adherence of the osteoclasts; and (b) preincubation of the ivory slices with a given bisphosphonate. The inhibitory IC50 values of alendronate under condition (b) were similar to those under condition (a). To evaluate the interaction between osteoclasts and alendronate in bone, we investigated the localization of [14C]-alendronate in the tibia of growing rats (4-day-old rats). Alendronate did not distribute uniformly in the tibia. At 1 day after injection (0.05 mg SC), dense labeling was seen primarily under osteoclasts. We injected 0.05 mg/kg of [14C]-alendronate (single i.v.) into rats [14C]-alendronate was rapidly eliminated from plasma, and mainly distributed to the bone in rats. These data suggest that alendronate which distributed on bone surface mainly contributed to the antihypercalcemic action in vivo. PMID:7756053

  4. Self-assembling bisphosphonates into nanofibers to enhance their inhibitory capacity on bone resorption.

    PubMed

    Tang, Anming; Qian, Yu; Liu, Shuang; Wang, Weijuan; Xu, Bing; Qin, An; Liang, Gaolin

    2016-05-19

    Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators and which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both and have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs and could "smartly" self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently. PMID:27153349

  5. Response of Bone Resorption Markers to Aristolochia longa Intake by Algerian Breast Cancer Postmenopausal Women

    PubMed Central

    Benarba, Bachir; Meddah, Boumedienne; Tir Touil, Aicha

    2014-01-01

    Aristolochia longa is widely used in traditional medicine in Algeria to treat breast cancer. The aim of the present study was to investigate the response of bone resorption markers to A. longa intake by Algerian breast cancer postmenopausal women. According to the A. longa intake, breast cancer patients were grouped into A. longa group (Al) (n = 54) and non-A. longa group (non-Al) (n = 24). 32 women constituted the control group. Bone resorption markers (from urine) pyridinoline (PYD) and deoxypyridinoline (DPD) were determined by HPLC. Serum and urinary creatinine, uric acid, and urea were measured. 1 g of A. longa intake resulted in significant rise of renal serum markers and a pronounced increase of bone resorption markers. The intake of A. longa roots is detrimental for kidney function and resulted in high bone resorption, maybe due to the reduction in renal function caused by the aristolochic acids contained in the roots. PMID:24876833

  6. Self-assembling bisphosphonates into nanofibers to enhance their inhibitory capacity on bone resorption

    NASA Astrophysics Data System (ADS)

    Tang, Anming; Qian, Yu; Liu, Shuang; Wang, Weijuan; Xu, Bing; Qin, An; Liang, Gaolin

    2016-05-01

    Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently.Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently. Electronic supplementary information (ESI) available: Experiment methods and details; syntheses and characterization of Pami-D and Alen-D; HPLC conditions; Fig. S1-S15, Schemes S1 and S2, Tables S1 and S2

  7. Blocking antibody to the β-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis

    PubMed Central

    Zhu, Ling-Ling; Blair, Harry; Cao, Jay; Yuen, Tony; Latif, Rauf; Guo, Lida; Tourkova, Irina L.; Li, Jianhua; Davies, Terry F.; Sun, Li; Bian, Zhuan; Rosen, Clifford; Zallone, Alberta; New, Maria I.; Zaidi, Mone

    2012-01-01

    Low estrogen levels undoubtedly underlie menopausal bone thinning. However, rapid and profuse bone loss begins 3 y before the last menstrual period, when serum estrogen is relatively normal. We have shown that the pituitary hormone FSH, the levels of which are high during late perimenopause, directly stimulates bone resorption by osteoclasts. Here, we generated and characterized a polyclonal antibody to a 13-amino-acid-long peptide sequence within the receptor-binding domain of the FSH β-subunit. We show that the FSH antibody binds FSH specifically and blocks its action on osteoclast formation in vitro. When injected into ovariectomized mice, the FSH antibody attenuates bone loss significantly not only by inhibiting bone resorption, but also by stimulating bone formation, a yet uncharacterized action of FSH that we report herein. Mesenchymal cells isolated from mice treated with the FSH antibody show greater osteoblast precursor colony counts, similarly to mesenchymal cells isolated from FSH receptor (FSHR)−/− mice. This suggests that FSH negatively regulates osteoblast number. We confirm that this action is mediated by signaling-efficient FSHRs present on mesenchymal stem cells. Overall, the data prompt the future development of an FSH-blocking agent as a means of uncoupling bone formation and bone resorption to a therapeutic advantage in humans. PMID:22908268

  8. Role of carbonic anhydrase in bone resorption induced by prostaglandin E2 in vitro

    NASA Technical Reports Server (NTRS)

    Hall, G. E.; Kenny, A. D.

    1985-01-01

    The possible role of carbonic anhydrase in bone resorption induced by prostaglandin E2 (PGE2) was studied using an in vitro neonatal mouse calvarial culture system. PGE2 (10 to the -6th M) was effective in stimulating resorption, as assessed by calcium release into culture media. This enhanced resorption was accompanied by significant increases in calvarial carbonic anhydrase activity over control values at 48 and 96 h. At 48 h, bones treated with PGE2 had 20 percent more carbonic anhydrase activity than controls. By 96 h, treated bones contained 79 percent more carbonic anhydrase activity than controls. PGE2-induced bone resorption was inhibited by the carbonic anhydrase inhibitor acetazolamide in a dose-dependent fashion from 10 to the -5th to 10 to the -4th M with 77 percent inhibition observed at 10 to the -4th M. The acetazolamide analogue CL 13,850 (N-t-butylacetazolamide), which does not inhibit carbonic anhydrase, failed to inhibit PGE2-induced resorption. These results are consistent with the hypothesis that carbonic anhydrase is a necessary component of the osteoclastic bone resorptive mechanism.

  9. Local Mechanical Stimuli Regulate Bone Formation and Resorption in Mice at the Tissue Level

    PubMed Central

    Schulte, Friederike A.; Ruffoni, Davide; Lambers, Floor M.; Christen, David; Webster, Duncan J.; Kuhn, Gisela; Müller, Ralph

    2013-01-01

    Bone is able to react to changing mechanical demands by adapting its internal microstructure through bone forming and resorbing cells. This process is called bone modeling and remodeling. It is evident that changes in mechanical demands at the organ level must be interpreted at the tissue level where bone (re)modeling takes place. Although assumed for a long time, the relationship between the locations of bone formation and resorption and the local mechanical environment is still under debate. The lack of suitable imaging modalities for measuring bone formation and resorption in vivo has made it difficult to assess the mechanoregulation of bone three-dimensionally by experiment. Using in vivo micro-computed tomography and high resolution finite element analysis in living mice, we show that bone formation most likely occurs at sites of high local mechanical strain (p<0.0001) and resorption at sites of low local mechanical strain (p<0.0001). Furthermore, the probability of bone resorption decreases exponentially with increasing mechanical stimulus (R2 = 0.99) whereas the probability of bone formation follows an exponential growth function to a maximum value (R2 = 0.99). Moreover, resorption is more strictly controlled than formation in loaded animals, and ovariectomy increases the amount of non-targeted resorption. Our experimental assessment of mechanoregulation at the tissue level does not show any evidence of a lazy zone and suggests that around 80% of all (re)modeling can be linked to the mechanical micro-environment. These findings disclose how mechanical stimuli at the tissue level contribute to the regulation of bone adaptation at the organ level. PMID:23637993

  10. Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase.

    PubMed Central

    Kasten, T P; Collin-Osdoby, P; Patel, N; Osdoby, P; Krukowski, M; Misko, T P; Settle, S L; Currie, M G; Nickols, G A

    1994-01-01

    We have examined the effects of modulating nitric oxide (NO) levels on osteoclast-mediated bone resorption in vitro and the effects of nitric oxide synthase (NOS) inhibitors on bone mineral density in vivo. Diaphorase-based histochemical staining for NOS activity of bone sections or highly enriched osteoclast cultures suggested that osteoclasts exhibit substantial NOS activity that may account for basal NO production. Chicken osteoclasts were cultured for 36 hr on bovine bone slices in the presence or absence of the NO-generating agent sodium nitroprusside or the NOS inhibitors N-nitro-L-arginine methyl ester and aminoguanidine. Nitroprusside markedly decreased the number of bone pits and the average pit area in comparison with control cultures. On the other hand, NOS inhibition by N-nitro-L-arginine methyl ester or aminoguanidine dramatically increased the number of bone pits and the average resorption area per pit. In a model of osteoporosis, aminoguanidine potentiated the loss of bone mineral density in ovariectomized rats. Aminoguanidine also caused a loss of bone mineral density in the sham-operated rats. Inhibition of NOS activity in vitro and in vivo resulted in an apparent potentiation of osteoclast activity. These findings suggest that endogenous NO production in osteoclast cultures may regulate resorption activity. The modulation of NOS and NO levels by cells within the bone microenvironment may be a sensitive mechanism for local control of osteoclast bone resorption. Images PMID:7513424

  11. Neural crest-mediated bone resorption is a determinant of species-specific jaw length

    PubMed Central

    Ealba, Erin L.; Jheon, Andrew H.; Hall, Jane; Curantz, Camille; Butcher, Kristin D.; Schneider, Richard A.

    2015-01-01

    Precise control of jaw length during development is crucial for proper form and function. Previously we have shown that in birds, neural crest mesenchyme (NCM) confers species-specific size and shape to the beak by regulating molecular and histological programs for the induction and deposition of cartilage and bone. Here we reveal that a hitherto unrecognized but similarly essential mechanism for establishing jaw length is the ability of NCM to mediate bone resorption. Osteoclasts are considered the predominant cells that resorb bone, although osteocytes have also been shown to participate in this process. In adults, bone resorption is tightly coupled to bone deposition as a means to maintain skeletal homeostasis. Yet, the role and regulation of bone resorption during growth of the embryonic skeleton have remained relatively unexplored. We compare jaw development in short-beaked quail versus long-billed duck and find that quail have substantially higher levels of enzymes expressed by bone-resorbing cells including tartrate-resistant acid phosphatase (TRAP), Matrix metalloproteinase 13 (Mmp13), and Mmp9. Then, we transplant NCM destined to form the jaw skeleton from quail to duck and generate chimeras in which osteocytes arise from quail donor NCM and osteoclasts come exclusively from the duck host. Chimeras develop quail-like jaw skeletons coincident with dramatically elevated expression of TRAP, Mmp13, and Mmp9. To test for a link between bone resorption and jaw length, we block resorption using a bisphosphonate, osteoprotegerin protein, or an MMP13 inhibitor, and this significantly lengthens the jaw. Conversely, activating resorption with RANKL protein shortens the jaw. Finally, we find that higher resorption in quail presages their relatively lower adult jaw bone mineral density (BMD) and that BMD is also NCM-mediated. Thus, our experiments suggest that NCM not only controls bone resorption by its own derivatives but also modulates the activity of mesoderm

  12. Neural crest-mediated bone resorption is a determinant of species-specific jaw length.

    PubMed

    Ealba, Erin L; Jheon, Andrew H; Hall, Jane; Curantz, Camille; Butcher, Kristin D; Schneider, Richard A

    2015-12-01

    Precise control of jaw length during development is crucial for proper form and function. Previously we have shown that in birds, neural crest mesenchyme (NCM) confers species-specific size and shape to the beak by regulating molecular and histological programs for the induction and deposition of cartilage and bone. Here we reveal that a hitherto unrecognized but similarly essential mechanism for establishing jaw length is the ability of NCM to mediate bone resorption. Osteoclasts are considered the predominant cells that resorb bone, although osteocytes have also been shown to participate in this process. In adults, bone resorption is tightly coupled to bone deposition as a means to maintain skeletal homeostasis. Yet, the role and regulation of bone resorption during growth of the embryonic skeleton have remained relatively unexplored. We compare jaw development in short-beaked quail versus long-billed duck and find that quail have substantially higher levels of enzymes expressed by bone-resorbing cells including tartrate-resistant acid phosphatase (TRAP), Matrix metalloproteinase 13 (Mmp13), and Mmp9. Then, we transplant NCM destined to form the jaw skeleton from quail to duck and generate chimeras in which osteocytes arise from quail donor NCM and osteoclasts come exclusively from the duck host. Chimeras develop quail-like jaw skeletons coincident with dramatically elevated expression of TRAP, Mmp13, and Mmp9. To test for a link between bone resorption and jaw length, we block resorption using a bisphosphonate, osteoprotegerin protein, or an MMP13 inhibitor, and this significantly lengthens the jaw. Conversely, activating resorption with RANKL protein shortens the jaw. Finally, we find that higher resorption in quail presages their relatively lower adult jaw bone mineral density (BMD) and that BMD is also NCM-mediated. Thus, our experiments suggest that NCM not only controls bone resorption by its own derivatives but also modulates the activity of mesoderm

  13. Bradykinin stimulates bone resorption and lysosomal-enzyme release in cultured mouse calvaria.

    PubMed Central

    Gustafson, G T; Lerner, U

    1984-01-01

    The effect of bradykinin on bone resorption was studied in cultures of newborn-mouse calvaria. Bradykinin (0.03 microM, 1 microM) stimulated the release of 45Ca2+ from bones dissected out from mice prelabelled in vivo with 45Ca. Bradykinin (1 microM) also augmented the release of stable calcium ( 40Ca ), Pi and the lysosomal enzyme beta-glucuronidase. The stimulatory effect of bradykinin on mineral mobilization and lysosmal -enzyme release could be blocked by indomethacin. It is speculated that concomitant generation of thrombin and bradykinin in areas of trauma and inflammation may induce resorption of nearby bone tissue. PMID:6721862

  14. Treatment with Potassium Bicarbonate Lowers Calcium Excretion and Bone Resorption in Older Men and Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bicarbonate has been implicated in bone health in older subjects on acid-producing diets in short-term studies. The objective of this study was to determine the effects of potassium bicarbonate and its components on changes in bone resorption and calcium excretion over 3 months in older men and wom...

  15. Bone resorption by isolated human osteoclasts in vitro: effects of calcitonin.

    PubMed

    Murrills, R J; Shane, E; Lindsay, R; Dempster, D W

    1989-04-01

    Human osteoclasts were isolated from 12- to 17-week-old fetal tissue and from transiliac crest bone biopsies for an in vitro study of their biology. A hypodermic needle was used to flush either the fetal long bones or the trabeculae of the iliac crest bone biopsy with tissue culture medium and the resulting cell suspension sedimented briefly either onto the surface of plastic tissue culture dishes, for time-lapse microcinematography, or onto slices of devitalized bovine cortical bone for quantitative assay of bone resorption. The osteoclasts were motile, tartrate-resistant acid phosphatase positive and capable of excavating pits in slices of devitalized bovine cortical bone. Human calcitonin, at doses of 1 ng/ml and 1 microgram/ml, caused a 70% inhibition of bone resorption by human fetal osteoclasts over a 24 h period but had no apparent effect on the morphology or motility of either fetal or adult osteoclasts. PMID:2728929

  16. Resorption of monetite calcium phosphate cement by mouse bone marrow derived osteoclasts.

    PubMed

    Montazerolghaem, M; Karlsson Ott, M; Engqvist, H; Melhus, H; Rasmusson, A J

    2015-01-01

    Recently the interest for monetite based biomaterials as bone grafts has increased; since in vivo studies have demonstrated that they are degradable, osteoconductive and improve bone healing. So far osteoclastic resorption of monetite has received little attention. The current study focuses on the osteoclastic resorption of monetite cement using primary mouse bone marrow macrophages, which have the potential to differentiate into resorbing osteoclasts when treated with receptor activator NF-κB ligand (RANKL). The osteoclast viability and differentiation were analysed on monetite cement and compared to cortical bovine bone discs. After seven days live/dead stain results showed no significant difference in viability between the two materials. However, the differentiation was significantly higher on the bone discs, as shown by tartrate resistant acid phosphatase (TRAP) activity and Cathepsin K gene expression. Moreover monetite samples with differentiated osteoclasts had a 1.4 fold elevated calcium ion concentration in their culture media compared to monetite samples with undifferentiated cells. This indicates active resorption of monetite in the presence of osteoclasts. In conclusion, this study suggests that osteoclasts have a crucial role in the resorption of monetite based biomaterials. It also provides a useful model for studying in vitro resorption of acidic calcium phosphate cements by primary murine cells. PMID:25953560

  17. Assessment of global morphological and topological changes in trabecular structure under the bone resorption process

    NASA Astrophysics Data System (ADS)

    Sidorenko, Irina N.; Bauer, Jan; Monetti, Roberto; Baum, Thomas; Rummeny, Ernst J.; Eckstein, Felix; Matsuura, Maiko; Lochmueller, Eva-Maria; Zysset, Philippe K.; Raeth, Christoph W.

    2012-03-01

    Osteoporosis is a frequent skeletal disease characterised both by loss of bone mineral mass and deterioration of cancellous bone micro-architecture. It can be caused by mechanical disuse, estrogen deficiency or natural age-related resorption process. Numerical analysis of high-resolution images of the trabecular network is recognised as a powerful tool for assessment of structural characteristics. Using μCT images of 73 thoracic and 78 lumbar human vertebral specimens in vitro with isotropic resolution of 26μm we simulate bone atrophy as random resorption of bone surface voxels. Global morphological and topological characteristics provided by four Minkowski Functionals (MF) are calculated for two numerical resorption models with and without conservation of global topological connectivity of the trabecular network, which simulates different types of bone loss in osteoporosis, as it has been described in males and females. Diagnostic performance of morphological and topological characteristics as a function of relative bone loss is evaluated by a correlation analysis with respect to experimentally measured Maximum Compressive Strength (MCS). In both resorption models the second MF, which coincides with bone surface fraction BS/TV, demonstrates almost constant value of Pearson's correlation coefficient with respect to the relative bone loss ▵BV/TV. This morphological characteristic does not vary considerably under age-related random resorption and can be used for predicting bone strength in the elderly. The third and fourth MF demonstrate an increasing correlation coefficients with MCS after applying random bone surface thinning without preserving topological connectivity, what can be used for improvement of evaluation of the current state of the structure.

  18. Osteopontin facilitates angiogenesis, accumulation of osteoclasts, and resorption in ectopic bone.

    PubMed

    Asou, Y; Rittling, S R; Yoshitake, H; Tsuji, K; Shinomiya, K; Nifuji, A; Denhardt, D T; Noda, M

    2001-03-01

    Osteoclastic bone resorption requires a number of complex steps that are under the control of local regulatory molecules. Osteopontin is expressed in osteoclasts and is also present in bone matrix; however, its biological function has not been fully understood. To elucidate the role of osteopontin in the process of osteoclastic bone resorption, we conducted ectopic bone implantation experiments using wild-type and osteopontin knockout mouse. In the wild-type group, bone discs from calvariae implanted ectopically in muscle were resorbed, and their mass was reduced by 25% within 4 weeks. In contrast, the mass of the bone discs from calvariae of osteopontin knockout mice was reduced by only 5% when implanted in osteopontin knockout mice. Histological analyses indicated that the number of osteoclasts associated with the implanted bones was reduced in the osteopontin knockout mice. As osteopontin deficiency does not suppress osteoclastogenesis per se, we further examined vascularization immunohistologically and found that the number of vessels containing CD31-positive endothelial cells around the bone discs implanted in muscle was reduced in the osteopontin knockout mice. Furthermore, sc implantation assays indicated that the length and branching points of the newly formed vasculatures associated with the bone discs were also reduced in the absence of osteopontin. In this assay, tartrate-resistant acid phosphatase-positive area of the bone discs was also reduced in the osteopontin knockout mice, indicating further the link between the osteopontin-dependent vascularization and osteoclast accumulation. The bone resorption defect could be rescued by topical administration of recombinant osteopontin to the bones implanted in muscle. These observations indicate that osteopontin is required for efficient vascularization by the hemangiogenic endothelial cells and subsequent osteoclastic resorption of bones. PMID:11181551

  19. Histomorphometric Evaluation of Anorganic Bovine Bone Coverage to Reduce Autogenous Grafts Resorption: Preliminary Results

    PubMed Central

    Maiorana, Carlo; Beretta, Mario; Battista Grossi, Giovanni; Santoro, Franco; Scott Herford, Alan; Nagursky, Heiner; Cicciù, Marco

    2011-01-01

    Physiologic resorption due to remodeling processes affects autogenous corticocancellous grafts in the treatment of atrophic jawbone alveolar ridges. Such a situation in the past made overgrafting of the recipient site mandatory to get enough bone support to dental implants in order to perform a prosthetic rehabilitation. Anorganic bovine bone, conventionally used to treat alveolar bone deficiencies in implant surgery, showed a high osteoconductive property thanks to its micro and macrostructure very similar to that of human hydroxyapatite. An original technique provides for the application of a thin layer of anorganic bovine bone granules and a collagen membrane on the top of the corticocancellous onlay bone grafts to reduce in a remarkable way the graft resorption due to remodeling. The results of a clinical prospective study and a histomorphometric analysis done on autogenous grafts harvested from the iliac crest showed that the proposed technique is able to maintain the original bone volume of the corticocancellous blocks. PMID:21566694

  20. Plasma fluctuation in estradiol-17β and bone resorption markers around parturition in dairy cows

    PubMed Central

    DEVKOTA, Bhuminad; TAKAHASHI, Masahiro; SATO, Saori; SASAKI, Kouya; UEKI, Atsushi; OSAWA, Takeshi; TAKAHASHI, Masahiro; YAMAGISHI, Norio

    2015-01-01

    Blood samples were obtained sequentially from 10 dairy cows around the time of parturition to assess plasma fluctuations in estradiol-17β (E2) levels in association with those of several bone resorption markers. Plasma E2 concentration increased sharply a few days prepartum and decreased quickly after parturition. In terms of bone resorption markers, the plasma level of tartrate-resistant acid phosphatase isoform 5b (TRAP5b) rose significantly, commencing 1 week prepartum, and was maintained at this level to a few days postpartum. The plasma concentration of carboxyterminal collagen cross-links of type-I collagen (CTx) increased significantly after parturition. These observations suggest that osteoclast-mediated bone resorption was activated after parturition when plasma E2 concentrations decreased. PMID:25755022

  1. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    PubMed Central

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  2. Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis, and Bone Resorption.

    PubMed

    Canalis, Ernesto; Schilling, Lauren; Yee, Siu-Pok; Lee, Sun-Kyeong; Zanotti, Stefano

    2016-01-22

    Notch receptors are determinants of cell fate and function and play a central role in skeletal development and bone remodeling. Hajdu Cheney syndrome, a disease characterized by osteoporosis and fractures, is associated with NOTCH2 mutations resulting in a truncated stable protein and gain-of-function. We created a mouse model reproducing the Hajdu Cheney syndrome by introducing a 6955C→T mutation in the Notch2 locus leading to a Q2319X change at the amino acid level. Notch2(Q2319X) heterozygous mutants were smaller and had shorter femurs than controls; and at 1 month of age they exhibited cancellous and cortical bone osteopenia. As the mice matured, cancellous bone volume was restored partially in male but not female mice, whereas cortical osteopenia persisted in both sexes. Cancellous bone histomorphometry revealed an increased number of osteoclasts and bone resorption, without a decrease in osteoblast number or bone formation. Osteoblast differentiation and function were not affected in Notch2(Q2319X) cells. The pre-osteoclast cell pool, osteoclast differentiation, and bone resorption in response to receptor activator of nuclear factor κB ligand in vitro were increased in Notch2(Q2319X) mutants. These effects were suppressed by the γ-secretase inhibitor LY450139. In conclusion, Notch2(Q2319X) mice exhibit cancellous and cortical bone osteopenia, enhanced osteoclastogenesis, and increased bone resorption. PMID:26627824

  3. The relevance of leukotrienes for bone resorption induced by mechanical loading.

    PubMed

    Moura, A P; Taddei, S R A; Queiroz-Junior, C M; Madeira, M F M; Rodrigues, L F D; Garlet, G P; Souza, D G; Machado, F S; Andrade, I; Teixeira, M M; Silva, T A

    2014-12-01

    5-Lipoxygenase (5-LO) metabolites are important pro-inflammatory lipid mediators. However, much still remains to be understood about the role of such mediators in bone remodeling. This study aimed to investigate the effect of 5-LO metabolites, LTB4 and CysLTs, in a model of mechanical loading-induced bone remodeling. Strain-induced tooth movement and consequently alveolar bone resorption/apposition was achieved by using a coil spring placed on molar and attached to incisors of C57BL6 (wild-type-WT), 5-LO deficient mice (5-LO(-/-)) and mice treated with 5-LO inhibitor (zileuton-ZN) or with antagonist of CysLTs receptor (montelukast-MT). The amount of bone resorption and the number of osteoclasts were determined morphometrically. The expression of inflammatory and bone remodeling markers in periodontium was analyzed by qPCR. Osteoclast differentiation and TNF-α production were evaluated in vitro using RAW 264.7 cells treated with LTB4 or LTD4. Bone resorption, TRAP(+) cells and expression of Tnfa, Il10 and Runx2 were significantly diminished in 5-LO(-/-), ZN- and MT-treated mice. The expression of Rank was also reduced in 5-LO(-/-) and MT-treated mice. Accordingly, LTB4 and LTD4 in association with RANKL promoted osteoclast differentiation and increased TNF-α release in vitro. These data demonstrate that the absence of 5-LO metabolites, LTB4 and CysLTs reduces osteoclast recruitment and differentiation, consequently diminishing bone resorption induced by mechanical loading. Thus, 5-LO might be a potential target for controlling bone resorption in physiological and pathological conditions. PMID:25270168

  4. N-acetyl muramyl dipeptide stimulation of bone resorption in tissue culture.

    PubMed Central

    Dewhirst, F E

    1982-01-01

    N-Acetyl-muramyl-L-alanyl-D-isoglutamine (MDP), a structurally defined fragment of bacterial peptidoglycan, stimulated significant release of previously incorporated 45Ca from fetal rat bones in tissue culture over the concentration range of 0.1 to 10.0 micrograms/ml. MDP-Stimulated bone resorption was not inhibited by the addition of the prostaglandin synthetase inhibitor indomethacin to the culture medium. MDP was neither mitogenic for nor stimulated the release of osteoclast-activating factor from cultured human peripheral blood mononuclear cells. Thus, MDP-stimulated bone resorption in vitro is mediated by a mechanism which is not dependent upon prostaglandins or osteoclast-activating factor. 6-O-Stearoyl-N-acetyl-muramyl-L-alanyl-D-isoglutamine, a lipophilic analog of MDP, was slightly more potent than MDP. Two diastereomers of MDP, N-acetyl-muramyl-L-alanyl-L-isoglutamine and N-acetyl-muramyl-D-alanyl-D-isoglutamine, which are inactive as adjuvants, were at least 1,000 times less active than MDP in stimulating bone resorption. The stereochemical specificity for bone-resorptive activity paralleled that required for adjuvant activity, macrophage activation, and activation of the reticuloendothelial system. PMID:7054120

  5. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    SciTech Connect

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei; Ouyang, Zhengxiao; Wu, Chuanlong; Liu, Guangwang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-01-10

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.

  6. Effect of odanacatib on root resorption and alveolar bone metabolism during orthodontic tooth movement.

    PubMed

    Wei, X X; Chu, J P; Zou, Y Z; Ru, N; Cui, S X; Bai, Y X

    2015-01-01

    The aim of this study was to investigate the effect of local administration of odanacatib (ODN) on orthodontic root resorption and the status of alveolar bone metabolism in rat molars. All specimens were scanned using microcomputed tomography and then the raw images were reconstructed. The total volume of the root resorption craters of the 60 g-NS (normal saline) group was higher than in the 60 g-ODN group and the control group. In the 60 g-NS group, the bone volume fraction values of alveolar bone were significantly decreased compared with the other 2 groups. There were no significant differences in the bone volume fraction values of the tibiae among the 3 groups. The results of tartrate-resistant acid phosphatase-positive (TRAP+) numbers showed that there was no difference between the 60 g-NS group and the 60 g-ODN group. The expression of cathepsin K was decreased significantly in the 60 g-ODN group. These results indicate that ODN reduces orthodontics-induced external root resorption and increases alveolar bone metabolism. This may be because ODN inhibits the activity of odontoclasts, but maintains the quantity of odontoclasts and enhances bone formation. ODN promotes local alveolar bone metabolism, but does not affect systemic bone metabolism. PMID:26782444

  7. Voxel Size and Measures of Individual Resorption Cavities in Three-Dimensional Images of Cancellous Bone

    PubMed Central

    Tkachenko, E.V.; Slyfield, C.R.; Tomlinson, R.E.; Daggett, J.R.; Wilson, D.L.; Hernandez, C.J.

    2009-01-01

    Cavities formed by osteoclasts on the surface of cancellous bone during bone remodeling (resorption cavities) are believed to act as stress risers and impair cancellous bone strength and stiffness. Although resorption cavities are readily detected as eroded surfaces in histology sections, identification of resorption cavities in three-dimensional images of cancellous bone has been rare. Here we use sub-micron resolution images of rat lumbar vertebral cancellous bone obtained through serial milling (n=5) to determine how measures of the number and surface area of resorption cavities are influenced by image resolution. Three-dimensional images of a 1mm cube of cancellous bone were collected at 0.7 X 0.7 X 5.0 μm/voxel using fluorescence based serial milling and uniformly coarsened to four other resolutions ranging from 1.4 X 1.4 X 5.0 to 11.2 X 11.2 X 10 μm/voxel. Cavities were identified in the three-dimensional image as an indentation on the cancellous bone surface and were confirmed as eroded surfaces by viewing two-dimensional cross-sections (mimicking histology techniques). The number of cavities observed in the 0.7 X 0.7 X 5.0 μm/voxel images (22.0 ± 1.43, mean ± SD) was not significantly different from that in the 1.4 X 1.4 X 5.0 μm/voxel images (19.2 ± 2.59) and an average of 79% of the cavities observed at both of these resolutions were coincident. However, at lower resolutions, cavity detection was confounded by low sensitivity (<20%) and high false positive rates (>40%). Our results demonstrate that when image voxel size exceeds 1.4 X 1.4 X 5.0 μm/voxel identification of resorption cavities by bone surface morphology is highly inaccurate. Experimental and computational studies of resorption cavities in three-dimensional images of cancellous bone may therefore require images to be collected at resolutions of 1.4 μm/pixel in-plane or better to ensure consistent identification of resorption cavities. PMID:19482097

  8. Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption.

    PubMed

    Zaidi, Mone; Moonga, Baljit S; Huang, Christopher L H

    2004-02-01

    The skeletal matrix in terrestrial vertebrates undergoes continual cycles of removal and replacement in the processes of bone growth, repair and remodeling. The osteoclast is uniquely important in bone resorption and thus is implicated in the pathogenesis of clinically important bone and joint diseases. Activated osteoclasts form a resorptive hemivacuole with the bone surface into which they release both acid and osteoclastic lysosomal hydrolases. This article reviews cell physiological studies of the local mechanisms that regulate the resorptive process. These used in vitro methods for the isolation, culture and direct study of the properties of neonatal rat osteoclasts. They demonstrated that both local microvascular agents and products of the bone resorptive process such as ambient Ca2+ could complement longer-range systemic regulatory mechanisms such as those that might be exerted through calcitonin (CT). Thus elevated extracellular [Ca2+], or applications of surrogate divalent cation agonists for Ca2+, inhibited bone resorptive activity and produced parallel increases in cytosolic [Ca2+], cell retraction and longer-term inhibition of enzyme release in isolated rat osteoclasts. These changes showed specificity, inactivation, and voltage-dependent properties that implicated a cell surface Ca2+ receptor (CaR) sensitive to millimolar extracellular [Ca2+]. Pharmacological, biophysical and immunochemical evidence implicated a ryanodine-receptor (RyR) type II isoform in this process and localized it to a unique, surface membrane site, with an outward-facing channel-forming domain. Such a surface RyR might function either directly or indirectly in the process of extracellular [Ca2+] sensing and in turn be modulated by cyclic adenosine diphosphate ribose (cADPr) produced by the ADP-ribosyl cyclase, CD38. The review finishes by speculating about possible detailed models for these transduction events and their possible interactions with other systemic mechanisms involved

  9. Cytokine-mediated bone resorption is cytochrome P-450 dependent. Student Research Award 1998.

    PubMed

    Young, N; Chole, R

    1999-12-01

    Localized bone loss leads to much of the morbidity of chronic otitis media. Although the cellular events of bone remodeling have been well established, their regulation remains poorly understood. Various cytokines, including tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, used alone and in combination, are powerful inducers of bone resorption. One of the modulators of cytokine-induced bone resorption is nitric oxide (NO), a product of the action of NO synthase (NOS) on L -arginine to form NO. Cytochrome P-450, an enzyme that is similar to NOS both structurally and functionally, may also have a role in NO production in various cellular systems. The goal of this study was to elucidate a possible role of cytochrome P-450 in bone. In this study cytokine-induced bone resorption was blocked with cimetidine and clotrimazole, which are selective inhibitors of the cytochrome P-450 IIIA family and 7-ethoxyresorufin, a nonspecific cytochrome P-450 inhibitor. A concomitant reduction of NO was also observed. This effect may be explained by cytochrome P-450 being a preferred alternative pathway or providing an essential cofactor to NOS in bone. PMID:10580224

  10. Short-term effects of fluoride and strontium on bone formation and resorption in the mouse.

    PubMed

    Marie, P J; Hott, M

    1986-06-01

    The early effects of sodium fluoride (0.80 mg/kg/d) and strontium chloride (0.27%) given alone, or in combination in drinking water, on bone metabolism were examined in the mouse using dynamic histomorphometric methods. Four weeks of oral strontium supplementation increased the osteoid surface and reduced the number of acid phosphatase-stained osteoclasts. However the trabecular calcified bone volume was not augmented. By contrast, short-term treatment with fluoride produced a rapid stimulatory effect on bone formation at a dose that did not affect the bone mineralization rate. Four weeks of fluoride supplementation induced a rapid 21.1% increase in the osteoblastic surface and a 26.3% stimulation of the bone matrix apposition rate evaluated by the double tritiated proline labelling method, which resulted in a 29% increase in the amount of osteoid. This rapid stimulation of the bone formation rate without detectable change in osteoclastic bone resorption led to a 12% increase in the trabecular calcified bone density. This study shows that fluoride and strontium produce distinct early effects on bone formation and resorption in the mouse and that fluoride exerts a rapid stimulatory effect on the bone matrix synthesis rate through an augmentation of the number of bone-forming cells. PMID:3713515

  11. [Topics for basic research(osteoclast and bone resorption)in ASBMR 2015].

    PubMed

    Udagawa, Nobuyuki

    2016-01-01

    This is a brief report summarizing topics in ASBMR 2015 held at Washington State Convention Center in Seattle on October 9-12th. In this paper, I report some topics from presentation of basic research(especially osteoclast and bone resorption)in ASBMR 2015. PMID:26728539

  12. Facilitation of bone resorption activities in synovial lavage fluid patients with mandibular condyle fractures.

    PubMed

    Takano, H; Takahashi, T; Nakata, A; Nogami, S; Yusa, K; Kuwajima, S; Yamazaki, M; Fukuda, M

    2016-05-01

    The aim of this study was to investigate the bone resorption effect of the mediators delivered in joint cavity of patients with mandibular condyle fractures by detecting osteoclast markers using cellular biochemistry methods, and by analysing bone resorption activities via inducing osteoclast differentiation of the infiltrated cells from arthrocentesis. Sixteen joints in 10 patients with mandibular condyle fractures were evaluated. The control group consisted of synovial fluid (SF) samples from seven joints of four volunteers who had no clinical signs or symptoms involving the temporomandibular joint (TMJ) or disc displacement. We collected SF cells from all patients during therapeutic arthrocentesis. The infiltrating cells from TMJ SF were cultured, differentiated into tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and examined bone resorption activities. We also investigated factors related to osteoclast induction of SF, using ELISA procedures. Osteoclast-like cells were induced from the SF cells obtained from all patients with condylar fractures. These multinucleated giant cells were positive for TRAP and actin, and had the ability to absorb dentin slices. The levels of macrophage colony-stimulating factor (M-CSF), prostaglandin E2 (PGE2), soluble form of receptor activator of nuclear factor kappa-B ligand (sRANKL) and osteoprotegerin (OPG), in SF samples from the patients, were significantly higher than in the controls. These findings indicate that bone resorption activities in SF from patients with mandibular condyle fractures were upregulated and may participate in the pathogenesis and wound healing. PMID:26946239

  13. The Multifaceted Osteoclast; Far and Beyond Bone Resorption.

    PubMed

    Drissi, Hicham; Sanjay, Archana

    2016-08-01

    The accepted function of the bone resorbing cell, osteoclast, has been linked to bone remodeling and pathological osteolysis. Emerging evidence points to novel functions of osteoclasts in controlling bone formation and angiogenesis. Thus, while the concept of a "clastokine" with the potential to regulate osteogenesis during remodeling did not come as a surprise, new evidence provided unique insight into the mechanisms underlying osteoclastic control of bone formation. The question still remains as to whether osteoclast precursors or a unique trap positive mononuclear cell, can govern any aspect of bone formation. The novel paradigm eloquently proposed by leaders in the field brings together the concept of clastokines and osteoclast precursor-mediated bone formation, potentially though enhanced angiogenesis. These fascinating advances in osteoclast biology have motivated this short review, in which we discuss these new roles of osteoclasts. J. Cell. Biochem. 117: 1753-1756, 2016. © 2016 Wiley Periodicals, Inc. PMID:27019318

  14. Inhibition of bone resorption by the cathepsin K inhibitor odanacatib is fully reversible.

    PubMed

    Zhuo, Y; Gauthier, J-Y; Black, W C; Percival, M D; Duong, L T

    2014-10-01

    The cathepsin K (CatK) inhibitor odanacatib (ODN) is currently being developed for the treatment of osteoporosis. In clinical trials, efficacy and resolution of effect of ODN treatment on bone turnover biomarkers and accrued bone mass have been demonstrated. Here, we examine the effects of continuing treatment and discontinuation of ODN versus alendronate (ALN) on osteoclast (OC) function. First, accessibility and reversible engagement of active CatK in intracellular vesicles and resorption lacunae of actively resorbing OCs were demonstrated by the selective and reversible CatK inhibitors, BODIPY-L-226 (IC50=39nM) and L-873,724 (IC50=0.5nM). Next, mature human OCs on bone slices were treated with vehicle, ODN, or ALN for 2days, followed by either continuing with the same treatment, or replacement of the inhibitors by vehicle for additional times as specified per experimental conditions. Maintaining OCs on ODN or ALN significantly reduced CTx-I release compared to vehicle controls. However, only the treatment of OCs with ODN resulted in the formation of small shallow discrete resorption pits, retention of intracellular vesicles enriched with CatK and other lysosomal enzymes, increase in 1-CTP release and number of TRAP(+) OCs. Upon discontinuation of ODN treatment, OCs rapidly resumed bone resorption activity, as demonstrated by a return of OC functional markers (CTx-I, 1-CTP), cell number and size, morphology and number of resorption pits, and vesicular secretion of CatK toward the respective vehicle levels. As expected, discontinuation of ALN did not reverse the treatment-related inhibition of OC activity in the time frame of the experiment. In summary, this study demonstrated rapid kinetics of inhibition and reversibility of the effects of ODN on OC bone resorption, that differentiated the cellular mechanism of CatK inhibition from that of the bisphosphate antiresorptive ALN. PMID:25038310

  15. Injectable bone substitute to preserve alveolar ridge resorption after tooth extraction: a study in dog

    PubMed Central

    Boix, Damien; Weiss, Pierre; Gauthier, Olivier; Guicheux, Jérôme; Bouler, Jean-Michel; Pilet, Paul; Daculsi, Guy; Grimandi, Gaël

    2006-01-01

    The aim of the present study was to assess the efficacy of a ready-to-use injectable bone substitute on the prevention of alveolar ridge resorption after tooth extraction. Maxillary and mandibular premolars were extracted from 3 Beagle dogs with preservation of alveolar bone. Thereafter, distal sockets were filled with an injectable bone substitute (IBS), obtained by combining a polymer solution and granules of a biphasic calcium phosphate (BCP) ceramic. As a control, the mesial sockets were left unfilled. After a 3 months healing period, specimens were removed and prepared for histomorphometric evaluation with image analysis. Histomorphometric study allowed to measure the mean and the maximal heights of alveolar crest modifications. Results always showed an alveolar bone resorption in unfilled sockets. Resorption in filled maxillary sites was significantly lower than in control sites. Interestingly, an alveolar ridge augmentation was measured in mandibular filled sockets including 30 % of newly-formed bone. It was concluded that an injectable bone substitute composed of a polymeric carrier and calcium phosphate can significantly increase alveolar ridge preservation after tooth extraction. PMID:17122930

  16. The cellular actions of interleukin-11 on bone resorption in vitro.

    PubMed

    Hill, P A; Tumber, A; Papaioannou, S; Meikle, M C

    1998-04-01

    The pleiotropic cytokine interleukin-11 (IL-11) stimulates osteoclast formation in vitro, but it is not known whether it influences other steps in the bone-resorptive cascade. Using a variety of in vitro model systems for studying bone resorption we have investigated the effects of IL-11 on 1) osteoclast formation, fusion, migration, and activity; and 2) osteoblast-mediated osteoid degradation. The involvement of matrix metalloproteinases (MMPs) and products of arachidonic acid metabolism in IL-11-mediated resorption were also assessed. We first examined the bone-resorptive effects of IL-11 by assessing 45Ca release from neonatal mouse calvarial bones. IL-11 dose-dependently stimulated bone resorption with an EC50 of 10(-10) M. The kinetics of IL-11-mediated 45Ca release demonstrated that it was without effect for the first 48 h of culture, but by 96 h, it stimulated 45Ca release to the same level as that produced by 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] (a hormone that stimulates osteoclast formation and activity). IL-11 also produced a dose-dependent increase in osteoblast-mediated type I collagen degradation with a maximum of 58.0 +/- 6.2% at 5 x 10(-9) M; this effect of IL-11 was less than that produced by 1,25-(OH)2D3 (76.5 +/- 7.1%) and was prevented by an inhibitor of MMPs, but not those blocking arachidonic acid metabolism. We then tested the effects of IL-11 on isolated mouse osteoclasts cultured on ivory slices in the presence and absence of primary mouse osteoblasts. IL-11 had no effect on isolated osteoclast activity even in coculture with primary osteoblasts. We then examined the effects of IL-11 on the formation of osteoclast-like multinucleate cells in mouse bone marrow cultures and the resorptive activity of such cultures using ivory as a substrate. IL-11 dose-dependently increased 1) the number of tartrate-resistant acid phosphatase-positive osteoclast-like multinucleate cells and 2) the surface area of lacunar resorption, although the effects

  17. A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study.

    PubMed

    Ridha, Hambli; Almitani, Khalid H; Chamekh, Abdessalem; Toumi, Hechmi; Tavares, Joao Manuel R S

    2015-04-01

    In this work, a bone damage resorption finite element model based on the disruption of the inhibitory signal transmitted between osteocytes cells in bone due to damage accumulation is developed and discussed. A strain-based stimulus function coupled to a damage-dependent spatial function is proposed to represent the connection between two osteocytes embedded in the bone tissue. The signal is transmitted to the bone surface to activate bone resorption. The proposed model is based on the idea that the osteocyte signal reduction is not related to the reduction of the stimulus sensed locally by osteocytes due to damage, but to the difficulties for the signal in travelling along a disrupted area due to microcracks that can destroy connections of the intercellular network between osteocytes and bone-lining cells. To check the potential of the proposed model to predict the damage resorption process, two bone resorption mechano-regulation rules corresponding to two mechanotransduction approaches have been implemented and tested: (1) Bone resorption based on a coupled strain-damage stimulus function without ruptured osteocyte connections (NROC); and (2) Bone resorption based on a strain stimulus function with ruptured osteocyte connections (ROC). The comparison between the results obtained by both models, shows that the proposed model based on ruptured osteocytes connections predicts realistic results in conformity with previously published findings concerning the fatigue damage repair in bone. PMID:25640868

  18. Natural products for treatment of bone erosive diseases: The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption.

    PubMed

    An, Jing; Hao, Dingjun; Zhang, Qian; Chen, Bo; Zhang, Rui; Wang, Yi; Yang, Hao

    2016-07-01

    Excessive bone resorption plays a central role on the development of bone erosive diseases, including osteoporosis, rheumatoid arthritis, and periodontitis. Osteoclasts, bone-resorbing multinucleated cells, are differentiated from hemopoietic progenitors of the monocyte/macrophage lineage. Regulation of osteoclast differentiation is considered an effective therapeutic target to the treatment of pathological bone loss. Natural plant-derived products, with potential therapeutic and preventive activities against bone-lytic diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities, which are more suitable for long-term use than chemically synthesized medicines. In this review, we summarized the detailed research progress on the active compounds derived from medical plants with potential anti-resorptive effects and their molecular mechanisms on inhibiting osteoclast formation and function. The active ingredients derived from natural plants that are efficacious in suppressing osteoclastogenesis and bone resorption include flavonoids, terpenoids (sesquiterpenoids, diterpenoids, triterpenoids), glycosides, lignans, coumarins, alkaloids, polyphenols, limonoids, quinones and others (steroid, oxoxishhone, fatty acid). Studies have shown that above natural products exert the inhibitory effects via regulating many factors involved in the process of osteoclast differentiation and bone resorption, including the essential cytokines (RANKL, M-CSF), transcription factors (NFATc1, c-Fos), signaling pathways (NF-κB, MAPKs, Src/PI3K/Akt, the calcium ion signaling), osteoclast-specific genes (TRAP, CTSK, MMP-9, integrin β3, OSCAR, DC-STAMP, Atp6v0d2) and local factors (ROS, LPS, NO). The development of osteoclast-targeting natural products is of great value for the prevention or treatment of bone diseases and for bone regenerative medicine. PMID:27131574

  19. Developmentally regulated monocyte recruitment and bone resorption are modulated by functional deletion of the monocytic chemoattractant protein-1 gene.

    PubMed

    Graves, D T; Alsulaimani, F; Ding, Y; Marks, S C

    2002-08-01

    Tooth eruption involves the movement of a tooth from its site of development within the alveolar bone to its functional position in the oral cavity. Because this process is dependent upon monocytes and formation of osteoclasts, it represents an excellent model for examination of these processes under developmental regulation. We investigated the functional role of monocyte chemoattractant protein-1 (MCP-1) in monocyte recruitment and its impact on bone resorption by examining each parameter in MCP-1(-/-) mice as compared with wild-type controls during tooth eruption. The peak number of monocytes occurred on day 5 in the MCP-1(-/-) mice and on day 9 in the wild-type mice. The peak number of osteoclasts followed the same pattern, occurring sooner in the MCP-1(-/-) (day 5) than in wild-type mice (day 9). Consistent with this, MCP-1(-/-) mice had an accelerated rate of tooth eruption in the early phase when the teeth first entered the oral cavity as compared with the wild-type mice. However, there was accelerated eruption in the wild-type group in the later phase of tooth eruption. When examined at the molecular level, inducible nitric oxide synthase (iNOS) and interleukin-11 and -6 were expressed at considerably higher levels in the experimental group with accelerated tooth eruption. This is the first report identifying these factors as potential modulators of bone resorption that can accelerate the rate of tooth eruption. We conclude that, at early timepoints, monocyte recruitment occurs by MCP-1-independent mechanisms. However, at a later timepoint, MCP-1 may play a contributory role in the recruitment of monocytic cells, allowing the wild-type animals to catch up. PMID:12151080

  20. siRNA Knock-Down of RANK Signaling to Control Osteoclast-Mediated Bone Resorption

    PubMed Central

    Wang, Yuwei; Grainger, David W.

    2010-01-01

    Purpose To demonstrate the ability of small interfering (si)RNA targeting the cell receptor, RANK, to control osteoclast function in cultures of both primary and secondary osteoclasts and their precursor cells. Methods siRNA targeting RANK was transfected into both RAW264.7 and primary bone marrow cell cultures. RANK knock-down by siRNA and functional inhibition were assessed in both mature osteoclast and their precursor cell cultures. RANK mRNA message and protein expression after the transfections were analyzed by PCR and Western blot, respectively. Off-target effects were assessed. The inhibition of osteoclast formation was evaluated using tartrate-resistant acid phosphatase (TRAP) assay, and subsequent bone resorption was determined by resorption pit assay. Results Both osteoclasts and osteoclast precursors can be targeted by siRNA in serum-containing media. Delivery of siRNA targeting RANK to both RAW 264.7 and primary bone marrow cell cultures produces short term repression of RANK expression without off-targeting effects, and significantly inhibits both osteoclast formation and bone resorption. Moreover, data support successful RANK knock-down by siRNA specifically in mature osteoclast cultures. Conclusions RANK is demonstrated to be an attractive target for siRNA control of osteoclast activity, with utility for development of new therapeutics for low bone mass pathologies or osteoporosis. PMID:20333451

  1. Bovine parathyroid hormone enhances osteoclast bone resorption by modulating V-ATPase through PTH1R

    PubMed Central

    LIU, SHUANGXIN; ZHU, WEIPING; LI, SIJIA; MA, JIANCHAO; ZHANG, HUITAO; LI, ZHONGHE; ZHANG, LI; ZHANG, BIN; LI, ZHUO; LIANG, XINLING; SHI, WEI

    2016-01-01

    The vacuolar-type H+ adenosine triphosphatase (V-ATPase) plays an important role in cellular acidification and bone resorption by osteoclasts. However, the direct effect of bovine parathyroid hormone (bPTH) on V-ATPase has not yet been elucidated. The aim of the present study was to assess the effects of bPTH on V-ATPase and osteoclasts. Osteoclasts from bone marrow (BM)-derived monocytes of C57BL/6 mice were cultured with or without bPTH. The mRNA and protein expression levels of the V-ATPase a3-subunit and d2-subunit (by RT-qPCR and western blot analysis), V-ATPase activity (using the V type ATPase Activity Assay kit) and the bone resorption function of osteoclasts (by bone resorption assay) were examined following treatment with various concentrations of bPTH (0.1, 1.0, 10 and 100 ng/ml) alone or with bPTH and its inhibitor, bafilomycin A1. Furthermore, the expression of parathyroid hormone (PTH) receptors in osteoclasts was also detected. The results revealed that the mRNA and protein expression levels of V-ATPase a3-subunit and d2-subunit increased in a dose-dependent manner, paralleling the level of bPTH present. In addition, an increase in the concentration of bPTH was accompanied by the increased resorption capability of osteoclasts, whereas bone resorption was inhibited in the presence of bafilomycin A1. In addition, we confirmed the existence of parathyroid hormone 1 receptor (PTH1R) in osteoclasts using three different methods (RT-qPCR, western blot analysis and immunofluorescence staining). We found that bPTH enhanced the bone resorption capability of osteoclasts by modulating the expression of V-ATPase subunits, intracellular acidification and V-ATPase activity. Thus, we propose that PTH has a direct effect on osteoblasts and osteoclasts, and that this effect is mediated through PTH1R, thus contributing to bone remodeling. PMID:26647715

  2. IL-37 inhibits lipopolysaccharide-induced osteoclast formation and bone resorption in vivo.

    PubMed

    Saeed, Jafari; Kitaura, Hideki; Kimura, Keisuke; Ishida, Masahiko; Sugisawa, Haruki; Ochi, Yumiko; Kishikawa, Akiko; Takano-Yamamoto, Teruko

    2016-07-01

    IL-37 is a newly defined member of the IL-1 cytokine family. It has been reported that IL-37 inhibited innate immunity and inflammatory responses in autoimmune diseases and tumors. IL-37 also inhibited Lipopolysaccharide (LPS)-induced immunological reaction. LPS is a bacterial cell wall component that is capable of inducing osteoclast formation and pathological bone resorption. However, there is no study to investigate the effect of IL-37 on LPS-induced osteoclast formation and bone resorption. The purpose of this study is to investigate the effect of IL-37 in LPS-induced osteoclast formation and bone resorption. LPS was administrated with or without IL-37 by subcutaneous injection on mice calvariae. The number of osteoclasts, the level of tartrate-resistant acid phosphatase (TRAP) and cathepsin K mRNA, the ratio of the bone resorption pits and the level of C-terminal telopeptide fragments of type I collagen cross-Links as a marker of bone resorption in mice administrated both LPS and IL-37 were lower than that in mice administrated LPS alone. Real-time RT-PCR was performed to analyze osteoclast related cytokines RANKL, TNF-α and IL-1β mRNA levels in vivo. RANKL, TNF-α and IL-1β mRNAs were increased in the LPS alone administrated mice as compared with PBS administrated groups. On the other hand, RANKL, TNF-α and IL-1β mRNAs were inhibited in the IL-37 and LPS administrated mice as compared with LPS alone administrated group. In vitro analysis, there was no effect of IL-37 in RANKL-induced osteoclast formation, TNF-α-induced osteoclast formation and cell viability from bone marrow macrophages as osteoclast precursor and LPS-induced RANKL expression from stromal cells. These results indicated that IL-37 inhibited LPS-induced osteoclast formation and bone resorption via inhibition of LPS-induced osteoclast related cytokines, but might not directly inhibit osteoclast formation on osteoclast precursor and RANKL expression on stromal cells. PMID:27154248

  3. Quercetin inhibits inflammatory bone resorption in a mouse periodontitis model.

    PubMed

    Napimoga, Marcelo H; Clemente-Napimoga, Juliana T; Macedo, Cristina G; Freitas, Fabiana F; Stipp, Rafael N; Pinho-Ribeiro, Felipe A; Casagrande, Rubia; Verri, Waldiceu A

    2013-12-27

    Periodontitis is a disease that leads to bone destruction and represents the main cause of tooth loss in adults. The development of aggressive periodontitis has been associated with increased inflammatory response that is induced by the presence of a subgingival biofilm containing Aggregatibacter actinomycetemcomitans. The flavonoid quercetin (1) is widespread in vegetables and fruits and exhibits many biological properties for possible medical and clinical applications such as its anti-inflamatory and antioxidant effects. Thus, in the present study, the properties of 1 have been evaluated in bone loss and inflammation using a mouse periodontitis model induced by A. actinomycetemcomitans infection. Subcutaneous treatment with 1 reduced A. actinomycetemcomitans-induced bone loss and IL-1β, TNF-α, IL-17, RANKL, and ICAM-1 production in the gingival tissue without affecting bacterial counts. These results demonstrated that quercetin exhibits protective effects in A. actinomycetemcomitans-induced periodontitis in mice by modulating cytokine and ICAM-1 production. PMID:24246038

  4. Anthraquinone compounds from Morinda officinalis inhibit osteoclastic bone resorption in vitro.

    PubMed

    Bao, Leilei; Qin, Luping; Liu, Lei; Wu, Yanbin; Han, Ting; Xue, Liming; Zhang, Qiaoyan

    2011-11-15

    The root of Morinda officinalis has been claimed to have a protective effect against bone loss in sciatic neurectomized and ovariectomized osteoporotic rats, and this protective effect is supposed to be attributed to anthraquinone compounds in the plant. In the present study, we investigated the effects of three anthraquinones isolated from M. officinalis, including 1, 3, 8-trihydroxy-2-methoxy-anthraquinone (1), 2-hydroxy-1-methoxy-anthraquinone (2) and rubiadin (3) on bone resorption activity in vitro and the mechanism on osteoclasts derived from rat bone marrow cells. Compound 1, 2 and 3 decreased the formation of bone resorption pits, the number of multinucleated osteoclasts, and the activity of tartrate resistant acid phosphates (TRAP) and cathepsin K in the coculture system of osteoblasts and bone marrow cells in the presence of 1, 25-dihydroxyvitamine D(3) and dexamethasone. They also enhanced the apoptosis of osteoclasts induced from bone marrow cells with M-CSF and RANKL. In addition, Compound 1, 2 and 3 improved the ratio of mRNA and protein expression of OPG and RANKL in osteoblasts, interfered with the JNK and NF-κB signal pathway, and reduced the expression of calcitonin receptor (CTR) and carbonic anhydrase/II (CA II) in osteoclasts induced from bone marrow cells with M-CSF and RANKL. These findings indicate that the anthraquinone compounds from M. officinalis are potential inhibitors of bone resorption, and may also serve as evidence to explain the mechanism of the inhibitory effects of some other reported anthraquinones on bone loss. PMID:21945525

  5. In-Vivo Effect of Andrographolide on Alveolar Bone Resorption Induced by Porphyromonas gingivalis and Its Relation with Antioxidant Enzymes

    PubMed Central

    Al Batran, Rami; Al-Bayaty, Fouad H.; Al-Obaidi, Mazen M. Jamil

    2013-01-01

    Alveolar bone resorption is one of the most important facts in denture construction. Porphyromonas gingivalis (Pg) causes alveolar bone resorption, and morphologic measurements are the most frequent methods to identify bone resorption in periodontal studies. This study has aimed at evaluating the effect of Andrographolide (AND) on alveolar bone resorption in rats induced by Pg. 24 healthy male Sprague Dawley rats were divided into four groups as follows: normal control group and three experimental groups challenged orally with Pg ATCC 33277 five times a week supplemented with 20 mg/kg and 10 mg/kg of AND for twelve weeks. Alveolar bones of the left and right sides of the mandible were assessed by a morphometric method. The bone level, that is, the distance from the alveolar bone crest to cementumenamel junction (CEJ), was measured using 6.1 : 1 zoom stereomicroscope and software. AND reduced the effect of Pg on alveolar bone resorption and decreased the serum levels of Hexanoyl-Lysine (HEL); furthermore the reduced glutathione/oxidised glutathione (GSH/GSSG) ratio in AND treated groups (10 and 20 mg/kg) significantly increased when compared with the Pg group (P < 0.05). We can conclude that AND suppresses alveolar bone resorption caused by Pg in rats. PMID:24151590

  6. Anti-resorptive Drugs and their Impact on Maxillofacial Bone among Cancer Patients.

    PubMed

    Borumandi, Farzad; Aghaloo, Tara; Cascarini, Luke; Gaggl, Alexander; Fasanmade, Kunmi

    2015-01-01

    This article aims to give an overview on etiology, diagnosis and treatment options of osteonecrosis of the jaw bone among cancer patients receiving anti-resorptive drugs (ARDs). The physiologic bone function of continuous resorption and buildup is modified by the use of ARDs. Although ARDs proved to reduce pain and to improve the quality of life in patients with metastasizing bone disease, side effects such as medication related osteonecrosis of jaw bone (MRONJ) have been frequently reported since ARDs were firstly introduced. The new generation of ARDs such as Denosumab is associated with the same incidence of MRONJ among cancer patients. The etiology of MRONJ is not entirely understood and many hypotheses have been proposed. ARDs can modify the hard tissues directly by accumulation in the bone, or indirectly by suppression of the osteoclasts, inhibition of angiogenesis and vascularity. Some ARDs such as Bisphosphonates have reportedly the capacity to interfere directly and indirectly with the bone physiology. MRONJ can be a debilitating disease with non healing freely exposed bone in the oral cavity in patients, who already suffer from a primary cancerous disease. Knowledge of MRONJ as a potential side effect of ARDs is crucial for health professionals treating patients with bone modulating drugs. PMID:25807940

  7. Are Panoramic Radiographs Reliable to Diagnose Mild Alveolar Bone Resorption?

    PubMed Central

    Semenoff, Larissa; Semenoff, Tereza Aparecida Delle; Pedro, Fabio Luiz Miranda; Volpato, Evaristo Ricci; Machado, Maria Aparecida de Andrade Moreira; Borges, Álvaro Henrique; Semenoff-Segundo, Alex

    2011-01-01

    It is extremely important to assess variations between the most used radiographs in dental practice, since minimum distortion on obtained images may change diagnosis, treatment plan, and prognosis for the patient. For this, the distance between the enamel-cementum junction and the alveolar bone crest was measured on conventional and digitized periapical, bitewing, and panoramic radiographs and compared among them. From a total of 1484 records, 39 sets of radiographs that fulfilled the inclusion criteria of the study sample were selected. The measurements were grouped according to the intensity of bone loss. Statistically significant difference was found in the averages of the measurements assessed in radiographs with absence of bone loss between conventional panoramic and periapical radiographs, between digitized panoramic and periapical radiographs and between digitized bitewing and panoramic radiographs. By analyzing the results of this work and considering the research protocol used, one can conclude that small losses in height of alveolar bone crest observed in panoramic radiographs should be cautiously evaluated, as they may be overestimated. PMID:21991470

  8. Are panoramic radiographs reliable to diagnose mild alveolar bone resorption?

    PubMed

    Semenoff, Larissa; Semenoff, Tereza Aparecida Delle; Pedro, Fabio Luiz Miranda; Volpato, Evaristo Ricci; Machado, Maria Aparecida de Andrade Moreira; Borges, Alvaro Henrique; Semenoff-Segundo, Alex

    2011-01-01

    It is extremely important to assess variations between the most used radiographs in dental practice, since minimum distortion on obtained images may change diagnosis, treatment plan, and prognosis for the patient. For this, the distance between the enamel-cementum junction and the alveolar bone crest was measured on conventional and digitized periapical, bitewing, and panoramic radiographs and compared among them. From a total of 1484 records, 39 sets of radiographs that fulfilled the inclusion criteria of the study sample were selected. The measurements were grouped according to the intensity of bone loss. Statistically significant difference was found in the averages of the measurements assessed in radiographs with absence of bone loss between conventional panoramic and periapical radiographs, between digitized panoramic and periapical radiographs and between digitized bitewing and panoramic radiographs. By analyzing the results of this work and considering the research protocol used, one can conclude that small losses in height of alveolar bone crest observed in panoramic radiographs should be cautiously evaluated, as they may be overestimated. PMID:21991470

  9. IN SITU ACCUMULATION OF ADVANCED GLYCATION ENDPRODUCTS (AGES) IN BONE MATRIX AND ITS CORRELATION WITH OSTEOCLASTIC BONE RESORPTION

    PubMed Central

    Dong, X. Neil; Qin, An; Xu, Jiake; Wang, Xiaodu

    2011-01-01

    Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6 years old), middle-aged (51±3 years old) and elderly (76±4 years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360 nm and emission wave length 470±40 nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process. PMID:21530698

  10. Effect of calvarial burring on resorption of onlay cranial bone graft.

    PubMed

    Hassanein, Aladdin H; Clune, James E; Mulliken, John B; Arany, Praveen R; Rogers, Gary F; Kulungowski, Ann M; Greene, Arin K

    2012-09-01

    Variable resorption occurs whenever calvarial bone graft is used for onlay cranioplasty. The recipient ectocortex may be burred to expose vessels and osteocytes to maximize healing. The purpose of this study was to determine whether abrading the recipient site improves the volume of onlay graft. The parietal bones of 17 rabbits were sectioned into split-thickness and full-thickness grafts. The right frontal cortex was abraded with a bur to punctate bleeding. Pairs of split-thickness (n = 48) or full-thickness (n = 20) grafts were onlayed to the burred right frontal bone and to the nonburred left frontal bone. Micro-computed tomography was used to determine graft volume immediately postoperatively and 16 weeks later. Histology, including tartrate-resistant acid phosphatase staining, was performed to quantify vascular channels and osteoclasts per high-power field 10 days postoperatively. Split-thickness graft volume decreased 58.0% when placed on the burred calvarial site, compared with grafts on the nonburred cortex (28.4%) (P = 0.01). Full-thickness grafts showed a similar trend: greater resorption (39.1%) when onlayed onto abraded calvaria compared with nonburred ectocortex (26.0%) (P = 0.11). Split-thickness graft orientation (cortical vs cancellous side in contact with the recipient site) did not affect resorption (P = 0.67). Onlay grafts placed on the burred recipient site had more vascular channels (11.8) and osteoclasts (5.7), compared with grafts over nonabraded cortex (3.4 and 4.2, respectively) (P < 0.05). Burring the recipient site cortex before onlay cranial bone grafting promotes resorption, possibly by increasing vascularization and osteoclastic activity. This technique cannot be recommended. PMID:22976644

  11. Urinary Deoxypyridinoline Level Reveals Bone Resorption, Predicts Fracture Risk, And Enhances the Results of Dual Energy X-ray Absorptiometry.

    PubMed

    Kells, John; Dollbaum, Charles M

    2009-01-01

    Bone loss leads to an increased incidence of fracture and is associated with the development of osteoporosis, which can strike people of any age and afflicts 10 million individuals in the U.S. today. Research indicates that osteoporosis causes more than 1.5 million fractures annually, including approximately 300,000 fractures at other sites. Early detection of bone loss (resorption), like that revealed by a combination of dual energy X-ray absorptiometry and monitoring the level of deoxypyridinoline in urine, provides the most complete picture of long-term and short-term bone health. In this reports, we examine the effects of increased bone resorption and various methods of testing for bone loss, present findings from the literature on the effects of and monitorying for bone resorption, and profile individuals most likely to benefit from testing for a decrease in bone mass. PMID:23965324

  12. Isotopic evidence for resorption of soft tissues and bone in immobilized dogs

    SciTech Connect

    Klein, L.; Player, J.S.; Heiple, K.G.; Bahniuk, E.; Goldberg, V.M.

    1982-02-01

    Various experimental methods for producing bone and ligament atrophy have yielded contradictory results. These methods include denervation, immobilization (both internal and external), and disarticulation. We studied a model of internal skeletal fixation for twelve weeks in dogs that were chronically prelabeled with 3H-tetracycline, 45Ca, and 3H-proline. Bone resorption was analyzed by the loss of 3H-tetracycline, and bone and soft-tissue mass were analyzed by the radiochemical and chemical analysis of calcium and collagen. The strength of the anterior cruciate ligament was studied in tension to failure when a fast rate of deformation was applied. Failure of the femur-ligament-tibia complex occurred through the insertion of the ligament into the tibia for both the experimental and the control limbs. Loss of collagen was greater in the tibia and femur than in the lateral meniscus and anterior cruciate ligament, and correlated with a mechanical failure via bone. No evidence for collagen replacement in atrophied tissues was found, but one-half of the resorbed calcium was conserved. The marked loss of 3H-tetracycline indicated that bone atrophy was the result of increased resorption of bone rather than decreased bone formation. Clinical Relevance: We have demonstrated significant atrophy of the soft tissues (lateral meniscus and anterior cruciate ligament) as well as of bone in immobilized joints of dogs. It is likely that the decrease in strength of the bone-ligament-bone complex is related to this atrophy of soft tissues and bone around the joint.

  13. ADRA2A is involved in neuro-endocrine regulation of bone resorption

    PubMed Central

    Mlakar, Vid; Jurkovic Mlakar, Simona; Zupan, Janja; Komadina, Radko; Prezelj, Janez; Marc, Janja

    2015-01-01

    Adrenergic stimulation is important for osteoclast differentiation and bone resorption. Previous research shows that this happens through β2-adrenergic receptor (AR), but there are conflicting evidence on presence and role of α2A-AR in bone. The aim of this study was to investigate the presence of α2A-AR and its involvement in neuro-endocrine signalling of bone remodelling in humans. Real-time polymerase chain reaction (PCR) and immunohistochemistry were used to investigate α2A-AR receptor presence and localization in bone cells. Functionality of rs553668 and rs1800544 single nucleotide polymorphism SNPs located in α2A-AR gene was analysed by qPCR expression on bone samples and luciferase reporter assay in human osteosarcoma HOS cells. Using real-time PCR, genetic association study between rs553668 A>G and rs1800544 C>G SNPs and major bone markers was performed on 661 Slovenian patients with osteoporosis. α2A-AR is expressed in osteoblasts and lining cells but not in osteocytes. SNP rs553668 has a significant influence on α2A-AR mRNA level in human bone samples through the stability of mRNA. α2A-AR gene locus associates with important bone remodelling markers (BMD, CTX, Cathepsin K and pOC). The results of this study are providing comprehensive new evidence that α2A-AR is involved in neuro-endocrine signalling of bone turnover and development of osteoporosis. As shown by our results the neurological signalling is mediated through osteoblasts and result in bone resorption. Genetic study showed association of SNPs in α2A-AR gene locus with bone remodelling markers, identifying the individuals with higher risk of development of osteoporosis. PMID:25818344

  14. Inhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops

    PubMed Central

    Li, Jing; Zeng, Li; Xie, Juan; Yue, Zhiying; Deng, Huayun; Ma, Xueyun; Zheng, Chunbing; Wu, Xiushan; Luo, Jian; Liu, Mingyao

    2015-01-01

    Excessive RANKL signaling leads to superfluous osteoclast formation and bone resorption, is widespread in the pathologic bone loss and destruction. Therefore, targeting RANKL or its signaling pathway has been a promising and successful strategy for this osteoclast-related diseases. In this study, we examined the effects of xanthohumol (XN), an abundant prenylflavonoid from hops plant, on osteoclastogenesis, osteoclast resorption, and RANKL-induced signaling pathway using both in vitro and in vivo assay systems. In mouse and human, XN inhibited osteoclast differentiation and osteoclast formation at the early stage. Furthermore, XN inhibited osteoclast actin-ring formation and bone resorption in a dose-dependent manner. In ovariectomized-induced bone loss mouse model and RANKL-injection-induced bone resorption model, we found that administration of XN markedly inhibited bone loss and resorption by suppressing osteoclast activity. At the molecular level, XN disrupted the association of RANK and TRAF6, resulted in the inhibition of NF-κB and Ca2+/NFATc1 signaling pathway during osteoclastogenesis. As a results, XN suppressed the expression of osteoclastogenesis-related marker genes, including CtsK, Nfatc1, Trap, Ctr. Therefore, our data demonstrated that XN inhibits osteoclastogenesis and bone resorption through RANK/TRAF6 signaling pathways. XN could be a promising drug candidate in the treatment of osteoclast-related diseases such as postmenopausal osteoporosis. PMID:26620037

  15. Role of carbonic anhydrase in bone resorption induced by 1,25 dihydroxyvitamin D3 in vitro

    NASA Technical Reports Server (NTRS)

    Hall, G. E.; Kenny, A. D.

    1985-01-01

    The calvaria of 5-to-6-day-old mice treated with 1 x 10 to the -8th M of 1,25(OH)2D3 in vitro for 48 hours are examined in order to study the function of carbonic anhydrase in bone resorption. Calcium concentrations in the culture were measured to assess bone resorption. It is observed that 1,25(OH)2D3 effectively stimulates bone resorption in vitro and the resorption is dose-dependent. The effects of azetazolamide on 1,25(OH)2D3-induced bone resorption are investigated. The data reveal that 1,25(OH)2D3-induced calcium release is associated with an increase in the carbonic anhydrase activity of bone, and bone alkaline phosphatase activity is decreased and acid phosphatase activity is increased in response to 1,25(OH)2D3. A two-fold mechanism for 1,25(OH)2D3-induced bone resorption is proposed; the first mechanism is an indirect activation of osteoclasts and the second involves an interaction between hormone and osteoclast precursors.

  16. Epstein-Barr virus infection induces bone resorption in apical periodontitis via increased production of reactive oxygen species.

    PubMed

    Jakovljevic, Aleksandar; Andric, Miroslav; Miletic, Maja; Beljic-Ivanovic, Katarina; Knezevic, Aleksandra; Mojsilovic, Slavko; Milasin, Jelena

    2016-09-01

    Chronic inflammatory processes in periapical tissues caused by etiological agents of endodontic origin lead to apical periodontitis. Apart from bacteria, two herpesviruses, Epstein-Barr virus (EBV) and Human cytomegalovirus (HCMV) are recognized as putative pathogens in apical periodontitis. Although previous reports suggest the involvement of EBV in the pathogenesis of apical periodontitis, its exact role in periapical bone resorption has not yet been fully elucidated. We hypothesize that EBV infection in apical periodontitis is capable of inducing periapical bone resorption via stimulation of reactive oxygen species (ROS) overproduction. Increased levels of ROS induce expression of receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL). RANKL binding to receptor activator of nuclear factor κB (RANK) present on the surface of preosteoclasts induces their maturation and activation which consequently leads to bone resorption. The potential benefit of antiviral and antioxidant-based therapies in periapical bone resorption treatment remains to be assessed. PMID:27515196

  17. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades.

    PubMed

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei; Ouyang, Zhengxiao; Wu, Chuanlong; Liu, Guangwang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-01-10

    Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases. PMID:24333429

  18. Dietary xylitol, sorbitol and D-mannitol but not erythritol retard bone resorption in rats.

    PubMed

    Mattila, P T; Svanberg, M J; Mäkinen, K K; Knuuttila, M L

    1996-07-01

    The aim of the present study was to compare the ability of four dietary polyols to reduce bone resorption. Urinary excretion of 3H radioactivity from [3H]tetracycline-prelabeled rats was used as a marker of bone resorption. After prelabeling, the rats were divided randomly into five groups of 10, and fed for 1 mo a nonpurified diet that was supplemented in four groups with either xylitol, sorbitol, D-mannitol or erythritol, respectively, to give a polyol concentration of 1 mol/kg. Xylitol (42%), sorbitol (44%) and to a lesser degree D-mannitol (23%) decreased the excretion of 3H relative to the basal diet. The erythritol group, however, did not differ from the controls. Sorbitol caused continuous diarrhea, whereas in the other groups, intestinal adaptation took place during the 1st wk of polyol feeding. In conclusion, dietary xylitol, sorbitol and to a lesser degree D-mannitol supplementations in rats retard bone resorption, whereas dietary erythritol has no effect. PMID:8683349

  19. Autogenous calvarium bone grafting as a treatment for severe bone resorption in the upper maxilla: a case report.

    PubMed

    Díaz-Romeral-Bautista, Migugel; Manchón-Miralles, Angel; Asenjo-Cabezón, Jorge; Cebrián-Carretero, José-Luis; Torres-García-Denche, Jesús; Linares-García-Valdecasas, Rafael

    2010-03-01

    Atrophic maxilla rehabilitation has been the subject of several studies for decades; despite this, there are still many different therapeutic choices for the best way to treat maxillary resorption in order to enable implant placement and integration. These possibilities include the optimal use of remaining bone structures, such as the pterygoid processes or zygomatic arch, which involves using zygomaticus and pterygoid implants in combination with standard implants placed in the residual bone; alternatively, regenerative techniques, alveolar bone expansion/distraction or bone grafting techniques may be used. Severe maxillary atrophy has a multifactorial aetiology; the most important factors being long evolution edentulism, hyperpneumatization of the maxillary sinus, post-traumatic deficit, bone loss after surgery (tumours, cysts) and periodontal problems or infection. In this report, we present a clinical case of onlay block reconstruction in an atrophic maxilla with harvested cranial calvarium bone grafts for successful future implant-supported oral rehabilitation. PMID:19767715

  20. Mineral metabolism in isolated mouse long bones: Opposite effects of microgravity on mineralization and resorption

    NASA Technical Reports Server (NTRS)

    Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.

    1994-01-01

    An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.

  1. Comparison of growth-induced resorption and denervation-induced resorption on the release of (/sup 3/H)tetracycline, /sup 45/calcium, and (/sup 3/H)collagen from whole bones of growing rats

    SciTech Connect

    Klein, L.; Heiple, K.G.; Stromberg, B.V.

    1983-01-01

    The major effect of immobilization during growth is a smaller bone mass induced by either an increased bone resorption or a decreased bone formation. Using a method of analyzing radioisotopic loss of (/sup 3/H)tetracycline and (/sup 3/H)collagen from bone prelabeled in vivo, we compared the amount of bone resorption due to immobilization with bone resorption induced by growth. One hind limb was denervated in growing male rats, 6 weeks of age, that had been chronically prelabeled with (/sup 3/H)tetracycline, /sup 45/calcium, and (/sup 3/H)proline. The total radioactivity of the whole femur and tibia/fibula from the denervated limb was compared with that from bones of the control limb at 0, 1, 2, 4, and 8 weeks after denervation. The effect of growth on bone formation was measured by net increases in bone length, volume, and mass of matrix and mineral. Experimental bones had a significantly smaller volume and mass. Bone resorption was much greater during growth modeling than during denervation. The additional bone resorption induced by denervation was a small fraction (one-fourth) of the resorption induced by growth. Denervation during growth resulted in less bone being formed due to a smaller gain in matrix and mineral mass as a result of a reduction in bone formation.

  2. The dynamin inhibitor dynasore inhibits bone resorption by rapidly disrupting actin rings of osteoclasts.

    PubMed

    Thirukonda, Gnanasagar J; Uehara, Shunsuke; Nakayama, Takahiro; Yamashita, Teruhito; Nakamura, Yukio; Mizoguchi, Toshihide; Takahashi, Naoyuki; Yagami, Kimitoshi; Udagawa, Nobuyuki; Kobayashi, Yasuhiro

    2016-07-01

    The cytoskeletal organization of osteoclasts is required for bone resorption. Binding of dynamin with guanosine triphosphate (GTP) was previously suggested to be required for the organization of the actin cytoskeleton. However, the role of the GTPase activity of dynamin in the organization of the actin cytoskeleton as well as in the bone-resorbing activity of osteoclasts remains unclear. This study investigated the effects of dynasore, an inhibitor of the GTPase activity of dynamin, on the bone-resorbing activity of and actin ring formation in mouse osteoclasts in vitro and in vivo. Dynasore inhibited the formation of resorption pits in osteoclast cultures by suppressing actin ring formation and rapidly disrupting actin rings in osteoclasts. A time-lapse image analysis showed that dynasore shrank actin rings in osteoclasts within 30 min. The intraperitoneal administration of dynasore inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced trabecular bone loss in mouse femurs. These in vitro and in vivo results suggest that the GTPase activity of dynamin is critical for the bone-resorbing activity of osteoclasts and that dynasore is a seed for the development of novel anti-resorbing agents. PMID:26063501

  3. Biocompatibility, resorption and biofunctionality of a new synthetic biodegradable membrane for guided bone regeneration.

    PubMed

    Hoornaert, Alain; d'Arros, Cyril; Heymann, Marie-Francoise; Layrolle, Pierre

    2016-01-01

    Membranes for guided bone regeneration (GBR) were prepared from the synthetic biodegradable polymer poly-D,L-lactic/glycolic acid (PLGA). This GBR membrane has a bi-layered structure with a dense film to prevent gingival fibroblast ingrowth and ensure mechanical function, and a micro-fibrous layer to support colonization by osteogenic cells and promote bone regeneration. Hydrolysis and biodegradation were both studied in vitro through soaking in phosphate buffered saline (PBS) and in vivo by implantation in the subcutis of rats for 4, 8, 16, 26, 48 and 52 weeks. Histology revealed an excellent colonization of the micro-fibrous layer by cells with a minimal inflammatory reaction during resorption. GBR using the synthetic PLGA membrane was evaluated on critical-size calvaria defects in rats for 4 and 8 weeks. Radiographs, micro-computed tomography and histology showed bone regeneration with the PLGA membrane, while the defects covered with a collagen membrane showed a limited amount of mineralized bone, similar to that of the defect left empty. The biofunctionality of the PLGA membranes was also compared to collagen membranes in mandible defects in rabbits, associated or not with beta-tricalcium phosphate granules. This study revealed that the bi-layered synthetic membrane made of PLGA was safer, more biocompatible, and had a greater controlled resorption rate and bone regeneration capacity than collagen membranes. This new PLGA membrane could be used in pre-implantology and peri-odontology surgery. PMID:27509180

  4. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma.

    PubMed

    Liu, Huan; Liu, Zhiqiang; Du, Juan; He, Jin; Lin, Pei; Amini, Behrang; Starbuck, Michael W; Novane, Nora; Shah, Jatin J; Davis, Richard E; Hou, Jian; Gagel, Robert F; Yang, Jing

    2016-08-24

    Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP up-regulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP up-regulated the methylation of IRF8 and thereby enhanced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1 protein), leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2-deoxy-d-ribose (2DDR). Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K (phosphoinositide 3-kinase)/Akt signaling, and increased DNMT3A (DNA methyltransferase 3A) expression, resulting in hypermethylation of RUNX2, osterix, and IRF8 This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. Because TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications. PMID:27559096

  5. The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation

    PubMed Central

    Delaisse, Jean-Marie

    2014-01-01

    The reversal phase couples bone resorption to bone formation by generating an osteogenic environment at remodeling sites. The coupling mechanism remains poorly understood, despite the identification of a number of ‘coupling' osteogenic molecules. A possible reason is the poor attention for the cells leading to osteogenesis during the reversal phase. This review aims at creating awareness of these cells and their activities in adult cancellous bone. It relates cell events (i) on the bone surface, (ii) in the mesenchymal envelope surrounding the bone marrow and appearing as a canopy above remodeling surfaces and (iii) in the bone marrow itself within a 50-μm distance of this canopy. When bone remodeling is initiated, osteoprogenitors at these three different levels are activated, likely as a result of a rearrangement of cell–cell and cell–matrix interactions. Notably, canopies are brought under the osteogenic influence of capillaries and osteoclasts, whereas bone surface cells become exposed to the eroded matrix and other osteoclast products. In several diverse pathophysiological situations, including osteoporosis, a decreased availability of osteoprogenitors from these local reservoirs coincides with decreased osteoblast recruitment and impaired initiation of bone formation, that is, uncoupling. Overall, this review stresses that coupling does not only depend on molecules able to activate osteogenesis, but that it also demands the presence of osteoprogenitors and ordered cell rearrangements at the remodeling site. It points to protection of local osteoprogenitors as a critical strategy to prevent bone loss. PMID:25120911

  6. Lectin-mediated effects on bone resorption in vitro: a morphological and functional study

    SciTech Connect

    Popoff, S.N.

    1986-01-01

    Lectins have been used to study the structure and function of a variety of cells and tissues. The authors used 4 different lectins, concanavalin A (con A), wheat germ agglutinin (WGA), soybean agglutinin (SBA) and peanut agglutinin (PNA) as in vitro biological probes to study the osteoclast, a multinucleated bone cell that is widely accepted as the primary effector cell responsible for normal bone resorption. They evaluated the effects of each of these lectins on osteoclastic bone resorbing activity and then examined mechanisms that may be responsible for the activation and/or inhibition of osteoclastic activity. Using con A and hemocyanin, a marker molecule used to visualize cell-bound con A via scanning electron microscopy, they demonstrated that osteoclasts have specific con A binding sites on their cell surface. They conducted a series of /sup 45/Ca bone release assays demonstrating that con A has a dose-dependent biphasic effect on bone resorption; stimulation at low concentrations and inhibition at higher concentrations. The findings suggest that the specificity of lectin binding to cell surface receptors may play an important role in the induction of altered cell function. Recently, cells of the mononuclear phagocyte system have been proposed as surrogates of less readily available osteoclasts. They used a macrophage-devitalized bone culture system to evaluate the effects of con A and SBA on the attachment of macrophages to bone and their subsequent functional activity. The results showed that con A, but not SBA, alters the morphology and function of macrophages on a devitalized bone surface. The results support the hypothesis that certain, specific saccharides regulate the interaction between macrophages and bone.

  7. Beneficial role of periosteum in distraction osteogenesis of mandible: its preservation prevents the external bone resorption.

    PubMed

    Takeuchi, Sawako; Matsuo, Akira; Chiba, Hiroshige

    2010-01-01

    Distraction osteogenesis (DO) is a surgical process of new bone generation through the gradual extension of two segments of existing bone. DO is applied for maxillofacial surgeries to manage defects in mandibular continuity. Vertical DO with an oral device is often employed to augment the alveolar bone height for better implant anchorage for esthetic purposes or functional prosthetic requirements. To determine how the periosteum affects the vertical DO in mandibular reconstruction, we extracted the teeth and resected the alveolar parts of the mandible on both sides of dogs, along with removal of the surrounding periosteum in the right, but not left side. Three months later, box-shaped bone segments (vectors) were prepared from the resected alveolar part, and the segments were vertically elongated using a distraction device on both sides at 0.9 mm/day for one week. The extent of bone formation after distraction was determined with micro-focused computed tomography and by measuring incorporation of tetracycline and calcein with confocal laser scanning microscopy. During the initial two months after distraction, new bone formation was observed more prominently in the left side than in the right side of mandible with the periosteum. However, this difference was less clear during the bone-remodeling period. One notable change was the reduced height of the alveolar part of the right-side mandible, a sign of external bone resorption, observed in two out of three dogs at 6-month post-consolidation. These findings suggest that preservation of periosteum prevents the external bone resorption during the vertical DO of mandible. PMID:20046054

  8. Changes in markers of bone formation and resorption in a bed rest model of weightlessness

    NASA Technical Reports Server (NTRS)

    Lueken, S. A.; Arnaud, S. B.; Taylor, A. K.; Baylink, D. J.

    1993-01-01

    To study the mechanism of bone loss in physical unloading, we examined indices of bone formation and bone resorption in the serum and urine of eight healthy men during a 7 day -6 degrees head-down tilt bed rest. Prompt increases in markers of resorption--pyridinoline (PD), deoxypyridinoline (DPD), and hydroxyproline (Hyp)/g creatinine--during the first few days of inactivity were paralleled by tartrate-resistant acid phosphatase (TRAP) with significant increases in all these markers by day 4 of bed rest. An index of formation, skeletal alkaline phosphatase (SALP), did not change during bed rest and showed a moderate 15% increase 1 week after reambulation. In contrast to SALP, serum osteocalcin (OC) began increasing the day preceding the increase in Hyp, remained elevated for the duration of the bed rest, and returned to pre-bed rest values within 5 days of reambulation. Similarly, DPD increased significantly at the onset of bed rest, remained elevated for the duration of bed rest, and returned to pre-bed rest levels upon reambulation. On the other hand, the other three indices of resorption, Hyp, PD, and TRAP, remained elevated for 2 weeks after reambulation. The most sensitive indices of the levels of physical activity proved to be the noncollagenous protein, OC, and the collagen crosslinker, DPD. The bed rest values of both these markers were significantly elevated compared to both the pre-bed rest values and the post-bed rest values. The sequence of changes in the circulating markers of bone metabolism indicated that increases in serum OC are the earliest responses of bone to head-down tilt bed rest.

  9. Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL

    PubMed Central

    Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H

    2016-01-01

    Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S

  10. Influences of Fucoxanthin on Alveolar Bone Resorption in Induced Periodontitis in Rat Molars

    PubMed Central

    Kose, Oguz; Arabaci, Taner; Yemenoglu, Hatice; Kara, Adem; Ozkanlar, Seckin; Kayis, Sevki; Duymus, Zeynep Yesil

    2016-01-01

    The aim of this study was to evaluate the effects of systemic fucoxanthin treatment on alveolar bone resorption in rats with periodontitis. Thirty rats were divided into control, experimental periodontitis (EP), and experimental periodontitis-fucoxanthin (EP-FUCO) groups. Periodontitis was induced by ligature for four weeks. After removal of the ligature, the rats in the EP-FUCO group were treated with a single dose of fucoxanthin (200 mg/kg bw) per day for 28 consecutive days. At the end of the study, all of the rats were euthanized and intracardiac blood and mandible tissue samples were obtained for biochemical, immunohistochemical, and histometric analyses. Fucoxanthin treatment resulted in a slight decrease in tumor necrosis factor-α, interleukin-1β, and interleukin-6 levels and a significant decrease in oxidative stress index. It was observed that fucoxanthin caused a significant reduction in receptor activator of nuclear factor kappa-β ligand (RANKL) levels and a statistically non-significant elevation in osteoprotegerin and bone-alkaline phosphatase levels. There were no significant differences in alveolar bone loss levels between the EP and EP-FUCO groups. This experimental study revealed that fucoxanthin provides a limited reduction in alveolar bone resorption in rats with periodontitis. One of the mechanisms underlying the mentioned limited effect might be related to the ability of fucoxanthin to inhibit oxidative stress-related RANKL-mediated osteoclastogenesis. PMID:27043583

  11. Bisphosphonates act on rat bone resorption through the mediation of osteoblasts.

    PubMed Central

    Sahni, M; Guenther, H L; Fleisch, H; Collin, P; Martin, T J

    1993-01-01

    Bisphosphonates are generally considered to act on bone resorption by binding to bone mineral and subsequently inhibiting the activity of the osteoclasts which ingest them. This has been supported by the fact that bisphosphonates adsorbed on mineralized tissue inhibit the resorbing activity of isolated osteoclasts in vitro. However, the effectiveness of different bisphosphonates determined in this system does not reflect their relative potencies in vivo. Employing the well-described isolated osteoclast resorption pit assay, with ivory as the resorption substrate, we show here that this lack of correlation prevails only when the bisphosphonates are added to the mineral before addition of osteoclasts, but not when the cells are treated for a short time (5 min) before allowing them to adhere onto ivory. By using this approach with five different bisphosphonates, a stringent correlation of relative potencies was obtained with those found, both in the rat and in the human, in vivo. Furthermore, by using an osteoblastic cell line (CRP 10/30) which is a powerful promoter of osteoclastic resorption in vitro, we obtained evidence that the inhibitory effect of bisphosphonates was the result of an action on osteoblasts rather than on osteoclasts. Thus, in experiments in which the osteoblastic cells were pretreated for 5 min with bisphosphonates and then cocultured with osteoclasts, inhibition of osteoclastic resorbing activity was obtained. Moreover, it was found that this treatment resulted in a decrease of the stimulatory effect found in CRP 10/30-conditioned medium. In conclusion the present study shows that part of the osteoclast inhibiting action of the bisphosphonates is mediated through an action on osteoblasts. Images PMID:8486770

  12. Bone Resorption and Environmental Exposure to Cadmium in Women: A Population Study

    PubMed Central

    Schutte, Rudolph; Nawrot, Tim S.; Richart, Tom; Thijs, Lutgarde; Vanderschueren, Dirk; Kuznetsova, Tatiana; Van Hecke, Etienne; Roels, Harry A.; Staessen, Jan A.

    2008-01-01

    Background Environmental exposure to cadmium decreases bone density indirectly through hypercalciuria resulting from renal tubular dysfunction. Objective We sought evidence for a direct osteotoxic effect of cadmium in women. Methods We randomly recruited 294 women (mean age, 49.2 years) from a Flemish population with environmental cadmium exposure. We measured 24-hr urinary cadmium and blood cadmium as indexes of lifetime and recent exposure, respectively. We assessed the multivariate-adjusted association of exposure with specific markers of bone resorption, urinary hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP), as well as with calcium excretion, various calciotropic hormones, and forearm bone density. Results In all women, the effect sizes associated with a doubling of lifetime exposure were 8.4% (p = 0.009) for HP, 6.9% (p = 0.10) for LP, 0.77 mmol/day (p = 0.003) for urinary calcium, –0.009 g/cm2 (p = 0.055) for proximal forearm bone density, and –16.8% (p = 0.065) for serum parathyroid hormone. In 144 postmenopausal women, the corresponding effect sizes were –0.01223 g/cm2 (p = 0.008) for distal forearm bone density, 4.7% (p = 0.064) for serum calcitonin, and 10.2% for bone-specific alkaline phosphatase. In all women, the effect sizes associated with a doubling of recent exposure were 7.2% (p = 0.001) for urinary HP, 7.2% (p = 0.021) for urinary LP, –9.0% (p = 0.097) for serum parathyroid hormone, and 5.5% (p = 0.008) for serum calcitonin. Only one woman had renal tubular dysfunction (urinary retinol-binding protein > 338 μg/day). Conclusions In the absence of renal tubular dysfunction, environmental exposure to cadmium increases bone resorption in women, suggesting a direct osteotoxic effect with increased calciuria and reactive changes in calciotropic hormones. PMID:18560534

  13. Inhibiting and stimulating effects of TGF-. beta. 1 on osteoclastic bone resorption in fetal mouse bone organ cultures

    SciTech Connect

    Dieudonne, S.C.; Foo, P.; van Zoelen, E.J.; Burger, E.H. )

    1991-05-01

    The effects of TGF-{beta} 1 on osteoclastic resorption of fetal mouse calvaria and long bones at various stages of development was studied in organ culture. In resorbing calvariae and long bones with an established marrow cavity TGF-beta 1 (4-10 ng/ml) had a stimulating effect on 45Ca release that was partially inhibited by indomethacin. In primitive long bones, however, which were explanted before osteoclast invasion and excavation of a marrow cavity had started, TGF-beta 1 (1-4 ng/ml) inhibited 45Ca release by an indomethacin-insensitive mechanism. Histomorphometry of long bones after staining for tartrate-resistant acid phosphatase (TRAP) revealed that TGF-beta 1 treatment inhibited the migration of TRAP-positive cells from periosteum to developing marrow cavity and inhibited cell fusion. However, the formation of (mononuclear) TRAP-positive cells in the periosteum-perichondrium was strongly enhanced. These data suggest that TGF-beta 1 modulates various steps in the cascade of osteoclast development, recruitment, and activation in different ways, involving both prostaglandin-mediated and prostaglandin-independent pathways. Therefore the net effect of exogenous TGF-beta 1 on osteoclastic resorption in bone organ cultures depends on the relative prevalence of osteoclast progenitors, precursors, and mature osteoclasts in the tissue under study.

  14. Bone Resorption Increases as Early as the Second Day in Head- Down Bed Rest

    NASA Astrophysics Data System (ADS)

    Heer, M.; Kamps, N.; Mika, C.; Boese, A.; Gerzer, R.

    Long-term bed rest and space mission studies have shown that immobilization as well as microgravity induce increased bone resorption while bone formation tends to decrease. In order to analyze the kinetics of short-term changes in bone turnover we studied in a randomized, strictly controlled crossover design the effects of 6 days 6° head-down tilt bed rest (HDT) in 8 male healthy subjects (mean body weight (BW): 70.1 +/- 1.88 kg; mean age: 25.5 +/- 1.04 years) in our metabolic ward. Two days before arriving in the metabolic ward the subjects started with a diet consisting of an energy content of 10 MJ/d, 2000 mg Calcium/d, 400 i.U. Vitamin D, 200 mEq Na+ and 50 ml water/kg BW/d. The diet was continued in the metabolic ward. The metabolic ward period (11days) was divided into 3 parts: 4 ambulatory days, 6 days either HDT or control and 1 recovery day. Continuous urine collection started on the first day in the metabolic ward to analyze calcium excretion and bone resorption markers, namely C-telopeptide (CTX) and N-telopeptide (NTX). On the 2nd ambulatory day in the metabolic ward and on the 5th day in HDT or control blood was drawn to analyze serum calcium, parathyroid hormone, and bone formation markers (bone Alkaline Phosphatase (bAP), Procollagen-I-Propeptide (P-I-CP). Both study phases were identical with respect to environmental conditions, study protocol and diet. Urinary calcium excretion was as early as the first day in immobilization increased (p<0.01). CTX- and NTX-excretion stayed unchanged the first 24 hours in HDT compared to the control. But, already on the 2nd day of immobilization both bone resorption markers significantly increased. NTX-excretion was increased by 28.7 +/- 14.0% (p<0.05), while CTX-excretion rose by 17.8 +/- 8.3% (p<0.01). Both, the CTX- excretion as well as the calcium excretion keep the significantly higher level during the HDT period, and even continued through the first day of recovery. However, NTX excretion, descended from day

  15. From histology to micro-CT: Measuring and modeling resorption cavities and their relation to bone competence

    PubMed Central

    Vanderoost, Jef; van Lenthe, G Harry

    2014-01-01

    The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure. Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle. At the microstructural level, osteoclasts create bone deficits by eroding resorption cavities. Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging, but maybe even more so in quantifying their role in metabolic bone diseases. Metabolic bone diseases and their treatment are both known to affect the bone remodelling cycle; hence, the bone mechanical competence can and will be affected. However, the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited. This is not surprising considering the difficulties in deriving three-dimensional (3D) properties from two-dimensional (2D) histological sections. The measurement difficulties are reflected in the evaluation of how resorption cavities affect bone competence. Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities, the representation of the cavities themselves has basically been limited to simplified shapes and averaged cavity properties. Qualitatively, these models indicate that cavity size and location are important, and that the effect of cavities is larger than can be expected from simple bone loss. In summary, the dimensions of osteoclast resorption cavities were until recently estimated from 2D measures; hence, a careful interpretation of resorption cavity dimensions is necessary. More effort needs to go into correctly quantifying resorption cavities using modern 3D imaging techniques like micro-computed tomography (micro-CT) and synchrotron radiation CT. Osteoclast resorption cavities affect bone competence. The structure-function relationships

  16. Doxycycline inhibits bone resorption by human interface membrane cells from aseptically loose hip replacements.

    PubMed

    Ong, S M; Taylor, G J S

    2003-04-01

    Matrix metalloproteinases (MMPs) may have a role in the process of aseptic loosening. Doxycycline has been shown to inhibit MMPs. Our aim was to investigate the potential pharmacological effect of doxycycline on aseptic loosening. We used radiolabelled mouse calvariae cultured with human interface membrane cells from aseptically loosened hips. Bone resorption was confirmed in this model. The effect of doxycycline was assessed by culturing dead radiolabelled bone discs with cells from the interface membrane with doxycycline. The control group consisted of the same culture system without doxycycline. Supernatant 45calcium and the total 45calcium remaining in the bone discs at the completion of the culture were used to measure osteolysis. We found that doxycycline can inhibit osteolysis at the interface membrane of aseptically loosened hips. This may have therapeutic implications for the treatment of patients with aseptic loosening of total joint replacements. PMID:12729128

  17. Polyphosphoinositides-dependent regulation of the osteoclast actin cytoskeleton and bone resorption

    PubMed Central

    Biswas, Rajat S; Baker, De Anna; Hruska, Keith A; Chellaiah, Meenakshi A

    2004-01-01

    Background Gelsolin, an actin capping protein of osteoclast podosomes, has a unique function in regulating assembly and disassembly of the podosome actin filament. Previously, we have reported that osteopontin (OPN) binding to integrin αvβ3 increased the levels of gelsolin-associated polyphosphoinositides, podosome assembly/disassembly, and actin filament formation. The present study was undertaken to identify the possible role of polyphosphoinositides and phosphoinositides binding domains (PBDs) of gelsolin in the osteoclast cytoskeletal structural organization and osteoclast function. Results Transduction of TAT/full-length gelsolin and PBDs containing gelsolin peptides into osteoclasts demonstrated: 1) F-actin enriched patches; 2) disruption of actin ring; 3) an increase in the association polyphosphoinositides (PPIs) with the transduced peptides containing PBDs. The above-mentioned effects were more pronounced with gelsolin peptide containing 2 tandem repeats of PBDs (PBD (2)). Binding of PPIs to the transduced peptides has resulted in reduced levels of PPIs association with the endogenous gelsolin, and thereby disrupted the actin remodeling processes in terms of podosome organization in the clear zone area and actin ring formation. These peptides also exhibited a dominant negative effect in the formation of WASP-Arp2/3 complex indicating the role of phosphoinositides in WASP activation. The TAT-PBD gelsolin peptides transduced osteoclasts are functionally defective in terms of motility and bone resorption. Conclusions Taken together, these data demonstrate that transduction of PBD gelsolin peptides into osteoclasts produced a dominant negative effect on actin assembly, motility, and bone resorption. These findings indicate that phosphoinositide-mediated signaling mechanisms regulate osteoclast cytoskeleton, podosome assembly/disassembly, actin ring formation and bone resorption activity of osteoclasts. PMID:15142256

  18. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation.

    PubMed

    Park-Min, Kyung-Hyun; Lim, Elisha; Lee, Min Joon; Park, Sung Ho; Giannopoulou, Eugenia; Yarilina, Anna; van der Meulen, Marjolein; Zhao, Baohong; Smithers, Nicholas; Witherington, Jason; Lee, Kevin; Tak, Paul P; Prinjha, Rab K; Ivashkiv, Lionel B

    2014-01-01

    Emerging evidence suggests that RANKL-induced changes in chromatin state are important for osteoclastogenesis, but these epigenetic mechanisms are not well understood and have not been therapeutically targeted. In this study, we find that the small molecule I-BET151 that targets bromo and extra-terminal (BET) proteins that 'read' chromatin states by binding to acetylated histones strongly suppresses osteoclastogenesis. I-BET151 suppresses pathologic bone loss in TNF-induced inflammatory osteolysis, inflammatory arthritis and post-ovariectomy models. Transcriptome analysis identifies a MYC-NFAT axis important for osteoclastogenesis. Mechanistically, I-BET151 inhibits expression of the master osteoclast regulator NFATC1 by suppressing expression and recruitment of its newly identified upstream regulator MYC. MYC is elevated in rheumatoid arthritis macrophages and its induction by RANKL is important for osteoclastogenesis and TNF-induced bone resorption. These findings highlight the importance of an I-BET151-inhibited MYC-NFAT axis in osteoclastogenesis, and suggest targeting epigenetic chromatin regulators holds promise for treatment of inflammatory and oestrogen deficiency-mediated pathologic bone resorption. PMID:25391636

  19. Novel RANK antagonists for the treatment of bone-resorptive disease: theoretical predictions and experimental validation.

    PubMed

    Téletchéa, Stéphane; Stresing, Verena; Hervouet, Soizic; Baud'huin, Marc; Heymann, Marie-Françoise; Bertho, Gildas; Charrier, Céline; Ando, Kosei; Heymann, Dominique

    2014-06-01

    Receptor activator of nuclear factor-κB (RANK) and RANK ligand (RANKL) play a pivotal role in bone metabolism, and selective targeting of RANK signaling has become a promising therapeutic strategy in the management of resorptive bone diseases. Existing antibody-based therapies and novel inhibitors currently in development were designed to target the ligand, rather than the membrane receptor expressed on osteoclast precursors. We describe here an alternative approach to designing small peptides able to specifically bind to the hinge region of membrane RANK responsible for the conformational change upon RANKL association. A nonapeptide generated by this method was validated for its biological activity in vitro and in vivo and served as a lead compound for the generation of a series of peptide RANK antagonists derived from the original sequence. Our study presents a structure- and knowledge-based strategy for the design of novel effective and affordable small peptide inhibitors specifically targeting the receptor RANK and opens a new therapeutic opportunity for the treatment of resorptive bone disease. PMID:24390798

  20. The effect of semelil (angipars®) on bone resorption and bone formation markers in type 2 diabetic patients

    PubMed Central

    2012-01-01

    Background and purpose of the study Diabetes mellitus has been recognized as a major risk factor for osteoporosis in which bone turnover is affected by different mechanisms. As the morbidity, mortality and financial cost related to osteoporosis are expected to rise in Iran in coming years, and considering the efficacy of Angipars® for improvement of different ulcers which made it a new herbal drug in diabetic foot ulcer, there is a need to evaluate the effect of this new drug on different organs including bone resorption and bone formation markers. Methods In this randomized, double- blind clinical trial, 61 diabetic patients were included. The subjects were randomly divided into intervention and control groups. Subjects of intervention group received 100 mg of Angipars® twice a day. Laboratory tests including bone resorption and bone formation markers were performed at baseline and after 3 months. Result 31 patients in study group and 30 patients in control group finished the study. The mean age of the study population and the mean disease duration was respectively 51.8 ± 6.2 and 7.5 ± 4.7 years with no significant differences between intervention and control patients. No statistically significant differences between patients and controls were observed in pyridinoline, osteocalcin, urine calcium, bone alkaline phosphatase and tumor necrosis factor (TNF-α). Only urine creatinine level significantly changed between two groups after 3 month of treatment (p-value: 0.029) Conclusion In conclusion, the findings of this study indicate that Semelil (Angipars®) had no beneficial or harmful effects on bone. It might be other effects of this new component on bone turnover process which need more studies and more time to be discovered. PMID:23351359

  1. Inhibited osteoblastogenesis, enhanced bone resorption and disrupted vitamin d3 homeostasis in female c57bl/6 mice fed alcohol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alcohol abuse is a well-known factor for increased risk of osteoporosis. Previous studies have shown that molecular mechanisms underlying alcohol-induced bone loss are complex, involving direct effects on both bone formation and resorption and additional indirect actions via endocrine disruption. Wh...

  2. Interleukin 1 synthesis by a transitional cell carcinoma: relationship to bone resorption and humoral hypercalcemia of malignancy

    SciTech Connect

    Sammon, P.; Wronski, T.; Ignaszewski, L.; Flueck, J.; Cohen, D.A.

    1986-03-01

    A tumor cell line (TCCB) was isolated from a patient with transitional cell carcinoma, who had tumor-associated hypercalcemia. Culture supernatants from TCCB had significant bone resorption activity in a /sup 45/Ca release assay from fetal mouse long bones. Furthermore, TCCB supernatants possessed potent interleukin 1 (IL-1) activity in a mouse thymocyte assay. Histomorphometric analysis of fetal mouse long bones incubated with TCCB supernatants showed a 7 fold increase in osteoclasts and a significant decrease in bone mass as compared to control bones. IL-1 activity in culture supernatants from lipopolysaccharide-stimulated human monocytes comigrated with both IL-1 and bone resorption activities from TCCB tumor cells by gel chromatography on AcA-54 ultrogel. Furthermore, antisera against human IL-1 was shown to inhibit the Il-1 activity from both monocytes and TCCB tumor cells. In light of recent reports that IL-1 can cause bone resorption in vitro, these data suggest that the hypercalcemia of malignancy seen with certain solid tumors, may be the result of IL-1 release by the tumor which subsequently elevates serum calcium by induction of bone resorption.

  3. c-Src Control of Chloride Channel Support for Osteoclast HCl Transport and Bone Resorption*

    PubMed Central

    Edwards, John C.; Cohen, Christopher; Xu, Weibing; Schlesinger, Paul H.

    2006-01-01

    Bone degradation by osteoclasts depends upon active transport of hydrogen ions to solubilize bone mineral. This transport is supported by the parallel actions of a proton ATPase and a chloride channel located in the osteoclast ruffled membrane. We have previously identified a novel chloride channel, p62, which appears to be the avian counterpart to CLIC-5b and is expressed coincident with the appearance of acid secretion as avian osteoclasts differentiate in culture. In this article, we show that suppression of CLIC-5b in differentiating avian osteoclasts results in decreased acidification by vesicles derived from these cells and decreased ability of the cells to resorb bone. Acidification is rescued by the presence of valinomycin, consistent with a selective loss of chloride channel but not proton pump activity. Osteoclast bone resorption is known to be dependent on the expression of the tyrosine kinase, c-Src. We show that CLIC-5b from osteoclasts has affinity for both Src SH2 and SH3 domains. We find that suppression of expression of Src in developing osteoclasts results in decreased vesicular acidification, which is rescued by valinomycin, consistent with the loss of chloride conductance in the proton pump-containing vesicles. Suppression of c-Src causes no change in the steady state level of CLIC-5b expression, but does result in failure of proton pump and CLIC-5b to colocalize in cultured osteoclast precursors. We conclude that suppression of c-Src interferes with osteoclast bone resorption by disrupting functional co-localization of proton pump and CLIC-5b. PMID:16831863

  4. High Protein Intake Improves Insulin Sensitivity but Exacerbates Bone Resorption in Immobility (WISE Study)

    NASA Technical Reports Server (NTRS)

    Heer, Martina; Smith, Scott M.; Frings-Meuthen, Petra; Zwart, Sara R.; Baecker, Natalie

    2012-01-01

    Inactivity, like bed rest (BR), causes insulin resistance (IR) and bone loss even in healthy subjects. High protein intake seems to mitigate this IR but might exacerbate bone loss. We hypothesized that high protein intake (animal:vegetable protein ratio: 60:40), isocaloric, compared to the control group plus high potassium intake would prevent IR without affecting bone turnover. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 deg head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) received 1g/kg body mass/d dietary protein. Nutrition subjects (NUT, n=8) received 1.45g/kg body mass/d dietary protein plus 7.2g branched chain amino acids per day during BR. All subjects received 1670 kcal/d. Bed rest decreased glucose disposal by 35% (p<0.05) in CON. Isocaloric high protein intake prevented insulin resistance, but exacerbated bed rest induced increase in bone resorption markers C-telopeptide (> 30%) and Ntelopeptide (>20%) (both: p<0.001). Bone formation markers were unaffected by high protein intake. We conclude from these results that high protein intake might positively affect glucose tolerance, but might also foster bone loss. Further long-duration studies are mandatory before high protein intake for diabetic patients, who have an increased fracture risk, might be recommended.

  5. Computational biomechanics of bone's responses to dental prostheses - osseointegration, remodeling and resorption

    NASA Astrophysics Data System (ADS)

    Li, Wei; Rungsiyakull, Chaiy; Field, Clarice; Lin, Daniel; Zhang, Leo; Li, Qing; Swain, Michael

    2010-06-01

    Clinical and experimental studies showed that human bone has the ability to remodel itself to better adapt to its biomechanical environment by changing both its material properties and geometry. As a consequence of the rapid development and extensive applications of major dental restorations such as implantation and fixed partial denture (FPD), the effect of bone remodeling on the success of a dental restorative surgery is becoming critical for prosthetic design and pre-surgical assessment. This paper aims to provide a computational biomechanics framework to address dental bone's responses as a result of dental restoration. It explored three important issues of resorption, apposition and osseointegration in terms of remodeling simulation. The published remodeling data in long bones were regulated to drive the computational remodeling prediction for the dental bones by correlating the results to clinical data. It is anticipated that the study will provide a more predictive model of dental bone response and help develop a new design methodology for patient-specific dental prosthetic restoration.

  6. Response of three murine macrophage populations to particulate debris: bone resorption in organ cultures.

    PubMed

    Glant, T T; Jacobs, J J

    1994-09-01

    Particulate wear debris from bone cement or prosthetic components can stimulate macrophages to cause bone resorption. We compared the effect of particle composition (titanium and polymethylmethacrylate as inherent components of prosthetic materials or bone cement and polystyrene as a reference material) on the secretion of interleukin-1 and prostaglandin E2 by peritoneal macrophages and monocyte/macrophage cell lines (P388D1 and IC-21) and on the bone-resorbing activity of conditioned medium harvested from these particle-challenged macrophages. Titanium particles (1-3 microns) in peritoneal macrophage cultures exhibited significantly enhanced bone-resorbing activity measured as 45Ca release, whereas polymethylmethacrylate and polystyrene exhibited this effect to a greater extent in the P388D1 and IC-21 monocyte/macrophage cultures. Although exogenous prostaglandin E2 and recombinant human interleukin-1 could significantly increase the 45Ca release and indomethacin significantly reduced both the spontaneous calcium efflux and active 45Ca release from calvarial bones labeled in vivo, the levels of interleukin-1 and prostaglandin E2, alone or together, did not always correlate with the bone-resorbing activity of conditioned media. Thus, the actual levels of potent bone-resorbing agents (prostaglandin E2 and interleukin-1) measured in conditioned tissue culture media did not necessarily reflect the bone-resorbing capability. An important result of this study is that different macrophage populations may respond differently to the same microenvironmental signal, which in our investigation was particulate wear debris of differing composition and size. PMID:7931789

  7. Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws.

    PubMed

    Gefen, A

    2002-05-01

    Failure of an orthopaedic fixation due to stress shielding and consequent screw loosening is a major concern among surgeons: the loosened screws could not only interfere with the healing process but also endanger adjacent anatomical structures. In this study, the effect of the screw's engineering design (dimensions, profile shape and material properties) on the load sharing with adjacent bone and consequent bone resorption was tested, using a set of two-dimensional computational (finite element) models. An algorithm simulating local bone adaptation to strain energy density (SED) mechanical stimuli was developed and used to evaluate the biomechanical performances of different commercial screws. Two new designs, a 'graded-stiffness' composite screw, with a reduced-stiffness titanium core and outer polymeric threads, and an active-compression hollow screw that generates compressive stresses on the surrounding bone, were also evaluated. A dimensionless set of stress transfer parameters (STPs) were utilised for ranking the performances of the different screws according to the expected screw-bone load sharing and its evolution with adaptation of the surrounding tissue. The results indicated that commercial wide (6 mm thread diameter) trapezoidal and rectangular screw profiles have superior biomechanical compatibility with bone (i.e. predicted to be stable after 2 years). The graded-stiffness and active-compression screws provided the best biomechanical performances: bone loading around them was predicted to decrease by no more than 15% after 3 years, compared with a decrease of 55-70% in bone loading around commercially available screws. Computer simulations of bone adaptation around orthopaedic screws are demonstrated to be effective means for objective and quantitative evaluation of the biomechanical aspects of implant-tissue compatibility. PMID:12195978

  8. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    PubMed

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis. PMID:18037367

  9. The prenyl group contributes to activities of phytoestrogen 8-prenynaringenin in enhancing bone formation and inhibiting bone resorption in vitro.

    PubMed

    Ming, Lei-Guo; Lv, Xiang; Ma, Xiao-Ni; Ge, Bao-Feng; Zhen, Ping; Song, Peng; Zhou, Jian; Ma, Hui-Ping; Xian, Cory J; Chen, Ke-Ming

    2013-03-01

    Previous studies have found that 8-prenylflavonoids have a higher osteogenic activity than do flavonoids, which suggested that the 8-prenyl group may play an active role in bone-protective properties. To address this hypothesis, activities of 8-prenylnaringenin (PNG) and naringenin (NG) in osteoblast and osteoclast differentiation and function were compared in vitro. PNG was found to have a stronger ability than NG to improve osteoblast differentiation and osteogenic function in cultured rat calvarial osteoblasts, as demonstrated by levels of alkaline phosphatase activity, osteocalcin, calcium deposition, and the number and area of mineralized bone nodules, as well as mRNA expression of osteogenesis-related genes Bmp-2, OSX, and Runx-2. In addition, although expression of osteoclastogenic inducer receptor activator of nuclear factor kappa-B ligand (RANKL) was not affected, that of osteoclastogenesis inhibitor osteoprotegerin (OPG) and consequently the OPG/RANKL ratio were increased, more potently by PNG than NG. PNG was also found to have a higher potency than NG in inhibiting the osteoclast formation in rabbit bone marrow cells and their resorptive activity, as revealed by lower numbers of osteoclasts formed, lower numbers and areas of bone resorption pits, and lower mRNA expression levels of tartrate-resistant acid phosphatase and cathepsin K. Furthermore, PNG induced apoptosis of mature osteoclasts at a higher degree and at an earlier time than did NG. These results indicate that the 8-prenyl group plays an important role and contributes to the higher bone-protective activity of PNG in comparison with NG. PMID:23389955

  10. The Importance of the Prenyl Group in the Activities of Osthole in Enhancing Bone Formation and Inhibiting Bone Resorption In Vitro

    PubMed Central

    Zhai, Yuan-Kun; Pan, Ya-Lei; Niu, Yin-Bo; Li, Chen-Rui; Wu, Xiang-Long; Fan, Wu-Tu; Lu, Ting-Li; Mei, Qi-Bing; Xian, Cory J.

    2014-01-01

    Osteoporosis treatment always aimed at keeping the balance of bone formation and bone resorption. Recently, prenyl group in natural products has been proposed as an active group to enhance the osteogenesis process. Osthole has both the prenyl group and bone-protective activities, but the relationship is still unknown. In this study we found that osthole exerted a potent ability to promote proliferation and osteogenic function of rat bone marrow stromal cells and osteoblasts, including improved cell viability, alkaline phosphatase activity, enhanced secretion of collagen-I, bone morphogenetic protein-2, osteocalcin and osteopontin, stimulated mRNA expression of insulin-like growth factor-1, runt-related transcription factor-2, osterix, OPG (osteoprotegerin), RANKL (receptor activator for nuclear factor-κB ligand), and the ratio of OPG/RANKL, as well as increasing the formation of mineralized nodules. However, 7-methoxycoumarin had no obvious effects. Osthole also inhibited osteoclastic bone resorption to a greater extent than 7-methoxycoumarin, as shown by a lower tartrate-resistant acid phosphatase activity and lower number and smaller area of resorption pits. Our findings demonstrate that osthole could be a potential agent to stimulate bone formation and inhibit bone resorption, and the prenyl group plays an important role in these bone-protective effects. PMID:25147567

  11. Three-dimensional analysis of alveolar bone resorption by image processing of 3-D dental CT images

    NASA Astrophysics Data System (ADS)

    Nagao, Jiro; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Yamada, Shohzoh; Naitoh, Munetaka

    2006-03-01

    We have developed a novel system that provides total support for assessment of alveolar bone resorption, caused by periodontitis, based on three-dimensional (3-D) dental CT images. In spite of the difficulty in perceiving the complex 3-D shape of resorption, dentists assessing resorption location and severity have been relying on two-dimensional radiography and probing, which merely provides one-dimensional information (depth) about resorption shape. However, there has been little work on assisting assessment of the disease by 3-D image processing and visualization techniques. This work provides quantitative evaluation results and figures for our system that measures the three-dimensional shape and spread of resorption. It has the following functions: (1) measures the depth of resorption by virtually simulating probing in the 3-D CT images, taking advantage of image processing of not suffering obstruction by teeth on the inter-proximal sides and much smaller measurement intervals than the conventional examination; (2) visualizes the disposition of the depth by movies and graphs; (3) produces a quantitative index and intuitive visual representation of the spread of resorption in the inter-radicular region in terms of area; and (4) calculates the volume of resorption as another severity index in the inter-radicular region and the region outside it. Experimental results in two cases of 3-D dental CT images and a comparison of the results with the clinical examination results and experts' measurements of the corresponding patients confirmed that the proposed system gives satisfying results, including 0.1 to 0.6mm of resorption measurement (probing) error and fairly intuitive presentation of measurement and calculation results.

  12. The effects of icariine concentration on osteoclasts bone resorption induced by titanium particles in vitro.

    PubMed

    Zhang, Yiyuan; Lin, Yu; Xiao, Lili; Feng, Eryou; Wang, Wulian; Lin, Liqiong

    2015-09-01

    In artificial joint replacement, osteoclast bone resorption induced by wear debris of the implant is a main reason for aseptic loosening. To extend the life of the prosthesis, detailed mechanisms of aseptic loosening and the ways to prevent it should be explored. The aim of this study was to investigate the in vitro effect of icariine on the bone resorption of osteoclasts induced by titanium particles. Macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL) were used to generate osteoclasts from RAW264.7 precursors. The proliferation of RAW264.7 precursors in the presence of different doses of icariine was evaluated by MTT assay. The cells were treated with titanium particles, titanium particles with icariine and culture medium only (control), respectively. At 48 h after treatment, the expression level of receptor activator of NF-kB (RANK) was detected by ELISA, and messenger RNA (mRNA) levels of tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase 9 (MMP-9), carbonic anhydrase II (CAII) and Cathepsin K (CtsK) were determined by real-time polymerase chain reaction. Western blot was applied to analyze the expression levels of TRAP, RANK and CtsK. In addition, bone chips were cultured in the above conditions, and Toluidine blue staining was then employed to calculate the number and area of resorption pits in the bone chips. After treatment with icariine, expression level of RANK was significantly decreased in the RAW264.7 cell that induced by titanium particle and its cultural medium, mRNA and protein levels of TRAP, CAII, MMP-9 and CtsK were reduced as well. In addition, the numbers of bone resorption pits and areas on bone slices were both reduced by icariine challenging. Icariine could inhibit bone resorption of osteoclast induced by titanium particle, and it might be used as a promising drug for treating of aseptic loosening. PMID:26816641

  13. Systemic zoledronate treatment both prevents resorption of allograft bone and increases the retention of new formed bone during revascularization and remodelling. A bone chamber study in rats

    PubMed Central

    Åstrand, Jörgen; Harding, Anna Kajsa; Aspenberg, Per; Tägil, Magnus

    2006-01-01

    Background In osteonecrosis the vascular supply of the bone is interrupted and the living cells die. The inorganic mineral network remains intact until ingrowing blood vessels invade the graft. Accompanying osteoclasts start to resorb the bone trabeculae and gradually replace the bone. If the osteonecrosis occurs in mechanically loaded parts, like in the subchondral bone of a loaded joint, the remodelling might lead to a weakening of the bone and, in consequence to a joint collapse. Systemic bisphosphonate treatment can reduce the resorption of necrotic bone. In the present study we investigate if zoledronate, the most potent of the commercially available bisphosphonates, can be used to reduce the amount or speed of bone graft remodeling. Methods Bone grafts were harvested and placed in a bone chamber inserted into the tibia of a rat. Host tissue could grow into the graft through openings in the chamber. Weekly injections with 1.05 μg zoledronate or saline were given subcutaneously until the rats were harvested after 6 weeks. The specimens were fixed, cut and stained with haematoxylin/eosin and used for histologic and histomorphometric analyses. Results By histology, the control specimens were almost totally resorbed in the remodeled area and the graft replaced by bone marrow. In the zoledronate treated specimens, both the old graft and new-formed bone remained and the graft trabeculas were lined with new bone. By histomorphometry, the total amount of bone (graft+ new bone) within the remodelled area was 35 % (SD 13) in the zoledronate treated grafts and 19 % (SD 12) in the controls (p = 0.001). Also the amount of new bone was increased in the treated specimens (22 %, SD 7) compared to the controls (14 %, SD 9, p = 0.032). Conclusion We show that zoledronate can be used to decrease the resorption of both old graft and new-formed bone during bone graft remodelling. This might be useful in bone grafting procedure but also in other orthopedic conditions, both where

  14. Restoration of incisor area using one-piece implants: Evaluation of crestal bone resorption

    PubMed Central

    Carinci, Francesco

    2012-01-01

    Background: One-piece implants (OPIs) incorporate the trans-mucosal abutment facing the soft tissues as an integral part of the implant. Since OPIs become more and more popular and no report specifically focuses on OPIs inserted in incisors’ area, a retrospective study is performed. Materials and Methods: Fifty-five OPIs were inserted in incisors’ area in a series of patients admitted at the Dental Clinic, University of Chieti (Italy), for evaluation and implant treatment between January and December 2010. Results: In our study, the survival rate and success rate were 96.2% and 96.1%, respectively. Statistical analysis demonstrated that no studied variable had an impact on the survival (i.e., lost implants) and clinical success (i.e., crestal bone resorption). Conclusions: OPIs are reliable devices for oral rehabilitation in the incisors’ area. PMID:23814574

  15. Low-Level Mechanical Vibrations can Reduce Bone Resorption and Enhance Bone Formation in the Growing Skeleton

    SciTech Connect

    Xie,L.; Jacobsen, J.; Busa, B.; Donahue, L.; Miller, L.; Rubin, C.; Judex, S.

    2006-01-01

    Short durations of extremely small magnitude, high-frequency, mechanical stimuli can promote anabolic activity in the adult skeleton. Here, it is determined if such signals can influence trabecular and cortical formative and resorptive activity in the growing skeleton, if the newly formed bone is of high quality, and if the insertion of rest periods during the loading phase would enhance the efficacy of the mechanical regimen. Eight-week-old female BALB/cByJ mice were divided into four groups, baseline control (n = 8), age-matched control (n = 10), whole-body vibration (WBV) at 45 Hz (0.3 g) for 15 min day{sup -1} (n = 10), and WBV that were interrupted every second by 10 of rest (WBV-R, n = 10). In vivo strain gaging of two additional mice indicated that the mechanical signal induced strain oscillations of approximately 10 microstrain on the periosteal surface of the proximal tibia. After 3 weeks of WBV, applied for 15 min each day, osteoclastic activity in the trabecular metaphysis and epiphysis of the tibia was 33% and 31% lower (P < 0.05) than in age-matched controls. Bone formation rates (BFR{center_dot}BS{sup -1}) on the endocortical surface of the metaphysis were 30% greater (P < 0.05) in WBV than in age-matched control mice but trabecular and middiaphyseal BFR were not significantly altered. The insertion of rest periods (WBV-R) failed to potentiate the cellular effects. Three weeks of either WBV or WBV-R did not negatively influence body mass, bone length, or chemical bone matrix properties of the tibia. These data indicate that in the growing skeleton, short daily periods of extremely small, high-frequency mechanical signals can inhibit trabecular bone resorption, site specifically attenuate the declining levels of bone formation, and maintain a high level of matrix quality. If WBV prove to be efficacious in the growing human skeleton, they may be able to provide the basis for a non-pharmacological and safe means to increase peak bone mass and, ultimately

  16. Gallium nitrate inhibits calcium resorption from bone and is effective treatment for cancer-related hypercalcemia.

    PubMed Central

    Warrell, R P; Bockman, R S; Coonley, C J; Isaacs, M; Staszewski, H

    1984-01-01

    Approximately two-thirds of patients who receive the anticancer drug gallium nitrate develop mild hypocalcemia. To evaluate the mechanism of drug-induced hypocalcemia, we tested the effects of gallium nitrate upon in vitro release of 45Ca++ from explanted fetal rat bones. The drug significantly inhibited 45Ca++ release in response to stimulation with both parathyroid hormone and a lymphokine preparation with osteoclast activating factor activity. The inhibitory effects on bone resorption were both time- and dose-dependent. Later, in a pilot study, we treated 10 patients who had cancer-related hypercalcemia with gallium nitrate administered by continuous infusion. All patients responded by a reduction of total serum calcium to normal or subnormal concentrations (13.8 +/- 1.05 mg/dl, mean +/- SD pretreatment, to 8.03 +/- 1.03 mg/dl, mean posttreatment nadir). Our results indicate that gallium nitrate effectively treats cancer-related hypercalcemia and that it probably acts by inhibiting calcium release from bone. Images PMID:6715548

  17. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption.

    PubMed

    Luo, Jian; Yang, Zhengfeng; Ma, Yu; Yue, Zhiying; Lin, Hongyu; Qu, Guojun; Huang, Jinping; Dai, Wentao; Li, Chenghai; Zheng, Chunbing; Xu, Leqin; Chen, Huaqing; Wang, Jiqiu; Li, Dali; Siwko, Stefan; Penninger, Josef M; Ning, Guang; Xiao, Jianru; Liu, Mingyao

    2016-05-01

    Tumor necrosis factor (TNF) superfamily member 11 (TNFSF11, also known as RANKL) regulates multiple physiological or pathological functions, including osteoclast differentiation and osteoporosis. TNFRSF11A (also called RANK) is considered to be the sole receptor for RANKL. Herein we report that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL. LGR4 competes with RANK to bind RANKL and suppresses canonical RANK signaling during osteoclast differentiation. RANKL binding to LGR4 activates the Gαq and GSK3-β signaling pathway, an action that suppresses the expression and activity of nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (NFATC1) during osteoclastogenesis. Both whole-body (Lgr4(-/-)) and monocyte conditional knockout mice of Lgr4 (Lgr4 CKO) exhibit osteoclast hyperactivation (including elevation of osteoclast number, surface area, and size) and increased bone erosion. The soluble LGR4 extracellular domain (ECD) binds RANKL and inhibits osteoclast differentiation in vivo. Moreover, LGR4-ECD therapeutically abrogated RANKL-induced bone loss in three mouse models of osteoporosis. Therefore, LGR4 acts as a second RANKL receptor that negatively regulates osteoclast differentiation and bone resorption. PMID:27064449

  18. Characterization of Bone Resorption in Novel In Vitro and In Vivo Models of Oral Squamous Cell Carcinoma

    PubMed Central

    Martin, Chelsea K.; Dirksen, Wessel P.; Shu, Sherry T.; Werbeck, Jillian L.; Thudi, Nanda K.; Yamaguchi, Mamoru; Wolfe, Tobie D.; Heller, Kristin N.; Rosol, Thomas J.

    2012-01-01

    Objectives Oral squamous cell carcinoma (OSCC) is the most commonly diagnosed oral malignancy in humans and cats and frequently invades bone. The objective of this study was to determine if feline OSCC serves as a relevant model of human OSCC in terms of osteolytic behavior and expression of bone resorption agonists. Materials and Methods Novel feline OSCC cell lines (SCCF2 and SCCF3) were derived from spontaneous carcinomas. Gene expression and osteolytic behavior were compared to an established feline OSCC cell line (SCCF1) and three human OSCC cell lines (UMSCC-12, A253 and SCC25). Interaction of OSCC with bone and murine pre-osteoblasts (MC3T3) was investigated using in vitro co-culture techniques. In vivo bioluminescent imaging, faxitron radiography and microscopy were used to measure xenograft growth and bone invasion in nude mice. Results Human and feline OSCC expressing the highest levels of parathyroid hormone-related protein (PTHrP) were associated with in vitro and in vivo bone resorption and osteoclastogenesis. MC3T3 cells had increased receptor activator of nuclear factor κB ligand (RANKL) expression and reduced osteoprotegerin (OPG) expression in conditioned medium from bone-invasive SCCF2 cells compared to minimally bone invasive SCCF3 cells, which was partially reversed with a neutralizing anti-PTHrP antibody. Human and feline OSCC cells cultured in bone-conditioned medium had increased PTHrP secretion and proliferation. Conclusion Feline OSCC-induced bone resorption was associated with tumor cell secretion of PTHrP and with increased RANKL : OPG expression ratio in mouse preosteoblasts. Bone-CM increased OSCC proliferation and secretion of PTHrP. The preclinical models of feline OSCC recapitulated the bone-invasive phenotype characteristic of spontaneous OSCC and will be useful to future preclinical and mechanistic studies of bone invasive behavior. PMID:22265717

  19. Associations between Systemic Markers of Bone Turnover or Bone Mineral Density and Anti-Resorptive Agent-Related Osteonecrosis of the Jaw in Patients Treated with Anti-Resorptive Agents

    PubMed Central

    Tohashi, Kazuhito; Nakabayashi, Motoki; Kodani, Isamu; Kidani, Kazunori; Ryoke, Kazuo

    2016-01-01

    Background Some previous studies have examined anti-resorptive agent-related osteonecrosis of the jaw (ARONJ) prediction using systemic markers of bone turnover as risk factors. Radiographic imaging is also effective at detecting ARONJ. In this study, computed tomography (CT)-derived bone mineral density (BMD) values and the levels of systemic markers of bone turnover were evaluated, and then each parameter was compared between patients that developed ARONJ and those who did not after treatment with systemic anti-resorptive agents. The aim of this study was to determine whether systemic markers of bone turnover and/or BMD values can be used to predict the risk of ARONJ Methods The subjects’ serum levels of cross-linked N-terminal telopeptide of type I collagen (NTX) and bone alkaline phosphatase (BAP) (systemic markers of bone turnover) were measured. BMD was calibrated to CT values using a medical imaging phantom. Then, the subjects’ BMD were assessed using quantitative computed tomography. Fifty-six patients who had received systemic anti-resorptive agents were included in this study. Thirty-two of the patients developed ARONJ after receiving the drugs whereas the remaining 24 did not. Results No correlation was observed between the serum levels of the systemic markers of bone turnover and the incidence of ARONJ. On the other hand, the ARONJ patients exhibited higher mandibular BMD values than the control group. BMD was not associated with healing or the clinical stage of ARONJ. Conclusion These results suggest that increased mandibular BMD values are associated with ARONJ. Furthermore, mandibular BMD might serve as a novel marker for predicting the risk of ARONJ in patients that are taking anti-resorptive agents and are about to undergo tooth extraction. Accordingly, mandibular BMD could be a useful tool for aiding risk assessments and guiding treatment decisions. PMID:27046950

  20. Azanitrile Cathepsin K Inhibitors: Effects on Cell Toxicity, Osteoblast-Induced Mineralization and Osteoclast-Mediated Bone Resorption

    PubMed Central

    Ren, Zhong-Yuan; Machuca-Gayet, Irma; Domenget, Chantal; Buchet, Rene; Wu, Yuqing; Jurdic, Pierre; Mebarek, Saida

    2015-01-01

    Aim The cysteine protease cathepsin K (CatK), abundantly expressed in osteoclasts, is responsible for the degradation of bone matrix proteins, including collagen type 1. Thus, CatK is an attractive target for new anti-resorptive osteoporosis therapies, but the wider effects of CatK inhibitors on bone cells also need to be evaluated to assess their effects on bone. Therefore, we selected, among a series of synthetized isothiosemicarbazides, two molecules which are highly selective CatK inhibitors (CKIs) to test their effects on osteoblasts and osteoclasts. Research Design and Methods Cell viability upon treatment of CKIs were was assayed on human osteoblast-like Saos-2, mouse monocyte cell line RAW 264.7 and mature mouse osteoclasts differentiated from bone marrow. Osteoblast-induced mineralization in Saos-2 cells and in mouse primary osteoblasts from calvaria, with or without CKIs,; were was monitored by Alizarin Red staining and alkaline phosphatase activity, while osteoclast-induced bone resorption was performed on bovine slices. Results Treatments with two CKIs, CKI-8 and CKI-13 in human osteoblast-like Saos-2, murine RAW 264.7 macrophages stimulated with RANKL and mouse osteoclasts differentiated from bone marrow stimulated with RANKL and MCSF were found not to be toxic at doses of up to 100 nM. As probed by Alizarin Red staining, CKI-8 did not inhibit osteoblast-induced mineralization in mouse primary osteoblasts as well as in osteoblast-like Saos-2 cells. However, CKI-13 led to a reduction in mineralization of around 40% at 10–100 nM concentrations in osteoblast-like Saos-2 cells while it did not in primary cells. After a 48-hour incubation, both CKI-8 and CKI-13 decreased bone resorption on bovine bone slices. CKI-13 was more efficient than the commercial inhibitor E-64 in inhibiting bone resorption induced by osteoclasts on bovine bone slices. Both CKI-8 and CKI-13 created smaller bone resorption pits on bovine bone slices, suggesting that the mobility of

  1. Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures.

    PubMed

    Hattersley, G; Chambers, T J

    1989-09-01

    The osteoclast is the cell that resorbs bone. It is known to derive from hemopoietic precursors, but analysis of lineage and regulation of differentiation has been hampered by lack of a specific marker that enables identification of cells of osteoclastic phenotype. Previously used markers, such as multinuclearity, that are specific for osteoclasts in bone become less specific in culture. Uniquely among bone and bone marrow cells, osteoclasts possess abundant calcitonin (CT) receptors. We therefore tested the correlation between the generation of bone-resorptive function and the formation of CT receptor-positive cells from hemopoietic tissue in vitro. Without 1,25-dihydroxy-vitamin D3 [1,25-(OH)2D3], a hormone that induces osteoclastic differentiation in vitro, bone marrow cultures showed very little bone resorption, and only small numbers of CT receptor-positive cells developed. When 1,25-(OH)2D3 was added to the cultures, CT receptor-positive cells developed within 1 day and reached a peak after 7 days. Bone resorption commenced within 2 days of hormone addition. There was a strong parallelism between the cumulative number of CT receptor-positive cells and the extent of bone resorption. The capacity of cultures to generate bone-resorptive activity and CT receptor-positive cells declined progressively when 1,25-(OH)2D3 was added to hemopoietic tissue after a 7- to 21-day hormone-free incubation period. The number of CT receptor-positive cells in these cultures correlated strongly (r = 0.96) with bone resorption. The behavior of these cultures suggests that 1,25-(OH)2D3 acts to induce terminal differentiation of osteoclast precursors present in the cultures, and that precursor cell numbers decreased with increasing time in vitro. All of the CT receptor-positive cells in control cultures and all of those seen shortly after 1,25-(OH)2D3 addition were mononuclear, despite considerable bone resorption; the majority of CT receptor-positive cells remained mononuclear

  2. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging.

    PubMed

    Schulte, Friederike A; Lambers, Floor M; Kuhn, Gisela; Müller, Ralph

    2011-03-01

    Bone is a living tissue able to adapt its structure to external influences such as altered mechanical loading. This adaptation process is governed by two distinct cell types: bone-forming cells called osteoblasts and bone-resorbing cells called osteoclasts. It is therefore of particular interest to have quantitative access to the outcomes of bone formation and resorption separately. This article presents a non-invasive three-dimensional technique to directly extract bone formation and resorption parameters from time-lapsed in vivo micro-computed tomography scans. This includes parameters such as Mineralizing Surface (MS), Mineral Apposition Rate (MAR), and Bone Formation Rate (BFR), which were defined in accordance to the current nomenclature of dynamic histomorphometry. Due to the time-lapsed and non-destructive nature of in vivo micro-computed tomography, not only formation but also resorption can now be assessed quantitatively and time-dependent parameters Eroded Surface (ES) as well as newly defined indices Mineral Resorption Rate (MRR) and Bone Resorption Rate (BRR) are introduced. For validation purposes, dynamic formation parameters were compared to the traditional quantitative measures of dynamic histomorphometry, where MAR correlated with R = 0.68 and MS with R = 0.78 (p < 0.05). Reproducibility was assessed in 8 samples that were scanned 5 times and errors ranged from 0.9% (MRR) to 6.6% (BRR). Furthermore, the new parameters were applied to a murine in vivo loading model. A comparison of directly extracted parameters between formation and resorption within each animal revealed that in the control group, i.e., during normal remodeling, MAR was significantly lower than MRR (p < 0.01), whereas MS compared to ES was significantly higher (p < 0.0001). This implies that normal remodeling seems to take place by many small formation packets and few but large resorption volumes. After 4 weeks of mechanical loading, newly extracted trabecular BFR and MS were

  3. Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency

    PubMed Central

    Xiong, Jinhu; Piemontese, Marilina; Thostenson, Jeff D.; Weinstein, Robert S.; Manolagas, Stavros C.; O’Brien, Charles A.

    2014-01-01

    Parathyroid hormone (PTH) excess stimulates bone resorption. This effect is associated with increased expression of the osteoclastogenic cytokine receptor activator of nuclear factor кB ligand (RANKL) in bone. However, several different cell types, including bone marrow stromal cells, osteocytes, and T lymphocytes, express both RANKL and the PTH receptor and it is unclear whether RANKL expression by any of these cell types is required for PTH-induced bone loss. Here we have used mice lacking the RANKL gene in osteocytes to determine whether RANKL produced by this cell type is required for the bone loss caused by secondary hyperparathyroidism induced by dietary calcium deficiency in adult mice. Thirty days of dietary calcium deficiency caused bone loss in control mice, but this effect was blunted in mice lacking RANKL in osteocytes. The increase in RANKL expression in bone and the increase in osteoclast number caused by dietary calcium deficiency were also blunted in mice lacking RANKL in osteocytes. These results demonstrate that RANKL produced by osteocytes contributes to the increased bone resorption and the bone loss caused by secondary hyperparathyroidism, strengthening the evidence that osteocytes are an important target cell for hormonal control of bone remodeling. PMID:24933342

  4. Lippia sidoides and Myracrodruon urundeuva gel prevents alveolar bone resorption in experimental periodontitis in rats.

    PubMed

    Botelho, M A; Rao, V S; Carvalho, C B M; Bezerra-Filho, J G; Fonseca, S G C; Vale, M L; Montenegro, D; Cunha, F; Ribeiro, R A; Brito, G A

    2007-09-25

    In Brazilian folk medicine, Lippia sidoides (Ls) and Myracrodruon urundeuva (Mu) have gained popularity and reputation as effective antimicrobial and anti-inflammatory agents. This work aimed to evaluate the effect of topical herbal gel from Ls 0.5% (v/w) and Mu 5% (w/w) in experimental periodontal disease (EPD) in rats. Wistar rats were subjected to ligature placement around the second upper left molars. Animals were treated topically with Ls and/or Mu-based gel, immediately after EPD induction and three times/day for 11 days until the rats were sacrificed (11th day). Saline-based gel was utilized as control for all experiments and doxycycline based gel 10% (w/w) was utilized as reference substance. Animals were weighed daily. Alveolar bone loss was measured as the difference (in millimeters) between the cusp tip and the alveolar bone. The periodontum and the surrounding gingivae were examined at histopathology, as well as the neutrophil influx into the gingivae was assayed using myeloperoxidase activity and cytokine production mainly tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) levels by ELISA method. The local bacterial flora was assessed through culture of the gingival tissue in standard aerobic and anaerobic media. Alveolar bone loss was significantly inhibited by Ls and Mu combined treatment compared to the saline control group. Ls and Mu combined treatment reduced tissue lesion at histopathology, with partial preservation of the periodontum, coupled to decreased myeloperoxidase activity as well as significantly inhibited TNF-alpha and IL-1beta production in gingival tissue compared to the saline control group. Ls and Mu combined treatment also prevented the growth of oral microorganisms and the weight loss. Ls and Mu combined based gel treatment preserved alveolar bone resorption and demonstrated anti-inflammatory and antibacterial activities in experimental periodontitis. PMID:17714897

  5. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice

    PubMed Central

    Walker, Emma C.; McGregor, Narelle E.; Poulton, Ingrid J.; Solano, Melissa; Pompolo, Sueli; Fernandes, Tania J.; Constable, Matthew J.; Nicholson, Geoff C.; Zhang, Jian-Guo; Nicola, Nicos A.; Gillespie, Matthew T.; Martin, T. John; Sims, Natalie A.

    2010-01-01

    Effective osteoporosis therapy requires agents that increase the amount and/or quality of bone. Any modification of osteoclast-mediated bone resorption by disease or drug treatment, however, elicits a parallel change in osteoblast-mediated bone formation because the processes are tightly coupled. Anabolic approaches now focus on uncoupling osteoblast action from osteoclast formation, for example, by inhibiting sclerostin, an inhibitor of bone formation that does not influence osteoclast differentiation. Here, we report that oncostatin M (OSM) is produced by osteoblasts and osteocytes in mouse bone and that it has distinct effects when acting through 2 different receptors, OSM receptor (OSMR) and leukemia inhibitory factor receptor (LIFR). Specifically, mouse OSM (mOSM) inhibited sclerostin production in a stromal cell line and in primary murine osteoblast cultures by acting through LIFR. In contrast, when acting through OSMR, mOSM stimulated RANKL production and osteoclast formation. A key role for OSMR in bone turnover was confirmed by the osteopetrotic phenotype of mice lacking OSMR. Furthermore, in contrast to the accepted model, in which mOSM acts only through OSMR, mOSM inhibited sclerostin expression in Osmr–/– osteoblasts and enhanced bone formation in vivo. These data reveal what we believe to be a novel pathway by which bone formation can be stimulated independently of bone resorption and provide new insights into OSMR and LIFR signaling that are relevant to other medical conditions, including cardiovascular and neurodegenerative diseases and cancer. PMID:20051625

  6. The Transcriptional Modulator Interferon-Related Developmental Regulator 1 in Osteoblasts Suppresses Bone Formation and Promotes Bone Resorption.

    PubMed

    Iezaki, Takashi; Onishi, Yuki; Ozaki, Kakeru; Fukasawa, Kazuya; Takahata, Yoshifumi; Nakamura, Yukari; Fujikawa, Koichi; Takarada, Takeshi; Yoneda, Yukio; Yamashita, Yui; Shioi, Go; Hinoi, Eiichi

    2016-03-01

    Bone homeostasis is maintained by the synergistic actions of bone-resorbing osteoclasts and bone-forming osteoblasts. Although interferon-related developmental regulator 1 (Ifrd1) has been identified as a transcriptional coactivator/repressor in various cells, little attention has been paid to its role in osteoblastogenesis and bone homeostasis thus far. Here, we show that Ifrd1 is a critical mediator of both the cell-autonomous regulation of osteoblastogenesis and osteoblast-dependent regulation of osteoclastogenesis. Osteoblast-specific deletion of murine Ifrd1 increased bone formation and decreased bone resorption, causing high bone mass. Ifrd1 deficiency enhanced osteoblast differentiation and maturation along with increased expression of Runx2 and osterix (Osx). Mechanistically, Ifrd1 deficiency increased the acetylation status of p65, a component of NF-κB, at residues K122 and K123 via the attenuation of the interaction between p65 and histone deacetylase (HDAC). This led to the nuclear export of p65 and a decrease in NF-κB-dependent Smad7 expression and the subsequent enhancement of Smad1/Smad5/Smad8-dependent transcription. Moreover, a high bone mass phenotype in the osteoblast-specific deletion of Ifrd1 was markedly rescued by the introduction of one Osx-floxed allele but not of Runx2-floxed allele. Coculture experiments revealed that Ifrd1-deficient osteoblasts have a higher osteoprotegerin (OPG) expression and a lower ability to support osteoclastogenesis. Ifrd1 deficiency attenuated the interaction between β-catenin and HDAC, subsequently increasing the acetylation of β-catenin at K49, leading to its nuclear accumulation and the activation of the β-catenin-dependent transcription of OPG. Collectively, the expression of Ifrd1 in osteoblasts repressed osteoblastogenesis and activated osteoclastogenesis through modulating the NF-κB/Smad/Osx and β-catenin/OPG pathways, respectively. These findings suggest that Ifrd1 has a pivotal role in bone

  7. Inhibitory effects of French pine bark extract, Pycnogenol®, on alveolar bone resorption and on the osteoclast differentiation.

    PubMed

    Sugimoto, Hideki; Watanabe, Kiyoko; Toyama, Toshizo; Takahashi, Shun-suke; Sugiyama, Shuta; Lee, Masaichi-Chang-il; Hamada, Nobushiro

    2015-02-01

    Pycnogenol(®) (PYC) is a standardized bark extract from French maritime pine (Pinus pinaster Aiton). We examined the inhibitory effects of PYC on alveolar bone resorption, which is a characteristic feature of periodontitis, induced by Porphyromonas gingivalis (P. gingivalis) and osteoclast differentiation. In rat periodontitis model, rats were divided into four groups: group A served as the non-infected control, group B was infected orally with P. gingivalis ATCC 33277, group C was administered PYC in the diet (0.025%: w/w), and group D was infected with P. gingivalis and administered PYC. Administration of PYC along with P. gingivalis infection significantly reduced alveolar bone resorption. Treatment of P. gingivalis with 1 µg/ml PYC reduced the number of viable bacterial cells. Addition of PYC to epithelial cells inhibited adhesion and invasion by P. gingivalis. The effect of PYC on osteoclast formation was confirmed by tartrate-resistant acid phosphatase staining. PYC treatment significantly inhibited osteoclast formation. Addition of PYC (1-100 µg/ml) to purified osteoclasts culture induced cell apoptosis. These results suggest that PYC may prevent alveolar bone resorption through its antibacterial activity against P. gingivalis and by suppressing osteoclastogenesis. Therefore, PYC may be useful as a therapeutic and preventative agent for bone diseases such as periodontitis. PMID:25336411

  8. PPARG Post-translational Modifications Regulate Bone Formation and Bone Resorption.

    PubMed

    Stechschulte, L A; Czernik, P J; Rotter, Z C; Tausif, F N; Corzo, C A; Marciano, D P; Asteian, A; Zheng, J; Bruning, J B; Kamenecka, T M; Rosen, C J; Griffin, P R; Lecka-Czernik, B

    2016-08-01

    The peroxisome proliferator-activated receptor gamma (PPARγ) regulates osteoblast and osteoclast differentiation, and is the molecular target of thiazolidinediones (TZDs), insulin sensitizers that enhance glucose utilization and adipocyte differentiation. However, clinical use of TZDs has been limited by side effects including a higher risk of fractures and bone loss. Here we demonstrate that the same post-translational modifications at S112 and S273, which influence PPARγ pro-adipocytic and insulin sensitizing activities, also determine PPARγ osteoblastic (pS112) and osteoclastic (pS273) activities. Treatment of either hyperglycemic or normoglycemic animals with SR10171, an inverse agonist that blocks pS273 but not pS112, increased trabecular and cortical bone while normalizing metabolic parameters. Additionally, SR10171 treatment modulated osteocyte, osteoblast, and osteoclast activities, and decreased marrow adiposity. These data demonstrate that regulation of bone mass and energy metabolism shares similar mechanisms suggesting that one pharmacologic agent could be developed to treat both diabetes and metabolic bone disease. PMID:27422345

  9. Runx2 Controls Bone Resorption through the Down-Regulation of the Wnt Pathway in Osteoblasts.

    PubMed

    Haxaire, Coline; Haÿ, Eric; Geoffroy, Valérie

    2016-06-01

    The transcription factor Runx2 and the Wnt/β-catenin pathway are major regulators of bone formation. Our aim was to assess the interactions between the Wnt/β-catenin pathway and Runx2 that contribute to bone resorption. Our results indicate that the activity of the canonical Wnt/β-catenin pathway depends on Runx2. Runx2 overexpression inhibited β-catenin levels and activity in vitro and in vivo. Inhibition of Gsk3b using lithium chloride in Runx2-overexpressing osteoporotic female mice rescued the Wnt/β-catenin signaling in vivo and completely restored trabecular bone volume by increasing bone formation and decreasing bone resorption. The activation of Wnt/β-catenin signaling by lithium chloride treatment reduced the number and activity of bone marrow-derived osteoclast-like cells in vitro, suggesting that the restoration of trabecular bone in vivo was due to decreased bone resorption, consistent with the reduced receptor activator of NF-κB ligand/osteoprotegerin ratio in Runx2-overexpressing osteoblasts. Lithium chloride also increased osteoblast differentiation and activity in vitro in agreement with the increase in mineral apposition rate and osteocalcin expression detected in vivo. Our results indicate that the activity of the canonical Wnt/β-catenin pathway in osteoblast is modulated by Runx2. To conclude, our in vivo and in vitro results highlight the role of Runx2 as a negative regulator of Wnt/β-catenin pathway activity in osteoblasts and indicate that the abnormal Wnt/β-catenin activity seen in Runx2 transgenic mice affects both osteoblast and osteoclast differentiation and activity. PMID:27083516

  10. Serotonin-norepinephrine reuptake inhibitor therapy in late-life depression is associated with increased marker of bone resorption

    PubMed Central

    Shea, Marcie L.O.; Garfield, Lauren D.; Teitelbaum, Steven; Civitelli, Roberto; Mulsant, Benoit H.; Reynolds, Charles F.; Dixon, David; Doré, Peter; Lenze, Eric J.

    2014-01-01

    Purpose Antidepressants have been associated with increased bone loss and fractures in older adults in observational studies, but the mechanism is unclear. We examined the effects of a serotonin-norepinephrine reuptake inhibitor, venlafaxine, on biomarkers of bone turnover in a prospective treatment study of late-life depression. Methods 76 individuals aged 60 and older with current major depressive disorder received a 12-week course of venlafaxine XR 150-300mg daily. We measured serum C-terminal cross-linking telopeptide of type I collagen (β-CTX) and N-terminal propeptide of type I procollagen (P1NP), measures of bone resorption and formation, respectively, before and after treatment. We then analyzed the change in β-CTX and P1NP within each participant. Venlafaxine levels were measured at the end of the study. We assessed depression severity at baseline and remission status after treatment. Results After 12 weeks of venlafaxine, β-CTX increased significantly, whereas P1NP did not significantly change. The increase in β-CTX was significant only in participants whose depression did not remit (increase of 10% in non-remitters versus 4% in remitters). Change in β-CTX was not correlated with serum levels of venlafaxine or norvenlafaxine. Conclusion Our findings suggest that the primary effect of serotonergic antidepressants is to increase bone resorption. However, such an increase in bone resorption seemed to depend on whether or not participants’ depression remitted. Our results are in agreement with prior observational studies reporting increased bone loss in older adults taking serotonergic antidepressants. These negative effects on bone homeostasis could potentially contribute to increased fracture risk in older adults. PMID:23358607

  11. Cyclosporin A does not affect the absolute rate of cortical bone resorption at the organ level in the growing rat.

    PubMed

    Klein, L; Lemel, M S; Wolfe, M S; Shaffer, J

    1994-10-01

    The weanling rat, an animal model of rapid bone turnover, was used to evaluate the effects of various doses of cyclosporin A (CsA) on various bones during different time periods. Sprague-Dawley male rats were extensively prelabeled with 3H-tetracycline during 1-3 weeks of age. At 4 weeks of age, four groups of rats were given daily subcutaneous injections: vehicle or CsA--low dose (10 mg/kg), intermediary dose (20 mg/kg), or high dose (30 mg/kg) for 7, 14, or 28 days. Three different whole bones--the femur (low turnover), scapula (moderate turnover), and lumbar-6 vertebra (high turnover) were harvested intact at 4, 5, 6, and 8 weeks of age. The whole bones were assayed weekly for total dry defatted weight, calcium mass (formation), and loss of 3H-tetracycline (bone resorption) following treatment with CsA. Serum CsA levels, calcium creatinine, and alkaline phosphatase were measured weekly. Significant decreases in serum calcium and alkaline phosphatase were observed at 1 and 2 weeks, and were normalized by 4 weeks of treatment. No significant changes in serum creatinine were noted. For all three doses of CsA, no effect was observed on the absolute rate of cortical bone resorption of three different, whole bones over three time periods. Body weight and bone formation in treated animals was significantly smaller in a dose- and time-related fashion compared with control animals at sacrifice. However, compared with the initial control animals, body weights and bone masses of the final treated animals were much larger, suggesting that the smaller bone masses were due to insufficient growth and slow gain in bone mass.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7820781

  12. Effect of calcium ions on human calcitonin. Possible implications for bone resorption by osteoclasts.

    PubMed

    Meleleo, Daniela; Picciarelli, Vittorio

    2016-02-01

    Calcium ions (Ca(2+)) are indispensable for life and are involved in important physiological actions, which makes maintaining a constant level of blood Ca(2+) essential. Ca(2+) is mainly stored in bones which serve as a reservoir and its homeostasis is modulated by various hormones. Human calcitonin (hCt) is a small peptide hormone that exerts its physiological effect on Ca(2+) metabolism by means of osteoclast-mediated bone resorption inhibition. Most of these actions are mediated through peptide/receptor interaction that acts via a second messenger. However, in vitro studies have shown that hCt can interact with membrane lipids to form ion channels in membrane models. This ability is due to the peptide's secondary structure and aggregation state, that can be modulated by different molecules. In our study, we evaluated the effect of Ca(2+), at different concentrations, both on the hCt ion channel incorporated into a planar lipid membrane made up of phosphatidylcholine containing 15% phosphatidylglycerol and on the secondary structure of hCt in an aqueous environment. Ca(2+) is able to interact with the hCt peptide by acting on the channel incorporated into the membrane as well as on the peptide in solution, both by increasing hCt channel frequency and in solution promoting α-helix formation, that counteracts the fibrillating process. These experimental observations, suggesting that hCt senses Ca(2+) concentration variations, strengthen the hypothesis that channel formation represents an extra source of Ca(2+) entry into osteoclasts in addition to the well-known interaction of the monomer with the specific receptor. PMID:26596282

  13. Cortical bone resorption rate in elderly persons: estimates from long-term in vivo measurements of (90)Sr in the skeleton.

    PubMed

    Shagina, N B; Tolstykh, E I; Degteva, M O; Anspaugh, L R; Napier, B A

    2012-01-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of (90)Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of (90)Sr were conducted with a whole body counter (WBC) for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of (90)Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested (90)Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption. PMID:21871673

  14. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    SciTech Connect

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2012-06-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  15. Treatment of denervation/disuse osteoporosis in the rat with a capacitively coupled electrical signal: effects on bone formation and bone resorption.

    PubMed

    Brighton, C T; Tadduni, G T; Goll, S R; Pollack, S R

    1988-01-01

    Utilizing a sciatic neurectomy model of disuse osteoporosis, the effects on rates of bone formation and bone resorption were examined when a capacitively coupled electrical signal was applied to the denervated tibia in the rat. It was found that a low-voltage, symmetrical sine wave, 60-kHz, capacitively coupled signal had no significant effect on the amount of bone resorption occurring in denervated right tibiae in rats previously labeled with [3H]tetracycline. This was true whether the signal was applied while osteoporosis was developing (prevention of osteoporosis) or after it had been established (treatment of osteoporosis). If a similar capacitively coupled signal was applied to rats in which osteoporosis was well established, and the rats were labeled with [3H]tetracycline daily during a 12-day treatment period, it was found that there was statistically significant enhancement of the amount of new bone formation (increased [3H]tetracycline incorporation) in the tibiae that received the signal as compared with that of the controls. These results indicate that prevention or amelioration of disuse osteoporosis that occurs with a capacitively coupled electrical signal is due not to a change in the rate of bone resorption, but to an increase in the rate of bone formation. PMID:3261339

  16. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D.

    PubMed

    Kleinhans, C; Schmid, F F; Schmid, F V; Kluger, P J

    2015-07-10

    Bone homeostasis is maintained by osteoblasts (bone formation) and osteoclasts (bone resorption). While there have been numerous studies investigating mesenchymal stem cells and their potential to differentiate into osteoblasts as well as their interaction with different bone substitute materials, there is only limited knowledge concerning in vitro generated osteoclasts. Due to the increasing development of degradable bone-grafting materials and the need of sophisticated in vitro test methods, it is essential to gain deeper insight into the process of osteoclastogenesis and the resorption functionality of human osteoclasts. Therefore, we focused on the comparison of osteoclastogenesis and resorption activity on tissue culture polystyrene (TCPS) and bovine extracellular bone matrices (BMs). Cortical bone slices were used as two-dimensional (2D) substrates, whereas a thermally treated cancellous bone matrix was used for three-dimensional (3D) experiments. We isolated primary human monocytes and induced osteoclastogenesis by medium supplementation. Subsequently, the expression of the vitronectin receptor (αVβ3) and cathepsin K as well as the characteristic actin formation on TCPS and the two BMs were examined. The cell area of human osteoclasts was analyzed on TCPS and on BMs, whereas significantly larger osteoclasts could be detected on BMs. Additionally, we compared the diameter of the sealing zones with the measured diameter of the resorption pits on the BMs and revealed similar diameters of the sealing zones and the resorption pits. We conclude that using TCPS as culture substrate does not affect the expression of osteoclast-specific markers. The analysis of resorption activity can successfully be conducted on cortical as well as on cancellous bone matrices. For new in vitro test systems concerning bone resorption, we suggest the establishment of a 2D assay for high throughput screening of new degradable bone substitute materials with osteoclasts. PMID:25562421

  17. Pharmacokinetics and bone resorption evaluation of a novel Cathepsin K inhibitor (VEL-0230) in healthy adult horses.

    PubMed

    Hussein, H; Ishihara, A; Menendez, M; Bertone, A

    2014-12-01

    Plasma pharmacokinetic (PK) and bone resorption biomarker [carboxy-terminal cross-linking telopeptide of type I collagen (CTX-1)] analyses were performed following single and multiple oral dose protocols of a Cathepsin K inhibitor (VEL-0230) in horses. Outcomes included plasma and urine drug and CTX-1 concentrations. In the dose range study, 2, 4, and 8 mg/kg body weight (b.w.) doses were administered in a Latin square design to three mares and evaluated for 1 week. Based on the PK characteristics of VEL-0230, 4 mg/kg b.w. was selected for the dose interval study in which 3.25 days (d) and 7 days dose intervals were evaluated over three administrations using four exercising horses in a Latin square design. The 3.25 days and 7 days dose intervals provided a rapid inhibition of bone resorption based on plasma CTX-1. CTX-1 inhibition prior to next dose administration was not different from baseline in the 3.25 days and 7 days protocols, and for the first 3 days but the sustained CTX-1 inhibition in the 7 days protocol along with the cost and logistic benefits for weekly administration made the 7 days protocol preferable. Weekly administration of VEL-0230 may provide effective inhibition of bone resorption in young exercising horses that returns to baseline within 7 days after drug withdrawal even after multiple doses. PMID:24731241

  18. Anti-inflammatory and Anti-resorptive Effects of Atorvastatin on Alveolar Bone Loss in Wistar Rats.

    PubMed

    Goes, Paula; Lima, Neiberg Alcântara; Rodrigues, José Ariévilo Gurgel; Benevides, Norma Maria Barros; Brito, Gerly Anne Castro; Lima, Vilma

    2016-01-01

    The aim of this study was to evaluate the anti-inflammatory and anti-resorptive effect of atorvastatin (ATV) in an experimental alveolar bone loss (ABL) model. Wistar rats were subjected to ligature placement around the maxillary second molar for 11 days. The animals received 0.9% saline (2 mL/kg) or ATV (0.3, 3 or 27 mg/kg) daily by gavage. ABL was evaluated by resorption area and histopathological analysis. Serum bone-specific alkaline phosphatase (BALP) activity was also evaluated. Leukogram was performed at 0 h, 6th h, 2nd, 7th and 11th days. Kidney and liver conditions and the body mass variation were analyzed. ATV (3 and 27 mg/kg) inhibited ABL by 39% and 56%, respectively. Histopathological analysis showed that ATV 27 mg/kg prevented ABL and cemental resorption, and inflammatory cell infiltration induced by ligature. ATV (27 mg/kg) prevented serum BALP levels reduction. ATV (27 mg/kg) prevented leukocytosis and did not affect either kidney or liver function nor body mass weight. ATV showed a protecting effect in the ligature-induced periodontitis, without affecting system parameters, by inhibition of inflammatory process and by its anabolic activity on the alveolar bone. PMID:27224558

  19. Osteoclastic resorption of bone-like apatite formed on a plastic disk as an in vitro assay system.

    PubMed

    Matsuoka, H; Nakamura, T; Takadama, H; Yamada, S; Tamura, J; Okada, Y; Oka, M; Kokubo, T

    1998-11-01

    We have investigated the applicability of a simple and inexpensive osteoclastic assay system using bone-like apatite-coated polyethyleneterephthalate (PET) disks. A 1 microm thick apatite layer, uniform and homogeneous bone-mineral-like with no organic components, was made on PET disks using a biomimetic process. As substrates for an osteoclastic assay, these coated disks were compared with dentine as well as with bone-like or heat-treated apatite of various thicknesses on apatite- and wollastonite-containing glass ceramic (A-W GC) disks. The unfractionated bone cells, including osteoclasts, of a neonatal rabbit were seeded onto these substrates. By scanning electron microscopic examination, the resorption lacunae of the thick bone-like apatite clearly showed track-like shapes at various depths, similar to those of dentine although the border between the A-W GC and the apatite was unclear. In contrast, those of heat-treated apatite showed small and shallow shapes with irregular margins, quite different from those of dentine. By reducing the thickness of bone-like apatite to 1 microm as well as using PET as its substrate, the margins of the resorption lacunae became quite clear, and with the use of phase-contrast microscopy during culture, osteoclasts and resorption pits could be precisely observed. The resorbed area, easily measured with the aid of bright-field microscopy and an image analyzer, was found to have increased in a time-dependent manner and at the end of 4 days of culture was not statistically different from that of dentine. PMID:9773824

  20. A comparison study between periosteum and resorbable collagen membrane on iliac block bone graft resorption in the rabbit calvarium

    PubMed Central

    2014-01-01

    Background To compare the different resorption patterns between resorbable membrane barrier and periosteum after iliac block bone grafting radiographically and histologically. Methods Eighteen mature male rabbits weighing from 2.0 to 2.5 kg were used. The recipient site was the rabbit skull, and autogenous iliac bone was used as the grafting material. The harvested iliac block bones were divided in the following groups: autogenous iliac block bone with preservation of the periosteum (the periosteum group), autogenous iliac block bone covered with a resorbable collagen membrane (Biomesh®, Samyang Co, Korea) after removing the periosteum (the collagen membrane group), and autogenous iliac block bones with removal of the periosteum (the control group). In each experimental group, periosteum or resorbable collagen membrane of the donor site was fixed directed to the periosteum of the recipient site. The specimens were examined macroscopically, radiographically, histologically, and histomorphometrically at every 2, 4, and 8 weeks. Results All groups presented excellent bone graft healing state without inflammation, dehiscence, or displacement. The radiolucency increased from mild to moderate in all groups over the experiment. The mean thickness of the upper end of the cortical iliac bone graft was statistically significantly different between the control group and the periosteum group, between the four-week and eight-week control group, and between the four- week and eight-week periosteum group (p & 0.05). Conclusion This study suggests that both the periosteum and the resorbable collagen membrane may help to prevent soft tissue infiltration into the bone graft and to reduce bone graft resorption compared to block graft alone. PMID:24886656

  1. Interleukin-1 and Tumor Necrosis Factor Activities Partially Account for Calvarial Bone Resorption Induced by Local Injection of Lipopolysaccharide

    PubMed Central

    Chiang, Cheng-Yang; Kyritsis, George; Graves, Dana T.; Amar, Salomon

    1999-01-01

    The present study was undertaken to test the hypothesis that tumor necrosis factor (TNF) and/or interleukin-1 (IL-1) activity mediates lipopolysaccharide (LPS)-induced bone resorption in vivo. To test this hypothesis, Escherichia coli LPS or Porphyromonas gingivalis LPS was injected into the subcutaneous tissues overlying mouse calvariae. Histological sections, prepared from the center of the lesion, were stained for tartrate-resistant acid phosphatase, and histomorphometric analysis was performed to quantify the osteoclast number and the area of bone resorption. In time course experiments using normal mice, a peak of bone resorption occurred 5 days after endotoxin stimulation. In dose-response experiments, IL-1 receptor type 1 deletion (IL-1R−/−), TNF double-receptor p55/p75 deletion (TNF p55−/−/p75−/−), combined TNF p55 and IL-1 receptor type 1 deletion (TNF p55−/−/IL-1R−/−), and IL-1β-converting enzyme-deficient (ICE−/−) mice and the respective wild-type mice were injected with 500, 100, or 20 μg of P. gingivalis LPS and sacrificed 5 days after LPS injection. At the highest dose (500 μg), significant decreases in osteoclast number occurred in mutant mice compared to wild-type mice: (i) a 64% reduction for the TNF p55−/−/IL-1R−/− mice, (ii) a 57% reduction for the IL-1R−/− mice, (iii) a 41% reduction for the TNF p55−/−/p75−/− mice, and (iv) a 38% reduction for the ICE−/− mice. At the two lower doses, bone resorption was apparent but no significant differences between mutant and wild-type animals were observed. The present data indicate that at higher doses, LPS-induced bone resorption is substantially mediated by IL-1 and TNF receptor signaling. Furthermore, IL-1 receptor signaling appears to be slightly more important than TNF receptor signaling. At lower LPS doses, other pathways leading to osteoclast activity that are independent of TNF and IL-1 are involved. PMID:10417196

  2. Intravenous Immunoglobulin (IVIG) Attenuates TNF-Induced Pathologic Bone Resorption and Suppresses Osteoclastogenesis by Inducing A20 Expression.

    PubMed

    Lee, Min Joon; Lim, Elisha; Mun, Se-Hwan; Bae, Seyeon; Murata, Koichi; Ivashkiv, Lionel B; Park-Min, Kyung-Hyun

    2016-02-01

    Investigations on the therapeutic effects of intravenous immunoglobulin (IVIG) have focused on the suppression of autoantibody and immune complex-mediated inflammatory pathogenesis. Inflammatory diseases such as rheumatoid arthritis are often accompanied by excessive bone erosion but the effect of IVIG on osteoclasts, bone-resorbing cells, has not been studied. Here, we investigate whether IVIG directly regulates osteoclast differentiation and has therapeutic potential for suppressing osteoclast-mediated pathologic bone resorption. IVIG or cross-linking of Fcγ receptors with plate-bound IgG suppressed receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteoclastogenesis and expression of osteoclast-related genes such as integrin β3 and cathepsin K in a dose-dependent manner. Mechanistically, IVIG or plate-bound IgG suppressed osteoclastogenesis by downregulating RANKL-induced expression of NFATC1, the master regulator of osteoclastogenesis. IVIG suppressed NFATC1 expression by attenuating RANKL-induced NF-κB signaling, explained in part by induction of the inflammatory signaling inhibitor A20. IVIG administration attenuated in vivo osteoclastogenesis and suppressed bone resorption in the tumor necrosis factor (TNF)-induced calvarial osteolysis model. Our findings show that, in addition to suppressing inflammation, IVIG directly inhibits osteoclastogenesis through a mechanism involving suppression of RANK signaling. Direct suppression of osteoclast differentiation may provide beneficial effects on preserving bone mass when IVIG is used to treat rheumatic disorders. PMID:26189496

  3. Caffeic acid phenethyl ester abrogates bone resorption in a murine calvarial model of polyethylene particle-induced osteolysis.

    PubMed

    Zawawi, M S F; Perilli, E; Stansborough, R L; Marino, V; Cantley, M D; Xu, J; Dharmapatni, A A S S K; Haynes, D R; Gibson, R J; Crotti, T N

    2015-06-01

    Particle-induced bone loss by osteoclasts is a common cause of aseptic loosening around implants. This study investigates whether caffeic acid phenethyl ester (CAPE), a potent and specific inhibitor of nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 and nuclear factor kappa B, at a low dose reduces bone resorption in a murine calvarial model of polyethylene (PE) particle-induced osteolysis. The effects of particles and CAPE treatment on gastrointestinal tract (GIT) histopathology were also evaluated. Mice were scanned using in vivo animal micro-computed tomography (μCT) as a baseline measurement. PE particles (2.82 × 10(9) particles/mL) were implanted over the calvariae on day 0. CAPE was administered subcutaneously (1 mg/kg/day) at days 0, 4, 7 and 10. Mice were killed at day 14 and serum was analysed for Type-1 carboxyterminal collagen crosslinks (CTX)-1 and osteoclast-associated receptor (OSCAR) levels. Ex vivo μCT scans were conducted to assess bone volume (BV) change and percentage area of calvarial surface resorbed. Calvarial and GIT tissue was processed for histopathology. By day 14, PE particles significantly induced calvarial bone loss compared with control animals as evidenced by resorption areas adjacent to the implanted PE in three-dimensional μCT images, an increase in percentage of resorbed area (p = 0.0022), reduction in BV (p = 0.0012) and increased Tartrate-resistant acid phosphatase positive cells. Serum CTX-1 (p = 0.0495) and OSCAR levels (p = 0.0006) significantly increased in the PE implant group. CAPE significantly inhibited PE particle-induced calvarial osteolysis, as evidenced by a significant reduction in surface bone resorption (p = 0.0012) and volumetric change (p = 0.0154) compared with PE only, but had no effect on systemic CTX-1. Neither particles nor CAPE had an effect on GIT histopathology. PMID:25804981

  4. Horizontal Resorption of Fresh-Frozen Corticocancellous Bone Blocks in the Reconstruction of the Atrophic Maxilla at 5 Months

    PubMed Central

    Pereira, Eugénio; Messias, Ana; Dias, Ricardo; Judas, Fernando; Salvoni, Alexander; Guerra, Fernando

    2015-01-01

    Background Reliable implant-supported rehabilitation of an alveolar ridge needs sufficient volume of bone. In order to achieve a prosthetic-driven positioning, bone graft techniques may be required. Purpose This prospective cohort study aims to clinically evaluate the amount of resorption of corticocancellous fresh-frozen allografts bone blocks used in the reconstruction of the severe atrophic maxilla. Materials and Methods Twenty-two partial and totally edentulous patients underwent bone augmentation procedures with fresh-frozen allogenous blocks from the iliac crest under local anesthesia. Implants were inserted into the grafted sites after a healing period of 5 months. Final fixed prosthesis was delivered ± 4 months later. Ridge width analysis and measurements were performed with a caliper before and after grafting and at implant insertion. Bone biopsies were performed in 16 patients. Results A total of 98 onlay block allografts were used in 22 patients with an initial mean alveolar ridge width of 3.41 ± 1.36 mm. Early exposure of blocks was observed in four situations and one of these completely resorbed. Mean horizontal bone gain was 3.63 ± 1.28 mm (p < .01). Mean buccal bone resorption between allograph placement and the reopening stage was 0.49 ± 0.54 mm, meaning approximately 7.1% (95% confidence interval: [5.6%, 8.6%]) of total ridge width loss during the integration period. One hundred thirty dental implants were placed with good primary stability (≥ 30 Ncm). Four implants presented early failure before the prosthetic delivery (96.7% implant survival). All patients were successfully rehabilitated. Histomorphometric analysis revealed 20.9 ± 5.8% of vital bone in close contact to the remaining grafted bone. A positive strong correlation (adjusted R2 = 0.44, p = .003) was found between healing time and vital bone percentage. Conclusions Augmentation procedures performed using fresh-frozen allografts from the

  5. Feeding Blueberry Diets to Young Rats Dose-Dependently Inhibits Bone Resorption through Suppression of RANKL in Stromal Cells

    PubMed Central

    Zhang, Jian; Lazarenko, Oxana P.; Kang, Jie; Blackburn, Michael L.; Ronis, Martin J. J.; Badger, Thomas M.; Chen, Jin-Ran

    2013-01-01

    Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for two weeks beginning on postnatal day 21 (PND21) significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce these effects is, as yet, unknown. The current study examined the effects of three different levels of BB diet supplementation (1, 3, and 5%) for 35 days beginning on PND25 on bone quality, and osteoclastic bone resorption in female rats. Peripheral quantitative CT scan (pQCT) of tibia, demonstrated that bone mineral density (BMD) and content (BMC) were dose-dependently increased in BB-fed rats compared to controls (P<0.05). Significantly increased bone mass after feeding 5% BB extracts was also observed in a TEN (total enteral nutrition) rat model in which daily caloric and food intake was precisely controlled. Expression of RANKL (receptor activator of nuclear factor-κB ligand) a protein essential for osteoclast formation was dose-dependently decreased in the femur of BB animals. In addition, expression of PPARγ (peroxisome proliferator-activated receptor γ) which regulates bone marrow adipogenesis was suppressed in BB diet rats compared to non-BB diet controls. Finally, a set of in vitro cell cultures revealed that the inhibitory effect of BB diet rat serum on RANKL expression was more profound in mesenchymal stromal cells compared to its effect on mature osteoblasts, pre-adipocytes and osteocytes. These results suggest that inhibition of bone resorption may contribute to increased bone mass during early development after BB consumption. PMID:23936431

  6. Human calcium metabolism including bone resorption measured with {sup 41}Ca tracer

    SciTech Connect

    Freeman, S.P.H.T.; King, J.C.; Vieira, N.E.; Woodhouse, L.R.; Yergey, A.L.

    1996-08-01

    Accelerator mass spectrometry is so sensitive to small quantities of {sup 41}Ca that it might be used as a tracer in the study of human calcium kinetics to generate unique kinds of data. In contrast with the use of other Ca isotopic tracers, {sup 41}Ca tracer can be so administered that the tracer movements between the various body pools achieve a quasi steady state. Resorbing bone may thus be directly measured. We have tested such a protocol against a conventional stable isotope experiment with good agreement.

  7. Analysis of correlation between initial alveolar bone density and apical root resorption after 12 months of orthodontic treatment without extraction

    PubMed Central

    Scheibel, Paula Cabrini; Ramos, Adilson Luiz; Iwaki, Lilian Cristina Vessoni; Micheletti, Kelly Regina

    2014-01-01

    OBJECTIVE: The aim of the present study was to investigate the correlation between initial alveolar bone density of upper central incisors (ABD-UI) and external apical root resorption (EARR) after 12 months of orthodontic movement in cases without extraction. METHODS: A total of 47 orthodontic patients 11 years old or older were submitted to periapical radiography of upper incisors prior to treatment (T1) and after 12 months of treatment (T2). ABD-UI and EARR were measured by means of densitometry. RESULTS: No statistically significant correlation was found between initial ABD-UI and EARR at T2 (r = 0.149; p = 0.157). CONCLUSION: Based on the present findings, alveolar density assessed through periapical radiography is not predictive of root resorption after 12 months of orthodontic treatment in cases without extraction. PMID:25715722

  8. Fin Spine Bone Resorption in Atlantic Bluefin Tuna, Thunnus thynnus, and Comparison between Wild and Captive-Reared Specimens

    PubMed Central

    Santamaria, Nicoletta; Bello, Giambattista; Pousis, Chrysovalentinos; Vassallo-Agius, Robert; de la Gándara, Fernando; Corriero, Aldo

    2015-01-01

    Bone resorption in the first spine of the first dorsal fin of Atlantic bluefin tuna (ABFT) has long been considered for age estimation studies. In the present paper spine bone resorption was assessed in wild (aged 1 to 13 years) and captive-reared (aged 2 to 11 years) ABFT sampled from the Mediterranean Sea. Total surface (TS), solid surface (SS) and reabsorbed surface (RS) were measured in spine transverse sections in order to obtain proportions of SS and RS. The spine section surface was found to be isometrically correlated to the fish fork length by a power equation. The fraction of solid spine bone progressively decreased according to a logarithmic equation correlating SS/TS to both fish size and age. The values ranged from 57% in the smallest examined individuals to 37% in the largest specimens. This phenomenon was further enhanced in captive-reared ABFT where SS/TS was 22% in the largest measured specimen. The difference between the fraction of SS of wild and captive-reared ABFT was highly significant. In each year class from 1- to 7-year-old wild specimens, the fraction of spine reabsorbed surface was significantly higher in specimens collected from March to May than in those sampled during the rest of the year. In 4-year-old fish the normal SS increase during the summer did not occur, possibly coinciding with their first sexual maturity. According to the correlations between SS/TS and age, the rate of spine bone resorption was significantly higher, even almost double, in captive-reared specimens. This could be attributed to the wider context of systemic dysfunctions occurring in reared ABFT, and may be related to a number of factors, including nutritional deficiencies, alteration of endocrine profile, cortisol-induced stress, and loss of spine functions during locomotion in rearing conditions. PMID:25751271

  9. Porphyromonas gingivalis GroEL Induces Osteoclastogenesis of Periodontal Ligament Cells and Enhances Alveolar Bone Resorption in Rats

    PubMed Central

    Lin, Feng-Yen; Hsiao, Fung-Ping; Huang, Chun-Yao; Shih, Chun-Ming; Tsao, Nai-Wen; Tsai, Chien-Sung; Yang, Shue-Fen; Chang, Nen-Chung; Hung, Shan-Ling; Lin, Yi-Wen

    2014-01-01

    Porphyromonas gingivalis is a major periodontal pathogen that contains a variety of virulence factors. The antibody titer to P. gingivalis GroEL, a homologue of HSP60, is significantly higher in periodontitis patients than in healthy control subjects, suggesting that P. gingivalis GroEL is a potential stimulator of periodontal disease. However, the specific role of GroEL in periodontal disease remains unclear. Here, we investigated the effect of P. gingivalis GroEL on human periodontal ligament (PDL) cells in vitro, as well as its effect on alveolar bone resorption in rats in vivo. First, we found that stimulation of PDL cells with recombinant GroEL increased the secretion of the bone resorption-associated cytokines interleukin (IL)-6 and IL-8, potentially via NF-κB activation. Furthermore, GroEL could effectively stimulate PDL cell migration, possibly through activation of integrin α1 and α2 mRNA expression as well as cytoskeletal reorganization. Additionally, GroEL may be involved in osteoclastogenesis via receptor activator of nuclear factor κ-B ligand (RANKL) activation and alkaline phosphatase (ALP) mRNA inhibition in PDL cells. Finally, we inoculated GroEL into rat gingiva, and the results of microcomputed tomography (micro-CT) and histomorphometric assays indicated that the administration of GroEL significantly increased inflammation and bone loss. In conclusion, P. gingivalis GroEL may act as a potent virulence factor, contributing to osteoclastogenesis of PDL cells and resulting in periodontal disease with alveolar bone resorption. PMID:25058444

  10. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption

    NASA Technical Reports Server (NTRS)

    Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.

    1990-01-01

    The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.

  11. Herba epimedii flavonoids suppress osteoclastic differentiation and bone resorption by inducing G2/M arrest and apoptosis.

    PubMed

    Zhang, Dawei; Zhang, Jinchao; Fong, Chichun; Yao, Xinsheng; Yang, Mengsu

    2012-12-01

    Accumulating evidences suggest that Herba epimedii has the potential benefits against osteoporosis. However, previous studies were focused on the crude extract, total flavonoids (TF) and icariin (ICA), and the detailed molecular mechanisms of action and structure-activity relationship (SAR) remain unclear. Herein we aimed to systematically investigate the effects of Herba epimedii flavonoids (HEF) on the activity of osteoclasts, and explore the potential SAR. Both ICA and baohuoside-1 (BS) significantly inhibited the proliferation of RAW 264.7 cells (IC(50) 25 μM and 67 μM, respectively). Treatment of ICA resulted in G2/M arrest and apoptosis in RAW 264.7 cells as early as 12 h. Besides, HEF remarkably suppressed vitamin D-induced differentiation of osteoclasts in rabbit bone marrow cells and the bone resorption of rabbit mature osteoclasts in vitro. It is notable that the inhibitory effect of 100 μM ICA and BS on osteoclast formation is almost 90%; and the inhibition rate on bone resorption is 50% and 80%, respectively. Besides, RANKL-induced osteoclast formation from RAW 264.7 cells and the expression of TRAP, CA II, CTSK and MMP-9 was significantly reduced by the treatment of 25 μM HEF and 17β-estradiol (ES), and the inhibitory strength increases in the order TF < ES < ICA < BS, which was blocked by ICI182780 suggesting that the regulation of osteoclast activity might be ER dependent. Furthermore, the free hydroxyl group at C-7 of BS played an important role in the SAR for anti-osteoclast action. To conclude, HEF could regulate the formation and activity of osteoclasts by inhibiting the proliferation and differentiation, inducing apoptosis and cell cycle arrest and suppressing bone resorption of osteoclasts. Changes in osteoclast activity are probably mediated predominantly by interaction with nuclear estrogen receptors and via mitochondrial pathway. HEF, especially BS, has great potential for the prevention and treatment of osteoporosis. PMID:22796380

  12. Bone resorption analysis of platelet-derived growth factor type BB application on collagen for bone grafts secured by titanium mesh over a pig jaw defect model

    PubMed Central

    Herford, Alan Scott; Cicciù, Marco

    2012-01-01

    Purpose: The aim of this investigation was to evaluate whether the addition of the platelet derived growth factor type BB (PDGF-BB) to a collagen matrix applied on a titanium mesh would favor healing and resorption onto the grafted bone. A histologic and radiographic study of two different groups (test and control) was performed. Designs: A surgical procedure was performed on 8 pigs to obtain 16 bilateral mandibular alveolar defects. All the defects were then reconstructed with a mixture of autogenous bovine bone using titanium mesh positioning. Two groups, with a total of 16 defects were created: The first to study collagen sponge and PDGF-BB and the second to control collagen only. The collagen matrix was positioned directly over the mesh and soft tissue was closed without tensions onto both groups without attempting to obtain primary closure. Possible exposure of the titanium mesh as well as the height and volume of the new bone was recorded. Results: New bone formation averaged about 6.68 mm in the test group studied; the control group had less regenerated bone at 4.62 mm. Conclusion: PDGF-BB addition to the collagen matrix induced a strong increase in hard and soft tissue healing and favored bone formation, reducing bone resorption even if the mesh was exposed. PMID:23833493

  13. Blocking antibody to the beta-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low estrogen levels undoubtedly underlie menopausal bone thinning. However, rapid and profuse bone loss begins three years prior to the last menstrual period, when serum estrogen is relatively normal. We have shown that the pituitary hormone FSH, the levels of which are high during the late peri-men...

  14. Effects of long-term alendronate treatment on bone mineralisation, resorption parameters and biomechanics of single human vertebral trabeculae.

    PubMed

    Krause, M; Soltau, M; Zimmermann, E A; Hahn, M; Kornet, J; Hapfelmeier, A; Breer, S; Morlock, M; Wulff, B; Püschel, K; Glueer, C-C; Amling, M; Busse, B

    2014-01-01

    Due to their well-established fracture risk reduction, bisphosphonates are the most frequently used therapeutic agent to treat osteoporosis. Bisphosphonates reduce fracture risk by suppressing bone resorption, but the lower bone turnover could have a negative impact on bone quality at the tissue level. Here, we directly assess the structural and mechanical characteristics of cancellous bone from the lumbar vertebrae (L5) in non-treated osteoporotic controls (n=21), mid-term alendronate-treated osteoporotic patients (n=6), and long-term alendronate-treated osteoporotic patients (n=7). The strength and toughness of single trabeculae were evaluated, while the structure was characterised through measurements of microdamage accumulation, mineralisation distribution, and histological indices. The alendronate-treated cases had a reduced eroded surface (ES/BS, p<0.001) and a higher bone mineralisation in comparison to non-treated controls (p=0.037), which is indicative of low turnover associated with treatment. However, the amount of microdamage and the mechanical properties were similar among the control and treatment groups. As the tissue mineral density (TMD) increased significantly with alendronate treatment compared to non-treated osteoporotic controls, the reduction in resorption cavities could counterbalance the higher TMD allowing the alendronate-treated bone to maintain its mechanical properties and resist microdamage accumulation. A multivariate analysis of the possible predictors supports the theory that multiple factors (e.g., body mass index, TMD, and ES/BS) can impact the mechanical properties. Our results suggest that long-term alendronate treatment shows no adverse impact on mechanical cancellous bone characteristics. PMID:25241965

  15. The Inhibitory Effects of Forsythia Koreana Extracts on the Metastatic Ability of Breast Cancer Cells and Bone Resorption by Osteoclasts

    PubMed Central

    Kim, Yu Li; Lee, Sun Kyoung; Park, Kwang-Kyun; Chung, Won-Yoon

    2016-01-01

    Background: Breast cancer is the most common malignant disease in women. The patients with advanced breast cancer develop metastasis to bone. Bone metastasis and skeletal-related events by breast cancer are frequently associated with the invasiveness of breast cancer cells and osteoclasts-mediated bone resorption. Forsythia koreana is used in oriental traditional medicine to treat asthma, atopy, and allergic diseases. The aim of this study was to evaluate the inhibitory effects of F. koreana extracts on the invasion of breast cancer cells and bone resorption by osteoclasts. Methods: Cell viability was measured by an MTT assay and the migration and invasion of MDA-MB-231 cells were detected by a Boyden chamber assay. The formation of osteoclasts and pit was detected using tartrate-resistant acid phosphatase staining and calcium phosphate-coated plates, respectively. The activities of matrix metalloproteinases (MMPs) and cathepsin K were evaluated by gelatin zymography and a cathepsin K detection kit. Results: The fruit and leaf extracts of F. koreana significantly inhibited the invasion of MDA-MB-231 cells at noncytotoxic concentrations. The fruit extract of F. koreana reduced the transforming growth factor β1-induced migration, invasion and MMPs activities of MDA-MB-231 cells. In addition, the fruit, branch, and leaf extracts of F. koreana also inhibited the receptor activator of nuclear factor kappa-B ligand-induced osteoclast formation and osteoclast-mediated bone-resorbing activity by reducing the activities of MMPs and cathepsin K. Conclusions: The extracts of F. koreana may possess the potential to inhibit the breast cancer-induced bone destruction through blocking invasion of breast cancer cells, osteoclastogenesis, and the activity of mature osteoclasts. PMID:27390737

  16. Tctex-1, a Novel Interaction Partner of Rab3D, Is Required for Osteoclastic Bone Resorption

    PubMed Central

    Pavlos, Nathan J.; Cheng, Tak Sum; Qin, An; Ng, Pei Ying; Feng, Hao-Tian; Ang, Estabelle S. M.; Carrello, Amerigo; Sung, Ching-Hwa; Jahn, Reinhard; Zheng, Ming-Hao; Xu, Jiake

    2011-01-01

    Vesicular transport along microtubules must be strictly regulated to sustain the unique structural and functional polarization of bone-resorbing osteoclasts. However, the molecular mechanisms bridging these vesicle-microtubule interactions remain largely obscure. Rab3D, a member of the Rab3 subfamily (Rab3A/B/C/D) of small exocytotic GTPases, represents a core component of the osteoclastic vesicle transport machinery. Here, we identify a new Rab3D-interacting partner, Tctex-1, a light chain of the cytoplasmic dynein microtubule motor complex, by a yeast two-hybrid screen. We demonstrate that Tctex-1 binds specifically to Rab3D in a GTP-dependent manner and co-occupies Rab3D-bearing vesicles in bone-resorbing osteoclasts. Furthermore, we provide evidence that Tctex-1 and Rab3D intimately associate with the dynein motor complex and microtubules in osteoclasts. Finally, targeted disruption of Tctex-1 by RNA interference significantly impairs bone resorption capacity and mislocalizes Rab3D vesicles in osteoclasts, attesting to the notion that components of the Rab3D-trafficking pathway contribute to the maintenance of osteoclastic resorptive function. PMID:21262767

  17. Mechanisms of TNF-α– and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis

    PubMed Central

    Ritchlin, Christopher T.; Haas-Smith, Sally A.; Li, Ping; Hicks, David G.; Schwarz, Edward M.

    2003-01-01

    Psoriatic arthritis (PsA) is an inflammatory joint disease characterized by extensive bone resorption. The mechanisms underlying this matrix loss have not been elucidated. We report here that blood samples from PsA patients, particularly those with bone erosions visible on plain radiographs, exhibit a marked increase in osteoclast precursors (OCPs) compared with those from healthy controls. Moreover, PsA PBMCs readily formed osteoclasts in vitro without exogenous receptor activator of NF-κB ligand (RANKL) or MCSF. Both osteoprotegerin (OPG) and anti-TNF antibodies inhibited osteoclast formation. Additionally, cultured PsA PBMCs spontaneously secreted higher levels of TNF-α than did healthy controls. In vivo, OCP frequency declined substantially in PsA patients following treatment with anti-TNF agents. Immunohistochemical analysis of subchondral bone and synovium revealed RANK-positive perivascular mononuclear cells and osteoclasts in PsA specimens. RANKL expression was dramatically upregulated in the synovial lining layer, while OPG immunostaining was restricted to the endothelium. These results suggest a model for understanding the pathogenesis of aggressive bone erosions in PsA. OCPs arise from TNF-α–activated PBMCs that migrate to the inflamed synovium and subchondral bone, where they are exposed to unopposed RANKL and TNF-α. This leads to osteoclastogenesis at the erosion front and in subchondral bone, resulting in a bidirectional assault on psoriatic bone. PMID:12639988

  18. Dynamic modeling of bone metastasis, microenvironment and therapy: Integrating parathyroid hormone (PTH) effect, anti-resorptive and anti-cancer therapy.

    PubMed

    Coelho, Rui Moura; Lemos, João Miranda; Alho, Irina; Valério, Duarte; Ferreira, Arlindo R; Costa, Luís; Vinga, Susana

    2016-02-21

    Bone is a common site for the development of metastasis, as its microenvironment provides the necessary conditions for the growth and proliferation of cancer cells. Several mathematical models to describe the bone remodeling process and how osteoclasts and osteoblasts coupled action ensures bone homeostasis have been proposed and further extended to include the effect of cancer cells. The model proposed here includes the influence of the parathyroid hormone (PTH) as capable of triggering and regulating the bone remodeling cycle. It also considers the secretion of PTH-related protein (PTHrP) by cancer cells, which stimulates the production of receptor activator of nuclear factor kappa-B ligand (RANKL) by osteoblasts that activates osteoclasts, increasing bone resorption and the subsequent release of growth factors entrapped in the bone matrix, which induce tumor growth, giving rise to a self-perpetuating cycle known as the vicious cycle of bone metastases. The model additionally describes how the presence of metastases contributes to the decoupling between bone resorption and formation. Moreover, the effects of anti-cancer and anti-resorptive treatments, through chemotherapy and the administration of bisphosphonates or denosumab, are also included, along with their corresponding pharmacokinetics (PK) and pharmacodynamics (PD). The simulated models, available at http://sels.tecnico.ulisboa.pt/software/, are able to describe bone remodeling cycles, the growth of bone metastases and how treatment can effectively reduce tumor burden on bone and prevent loss of bone strength. PMID:26657065

  19. Nanogel-crosslinked nanoparticles increase the inhibitory effects of W9 synthetic peptide on bone loss in a murine bone resorption model.

    PubMed

    Sato, Toshimi; Alles, Neil; Khan, Masud; Nagano, Kenichi; Takahashi, Mariko; Tamura, Yukihiko; Shimoda, Asako; Ohya, Keiichi; Akiyoshi, Kazunari; Aoki, Kazuhiro

    2015-01-01

    We investigated the biological activity of W9, a bone resorption inhibitor peptide, using NanoClik nanoparticles as an injectable carrier, where acryloyl group-modified cholesterol-bearing pullulan (CHPOA) nanogels were crosslinked by pentaerythritol tetra (mercaptoethyl) polyoxyethylene. Thirty 5-week-old male C57BL/6J mice were fed a low calcium diet and received once-daily subcutaneous injections of the carrier alone, W9 24 mg/kg/day alone, W9 24 mg/kg/day incorporated in cholesterol bearing pullulan (CHP) nanogels, or W9 (8 and 24 mg/kg/day) incorporated in NanoClik nanoparticles for 4 days (n=5). Mice that received a normal calcium diet with NanoClik nanoparticle injections without W9 were used as a control group. Radiological analyses showed that administration of W9 24 mg/kg/day significantly prevented low calcium-induced reduction of bone mineral density in the long bones and lumbar vertebrae, but only when the NanoClik nanoparticles were used as a carrier. Histomorphometric analyses of the proximal tibiae revealed that W9 24 mg/kg/day incorporated in NanoClik nanoparticles prevented the increase in bone resorption indices induced by a low calcium diet, which was confirmed by measurement of serum bone resorption markers. These data suggest that NanoClik nanoparticles could be a useful carrier for peptide therapeutics, and also demonstrate that daily subcutaneous injections of the W9 peptide with the nanoparticles were able to inhibit bone loss in vivo. An osteoclastogenesis inhibition assay performed in vitro confirmed a slower release profile of W9 from NanoClik nanoparticles compared with conventional CHP nanogels. PMID:25999711

  20. Commercial Honeybush (Cyclopia spp.) Tea Extract Inhibits Osteoclast Formation and Bone Resorption in RAW264.7 Murine Macrophages—An in vitro Study

    PubMed Central

    Visagie, Amcois; Kasonga, Abe; Deepak, Vishwa; Moosa, Shaakirah; Marais, Sumari; Kruger, Marlena C.; Coetzee, Magdalena

    2015-01-01

    Honeybush tea, a sweet tasting caffeine-free tea that is indigenous to South Africa, is rich in bioactive compounds that may have beneficial health effects. Bone remodeling is a physiological process that involves the synthesis of bone matrix by osteoblasts and resorption of bone by osteoclasts. When resorption exceeds formation, bone remodeling can be disrupted resulting in bone diseases such as osteoporosis. Osteoclasts are multinucleated cells derived from hematopoietic precursors of monocytic lineage. These precursors fuse and differentiate into mature osteoclasts in the presence of receptor activator of NF-kB ligand (RANKL), produced by osteoblasts. In this study, the in vitro effects of an aqueous extract of fermented honeybush tea were examined on osteoclast formation and bone resorption in RAW264.7 murine macrophages. We found that commercial honeybush tea extract inhibited osteoclast formation and TRAP activity which was accompanied by reduced bone resorption and disruption of characteristic cytoskeletal elements of mature osteoclasts without cytotoxicity. Furthermore, honeybush tea extract decreased expression of key osteoclast specific genes, matrix metalloproteinase-9 (MMP-9), tartrate resistant acid phosphatase (TRAP) and cathepsin K. This study demonstrates for the first time that honeybush tea may have potential anti-osteoclastogenic effects and therefore should be further explored for its beneficial effects on bone. PMID:26516894

  1. Inhibition of Osteocyte Apoptosis Prevents the Increase in Osteocytic Receptor Activator of Nuclear Factor κB Ligand (RANKL) but Does Not Stop Bone Resorption or the Loss of Bone Induced by Unloading*

    PubMed Central

    Plotkin, Lilian I.; Gortazar, Arancha R.; Davis, Hannah M.; Condon, Keith W.; Gabilondo, Hugo; Maycas, Marta; Allen, Matthew R.; Bellido, Teresita

    2015-01-01

    Apoptosis of osteocytes and osteoblasts precedes bone resorption and bone loss with reduced mechanical stimulation, and receptor activator of NF-κB ligand (RANKL) expression is increased with unloading in mice. Because osteocytes are major RANKL producers, we hypothesized that apoptotic osteocytes signal to neighboring osteocytes to increase RANKL expression, which, in turn, increases osteoclastogenesis and bone resorption. The traditional bisphosphonate (BP) alendronate (Aln) or IG9402, a BP analog that does not inhibit resorption, prevented the increase in osteocyte apoptosis and osteocytic RANKL expression. The BPs also inhibited osteoblast apoptosis but did not prevent the increase in osteoblastic RANKL. Unloaded mice exhibited high serum levels of the bone resorption marker C-telopeptide fragments of type I collagen (CTX), elevated osteoclastogenesis, and increased osteoclasts in bone. Aln, but not IG9402, prevented all of these effects. In addition, Aln prevented the reduction in spinal and femoral bone mineral density, spinal bone volume/tissue volume, trabecular thickness, mechanical strength, and material strength induced by unloading. Although IG9402 did not prevent the loss of bone mass, it partially prevented the loss of strength, suggesting a contribution of osteocyte viability to strength independent of bone mass. These results demonstrate that osteocyte apoptosis leads to increased osteocytic RANKL. However, blockade of these events is not sufficient to restrain osteoclast formation, inhibit resorption, or stop bone loss induced by skeletal unloading. PMID:26085098

  2. The collection of NFATc1-dependent transcripts in the osteoclast includes numerous genes non-essential to physiologic bone resorption

    PubMed Central

    Charles, Julia F.; Coury, Fabienne; Sulyanto, Rosalyn; Sitara, Despina; Wu, Jing; Brady, Nicholas; Tsang, Kelly; Sigrist, Kirsten; Tollefsen, Douglas M.; He, Li; Storm, Daniel; Aliprantis, Antonios O.

    2012-01-01

    Osteoclasts are specialized secretory cells of the myeloid lineage important for normal skeletal homeostasis as well as pathologic conditions of bone including osteoporosis, inflammatory arthritis and cancer metastasis. Differentiation of these multinucleated giant cells from precursors is controlled by the cytokine RANKL, which through its receptor RANK initiates a signaling cascade culminating in the activation of transcriptional regulators which induce the expression of the bone degradation machinery. The transcription factor nuclear factor of activated T-cells c1 (NFATc1) is the master regulator of this process and in its absence osteoclast differentiation is aborted both in vitro and in vivo. Differential mRNA expression analysis by microarray is used to identify genes of potential physiologic relevance across nearly all biologic systems. We compared the gene expression profile of murine wild-type and NFATc1-deficient osteoclast precursors stimulated with RANKL and identified that the majority of the known genes important for osteoclastic bone resorption require NFATc1 for induction. Here, five novel RANKL-induced, NFATc1-dependent transcripts in the osteoclast are described: Nhedc2, Rhoc, Serpind1, Adcy3 and Rab38. Despite reasonable hypotheses for the importance of these molecules in the bone resorption pathway and their dramatic induction during differentiation, the analysis of mice with mutations in these genes failed to reveal a function in osteoclast biology. Compared to littermate controls, none of these mutants demonstrated a skeletal phenotype in vivo or alterations in osteoclast differentiation or function in vitro. These data highlight the need for rigorous validation studies to complement expression profiling results before functional importance can be assigned to highly regulated genes in any biologic process. PMID:22985540

  3. Myristoleic acid inhibits osteoclast formation and bone resorption by suppressing the RANKL activation of Src and Pyk2.

    PubMed

    Kwon, Jun-Oh; Jin, Won Jong; Kim, Bongjun; Kim, Hong-Hee; Lee, Zang Hee

    2015-12-01

    Cytoskeletal changes in osteoclasts such as formation of actin ring is required for bone-resorbing activity. The tyrosine kinase Src is a key player in massive cytoskeletal change of osteoclasts, thereby in bone destruction. In order for Src to be activated, trafficking to the inner plasma membrane via myristoylation is of importance. A previous study reported that myristoleic acid derived from myristic acid, inhibited N-myristoyl-transferase, an essential enzyme for myristoylation process. This prompted us to investigate whether myristoleic acid could affect osteoclastogenesis. Indeed, we observed that myristoleic acid inhibited RANKL-induced osteoclast formation in vitro, especially, at later stages of differentiation. Myristoleic acid attenuated the tyrosine phosphorylation of c-Src and Pyk2, which associates with Src, by RANKL. When myristoleic acid was co-administered with soluble RANKL into mice, RANKL-induced bone loss was substantially prevented. Bone dissection clearly revealed that the number of multinucleated osteoclasts was significantly diminished by myristoleic acid. On the other hand, myristoleic acid treatment had little or no influence on early osteoclast differentiation markers, such as c-Fos and NFATc1, and proteins related to cytoskeletal rearrangement, including DC-STAMP, integrin αv and integrin β3 in vitro. Taken together, our data suggest that myristoleic acid is capable of blocking the formation of large multinucleated osteoclasts and bone resorption likely through suppressing activation of Src and Pyk2. PMID:26528796

  4. Bone resorption following weight loss surgery is associated with treatment procedure and changes in secreted Wnt antagonists.

    PubMed

    Hofsø, Dag; Bollerslev, Jens; Sandbu, Rune; Jørgensen, Anders; Godang, Kristin; Hjelmesæth, Jøran; Ueland, Thor

    2016-07-01

    To assess if altered bone turnover following bariatric surgery is related to metabolic consequences of the surgical procedure or weight loss. We evaluated serum markers reflecting bone turnover and metabolic pathways at baseline and after 1-year in a controlled non-randomized clinical trial comparing Roux-en-Y gastric bypass surgery (n = 74) with lifestyle intervention (n = 63) on obesity-related comorbidities. The decrease in body mass index (BMI) was larger in the surgery (-14.0 kg/m(2)) compared to lifestyle (-3.7 kg/m(2)). Markedly increased bone turnover was observed following surgery compared to lifestyle intervention and was correlated with change in BMI. Stepwise multivariable regression analysis revealed that group (β = 0.31, p < 0.01), and changes in BMI (β = -0.28, p < 0.01), dickkopf-1 (β = 0.20, p < 0.001) and sclerostin (β = 0.11, p < 0.05) were predictors of change in the bone resorption marker N-terminal telopeptide. Our data support that mechanisms related to the procedure itself and changes in secreted Wnt antagonists may contribute to increased bone turnover following bariatric surgery. PMID:26956843

  5. Short-Term Hypoxia Accelerates Bone Loss in Ovariectomized Rats by Suppressing Osteoblastogenesis but Enhancing Osteoclastogenesis.

    PubMed

    Wang, Guixin; Wang, Jia; Sun, Dawei; Xin, Jingyi; Wang, Liping; Huang, Dong; Wu, Weichi; Xian, Cory J

    2016-01-01

    BACKGROUND Although it has been reported that hypoxic exposure can attenuate hypertension, heart disease, diabetes, and some other diseases, effects of hypoxia on osteoporosis are still unknown. MATERIAL AND METHODS The current study investigated whether short-term hypoxic exposure (in comparison with normoxic conditions) affects bone metabolism in normal or ovariectomized (OVX) adult female rats in an vivo study. Micro-computed tomography bone volume/structural analyses, histological examination, and serum bone turnover biochemical assays were used. In addition, the expressions of some associated major regulatory molecules were measured in osteoblastic cultures. RESULTS While the 14-day hypoxic exposure did not change the bone-remodeling process in normal adult female rats, it decreased bone volume, osteoclast density, and serum bone formation marker (alkaline phosphatase) level, but increased osteoclast density and serum bone resorption marker (C-telopeptide of collagen) level in OVX rats. The bone marrow adipocyte number and serum fatty acid binding protein-4 level were increased in OVX-hypoxic rats compared with OVX-normoxic rats. Consistently, in human MG-63 osteoblastic cultures, the hypoxic condition suppressed protein expression of osteogenic transcriptional factors Runx2 and osterix, elevated protein expression of osteoclastogenic cytokine receptor activator of nuclear factor kappa-B ligand, but reduced that of osteoclastogenic inhibitor osteoprotegerin. CONCLUSIONS Our results suggest that, although no change occurred in the bone-remodeling process in normal adult female rats after hypoxic exposure, under the estrogen-deficient osteoporotic condition, the hypoxic condition can alter the bone microenvironment so that it may further impair osteoblastic differentiation and enhance osteoclastic formation, and thus reduce bone formation, enhance bone resorption, and accelerate bone loss. PMID:27550548

  6. Short-Term Hypoxia Accelerates Bone Loss in Ovariectomized Rats by Suppressing Osteoblastogenesis but Enhancing Osteoclastogenesis

    PubMed Central

    Wang, Guixin; Wang, Jia; Sun, Dawei; Xin, Jingyi; Wang, Liping; Huang, Dong; Wu, Weichi; Xian, Cory J.

    2016-01-01

    Background Although it has been reported that hypoxic exposure can attenuate hypertension, heart disease, diabetes, and some other diseases, effects of hypoxia on osteoporosis are still unknown. Material/Methods The current study investigated whether short-term hypoxic exposure (in comparison with normoxic conditions) affects bone metabolism in normal or ovariectomized (OVX) adult female rats in an vivo study. Micro-computed tomography bone volume/structural analyses, histological examination, and serum bone turnover biochemical assays were used. In addition, the expressions of some associated major regulatory molecules were measured in osteoblastic cultures. Results While the 14-day hypoxic exposure did not change the bone-remodeling process in normal adult female rats, it decreased bone volume, osteoclast density, and serum bone formation marker (alkaline phosphatase) level, but increased osteoclast density and serum bone resorption marker (C-telopeptide of collagen) level in OVX rats. The bone marrow adipocyte number and serum fatty acid binding protein-4 level were increased in OVX-hypoxic rats compared with OVX-normoxic rats. Consistently, in human MG-63 osteoblastic cultures, the hypoxic condition suppressed protein expression of osteogenic transcriptional factors Runx2 and osterix, elevated protein expression of osteoclastogenic cytokine receptor activator of nuclear factor kappa-B ligand, but reduced that of osteoclastogenic inhibitor osteoprotegerin. Conclusions Our results suggest that, although no change occurred in the bone-remodeling process in normal adult female rats after hypoxic exposure, under the estrogen-deficient osteoporotic condition, the hypoxic condition can alter the bone microenvironment so that it may further impair osteoblastic differentiation and enhance osteoclastic formation, and thus reduce bone formation, enhance bone resorption, and accelerate bone loss. PMID:27550548

  7. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (P<0.05). The ratio of dietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  8. Simple bone cyst. Treatment by trepanation and studies on bone resorptive factors in cyst fluid with a theory of its pathogenesis.

    PubMed

    Komiya, S; Minamitani, K; Sasaguri, Y; Hashimoto, S; Morimatsu, M; Inoue, A

    1993-02-01

    Simple bone cysts were treated by trepanation. The technique consists of drainage of cyst fluid, lavage of the cystic cavity with saline, and the making of multiple drilling holes through the cortical and the medullary bone of the cyst wall. Injection of corticosteroid was omitted. In 11 cases treated by this method, the clinical outcome was good. Biochemical analyses of the cyst fluid showed bone-resorptive factors, i.e., prostaglandins, interleukin 1, proteolytic enzymes. Electrophoretic analysis of proteolytic enzymes in polyacrylamide gel containing sodium dodecyl sulfate and polymerized gelatin showed proteins with molecular weights of about 130,000, 92,000, 72,000, and lower than 50,000. Increase in such bone-resorbing activities seems to be one of the causative factors in simple bone cysts. The technique was effective in decompressing the internal pressure of the cysts, improving the blood flow through the medullary bone of the cyst wall, stimulating the periosteum to induce bone formation, and eliminating bone destruction. PMID:8448944

  9. Does the cortical bone resorption rate change due to 90Sr-radiation exposure? Analysis of data from Techa Riverside residents

    SciTech Connect

    Tolstykh, E I; Shagina, N B; Degteva, M O; Anspaugh, L R; Napier, Bruce A

    2011-08-01

    The Mayak Production Association released large amounts of 90Sr into the Techa River (Southern Urals, Russia) with peak amounts in 1950-1951. Techa Riverside residents ingested an average of about 3,000 kBq of 90Sr. The 90Sr-body burden of approximately 15,000 individuals has been measured in the Urals Research Center for Radiation Medicine in 1974-1997 with use of a special whole-body counter (WBC). Strontium-90 had mainly deposited in the cortical part of the skeleton by 25 years following intake, and 90Sr elimination occurs as a result of cortical bone resorption. The effect of 90Sr-radiation exposure on the rate of cortical bone resorption was studied. Data on 2,022 WBC measurements were selected for 207 adult persons, who were measured three or more times before they were 50-55 years old. The individual-resorption rates were calculated with the rate of strontium recirculation evaluated as 0.0018 year-1. Individual absorbed doses in red bone marrow (RBM) and bone surface (BS) were also calculated. Statistically significant negative relationships of cortical bone resorption rate were discovered related to 90Sr-body burden and dose absorbed in the RBM or the BS. The response appears to have a threshold of about 1.5-Gy RBM dose. The radiation induced decrease in bone resorption rate may not be significant in terms of health. However, a decrease in bone remodeling rate can be among several causes of an increased level of degenerative dystrophic bone pathology in exposed persons.

  10. Does the cortical bone resorption rate change due to 90Sr-radiation exposure? Analysis of data from Techa Riverside residents.

    PubMed

    Tolstykh, Evgenia I; Shagina, Natalia B; Degteva, Marina O; Anspaugh, Lynn R; Napier, Bruce A

    2011-08-01

    The Mayak Production Association released large amounts of (90)Sr into the Techa River (Southern Urals, Russia) with peak amounts in 1950-1951. Techa Riverside residents ingested an average of about 3,000 kBq of (90)Sr. The (90)Sr-body burden of approximately 15,000 individuals has been measured in the Urals Research Center for Radiation Medicine in 1974-1997 with use of a special whole-body counter (WBC). Strontium-90 had mainly deposited in the cortical part of the skeleton by 25 years following intake, and (90)Sr elimination occurs as a result of cortical bone resorption. The effect of (90)Sr-radiation exposure on the rate of cortical bone resorption was studied. Data on 2,022 WBC measurements were selected for 207 adult persons, who were measured three or more times before they were 50-55 years old. The individual-resorption rates were calculated with the rate of strontium recirculation evaluated as 0.0018 year(-1). Individual absorbed doses in red bone marrow (RBM) and bone surface (BS) were also calculated. Statistically significant negative relationships of cortical bone resorption rate were discovered related to (90)Sr-body burden and dose absorbed in the RBM or the BS. The response appears to have a threshold of about 1.5-Gy RBM dose. The radiation-induced decrease in bone resorption rate may not be significant in terms of health. However, a decrease in bone remodeling rate can be among several causes of an increased level of degenerative dystrophic bone pathology in exposed persons. PMID:21523463

  11. Evidence for the role of connexin 43-mediated intercellular communication in the process of intracortical bone resorption via osteocytic osteolysis

    PubMed Central

    2014-01-01

    Background Connexin 43 (Cx43) is the predominant gap junction protein in bone. Mice with a bone-specific deletion of Cx43 (cKO) have an osteopenic cortical phenotype. In a recent study, we demonstrated that cKO mice are resistant to bone loss induced by hindlimb suspension (HLS), an animal model of skeletal unloading. This protective effect occurred primarily as a result of lower osteoclast-mediated bone resorption. Interestingly, we also documented a significant increase in cortical osteocyte apoptosis and reduced sclerostin production. In the present study, we investigated whether osteocytic osteolysis – bone resorption by osteocytes within lacunae – is induced by HLS and the potential effect of Cx43 deficiency on this process during unloading. Methods 6-month-old male Cx43 cKO or wild-type (WT) mice were subjected to three weeks of HLS (Suspended) or normal loading conditions (Control) (n = 5/group). Lacunar morphology and tartrate-resistant acid phosphatase (TRACP) staining were assessed on sections of femur cortical bone. Experimental groups were compared via two-way ANOVA. Results Empty lacunae were 26% larger in cKO-Control vs. WT-Control (p < 0.05), while there was no difference in the size of empty lacunae between Control and Suspended within WT or cKO (p > 0.05). Similarly, there was a trend (p = 0.06) for 11% larger lacunae containing viable osteocytes for cKO-Control vs. WT-Control, with no apparent effect of loading condition. There was no difference in the proportion of TRACP + cells between WT-Control and cKO-Control (p > 0.05); however, WT-Suspended mice had 246% more TRACP + osteocytes compared WT-Control mice (p < 0.05). There was no difference in TRACP staining between cKO-Control and cKO-Suspended (p > 0.05). Conclusions Prior to undergoing apoptosis, osteocytes in cKO mice may be actively resorbing their respective lacunae via the process of osteocytic osteolysis. Interestingly, the proportion of TRACP

  12. Osteocyte Apoptosis Caused by Hindlimb Unloading is Required to Trigger Osteocyte RANKL Production and Subsequent Resorption of Cortical and Trabecular Bone in Mice Femurs.

    PubMed

    Cabahug-Zuckerman, Pamela; Frikha-Benayed, Dorra; Majeska, Robert J; Tuthill, Alyssa; Yakar, Shoshana; Judex, Stefan; Schaffler, Mitchell B

    2016-07-01

    Osteocyte apoptosis is essential to activate bone remodeling in response to fatigue microdamage and estrogen withdrawal, such that apoptosis inhibition in vivo prevents the onset of osteoclastic resorption. Osteocyte apoptosis has also been spatially linked to bone resorption owing to disuse, but whether apoptosis plays a similar controlling role is unclear. We, therefore, 1) evaluated the spatial and temporal effects of disuse from hindlimb unloading (HLU) on osteocyte apoptosis, receptor activator of NF-κB ligand (RANKL) expression, bone resorption, and loss in mouse femora, and 2) tested whether osteocyte apoptosis was required to activate osteoclastic activity in cortical and trabecular bone by treating animals subjected to HLU with the pan-caspase apoptosis inhibitor, QVD (quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methylketone). Immunohistochemistry was used to identify apoptotic and RANKL-producing osteocytes in femoral diaphysis and distal trabecular bone, and µCT was used to determine the extent of trabecular bone loss owing to HLU. In both cortical and trabecular bone, 5 days of HLU increased osteocyte apoptosis significantly (3- and 4-fold, respectively, p < 0.05 versus Ctrl). At day 14, the apoptotic osteocyte number in femoral cortices declined to near control levels but remained elevated in trabeculae (3-fold versus Ctrl, p < 0.05). The number of osteocytes producing RANKL in both bone compartments was also significantly increased at day 5 of HLU (>1.5-fold versus Ctrl, p < 0.05) and further increased by day 14. Increases in osteocyte apoptosis and RANKL production preceded increases in bone resorption at both endocortical and trabecular surfaces. QVD completely inhibited not only the HLU-triggered increases in osteocyte apoptosis but also RANKL production and activation of bone resorption at both sites. Finally, µCT studies revealed that apoptosis inhibition completely prevented the trabecular bone loss caused by HLU. Together these

  13. Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone.

    PubMed

    Zacchetti, Giovanna; Dayer, Romain; Rizzoli, René; Ammann, Patrick

    2014-01-01

    Rapid bone defect filling with normal bone is a challenge in orthopaedics and dentistry. Strontium ranelate (SrRan) has been shown to in vitro decrease bone resorption and increase bone formation, and represents a potential agent with the capacity to accelerate bone defect filling. In this study, bone tibial defects of 2.5 mm in diameter were created in 6-month-old female rats orally fed SrRan (625 mg/kg/d; 5/7 days) or vehicle for 4, 8, or 12 weeks (10 rats per group per time point) from the time of surgery. Tibias were removed. Micro-architecture was determined by micro-computed tomography (µCT) and material level properties by nanoindentation analysis. µCT analysis showed that SrRan administration significantly improved microarchitecture of trabecular bone growing into the defect after 8 and 12 weeks of treatment compared to vehicle. SrRan treatment also accelerated the growth of cortical bone over the defect, but with different kinetics compared to trabecular bone, as the effects were already significant after 4 weeks. Nanoindentation analysis demonstrated that SrRan treatment significantly increased material level properties of both trabecular bone and cortical bone filling the defect compared to vehicle. SrRan accelerates the filling of bone defect by improving cortical and trabecular bone microarchitecture both quantitatively and qualitatively. PMID:25243150

  14. The effect of molecules in mother-of-pearl on the decrease in bone resorption through the inhibition of osteoclast cathepsin K.

    PubMed

    Duplat, Denis; Gallet, Marlène; Berland, Sophie; Marie, Arul; Dubost, Lionel; Rousseau, Marthe; Kamel, Saïd; Milet, Christian; Brazier, Michel; Lopez, Evelyne; Bédouet, Laurent

    2007-11-01

    This study evaluates the effect of the mother-of-pearl (nacre) organic matrix on mammalian osteoclast activity and on cathepsin K protease. Rabbit osteoclasts were cultured on bovine cortical bone slices in the presence of water-soluble molecules extracted from nacre of the pearl oyster Pinctada margaritifera. Osteoclast resorption activity was determined by quantification of the resorption surface area on bovine bone slices. Papain and cathepsin K, B and L inhibition tests were performed in the presence of the nacre water-soluble extracts. The active crude extract was fractionated by dialysis and reversed-phase high-performance liquid chromatography before electrospray mass spectrometry analysis of inhibitory fractions. The water-soluble molecules extracted from nacre decreased bone resorption without jeopardizing osteoclast survival. The hydrolytic activity of cysteine proteinases was reduced when the enzymes were incubated with the nacre water-soluble molecules. Trending towards characterization of the molecules involved, it appears that cathepsin K inhibitors remain in different nacre water-soluble organic matrix subfractions, composed of low molecular weight molecules. Mollusk shell nacre contains molecules capable of reducing osteoclast bone resorption activity by inhibiting cathepsin K, giving a new facet of the bioactivity of nacre as bone biomaterial. PMID:17686515

  15. Effects of prostaglandin F2 alpha on bone formation and resorption in cultured neonatal mouse calvariae: Role of prostaglandin E2 production

    SciTech Connect

    Raisz, L.G.; Alander, C.B.; Fall, P.M.; Simmons, H.A. )

    1990-02-01

    Although most studies show that prostaglandin E2 (PGE2) is the most potent and effective of the prostanoids in bone, recent data in cell culture suggest that PGF2 alpha may have unique effects, particularly on cell replication. The present study was undertaken to compare the effects of PGF2 alpha and PGE2 in cultured neonatal mouse parietal bones by simultaneous measurement of bone resorption as release of previously incorporated 45Ca, bone formation as incorporation of (3H)proline into collagenase-digestible (CDP) and noncollagen protein, and DNA synthesis as incorporation of (3H)thymidine. PGF2 alpha was less effective than PGE2 as a stimulator of bone resorption, and its effects were partially inhibited by indomethacin and markedly inhibited by glucocorticoids. In contrast, the resorptive response to PGE2 was unaffected by indomethacin and only partially inhibited by cortisol. PGF2 alpha had little effect on bone formation, in contrast to the biphasic effect of PGE2, which inhibited labeling of CDP in the absence of cortisol and stimulated CDP labeling in the presence of cortisol. PGF2 alpha increased thymidine incorporation into DNA, but the effect was smaller than that of PGE2 and was inhibited by indomethacin. These observations suggested that PGF2 alpha might act in part by stimulating PGE2 production. By RIA, PGE2 concentrations were increased in the medium of bones treated with PGF2 alpha, and this increase was blocked by indomethacin. By HPLC, bones prelabeled with (3H)arachidonic acid showed an increase in labeled PGE2 release, and RIA showed an increase in PGE2 after PGF2 alpha treatment. These results indicate that PGF2 alpha is a relatively weak agonist in bone compared to PGE2 and that some of the effects of PGF2 alpha on bone resorption, formation, and cell replication may be mediated by an increase in endogenous PGE2 production.

  16. Design, synthesis and SARs of novel salicylanilides as potent inhibitors of RANKL-induced osteoclastogenesis and bone resorption.

    PubMed

    Chen, Chun-Liang; Lee, Chia-Chung; Liu, Fei-Lan; Chen, Tsung-Chih; Ahmed Ali, Ahmed Atef; Chang, Deh-Ming; Huang, Hsu-Shan

    2016-07-19

    Inhibiting osteoclastogenesis is a promising therapeutic target for treating osteoclast-related diseases. Herein, we synthesized a series of modified salicylanilides and their corresponding 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione and 10-phenyldibenzo[b,f][1,4]oxazepin-11(10H)-one derivatives, and investigated the effects of such compounds on RANKL-induced osteoclast formation. Among them, a salicylanilide derivative (A04) and its 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivative (B04) markedly suppressed RANKL-induced osteoclast differentiation and showed no significant cytotoxic effects at doses higher than that required to inhibit osteoclast formation. Both compounds reduced osteoclast formation and bone resorptive activity of osteoclasts in a dose-dependent manner. Further, the anti-osteoclastogenic effects of A04 and B04 may operate through reducing the RANKL-induced nuclear translocation of NFATc1. Accordingly, we present the potent anti-osteoclastogenic compounds A04 and B04 as promising candidates for further optimization as anti-resorptive agents. PMID:27089213

  17. Loss of Protein Kinase C-δ Protects against LPS-Induced Osteolysis Owing to an Intrinsic Defect in Osteoclastic Bone Resorption

    PubMed Central

    Khor, Ee Cheng; Abel, Tamara; Tickner, Jennifer; Chim, Shek Man; Wang, Cathy; Cheng, Taksum; Ng, Benjamin; Ng, Pei Ying; Teguh, Dian Astari; Kenny, Jacob; Yang, Xiaohong; Chen, Honghui; Nakayama, Keiichi I.; Nakayama, Keiko; Pavlos, Nathan; Zheng, Ming H.; Xu, Jiake

    2013-01-01

    Bone remodeling is intrinsically regulated by cell signaling molecules. The Protein Kinase C (PKC) family of serine/threonine kinases is involved in multiple signaling pathways including cell proliferation, differentiation, apoptosis and osteoclast biology. However, the precise involvement of individual PKC isoforms in the regulation of osteoclast formation and bone homeostasis remains unclear. Here, we identify PKC-δ as the major PKC isoform expressed among all PKCs in osteoclasts; including classical PKCs (−α, −β and −γ), novel PKCs (−δ, −ε, −η and −θ) and atypical PKCs (−ι/λ and −ζ). Interestingly, pharmacological inhibition and genetic ablation of PKC-δ impairs osteoclastic bone resorption in vitro. Moreover, disruption of PKC-δ activity protects against LPS-induced osteolysis in mice, with osteoclasts accumulating on the bone surface failing to resorb bone. Treatment with the PKC-δ inhibitor Rottlerin, blocks LPS-induced bone resorption in mice. Consistently, PKC-δ deficient mice exhibit increased trabeculae bone containing residual cartilage matrix, indicative of an osteoclast-rich osteopetrosis phenotype. Cultured ex vivo osteoclasts derived from PKC-δ null mice exhibit decreased CTX-1 levels and MARKS phosphorylation, with enhanced formation rates. This is accompanied by elevated gene expression levels of cathepsin K and PKC −α, −γ and −ε, as well as altered signaling of pERK and pcSrc416/527 upon RANKL-induction, possibly to compensate for the defects in bone resorption. Collectively, our data indicate that PKC-δ is an intrinsic regulator of osteoclast formation and bone resorption and thus is a potential therapeutic target for pathological osteolysis. PMID:23951014

  18. Triptolide Inhibits Osteoclast Differentiation and Bone Resorption In Vitro via Enhancing the Production of IL-10 and TGF-β1 by Regulatory T Cells

    PubMed Central

    Xu, Huihui; Zhao, Hongyan; Wang, Gui; Huang, Jing; Guo, Minghui; Guo, Baosheng; Tan, Yong

    2016-01-01

    Triptolide, a purified component of Tripterygiumwilfordii Hook F, has been shown to have immunosuppressive and anti-inflammatory properties in rheumatoid arthritis (RA). Although triptolide has demonstrated that it could suppress bone destruction in collagen-induced mice, its therapeutic mechanism remains unclear. Many studies have investigated the effect of triptolide on Tregs and Tregs-related cytokine involved in RA. Additionally, previous studies have implied that Tregs inhibit osteoclast differentiation and bone resorption. Thus, in this study we aimed to explore the regulatory mechanism by which triptolide influences the Treg-mediated production of IL-10 and TGF-β1 to affect osteoclast differentiation and bone resorption. In cocultures system of Tregs and mouse bone marrow macrophages (BMMs), Tregs inhibited the differentiation of osteoclasts and reduced the resorbed areas significantly and the production of both IL-10 and TGF-β1 was upregulated. When the coculture systems were pretreated with triptolide, they produced higher levels of IL-10 and TGF-β1. Our data indicate that triptolide enhances the suppressive effects of Tregs on osteoclast differentiation and bone resorption by enhancing the secretion of IL-10 and TGF-β1. Tregs are most likely involved in the triptolide-mediated regulation of bone metabolism and may provide a potential therapeutic target for the treatment of inflammatory bone destruction. PMID:27413257

  19. Dietary Zinc Reduces Osteoclast Resorption Activities and Increases Markers of Osteoblast Differentiation, Matrix Maturation, and Mineralization in the Long Bones of Growing Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nutritional influence of zinc (Zn) on markers of bone extracellular matrix (ECM) resorption and mineralization was investigated in growing rats. Thirty male weanling rats were randomly assigned to consume AIN-93G based diets containing 2.5, 5, 7.5, 15, or 30 µg Zn/g diet for 24 d. Femur Zn incre...

  20. Prevention of Wear Particle-Induced Osteolysis by a Novel V-ATPase Inhibitor Saliphenylhalamide through Inhibition of Osteoclast Bone Resorption

    PubMed Central

    Lin, Zhen; Cao, Lei; Chim, Shek M.; Pavlos, Nathan J.; Xu, Jiake; Zheng, Ming Hao; Dai, Ke Rong

    2012-01-01

    Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening) is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis) by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis. PMID:22509274

  1. Can medio-lateral baseplate position and load sharing induce asymptomatic local bone resorption of the proximal tibia? A finite element study

    PubMed Central

    Innocenti, Bernardo; Truyens, Evelyn; Labey, Luc; Wong, Pius; Victor, Jan; Bellemans, Johan

    2009-01-01

    Background Asymptomatic local bone resorption of the tibia under the baseplate can occasionally be observed after total knee arthroplasty (TKA). Its occurrence is not well documented, and so far no explanation is available. We report the incidence of this finding in our practice, and investigate whether it can be attributed to specific mechanical factors. Methods The postoperative radiographs of 500 consecutive TKA patients were analyzed to determine the occurrence of local medial bone resorption under the baseplate. Based on these cases, a 3D FE model was developed. Cemented and cementless technique, seven positions of the baseplate and eleven load sharing conditions were considered. The average VonMises stress was evaluated in the bone-baseplate interface, and the medial and lateral periprosthetic region. Results Sixteen cases with local bone resorption were identified. In each, bone loss became apparent at 3 months post-op and did not increase after one year. None of these cases were symptomatic and infection screening was negative for all. The FE analysis demonstrated an influence of baseplate positioning, and also of load sharing, on stresses. The average stress in the medial periprosthetic region showed a non linear decrease when the prosthetic baseplate was shifted laterally. Shifting the component medially increased the stress on the medial periprosthetic region, but did not significantly unload the lateral side. The presence of a cement layer decreases the stresses. Conclusion Local bone resorption of the proximal tibia can occur after TKA and might be attributed to a stress shielding effect. This FE study shows that the medial periprosthetic region of the tibia is more sensitive than the lateral region to mediolateral positioning of the baseplate. Medial cortical support of the tibial baseplate is important for normal stress transfer to the underlying bone. The absence of medial cortical support of the tibial baseplate may lead to local bone resorption at

  2. Suppressive effects of Anoectochilus formosanus extract on osteoclast formation in vitro and bone resorption in vivo.

    PubMed

    Masuda, Kikuko; Ikeuchi, Mayumi; Koyama, Tomoyuki; Yamaguchi, Kohji; Woo, Je-Tae; Nishimura, Tomio; Yazawa, Kazunaga

    2008-01-01

    Anoectochilus formosanus, a plant native to Taiwan, is used as a folk medicine. It was found that oral administration of A. formosanus extract (AFE) (500 mg/kg) for 4 weeks suppressed bone weight loss and trabecular bone loss in ovariectomized mice, an experimental model of osteoporosis. Although AFE at 12.5 and 25 mug/ml inhibited osteoclast formation in co-culture of osteoblasts and bone marrow cells, AFE did not inhibit the formation of osteoclast progenitor cells and preosteoclast cells in bone marrow cells and RAW264 cells. However, AFE (at 12.5 and 25 microg/ml) decreased RANKL expression. These results suggested that AFE might suppress the bone loss caused by estrogen deficiency through suppression of RANKL expression required for osteoclast formation. PMID:18301967

  3. Nicotine Affects Bone Resorption and Suppresses the Expression of Cathepsin K, MMP-9 and Vacuolar-Type H+-ATPase d2 and Actin Organization in Osteoclasts

    PubMed Central

    Tanaka, Hideki; Tanabe, Natsuko; Kawato, Takayuki; Nakai, Kumiko; Kariya, Taro; Matsumoto, Sakurako; Zhao, Ning; Motohashi, Masafumi; Maeno, Masao

    2013-01-01

    Tobacco smoking is an important risk factor for the development of several cancers, osteoporosis, and inflammatory diseases such as periodontitis. Nicotine is one of the major components of tobacco. In previous study, we showed that nicotine inhibits mineralized nodule formation by osteoblasts, and the culture medium from osteoblasts containing nicotine and lipopolysaccharide increases osteoclast differentiation. However, the direct effect of nicotine on the differentiation and function of osteoclasts is poorly understood. Thus, we examined the direct effects of nicotine on the expression of nicotine receptors and bone resorption-related enzymes, mineral resorption, actin organization, and bone resorption using RAW264.7 cells and bone marrow cells as osteoclast precursors. Cells were cultured with 10−5, 10−4, or 10−3 M nicotine and/or 50 µM α-bungarotoxin (btx), an 7 nicotine receptor antagonist, in differentiation medium containing the soluble RANKL for up 7 days. 1–5, 7, 9, and 10 nicotine receptors were expressed on RAW264.7 cells. The expression of 7 nicotine receptor was increased by the addition of nicotine. Nicotine suppressed the number of tartrate-resistant acid phosphatase positive multinuclear osteoclasts with large nuclei(≥10 nuclei), and decreased the planar area of each cell. Nicotine decreased expression of cathepsin K, MMP-9, and V-ATPase d2. Btx inhibited nicotine effects. Nicotine increased CA II expression although decreased the expression of V-ATPase d2 and the distribution of F-actin. Nicotine suppressed the planar area of resorption pit by osteoclasts, but did not affect mineral resorption. These results suggest that nicotine increased the number of osteoclasts with small nuclei, but suppressed the number of osteoclasts with large nuclei. Moreover, nicotine reduced the planar area of resorption pit by suppressing the number of osteoclasts with large nuclei, V-ATPase d2, cathepsin K and MMP-9 expression and actin organization. PMID

  4. 1α,25-Dihydroxyvitamin D3 inhibits the differentiation and bone resorption by osteoclasts generated from Wistar rat bone marrow-derived macrophages

    PubMed Central

    WANG, DONG; GU, JIAN-HONG; CHEN, YANG; ZHAO, HONG-YAN; LIU, WEI; SONG, RUI-LONG; BIAN, JIAN-CHUN; LIU, XUE-ZHONG; YUAN, YAN; LIU, ZONG-PING

    2015-01-01

    The steroid hormone 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3] plays an important role in maintaining a balance in calcium and bone metabolism. To study the effects of 1α,25-(OH)2D3 on osteoclast (OC) formation and bone resorption, OC differentiation was induced in bone marrow-derived mononuclear cells from Wistar rats with the addition of macrophage colony stimulating factor and receptor activator for nuclear factor-κB ligand in vitro. Cells were then treated with 1α,25-(OH)2D3 at 10−9, 10−8 or 10−7 mol/l. OCs were identified using tartrate-resistant acid phosphatase staining and activity was monitored in the absorption lacunae by scanning electron microscopy. Expression levels of functional proteins associated with bone absorption, namely carbonic anhydrase II, cathepsin K and matrix metalloproteinase-9 were evaluated by western blot analysis. The results showed that 1α,25-(OH)2D3 inhibited the formation and activation of OCs in a dose-dependent manner and downregulated the expression levels of bone absorption-associated proteins. PMID:26622436

  5. Correlation between Density and Resorption of Fresh-Frozen and Autogenous Bone Grafts

    PubMed Central

    Manfredi, Edoardo; Consolo, Ugo; Marchetti, Claudio; Bonanini, Mauro; Salgarelli, Attilio; Macaluso, Guido M.

    2014-01-01

    Trial Design. This analysis compared the outcome of fresh-frozen versus autologous bone block grafts for horizontal ridge augmentation in patients with Cawood and Howell class IV atrophies. Methods. Seventeen patients received autologous grafts and 21 patients received fresh-frozen bone grafts. Patients underwent CT scans 1 week and 6 months after surgery for graft volume and density analysis. Results. Two autologous and 3 fresh-frozen grafts failed. Autologous and fresh-frozen grafts lost, respectively, 28% and 46% of their initial volume (P = 0.028). It is noteworthy that less dense fresh-frozen blocks lost more volume than denser grafts (61% versus 16%). Conclusions. According to these 6-month results, only denser fresh-frozen bone graft may be an acceptable alternative to autologous bone for horizontal ridge augmentation. Further studies are needed to investigate its behaviour at longer time points. PMID:25050354

  6. High-Frequency Acceleration: Therapeutic Tool to Preserve Bone following Tooth Extractions.

    PubMed

    Alikhani, M; Lopez, J A; Alabdullah, H; Vongthongleur, T; Sangsuwon, C; Alikhani, M; Alansari, S; Oliveira, S M; Nervina, J M; Teixeira, C C

    2016-03-01

    A common problem in clinical dentistry is the significant and rapid bone loss that occurs after tooth extraction. Currently there is no solution for the long-term preservation of alveolar bone. Previously, we showed that high-frequency acceleration (HFA) has an osteogenic effect on healthy alveolar bone. However, it is not known if HFA can preserve alveolar bone after extraction without negatively affecting wound healing. The purpose of this study was to evaluate the effect of HFA on alveolar bone loss and the rate of bone formation after tooth extraction. Eighty-five adult Sprague-Dawley rats were divided into 3 groups: control, static (static load), and HFA. In all groups, the maxillary right third molar was extracted. The HFA group received HFA for 5 min/d, applied through the second molar. The static group received the same magnitude of static load. The control group did not receive any stimulation. Some animals received fluorescent dyes at 26 and 54 d. Samples were collected on days 0, 7, 14, 28, and 56 for fluorescence microscopy, micro-computed tomography, histology, RNA, and protein analyses. We found that HFA increased bone volume in the extraction site and surrounding alveolar bone by 44% when compared with static, while fully preserving alveolar bone height and width long-term. These effects were accompanied by increased expression of osteogenic markers and intramembranous bone formation and by decreased expression of osteoclastic markers and bone resorption activity, as well as decreased expression of many inflammatory markers. HFA is a noninvasive safe treatment that can be used to prevent alveolar bone loss and/or accelerate bone healing after tooth extraction. PMID:26672126

  7. CX3CR1hi Monocyte/Macrophages Support Bacterial Survival and Experimental Infection-Driven Bone Resorption.

    PubMed

    Steinmetz, Orit; Hoch, Shifra; Avniel-Polak, Shani; Gavish, Keren; Eli-Berchoer, Luba; Wilensky, Asaf; Nussbaum, Gabriel

    2016-05-01

    Porphyromonas gingivalis,an anaerobic bacterium strongly linked to infection-driven inflammatory bone erosion, thrives within a highly inflamed milieu and disseminates to distant sites, such as atherosclerotic plaque. We examined the role of monocyte/macrophages in determining the outcome of infection with P. gingivalis. Surprisingly, transient monocyte/macrophage depletion led to greatly improved clearance of P. gingivalis. The chemokine receptors CCR2 and CX3CR1 play a major role in monocyte recruitment and differentiation to Ly6C(hi) vs CX3CR1(hi) subsets, respectively. To determine the contribution of particular monocyte/macrophage subsets to bacterial survival, we challenged chemokine receptor knockout mice and found that P. gingivalis clearance is significantly improved in the absence of CX3CR1. CX3CR1(hi) monocyte/macrophages promote P. gingivalis survival by downregulating neutrophil phagocytosis. Furthermore, CX3CR1 knockout mice resist bone resorption in the oral cavity following challenge with P. gingivalis Our findings provide an explanation for bacterial coexistence alongside an activate neutrophil infiltrate. PMID:26704610

  8. Rhinacanthin C Inhibits Osteoclast Differentiation and Bone Resorption: Roles of TRAF6/TAK1/MAPKs/NF-κB/NFATc1 Signaling

    PubMed Central

    Tomomura, Mineko; Suzuki, Ryuichiro; Shirataki, Yoshiaki; Sakagami, Hiroshi; Tamura, Nobuaki; Tomomura, Akito

    2015-01-01

    Rhinacanthin C is a naphthoquinone ester with anti-inflammatory activity, found in Rhinacanthus nasutus (L) Kurz (Acanthaceae). We found that rhinacanthin C inhibited osteoclast differentiation stimulated by the receptor activator of nuclear factor-κB ligand (RANKL) in mouse bone marrow macrophage cultures, although the precise molecular mechanisms underlying this phenomenon are unclear. In this study, we investigated the inhibitory mechanisms of rhinacanthin C in osteoclastogenesis. Rhinacanthin C suppressed RANKL-induced nuclear factor of activated T cells c1 (NFATc1) expression. Phosphorylation of ERK, JNK, and NF-κB, but not p38, was inhibited by rhinacanthin C, which also inhibited RANKL-stimulated TRAF6-TAK1 complex formation. Thus, the anti-osteoclastogenic effect of rhinacanthin C is mediated by a cascade of inhibition of RANKL-induced TRAF6-TAK1 association followed by activation of MAPKs/NF-κB; this leads to suppression of c-Fos and NFATc1, which regulate transcription of genes associated with osteoclast differentiation. In vivo, rhinacanthin C also reduced RANKL-induced osteoclast formation and bone resorption in mouse calvaria. Rhinacanthin C also suppressed LPS-stimulated osteoclastogenesis and bone resorption in vitro and in vivo. Rhinacanthin C may provide a novel therapy for abnormal bone lysis that occurs during inflammatory bone resorption. PMID:26083531

  9. Inhibitory activity of the ethyl acetate fraction from Viscum coloratum on bone resorption.

    PubMed

    Yin, Jun; Han, Na; Xu, Xinyang; Liu, Zhihui; Zhang, Baoyan; Kadota, Shigetoshi

    2008-02-01

    The effects of four fractions, a hexane fraction, an ethyl acetate fraction, an N-butanol fraction and a water fraction, from a water extract of Herba Visci were investigated to find the fraction, in IN VITRO experiments, with the greatest ability to inhibit the formation of osteoclast-like multinucleated cells from mouse bone marrow cells and also to inhibit (45)Ca release from a mouse parietal bone organ culture system. The ethyl acetate fraction was able to inhibit the formation of osteoclast-like cells in a dose-dependent manner and was also able to potently inhibit the release of (45)Ca even at a low concentration. Therefore, a further IN VIVO experiment was performed to determine if the ethyl acetate fraction had antiosteoporotic activity. It was found to inhibit the decreases in total and cancellous bone mineral density, in cancellous and cortical bone mineral content as well as in cortical bone thickness and in the X-axis strength index of tibiae of ovariectomized rats. The principle constituents of the ethyl acetate fraction were determined to be (+)-syringaresinol O- beta-glucopyranoside, 2-homoeriodictyol 7- O-glucoside and viscumneoside I by HPLC analysis. PMID:18247260

  10. Inhibition of Osteoclast Differentiation and Bone Resorption by Bisphosphonate-conjugated Gold Nanoparticles

    PubMed Central

    Lee, Donghyun; Heo, Dong Nyoung; Kim, Han-Jun; Ko, Wan-Kyu; Lee, Sang Jin; Heo, Min; Bang, Jae Beum; Lee, Jung Bok; Hwang, Deok-Sang; Do, Sun Hee; Kwon, Il Keun

    2016-01-01

    In recent years, gold nanoparticles (GNPs) have been reported to affect the regeneration of bone tissue. The goal of this study was to improve bone tissue regeneration by using targeted GNPs. We fabricated a functionalized GNPs conjugated with alendronate (ALD), of the bisphosphonate group. Subsequently, the ALD, GNPs, and ALD conjugated GNPs (GNPs-ALD) were analyzed by ultraviolet-visible absorbance (UV-vis) spectrophotometer, Attenuated total reflectance Fourier transform infrared spectrometer (ATR-FTIR), and thermo gravimetric analysis (TGA). The prepared GNPs-ALD were used to investigate their inhibitory effects on the receptor activator of nuclear factor- κb ligand (RANKL)-induced osteoclastogenesis in bone marrow-derived macrophages (BMMs). Additionally, the GNPs-ALD were applied to ovariectomy (OVX)-induced osteoporotic mice and the experiments were evaluated. ALD was found to be successfully conjugated to the GNPs surface, and it displayed significant adhesion onto the bone surface. The in-vitro study indicated that the GNPs, ALD and GNPs-ALD suppressed osteoclast formation in a dose-dependent manner. Furthermore, in the OVX mouse model, the mice treated GNPs-ALD had higher bone density as compared to other OVX mice groups. The results from these tests indicated that GNPs-ALD can be useful agents for preventing and treating osteoporosis. PMID:27251863

  11. Methanol Extract of Euchelus asper Prevents Bone Resorption in Ovariectomised Mice Model

    PubMed Central

    Balakrishnan, Babita; Chiplunkar, Shubhada Vivek; Indap, Madhavi Manohar

    2014-01-01

    Marine molluscs are widely distributed throughout the world and many bioactive compounds exhibiting antiviral, antitumor, antileukemic, and antibacterial activity have been reported worldwide. The present study was designed to investigate the beneficial effect of methanol extract of Euchelus asper (EAME) on estrogen deficiency induced osteoporosis in ovariectomised mice model. Forty-two female Swiss albino mice were randomly assigned into Sham operated (Sham) group and six ovariectomised (OVX) subgroups such as OVX with vehicle (OVX); OVX with estradiol (2 mg/kg/day); OVX with EAME of graded doses (25, 50, 100, and 200 mg/kg/day). Bone turnover markers like serum alkaline phosphatase (ALP), serum acid phosphatase (ACP), serum calcium, and histological investigations of tibia and uterus were analysed. Metaphyseal DNA content of the femur bone was also studied. Antiosteoclastogenic activity of EAME was examined. Administration of EAME was able to reduce the increased bone turnover markers in the ovariectomised mice. Histomorphometric analysis revealed an increase in bone trabeculation and restoration of trabecular separation by EAME treatment. Metaphyseal DNA content of the femur of the OVX mice was increased by EAME administration. EAME also showed a potent antiosteoclastogenic behaviour. Thus, the present study reveals that EAME was able to successfully reduce the estrogen deficiency induced bone loss. PMID:24995144

  12. Inhibition of Osteoclast Differentiation and Bone Resorption by Bisphosphonate-conjugated Gold Nanoparticles.

    PubMed

    Lee, Donghyun; Heo, Dong Nyoung; Kim, Han-Jun; Ko, Wan-Kyu; Lee, Sang Jin; Heo, Min; Bang, Jae Beum; Lee, Jung Bok; Hwang, Deok-Sang; Do, Sun Hee; Kwon, Il Keun

    2016-01-01

    In recent years, gold nanoparticles (GNPs) have been reported to affect the regeneration of bone tissue. The goal of this study was to improve bone tissue regeneration by using targeted GNPs. We fabricated a functionalized GNPs conjugated with alendronate (ALD), of the bisphosphonate group. Subsequently, the ALD, GNPs, and ALD conjugated GNPs (GNPs-ALD) were analyzed by ultraviolet-visible absorbance (UV-vis) spectrophotometer, Attenuated total reflectance Fourier transform infrared spectrometer (ATR-FTIR), and thermo gravimetric analysis (TGA). The prepared GNPs-ALD were used to investigate their inhibitory effects on the receptor activator of nuclear factor- κb ligand (RANKL)-induced osteoclastogenesis in bone marrow-derived macrophages (BMMs). Additionally, the GNPs-ALD were applied to ovariectomy (OVX)-induced osteoporotic mice and the experiments were evaluated. ALD was found to be successfully conjugated to the GNPs surface, and it displayed significant adhesion onto the bone surface. The in-vitro study indicated that the GNPs, ALD and GNPs-ALD suppressed osteoclast formation in a dose-dependent manner. Furthermore, in the OVX mouse model, the mice treated GNPs-ALD had higher bone density as compared to other OVX mice groups. The results from these tests indicated that GNPs-ALD can be useful agents for preventing and treating osteoporosis. PMID:27251863

  13. Microcracks and osteoclast resorption activity in vitro.

    PubMed

    Rumpler, Monika; Würger, Tanja; Roschger, Paul; Zwettler, Elisabeth; Peterlik, Herwig; Fratzl, Peter; Klaushofer, Klaus

    2012-03-01

    During bone remodeling osteoclasts resorb bone, thus removing material, e.g., damaged by microcracks, which arises as a result of physiological loading and could reduce bone strength. Such a process needs targeted bone resorption exactly at damaged sites. Osteocytic signaling plays a key role in this process, but it is not excluded that osteoclasts per se may possess toposensitivity to recognize and resorb damaged bone since it has been shown that resorption spaces are associated with microcracks. To address this question, we used an in vitro setup of a pure osteoclast culture and mineralized substrates with artificially introduced microcracks and microscratches. Histomorphometric analyses and statistical evaluation clearly showed that these defects had no effect on osteoclast resorption behavior. Osteoclasts did not resorb along microcracks, even when resorption started right beside these damages. Furthermore, quantification of resorption on three different mineralized substrates, cortical bone, bleached bone (bone after partial removal of the organic matrix), and dentin, revealed lowest resorption on bone, significantly higher resorption on bleached bone, and highest resorption on dentin. The difference between native and bleached bone may be interpreted as an inhibitory impact of the organic matrix. However, the collagen-based matrix could not be the responsible part as resorption was highest on dentin, which contains collagen. It seems that osteocytic proteins, stored in bone but not present in dentin, affect osteoclastic action. This demonstrates that osteoclasts per se do not possess a toposensitivity to remove microcracks but may be influenced by components of the organic bone matrix. PMID:22271249

  14. Cyclophilin A (CypA) Plays Dual Roles in Regulation of Bone Anabolism and Resorption

    PubMed Central

    Guo, Mian; James, Aaron W.; Kwak, Jin Hee; Shen, Jia; Yokoyama, Kazunari K.; Ting, Kang; Soo, Chia B.; Chiu, Robert H.

    2016-01-01

    CypA (Cyclophilin A) is a peptidyl-prolyl isomerase previously shown to be required for chondrogenic differentiation and endochondral ossification. However, the effects of CypA on osteoclast activity and bone maintenance are entirely unknown. Here, we show that Ppia−/− mice demonstrate low bone mineral density, reduced osteoblast numbers, and increased osteoclast numbers. When isolated from the calvaria, Ppia−/− osteoblasts demonstrate decreased osteogenic differentiation, whereas Ppia−/− osteoclasts derived from the long bones showed increased osteoclastic activity. Overexpression and gene silencing of CypA verified osteogenic and anti-osteoclastic effects. In osteoblasts, CypA is necessary for BMP-2 (Bone Morphogenetic Protein-2)-induced Smad phosphorylation. In osteoclasts, loss of CypA activates BtK (Bruton’s tyrosine kinase) and subsequently integrates with TRAF6 (TNF receptor-associated factor 6) and/or c-fos signaling to induce NFATc1 (nuclear factors of activated T cells, cytoplasmic 1). Collectively, CypA dually exerts pro-osteogenic and anti-osteoclastic effects. Thus, modulation of CypA may be useful in future efforts targeting osteoporosis. PMID:26932182

  15. Cyclophilin A (CypA) Plays Dual Roles in Regulation of Bone Anabolism and Resorption.

    PubMed

    Guo, Mian; James, Aaron W; Kwak, Jin Hee; Shen, Jia; Yokoyama, Kazunari K; Ting, Kang; Soo, Chia B; Chiu, Robert H

    2016-01-01

    CypA (Cyclophilin A) is a peptidyl-prolyl isomerase previously shown to be required for chondrogenic differentiation and endochondral ossification. However, the effects of CypA on osteoclast activity and bone maintenance are entirely unknown. Here, we show that Ppia(-/-) mice demonstrate low bone mineral density, reduced osteoblast numbers, and increased osteoclast numbers. When isolated from the calvaria, Ppia(-/-) osteoblasts demonstrate decreased osteogenic differentiation, whereas Ppia(-/-) osteoclasts derived from the long bones showed increased osteoclastic activity. Overexpression and gene silencing of CypA verified osteogenic and anti-osteoclastic effects. In osteoblasts, CypA is necessary for BMP-2 (Bone Morphogenetic Protein-2)-induced Smad phosphorylation. In osteoclasts, loss of CypA activates BtK (Bruton's tyrosine kinase) and subsequently integrates with TRAF6 (TNF receptor-associated factor 6) and/or c-fos signaling to induce NFATc1 (nuclear factors of activated T cells, cytoplasmic 1). Collectively, CypA dually exerts pro-osteogenic and anti-osteoclastic effects. Thus, modulation of CypA may be useful in future efforts targeting osteoporosis. PMID:26932182

  16. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP.

    PubMed

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1(-/-) mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1(-/-) mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP. PMID:27388773

  17. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP

    PubMed Central

    Takahashi, Naoki; Matsuda, Yumi; Sato, Keisuke; de Jong, Petrus R.; Bertin, Samuel; Tabeta, Koichi; Yamazaki, Kazuhisa

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is abundantly expressed in peripheral sensory neurons where it acts as an important polymodal cellular sensor for heat, acidic pH, capsaicin, and other noxious stimuli. The oral cavity is densely innervated by afferent sensory neurons and is a highly specialized organ that protects against infections as well as physical, chemical, and thermal stresses in its capacity as the first part of the digestive system. While the function of TRPV1 in sensory neurons has been intensively studied in other organs, its physiological role in periodontal tissues is unclear. In this study we found that Trpv1−/− mice developed severe bone loss in an experimental model of periodontitis. Chemical ablation of TRPV1-expressing sensory neurons recapitulated the phenotype of Trpv1−/− mice, suggesting a functional link between neuronal TRPV1 signaling and periodontal bone loss. TRPV1 activation in gingival nerves induced production of the neuropeptide, calcitonin gene-related peptide (CGRP), and CGRP treatment inhibited osteoclastogenesis in vitro. Oral administration of the TRPV1 agonist, capsaicin, suppressed ligature-induced bone loss in mice with fewer tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone. These results suggest that neuronal TRPV1 signaling in periodontal tissue is crucial for the regulation of osteoclastogenesis via the neuropeptide CGRP. PMID:27388773

  18. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways.

    PubMed

    Nie, Shaobo; Xu, Jiawei; Zhang, Chenghua; Xu, Chen; Liu, Ming; Yu, Degang

    2016-01-29

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retarded IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. PMID:26740180

  19. Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis

    PubMed Central

    Cortes, A; Maksymowych, W P; Wordsworth, B P; Inman, R D; Danoy, P; Rahman, P; Stone, M A; Corr, M; Gensler, Lianne S; Gladman, D; Morgan, A; Marzo-Ortega, H; Ward, M M; Learch, T J; Reveille, J D; Brown, M A; Weisman, M H

    2014-01-01

    Objective To identify genetic associations with severity of radiographic damage in ankylosing spondylitis (AS). Method We studied 1537 AS cases of European descent; all fulfilled the modified New York Criteria. Radiographic severity was assessed from digitised lateral radiographs of the cervical and lumbar spine using the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). A two-phase genotyping design was used. In phase 1, 498 single nucleotide polymorphisms (SNPs) were genotyped in 688 cases; these were selected to capture >90% of the common haplotypic variation in the exons, exon–intron boundaries, and 5 kb flanking DNA in the 5′ and 3′ UTR of 74 genes involved in anabolic or catabolic bone pathways. In phase 2, 15 SNPs exhibiting p<0.05 were genotyped in a further cohort of 830 AS cases; results were analysed both separately and in combination with the discovery phase data. Association was tested by contingency tables after separating the samples into ‘mild’ and ‘severe’ groups, defined as the bottom and top 40% by mSASSS, adjusted for gender and disease duration. Results Experiment-wise association was observed with the SNP rs8092336 (combined OR 0.32, p=1.2×10−5), which lies within RANK (receptor activator of NFκB), a gene involved in osteoclastogenesis, and in the interaction between T cells and dendritic cells. Association was also found with the SNP rs1236913 in PTGS1 (prostaglandin-endoperoxide synthase 1, cyclooxygenase 1), giving an OR of 0.53 (p=2.6×10−3). There was no observed association between radiographic severity and HLA-B*27. Conclusions These findings support roles for bone resorption and prostaglandins pathways in the osteoproliferative changes in AS. PMID:24651623

  20. Effect of microgravity and mechanical stimulation on the in vitro mineralization and resorption of fetal mouse long bones (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Veldhuijzen, J. Paul

    1992-01-01

    Mechanical forces play an important role in the differentiation, growth, and remodeling of skeletal tissues. An increase in the normal loading pattern of the skeleton leads to an increase in bone mass. An overall decrease in the functional load exerted on the skeleton produces mineral loss and osteoporosis. However, the responses of the skeletal tissue cells to various loading conditions are still largely unresolved, as is the mechanism of the cellular response to changed mechanical environment. Using an in vitro approach, we hope to avoid some problems encountered in the use of in vivo animal and man models, which have been extensively used in the past. In a number of experiments we have demonstrated that 16 and 17 day old fetal mouse long bone rudiments (metatarsalia), cultured in a liquid culture medium, are very suitable to study mineralization and resorption, respectively. We have also demonstrated that under hydrostatic compression, mineralization is increased while resorption is decreased. Culture of long bone rudiments under noncompressed control conditions can be regarded as a situation of partial unloading, showing some phenomena of a disuse situation. Under microgravity conditions, responses of osteoblasts and chondrocytes (involved in mineralization) and osteoclasts (involved in mineral resorption), to culture with and without compression, may be much more outspoken. This will have advantages for the study and the interpretation of the role of cellular events in the process of mineralization and resorption of developing skeletal tissues under various loading conditions. The BONES Experiment is carried out in four type I/O and four type I/E containers. Various aspects of the investigation are discussed.

  1. Obesity induced by high dietary fat leads to increased bone resorption marker, TRAP, and decreased bone mass in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity, which is growing in prevalence, is a risk factor for such chronic health disorders as diabetes and cardiovascular diseases. However, it is thought to be a protective factor for osteoporosis and bone fractures in humans. Accumulating data in humans suggest that fat mass has a negative effect...

  2. Accelerated Bone Repair After Plasma Laser Corticotomies

    PubMed Central

    Leucht, Philipp; Lam, Kentson; Kim, Jae-Beom; Mackanos, Mark A.; Simanovskii, Dmitrii M.; Longaker, Michael T.; Contag, Christopher H.; Schwettman, H Alan; Helms, Jill A.

    2007-01-01

    Objective: To reveal, on a cellular and molecular level, how skeletal regeneration of a corticotomy is enhanced when using laser-plasma mediated ablation compared with conventional mechanical tissue removal. Summary Background Data: Osteotomies are well-known for their most detrimental side effect: thermal damage. This thermal and mechanical trauma to adjacent bone tissue can result in the untoward consequences of cell death and eventually in a delay in healing. Methods: Murine tibial corticotomies were performed using a conventional saw and a Ti:Sapphire plasma-generated laser that removes tissue with minimal thermal damage. Our analyses began 24 hours after injury and proceeded to postsurgical day 6. We investigated aspects of wound repair ranging from vascularization, inflammation, cell proliferation, differentiation, and bone remodeling. Results: Histology of mouse corticotomy sites uncovered a significant difference in the onset of bone healing; whereas laser corticotomies showed abundant bone matrix deposition at postsurgical day 6, saw corticotomies only exhibited undifferentiated tissue. Our analyses uncovered that cutting bone with a saw caused denaturation of the collagen matrix due to thermal effects. This denatured collagen represented an unfavorable scaffold for subsequent osteoblast attachment, which in turn impeded deposition of a new bony matrix. The matrix degradation induced a prolonged inflammatory reaction at the cut edge to create a surface favorable for osteochondroprogenitor cell attachment. Laser corticotomies were absent of collagen denaturation, therefore osteochondroprogenitor cell attachment was enabled shortly after surgery. Conclusion: In summary, these data demonstrate that corticotomies performed with Ti:Sapphire lasers are associated with a reduced initial inflammatory response at the injury site leading to accelerated osteochondroprogenitor cell migration, attachment, differentiation, and eventually matrix deposition. PMID:17592303

  3. Bortezomib Inhibits Giant Cell Tumor of Bone through Induction of Cell Apoptosis and Inhibition of Osteoclast Recruitment, Giant Cell Formation, and Bone Resorption.

    PubMed

    Xu, Leqin; Luo, Jian; Jin, Rongrong; Yue, Zhiying; Sun, Peng; Yang, Zhengfeng; Yang, Xinghai; Wan, Wei; Zhang, Jishen; Li, Shichang; Liu, Mingyao; Xiao, Jianru

    2016-05-01

    Giant cell tumor of bone (GCTB) is a rare and highly osteolytic bone tumor that usually leads to an extensive bone lesion. The purpose of this study was to discover novel therapeutic targets and identify potential agents for treating GCTB. After screening the serum cytokine profiles in 52 GCTB patients and 10 normal individuals using the ELISA assay, we found that NF-κB signaling-related cytokines, including TNFα, MCP-1, IL1α, and IL17A, were significantly increased in GCTB patients. The results were confirmed by IHC that the expression and activity of p65 were significantly increased in GCTB patients. Moreover, all of the NF-κB inhibitors tested suppressed GCTB cell growth, and bortezomib (Velcade), a well-known proteasome inhibitor, was the most potent inhibitor in blocking GCTB cells growth. Our results showed that bortezomib not only induced GCTB neoplastic stromal cell (NSC) apoptosis, but also suppressed GCTB NSC-induced giant cell differentiation, formation, and resorption. Moreover, bortezomib specifically suppressed GCTB NSC-induced preosteoclast recruitment. Furthermore, bortezomib ameliorated GCTB cell-induced bone destruction in vivo As a result, bortezomib suppressed NF-κB-regulated gene expression in GCTB NSC apoptosis, monocyte migration, angiogenesis, and osteoclastogenesis. Particularly, the inhibitory effects of bortezomib were much better than zoledronic acid, a drug currently used in treating GCTB, in our in vitro experimental paradigms. Together, our results demonstrated that NF-κB signaling pathway is highly activated in GCTB, and bortezomib could suppress GCTB and osteolysis in vivo and in vitro, indicating that bortezomib is a potential agent in the treatment of GCTB. Mol Cancer Ther; 15(5); 854-65. ©2016 AACR. PMID:26861247

  4. Inhibition of Osteoclast Bone Resorption by Disrupting Vacuolar H+-ATPase a3-B2 Subunit Interaction*

    PubMed Central

    Kartner, Norbert; Yao, Yeqi; Li, Keying; Crasto, Gazelle J.; Datti, Alessandro; Manolson, Morris F.

    2010-01-01

    Vacuolar H+-ATPases (V-ATPases) are highly expressed in ruffled borders of bone-resorbing osteoclasts, where they play a crucial role in skeletal remodeling. To discover protein-protein interactions with the a subunit in mammalian V-ATPases, a GAL4 activation domain fusion library was constructed from an in vitro osteoclast model, receptor activator of NF-κB ligand-differentiated RAW 264.7 cells. This library was screened with a bait construct consisting of a GAL4 binding domain fused to the N-terminal domain of V-ATPase a3 subunit (NTa3), the a subunit isoform that is highly expressed in osteoclasts (a1 and a2 are also expressed, to a lesser degree, whereas a4 is kidney-specific). One of the prey proteins identified was the V-ATPase B2 subunit, which is also highly expressed in osteoclasts (B1 is not expressed). Further characterization, using pulldown and solid-phase binding assays, revealed an interaction between NTa3 and the C-terminal domains of both B1 and B2 subunits. Dual B binding domains of equal affinity were observed in NTa, suggesting a possible model for interaction between these subunits in the V-ATPase complex. Furthermore, the a3-B2 interaction appeared to be moderately favored over a1, a2, and a4 interactions with B2, suggesting a mechanism for the specific subunit assembly of plasma membrane V-ATPase in osteoclasts. Solid-phase binding assays were subsequently used to screen a chemical library for inhibitors of the a3-B2 interaction. A small molecule benzohydrazide derivative was found to inhibit osteoclast resorption with an IC50 of ∼1.2 μm on both synthetic hydroxyapatite surfaces and dentin slices, without significantly affecting RAW 264.7 cell viability or receptor activator of NF-κB ligand-mediated osteoclast differentiation. Further understanding of these interactions and inhibitors may contribute to the design of novel therapeutics for bone loss disorders, such as osteoporosis and rheumatoid arthritis. PMID:20837476

  5. Effect of root planing on the reduction of probing depth and the gain of clinical attachment depending on the mode of interproximal bone resorption

    PubMed Central

    Choi, Yoon Mi; Lee, Ju-Youn; Choi, Jeomil

    2015-01-01

    Purpose The purpose of the present study was to evaluate the effect of root planing on the reduction of probing pocket depth and the gain of clinical attachment depending on the pattern of bone resorption (vertical versus horizontal bone loss) in the interproximal aspect of premolar teeth that showed an initial probing pocket depth of 4-6 mm. Methods In this study, we analyzed 68 teeth (15 from the maxilla and 53 from the mandible) from 32 patients with chronic periodontitis (17 men and 15 women; mean age, 53.6 years). The probing pocket depth and clinical attachment level at all six sites around each tooth were recorded before treatment to establish a baseline value, and then three months and six months after root planing. Results The reduction in interdental pocket depth was 1.1 mm in teeth that experienced horizontal bone loss and 0.7 mm in teeth that experienced vertical bone loss. Interdental attachment was increased by 1.0 mm in teeth with horizontal bone loss and by 0.7 mm in teeth with vertical bone loss. The reduction of probing pocket depth and the gain of clinical attachment occurred regardless of defect patterns three and six months after root planing. Conclusions The reduction of pocket depth and gain in the clinical attachment level were significantly larger in horizontally patterned interproximal bone defects than in vertical bone defects. PMID:26550527

  6. Bone Remodeling Under Pathological Conditions.

    PubMed

    Xiao, Wenmei; Li, Shuai; Pacios, Sandra; Wang, Yu; Graves, Dana T

    2016-01-01

    Bone is masterfully programmed to repair itself through the coupling of bone formation following bone resorption, a process referred to as coupling. In inflammatory or other conditions, the balance between bone resorption and bone formation shifts so that a net bone loss results. This review focuses on four pathologic conditions in which remodeling leads to net loss of bone, postmenopausal osteoporosis, arthritis, periodontal disease, and disuse bone loss, which is similar to bone loss associated with microgravity. In most of these there is an acceleration of the resorptive process due to increased formation of bone metabolic units. This initially leads to a net bone loss since the time period of resorption is much faster than the time needed for bone formation that follows. In addition, each of these processes is characterized by an uncoupling that leads to net bone loss. Mechanisms responsible for increased rates of bone resorption, i.e. the formation of more bone metabolic units, involve enhanced expression of inflammatory cytokines and increased expression of RANKL. Moreover, the reasons for uncoupling are discussed which range from a decrease in expression of growth factors and bone morphogenetic proteins to increased expression of factors that inhibit Wnt signaling. PMID:26599114

  7. Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal bone formation in the senescence-accelerated SAM/P6 mice - a comparison with alfacalcidol.

    PubMed

    Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki

    2014-10-01

    Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (p<0.001) and the ALF 0.2μg/kg group (p<0.05) evaluated by 3-point bending test. The cortical area of the mid-femur in the ELD 0.05μg/kg group but not the ALF 0.2μg/kg group was significantly higher than those of the vehicle control group (p<0.001). Bone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (p<0.05, p<0.01, respectively), whereas ALF 0.2μg/kg did not alter these parameters. These results indicate that ELD improved the biomechanical properties of femoral cortical bone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. PMID:24189542

  8. Interleukin-6 does not mediate the stimulation by prostaglandin E2, parathyroid hormone, or 1,25 dihydroxyvitamin D3 of osteoclast differentiation and bone resorption in neonatal mouse parietal bones.

    PubMed

    Holt, I; Davie, M W; Braidman, I P; Marshall, M J

    1994-08-01

    The cytokine interleukin-6 (IL-6) was produced by neonatal mouse parietal bones during a 6- or 48-hour culture period in response to prostaglandin E2 (PGE2) and bovine parathyroid hormone (PTH) 1-34 fragment but not 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. At the same time there was an increase in tartrate-resistant, acid phosphatase-positive osteoclasts (TRAP+OC) with all three osteotropic effectors over 6 hours, and an increase in 45Ca release over 48 hours. TRAP+OC numbers on PGE2-stimulated bones were positively correlated with IL-6 concentration. Our aim was to determine if IL-6 mediated this response. Recombinant human IL-6 (rhIL-6) was added to parietal bones in culture at concentrations within the range that PGE2 or PTH would produce during incubation. However, over 6 or 48 hours, rhIL-6 did not stimulate TRAP+OC to increase in number nor did it cause an increase in calcium release over 48 hours. Adding an antibody against mouse IL-6 to bone cultures stimulated with PTH or PGE2 neutralized the resulting IL-6 bioactivity by up to 92% but did not inhibit TRAP+OC formation. We conclude that although IL-6 is produced in response to two important stimulators of bone resorption, it does not mediate osteoclast differentiation or bone resorption in this model. PMID:7953976

  9. V-ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast-mediated bone resorption

    PubMed Central

    Yang, De-Qin; Feng, Shengmei; Chen, Wei; Zhao, Haibo; Paulson, Christie; Li, Yi-Ping

    2014-01-01

    Lysosomal trafficking and protease exocytosis in osteoclasts are essential for ruffled border formation and bone resorption. Yet, the mechanism underlying lysosomal trafficking and the related process of exocytosis remains largely unknown. We found ATP6ap1 (Ac45), an accessory subunit of vacuolar-type H+-ATPases (V-ATPases), to be highly induced by receptor activator for nuclear factor kappa B ligand (RANKL) in osteoclast differentiation. Ac45 knockdown osteoclasts formed normal actin rings, but had severely impaired extracellular acidification and bone resorption. Ac45 knockdown significantly reduced osteoclast formation. The decrease in the number of osteoclasts does not result from abnormal apoptosis; rather, it results from decreased osteoclast precursor cell proliferation and fusion, which may be partially due to the downregulation of ERK phosphorylation and FBJ osteosarcoma oncogene (c-fos), nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and Tm7sf4 expression. Notably, Ac45 knockdown osteoclasts exhibited impaired lysosomal trafficking and exocytosis, as indicated by the absence of lysosomal trafficking to the ruffled border and a lack of cathepsin K exocytosis into the resorption lacuna. Our data revealed that the impaired exocytosis is specifically due to Ac45 deficiency, and not the general consequence of a defective V-ATPase. Together, our results demonstrate the essential role of Ac45 in osteoclast-mediated extracellular acidification and protease exocytosis, as well as the ability of Ac45 to guide lysosomal intracellular trafficking to the ruffled border, potentially through its interaction with the small GTPase Rab7. Our work indicates that Ac45 may be a novel therapeutic target for osteolytic disease. PMID:22467241

  10. Comparison of the effects of eldecalcitol with either raloxifene or bisphosphonate on serum tartrate resistant acid phosphatase-5b, a bone resorption marker, in postmenopausal osteoporosis

    PubMed Central

    Takada, Junichi; Ikeda, Satoshi; Kusanagi, Tetsuya; Mizuno, Satoshi; Wada, Hiroshi; Iba, Kousuke; Yoshizaki, Takashi; Yamashita, Toshihiko

    2016-01-01

    Summary Objective This study analyzes whether concomitant raloxifene (RLX) or bisphosphonates (BP) plus eldecalcitol (ELD) has excessive suppressive effects on a bone resorption marker during the first 6 months of treatment in postmenopausal women in real-world setting. Methods 285 postmenopausal osteoporotic patients who had been treated with RLX or BP plus ELD were evaluated the bone resorption marker, serum tartrate resistant acid phosphatase-5b (TRACP-5b), during the first 6 months of treatment. Results In drug-naïve group (not received osteoporosis medications before the administration, n=70), the concomitant RLX or BP with ELD significantly decreased levels of TRACP-5b without severe suppression. In vitamin D switch group [RLX or BP plus alfacalcidol (ALF) and then switched to RLX or BP plus ELD, n=215], the replacing ALF with ELD further and significantly decreased TRACP-5b and tertile analyses based on baseline values were significantly decreased far more in the highest, compared with the lowest tertile in the ELD+RLX and ELD+BP groups. Conclusion ELD combined with RLX or BP administered for 6 months to postmenopausal women with osteoporosis who were drug-naïve or who had switched medications significantly reduced and maintained TRACP-5b values within the reference range. PMID:27252739

  11. Eating disorders and bone.

    PubMed

    Tomlinson, Dale; Morgan, Sarah L

    2013-01-01

    Low bone mineral density (BMD) is a frequent and often-overlooked consequence of eating disorders, in particular anorexia nervosa and eating disorders associated with the female athlete triad. The causes of low BMD are multifactorial and include low peak bone mass accrual, accelerated bone resorption, and changes in bone microarchitecture. Early diagnosis and interventions focused on nutritional rehabilitation and weight gain reduce the risk of further BMD deficits and fractures. PMID:24094471

  12. Cadmium accelerates bone loss in ovariectomized mice and fetal rat limb bones in culture

    SciTech Connect

    Bhattacharyya, M.H.; Whelton, B.D.; Stern, P.H.; Peterson, D.P. )

    1988-11-01

    Loss of bone mineral after ovariectomy was studied in mice exposed to dietary cadmium at 0.25, 5, or 50 ppm. Results show that dietary cadmium at 50 ppm increased bone mineral loss to a significantly greater extent in ovariectomized mice than in sham-operated controls. These results were obtained from two studies, one in which skeletal calcium content was determined 6 months after ovariectomy and a second in which {sup 45}Ca release from {sup 45}Ca-prelabeled bones was measured immediately after the start of dietary cadmium exposure. Furthermore, experiments with {sup 45}Ca-prelabeled fetal rat limb bones in culture demonstrated that Cd at 10 nM in the medium, a concentration estimated to be in the plasma of mice exposed to 50 ppm dietary Cd, strikingly increased bone resorption. These in vitro results indicate that cadmium may enhance bone mineral loss by a direct action on bone. Results of the in vivo studies are consistent with a significant role of cadmium in the etiology of Itai-Itai disease among postmenopausal women in Japan and may in part explain the increased risk of postmenopausal osteoporosis among women who smoke.

  13. Effects of vitamin D binding protein-macrophage activating factor (DBP-MAF) infusion on bone resorption in two osteopetrotic mutations.

    PubMed

    Schneider, G B; Benis, K A; Flay, N W; Ireland, R A; Popoff, S N

    1995-06-01

    Osteopetrosis is a heterogeneous group of bone diseases characterized by an excess accumulation of bone and a variety of immune defects. Osteopetrosis (op) and incisors absent (ia) are two nonallelic mutations in the rat which demonstrated these skeletal defects as a result of reduced bone resorption. Osteopetrotic (op) rats have severe sclerosis as a result of reduced numbers of osteoclasts which are structurally abnormal. The sclerosis in ia rats is not as severe as in op mutants; they have elevated numbers of osteoclasts, but they are also morphologically abnormal, lacking a ruffled border. Both of these mutations have defects in the inflammation-primed activation of macrophages. They demonstrate independent defects in the cascade involved in the conversion of vitamin D binding protein (DBP) to a potent macrophage activating factor (DBP-MAF). Because this factor may also play a role in the pathogenesis of osteoclastic dysfunction, the effects of ex vivo-generated DBP-MAF were evaluated on the skeletal system of these two mutations. Newborn ia and op rats and normal littermate controls were injected with DBP-MAF or vehicle once every 4 days from birth until 2 weeks of age, at which time bone samples were collected to evaluate a number of skeletal parameters. DBP-MAF treated op rats had an increased number of osteoclasts and the majority of them exhibited normal structure. There was also reduced bone volume in the treated op animals and an associated increased cellularity of the marrow spaces. The skeletal sclerosis was also corrected in the ia rats; the bone marrow cavity size was significantly enlarged and the majority of the osteoclasts appeared normal with extensive ruffled borders. PMID:7669443

  14. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study.

    PubMed

    Caiazza, S; Falcinelli, G; Pintucci, S

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations, given the enhanced antibiotic-resistence of bacteria, is emphasized. PMID:2297990

  15. Role of Polymer Architecture on the Activity of Polymer-Protein Conjugates for the Treatment of Accelerated Bone Loss Disorders.

    PubMed

    Tucker, Bryan S; Stewart, Jon D; Aguirre, J Ignacio; Holliday, L Shannon; Figg, C Adrian; Messer, Jonathan G; Sumerlin, Brent S

    2015-08-10

    Polymers of similar molecular weights and chemical constitution but varying in their macromolecular architectures were conjugated to osteoprotegerin (OPG) to determine the effect of polymer topology on protein activity in vitro and in vivo. OPG is a protein that inhibits bone resorption by preventing the formation of mature osteoclasts from the osteoclast precursor cell. Accelerated bone loss disorders, such as osteoporosis, rheumatoid arthritis, and metastatic bone disease, occur as a result of increased osteoclastogenesis, leading to the severe weakening of the bone. OPG has shown promise as a treatment in bone disorders; however, it is rapidly cleared from circulation through rapid liver uptake, and frequent, high doses of the protein are necessary to achieve a therapeutic benefit. We aimed to improve the effectiveness of OPG by creating OPG-polymer bioconjugates, employing reversible addition-fragmentation chain transfer polymerization to create well-defined polymers with branching densities varying from linear, loosely branched to densely branched. Polymers with each of these architectures were conjugated to OPG using a "grafting-to" approach, and the bioconjugates were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The OPG-polymer bioconjugates showed retention of activity in vitro against osteoclasts, and each bioconjugate was shown to be nontoxic. Preliminary in vivo studies further supported the nontoxic characteristics of the bioconjugates, and measurement of the bone mineral density in rats 7 days post-treatment via peripheral quantitative computed tomography suggested a slight increase in bone mineral density after administration of the loosely branched OPG-polymer bioconjugate. PMID:26151628

  16. Systemic effects of fluoxetine on the amount of tooth movement, root resorption, and alveolar bone remodeling during orthodontic force application in rat

    PubMed Central

    Rafiei, Mehdi; Sadeghian, Soosan; Torabinia, Nakisa; Hajhashemi, Valiollah

    2015-01-01

    Background: Antidepressant drugs such as fluoxetine are of the most commonly used drugs among the public. These drugs may impact the regulation of bone cell functioning, and thus affect orthodontic tooth movement. The aim of this study was to determine the effect of fluoxetine on tooth movements during orthodontic treatment in rats. Materials and Methods: In this study, 30 male rats were randomly assigned into two groups and injected with fluoxetine 10 mg/kg (experimental group) and normal saline (control group) for a period of 1-month intraperitoneally 5 times/week. Then, the rats were anesthetized and a nickel-titanium closed-coil spring was placed between the left maxillary first molar and left maxillary central incisors of all samples, and then fluoxetine (experimental group) and normal saline (control group) were injected for another 3 weeks by the same method. After measuring tooth movements, rats were sacrificed, and histomorphometric analyses were conducted and the obtained data were statistically analyzed using independent t-test and the significance was set at 0.05. Results: Following the fluoxetine injection, the mean amount of tooth movements in the experimental group was reduced compared to the control group, which was not statistically significant (P = 0.14). There was no significant difference between the two groups regarding bone apposition rate (P = 0.83), external root resorption rate (P = 0.1), and mean number of root resorption lacunae (P = 0.16). Conclusion: Within the limitations of this study, systemic use of fluoxetine may cause insignificant reduction of tooth movement rate in rats; however, this subject needs more evaluations. PMID:26604964

  17. Osteogenic Effect of High-frequency Acceleration on Alveolar Bone

    PubMed Central

    Alikhani, M.; Khoo, E.; Alyami, B.; Raptis, M.; Salgueiro, J.M.; Oliveira, S.M.; Boskey, A.; Teixeira, C.C.

    2012-01-01

    Mechanical stimulation contributes to the health of alveolar bone, but no therapy using the osteogenic effects of these stimuli to increase alveolar bone formation has been developed. We propose that the application of high-frequency acceleration to teeth in the absence of significant loading is osteogenic. Sprague-Dawley rats were divided among control, sham, and experimental groups. The experimental group underwent localized accelerations at different frequencies for 5 min/day on the occlusal surface of the maxillary right first molar at a very low magnitude of loading (4 µε). Sham rats received a similar load in the absence of acceleration or frequency. The alveolar bone of the maxilla was evaluated by microcomputed tomography (µCT), histology, fluorescence microscopy, scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR imaging), and RT-PCR for osteogenic genes. Results demonstrate that application of high-frequency acceleration significantly increased alveolar bone formation. These effects were not restricted to the area of application, and loading could be replaced by frequency and acceleration. These studies propose a simple mechanical therapy that may play a significant role in alveolar bone formation and maintenance. PMID:22337699

  18. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma

    SciTech Connect

    Nakamura, Ryosuke; Kayamori, Kou; Oue, Erika; Sakamoto, Kei; Harada, Kiyoshi; Yamaguchi, Akira

    2015-03-20

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. - Highlights: • Cancer cell, fibroblastic cells, and osteoclasts at bone resorbing area by oral cancer exhibited TGF-β and p-Smad2. • TGF-β1 stimulated osteoclastogenesis induced by RAKL in RAW264 cell. • Xenograft model of oral cancer-induced bone resorption was substantially inhibited by SB431542. • TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC

  19. Loss of functional NADPH oxidase-2 protects against alcohol-induced bone resorption in female p47phox-/- mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In bone, oxidant signaling through NADPH oxidase (NOX)-derived reactive oxygen species (ROS) is an important stimulus for osteoclast differentiation and activity. We have previously demonstrated that chronic alcohol abuse produces bone loss through NOX-dependent mechanisms. In the current study, s...

  20. A novel small-molecule PPI inhibitor targeting integrin αvβ3-osteopontin interface blocks bone resorption in vitro and prevents bone loss in mice.

    PubMed

    Park, Doori; Park, Chan-Won; Choi, YoungJin; Lin, Jingjing; Seo, Dong-Hyun; Kim, Han-Sung; Lee, Soo Young; Kang, In-Cheol

    2016-08-01

    Small molecule-inhibition targeting protein-protein interaction (PPI) is now recognized as an emerging and challenging area in drug design. We developed a novel interactive drug discovery methodology known as Protein Chip technology (ProteoChip) as a cutting-edge PPI assay system applicable for unique PPI-targeting therapeutics integrated with computer-aided drug design (CADD). Here, we describe a novel small molecular PPI inhibitor, IPS-02001, which the blocks integrin αvβ3-osteopontin interface a novel PPI inhibitor identified by the interactive methodology of both ProteoChip- and CADD-based PPI assay. IPS-02001 (6,7-Dichloro-2,3,5,8-tetrahydroxy-1,4-naphthoquinone) was screened from different compound libraries (InterBioScreen, Commercial libraries) using an in silico structure-based molecular docking simulation method and a protein chip-based protein-protein interaction assay system. Additionally, integrin αvβ3, an adhesion receptor expressed in osteoclasts (OCs), was implicated in the regulation of OC function via regulation of the cytoskeletal organization of OCs. IPS-02001 blocked OC maturation from murine bone marrow-derived macrophages, as well as the resorptive function of OCs. Moreover, treatment with IPS-02001 impaired downstream signaling of integrin αvβ3 linked to Pyk2, c-Src, PLCγ2, and Vav3 and disrupted the actin cytoskeleton in mature OCs. Furthermore, IPS-02001 blocked RANKL-induced bone destruction by reducing the number of OCs and protected against ovariectomy-induced bone loss in mice. Thus, IPS-02001 may represent a promising new class of anti-resorptive drugs for treatment of bone diseases associated with increased OC function. PMID:27187277

  1. [Bone formation and corticotomy-induced accelerated bone remodeling: can alveolar corticotomy induce bone formation?].

    PubMed

    Moreau, Nathan; Charrier, Jean-Baptiste

    2015-03-01

    Current orthodontic treatments must answer an increasing demand for faster yet as efficient treatments, especially in adult patients. These past years, the amelioration of orthodontic, anesthetic and orthognathic surgery techniques have allowed considerable improvement of orthodontico-surgical treatments and of adult orthodontic treatments. Alveolar corticotomy (an example of such techniques) accelerates orthodontic tooth movements by local modifications of bone metabolism, inducing a transient osteopenia. This osteopenia allows greater tooth movements than conventional techniques. Whereas there is a growing understanding of the underlying biological mechanisms of alveolar corticotomies, there is little data regarding the osteogenic potential of such technique. In the present article, we review the literature pertaining to alveolar corticotomies and their underlying biological mechanisms and present a clinical case underlining the osteogenic potential of the technique. PMID:25888047

  2. Feeding blueberry diets to young rats dose-dependently inhibits bone resorption through suppression of rankl in stromal cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for two weeks beginning on postnatal day 21 (PND21) significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce thes...

  3. Topical HPMC/S-Nitrosoglutathione Solution Decreases Inflammation and Bone Resorption in Experimental Periodontal Disease in Rats.

    PubMed

    Martins, Conceição S; Leitão, Renata F C; Costa, Deiziane V S; Melo, Iracema M; Santos, Glaylton S; Lima, Vilma; Baldim, Victor; Wong, Deysi V T; Bonfim, Luana E; Melo, Cíntia B; G de Oliveira, Marcelo; Brito, Gerly A C

    2016-01-01

    S-nitrosoglutathione (GSNO) is a nitric oxide (NO) donor, which exerts antioxidant, anti-inflammatory, and microbicidal actions. Intragingival application of GSNO was already shown to decrease alveolar bone loss, inflammation and oxidative stress in an experimental periodontal disease (EPD) model. In the present study, we evaluated the potential therapeutic effect of topical applications of hydroxypropylmethylcellulose (HPMC)/GSNO solutions on EPD in Wistar rats. EPD was induced by placing a sterilized nylon (3.0) thread ligature around the cervix of the second left upper molar of the animals, which received topical applications of a HPMC solutions containing GSNO 2 or 10 mM or vehicle (HPMC solution), 1 h prior to the placement of the ligature and then twice daily until sacrifice on day 11. Treatment with HPMC/GSNO 10 mM solution significantly reduced alveolar bone loss, oxidative stress and TNF-α e IL-1β levels in the surrounding gingival tissue, and led to a decreased transcription of RANK and TNF-α genes and elevated bone alkaline phosphatase, compared to the HPMC group. In conclusion, topical application of HPMC/GSNO solution is a potential treatment to reduce inflammation and bone loss in periodontal disease. PMID:27116554

  4. Topical HPMC/S-Nitrosoglutathione Solution Decreases Inflammation and Bone Resorption in Experimental Periodontal Disease in Rats

    PubMed Central

    Martins, Conceição S.; Leitão, Renata F. C.; Costa, Deiziane V. S.; Melo, Iracema M.; Santos, Glaylton S.; Lima, Vilma; Baldim, Victor; Wong, Deysi V. T.; Bonfim, Luana E.; Melo, Cíntia B.; Brito, Gerly A. C.

    2016-01-01

    S-nitrosoglutathione (GSNO) is a nitric oxide (NO) donor, which exerts antioxidant, anti-inflammatory, and microbicidal actions. Intragingival application of GSNO was already shown to decrease alveolar bone loss, inflammation and oxidative stress in an experimental periodontal disease (EPD) model. In the present study, we evaluated the potential therapeutic effect of topical applications of hydroxypropylmethylcellulose (HPMC)/GSNO solutions on EPD in Wistar rats. EPD was induced by placing a sterilized nylon (3.0) thread ligature around the cervix of the second left upper molar of the animals, which received topical applications of a HPMC solutions containing GSNO 2 or 10 mM or vehicle (HPMC solution), 1 h prior to the placement of the ligature and then twice daily until sacrifice on day 11. Treatment with HPMC/GSNO 10 mM solution significantly reduced alveolar bone loss, oxidative stress and TNF-α e IL-1β levels in the surrounding gingival tissue, and led to a decreased transcription of RANK and TNF-α genes and elevated bone alkaline phosphatase, compared to the HPMC group. In conclusion, topical application of HPMC/GSNO solution is a potential treatment to reduce inflammation and bone loss in periodontal disease. PMID:27116554

  5. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption.

    PubMed

    Saita, Makiko; Kaneko, Junya; Sato, Takenori; Takahashi, Shun-suke; Wada-Takahashi, Satoko; Kawamata, Ryota; Sakurai, Takashi; Lee, Masaichi-Chang-il; Hamada, Nobushiro; Kimoto, Katsuhiko; Nagasaki, Yukio

    2016-01-01

    The excessive production of reactive oxygen species (ROS) has been implicated in a variety of disorders, but to date, ROS scavengers have not been widely used for local treatment of inflammation, because they are rapidly eliminated from the inflamed site. We have designed a novel redox injectable gel (RIG) that is formed at 37 °C after disintegration of nano-assembled flower micelles allowing nitroxide radicals to act locally as specific ROS scavengers for the treatment of periodontitis. In the present study, we have confirmed retention of the RIG in the periodontal region, along with its antioxidant-related anti-inflammatory effects, and we have subsequently evaluated the inhibitory effect of the RIG against Porphyromonas gingivalis (P. gingivalis)-induced alveolar bone loss attributed to ROS. Alveolar bone loss was estimated by morphometry, gingival blood flow was measured using laser Doppler flowmetry, and osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase staining. The results show that the RIG can inhibit P. gingivalis-induced bone loss by antioxidant-related anti-inflammatory actions, and this suggests that the RIG is a promising novel therapeutic agent for the treatment of P. gingivalis-induced periodontitis. PMID:26559357

  6. Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition

    PubMed Central

    2013-01-01

    Background In this study we evaluated a novel approach to guide the bone marrow-driven articular cartilage repair response in skeletally aged rabbits. We hypothesized that dispersed chitosan particles implanted close to the bone marrow degrade in situ in a molecular mass-dependent manner, and attract more stromal cells to the site in aged rabbits compared to the blood clot in untreated controls. Methods Three microdrill hole defects, 1.4 mm diameter and 2 mm deep, were created in both knee trochlea of 30 month-old New Zealand White rabbits. Each of 3 isotonic chitosan solutions (150, 40, 10 kDa, 80% degree of deaceylation, with fluorescent chitosan tracer) was mixed with autologous rabbit whole blood, clotted with Tissue Factor to form cylindrical implants, and press-fit in drill holes in the left knee while contralateral holes received Tissue Factor or no treatment. At day 1 or day 21 post-operative, defects were analyzed by micro-computed tomography, histomorphometry and stereology for bone and soft tissue repair. Results All 3 implants filled the top of defects at day 1 and were partly degraded in situ at 21 days post-operative. All implants attracted neutrophils, osteoclasts and abundant bone marrow-derived stromal cells, stimulated bone resorption followed by new woven bone repair (bone remodeling) and promoted repair tissue-bone integration. 150 kDa chitosan implant was less degraded, and elicited more apoptotic neutrophils and bone resorption than 10 kDa chitosan implant. Drilled controls elicited a poorly integrated fibrous or fibrocartilaginous tissue. Conclusions Pre-solidified implants elicit stromal cells and vigorous bone plate remodeling through a phase involving neutrophil chemotaxis. Pre-solidified chitosan implants are tunable by molecular mass, and could be beneficial for augmented marrow stimulation therapy if the recruited stromal cells can progress to bone and cartilage repair. PMID:23324433

  7. Effects of a herbal gel containing carvacrol and chalcones on alveolar bone resorption in rats on experimental periodontitis.

    PubMed

    Botelho, Marco Antonio; Rao, Vietla Satyanarayana; Montenegro, Danusa; Bandeira, Mary Anne Menezes; Fonseca, Said Gonçalves Cruz; Nogueira, Nadia Accioly Pinto; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne Castro

    2008-04-01

    Carvacrol and dimeric chalcones are the respective bioactive components of Lippia sidoides and Myracrodruon urundeuva, popular medicinal plants of Northeastern Brazil with proven antimicrobial and antiinflammatory properties. Periodontal disease is associated with inflammation and microbiological proliferation, thus the study aimed to investigate the effect of a topical gel based on carvacrol and chalcones in the experimental periodontal disease (EPD) in rats. Animals were treated with carvacrol and/or chalcones gel, immediately after EPD induction, three times a day for 11 days. Appropriate controls were included in the study. Animals were weighed daily. They were killed on day 11, the mandibles dissected and alveolar bone loss was measured. The periodontium were examined at histopathology and the neutrophil influx into the gingiva was assayed using myeloperoxidase activity. The bacterial flora were assessed through culture of the gingival tissue. Alveolar bone loss was significantly (p < 0.05) inhibited by combined carvacrol and chalcones gel, compared with the vehicle and non-treated groups. The treatment with the combined gel reduced tissue lesion at histopathology, decreased myeloperoxidase activity in gingival tissue and inhibited the growth of oral microorganisms as well as the weight loss. Carvacrol and chalcones combination gel has a beneficial effect upon EPD in this model. PMID:18338370

  8. Green Tea Modulates Cytokine Expression in the Periodontium and Attenuates Alveolar Bone Resorption in Type 1 Diabetic Rats

    PubMed Central

    Gennaro, Gabriela; Claudino, Marcela; Cestari, Tania Mary; Ceolin, Daniele; Germino, Patrícia; Garlet, Gustavo Pompermaier; de Assis, Gerson Francisco

    2015-01-01

    Diabetes mellitus comprises a heterogeneous group of disorders with the main feature of hyperglycemia. Chronic hyperglycemia increases the severity of periodontal disease via an exacerbated inflammatory response, activated by advanced glycation end products and their receptor, RAGE. Therefore, anti-inflammatory agents represent potential inhibitors of this pathological interaction. In particular, green tea has been shown to possess anti-inflammatory properties mediated by its polyphenol content. Objectives: This study investigated the mechanisms by which green tea attenuates the spontaneous onset of diabetes-induced periodontitis. Methods: Diabetes was induced in rats via a single intraperitoneal injection of streptozotocin (STZ). Diabetic and control animals were divided into water-treated and green tea-treated subgroups and were analyzed at 15, 30, 60 and 90 days after diabetes induction. Immunohistochemistry was performed to quantitatively evaluate tumor necrosis factor-α (TNF-α), receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), interleukin-10 (IL-10) and runt-related transcription factor 2 (RUNX-2) expression in serial sections of each hemimaxilla. Morphometric measurements of the distance from the cementum-enamel junction (CEJ) of the superior distal root of the first molar to the alveolar bone crest (ABC) were performed to assess bone loss. Results: Diabetes resulted in significant bone loss and alterations in the number of cells that stained positive for inflammatory mediators. In the diabetic rats treated with green tea, we observed a decreased number of cells expressing RANKL and TNF-α compared with that observed in the diabetic rats treated with water. Additionally, green tea increased the numbers of cells that stained positive for OPG, RUNX-2 and IL-10 in the diabetic rats. Conclusion: Green tea intake reduces expression of the pro-inflammatory cytokine TNF-α and the osteoclastogenic mediator RANKL to normal levels

  9. Bone morphogenetic protein-7 accelerates fracture healing in osteoporotic rats

    PubMed Central

    Diwan, Ashish D; Leong, Anthony; Appleyard, Richard; Bhargav, Divya; Fang, Zhi Ming; Wei, Aiqun

    2013-01-01

    Background: Osteoporosis is characterized by low bone mass, bone fragility and increased susceptibility to fracture. Fracture healing in osteoporosis is delayed and rates of implant failure are high with few biological treatment options available. This study aimed to determine whether a single dose of bone morphogenetic protein-7 (BMP-7) in a collagen/carboxy-methyl cellulose (CMC) composite enhanced fracture healing in an osteoporotic rat model. Materials and Methods: An open femoral midshaft osteotomy was performed in female rats 3 months post-ovarectomy. Rats were randomized to receive either BMP-7 composite (n = 30) or composite alone (n = 30) at the fracture site during surgery. Thereafter calluses were collected on days 12, 20 and 31. Callus cross-sectional area, bone mineral density, biomechanical stiffness and maximum torque, radiographic bony union and histological callus maturity were evaluated at each time point. Results: There were statistically significant increases in bone mineral density and callus cross-section area at all time points in the BMP-7 group as compared to controls and biomechanical readings showed stronger bones at day 31 in the BMP-7 group. Histological and radiographic evaluation indicated significant acceleration of bony union in the BMP-7 group as compared to controls. Conclusion: This study demonstrated that BMP-7 accelerates fracture healing in an oestrogen-deficient environment in a rat femoral fracture healing model to scientific relevance level I. The use of BMP-7 composite could offer orthopedic surgeons an advantage over oestrogen therapy, enhancing osteoporotic fracture healing with a single, locally applied dose at the time of surgery, potentially overcoming delays in healing caused by the osteoporotic state. PMID:24379457

  10. Impaired Bone Resorption and Woven Bone Formation Are Associated with Development of Osteonecrosis of the Jaw-Like Lesions by Bisphosphonate and Anti–Receptor Activator of NF-κB Ligand Antibody in Mice

    PubMed Central

    Williams, Drake W.; Lee, Cindy; Kim, Terresa; Yagita, Hideo; Wu, Hongkun; Park, Sil; Yang, Paul; Liu, Honghu; Shi, Songtao; Shin, Ki-Hyuk; Kang, Mo K.; Park, No-Hee; Kim, Reuben H.

    2015-01-01

    Drug-induced osteonecrosis of the jaw (ONJ) is a detrimental intraoral lesion that often occurs after dental-related interventions in patients undergoing treatment with bisphosphonates or denosumab, the neutralizing human anti–receptor activator of NF-κB ligand (RANKL) antibody (Ab). The cause of ONJ by these drugs has been speculated to their direct effects on osteoclasts. However, the extent to which osteoclasts contribute to ONJ pathogenesis remains controversial. Herein, by using a tooth-extraction mouse model with i.v. administration of mouse anti-RANKL Ab or the bisphosphonate zoledronate (ZOL), we show that unresorbed bone due to impaired formation or suppressed functions of osteoclasts, respectively, is associated with ONJ development. After tooth extraction, ONJ-like lesions developed 50% in the anti-RANKL Ab-treated mice and 30% in the ZOL-treated mice. Nonviable and unresorbed bone was found more in anti-RANKL Ab-treated mice compared with mice receiving ZOL. All mice receiving anti-RANKL Ab had an undetectable tartrate-resistant acid phosphatase (TRAP) level in the serum and no TRAP-positive osteoclasts at the extracted sockets, whereas ZOL-treated mice had a decreased TRAP level without altering the numbers of TRAP-positive osteoclasts. Interestingly, the absence of newly formed woven bone in the extracted sockets was evident in ONJ-like lesions from both anti-RANKL Ab- and ZOL-treated mice. Our study suggests that the lack of osteoclasts' bone-resorptive functions by these drugs and suppression of woven bone formation after dental trauma may be associated with ONJ development. PMID:25173134

  11. [Calcitonin as an alternative treatment for root resorption].

    PubMed

    Pierce, A; Berg, J O; Lindskog, S

    1989-01-01

    Inflammatory root resorption is a common finding following trauma and will cause eventual destruction of the tooth root if left untreated. This study examined the effects of intrapulpal application of calcitonin, a hormone known to inhibit osteoclastic bone resorption, on experimental inflammatory root resorption induced in monkeys. Results were histologically evaluated using a morphometric technique and revealed that calcitonin was an effective medicament for the treatment of inflammatory root resorption. It was concluded that this hormone could be a useful therapeutic adjunct in difficult cases of external root resorption. PMID:2576918

  12. The Effect of Systemic Delivery of Aminoguanidine versus Doxycycline on the Resorptive Phase of Alveolar Bone Following modified Widman Flap in Diabetic Rats: A Histopathological and Scanning Electron Microscope (SEM) study

    PubMed Central

    Tella, E; Aldahlawi, S; Eldeeb, A; El Gazaerly, H

    2014-01-01

    Objectives Aminoguanidine (guanylhydrazinehydrochloride) is a drug that prevents many of the classical systemic complications of diabetes including diabetic osteopenia through its inhibitory activity on the accumulation of advanced glycation end –products (AGEs). The aim of the present study was to evaluate the effectiveness of aminoguanidine versus doxycycline in reducing alveolar bone resorption following mucoperiosteal flap in diabetic rats, using the conventional histopathology and scanning electron microscope (SEM). Methods Twenty-seven male albino rats were used in this study. Periodontal defects were induced experimentally on lower anterior teeth. All rats were subjected to induction of diabetes, by IV injection of the pancreatic B-cells toxin alloxan monohydrate. After eight weeks following the establishment of periodontal defects in all rats, the ligation was removed and 3 rats were scarified as negative control (group 1). The remaining animals were divided into three group based on treatment applied following mucoperiosteal flap surgery. Group 2 received saline treatment only, group 3 received doxycycline periostat (1.5 mg/kg/day) for 3 weeks, and group 4 received aminoguanidine (7.3 mmol/kg) for 3 weeks. The fasting glucose level was measured weekly post operatively. After 21 days all rats were sacrificed. Three anterior parts of the mandible of each group was prepared for histopathological examination and two parts were prepared for SEM. Results Aminoguanidine treated group (group 4) showed statistically significant increased new bone formation, higher number of osteoblasts and decrease osteoclasts number, resorptive lacunae and existing inflammatory cell infiltration as compared to positive control group (group 2) (P<0.05). Doxycycline was also effective in reducing bone loss as documental by histopathological study. Conclusion The present study showed that aminoguanidine was significantly effective in reducing alveolar bone loss and can modify the

  13. Consumption of vitamin D-and calcium-fortified soft white cheese lowers the biochemical marker of bone resorption TRAP 5b in postmenopausal women at moderate risk of osteoporosis fracture.

    PubMed

    Bonjour, Jean-Philippe; Benoit, Valérie; Rousseau, Brigitte; Souberbielle, Jean-Claude

    2012-04-01

    The prevention of increased bone remodeling in postmenopausal women at low 10-y risk of osteoporotic fractures essentially relies on reinforcement of environmental factors known to positively influence bone health, among which nutrition plays an important role. In institutionalized women in their mid-eighties, we previously found that consumption of fortified soft plain cheese increased vitamin D, calcium, and protein intakes, reduced bone resorption biochemical markers, particularly the serum bone specific acid phosphatase tartrate resistant acid phosphatase, isoform 5b (TRAP 5b) that reflects osteoclast activity, and stimulated the serum bone anabolic factor insulin-like growth factor-I (IGF-I). Whether these effects occur in much younger women was tested in a prospective control study. Seventy-one healthy postmenopausal women aged 56.6 ± 3.9 y (mean ± SD) with low spontaneous supply of both Ca and vitamin D were randomized to consume daily (treated, n = 36) or not (controls, n = 35) two servings (2 × 100 g) of skimmed-milk, soft plain cheese for 6 wk. The vitamin D and Ca-fortified dairy product provided daily: 661 kJ, 2.5 μg vitamin D, 400 mg calcium, and 13.8 g protein. At the end of the intervention, the decrease in TRAP 5b and the increase in IGF-I were greater in the treated than in the control group (P < 0.02). The changes in serum carboxy terminal crosslinked telopeptide of type I collagen did not differ significantly between the two groups. In conclusion, like in elderly women, consumption by healthy postmenopausal women of a vitamin D and calcium-fortified dairy product that also increases the protein intake, reduces the serum concentration of the bone resorption biomarker TRAP 5b. This response, combined with the increase in serum IGF-I, is compatible with a nutrition-induced reduction in postmenopausal bone loss rate. PMID:22357739

  14. Bone formation is not impaired by hibernation (disuse) in black bears Ursus americanus

    USGS Publications Warehouse

    Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.

    2003-01-01

    Disuse by bed rest, limb immobilization or space flight causes rapid bone loss by arresting bone formation and accelerating bone resorption. This net bone loss increases the risk of fracture upon remobilization. Bone loss also occurs in hibernating ground squirrels, golden hamsters, and little brown bats by arresting bone formation and accelerating bone resorption. There is some histological evidence to suggest that black bears Ursus americanus do not lose bone mass during hibernation (i.e. disuse). There is also evidence suggesting that muscle mass and strength are preserved in black bears during hibernation. The question of whether bears can prevent bone loss during hibernation has not been conclusively answered. The goal of the current study was to further assess bone metabolism in hibernating black bears. Using the same serum markers of bone remodeling used to evaluate human patients with osteoporosis, we assayed serum from five black bears, collected every 10 days over a 196-day period, for bone resorption and formation markers. Here we show that bone resorption remains elevated over the entire hibernation period compared to the pre-hibernation period, but osteoblastic bone formation is not impaired by hibernation and is rapidly accelerated during remobilization following hibernation.

  15. [Bone metabolic markers and diagnosis of abnormal bone and calcium metabolism].

    PubMed

    Fukunaga, M; Sone, T

    2001-07-01

    Bone metabolic markers increase in blood or urine, when bone formation or bone resorption accelerates. Reference values of bone metabolic markers are determined in male or female, and in pre- or post-menopause, respectively. Values of bone metabolic markers in most patients with primary osteoporosis were distributed within a reference value, mean+/-1.96 SD. When measured values exceeded a reference values, we should survey a possibility of abnormal calcium or bone metabolism such as primary hyperparathyroidism, renal osteodystrophy, hyperthyroidism and Paget's disease of bone or bone metastasis associated with malignant tumor. PMID:15775589

  16. Spaceflight-induced Bone Loss: Is there a Risk for Accelerated Osteoporosis after Return?

    NASA Technical Reports Server (NTRS)

    Sibonga, Jean

    2008-01-01

    The evidence-to to-date suggests that the rapid rate of site-specific bone loss in space, due to the unbalanced stimulation of bone resorption, may predispose crew members to irreversible changes in bone structure and microarchitecture. No analyses conducted in the postflight period to assess microarchitectural changes. There is no complete analysis of skeletal recovery in the postflight period to evaluate the structural changes that accompany increases in DXA aBMD. Postflight analyses based upon QCT scans performed on limited crew members indicate reductions in hip bone strength and incomplete recovery at 1 year. No recovery of trabecular vBMD after 1 year return (HRP IWG). Time course of bone loss in space unknown.

  17. Effect of acceleration on osteoblastic and osteoclastic activities: Analysis of bone metabolism using goldfish scale as a model for bone

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Kitamura, K.; Nemoto, N.; Shimizu, S.; Wada, W.; Kondo, K.; Tabata, T.; Sodeyama, S.; Ijiri, I.; Hattori, H.

    It is well known that hypo-gravity and hyper-gravity influence bone metabolism However basic data concerning the mechanism are a few because no in vitro model system of human bone is available Human bone consists of osteoblasts osteoclasts and the bone matrix No technique for the co-culture of these components has ever been developed Fish scale is a calcified tissue that contains osteoblasts osteoclasts and bone matrix all of which are similar to those found in human bone Recently we developed a new in vitro model system using goldfish scale This system can simultaneously detect the activities of both scale osteoclasts and osteoblasts with tartrate-resistant acid phosphatase and alkaline phosphatase as the respective markers Using this system we analyzed the bone metabolism under acceleration with a custom-made G-load apparatus Osteoclastic activity in the goldfish scales was suppressed under low-acceleration 0 5-G while osteoblastic activity did not change under this acceleration Under high-acceleration 6-G however the osteoblastic activity of the scales increased In addition the osteoclastic activity of the scales decreased These results suggest that both osteoblastic and osteoclastic activities are regulated by the strength of acceleration Therefore we strongly believe that our in vitro system is useful for analysis of bone metabolism under acceleration

  18. A novel peptide-modified and gene-activated biomimetic bone matrix accelerating bone regeneration.

    PubMed

    Pan, Haitao; Zheng, Qixin; Yang, Shuhua; Guo, Xiaodong; Wu, Bin; Zou, Zhenwei; Duan, Zhixia

    2014-08-01

    The osteogenic differentiation of bone marrow stromal cells (BMSCs) can be regulated by systemic or local growth factor, especially by transforming growth factor beta 1 (TGF-β1). However, how to maintain the bioactivity of exogenous TGF-β1 is a great challenge due to its short half-life time. The most promising solution is to transfer TGF-β1 gene into seed cells through transgenic technology and then transgenic cells to continuously secret endogenous TGF-β1 protein via gene expression. In this study, a novel non-viral vector (K)16GRGDSPC was chemically linked to bioactive bone matrices PLGA-[ASP-PEG]n using cross-linker to construct a novel non-viral gene transfer system. TGF-β1 gene was incubated with this system and subsequently rabbit-derived BMSCs were co-cultured with this gene-activated PLGA-[ASP-PEG]n, while co-cultured with PLGA-[ASP-PEG]n modified with (K)16GRGDSPC only and original PLGA-[ASP-PEG]n as control. Thus we fabricated three kinds of composites: Group A (BMSCs-TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n composite); Group B (BMSCs-(K)16GRGDSPC-PLGA-[ASP-PEG]n composite); and Group C (BMSCs-PLGA-[ASP-PEG]n composite). TGF-β1 and other osteogenic phenotype markers of alkaline phosphatase, osteocalcin, osteopontin and type I collagen in Group A were all significantly higher than the other two groups ex vivo. In vivo, 15-mm long segmental rabbit bone defects were created and randomly implanted the aforementioned composites separately, and then fixed with plate-screws. The results demonstrated that the implants in Group A significantly accelerated bone regeneration compared with the other implants based on X-rays, histological and biomechanical examinations. Therefore, we conclude this novel peptide-modified and gene-activated biomimetic bone matrix of TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n is a very promising scaffold biomaterial for accelerating bone regeneration. PMID:24115366

  19. Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events

    PubMed Central

    Thomadakis, George; Fourie, Jeanine; Lemmer, Johan

    2016-01-01

    Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption. PMID:27119080

  20. Gallium increases bone calcium and crystallite perfection of hydroxyapatite.

    PubMed

    Bockman, R S; Boskey, A L; Blumenthal, N C; Alcock, N W; Warrell, R P

    1986-12-01

    Gallium, a group IIIa metal, is known to interact with hydroxyapatite as well as the cellular components of bone. In recent studies we have found gallium to be a potent inhibitor of bone resorption that is clinically effective in controlling cancer-related hypercalcemia as well as the accelerated bone resorption associated with bone metastases. To begin to elucidate gallium's mechanism of action we have examined its effects on bone mineral properties. After short-term (14 days) administration to rats, gallium nitrate produced measurable changes in bone mineral properties. Using atomic absorption spectroscopy, low levels of gallium were noted to preferentially accumulate in regions of active bone formation, 0.54 +/- .07 microgram/mg bone in the metaphyses versus 0.21 +/- .03 microgram/mg bone in the diaphyses, P less than 0.001. The bones of treated animals had increased calcium content measured spectrophotometrically. Rats injected with radiolabeled calcium during gallium treatment had greater 45-calcium content compared to control animals. By wide-angle X-ray analyses, larger and/or more perfect hydroxyapatite was observed. The combined effects of gallium on bone cell function and bone mineral may explain its clinical efficacy in blocking accelerated bone resorption. PMID:3026592

  1. The Effect of Ovariectomy and Orchiectomy on Orthodontic Tooth Movement and Root Resorption in Wistar Rats

    PubMed Central

    Seifi, Massoud; Ezzati, Baharak; Saedi, Sara; Hedayati, Mehdi

    2015-01-01

    Statement of the Problem Root resorption (RR) after orthodontic tooth movement (OTM) is known as a multifactorial complication of orthodontic treatments. Hormonal deficiencies and their effect on bone turnover are reported to have influences on the rate of tooth movement and root resorption. Purpose This study was designed to evaluate the effect of female and male steroid sex hormones on tooth movement and root resorption. Materials and Method Orthodontic appliances were placed on the right maxillary first molars of 10 ovariectomized female and 10 orchiectomized male Wistar rats as experimental groups and 10 female and 10 male healthy Wistar rats as control groups. NiTi closed-coil springs (9mm, Medium, 011"×.030", Ortho Technology®; Tampa, Florida) were placed between the right incisors and the first right maxillary molars to induce tipping movement in the first molars with the application of a 60g force. After 21 days, the rats were sacrificed and tooth movement was measured by using a digital caliper (Guanglu, China). Orthodontic induced root resorption (OIRR) was assessed by histomorphometric analysis after hematoxylin and eosin staining of sections of the mesial root. Results The rate of tooth movement was significantly higher in all female rats, with the root resorption being lower in the experimental group. The rate of tooth movement in experimental male rats was significantly higher than the control group (p= 0.001) and the rate of root resorption was significantly lower in the experimental group (p= 0.001). Conclusion It seems that alterations in plasma levels of estrogen, progesterone, and testosterone hormones can influence the rate of OTM and RR. The acceleration in tooth movement increased OTM and decreased RR. PMID:26636117

  2. Resorption-cycle-dependent polarization of mRNAs for different subunits of V-ATPase in bone-resorbing osteoclasts.

    PubMed Central

    Laitala-Leinonen, T; Howell, M L; Dean, G E; Väänänen, H K

    1996-01-01

    Protein sorting in eukaryotic cells is mainly done by specific targeting of polypeptides. The present evidence from oocytes, neurons, and some other polarized cells suggests that protein sorting can be further facilitated by concentrating mRNAs to their corresponding subcellular areas. However, very little is known about the mechanism(s) involved in mRNA targeting, or how widespread and dynamic such mRNA sorting might be. In this study, we have used an in vitro cell culture system, where large multinucleated osteoclasts undergo continuous structural and functional changes from polarized (resorbing) to a nonpolarized (resting) stage. We demonstrate here, using a nonradioactive in situ hybridization technique and confocal microscopy, that mRNAs for several vacuolar H(+)-ATPase subunits change their localization and polarity in osteoclasts according to the resorption cycle, whereas mRNA for cytoplasmic carbonic anhydrase II is found diffusely located throughout the osteoclast during the whole resorption cycle. Antisense RNA against the 16-kDa or 60-kDa V-ATPase subunit inhibits polarization of the osteoclasts, as determined by cytoskeleton staining. Antisense RNA against carbonic anhydrase II, however, has no such effect. Images PMID:8741845

  3. High-acceleration whole body vibration stimulates cortical bone accrual and increases bone mineral content in growing mice.

    PubMed

    Gnyubkin, Vasily; Guignandon, Alain; Laroche, Norbert; Vanden-Bossche, Arnaud; Malaval, Luc; Vico, Laurence

    2016-06-14

    Whole body vibration (WBV) is a promising tool for counteracting bone loss. Most WBV studies on animals have been performed at acceleration <1g and frequency between 30 and 90Hz. Such WBV conditions trigger bone growth in osteopenia models, but not in healthy animals. In order to test the ability of WBV to promote osteogenesis in young animals, we exposed seven-week-old male mice to vibration at 90Hz and 2g peak acceleration for 15min/day, 5 days/week. We examined the effects on skeletal tissues with micro-computed tomography and histology. We also quantified bone vascularization and mechanosensitive osteocyte proteins, sclerostin and DMP1. Three weeks of WBV resulted in an increase of femur cortical thickness (+5%) and area (+6%), associated with a 25% decrease of sclerostin expression, and 35% increase of DMP1 expression in cortical osteocytes. Mass-structural parameters of trabecular bone were unaltered in femur or vertebra, while osteoclastic parameters and bone formation rate were increased at both sites. Three weeks of WBV resulted in higher blood vessel numbers (+23%) in the distal femoral metaphysis. After 9-week WBV, we have not observed the difference in structural cortical or trabecular parameters. However, the tissue mineral density of cortical bone was increased by 2.5%. Three or nine weeks of 2g/90Hz WBV treatment did not affect longitudinal growth rate or body weight increase under our experimental conditions, indicating that these are safe to use. These results validate a potential of 2g/90Hz WBV to stimulate trabecular bone cellular activity, accelerate cortical bone growth, and increase bone mineral density. PMID:27178020

  4. Invasive cervical root resorption: Engineering the lost tissue by regeneration

    PubMed Central

    Johns, Dexton Antony; Shivashankar, Vasundara Yayathi; Maroli, Ramesh Kumar; Joseph, Rosamma

    2013-01-01

    Invasive cervical resorption (ICR) is a localized resorptive process that commences on the surface of the root below the epithelial attachment and the coronal aspect of the supporting alveolar process, namely the zone of the connective tissue attachment’ early diagnosis, elimination of the resorption and restorative management are the keys to a successful outcome. Treatment done was a combined non-surgical root canal therapy, surgical treatment to expose the resorptive defect and the resorptive defect was filled up with reverse sandwich technique and finally the bony defect filled with platelet rich fibrin (PRF), hydroxylapatite and PRF membrane. Significant bone fill was obtained in our case after a 2 year follow-up period. This case report presents a treatment strategy that might improve the healing outcomes for patients with ICR. PMID:24403805

  5. Simulation analysis for effects of bone loss on acceleration tolerance of human lumbar vertebra

    NASA Astrophysics Data System (ADS)

    Ma, Honglei; Zhang, Feng; Zhu, Yu; Xiao, Yanhua; Wazir, Abrar

    2014-02-01

    The purpose of the present study was to analyze and predict the changes in acceleration tolerance of human vertebra as a result of bone loss caused by long-term space flight. A human L3-L4 vertebra FEM model was constructed, in which the cancellous bone was separated, and surrounding ligaments were also taken into account. The simulation results demonstrated that bone loss has more of an effect on the acceleration tolerance in x-direction. The results serve to aid in the creation of new acceleration tolerance standards, ensuring astronauts return home safely after long-term space flight. This study shows that more attention should be focused on the bone degradation of crew members and to create new protective designs for space capsules in the future.

  6. Bone formation: roles of genistein and daidzein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone remodeling consists of a balance between bone formation by osteoblasts and bone resorption by osteoclasts. Osteoporosis is the result of increased bone resorption and decreased bone formation causing a decreased bone mass density, loss of bone microarchitecture, and an increased risk of fractu...

  7. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma.

    PubMed

    Nakamura, Ryosuke; Kayamori, Kou; Oue, Erika; Sakamoto, Kei; Harada, Kiyoshi; Yamaguchi, Akira

    2015-03-20

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. PMID:25681764

  8. Milk extracellular vesicles accelerate osteoblastogenesis but impair bone matrix formation.

    PubMed

    Oliveira, Marina C; Arntz, Onno J; Blaney Davidson, Esmeralda N; van Lent, Peter L E M; Koenders, Marije I; van der Kraan, Peter M; van den Berg, Wim B; Ferreira, Adaliene V M; van de Loo, Fons A J

    2016-04-01

    The claimed beneficial effect of milk on bone is still a matter for debate. Recently extracellular vesicles (EVs) that contain proteins and RNA were discovered in milk, but their effect on bone formation has not yet been determined. We demonstrated previously that bovine milk-derived EVs (BMEVs) have immunoregulatory properties. Our aim was to evaluate the effect of BMEVs on osteogenesis by mice and human mesenchymal stem cells (hMSCs). Oral delivery of two concentrations of BMEVs to female DBA/1J mice during 7weeks did not alter the tibia trabecular bone area; however, the osteocytes number increased. In addition, the highest dose of BMEVs markedly increased the woven bone tissue, which is more brittle. The exposure of hMSCs to BMEVs during 21days resulted in less mineralization but higher cell proliferation. Interestingly BMEVs reduced the collagen production, but enhanced the expression of genes characteristic for immature osteoblasts. A kinetic study showed that BMEVs up-regulated many osteogenic genes within the first 4days. However, the production of type I collagen and expression of its genes (COL1A1 and COL1A2) were markedly reduced at days 21 and 28. At day 28, BMEVs again lead to higher proliferation, but mineralization was significantly increased. This was associated with increased expression of sclerostin, a marker for osteocytes, and reduced osteonectin, which is associated to bone matrix formation. Our study adds BMEVs to the list of milk components that can affect bone formation and may shed new light on the contradictory claims of milk on bone formation. PMID:27012623

  9. Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation

    PubMed Central

    Mehdikhani-Nahrkhalaji, Mehdi; Fathi, Mohammad Hossein; Mortazavi, Vajihesadat; Mousavi, Sayed Behrouz; Akhavan, Ali; Haghighat, Abbas; Hashemi-Beni, Batool; Razavi, Sayed Mohammad; Mashhadiabbas, Fatemeh

    2015-01-01

    Background: The aim of this study was to evaluate the interaction of bioactive and biodegradable poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) and poly (lactide-co-glycolide)/bioactive glass (PBG) nanocomposite coatings with bone. Materials and Methods: Sol-gel derived 58S bioactive glass nanoparticles, 50/50 wt% poly (lactic acid)/poly (glycolic acid) and hydroxyapatite nanoparticles were used to prepare the coatings. The nanocomposite coatings were characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy. Mechanical stability of the prepared nanocomposite coatings was studied during intramedullary implantation of coated Kirschner wires (K-wires) into rabbit tibia. Titanium mini-screws coated with nanocomposite coatings and without coating were implanted intramedullary in rabbit tibia. Bone tissue interaction with the prepared nanocomposite coatings was evaluated 30 and 60 days after surgery. The non-parametric paired Friedman and Kruskal-Wallis tests were used to compare the samples. For all tests, the level of significance was P < 0.05. Results: The results showed that nanocomposite coatings remained stable on the K-wires with a minimum of 96% of the original coating mass. Tissue around the coated implants showed no adverse reactions to the coatings. Woven and trabecular bone formation were observed around the coated samples with a minimum inflammatory reaction. PBG nanocomposite coating induced more rapid bone healing than PBGHA nanocomposite coating and titanium without coating (P < 0.05). Conclusion: It was concluded that PBG nanocomposite coating provides an ideal surface for bone formation and it could be used as a candidate for coating dental and orthopedic implants. PMID:25709681

  10. Harnessing the bone-seeking ability of Ca(ii)-like metal ions in the treatment of metastatic cancer and resorption disorders.

    PubMed

    Weekes, D M; Orvig, C

    2016-04-21

    Metal ions are naturally retained by skeletal tissues in living systems because of their high affinity for the hydroxyapatite-like mineral matrix that makes up cortical bone. This is particularly true for metal ions that bear a close resemblance to calcium(ii) (such as the lanthanides or alkaline earth metals), and in a few key cases this targeting ability has been exploited in order to develop medicinal agents that are intended to treat bones which have become diseased. In this review, we focus on two areas where this has been particularly effective: first is in the diagnosis and therapy of metastatic bone cancer, in which radioactive metal ions including (99m)Tc, (153)Sm, and (223)Ra are used to image, alleviate, and ablate harmful cancerous legions with good specificity versus healthy tissues; second is the use of trivalent lanthanides to treat osteoporosis, an emerging concept which has gathered significance over the last 15 years, and is now entering preclinical trials with carefully designed systems. PMID:26853513

  11. Igfbp2 Deletion in Ovariectomized Mice Enhances Energy Expenditure but Accelerates Bone Loss.

    PubMed

    DeMambro, Victoria E; Le, Phuong T; Guntur, Anyonya R; Maridas, David E; Canalis, Ernesto; Nagano, Kenichi; Baron, Roland; Clemmons, David R; Rosen, Clifford J

    2015-11-01

    Previously, we reported sexually dimorphic bone mass and body composition phenotypes in Igfbp2(-/-) mice (-/-), where male mice exhibited decreased bone and increased fat mass, whereas female mice displayed increased bone but no changes in fat mass. To investigate the interaction between IGF-binding protein (IGFBP)-2 and estrogen, we subjected Igfbp2 -/- and +/+ female mice to ovariectomy (OVX) or sham surgery at 8 weeks of age. At 20 weeks of age, mice underwent metabolic cage analysis and insulin tolerance tests before killing. At harvest, femurs were collected for microcomputed tomography, serum for protein levels, brown adipose tissue (BAT) and inguinal white adipose tissue (IWAT) adipose depots for histology, gene expression, and mitochondrial respiration analysis of whole tissue. In +/+ mice, serum IGFBP-2 dropped 30% with OVX. In the absence of IGFBP-2, OVX had no effect on preformed BAT; however, there was significant "browning" of the IWAT depot coinciding with less weight gain, increased insulin sensitivity, lower intraabdominal fat, and increased bone loss due to higher resorption and lower formation. Likewise, after OVX, energy expenditure, physical activity and BAT mitochondrial respiration were decreased less in the OVX-/- compared with OVX+/+. Mitochondrial respiration of IWAT was reduced in OVX+/+ yet remained unchanged in OVX-/- mice. These changes were associated with significant increases in Fgf21 and Foxc2 expression, 2 proteins known for their insulin sensitizing and browning of WAT effects. We conclude that estrogen deficiency has a profound effect on body and bone composition in the absence of IGFBP-2 and may be related to changes in fibroblast growth factor 21. PMID:26230658

  12. The ratio of animal protein intake to potassium intake is a predictor of bone resorption in space flight analogues and in ambulatory subjects

    NASA Technical Reports Server (NTRS)

    Zwart, Sara R.; Hargens, Alan R.; Smith, Scott M.

    2004-01-01

    BACKGROUND: Bone loss is a critical concern for space travelers, and a dietary countermeasure would be of great benefit. Dietary protein and potassium-associated bicarbonate precursors may have opposing effects on the acid-base balance in the body and therefore on bone loss. OBJECTIVE: In 2 studies, we examined the ability of dietary protein and potassium to predict markers of bone metabolism. DESIGN: In the first study, 8 pairs of male identical twins were assigned to 1 of 2 groups: bed rest (sedentary, or SED, group) or bed rest with supine treadmill exercise in a lower-body negative pressure chamber (EX group). In a second study, groups of 4 subjects lived in a closed chamber for 60 or 91 d, and dietary data were collected for two or three 5-d sessions. Urinary calcium, N-telopeptide, and pyridinium cross-links were measured before bed rest; on bed rest days 5-6, 12-13, 19-20, and 26-27; and daily during the chamber studies. Data were analyzed by Pearson's correlation (P < 0.05). RESULTS: The ratio of animal protein intake to potassium intake was significantly correlated with N-telopeptide in the SED group during bed rest weeks 3 and 4 (r = 0.77 and 0.80) and during the 91-d chamber study (r = 0.75). The ratio of animal protein intake to potassium intake was positively correlated with pyridinium cross-links before bed rest in the EX group (r = 0.83), in the EX group during bed rest week 1 (r = 0.84), and in the SED group during bed rest week 2 (r = 0.72) but not during either chamber study. In both studies, these relations were not significant with the ratio of vegetable protein intake to potassium intake. CONCLUSIONS: The ratio of animal protein intake to potassium intake may affect bone in ambulatory and bed-rest subjects. Changing this ratio may help to prevent bone loss on Earth and during space flight.

  13. Receptor Activator of Nuclear Factor κB Ligand and Osteoprotegerin Regulation of Bone Remodeling in Health and Disease

    PubMed Central

    Kearns, Ann E.; Khosla, Sundeep; Kostenuik, Paul J.

    2008-01-01

    Osteoclasts and osteoblasts dictate skeletal mass, structure, and strength via their respective roles in resorbing and forming bone. Bone remodeling is a spatially coordinated lifelong process whereby old bone is removed by osteoclasts and replaced by bone-forming osteoblasts. The refilling of resorption cavities is incomplete in many pathological states, which leads to a net loss of bone mass with each remodeling cycle. Postmenopausal osteoporosis and other conditions are associated with an increased rate of bone remodeling, which leads to accelerated bone loss and increased risk of fracture. Bone resorption is dependent on a cytokine known as RANKL (receptor activator of nuclear factor κB ligand), a TNF family member that is essential for osteoclast formation, activity, and survival in normal and pathological states of bone remodeling. The catabolic effects of RANKL are prevented by osteoprotegerin (OPG), a TNF receptor family member that binds RANKL and thereby prevents activation of its single cognate receptor called RANK. Osteoclast activity is likely to depend, at least in part, on the relative balance of RANKL and OPG. Studies in numerous animal models of bone disease show that RANKL inhibition leads to marked suppression of bone resorption and increases in cortical and cancellous bone volume, density, and strength. RANKL inhibitors also prevent focal bone loss that occurs in animal models of rheumatoid arthritis and bone metastasis. Clinical trials are exploring the effects of denosumab, a fully human anti-RANKL antibody, on bone loss in patients with osteoporosis, bone metastasis, myeloma, and rheumatoid arthritis. PMID:18057140

  14. Runx2 Overexpression in Bone Marrow Stromal Cells Accelerates Bone Formation in Critical-Sized Femoral Defects

    PubMed Central

    Wojtowicz, Abigail M.; Templeman, Kellie L.; Hutmacher, Dietmar W.; Guldberg, Robert E.

    2010-01-01

    The repair of large nonunions in long bones remains a significant clinical problem due to high failure rates and limited tissue availability for auto- and allografts. Many cell-based strategies for healing bone defects deliver bone marrow stromal cells (BMSCs) to the defect site to take advantage of the inherent osteogenic capacity of this cell type. However, many factors, including donor age and ex vivo expansion of the cells, cause BMSCs to lose their differentiation ability. To overcome these limitations, we have genetically engineered BMSCs to constitutively overexpress the osteoblast-specific transcription factor Runx2. In the present study, we examined Runx2-modified BMSCs, delivered via polycaprolactone scaffolds loaded with type I collagen meshes, in critical-sized segmental defects in rats compared to unmodified cells, cell-free scaffolds, and empty defects. Runx2 expression in BMSCs accelerated healing of critical-sized defects compared to unmodified BMSCs and defects receiving cell-free treatments. These findings provide an accelerated method for healing large bone defects, which may reduce recovery time and the need for external fixation of critical-sized defects. PMID:20412027

  15. Runx2 overexpression in bone marrow stromal cells accelerates bone formation in critical-sized femoral defects.

    PubMed

    Wojtowicz, Abigail M; Templeman, Kellie L; Hutmacher, Dietmar W; Guldberg, Robert E; García, Andrés J

    2010-09-01

    The repair of large nonunions in long bones remains a significant clinical problem due to high failure rates and limited tissue availability for auto- and allografts. Many cell-based strategies for healing bone defects deliver bone marrow stromal cells (BMSCs) to the defect site to take advantage of the inherent osteogenic capacity of this cell type. However, many factors, including donor age and ex vivo expansion of the cells, cause BMSCs to lose their differentiation ability. To overcome these limitations, we have genetically engineered BMSCs to constitutively overexpress the osteoblast-specific transcription factor Runx2. In the present study, we examined Runx2-modified BMSCs, delivered via polycaprolactone scaffolds loaded with type I collagen meshes, in critical-sized segmental defects in rats compared to unmodified cells, cell-free scaffolds, and empty defects. Runx2 expression in BMSCs accelerated healing of critical-sized defects compared to unmodified BMSCs and defects receiving cell-free treatments. These findings provide an accelerated method for healing large bone defects, which may reduce recovery time and the need for external fixation of critical-sized defects. PMID:20412027

  16. Modeling of Blood Lead Levels in Astronauts Exposed to Lead from Microgravity-Accelerated Bone Loss

    NASA Technical Reports Server (NTRS)

    Garcia, H.; James, J.; Tsuji, J.

    2014-01-01

    Human exposure to lead has been associated with toxicity to multiple organ systems. Studies of various population groups with relatively low blood lead concentrations (<10 µg/dL) have indicated associations of blood lead level with lower cognitive test scores in children, later onset of puberty in girls, and increased blood pressure and cardiovascular mortality rates in adults. Cognitive effects are considered by regulatory agencies to be the most sensitive endpoint at low doses. Although 95% of the body burden of lead is stored in the bones, the adverse effects of lead correlate with the concentration of lead in the blood better than with that in the bones. NASA has found that prolonged exposure to microgravity during spaceflight results in a significant loss of bone minerals, the extent of which varies from individual to individual and from bone to bone, but generally averages about 0.5% per month. During such bone loss, lead that had been stored in bones would be released along with calcium. The effects on the concentration of lead in the blood (PbB) of various concentrations of lead in drinking water (PbW) and of lead released from bones due to accelerated osteoporosis in microgravity, as well as changes in exposure to environmental lead before, during, and after spaceflight were evaluated using a physiologically based pharmacokinetic (PBPK) model that incorporated exposure to environmental lead both on earth and in flight and included temporarily increased rates of osteoporosis during spaceflight.

  17. In Vivo Hypobaric Hypoxia Performed During the Remodeling Process Accelerates Bone Healing in Mice

    PubMed Central

    Durand, Marjorie; Collombet, Jean-Marc; Frasca, Sophie; Begot, Laurent; Lataillade, Jean-Jacques; Le Bousse-Kerdilès, Marie-Caroline

    2014-01-01

    We investigated the effects of respiratory hypobaric hypoxia on femoral bone-defect repair in mice because hypoxia is believed to influence both mesenchymal stromal cell (MSC) and hematopoietic stem cell mobilization, a process involved in the bone-healing mechanism. To mimic conditions of non-weight-bearing limb immobilization in patients suffering from bone trauma, our hypoxic mouse model was further subjected to hind-limb unloading. A hole was drilled in the right femur of adult male C57/BL6J mice. Four days after surgery, mice were subjected to hind-limb unloading for 1 week. Seven days after surgery, mice were either housed for 4 days in a hypobaric room (FiO2 at 10%) or kept under normoxic conditions. Unsuspended control mice were housed in either hypobaric or normoxic conditions. Animals were sacrificed on postsurgery day 11 to allow for collection of both contralateral and lesioned femurs, blood, and spleen. As assessed by microtomography, delayed hypoxia enhanced bone-healing efficiency by increasing the closing of the cortical defect and the newly synthesized bone volume in the cavity by +55% and +35%, respectively. Proteome analysis and histomorphometric data suggested that bone-repair improvement likely results from the acceleration of the natural bone-healing process rather than from extended mobilization of MSC-derived osteoprogenitors. Hind-limb unloading had hardly any effect beyond delayed hypoxia-enhanced bone-healing efficiency. PMID:24944208

  18. Mesenchymal Dental Pulp Cells Attenuate Dentin Resorption in Homeostasis

    PubMed Central

    Zheng, Y.; Chen, M.; He, L.; Marão, H.F.; Sun, D.M.; Zhou, J.; Kim, S.G.; Song, S.; Wang, S.L.

    2015-01-01

    Dentin in permanent teeth rarely undergoes resorption in development, homeostasis, or aging, in contrast to bone that undergoes periodic resorption/remodeling. The authors hypothesized that cells in the mesenchymal compartment of dental pulp attenuate osteoclastogenesis. Mononucleated and adherent cells from donor-matched rat dental pulp (dental pulp cells [DPCs]) and alveolar bone (alveolar bone cells [ABCs]) were isolated and separately cocultured with primary rat splenocytes. Primary splenocytes readily aggregated and formed osteoclast-like cells in chemically defined osteoclastogenesis medium with 20 ng/mL of macrophage colony-stimulating factor (M-CSF) and 50 ng/mL of receptor activator of nuclear factor κB ligand (RANKL). Strikingly, DPCs attenuated osteoclastogenesis when cocultured with primary splenocytes, whereas ABCs slightly but significantly promoted osteoclastogenesis. DPCs yielded ~20-fold lower RANKL expression but >2-fold higher osteoprotegerin (OPG) expression than donor-matched ABCs, yielding a RANKL/OPG ratio of 41:1 (ABCs:DPCs). Vitamin D3 significantly promoted RANKL expression in ABCs and OPG in DPCs. In vivo, rat maxillary incisors were atraumatically extracted (without any tooth fractures), followed by retrograde pulpectomy to remove DPCs and immediate replantation into the extraction sockets to allow repopulation of the surgically treated root canal with periodontal and alveolar bone–derived cells. After 8 wk, multiple dentin/root resorption lacunae were present in root dentin with robust RANKL and OPG expression. There were areas of dentin resoprtion alternating with areas of osteodentin formation in root dentin surface in the observed 8 wk. These findings suggest that DPCs of the mesenchymal compartment have an innate ability to attenuate osteoclastogenesis and that this innate ability may be responsible for the absence of dentin resorption in homeostasis. Mesenchymal attenuation of dentin resorption may have implications in internal

  19. Progressive condylar resorption after mandibular advancement.

    PubMed

    Kobayashi, Tadaharu; Izumi, Naoya; Kojima, Taku; Sakagami, Naoko; Saito, Isao; Saito, Chikara

    2012-03-01

    Progressive condylar resorption is an irreversible complication and a factor in the development of late skeletal relapse after orthognathic surgery. We have evaluated cephalometric characteristics, signs and symptoms in the temporomandibular joint (TMJ), and surgical factors in six patients (one man and five women) who developed it after orthognathic surgery. The findings in preoperative cephalograms indicated that the patients had clockwise rotation of the mandible and retrognathism because of a small SNB angle, a wide mandibular plane angle, and a "minus" value for inclination of the ramus. There were erosions or deformities of the condyles, or both, on three-dimensional computed tomography (CT) taken before treatment. The mean (SD) anterior movement of the mandible at operation was 12.1 (3.9)mm and the mean relapse was -6.4 (2.5)mm. The mean change in posterior facial height was 4.5 (2.1)mm at operation and the mean relapse was -5.3 (1.8)mm. Two patients had click, or pain, or both, preoperatively. The click disappeared in one patient postoperatively, but one of the patients who had been symptom-free developed crepitus postoperatively. In the classified resorption pattern, posterior-superior bone loss was seen in three cases, anterior-superior bone loss in two, and superior bone loss in one. Progressive condylar resorption after orthognathic surgery is multifactorial, and some of the risk factors are inter-related. Patients with clockwise rotation of the mandible and retrognathism in preoperative cephalograms; erosion, or deformity of the condyle, or both, on preoperative CT; and wide mandibular advancement and counterclockwise rotation of the mandibular proximal segment at operation, seemed to be at risk. The mandible should therefore be advanced only when the condyles are stable on radiographs, and careful attention should be paid to postoperative mechanical loading on the TMJ in high-risk patients. PMID:21440343

  20. Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.

    2011-01-01

    We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  1. Prolonged Survival of Transplanted Osteoblastic Cells Does Not Directly Accelerate the Healing of Calvarial Bone Defects.

    PubMed

    Kitami, Megumi; Kaku, Masaru; Rocabado, Juan Marcelo Rosales; Ida, Takako; Akiba, Nami; Uoshima, Katsumi

    2016-09-01

    Considering the increased interest in cell-based bone regeneration, it is necessary to reveal the fate of transplanted cells and their substantive roles in bone regeneration. The aim of this study was to analyze the fate of transplanted cells and the effect of osteogenic cell transplantation on calvarial bone defect healing. An anti-apoptotic protein, heat shock protein (HSP) 27, was overexpressed in osteoblasts. Then, the treated osteoblasts were transplanted to calvarial bone defect and their fate was analyzed to evaluate the significance of transplanted cell survival. Transient overexpression of Hsp27 rescued MC3T3-E1 osteoblastic cells from H2 O2 -induced apoptosis without affecting osteoblastic differentiation in culture. Transplantation of Hsp27-overexpressing cells, encapsulated in collagen gel, showed higher proliferative activity, and fewer apoptotic cells in comparison with control cells. After 4-week of transplantation, both control cell- and Hsp27 overexpressed cell-transplanted groups showed significantly higher new bone formation in comparison with cell-free gel-transplantation group. Interestingly, the prolonged survival of transplanted osteoblastic cells by Hsp27 did not provide additional effect on bone healing. The transplanted cells in collagen gel survived for up to 4-week but did not differentiate into bone-forming osteoblasts. In conclusion, cell-containing collagen gel accelerated calvarial bone defect healing in comparison with cell-free collagen gel. However, prolonged survival of transplanted cells by Hsp27 overexpression did not provide additional effect. These results strongly indicate that cell transplantation-based bone regeneration cannot be explained only by the increment of osteogenic cells. Further studies are needed to elucidate the practical roles of transplanted cells that will potentiate successful bone regeneration. J. Cell. Physiol. 231: 1974-1982, 2016. © 2016 Wiley Periodicals, Inc. PMID:26754153

  2. Low level laser therapy accelerates bone healing in spinal cord injured rats.

    PubMed

    Medalha, Carla Christina; Santos, Ana Lúcia Yaeko Silva; Veronez, Suellen de Oliveira; Fernandes, Kelly Rossetti; Magri, Angela Maria Paiva; Renno, Ana Claudia Muniz

    2016-06-01

    Bone loss occurs rapidly and consistently after the occurrence of a spinal cord injury (SCI), leading to a decrease in bone mineral density (BMD) and a higher risk of fractures. In this context, the stimulatory effects of low level laser therapy (LLLT) also known as photobiomodulation (PBM) have been highlighted, mainly due to its osteogenic potential. The aim of the present study was to evaluate the effects of LLLT on bone healing using an experimental model of tibial bone defect in SCI rats. Twenty-four female Wistar rats were randomly divided into 3 groups: Sham group (SG), SCI control group (SC) and SCI laser treated group (SL). Two weeks after the induction of the SCI, animals were submitted to surgery to induce a tibial bone defect. Treatment was performed 3days a week, for 2weeks, at a single point over the area of the injury, using an 808nm laser (30mW, 100J/cm(2); 0.028cm(2), 1.7W/cm², 2.8J). The results of the histological and morphometric evaluation demonstrated that the SL group showed a larger amount of newly formed bone compared to the SC group. Moreover, a significant immunoexpression of runt-related transcription factor 2 (RUNX2) was observed in the SL group. There was no statistical difference in the biomechanical evaluation. In conclusion, the results suggest that LLLT accelerated the process of bone repair in rats with complete SCI. PMID:27077555

  3. Improving Bone Microarchitecture in Aging with Diosgenin Treatment: A Study in Senescence-Accelerated OXYS Rats.

    PubMed

    Tikhonova, Maria A; Ting, Che-Hao; Kolosova, Nataliya G; Hsu, Chao-Yu; Chen, Jian-Horng; Huang, Chi-Wen; Tseng, Ging-Ting; Hung, Ching-Sui; Kao, Pan-Fu; Amstislavskaya, Tamara G; Ho, Ying-Jui

    2015-10-31

    Osteoporosis is a major disease associated with aging. We have previously demonstrated that diosgenin prevents osteoporosis in both menopause and D-galactose-induced aging rats. OXYS rats reveal an accelerated senescence and are used as a suitable model of osteoporosis. The aim of the present study was to analyze microarchitecture and morphological changes in femur of OXYS rats using morphological tests and microcomputed tomography scanning, and to evaluate the effects of oral administration of diosgenin at 10 and 50 mg/kg/day on femur in OXYS rats. The result showed that, compared with age-matched Wistar rats, the femur of OXYS rats revealed lower bone length, bone weight, bone volume, frame volume, frame density, void volume, porosity, external and internal diameters, cortical bone area, BV/TV, Tb.N, and Tb.Th, but higher Tb.Sp. Eight weeks of diosgenin treatment decreased porosity and Tb.Sp, but increased BV/TV, cortical bone area, Tb.N and bone mineral density, compared with OXYS rats treated with vehicle. These data reveal that microarchitecture and morphological changes in femur of OXYS rats showed osteoporotic aging features and suggest that diosgenin may have beneficial effects on aging-induced osteoporosis. PMID:26387656

  4. Hypothalamic leptin gene therapy reduces body weight without accelerating age-related bone loss.

    PubMed

    Turner, Russell T; Dube, Michael; Branscum, Adam J; Wong, Carmen P; Olson, Dawn A; Zhong, Xiaoying; Kweh, Mercedes F; Larkin, Iske V; Wronski, Thomas J; Rosen, Clifford J; Kalra, Satya P; Iwaniec, Urszula T

    2015-12-01

    Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover. PMID:26487675

  5. Hypercalciuric Bone Disease

    NASA Astrophysics Data System (ADS)

    Favus, Murray J.

    2008-09-01

    Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.

  6. Tooth root resorption induced in rats by diphenylhydantoin and parathyroidectomy.

    PubMed Central

    Robinson, P. B.; Harvey, W.

    1989-01-01

    Changes in bone, cartilage and the dentition in animals and man following the administration of anticonvulsant drugs resemble those seen in hypoparathyroidism and pseudohypoparathyroidism. Groups of 21-day-old rats were treated with diphenylhydantoin, parathyroidectomized, or made hypocalcaemic with a calcium-deficient diet. Histological examination revealed extensive resorption of cementum and dentine in the molars of the drug-treated and parathyroidectomized rats, but not in the hypocalcaemic or control groups. Localization of injected tetracycline by fluorescence showed that the resorption affected the distal side of the tooth roots and had occurred after root formation. No changes in cementum formation on the mesial side of the roots had occurred in any of the experimental groups. These results suggest that diphenylhydantoin induces a condition similar to pseudohypoparathyroidism in which the resistance of tooth roots to resorption is reduced. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:2923790

  7. Losartan increases bone mass and accelerates chondrocyte hypertrophy in developing skeleton.

    PubMed

    Chen, Shan; Grover, Monica; Sibai, Tarek; Black, Jennifer; Rianon, Nahid; Rajagopal, Abbhirami; Munivez, Elda; Bertin, Terry; Dawson, Brian; Chen, Yuqing; Jiang, Ming-Ming; Lee, Brendan; Yang, Tao; Bae, Yangjin

    2015-05-01

    Angiotensin receptor blockers (ARBs) are a group of anti-hypertensive drugs that are widely used to treat pediatric hypertension. Recent application of ARBs to treat diseases such as Marfan syndrome or Alport syndrome has shown positive outcomes in animal and human studies, suggesting a broader therapeutic potential for this class of drugs. Multiple studies have reported a benefit of ARBs on adult bone homeostasis; however, its effect on the growing skeleton in children is unknown. We investigated the effect of Losartan, an ARB, in regulating bone mass and cartilage during development in mice. Wild type mice were treated with Losartan from birth until 6 weeks of age, after which bones were collected for microCT and histomorphometric analyses. Losartan increased trabecular bone volume vs. tissue volume (a 98% increase) and cortical thickness (a 9% increase) in 6-weeks old wild type mice. The bone changes were attributed to decreased osteoclastogenesis as demonstrated by reduced osteoclast number per bone surface in vivo and suppressed osteoclast differentiation in vitro. At the molecular level, Angiotensin II-induced ERK1/2 phosphorylation in RAW cells was attenuated by Losartan. Similarly, RANKL-induced ERK1/2 phosphorylation was suppressed by Losartan, suggesting a convergence of RANKL and angiotensin signaling at the level of ERK1/2 regulation. To assess the effect of Losartan on cartilage development, we examined the cartilage phenotype of wild type mice treated with Losartan in utero from conception to 1 day of age. Growth plates of these mice showed an elongated hypertrophic chondrocyte zone and increased Col10a1 expression level, with minimal changes in chondrocyte proliferation. Altogether, inhibition of the angiotensin pathway by Losartan increases bone mass and accelerates chondrocyte hypertrophy in growth plate during skeletal development. PMID:25779879

  8. Losartan increases bone mass and accelerates chondrocyte hypertrophy in developing skeleton

    PubMed Central

    Rianon, Nahid; Rajagopal, Abbhirami; Munivez, Elda; Bertin, Terry; Dawson, Brian; Chen, Yuqing; Jiang, Ming-Ming; Lee, Brendan; Yang, Tao; Bae, Yangjin

    2015-01-01

    Angiotensin receptor blockers (ARBs) are a group of anti-hypertensive drugs that are widely used to treat pediatric hypertension. Recent application of ARBs to treat diseases such as Marfan syndrome or Alport syndrome has shown positive outcomes in animal and human studies, suggesting a broader therapeutic potential for this class of drugs. Multiple studies have reported a benefit of ARBs on adult bone homeostasis; however, its effect on the growing skeleton in children is unknown. We investigated the effect of Losartan, an ARB, in regulating bone mass and cartilage during development in mice. Wild type mice were treated with Losartan from birth until 6 weeks of age, after which bones were collected for microCT and histomorphometric analyses. Losartan increased trabecular bone volume vs. tissue volume (a 98% increase) and cortical thickness (a 9% increase) in 6-weeks old wild type mice. The bone changes were attributed to decreased osteoclastogenesis as demonstrated by reduced osteoclast number per bone surface in vivo and suppressed osteoclast differentiation in vitro. At the molecular level, Angiotensin II-induced ERK1/2 phosphorylation in RAW cells was attenuated by Losartan. Similarly, RANKL-induced ERK1/2 phosphorylation was suppressed by Losartan, suggesting a convergence of RANKL and angiotensin signaling at the level of ERK1/2 regulation. To assess the effect of Losartan on cartilage development, we examined the cartilage phenotype of wild type mice treated with Losartan in utero from conception to 1 day of age. Growth plates of these mice showed an elongated hypertrophic chondrocyte zone and increased Col10a1 expression level, with minimal changes in chondrocyte proliferation. Altogether, inhibition of the angiotensin pathway by Losartan increases bone mass and accelerates chondrocyte hypertrophy in growth plate during skeletal development. PMID:25779879

  9. Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity

    SciTech Connect

    Iwasaki, Ryotaro; Ninomiya, Ken; Miyamoto, Kana; Suzuki, Toru; Sato, Yuiko

    2008-12-19

    The balance between osteoclast and osteoblast activity is central for maintaining the integrity of bone homeostasis. Here we show that mice lacking dendritic cell specific transmembrane protein (DC-STAMP), an essential molecule for osteoclast cell-cell fusion, exhibited impaired bone resorption and upregulation of bone formation by osteoblasts, which do not express DC-STAMP, which led to increased bone mass. On the contrary, DC-STAMP over-expressing transgenic (DC-STAMP-Tg) mice under the control of an actin promoter showed significantly accelerated cell-cell fusion of osteoclasts and bone resorption, with decreased osteoblastic activity and bone mass. Bone resorption and formation are known to be regulated in a coupled manner, whereas DC-STAMP regulates bone homeostasis in an un-coupled manner. Thus our results indicate that inhibition of a single molecule provides both decreased osteoclast activity and increased bone formation by osteoblasts, thereby increasing bone mass in an un-coupled and a tissue specific manner.

  10. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling

    PubMed Central

    Crane, Janet L.; Cao, Xu

    2014-01-01

    During bone resorption, abundant factors previously buried in the bone matrix are released into the bone marrow microenvironment, which results in recruitment and differentiation of bone marrow mesenchymal stem cells (MSCs) for subsequent bone formation, temporally and spatially coupling bone remodeling. Parathyroid hormone (PTH) orchestrates the signaling of many pathways that direct MSC fate. The spatiotemporal release and activation of matrix TGF-β during osteoclast bone resorption recruits MSCs to bone-resorptive sites. Dysregulation of TGF-β alters MSC fate, uncoupling bone remodeling and causing skeletal disorders. Modulation of TGF-β or PTH signaling may reestablish coupled bone remodeling and be a potential therapy. PMID:24487640

  11. Zebrafish scales respond differently to in vitro dynamic and static acceleration: analysis of interaction between osteoblasts and osteoclasts.

    PubMed

    Kitamura, Kei-ichiro; Takahira, Koh; Inari, Masato; Satoh, Yusuke; Hayakawa, Kazuichi; Tabuchi, Yoshiaki; Ogai, Kazuhiro; Nishiuchi, Takumi; Kondo, Takashi; Mikuni-Takagaki, Yuko; Chen, Wenxi; Hattori, Atsuhiko; Suzuki, Nobuo

    2013-09-01

    Zebrafish scales consist of bone-forming osteoblasts, bone-resorbing osteoclasts, and calcified bone matrix. To elucidate the underlying molecular mechanism of the effects induced by dynamic and static acceleration, we investigated the scale osteoblast- and osteoclast-specific marker gene expression involving osteoblast-osteoclast communication molecules. Osteoblasts express RANKL, which binds to the osteoclast surface receptor, RANK, and stimulates bone resorption. OPG, on the other hand, is secreted by osteoblast as a decoy receptor for RANKL, prevents RANKL from binding to RANK and thus prevents bone resorption. Therefore, the RANK-RANKL-OPG pathway contributes to the regulation of osteoclastogenesis by osteoblasts. Semaphorin 4D, in contrast, is expressed on osteoclasts, and binding to its receptor Plexin-B1 on osteoblasts results in suppression of bone formation. In the present study, we found that both dynamic and static acceleration at 3.0×g decreased RANKL/OPG ratio and increased osteoblast-specific functional mRNA such as alkaline phosphatase, while static acceleration increased and dynamic acceleration decreased osteoclast-specific mRNA such as cathepsin K. Static acceleration increased semaphorin 4D mRNA expression, while dynamic acceleration had no effect. The results of the present study indicated that osteoclasts have predominant control over bone metabolism via semaphorin 4D expression induced by static acceleration at 3.0×g. PMID:23632157

  12. Osteoclast function and bone-resorbing activity: An overview.

    PubMed

    Soysa, Niroshani Surangika; Alles, Neil

    2016-07-29

    Bone resorption is an important cellular function in skeletal development and remodeling of the adult skeleton. Most of the pathological bone disease conditions like osteoporosis reflect increased osteoclast activity; hence, increased bone resorption. Researchers have unraveled most of the intracellular mechanisms responsible for osteoclast bone-resorbing activity in last few decades. Therefore, understanding the fundamentals of osteoclast-induced bone resorption and the cytokines and other substances that modulate the osteoclast activity unequivocally provide insights into the development of drugs to ameliorate pathological bone diseases with enhanced bone resorption. The aim of this review is to examine the literature on osteoclast function and bone-resorbing activity. PMID:27157135

  13. Invasive Cervical Resorption: A Review

    PubMed Central

    Kandalgaonkar, Shilpa D; Gharat, Leena A; Tupsakhare, Suyog D; Gabhane, Mahesh H

    2013-01-01

    Invasive cervical resorption is a relatively uncommon form of external root resorption exhibiting no external signs. The resorptive condition is often detected by routine radiographic examination. The clinical features vary from a small defect at the gingival margin to a pink coronal discoloration of the tooth crown resulting in ultimate cavitation of the overlying enamel which is painless unless pulpal or periodontal infection supervenes. Radiographic features of lesions vary from well-delineated to irregularly bordered mottled radiolucencies, and these can be confused with dental caries. A characteristic radiopaque line generally separates the image of the lesion from that of the root canal, because the pulp remains protected by a thin layer of predentin until late in the process. Histopathologically, the lesions contain fibrovascular tissue with resorbing clastic cells adjacent to the dentin surface. More advanced lesions display fibro-osseous characteristics with deposition of ectopic bonelike calcifications both within the resorbing tissue and directly on the dentin surface. How to cite this article: Kandalgaonkar SD, Gharat LA, Tupsakhare SD, Gabhane MH. Invasive Cervical Resorption: A Review. J Int Oral Health 2013;5(6):124-30 . PMID:24453457

  14. Effects of myokines on bone.

    PubMed

    Kaji, Hiroshi

    2016-01-01

    The links between muscle and bone have been recently examined because of the increasing number of patients with osteoporosis and sarcopenia. Myokines are skeletal muscle-derived humoral cytokines and growth factors, which exert physiological and pathological functions in various distant organs, including the regulation of glucose, energy and bone metabolism. Myostatin is a crucial myokine, the expression of which is mainly limited to muscle tissues. The inhibition of myostatin signaling increases bone remodeling, bone mass and muscle mass, and it may provide a target for the treatment of both sarcopenia and osteoporosis. As myostatin is involved in osteoclast formation and bone destruction in rheumatoid arthritis, myostatin may be a target myokine for the treatment of accelerated bone resorption and joint destruction in rheumatoid arthritis. Numerous other myokines, including transforming growth factor-β, follistatin, insulin-like growth factor-I, fibroblast growth factor-2, osteoglycin, FAM5C, irisin, interleukin (IL)-6, leukemia inhibitory factor, IL-7, IL-15, monocyte chemoattractant protein-1, ciliary neurotrophic factor, osteonectin and matrix metalloproteinase 2, also affect bone cells in various manners. However, the effects of myokines on bone metabolism are largely unknown. Further research is expected to clarify the interaction between muscle and bone, which may lead to greater diagnosis and the development of the treatment for muscle and bone disorders, such as osteoporosis and sarcopenia. PMID:27579164

  15. Accelerated bone mineral loss following a hip fracture: a prospective longitudinal study.

    PubMed

    Dirschl, D R; Henderson, R C; Oakley, W C

    1997-07-01

    The purpose of this prospective study was to monitor the bone mineral density (BMD) of the lumbar spine and contralateral femoral neck in the first year following an osteoporosis-related fracture of the hip. Eighty-three elderly patients (mean age 77 years) who had sustained a hip fracture had determinations of BMD made at the time of fracture; 49 of these patients were available for reassessment of BMD 1 year later. The change in BMD was correlated with pre- and postinjury variables, such as ambulatory ability, dietary intake of calcium, serum vitamin D levels, mental status, and routine serologies. The mean decrease in BMD in the year following fracture was 5.4% from the contralateral femoral neck and 2.4% from the lumbar spine. Calcium intake correlated with the loss of BMD from the femoral neck (p = 0.015), but not the lumbar spine. Patients with daily calcium intakes of less than 500 mg/day had a more than 10% decrease in femoral neck BMD in the year following their hip fracture. Serum 1,25-dihydroxy vitamin D level correlated with loss of MBD from the lumbar spine (p = 0.001), but not from the femoral neck. There was no correlation between the loss of bone mineral from either measurement site and age, sex, level of ambulation, or mental status. The loss of BMD from the femoral neck in the year following a hip fracture is more than five times that reported in the nonfractured population. This accelerated rate of loss can have drastic consequences in an elderly population already exhibiting osteopenia and propensity to fall. Investigation of pharmacologic or other interventions in the first critical year following a hip fracture may potentially blunt this accelerated rate of bone loss and lessen the risk of subsequent fractures. PMID:9213011

  16. Clinical technique for invasive cervical root resorption

    PubMed Central

    Silveira, Luiz Fernando Machado; Silveira, Carina Folgearini; Martos, Josué; Piovesan, Edno Moacir; César Neto, João Batista

    2011-01-01

    This clinical case report describes the diagnosis and treatment of an external invasive cervical resorption. A 17-year-old female patient had a confirmed diagnosis of invasive cervical resorption class 4 by cone beam computerized tomography. Although, there was no communication with the root canal, the invasive resorption process was extending into the cervical and middle third of the root. The treatment of the cervical resorption of the lateral incisor interrupted the resorptive process and restored the damaged root surface and the dental functions without any esthetic sequelae. Both the radiographic examination and computed tomography are imperative to reveal the extent of the defect in the differential diagnosis. PMID:22144822

  17. Contaminant resorption during soil washing

    SciTech Connect

    Gombert, D.

    1993-10-01

    To evaluate the applicability of soil washing to a specific site requires some basic research in how contaminants are bound. Much can be learned from sequential extraction methodology based on micronutrient bioavailability studies wherein the soil matrix is chemically dissected to selectively remove particular fixation mechanisms independently. This procedure uses a series of progressively more aggressive solvents to dissolve the principle phases that make up a soil, however, the published studies do not appear to consider the potential for a contaminant released from one type of site to resorb on another site during an extraction. This physical model assumes no ion exchange or adsorption at sites either previously occupied by other ions, or exposed by the dissolution. Therefore, to make engineering use of the sequential extraction data, the release of contamination must be evaluated relative to the effects of resorption. Time release studies were conducted to determine the optimum duration for extraction to maximize complete destruction of the target matrix fraction while minimizing contaminant resorption. Tests with and without a potassium brine present to inhibit cesium resorption indicated extraction efficiency could be enhanced by as much as a factor of ten using the brine.

  18. Controlled Delivery of Zoledronate Improved Bone Formation Locally In Vivo

    PubMed Central

    Peng, Jiang; Lu, Qiang; Wang, Yu; Wang, Aiyuan; Guo, Quanyi; Gao, Xupeng; Xu, Wenjing; Lu, Shibi

    2014-01-01

    Bisphosphonates (BPs) have been widely used in clinical treatment of bone diseases with increased bone resorption because of their strong affinity for bone and their inhibition of bone resorption. Recently, there has been growing interest in their improvement of bone formation. However, the effect of local controlled delivery of BPs is unclear. We used polylactide acid-glycolic acid copolymer (PLGA) as a drug carrier to deliver various doses of the bisphosphonate zoledronate (Zol) into the distal femur of 8-week-old Sprague-Dawley rats. After 6 weeks, samples were harvested and analyzed by micro-CT and histology. The average bone mineral density and mineralized bone volume fraction were higher with medium- and high-dose PLGA-Zol (30 and 300 µg Zol, respectively) than control and low-dose Zol (3 µg PLGA-Zol; p<0.05). Local controlled delivery of Zol decreased the numbers of osteoclast and increased the numbers of osteoblast. Moreover, local controlled delivery of medium- and high-dose Zol accelerated the expression of bone-formation markers. PLGA used as a drug carrier for controlled delivery of Zol may promote local bone formation. PMID:24618585

  19. DNA damage drives accelerated bone aging via an NF-κB-dependent mechanism

    PubMed Central

    Chen, Qian; Liu, Kai; Robinson, Andria R.; Clauson, Cheryl L.; Blair, Harry C.; Robbins, Paul D.; Niedernhofer, Laura J.; Ouyang, Hongjiao

    2013-01-01

    Advanced age is one of the most important risk factors for osteoporosis. Accumulation of oxidative DNA damage has been proposed to contribute to age-related deregulation of osteoblastic and osteoclastic cells. ERCC1 (Excision Repair Cross Complementary group 1)-XPF (Xeroderma Pigmentosum Group F) is an evolutionarily conserved structure-specific endonuclease that is required for multiple DNA repair pathways. Inherited mutations affecting expression of ERCC1-XPF cause a severe progeroid syndrome in humans, including early onset of osteopenia and osteoporosis, or anomalies in skeletal development. Herein, we used progeroid ERCC1-XPF deficient mice, including Ercc1-null (Ercc1−/−) and hypomorphic (Ercc1−/Δ) mice, to investigate the mechanism by which DNA damage leads to accelerated bone aging. Compared to their wild-type littermates, both Ercc1−/− and Ercc1−/Δ mice display severe, progressive osteoporosis caused by reduced bone formation and enhanced osteoclastogenesis. ERCC1 deficiency leads to atrophy of osteoblastic progenitors in the bone marrow stromal cell (BMSC) population. There is increased cellular senescence of BMSCs and osteoblastic cells, as characterized by reduced proliferation, accumulation of DNA damage and a senescence-associated secretory phenotype (SASP). This leads to enhanced secretion of inflammatory cytokines known to drive osteoclastogenesis, such as IL-6, TNFα, and RANKL and thereby induces an inflammatory bone microenvironment favoring osteoclastogenesis. Furthermore, we found that the transcription factor NF-κB is activated in osteoblastic and osteoclastic cells of the Ercc1 mutant mice. Importantly, we demonstrated that haploinsufficiency of the p65 NF-κB subunit partially rescued the osteoporosis phenotype of Ercc1−/Δ mice. Finally, pharmacological inhibition of the NF-κB signaling via an IKK inhibitor reversed cellular senescence and SASP in Ercc1−/Δ BMSCs. These results demonstrate that DNA damage drives

  20. Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts.

    PubMed

    McMichael, Brooke K; Lee, Beth S

    2008-02-01

    Tropomyosins (Tms) are alpha-helical dimers that bind and stabilize actin microfilaments while regulating their accessibility to other actin-associated proteins. Four genes encode expression of over forty Tms, most of which are expressed in nonmuscle cells. In recent years, it has become clear that individual Tm isoforms may regulate specific actin pools within cells. In this study, we examined how osteoclast function may be regulated by the tropomyosin isoform Tm-4, which we previously showed to be highly localized to podosomes and sealing zones of osteoclasts. RNAi-mediated knockdown of Tm-4, both in RAW264.7- and mouse marrow-derived osteoclasts, resulted in thinning of the actin ring of the sealing zone. Knockdown of Tm-4 also resulted in diminished bone resorptive capacity and altered resorption pit shape. In contrast, osteoclasts overexpressing Tm-4 demonstrated thickened podosomes on glass as well as thickened, aberrant actin structures on bone, and diminished motility and resorptive capacity. These results indicate that Tm-4 plays a role in regulating adhesion structures of osteoclasts, most likely by stabilizing the actin microfilaments present in podosomes and the sealing zone. PMID:18036591

  1. Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Morey-Holton, E. R.; Doty, S. B.; Currier, P. A.; Tanner, S. J.; Halloran, B. P.

    1994-01-01

    Loss of bone mass during periods of skeletal unloading remains an important clinical problem. To determine the extent to which resorption contributes to the relative loss of bone during skeletal unloading of the growing rat and to explore potential means of preventing such bone loss, 0.1 mg P/kg alendronate was administered to rats before unloading of the hindquarters. Skeletal unloading markedly reduced the normal increase in tibial mass and calcium content during the 9 day period of observation, primarily by decreasing bone formation, although bone resorption was also modestly stimulated. Alendronate not only prevented the relative loss of skeletal mass during unloading but led to a dramatic increase in calcified tissue in the proximal tibia compared with the vehicle-treated unloaded or normally loaded controls. Bone formation, however, assessed both by tetracycline labeling and by [3H]proline and 45Ca incorporation, was suppressed by alendronate treatment and further decreased by skeletal unloading. Total osteoclast number increased in alendronate-treated animals, but values were similar to those in controls when corrected for the increased bone area. However, the osteoclasts had poorly developed brush borders and appeared not to engage the bone surface when examined at the ultrastructural level. We conclude that alendronate prevents the relative loss of mineralized tissue in growing rats subjected to skeletal unloading, but it does so primarily by inhibiting the resorption of the primary and secondary spongiosa, leading to altered bone modeling in the metaphysis.

  2. Loss of milk fat globule-epidermal growth factor 8 (MFG-E8) in mice leads to low bone mass and accelerates ovariectomy-associated bone loss by increasing osteoclastogenesis.

    PubMed

    Sinningen, Kathrin; Albus, Elise; Thiele, Sylvia; Grossklaus, Sylvia; Kurth, Thomas; Udey, Mark C; Chavakis, Triantafyllos; Hofbauer, Lorenz C; Rauner, Martina

    2015-07-01

    Milk fat globule-epidermal growth factor 8 (MFG-E8) is a glycoprotein that controls the engulfment of apoptotic cells and exerts inflammation-modulatory effects. Recently, it has been implicated in osteoclastogenesis and the pathogenesis of inflammatory periodontal bone loss, but its role in physiological bone homeostasis is still not well defined. Here, we evaluated the influence of MFG-E8 on osteoblasts and osteoclasts and its impact on bone remodeling in healthy and ovariectomized mice as a model for post-menopausal osteoporosis. Total and trabecular bone mineral densities at the lumbar spine in 6-week-old MFG-E8 KO mice were reduced by 11% (p < 0.05) and 17% (p < 0.01), respectively, as compared to wild-type (WT) mice. Accordingly, serum levels of the bone formation marker P1NP were decreased by 37% (p < 0.01) in MFG-E8 KO mice as were the ex vivo mineralization capacity and expression of osteoblast genes (Runx2, alkaline phosphatase, osteocalcin) in MFG-E8 KO osteoblasts. In contrast, serum bone resorption markers CTX1 and TRAP5b were increased by 30% and 60% (p < 0.05), respectively, in MFG-E8 KO mice. Furthermore, bone marrow macrophages from MFG-E8-KO mice differentiated more effectively into osteoclasts, as compared to WT cells. MFG-E8-deficient osteoclasts displayed increased bone resorption ex vivo, which could be reversed by the presence of recombinant MFG-E8. To determine the significance of the enhanced osteoclastogenesis in MFG-E8 KO mice, we performed an ovariectomy, which is associated with bone loss due to increased osteoclast activity. Indeed, MFG-E8 KO mice lost 12% more trabecular bone density than WT mice after ovariectomy. Together, these data indicate that MFG-E8 controls steady-state and pathological bone turnover and may therefore represent a new target gene in the treatment of bone diseases. PMID:25868798

  3. Variation in nutrient resorption by desert shrubs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant nutrient resorption prior to leaf senescence is an important nutrient conservation mechanism for aridland plant species. However, little is known regarding the phylogenetic and environmental factors influencing this trait. Our objective was to compare nitrogen and phosphorus resorption in a ...

  4. Immune Dysfunction Associated with Abnormal Bone Marrow-Derived Mesenchymal Stroma Cells in Senescence Accelerated Mice

    PubMed Central

    Li, Ming; Guo, Kequan; Adachi, Yasushi; Ikehara, Susumu

    2016-01-01

    Senescence accelerated mice (SAM) are a group of mice that show aging-related diseases, and SAM prone 10 (SAMP10) show spontaneous brain atrophy and defects in learning and memory. Our previous report showed that the thymus and the percentage of T lymphocytes are abnormal in the SAMP10, but it was unclear whether the bone marrow-derived mesenchymal stroma cells (BMMSCs) were abnormal, and whether they played an important role in regenerative medicine. We thus compared BMMSCs from SAMP10 and their control, SAM-resistant (SAMR1), in terms of cell cycle, oxidative stress, and the expression of PI3K and mitogen-activated protein kinase (MAPK). Our cell cycle analysis showed that cell cycle arrest occurred in the G0/G1 phase in the SAMP10. We also found increased reactive oxygen stress and decreased PI3K and MAPK on the BMMSCs. These results suggested the BMMSCs were abnormal in SAMP10, and that this might be related to the immune system dysfunction in these mice. PMID:26840301

  5. [Bone diseases].

    PubMed

    Uebelhart, Brigitte; Rizzoli, René

    2016-01-13

    Calcium intake shows a small impact on bone mineral density and fracture risk. Denosumab is a more potent inhibitor of bone resorption than zoledronate. Abaloparatide, PTHrP analog, increases bone mineral density and decreases fracture incidence. Teriparatide could be delivered via a transdermic device. Romosozumab and odanacatib improve calculated bone strength. Sequential or combined treatments with denosumab and teriparatide could be of interest, but not denosumab followed by teriparatide. Fibrous dysplasia, Paget disease and hypophosphatasia are updated, as well as atypical femoral fracture and osteonecrosis of the jaw. PMID:26946704

  6. X-ray microscopy studies on the pharmaco-dynamics of therapeutic gallium in rat bones

    SciTech Connect

    Bockman, R.; Repo, M.; Warrell, R.; Pounds, J.G.; Kwiatek, W.M.; Long, G.J.; Schidlovksy, G.; Jones, K.W.

    1987-01-01

    We describe here our preliminary results on gallium and calcium quantitation and localization using x-ray microscopy techniques at the X-26 beam line of the National Synchrotron Light Source (NSLS) at 50 to 100 ..mu..m resolution and 10/sup )minus/6) gg detection levels. Since the original observation of exogenous gallium accumulation in bones, several studies have demonstrated that gallium nitrate is extremely effective in preserving boen mienral content both in vivo and in vitro. Gallium nitrate therapy normalized serum calcium levels in a study of patients with caner-related hypercalcemia, resistant to standard hydration and diuretic therapy. Recently, gallium nitrate treatment has been shown to halt the accelerated bone resorption that is frequently associated with cancers metastatic to bone. Several lines of evidence from vitro studies recently led to the demonstration of increased bone calcium and improvement in hydroxyapatite crystallinity in adult gallium-treated rats. Evidence is rapidly accumulating that gallium nitrate is an effective, new therapeutic agent for inhibition of accelerated bone resorption associated with cancer-related hypercalcemia. It has also been suggested that gallium could have wide clinical applications in disorders characterized by accelerated calcium loss from bone. 7 refs., 3 figs., 1 tab

  7. Scaffold-mediated BMP-2 minicircle DNA delivery accelerated bone repair in a mouse critical-size calvarial defect model.

    PubMed

    Keeney, Michael; Chung, Michael T; Zielins, Elizabeth R; Paik, Kevin J; McArdle, Adrian; Morrison, Shane D; Ransom, Ryan C; Barbhaiya, Namrata; Atashroo, David; Jacobson, Gunilla; Zare, Richard N; Longaker, Michael T; Wan, Derrick C; Yang, Fan

    2016-08-01

    Scaffold-mediated gene delivery holds great promise for tissue regeneration. However, previous attempts to induce bone regeneration using scaffold-mediated non-viral gene delivery rarely resulted in satisfactory healing. We report a novel platform with sustained release of minicircle DNA (MC) from PLGA scaffolds to accelerate bone repair. MC was encapsulated inside PLGA scaffolds using supercritical CO2 , which showed prolonged release of MC. Skull-derived osteoblasts transfected with BMP-2 MC in vitro result in higher osteocalcin gene expression and mineralized bone formation. When implanted in a critical-size mouse calvarial defect, scaffolds containing luciferase MC lead to robust in situ protein production up to at least 60 days. Scaffold-mediated BMP-2 MC delivery leads to substantially accelerated bone repair as early as two weeks, which continues to progress over 12 weeks. This platform represents an efficient, long-term nonviral gene delivery system, and may be applicable for enhancing repair of a broad range of tissues types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2099-2107, 2016. PMID:27059085

  8. Notch2 signaling promotes osteoclast resorption via activation of PYK2.

    PubMed

    Jin, Won Jong; Kim, Bongjun; Kim, Jung-Wook; Kim, Hong-Hee; Ha, Hyunil; Lee, Zang Hee

    2016-05-01

    Notch signaling plays a central role in various cell fate decisions, including skeletal development. Recently, Notch signaling was implicated in osteoclast differentiation and maturation, including the resorption activity of osteoclasts. However, the specific involvement of notch signaling in resorption activity was not fully investigated. Here, we investigated the roles of Notch signaling in the resorption activity of osteoclasts by use of the gamma-secretase inhibitor dibenzazepine (DBZ). Attenuating Notch signaling by DBZ suppressed the expression of NFATc1, a master transcription factor for osteoclast differentiation. However, overexpression of a constitutively active form of NFATc1 did not fully rescue the effects of DBZ. DBZ suppressed the autophosphorylation of PYK2, which is essential for the formation of the podosome belt and sealing zone, with reduced c-Src/PYK2 interaction. We found that RANKL increases PYK2 activation accompanied by increased NICD2 production in osteoclasts. Overexpression of NICD2 in osteoclasts rescued DBZ-mediated suppression of resorption activity with promotion of PYK2 autophosphorylation and microtubule acetylation. Consistent with the in vitro results, DBZ strongly suppressed bone destruction in an interleukin-1-induced bone loss model. Collectively, these results demonstrate that Notch2 in osteoclasts plays a role in the control of resorption activity via the PYK2-c-Src-microtubule signaling pathway. PMID:26829213

  9. Prevention and management of external inflammatory resorption following trauma to teeth.

    PubMed

    Abbott, P V

    2016-03-01

    External inflammatory resorption is one of the potential consequences of trauma to the teeth. It occurs when there has been loss of cementum due to damage to the external surface of the tooth root during trauma, plus the root canal system has become infected with bacteria. It is characterized by the radiographic appearance of loss of tooth substance with a radiolucency in the adjacent periodontal ligament and bone. The loss of cementum allows the intracanal bacteria and/or their endotoxins to reach the periodontal ligament more readily and this can lead to the development of the inflammatory resorptive process. External inflammatory resorption can ultimately lead to loss of the tooth if it is not managed in a timely manner. There are some injuries that are very likely to develop this type of resorption and a preventive approach can be adopted by commencing root canal treatment immediately as part of the emergency management of such cases. In cases where the resorptive process is already established, root canal treatment can arrest the resorption and encourage hard tissue repair. The use of a corticosteroid-antibiotic intracanal medicament has been shown to be particularly useful in the prevention and management of external inflammatory resorption. Calcium hydroxide should not be used as an immediate medicament because of its inherent toxicity and irritant properties but it is valuable as a subsequent medicament to encourage hard tissue repair where required. This review outlines the external inflammatory resorptive process and the management strategies that can be employed to prevent it from occurring, and to treat it if already present. PMID:26923450

  10. How are osteoclasts induced to resorb bone?

    PubMed

    Chambers, T J; Fuller, K

    2011-12-01

    Although much is known about how osteoclasts are formed, we know little about how they are activated, or how they recognize bone as the substrate appropriate for resorption. Bone mineral is considered to be essential to this recognition process, but a "mineral receptor" has never been identified. Recently, we found that resorptive behavior, as judged by the formation of ruffled borders and actin rings, occurs on ordinary tissue culture substrates if they are first coated with vitronectin. Similarly, vitronectin-coated substrates induce osteoclasts to secrete tartrate-resistant acid phosphatase and to form podosome belts, and to make resorption trails in the protein that coat the substrate. The same applies to bone mineral, which only induces resorptive behavior if coated with vitronectin. In contrast, fibronectin has none of these effects, despite inducing adhesion and spreading. It appears that osteoclasts recognize bone as the substrate appropriate for resorption through the high affinity of vitronectin-receptor ligands for bone mineral. PMID:22172032

  11. A small interfering RNA targeting Lnk accelerates bone fracture healing with early neovascularization.

    PubMed

    Kawakami, Yohei; Ii, Masaaki; Matsumoto, Tomoyuki; Kawamoto, Atsuhiko; Kuroda, Ryosuke; Akimaru, Hiroshi; Mifune, Yutaka; Shoji, Taro; Fukui, Tomoaki; Asahi, Michio; Kurosaka, Masahiro; Asahara, Takayuki

    2013-09-01

    Lnk, an intracellular adapter protein, is expressed in hematopoietic cell lineages, which has recently been proved as an essential inhibitory signaling molecule for stem cell self-renewal in the stem cell factor-c-Kit signaling pathway with enhanced hematopoietic and osteogenic reconstitution in Lnk-deficient mice. Moreover, the therapeutic potential of hematopoietic stem/endothelial progenitor cells (EPCs) for fracture healing has been demonstrated with mechanistic insight into vasculogenesis/angiogenesis and osteogenesis enhancement in the fracture sites. We report here, Lnk siRNA-transfected endothelial commitment of c-kit+/Sca-1+/lineage- subpopulations of bone marrow cells have high EPC colony-forming capacity exhibiting endothelial markers, VE-Cad, VEGF and Ang-1. Lnk siRNA-transfected osteoblasts also show highly osteoblastic capacity. In vivo, locally transfected Lnk siRNA could successfully downregulate the expression of Lnk at the fracture site up to 1 week, and radiological and histological examination showed extremely accelerated fracture healing in Lnk siRNA-transfected mice. Moreover, Lnk siRNA-transfected mice exhibited sufficient therapeutic outcomes with intrinstic enhancement of angiogenesis and osteogenesis, specifically, the mice demonstrated better blood flow recovery in the sites of fracture. In our series of experiments, we clarified that a negatively regulated Lnk system contributed to a favorable circumstance for fracture healing by enhancing vasculogenesis/angiogenesis and osteogenesis. These findings suggest that downregulation of Lnk system may have the clinical potential for faster fracture healing, which contributes to the reduction of delayed unions or non-unions. PMID:23897412

  12. Hypercalcemia and altered biochemical bone markers in post-bone marrow transplantation osteopetrosis: a case report and literature review.

    PubMed

    Kulpiya, Alisa; Mahachoklertwattana, Pat; Pakakasama, Samart; Hongeng, Suradej; Poomthavorn, Preamrudee

    2012-08-01

    Autosomal recessive osteopetrosis is a rare disorder of bone resorption defect that results in generalized sclerotic bones and bone marrow failure. Allogeneic BMT is the only treatment for cure. One of the complications following a successful BMT is hypercalcemia that is a unique complication in this group of patients. We report a three-yr-old boy with osteopetrosis who developed hypercalcemia following the successful BMT. His maximal calcium level was 13.3 mg/dL. Markedly increased both bone formation and resorption markers were demonstrated along with hypercalcemia. These findings indicated an active donor-derived osteoclastic function and thus bone resorption following the successful donor engraftment in the patient. Treatment with hyperhydration, furosemide and bone resorption inhibitors, calcitonin, and bisphosphonate led to normalization of the serum calcium level. Bone resorption but not bone formation marker was persistently elevated despite having normocalcemia during a 16.5-month follow-up period. PMID:21323826

  13. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone.

    PubMed

    Cole, J M; Wood, J C; Lopes, N C; Poder, K; Abel, R L; Alatabi, S; Bryant, J S J; Jin, A; Kneip, S; Mecseki, K; Symes, D R; Mangles, S P D; Najmudin, Z

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  14. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone

    NASA Astrophysics Data System (ADS)

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Symes, D. R.; Mangles, S. P. D.; Najmudin, Z.

    2015-08-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications.

  15. A diet high in meat protein and potential renal acid load increases fractional Ca absorption and urinary Ca excretion, without affecting markers of bone resorption or formation in postmenopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The objective was to determine the effects of high dietary protein (mostly meat) and high potential renal acid load (PRAL) on calcium (Ca) balance and markers of bone metabolism. Methods: In a randomized crossover design, sixteen healthy postmenopausal women consumed two diets: one with l...

  16. Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice

    PubMed Central

    Gupta, Himadri S.; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W. C.; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth. PMID:23091616

  17. Effects of Zinc and Strontium Substitution in Tricalcium Phosphate on Osteoclast Differentiation and Resorption

    PubMed Central

    Roy, Mangal; Fielding, Gary; Bandyopadhyay, Amit; Bose, Susmita

    2013-01-01

    Bone replacement materials must be able to regulate both osteoblastic synthesis of new bone and osteoclastic resorption process in order to maintain the balance of bone remodeling. Osteoclasts generate from differentiation of mononuclear cells. In the present study, we have studied the osteoclast-like-cells responses (differentiation from mononuclear cells and resorption) to beta tricalcium phosphate (β-TCP) doped with zinc (Zn) and strontium (Sr). Osteoclast-like-cells differentiation and resorption was studied in vitro using osteoclast-like-cells precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Morphological and immunohistochemical analysis confirmed successful differentiation of osteoclast-like-cells on the doped and undoped β-TCP substrates after 8 days of culture. Cells on the substrate surface expressed specific osteoclast markers such as; actin ring, multiple nucleus, tartrate-resistant acid phosphatase (TRAP) synthesis, and vitronectin receptor. However, quantitative TRAP assay indicated the inhibiting effect of Zn on osteoclast differentiation. Although, Zn doped β-TCP restricted osteoclast-like-cells differentiation, the samples were resorbed much faster. An increased resorption pit volume was noticed on Zn doped β-TCP samples after 28 days of culture compared to pure and Sr doped β-TCP. In this work, we demonstrated that β-TCP bone substitute materials can be successfully resorbed by osteoclast-like-cells, where both osteoclast-like-cells differentiation and resorption were modulated by Zn and/or Sr doping- a much needed property for successful bone remodeling. PMID:24244866

  18. Deletion of Histone Deacetylase 7 in Osteoclasts Decreases Bone Mass in Mice by Interactions with MITF

    PubMed Central

    Stemig, Melissa; Astelford, Kristina; Emery, Ann; Cho, Jangyeun J.; Allen, Ben; Huang, Tsang-hai; Gopalakrishnan, Rajaram; Mansky, Kim C.; Jensen, Eric D.

    2015-01-01

    Molecular regulators of osteoclast formation and function are an important area of research due to the central role of osteoclasts in bone resorption. Transcription factors such as MITF are essential for osteoclast generation by regulating expression of the genes required for cellular differentiation and resorptive function. We recently reported that histone deacetylase 7 (HDAC7) binds to and represses the transcriptional activity of MITF in osteoclasts, and that loss of HDAC7 in vitro accelerated osteoclastogenesis. In the current study, we extend this initial observation by showing that conditional deletion of HDAC7 in osteoclasts of mice leads to an in vivo enhancement in osteoclast formation, associated with increased bone resorption and lower bone mass. Expression of multiple MITF target genes is increased in bone marrow derived osteoclast cultures from the HDAC7 knockout mice. Interestingly, multiple regions of the HDAC7 amino-terminus can bind to MITF or exert repressive activity. Moreover, mutation or deletion of the HDAC7 conserved deacetylase catalytic domain had little effect on repressive function. These observations identify HDAC7 in osteoclasts as an important molecular regulator of MITF activity and bone homeostasis, but also highlight a gap in our understanding of exactly how HDAC7 functions as a corepressor. PMID:25875108

  19. [Decoronation: treatment protocol for ankylotic root resorption as a consequence of dental trauma].

    PubMed

    Lin, S; Fuss, Z; Wigler, R; Karawani, M; Ashkenazi, M

    2013-10-01

    Severe dental traumatic injuries, such as the complete displacement of a tooth from its socket (Avulsion) or the displacement of a tooth within its socket (Intrusive Luxation), may result in extensive injury to the root surface. As a result, the root surface injury heals without cementum and there is fusion between the alveolar bone and the exposed dentin or anorganic exposed cementum, without any attachment apparatus between them. This phenomenon is known as "dento-alveolar ankylosis" and is accompanied by ankylotic resorption of the root. In a process that results subsequent to the ankylosis, the root surface resorbs, and this is part of the remodeling of the alveolar bone (ankylotic resorption). When the traumatic injury occurs at a young age, lateral and apical growth of the alveolar bone continues without continued physiological eruption of the tooth. As a result, the position of the ankylotic tooth does not change, and with time thetooth appears infra-occluded resulting in severe esthetic and functional consequences. Extraction of the ankylotic tooth is difficult and sometimes even impossible due to the rigid fusion between the bone and the tooth. In addition, attempted extraction of the ankylotic tooth may lead to fracture of the buccal plate and resorption of the alveolar bone. Retention of the ankylotic tooth may lead to damage in bone deposition in the verticaldimension, leading to difficulties in future prosthodonticrehabilitation, research-based information has been incorporated PMID:24660573

  20. Time course of "escape" from calcitonin-induced inhibition of motility and resorption of disaggregated osteoclasts.

    PubMed

    Kanehisa, J

    1989-01-01

    The reversible calcitonin (CT)-induced inhibition of osteoclastic activity has been studied to clarify the mechanisms responsible for the so-called "escape phenomenon." Osteoclasts disaggregated from neonatal rabbits were cultured on glass coverslips or thin bovine bone slices. Resorption activity was evaluated by using time-lapse recording and scanning electron microscopy. Addition of CT to the cultures caused most osteoclasts on glass surfaces to be immotile and contracted. From 1.5 h onward, in cultures with CT, osteoclasts started to escape from CT-induced quiescence independently of other cells. CT also prevented osteoclasts on bone slices from excavating bone while concomitant cell immobility occurred. Inhibited osteoclasts were able to regain apparent bone-resorbing potency only after resumption of cytoplasmic immobility. The resumption of bone resorption could begin as early as 9.7 h after CT addition. The observations indicate that CT-induced inhibition of osteoclastic bone resorption is associated with inhibition of cytoplasmic motility and that the "escape" phenomenon reflects resumption of activity of osteoclasts that were previously inhibited by CT action rather than the resportive activity of newly formed osteoclasts. PMID:2765310

  1. Alternate light sources in the detection of bone after an accelerated fire: a pilot study.

    PubMed

    Gallant, Amber S

    2013-01-01

    This study examines the ability of alternate light sources to detect bone that has been exposed to fire when identification of bone remains is difficult to ascertain. It is intended as a tool for fire investigators to quickly determine whether an area should be considered a forensic scene. After being subjected to a test burn, pig bones were viewed and photographed with the use of a laser, and later compared with a UV light source. A secondary study observing stages of a human cremation was conducted to assess how various levels of burnt flesh affect the ability of bone to fluoresce utilizing a laser. Both studies demonstrated success in detecting bone while fluorescing with a molten lava type of appearance that has the potential to distinguish bone from its surrounding environment. Limitations and recommendations are discussed by the author including the need for future studies to expand on this research. PMID:22994928

  2. Glucose-dependent insulinotropic polypeptide (GIP) dose-dependently reduces osteoclast differentiation and resorption.

    PubMed

    Mabilleau, Guillaume; Perrot, Rodolphe; Mieczkowska, Aleksandra; Boni, Sébastien; Flatt, Peter R; Irwin, Nigel; Chappard, Daniel

    2016-10-01

    A role for glucose-dependent insulinotropic polypeptide (GIP) in controlling bone resorption has been suspected. However uncertainty remains to identify whether GIP act directly on osteoclasts. The aim of the present study were (i) to identify in different osteoclast differentiation models (human peripheral blood mononuclear cells-PBMC, murine bone marrow macrophage-BMM and murine Raw 264.7 cells) whether GIP was capable of reducing osteoclast formation and resorption; (ii) ascertain whether the highly potent GIP analogue N-AcGIP was capable of inducing a response at lower concentrations and (iii) to decipher the molecular mechanisms responsible for such effects. [d-Ala(2)]-GIP dose-dependently reduced osteoclast formation at concentration as low as 1nM in human PBMC and 10nM in murine BMM cultures. Furthermore, [d-Ala(2)]-GIP also reduced the extent of osteoclast resorption at concentration as low as 1nM in human PBMC and murine BMM cultures. The mechanism of action of [d-Ala(2)]-GIP appeared to be mediated by reduction in intracellular calcium concentration and oscillation that subsequently inhibited calcineurin activity and NFATc1 nuclear translocation. The potency of the highly potent N-AcGIP was determined and highlighted an effect on osteoclast formation and resorption at concentration ten times lower than observed with [d-Ala(2)]-GIP in vitro. Furthermore, N-AcGIP was also capable of reducing the number of osteoclast in ovariectomized mice as well as the circulating level of type I collagen C-telopeptide. Pharmacological concentrations required for reducing osteoclast formation and resorption provide the impetus to design and exploit enzymatically stable GIP analogues for the treatment of bone resorption disorders in humans. PMID:27451082

  3. [Multiple tooth resorption in an Italian greyhound].

    PubMed

    Roux, P; Stich, H; Schawalder, P

    2011-06-01

    An Italian greyhound was presented three times during a two-year period for dental prophylaxis due to periodontal disease. Clinical examination revealed lesions on several teeth. Radiographs revealed extensive resorptive root lesions. On histological examination, the presence of odontoclasts and signs of boney remodeling of the roots confirmed the resorptive nature of the lesions. Given the extent of the lesions, and poor prognosis with conservative treatment alone, teeth affected by the most severe resorption were extracted at each visit using a flap technique combined with alveolar vestibular osteotomy. Dental resorptive lesions are rarely detected in the dog but may be more frequent than previously thought. The routine use of dental radiographs can be used to reveal these lesions in the dog. PMID:21638265

  4. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland

    USGS Publications Warehouse

    Lü, Xiao-Tao; Reed, Sasha; Yu, Qiang; He, Nian-Peng; Wang, Zheng-Wen; Han, Xing-Guo

    2013-01-01

    Human activities have significantly altered nitrogen (N) availability in most terrestrial ecosystems, with consequences for community composition and ecosystem functioning. Although studies of how changes in N availability affect biodiversity and community composition are relatively common, much less remains known about the effects of N inputs on the coupled biogeochemical cycling of N and phosphorus (P), and still fewer data exist regarding how increased N inputs affect the internal cycling of these two elements in plants. Nutrient resorption is an important driver of plant nutrient economies and of the quality of litter plants produce. Accordingly, resorption patterns have marked ecological implications for plant population and community fitness, as well as for ecosystem nutrient cycling. In a semiarid grassland in northern China, we studied the effects of a wide range of N inputs on foliar nutrient resorption of two dominant grasses, Leymus chinensis and Stipa grandis. After 4 years of treatments, N and P availability in soil and N and P concentrations in green and senesced grass leaves increased with increasing rates of N addition. Foliar N and P resorption significantly decreased along the N addition gradient, implying a resorption-mediated, positive plant–soil feedback induced by N inputs. Furthermore, N : P resorption ratios were negatively correlated with the rates of N addition, indicating the sensitivity of plant N and P stoichiometry to N inputs. Taken together, the results demonstrate that N additions accelerate ecosystem uptake and turnover of both N and P in the temperate steppe and that N and P cycles are coupled in dynamic ways. The convergence of N and P resorption in response to N inputs emphasizes the importance of nutrient resorption as a pathway by which plants and ecosystems adjust in the face of increasing N availability.

  5. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    PubMed

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models. PMID:18774136

  6. Peptide drugs accelerate BMP-2-induced calvarial bone regeneration and stimulate osteoblast differentiation through mTORC1 signaling.

    PubMed

    Sugamori, Yasutaka; Mise-Omata, Setsuko; Maeda, Chizuko; Aoki, Shigeki; Tabata, Yasuhiko; Murali, Ramachandran; Yasuda, Hisataka; Udagawa, Nobuyuki; Suzuki, Hiroshi; Honma, Masashi; Aoki, Kazuhiro

    2016-08-01

    Both W9 and OP3-4 were known to bind the receptor activator of NF-κB ligand (RANKL), inhibiting osteoclastogenesis. Recently, both peptides were shown to stimulate osteoblast differentiation; however, the mechanism underlying the activity of these peptides remains to be clarified. A primary osteoblast culture showed that rapamycin, an mTORC1 inhibitor, which was recently demonstrated to be an important serine/threonine kinase for bone formation, inhibited the peptide-induced alkaline phosphatase activity. Furthermore, both peptides promoted the phosphorylation of Akt and S6K1, an upstream molecule of mTORC1 and the effector molecule of mTORC1, respectively. In the in vivo calvarial defect model, W9 and OP3-4 accelerated BMP-2-induced bone formation to a similar extent, which was confirmed by histomorphometric analyses using fluorescence images of undecalcified sections. Our data suggest that these RANKL-binding peptides could stimulate the mTORC1 activity, which might play a role in the acceleration of BMP-2-induced bone regeneration by the RANKL-binding peptides. PMID:27345003

  7. Osteoclastogenesis and Osteoclastic Resorption of Tricalcium Phosphate: Effect of Strontium and Magnesium Doping

    PubMed Central

    Roy, Mangal; Bose, Susmita

    2012-01-01

    Bone substitute materials are required to support the remodeling process, which consists of osteoclastic resorption and osteoblastic synthesis. Osteoclasts, the bone resorbing cells, generate from differentiation of hemopoietic mononuclear cells. In the present study we have evaluated the effects of 1.0 wt% strontium (Sr) and 1.0 wt% magnesium (Mg) doping in beta-tricalcium phosphate (β-TCP) on the differentiation of mononuclear cells into osteoclast-like cells and its resorptive activity. In vitro osteoclast-like cell formation, adhesion, and resorption were studied using osteoclast precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast-like cell formation was noticed on pure and Sr doped β-TCP samples at day 8 which was absent on Mg doped β-TCP samples indicating decrease in initial osteoclast differentiation due to Mg doping. After 21 days of culture, osteoclast-like cell formation was evident on all samples with osteoclastic markers such as actin ring, multiple nuclei, and presence of vitronectin receptor αvβ3 integrin. After osteoclast differentiation, all substrates showed osteoclast-like cell mediated degradation, however; significantly restricted for Mg doped β-TCP samples. Our present results indicated substrate chemistry controlled osteoclast differentiation and resorptive activity which can be used in designing TCP based resorbable bone substitutes with controlled degradation properties. PMID:22566212

  8. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization.

    PubMed

    Weigand, Annika; Beier, Justus P; Hess, Andreas; Gerber, Thomas; Arkudas, Andreas; Horch, Raymund E; Boos, Anja M

    2015-05-01

    During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue

  9. Menatetrenone rescues bone loss by improving osteoblast dysfunction in rats immobilized by sciatic neurectomy.

    PubMed

    Iwasaki-Ishizuka, Yoshiko; Yamato, Hideyuki; Murayama, Hisashi; Ezawa, Ikuko; Kurokawa, Kiyoshi; Fukagawa, Masafumi

    2005-02-25

    Menatetrenone (MK-4) is a vitamin K2 homologue that has been used as a therapeutic agent for osteoporosis in Japan. However, there is no far any reported evidence that MK-4 ameliorates a pre-existing condition of reduced bone mineral density (BMD) in vivo. In this study, we evaluated the effect of MK-4 in a rat model of established bone loss through immobilization caused by sciatic neurectomy. Unilateral sciatic neurectomy (SNx) was performed in rats, and 10 or 30 mg/kg of MK-4 or vehicle was administered to the rats three weeks after operation. Seven weeks after operation, the rats were sacrificed and BMD and bone histomorphometric parameters were measured to assess the effects of MK-4. While BMD of the distal femoral metaphysis was significantly decreased after SNx, MK-4 administration increased BMD in the neurectomized rats. Bone formation was decreased continuously and bone resorption was initially increased in SNx rats. Four weeks treatment of MK-4 increased bone formation and suppressed bone resorption. In addition, increased carboxylated osteocalcin and decreased undercarboxylated osteocalcin in serum were observed in MK-4-administered rats. These results indicated that MK-4 rescued bone volume by improving osteoblast dysfunction and accelerating gamma carboxylation of osteocalcin. MK-4 may be useful for treating disuse osteopenia. PMID:15698851

  10. Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats

    NASA Technical Reports Server (NTRS)

    Smith, Brenda J.; King, Jarrod B.; Lucas, Edralin A.; Akhter, Mohammed P.; Arjmandi, Bahram H.; Stoecker, Barbara J.

    2002-01-01

    This study was designed to examine the skeletal response to copper depletion and mechanical unloading in mature animals. In a 2 x 2 experimental design, 5.5-mo-old male Sprague-Dawley rats (n = 36) consumed either the control (AIN-93M) or Cu-depletion ((-)Cu) diet beginning 21 d before suspension and throughout the remainder of the study. Half of the rats in each dietary treatment group were either tail-suspended (TS) or kept ambulatory (AMB) for 28 d. Lower bone mineral densities (BMD) of 5th lumbar vertebra (L5) (P < 0.05) and femur were observed with (-)Cu and TS, but no differences were noted in the BMD of the humerus. Mechanical strength in the femur and vertebra decreased in response to TS, but were unaffected by copper depletion. Urinary deoxypyridinoline, an index of bone resorption, was significantly greater in TS rats, but unaltered by (-)Cu. No changes in serum or bone alkaline phosphatase activity, an indicator of bone formation, were observed. Our findings suggest that TS and (-)Cu decreased BMD in unloaded femur and vertebra but had no effect on normally loaded humerus. Bone loss with TS appeared to be related to accelerated bone resorption. Alterations in bone metabolism and bone mechanical properties in the mature skeleton resulting from (-)Cu warrant further investigation.

  11. Apical root resorption in orthodontically treated adults.

    PubMed

    Baumrind, S; Korn, E L; Boyd, R L

    1996-09-01

    This study analyzed the relationship in orthodontically treated adults between upper central incisor displacement measured on lateral cephalograms and apical root resorption measured on anterior periapical x-ray films. A multiple linear regression examined incisor displacements in four directions (retraction, advancement, intrusion, and extrusion) as independent variables, attempting to account for observed differences in the dependent variable, resorption. Mean apical resorption was 1.36 mm (sd +/- 1.46, n = 73). Mean horizontal displacement of the apex was -0.83 mm (sd +/- 1.74, n = 67); mean vertical displacement was 0.19 mm (sd +/- 1.48, n = 67). The regression coefficients for the intercept and for retraction were highly significant; those for extrusion, intrusion, and advancement were not. At the 95% confidence level, an average of 0.99 mm (se = +/- 0.34) of resorption was implied in the absence of root displacement and an average of 0.49 mm (se = +/- 0.14) of resorption was implied per millimeter of retraction. R2 for all four directional displacement variables (DDVs) taken together was only 0.20, which implied that only a relatively small portion of the observed apical resorption could be accounted for by tooth displacement alone. In a secondary set of univariate analyses, the associations between apical resorption and each of 14 additional treatment-related variables were examined. Only Gender, Elapsed Time, and Total Apical Displacement displayed statistically significant associations with apical resorption. Additional multiple regressions were then performed in which the data for each of these three statistically significant variables were considered separately, with the data for the four directional displacement variables. The addition of information on Elapsed Time or Total Apical Displacement did not explain a significant additional portion of the variability in apical resorption. On the other hand, the addition of information on Gender to the

  12. Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice

    PubMed Central

    Halade, Ganesh V; Jamali, Amina El; Williams, Paul J; Fajardo, Roberto J; Fernandes, Gabriel

    2010-01-01

    Clinical evidence indicates that fat is inversely proportional to bone mass in elderly obese women. However, it remains unclear whether obesity accelerates bone loss. In this report we present evidence that increased visceral fat leads to inflammation and subsequent bone loss in 12-month-old C57BL/6J mice that were fed 10% corn oil (CO)-based diet and a control lab chow (LC) for 6 months. As expected from our previous work, CO-fed mice demonstrated increased visceral fat and enhanced total body fat mass compared to LC. The adipocyte-specific PPARγ and bone marrow (BM) adiposity were increased in CO-fed mice. In correlation with those modifications, inflammatory cytokines (IL-1β, IL-6, TNF-α) were significantly elevated in COfed mice compared to LC-fed mice. This inflammatory BM microenvironment resulted in increased superoxide production in osteoclasts and undifferentiated BM cells. In CO-fed mice, the increased number of osteoclasts per trabecular bone length and the increased osteoclastogenesis assessed ex-vivo suggest that CO diet induces bone resorption. Additionally, the up-regulation of osteoclast-specific cathepsin k and RANKL expression and down-regulation of osteoblast-specific RUNX2/Cbfa1 supports this bone resorption in CO-fed mice. Also, COfed mice exhibited lower trabecular bone volume in the distal femoral metaphysis and had reduced OPG expression. Collectively, our results suggest that increased bone resorption in mice fed a CO-enriched diet is possibly due to increased inflammation mediated by the accumulation of adipocytes in the BM microenvironment. This inflammation may consequently increase osteoclastogenesis, while reducing osteoblast development in CO-fed mice. PMID:20923699

  13. Bone Density and High Salt Diets in a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Arnaud, S. B.; Navidi, M.; Liang, M. T. C.; Wolinsky, I.

    1999-01-01

    High salt diets accelerate bone loss with aging in patients with postmenopausal osteoporosis except when calcium supplementation is provided. We have observed that the decrease in mineral content of growing femurs in juvenile rats, exposed to a space flight model which unloads the hind limbs , is substantially less in animals fed excess salt. To determine whether excess dietary salt has the same effect on the skeleton of the mature animal whose response to unloading is increased resorption and bone loss rather than impaired growth, we carried out a metabolic study in mature rats with hindlimbs unloaded by tailsuspension.

  14. Anti-Resorptive Activity of Anti-Hypertensive Agent ACEi in Older Men

    NASA Technical Reports Server (NTRS)

    Rianon, Nahid; Edwards, BeJier; Nhonthachit, Phetsamong; Messick, Amanda; Gagel, Robert; Smith, Scott M.

    2016-01-01

    Hypertension (HTN) is associated with bone loss due to activation of the renin- angiotensin system (RAS) which in turn affects bone turnover. Animal studies have shown decreased bone resorption (up to 19%) and increased bone mass (up to 2%) following treatment with RAStargeted antihypertensive medications (e.g., angiotensin converting enzyme inhibitors, ACEi). Cross-sectional human studies have documented greater femoral neck BMD in older hypertensive men and women treated with ACEi compared to those not-treated with ACEi (nor other RAS-targeted medications). These findings raise the potential for ACEi use in preventing, or at a minimum slowing bone loss due to age or even microgravity. Based on this, we conducted a cohort study to investigate if ACEi treatment would decrease bone resorption in humans. We investigated changes in serum CTX and P1NP in 10 hypertensive men (45 years or older) treated with (N=5) without (N=5) exposure to ACEi for 3-months. Lisinopril was the ACEi used, and dose was adjusted as deemed appropriate by the attending physicians. Participants did not have any known skeletal health problem and were not exposed to any bisphosphonates or hydrochlorothiazides. A small sample size prevented detailed statistical analysis and hence, we present a preliminary descriptive report of our findings. Participants' age was 57+/-7 years (mean +/-SD), baseline body mass index was 27+/-5 kg/sq m, serum concentration of 25-hydroxyvitamin D was 66+/-17 nmol/L and parathyroid hormone was 30+/-13 pg/ml. After Lisinopril treatment, men demonstrated a 10% decrease in the bone resorption marker C-terminal telopeptide (CTX) and 5% decrease in formation marker procollagen type 1 amino-terminal pro-peptide (P1NP). On the contrary, serum CTX increased 41% and P1NP increased 10% in those who were not treated with ACEi. This is the first human study to report reduction in bone resorptive activity following ACEi treatment for hypertension in older men. Our results indicates

  15. Role of proton receptor OGR1 in bone response to metabolic acidosis?

    PubMed

    Jorgetti, Vanda; Drüeke, Tilman B; Ott, Susan M

    2016-03-01

    Chronic metabolic acidosis stimulates bone resorption, resulting in loss of calcium and bicarbonate from bone. Both osteoblasts and osteoclasts sense extracellular H(+) by the G-protein coupled receptor, OGR1, whose activation leads to increased bone resorption as well as decreased bone formation. Krieger et al. examined the effect of OGR1 knockout in mice. They found an unexpected increase in bone resorption, but nevertheless an increase in bone volume linked to enhanced bone formation. This discovery opens a window of opportunity to explore potential new anabolic treatments for patients with low bone mass. PMID:26880446

  16. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    PubMed Central

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020

  17. High-intensity Nd:YAG laser accelerates bone regeneration in calvarial defect models.

    PubMed

    Kim, Kwansik; Kim, In Sook; Cho, Tae Hyung; Seo, Young-Kwon; Hwang, Soon Jung

    2015-08-01

    High-power pulsed lasers have been recently regarded to be anabolic to bone, but in vivo evidence is still lacking. This study aimed to investigate the capacity of bone repair using a high-power, Q-switched, pulsed, neodymium-doped yttrium aluminium garnet (Nd:YAG) laser, using bilateral calvarial defect models having non-critical sized, 5 mm (rat) or 8 mm (rabbit) diameter. One of the bilateral defects, which were all filled with collagen sponge or left empty, was irradiated with a Nd:YAG laser once every 2 days for 2 weeks at a constant total fluence rate (344 J/cm(2) ), output power (0.75 W), pulse repetition rate (15 pps) and wavelength (1064 nm) and examined for the laser effect. The same experimental scheme was designed using a rabbit calvarial defect model implanted with sponge, which was explored for the dose effect of output power at 0.75 and 3 W with the same quantities of the other parameters. New bone formation was evaluated by micro-computed tomography-based analysis and histological observation at 4 weeks after surgery. Laser irradiation significantly increased new bone formation by approximately 45%, not only in the sponge-filled defects of rats but also when the defects were left empty, compared to the non-irradiated group. Consistently, both doses of output power (0.75 and 3 W) enhanced new bone formation, but there was no significant difference between the two doses. This study is one of the first to demonstrate the beneficial effect of Nd:YAG lasers on the regeneration of bone defects which were left empty or filled with collagen sponge, suggesting its great potential in postoperative treatment targeting local bone healing. PMID:24254743

  18. Accelerated bone turnover identifies hemiplegic patients at higher risk of demineralization.

    PubMed

    Del Puente, A; Pappone, N; Servodio Iammarrone, C; Esposito, A; Scarpa, R; Costa, L; Caso, F; Bardoscia, A; Del Puente, A

    2016-01-01

    Immobilization osteoporosis represents a severe complication in hemiplegic patients (HPs), causing fragility fractures, which may occur during rehabilitation reducing functional recovery and survival. The aim of the study was to investigate determinants of bone loss, independent from length of immobilization, which may be useful in early identification of HPs at higher risk of demineralization. Forty-eight HPs of both sexes underwent anthropometric measurements, evaluation of scores of spasticity and of lower limb motory capacity. Laboratory tests were performed. On serum: calcium; phosphorus; creatinine; ALP; iPTH; 25(OH) vitamin-D; sex hormones; Δ4-androstenedione; DHEA-S; insulin; IGF-1; FT3; FT4; TSH; c-AMP. On urine: c-AMP and calcium/creatinine ratio. Two bone turnover markers were measured: serum osteocalcin (BGP) and urinary deoxypyridinoline (DPD). Bone mineral density was determined at both femoral necks, defining a percentage difference in bone loss between paretic and non-paretic limb, thus controlling for the complex cofactors involved. Only bone turnover markers significantly and directly correlated with the entity of demineralization, controlling for age, sex and length of immobilization in the multivariate analysis (BGP coefficient estimate=0.008; SE=0.003; p=0.020; DPD coefficient estimate=0.005; SE=0.002; p=0.036). BGP and DPD are not dependent on anthropometric and endocrine-metabolic parameters, disability patterns and duration of immobilization, thus represent independent determinants of the degree of demineralization. A cutoff was defined for BGP and DPD above which subjects show significantly greater risk of demineralization. The immobilization event generates more severe bone loss when it occurs in subjects with higher bone turnover. BGP and DPD measurements may be of primary importance for early identification of HPs at risk, with relevant preventive implications. PMID:27049105

  19. [Morphological analysis of bone dynamics and metabolic bone disease. Histomorphometric concepts of bone remodeling and modeling].

    PubMed

    Takahashi, Hideaki E

    2011-04-01

    In tissue level turnover of bone cells, bone remodeling shows a sequential events of activation, resorption, reversal and formation. This may be observed as secondary osteons in the cortical bone and trabecular packets in the cancellous bone. Microcracks are repaired by targeted remodeling, and calcium is released by non-targeted remodeling. In macromodeling, a macroscopic size of a bone increases with growth, without changing its basic figure. In micromodelimg, a shift of trabecula, a minishift, is biomechnically controlled. New lamellar bone is added parallel to compressive and tensile force, and bone resorption occurs at the opposite surface of formation. In minimodeling new lamellar bone is formed with a sequence of activation, then directly formation, without scalloping at the cement line between newly formed bone and its basic bone. PMID:21447918

  20. Demineralized Bone Matrix Add-On for Acceleration of Bone Healing in Atypical Subtrochanteric Femoral Fracture: A Consecutive Case-Control Study

    PubMed Central

    Kulachote, Noratep; Sirisreetreerux, Norachart; Chanplakorn, Pongsthorn; Fuangfa, Praman; Suphachatwong, Chanyut; Wajanavisit, Wiwat

    2016-01-01

    Background. Delayed union and nonunion are common complications in atypical femoral fractures (AFFs) despite having good fracture fixation. Demineralized bone matrix (DBM) is a successfully proven method for enhancing fracture healing of the long bone fracture and nonunion and should be used in AFFs. This study aimed to compare the outcome after subtrochanteric AFFs (ST-AFFs) fixation with and without DBM. Materials and Methods. A prospective study was conducted on 9 ST-AFFs patients using DBM (DBM group) during 2013-2014 and compared with a retrospective consecutive case series of ST-AFFs patients treated without DBM (2010–2012) (NDBM group, 9 patients). All patients were treated with the same standard guideline and followed up until fractures completely united. Postoperative outcomes were then compared. Results. DBM group showed a significant shorter healing time than NDBM group (28.1 ± 14.4 versus 57.9 ± 36.8 weeks, p = 0.04). Delayed union was found in 4 patients (44%) in DBM group compared with 7 patients (78%) in NDBM group (p > 0.05). No statistical difference of nonunion was demonstrated between both groups (DBM = 1 and NDBM = 2, p > 0.05). Neither postoperative infection nor severe local tissue reaction was found. Conclusions. DBM is safe and effective for accelerating the fracture healing in ST-AFFx and possibly reduces nonunion after fracture fixation. Trial registration number is TCTR20151021001. PMID:27022610

  1. Somatostatin Analogue Treatment of a TSH-Secreting Adenoma Presenting With Accelerated Bone Metabolism and a Pericardial Effusion

    PubMed Central

    Mousiolis, Athanasios C.; Rapti, Eleni; Grammatiki, Maria; Yavropoulou, Maria; Efstathiou, Maria; Foroglou, Nikolaos; Daniilidis, Michalis; Kotsa, Kalliopi

    2016-01-01

    Abstract Increased bone turnover and other less frequent comorbidities of hyperthyroidism, such as heart failure, have only rarely been reported in association with central hyperthyroidism due to a thyrotropin (TSH)-secreting pituitary adenoma (TSHoma). Treatment is highly empirical and relies on eliminating the tumor and the hyperthyroid state. We report here an unusual case of a 39-year-old man who was initially admitted for management of pleuritic chest pain and fever of unknown origin. Diagnostic work up confirmed pericarditis and pleural effusion both refractory to treatment. The patient had a previous history of persistently elevated levels of alkaline phosphatase (ALP), indicative of increased bone turnover. He had also initially been treated with thyroxine supplementation due to elevated TSH levels. During the diagnostic process a TSHoma was revealed. Thyroxine was discontinued, and resection of the pituitary tumor followed by treatment with a somatostatin analog led to complete recession of the effusions, normalization of ALP, and shrinkage of pituitary tumor. Accelerated bone metabolism and pericardial and pleural effusions attributed to a TSHoma may resolve after successful treatment of the tumor. The unexpected clinical course of this case highlights the need for careful long-term surveillance in patients with these rare pituitary adenomas. PMID:26765410

  2. Effect of Nanocrystalline Hydroxyapatite Socket Preservation on Orthodontically Induced Inflammatory Root Resorption

    PubMed Central

    Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya

    2015-01-01

    Objective Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. Materials and Methods This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. Results The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10-4mm2 in the maxilla and 21.41 ± 11.25×10-4mm2 in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). Conclusion The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®. PMID:25685742

  3. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket

    PubMed Central

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  4. Loss of Gi G-Protein-Coupled Receptor Signaling in Osteoblasts Accelerates Bone Fracture Healing.

    PubMed

    Wang, Liping; Hsiao, Edward C; Lieu, Shirley; Scott, Mark; O'Carroll, Dylan; Urrutia, Ashley; Conklin, Bruce R; Colnot, Celine; Nissenson, Robert A

    2015-10-01

    G-protein-coupled receptors (GPCRs) are key regulators of skeletal homeostasis and are likely important in fracture healing. Because GPCRs can activate multiple signaling pathways simultaneously, we used targeted disruption of G(i) -GPCR or activation of G(s) -GPCR pathways to test how each pathway functions in the skeleton. We previously demonstrated that blockade of G(i) signaling by pertussis toxin (PTX) transgene expression in maturing osteoblastic cells enhanced cortical and trabecular bone formation and prevented age-related bone loss in female mice. In addition, activation of G(s) signaling by expressing the G(s) -coupled engineered receptor Rs1 in maturing osteoblastic cells induced massive trabecular bone formation but cortical bone loss. Here, we test our hypothesis that the G(i) and G(s) pathways also have distinct functions in fracture repair. We applied closed, nonstabilized tibial fractures to mice in which endogenous G(i) signaling was inhibited by PTX, or to mice with activated G(s) signaling mediated by Rs1. Blockade of endogenous G(i) resulted in a smaller callus but increased bone formation in both young and old mice. PTX treatment decreased expression of Dkk1 and increased Lef1 mRNAs during fracture healing, suggesting a role for endogenous G(i) signaling in maintaining Dkk1 expression and suppressing Wnt signaling. In contrast, adult mice with activated Gs signaling showed a slight increase in the initial callus size with increased callus bone formation. These results show that G(i) blockade and G(s) activation of the same osteoblastic lineage cell can induce different biological responses during fracture healing. Our findings also show that manipulating the GPCR/cAMP signaling pathway by selective timing of G(s) and G(i) -GPCR activation may be important for optimizing fracture repair. PMID:25917236

  5. Progranulin Knockout Accelerates Intervertebral Disc Degeneration in Aging Mice

    PubMed Central

    Zhao, Yun-peng; Tian, Qing-yun; Liu, Ben; Cuellar, Jason; Richbourgh, Brendon; Jia, Tang-hong; Liu, Chuan-ju

    2015-01-01

    Intervertebral disc (IVD) degeneration is a common degenerative disease, yet much is unknown about the mechanisms during its pathogenesis. Herein we investigated whether progranulin (PGRN), a chondroprotective growth factor, is associated with IVD degeneration. PGRN was detectable in both human and murine IVD. The levels of PGRN were upregulated in murine IVD tissue during aging process. Loss of PGRN resulted in an early onset of degenerative changes in the IVD tissue and altered expressions of the degeneration-associated molecules in the mouse IVD tissue. Moreover, PGRN knockout mice exhibited accelerated IVD matrix degeneration, abnormal bone formation and exaggerated bone resorption in vertebra with aging. The acceleration of IVD degeneration observed in PGRN null mice was probably due to the enhanced activation of NF-κB signaling and β-catenin signaling. Taken together, PGRN may play a critical role in homeostasis of IVD, and may serve as a potential molecular target for prevention and treatment of disc degenerative diseases. PMID:25777988

  6. Inhibition of bone formation during space flight

    NASA Technical Reports Server (NTRS)

    Morey, E. R.; Baylink, D. J.

    1978-01-01

    Parameters of bone formation and resorption were measured in rats orbited for 19.5 days aboard the Soviet Cosmos 782 biological satellite. The most striking effects were on bone formation. During flight, rats formed significantly less periosteal bone than did control rats on the ground. An arrest line at both the periosteum and the endosteum of flight animals suggests that a complete cecessation of bone growth occurred. During a 26-day postflight period, the defect in bone formation was corrected. No significant changes in bone resorption were observed.

  7. Bioactive scaffold for bone tissue engineering: An in vivo study

    NASA Astrophysics Data System (ADS)

    Livingston, Treena Lynne

    Massive bone loss of the proximal femur is a common problem in revision cases of total hip implants. Allograft is typically used to reconstruct the site for insertion of the new prosthesis. However, for long term fixation and function, it is desirable that the allograft becomes fully replaced by bone tissue and aids in the regeneration of bone to that site. However, allograft use is typically associated with delayed incorporation and poor remodeling. Due to these profound limitations, alternative approaches are needed. Tissue engineering is an attractive approach to designing improved graft materials. By combining osteogenic activity with a resorbable scaffold, bone formation can be stimulated while providing structure and stability to the limb during incorporation and remodeling of the scaffold. Porous, surface modified bioactive ceramic scaffolds (pSMC) have been developed which stimulate the expression of the osteoblastic phenotype and production of bone-like tissue in vitro. The scaffold and two tissue-engineered constructs, osteoprogenitor cells seeded onto scaffolds or cells expanded in culture to form bone tissue on the scaffolds prior to implantation, were investigated in a long bone defect model. The rate of incorporation was assessed. Both tissue-engineered constructs stimulated bone formation and comparable repair at 2 weeks. In a rat femoral window defect model, bone formation increased over time for all groups in concert with scaffold resorption, leading to a 40% increase in bone and 40% reduction of the scaffold in the defect by 12 weeks. Both tissue-engineered constructs enhanced the rate of mechanical repair of long bones due to better bony union with the host cortex. Long bones treated with tissue engineered constructs demonstrated a return in normal torsional properties by 4 weeks as compared to 12 weeks for long bones treated with pSMC. Culture expansion of cells to produce bone tissue in vitro did not accelerate incorporation over the treatment

  8. Melatonin: Bone Metabolism in Oral Cavity

    PubMed Central

    López-Martínez, Fanny; Olivares Ponce, Patricia N.; Guerra Rodríguez, Miriam; Martínez Pedraza, Ricardo

    2012-01-01

    Throughout life, bone tissue undergoes a continuous process of resorption and formation. Melatonin, with its antioxidant properties and its ability to detoxify free radicals, as suggested by Conconi et al. (2000) may interfere in the osteoclast function and thereby inhibit bone resorption, as suggested by Schroeder et al. (1981). Inhibition of bone resorption may be enhanced by a reaction of indoleamine in osteoclastogenesis. That it has been observed melatonin, at pharmacological doses, decrease bone mass resorption by suppressing through down regulation of the RANK-L, as suggested by Penarrocha Diago et al. (2005) and Steflik et al. (1994). These data point an osteogenic effect towards that may be of melatonin of clinical importance, as it could be used as a therapeutic agent in situations in which would be advantageous bone formation, such as in the treatment of fractures or osteoporosis or their use as, a bioactive surface on implant as suggested by Lissoni et al. (1991). PMID:22927853

  9. Bone fatigue and its implications for injuries in racehorses.

    PubMed

    Martig, S; Chen, W; Lee, P V S; Whitton, R C

    2014-07-01

    Musculoskeletal injuries are a common cause of lost training days and wastage in racehorses. Many bone injuries are a consequence of repeated high loading during fast work, resulting in chronic damage accumulation and material fatigue of bone. The highest joint loads occur in the fetlock, which is also the most common site of subchondral bone injury in racehorses. Microcracks in the subchondral bone at sites where intra-articular fractures and palmar osteochondral disease occur are similar to the fatigue damage detected experimentally after repeated loading of bone. Fatigue is a process that has undergone much study in material science in order to avoid catastrophic failure of engineering structures. The term 'fatigue life' refers to the numbers of cycles of loading that can be sustained before failure occurs. Fatigue life decreases exponentially with increasing load. This is important in horses as loads within the limb increase with increasing speed. Bone adapts to increased loading by modelling to maintain the strains within the bone at a safe level. Bone also repairs fatigued matrix through remodelling. Fatigue injuries develop when microdamage accumulates faster than remodelling can repair. Remodelling of the equine metacarpus is reduced during race training and accelerated during rest periods. The first phase of remodelling is bone resorption, which weakens the bone through increased porosity. A bone that is porous following a rest period may fail earlier than a fully adapted bone. Maximising bone adaptation is an important part of training young racehorses. However, even well-adapted bones accumulate microdamage and require ongoing remodelling. If remodelling inhibition at the extremes of training is unavoidable then the duration of exposure to high-speed work needs to be limited and appropriate rest periods instituted. Further research is warranted to elucidate the effect of fast-speed work and rest on bone damage accumulation and repair. PMID:24528139

  10. Unusual external resorption of a maxillary lateral.

    PubMed

    Giunta, J L; Kaplan, M A

    1994-01-01

    This article defines an unusual previously unreported entity afflicting a maxillary lateral incisor. Labial idiopathic external root resorption just apical to the cemento-enamel presented as a gingival (periodontal) problem and was misinterpreted as cervical dental caries. This report defines a new possibility for a radicular defect in a maxillary lateral incisor that may cause periodontal problems. PMID:8054293

  11. Thyroxine Induced Resorption of Xenopus Laevis Tail Tissue in Vitro.

    ERIC Educational Resources Information Center

    Scadding, Steven R.

    1984-01-01

    A simple method of studying thyroxine-induced resorption of tadpole tails in vitro is described. This procedure demonstrates that resorption is dependent on thyroxine and requires protein synthesis. It introduces students to the use of tissue culture methods. (Author)

  12. Gli1 haploinsufficiency leads to decreased bone mass with an uncoupling of bone metabolism in adult mice.

    PubMed

    Kitaura, Yoshiaki; Hojo, Hironori; Komiyama, Yuske; Takato, Tsuyoshi; Chung, Ung-il; Ohba, Shinsuke

    2014-01-01

    Hedgehog (Hh) signaling plays important roles in various development processes. This signaling is necessary for osteoblast formation during endochondral ossification. In contrast to the established roles of Hh signaling in embryonic bone formation, evidence of its roles in adult bone homeostasis is not complete. Here we report the involvement of Gli1, a transcriptional activator induced by Hh signaling activation, in postnatal bone homeostasis under physiological and pathological conditions. Skeletal analyses of Gli1+/- adult mice revealed that Gli1 haploinsufficiency caused decreased bone mass with reduced bone formation and accelerated bone resorption, suggesting an uncoupling of bone metabolism. Hh-mediated osteoblast differentiation was largely impaired in cultures of Gli1+/- precursors, and the impairment was rescued by Gli1 expression via adenoviral transduction. In addition, Gli1+/- precursors showed premature differentiation into osteocytes and increased ability to support osteoclastogenesis. When we compared fracture healing between wild-type and Gli1+/- adult mice, we found that the Gli1+/- mice exhibited impaired fracture healing with insufficient soft callus formation. These data suggest that Gli1, acting downstream of Hh signaling, contributes to adult bone metabolism, in which this molecule not only promotes osteoblast differentiation but also represses osteoblast maturation toward osteocytes to maintain normal bone homeostasis. PMID:25313900

  13. Gli1 Haploinsufficiency Leads to Decreased Bone Mass with an Uncoupling of Bone Metabolism in Adult Mice

    PubMed Central

    Kitaura, Yoshiaki; Hojo, Hironori; Komiyama, Yuske; Takato, Tsuyoshi; Chung, Ung-il; Ohba, Shinsuke

    2014-01-01

    Hedgehog (Hh) signaling plays important roles in various development processes. This signaling is necessary for osteoblast formation during endochondral ossification. In contrast to the established roles of Hh signaling in embryonic bone formation, evidence of its roles in adult bone homeostasis is not complete. Here we report the involvement of Gli1, a transcriptional activator induced by Hh signaling activation, in postnatal bone homeostasis under physiological and pathological conditions. Skeletal analyses of Gli1+/− adult mice revealed that Gli1 haploinsufficiency caused decreased bone mass with reduced bone formation and accelerated bone resorption, suggesting an uncoupling of bone metabolism. Hh-mediated osteoblast differentiation was largely impaired in cultures of Gli1+/− precursors, and the impairment was rescued by Gli1 expression via adenoviral transduction. In addition, Gli1+/− precursors showed premature differentiation into osteocytes and increased ability to support osteoclastogenesis. When we compared fracture healing between wild-type and Gli1+/− adult mice, we found that the Gli1+/− mice exhibited impaired fracture healing with insufficient soft callus formation. These data suggest that Gli1, acting downstream of Hh signaling, contributes to adult bone metabolism, in which this molecule not only promotes osteoblast differentiation but also represses osteoblast maturation toward osteocytes to maintain normal bone homeostasis. PMID:25313900

  14. The effect of accelerated, brace free, rehabilitation on bone tunnel enlargement after ACL reconstruction using hamstring tendons: a CT study.

    PubMed

    Vadalà, Antonio; Iorio, Raffaele; De Carli, Angelo; Argento, Giuseppe; Di Sanzo, Vincenzo; Conteduca, Fabio; Ferretti, Andrea

    2007-04-01

    The mechanism of bone tunnel enlargement following anterior cruciate ligament (ACL) reconstruction is not yet clearly understood. Many authors hypothesized that aggressive rehabilitation protocols may be a potential factor for bone tunnel enlargement, especially in reconstructions performed with hamstrings autograft. The purpose of this study was to evaluate the effect of a brace free rehabilitation on the tunnel enlargement after ACL reconstruction using doubled semitendinosus and gracilis tendons (DGST): our hypothesis was that early post-operative knee motion increase the diameters of the tibial and femoral bone tunnels. Forty-five consecutive patients undergoing ACL reconstruction for chronic ACL deficiency were selected. All patients were operated by the same surgeon using autologous DGST and the same fixation devices. Patients with associated ligaments injuries and or severe chondral damage were excluded. The patients were randomly assigned to enter the control group (group A, standard post-operative rehabilitation) and the study group (group B, brace free accelerated rehabilitation). A CT scan was used to exactly determine the diameters of both femoral and tibial tunnels at various levels of lateral femoral condyle and proximal tibia, using a previously described method [17]. Measurements were done by an independent radiologist in a blinded fashion the day after the operation and at a mean follow-up of 10 months (range 9-11). Statistical analysis was performed using paired t-test. The mean femoral tunnel diameter increased significantly from 9.04 +/- 0.05 (post-operative) to 9.30 +/- 0.8 mm (follow-up) in group A and from 9.04 +/- 0.03 to 9.94 +/- 1.12 mm in group B. The mean tibial tunnel diameter increased significantly from 9.03 +/- 0.04 to 10.01 +/- 0.80 mm in group A and from 9.04 +/- 0.03 to 10.60 +/- 0.78 mm in group B. The increase in femoral and tunnel diameters observed in the study group was significantly higher than that observed in the control

  15. Acceleration and holographic studies on different types of dynamization of external fixators of the bones

    NASA Astrophysics Data System (ADS)

    Podbielska, Halina; Kasprzak, Henryk T.; Voloshin, Arkady S.; Pennig, Dietmar; von Bally, Gert

    1992-08-01

    The unilateral axially dynamic fixator (Orthofix) was mounted on a sheep tibial shaft. Three fixation modes: static, dynamic controlled, and dynamic free were examined by means of double exposure holographic interferometry. Simultaneously, the acceleration was measured by an accelerometer and displayed on the monitor together with loading characteristics. The first exposure was made before the acting force was applied to the tibia plateau. The second one after the moment when the acceleration wave started to propagate through the specimen. We stated that in the case of dynamization less torsion occurs at the fracture site. So far, we have not been able to determine any correlation between results of holographic and accelerometric measurements.

  16. The effects of low-level laser therapy on orthodontically induced root resorption.

    PubMed

    Altan, A Burcu; Bicakci, A Altug; Mutaf, H Ilhan; Ozkut, Mahmut; Inan, V Sevinc

    2015-11-01

    The aim of this study was to evaluate the preventive and/or reparative effects of low-level laser therapy (LLLT) on orthodontically induced inflammatory root resorption (OIIRR) in rats. Thirty rats were divided into four groups (short-term control (SC), short-term laser (SL), long-term control (LC), long-term laser (LL)). In all groups, the left first molar was moved mesially for 11 days. At the end of this period, the rats in groups SC and SL were killed in order to observe the resorption lacunas and to evaluate whether LLLT had any positive effect on root resorption. The groups LC and LL were remained for a healing period of 14 days in order to observe spontaneous repair of the resorption areas and investigate whether LLLT had reparative effects on root resorption. A Ga-Al-As diode laser (Doris, CTL-1106MX, Warsaw, Poland) with a wavelength of 820 nm was used. In SL group, the first molars were irradiated with the dose of 4.8 J/cm2 (50 mW, 12 s, 0.6 J) on every other day during force application. In LL group, the irradiation period was started on the day of appliance removal and the first molars were irradiated with the dose of 4.8 J/cm2 on every other day for the next 14 days. LLLT significantly increased the number of osteoblasts and fibroblasts, and inflammatory response in SL group in comparison with SC group (P = .001). The amount of resorption did not represent any difference between the two groups (P = .16). In LL group, LLLT significantly increased the number of fibroblasts and decreased the amount of resorption in comparison with LC group (P = .001; P = .02). Both parameters indicating the reparative and the resorptive processes were found to be increased by LLLT applied during orthodontic force load. LLLT applied after termination of the orthodontic force significantly alleyed resorption and enhanced/accelerated the healing of OIIRR. LLLT has significant reparative effects on OIIRR while it is not possible to say that it definitely has a

  17. Acceleration of bone development and regeneration through the Wnt/β-catenin signaling pathway in mice heterozygously deficient for GSK-3β

    SciTech Connect

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Sasaki, Masanori; Yoshihara, Tatsuya; Morimoto, Sachio; Takashima, Akihiko; Mori, Yoshihide; Sasaguri, Toshiyuki

    2013-11-01

    Highlights: •The Wnt/β-catenin signaling pathway was activated in GSK-3β{sup +/−} mice. •The cortical and trabecular bone volumes were increased in GSK-3β{sup +/−} mice. •Regeneration of a partial bone defect was accelerated in GSK-3β{sup +/−} mice. -- Abstract: Glycogen synthase kinase (GSK)-3β plays an important role in osteoblastogenesis by regulating the Wnt/β-catenin signaling pathway. Therefore, we investigated whether GSK-3β deficiency affects bone development and regeneration using mice heterozygously deficient for GSK-3β (GSK-3β{sup +/−}). The amounts of β-catenin, c-Myc, cyclin D1, and runt-related transcription factor-2 (Runx2) in the bone marrow cells of GSK-3β{sup +/−} mice were significantly increased compared with those of wild-type mice, indicating that Wnt/β-catenin signals were enhanced in GSK-3β{sup +/−} mice. Microcomputed tomography of the distal femoral metaphyses demonstrated that the volumes of both the cortical and trabecular bones were increased in GSK-3β{sup +/−} mice compared with those in wild-type mice. Subsequently, to investigate the effect of GSK-3β deficiency on bone regeneration, we established a partial bone defect in the femur and observed new bone at 14 days after surgery. The volume and mineral density of the new bone were significantly higher in GSK-3β{sup +/−} mice than those in wild-type mice. These results suggest that bone formation and regeneration in vivo are accelerated by inhibition of GSK-3β, probably through activation of the Wnt/β-catenin signaling pathway.

  18. Inhibition of TNF-α Reverses the Pathological Resorption Pit Profile of Osteoclasts from Patients with Acute Charcot Osteoarthropathy

    PubMed Central

    2015-01-01

    We hypothesised that tumour necrosis factor-α (TNF-α) may enhance receptor activator of nuclear factor-κβ ligand- (RANKL-) mediated osteoclastogenesis in acute Charcot osteoarthropathy. Peripheral blood monocytes were isolated from 10 acute Charcot patients, 8 diabetic patients, and 9 healthy control subjects and cultured in vitro on plastic and bone discs. Osteoclast formation and resorption were assessed after treatment with (1) macrophage-colony stimulating factor (M-CSF) and RANKL and (2) M-CSF, RANKL, and neutralising antibody to TNF-α (anti-TNF-α). Resorption was measured on the surface of bone discs by image analysis and under the surface using surface profilometry. Although osteoclast formation was similar in M-CSF + RANKL-treated cultures between the groups (p > 0.05), there was a significant increase in the area of resorption on the surface (p < 0.01) and under the surface (p < 0.01) in Charcot patients compared with diabetic patients and control subjects. The addition of anti-TNF-α resulted in a significant reduction in the area of resorption on the surface (p < 0.05) and under the surface (p < 0.05) only in Charcot patients as well as a normalisation of the aberrant erosion profile. We conclude that TNF-α modulates RANKL-mediated osteoclastic resorption in vitro in patients with acute Charcot osteoarthropathy. PMID:26137498

  19. Inhibition of TNF-α Reverses the Pathological Resorption Pit Profile of Osteoclasts from Patients with Acute Charcot Osteoarthropathy.

    PubMed

    Petrova, Nina L; Petrov, Peter K; Edmonds, Michael E; Shanahan, Catherine M

    2015-01-01

    We hypothesised that tumour necrosis factor-α (TNF-α) may enhance receptor activator of nuclear factor-κβ ligand- (RANKL-) mediated osteoclastogenesis in acute Charcot osteoarthropathy. Peripheral blood monocytes were isolated from 10 acute Charcot patients, 8 diabetic patients, and 9 healthy control subjects and cultured in vitro on plastic and bone discs. Osteoclast formation and resorption were assessed after treatment with (1) macrophage-colony stimulating factor (M-CSF) and RANKL and (2) M-CSF, RANKL, and neutralising antibody to TNF-α (anti-TNF-α). Resorption was measured on the surface of bone discs by image analysis and under the surface using surface profilometry. Although osteoclast formation was similar in M-CSF + RANKL-treated cultures between the groups (p > 0.05), there was a significant increase in the area of resorption on the surface (p < 0.01) and under the surface (p < 0.01) in Charcot patients compared with diabetic patients and control subjects. The addition of anti-TNF-α resulted in a significant reduction in the area of resorption on the surface (p < 0.05) and under the surface (p < 0.05) only in Charcot patients as well as a normalisation of the aberrant erosion profile. We conclude that TNF-α modulates RANKL-mediated osteoclastic resorption in vitro in patients with acute Charcot osteoarthropathy. PMID:26137498

  20. Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair.

    PubMed

    Min, Jouha; Choi, Ki Young; Dreaden, Erik C; Padera, Robert F; Braatz, Richard D; Spector, Myron; Hammond, Paula T

    2016-04-26

    Infections associated with orthopedic implants cause increased morbidity and significant healthcare cost. A prolonged and expensive two-stage procedure requiring two surgical steps and a 6-8 week period of joint immobilization exists as today's gold standard for the revision arthroplasty of an infected prosthesis. Because infection is much more common in implant replacement surgeries, these issues greatly impact long-term patient care for a continually growing part of the population. Here, we demonstrate that a single-stage revision using prostheses coated with self-assembled, hydrolytically degradable multilayers that sequentially deliver the antibiotic (gentamicin) and the osteoinductive growth factor (BMP-2) in a time-staggered manner enables both eradication of established biofilms and complete and rapid bone tissue repair around the implant in rats with induced osteomyelitis. The nanolayered construct allows precise independent control of release kinetics and loading for each therapeutic agent in an infected implant environment. Antibiotics contained in top layers can be tuned to provide a rapid release at early times sufficient to eliminate infection, followed by sustained release for several weeks, and the underlying BMP-2 component enables a long-term sustained release of BMP-2, which induced more significant and mechanically competent bone formation than a short-term burst release. The successful growth factor-mediated osteointegration of the multilayered implants with the host tissue improved bone-implant interfacial strength 15-fold when compared with the uncoated one. These findings demonstrate the potential of this layered release strategy to introduce a durable next-generation implant solution, ultimately an important step forward to future large animal models toward the clinic. PMID:26923427

  1. Nucleosides Accelerate Inflammatory Osteolysis, Acting as Distinct Innate Immune Activators

    PubMed Central

    Pan, George; Zheng, Rui; Yang, Pingar; Li, Yao; Clancy, John P.; Liu, Jianzhong; Feng, Xu; Garber, David A; Spearman, Paul; McDonald, Jay M

    2015-01-01

    The innate immune system and its components play an important role in the pathogenesis of inflammatory bone destruction. Blockade of inflammatory cytokines does not completely arrest bone erosion, suggesting that other mediators also may be involved in osteolysis. Previously we showed that nucleosides promote osteoclastogenesis and bone-resorption activity in the presence of receptor activator for nuclear factor κB ligand (RANKL) in vitro. The studies described here further demonstrate that selected nucleosides and nucleoside analogues accelerate bone destruction in mice immunized with collagen II alone (CII) but also further enhance bone erosion in mice immunized by collagen II plus complete Freund's adjuvant (CII + CFA). Abundant osteoclasts are accumulated in destructive joints. These data indicate that nucleosides act as innate immune activators distinct from CFA, synergistically accelerating osteoclast formation and inflammatory osteolysis. The potential roles of the surface triggering receptor expressed on myeloid cells (TREM) and the intracellular inflammasome in nucleoside-enhanced osteoclastogenesis have been studied. These observations provide new insight into the pathogenesis and underlying mechanism of bone destruction in inflammatory autoimmune osteoarthritis. PMID:21472777

  2. Effects of increased hypothalamic leptin gene expression on ovariectomy-induced bone loss in rats

    PubMed Central

    Jackson, M.A.; Iwaniec, U.T.; Turner, R.T.; Wronski, T.J.; Kalra, S.P.

    2011-01-01

    Estrogen deficiency results in accelerated bone turnover with a net increase in bone resorption. Subcutaneous administration of leptin attenuates bone loss in ovariectomized (ovx) rats by reducing bone resorption. However, in addition to its direct beneficial effects, leptin has been reported to have indirect (central nervous system-mediated) antiosteogenic effects on bone, which may limit the efficacy of elevated serum leptin to prevent estrogen deficiency-associated bone loss. The present study evaluated the long-term effects of increased hypothalamic leptin transgene expression, using recombinant adeno-associated virus-leptin (rAAV-Lep) gene therapy, on bone mass, architecture, and cellular endpoints in sexually mature ovx Sprague-Dawley rats. Ovx rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either rAAV-Lep or rAAV-GFP (control vector encoding green fluorescent protein) and maintained for 10 weeks. Additional controls consisted of ovary-intact rats and ovx rats pair-fed to rAAV-Lep rats. Lumbar vertebrae were analyzed by micro-computed tomography and tibiae by histomorphometry. Cancellous bone volume was lower and osteoclast perimeter, osteoblast perimeter, and bone marrow adipocyte density were greater in ovx rats compared to ovary-intact controls. In contrast, differences among ovx groups were not detected for any endpoint evaluated. In conclusion, whereas estrogen deficiency resulted in marked cancellous osteopenia, increased bone turnover and marrow adiposity, increasing hypothalamic leptin transgene expression in ovx rats had neither detrimental nor beneficial effects on bone mass, architecture, or cellular endpoints. These findings demonstrate that the antiresorptive effects of subcutaneous leptin administration in ovx rats are mediated through leptin targets in the periphery. PMID:21640774

  3. Overexpression of DMP1 Accelerates Mineralization and Alters Cortical Bone Biomechanical Properties in Vivo

    PubMed Central

    Bhatia, Ankush; Albazzaz, Michael; Espinoza Orías, Alejandro A.; Inoue, Nozomu; Miller, Lisa M.; Acerbo, Alvin; George, Anne; Sumner, Dale R.

    2011-01-01

    Dentin matrix protein-1 (DMP1) is a key regulator of biomineralization. Here, we examine changes in structural, geometric, and material properties of cortical bone in a transgenic mouse model overexpressing DMP1. Micro-computed tomography and three-point bending were performed on 90 femora of wild type and transgenic mice at 1, 2, 4, and 6 months. Fourier transform infrared imaging was performed at 2 months. We found that the transgenic femurs were longer (p<0.01), more robust in cross-section (p<0.05), stronger (p<0.05), but had less post-yield strain and displacement (p<0.01), and higher tissue mineral density (p<0.01) than the wild type femurs at 1 and 2 months. At 2 months, the transgenic femurs also had a higher mineral-to-matrix ratio (p<0.05) and lower carbonate substitution (p<0.05) compared to wild type femurs. These findings indicate that increased mineralization caused by overexpressing DMP1 led to increased structural cortical bone properties associated with decreased ductility during the early post-natal period. PMID:22100074

  4. Influence of irradiation on the osteoinductive potential of demineralized bone matrix.

    PubMed

    Wientroub, S; Reddi, A H

    1988-04-01

    Samples of demineralized bone matrix (DBM) were exposed to graduated doses of radiation (1-15 Megarad) (Mrad) utilizing a linear accelerator and then implanted into the thoracic region of Long-Evans rats. Subcutaneous implantation of DBM into allogenic rats induces endochondral bone. In response to matrix implantation, a cascade of events ensues; mesenchymal cell proliferation on day 3 postimplantation, chondrogenesis on day 7, calcification of the cartilagenous matrix and chondrolysis on day 9, and osteogenesis on day 11 resulting in formation of an ossicle containing active hemopoietic tissue. Bone formation was assessed by measuring alkaline phosphatase activity, the rate of mineralization was determined by measuring 45Ca incorporation to bone mineral, and 40Ca content measured the extent of mineralization; acid phosphatase activity was used as a parameter for bone resorption. The dose of radiation (2.5 Mrad) currently used by bone banks for sterilization of bone tissue did not destroy the bone induction properties of DBM. Furthermore, radiation of 3-5 Mrad even enhanced bone induction, insofar as it produced more bone at the same interval of time than was obtained from unirradiated control samples. None of the radiation doses used in these experiments abolished bone induction, although the response induced by matrix irradiated with doses higher than 5 Mrad was delayed. PMID:3135091

  5. Bone Biochemistry on the International Space Station

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Heer, Martina; Zwart, Sara R.

    2016-01-01

    Bone biochemical measures provide valuable insight into the nature and time course of microgravity effects on bone during space flight, where imaging technology cannot be employed. Increased bone resorption is a hallmark of space flight, while markers of bone formation are typically unchanged or decreased. Recent studies (after the deployment to ISS of the advanced resistive exercise device, ARED), have documented that astronauts with good nutritional intake (e.g., maintenance of body mass), good vitamin D status, and exercise maintained bone mineral density. These data are encouraging, but crewmembers exercising on the ARED do have alterations in bone biochemistry, specifically, bone resorption is still increased above preflight levels, but bone formation is also significantly increased. While this bone remodeling raises questions about the strength of the resulting bone, however documents beneficial effects of nutrition and exercise in counteracting bone loss of space flight.

  6. Stoichiometric patterns in foliar nutrient resorption across multiple scales

    USGS Publications Warehouse

    Reed, Sasha C.; Townsend, Alan R.; Davidson, Eric A.; Cleveland, Cory C.

    2012-01-01

    *Nutrient resorption is a fundamental process through which plants withdraw nutrients from leaves before abscission. Nutrient resorption patterns have the potential to reflect gradients in plant nutrient limitation and to affect a suite of terrestrial ecosystem functions. *Here, we used a stoichiometric approach to assess patterns in foliar resorption at a variety of scales, specifically exploring how N : P resorption ratios relate to presumed variation in N and/or P limitation and possible relationships between N : P resorption ratios and soil nutrient availability. *N : P resorption ratios varied significantly at the global scale, increasing with latitude and decreasing with mean annual temperature and precipitation. In general, tropical sites (absolute latitudes < 23°26′) had N : P resorption ratios of < 1, and plants growing on highly weathered tropical soils maintained the lowest N : P resorption ratios. Resorption ratios also varied with forest age along an Amazonian forest regeneration chronosequence and among species in a diverse Costa Rican rain forest. *These results suggest that variations in N : P resorption stoichiometry offer insight into nutrient cycling and limitation at a variety of spatial scales, complementing other metrics of plant nutrient biogeochemistry. The extent to which the stoichiometric flexibility of resorption will help regulate terrestrial responses to global change merits further investigation.

  7. Etiology and sequelae of root resorption.

    PubMed

    Vlaskalic, V; Boyd, R L; Baumrind, S

    1998-06-01

    This article reviews the current status of investigation into apical root resorption within the context of orthodontic treatment. Treatment and patient factors that have traditionally been investigated are discussed, along with the results of current research in this area. The need for rethinking traditional research strategies in the quest for identifying both control and causative mechanisms is explored. Finally, proposals for key areas of future interest are highlighted. PMID:9680910

  8. Bisphosphonates and bone quality

    PubMed Central

    Pazianas, Michael; van der Geest, Stefan; Miller, Paul

    2014-01-01

    Bisphosphonates (BPs) are bone-avid compounds used as first-line medications for the prevention and treatment of osteoporosis. They are also used in other skeletal pathologies such as Paget's and metastatic bone disease. They effectively reduce osteoclast viability and also activity in the resorptive phase of bone remodelling and help preserve bone micro-architecture, both major determinants of bone strength and ultimately of the susceptibility to fractures. The chemically distinctive structure of each BP used in the clinic determines their unique affinity, distribution/penetration throughout the bone and their individual effects on bone geometry, micro-architecture and composition or what we call ‘bone quality'. BPs have no clinically significant anabolic effects. This review will touch upon some of the components of bone quality that could be affected by the administration of BPs. PMID:24876930

  9. Parathyroid Hormone (1-34) Transiently Protects Against Radiation-Induced Bone Fragility.

    PubMed

    Oest, Megan E; Mann, Kenneth A; Zimmerman, Nicholas D; Damron, Timothy A

    2016-06-01

    Radiation therapy for soft tissue sarcoma or tumor metastases is frequently associated with damage to the underlying bone. Using a mouse model of limited field hindlimb irradiation, we assessed the ability of parathyroid hormone (1-34) fragment (PTH) delivery to prevent radiation-associated bone damage, including loss of mechanical strength, trabecular architecture, cortical bone volume, and mineral density. Female BALB/cJ mice received four consecutive doses of 5 Gy to a single hindlimb, accompanied by daily injections of either PTH or saline (vehicle) for 8 weeks, and were followed for 26 weeks. Treatment with PTH maintained the mechanical strength of irradiated femurs in axial compression for the first eight weeks of the study, and the apparent strength of irradiated femurs in PTH-treated mice was greater than that of naïve bones during this time. PTH similarly protected against radiation-accelerated resorption of trabecular bone and transient decrease in mid-diaphyseal cortical bone volume, although this benefit was maintained only for the duration of PTH delivery. Overall, PTH conferred protection against radiation-induced fragility and morphologic changes by increasing the quantity of bone, but only during the period of administration. Following cessation of PTH delivery, bone strength and trabecular volume fraction rapidly decreased. These data suggest that PTH does not negate the longer-term potential for osteoclastic bone resorption, and therefore, finite-duration treatment with PTH alone may not be sufficient to prevent late onset radiotherapy-induced bone fragility. PMID:26847434

  10. Soy Isoflavones and Osteoporotic Bone Loss: A Review with an Emphasis on Modulation of Bone Remodeling.

    PubMed

    Zheng, Xi; Lee, Sun-Kyeong; Chun, Ock K

    2016-01-01

    Osteoporosis is an age-related disorder that affects both women and men, although estrogen deficiency induced by menopause accelerates bone loss in older women. As the demographic shifts to a more aged population, a growing number of men and women will be afflicted with osteoporosis. Since the current drug therapies available have multiple side effects, including increased risk of developing certain types of cancer or complications, a search for potential nonpharmacologic alternative therapies for osteoporosis is of prime interest. Soy isoflavones (SI) have demonstrated potential bone-specific effects in a number of studies. This article provides a systematic review of studies on osteoporotic bone loss in relation to SI intake from diet or supplements to comprehensively explain how SI affect the modulation of bone remodeling. Evidence from epidemiologic studies supports that dietary SI attenuate menopause-induced osteoporotic bone loss by decreasing bone resorption and stimulating bone formation. Other studies have also illustrated that bone site-specific trophic and synergistic effects combined with exercise intervention might contribute to improve the bioavailability of SI or strengthen the bone-specific effects. To date, however, the effects of dietary SI on osteoporotic bone loss remain inconclusive, and study results vary from study to study. The current review will discuss the potential factors that result in the conflicting outcomes of these studies, including dosages, intervention materials, study duration, race, and genetic differences. Further well-designed studies are needed to fully understand the underlying mechanism and evaluate the effects of SI on osteoporosis in humans. PMID:26670451

  11. Maxillary sinus augmentation using recombinant bone morphogenetic protein-2/acellular collagen sponge in combination with a mineralized bone replacement graft: a report of three cases.

    PubMed

    Tarnow, Dennis P; Wallace, Stephen S; Testori, Tiziano; Froum, Stuart J; Motroni, Alessandro; Prasad, Hari S

    2010-04-01

    The objective of the following case reports was to assess whether mineralized bone replacement grafts (eg, xenografts and allografts) could be added to recombinant human bone morphogenetic protein-2/acellular collagen sponge (rhBMP-2/ACS) in an effective manner that would: (1) reduce the graft shrinkage observed when using rhBMP-2/ACS alone, (2) reduce the volume and dose of rhBMP-2 required, and (3) preserve the osteoinductivity that rhBMP-2/ACS has shown when used alone. The primary outcome measures were histomorphometric analysis of vital bone production and analysis of serial computed tomographic scans to determine changes in bone graft density and stability. Over the 6-month course of this investigation, bone graft densities tended to increase (moreso with the xenograft than the allograft). The increased density in allograft cases was likely the result of both compression of the mineralized bone replacement graft and vital bone formation, seen histologically. Loss of volume was greater with the four-sponge dose than the two-sponge dose because of compression and resorption of the sponges. Vital bone formation in the allograft cases ranged from 36% to 53% but, because of the small sample size, it was not possible to determine any significant difference between the 5.6 mL (four-sponge) dose and the 2.8 mL (two-sponge) dose. Histology revealed robust new woven bone formation with only minimal traces of residual allograft, which appeared to have undergone accelerated remodeling or rhBMP-2-mediated resorption. PMID:20228973

  12. Genetic determination of the cellular basis of the ghrelin-dependent bone remodeling

    PubMed Central

    Ma, Chengshan; Fukuda, Toru; Ochi, Hiroki; Sunamura, Satoko; Xu, Cheng; Xu, Ren; Okawa, Atsushi; Takeda, Shu

    2015-01-01

    Objective Bone mass is maintained through a balance of bone formation and resorption. This homeostatic balance is regulated by various systems involving humoral and local factors. The discovery that the anorexigenic hormone leptin regulates bone mass via neuronal pathways revealed that neurons and neuropeptides are intimately involved in bone homeostasis. Ghrelin is a stomach-derived orexigenic hormone that counteracts leptin's action. However, the physiological role of ghrelin in bone homeostasis remains unknown. In this study, through the global knockout of ghrelin receptor (Ghsr) followed by tissue-specific re-expression, we addressed the molecular basis of the action of ghrelin in bone remodeling in vivo. Methods We performed molecular, genetic and cell biological analyses of Ghsr-null mice and Ghsr-null mice with tissue specific Ghsr restoration. Furthermore, we evaluated the molecular mechanism of ghrelin by molecular and cell-based assays. Results Ghsr-null mice showed a low bone mass phenotype with poor bone formation. Restoring the expression of Ghsr specifically in osteoblasts, and not in osteoclasts or the central nervous system, ameliorated bone abnormalities in Ghsr-null mice. Cell-based assays revealed ghrelin induced the phosphorylation of CREB and the expression of Runx2, which in turn accelerated osteoblast differentiation. Conclusions Our data show that ghrelin regulates bone remodeling through Ghsr in osteoblasts by modulating the CREB and Runx2 pathways. PMID:25737953

  13. Osteoporosis and bone metabolic parameters in dependence upon calcium intake through milk and milk products.

    PubMed

    Stracke, H; Renner, E; Knie, G; Leidig, G; Minne, H; Federlin, K

    1993-09-01

    The bone mineral content of young adults as well as of osteoporotic patients and age-matched controls without bone disease was measured by single-photon absorptiometry. A retrospective nutrition survey was additionally made to study the relationship between bone mineral content and calcium intake in different periods of life. The bone mineral content and bone mineral density of young adults is directly related to the calcium intake through milk and dairy products. The osteoporotics had a significantly lower bone mineral content than the controls. Calcium intake through milk and milk products in childhood and adolescence had been significantly lower in the patients than in the controls, whereas in the later periods of life (20-30 years prior to the study and at the time of the study) there were no significant differences between the calcium intakes of the two groups. It was also found that an adequate intake of calcium protected against increased bone resorption, as evidenced in particular by the reduced levels of serum osteocalcin, a parameter of bone turnover. In conclusion it can be stated that the data support the hypothesis that adequate calcium intake through milk and milk products in childhood and adolescence is a decisive marker for obtaining a maximum bone mass (peak adult bone mass) and for the prevention of osteoporosis. Furthermore, it can be stated that increased calcium intake in the later years may not reduce the accelerated risk of osteoporosis resulting from inadequate calcium intake during childhood and adolescence. PMID:8243426

  14. 5. Accelerated Fracture Healing Targeting Periosteal Cells: Possibility of Combined Therapy of Low-Intensity Pulsed Ultrasound (LIPUS), Bone Graft, and Growth Factor (bFGF).

    PubMed

    Uchida, Kentaro; Urabe, Ken; Naruse, Koji; Mikuni-Takagaki, Yuko; Inoue, Gen; Takaso, Masashi

    2016-08-01

    We have studied the mechanism of fracture healing, and the effect of LIPUS, bone graft and growth factor on accelerating fracture healing. We present here the results of our research. To examine callus formation cells in fracture healing, we made marrow GFP chimera mice and a fracture model of marrow mesenchymal stem cell GFP chimera mice. It was demonstrated that periosteal cells were essential for callus formation. We focused on periosteal cells and examined the effect of LIPUS. In an in vitro experiment using a cultured part of the femur, LIPUS promoted ossification of the periosteal tissue. Further, LIPUS accelerated VEGF expression in the experiment using the femoral fracture model of mice. From these results, it was suggested that activation of periosteal cells might play a role in the fracture healing mechanism of LIPUS. Next, we discussed the possibility of combined therapy of LIPUS, bone graft and growth factor. Therapy involving the topical administration of bFGF using a controlled release system and bone graft could promote callus formation. In addition, LIPUS was able to promote membranaceous ossification after the bone graft. It was suggested that combined therapy of LIPUS, bone graft and bFGF could be a new option for treating fractures. PMID:27441766

  15. The Effect of An Angiogenic Cytokine on Orthodontically Induced Inflammatory Root Resorption

    PubMed Central

    Seifi, Massoud; Lotfi, Ali; Badiee, Mohammad Reza; Abdolazimi, Zahra; Amdjadi, Parisa; Bargrizan, Majid

    2016-01-01

    Objective Orthodontically induced inflammatory root resorption (OIIRR) is an undesirable sequel of tooth movement after sterile necrosis that takes place in periodontal ligament due to blockage of blood vessels following exertion of orthodontic force. This study sought to assess the effect of an angiogenic cytokine on OIIRR in rat model. Materials and Methods In this experimental animal study, 50 rats were randomly divided into 5 groups of 10 each: E10, E100 and E1000 receiving an injection of 10, 100 and 1000 ng of basic fibroblast growth factor (bFGF), respectively, positive control group (CP) receiving an orthodontic appliance and injection of phosphate buffered saline (PBS) and the negative control group (CN) receiving only the anesthetic agent. A nickel titanium coil spring was placed between the first molar and the incisor on the right side of maxilla. Twenty-one days later, the rats were sacrificed. Histopathological sections were made to assess the number and area of resorption lacunae, number of blood vessels, osteoclasts and Howship’s lacunae. Data were statistically analyzed using ANOVA and Tukey’s honest significant difference (HSD) test. Results Number of resorption lacunae and area of resorption lacunae in E1000 (0.97 ± 0.80 and 1. 27 ± 0.01×10-3, respectively) were significantly lower than in CP (4.17 ± 0.90 and 2.77 ± 0.01×10-3, respectively, P=0.000). Number of blood vessels, osteoclasts and Howship’s lacunae were significantly higher in E1000 compared to CP (P<0.05). Conclusion Tooth movement as the outcome of bone remodeling is concomitant with the formation of sterile necrosis in the periodontal ligament following blocked blood supply. Thus, bFGF can significantly decrease the risk of root resorption by providing more oxygen and angiogenesis. PMID:27551674

  16. Adenosine and Bone Metabolism

    PubMed Central

    Mediero, Aránzazu; Cronstein, Bruce N.

    2013-01-01

    Bone is a dynamic organ that undergoes continuous remodeling whilst maintaining a balance between bone formation and resorption. Osteoblasts, which synthesize and mineralize new bone, and osteoclasts, the cells that resorb bone, act in concert to maintain bone homeostasis. In recent years, there has been increasing appreciation of purinergic regulation of bone metabolism. Adenosine, released locally, mediates its physiologic and pharmacologic actions via interactions with G-protein coupled receptors and recent work has indicated that these receptors are involved in the regulation of osteoclast differentiation and function, as well as osteoblast differentiation and bone formation. Moreover, adenosine receptors also regulate chondrocyte and cartilage homeostasis. These recent findings underscore the potential therapeutic importance of adenosine receptors in regulating bone physiology and pathology. PMID:23499155

  17. Quantification of osteoclastic resorption of the bovine otic capsule in vitro by an enzyme-linked immunosorbent assay.

    PubMed

    Frisch, T; Foged, N T; Sørensen, M S; Bretlau, P

    2000-01-01

    The bony shell surrounding the inner ear is known to have a very pronounced centripetal inhibition of remodelling in vivo, with almost no bone turnover immediately adjacent to the perilymphatic spaces and a gradually increasing turnover rate towards outer parts of the bony otic capsule. By the use of in vitro markers of bone resorption, including an enzyme-linked immunosorbent assay for quantification of type I collagen degradation and a colorimetric enzyme assay for quantification of osteoclast tartrate-resistant acid phosphatase activity, this study demonstrates that there are no ex vivo differences in bone matrix resorption between the inner and outer parts of the otic capsule when exposed to seeded osteoclasts from rabbits. Thus, the unique spatial distribution of perilabyrinthine bone turnover is not caused by a shift in resorbability from inner to outer capsular bone that is due to inherent bone quality differences particular to these bone compartments. More likely, the sustained action of some intravital 'field force', originating from the inner ear spaces, is responsible for the unique spatial distribution of the otic capsular bone turnover found in vivo. Though the character of this force is not yet defined, it is appealing to relate it to the large electromagnetic potential gradient present in the inner ear. PMID:10965257

  18. [Clinical usefulness of bone turnover markers in the management of osteoporosis].

    PubMed

    Yano, Shozo

    2013-09-01

    Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future. PMID:24369600

  19. Genistein supplementation increases bone turnover but does not prevent alcohol-induced bone loss in male mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy prote...

  20. Effect of vitamin K2 on the development of stress-induced osteopenia in a growing senescence-accelerated mouse prone 6 strain

    PubMed Central

    KATSUYAMA, HIRONOBU; FUSHIMI, SHIGEKO; YAMANE, KUNIKAZU; WATANABE, YOKO; SHIMOYA, KOICHIRO; OKUYAMA, TOSHIKO; KATSUYAMA, MIDORI; SAIJOH, KIYOFUMI; TOMITA, MASAFUMI

    2015-01-01

    Vitamin K2 (VK2) has been used as a therapeutic agent for osteoporosis, since it has been suggested to be able to reduce the frequency of fractures by improving bone quality; however, bone turnover is strictly regulated by various cytokines and hormones. In the present study, the effect of menaquinone-4 (MK-4) on bone turnover was investigated using the senescence-accelerated mouse prone 6 (SAMP6) strain. Since water-immersion restraint stress (WRS) causes a significant decrease in bone mineral density (BMD), WRS was used as the bone resorption model in the SAMP6 strain. Six-week-old SAMP6 male mice were divided into the following three groups: Control, WRS and WRS + MK-4. WRS was performed for 6 h per day, 5 times a week, for 4 weeks. Following WRS, MK-4 (30 mg/kg) was injected subcutaneously 3 times a week for 4 weeks. No growth retardation was observed in the WRS groups as compared with the control group. In the WRS groups, the BMD was significantly lower than that in the control group. The levels of bone formation and resorption markers were increased in the WRS groups, indicating that WRS reduced the BMD by promoting high bone turnover. A bone histomorphometrical examination showed that the trabecular (Tb) bone mass in the secondary spongiosa at the distal femur was significantly reduced in the WRS mice, and this reduction was abrogated by MK-4 treatment. Specifically, the Tb bone reduction was caused by the activation of osteoclasts (Ocs), and Oc activity was suppressed by MK-4. The number of osteoblasts and the mineral apposition rate were significantly increased in the WRS and WRS + MK-4 mice, suggesting that WRS triggered a significantly higher mineral apposition rate. These results indicate that MK-4 can induce recovery from the bone mineral loss caused by WRS treatment. Further studies are required to clarify the association between bone quality and MK-4. PMID:26622403

  1. Bone grafts and their substitutes.

    PubMed

    Fillingham, Y; Jacobs, J

    2016-01-01

    The continual cycle of bone formation and resorption is carried out by osteoblasts, osteocytes, and osteoclasts under the direction of the bone-signaling pathway. In certain situations the host cycle of bone repair is insufficient and requires the assistance of bone grafts and their substitutes. The fundamental properties of a bone graft are osteoconduction, osteoinduction, osteogenesis, and structural support. Options for bone grafting include autogenous and allograft bone and the various isolated or combined substitutes of calcium sulphate, calcium phosphate, tricalcium phosphate, and coralline hydroxyapatite. Not all bone grafts will have the same properties. As a result, understanding the requirements of the clinical situation and specific properties of the various types of bone grafts is necessary to identify the ideal graft. We present a review of the bone repair process and properties of bone grafts and their substitutes to help guide the clinician in the decision making process. PMID:26733632

  2. Pulsed Electromagnetic Fields Enhance Bone Morphogenetic Protein-2 Dependent-Bone Regeneration.

    PubMed

    Yang, Hoon Joo; Kim, Ri Youn; Hwang, Soon Jung

    2015-10-01

    The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) for the purpose of promoting bone regeneration is emerging; however, the high dose of rhBMP-2 required in humans is accompanied by several limitations, including bone resorption and swelling. To reduce the dose of rhBMP-2 required, the applicability of pulsed electromagnetic fields (PEMF) was evaluated using a rat calvarial defect model. After creating an 8-mm-diameter calvarial bone defect, a collagen sponge soaked in different concentrations (0, 2.5, 5, 10 μg) of rhBMP-2 was implanted at the defect area. One week after surgery, PEMF was applied for 8 h/day over 5 days in an experimental group of animals (n = 28) using a width of 12 μs, a pulse frequency of 60 Hz, and a magnetic intensity of 10 G. Animals were sacrificed 4 weeks after surgery and assessed by microcomputed tomography and histological and immunohistochemical analyses. In the absence of application of PEMF, bone volume, bone mineral density, trabecular thickness, trabecular number, and trabecular separation, all showed statistically significant differences, depending on the concentration of rhBMP-2 utilized (p < 0.001). PEMF accelerated bone regeneration in the groups that received 0, 2.5, and 5 μg rhBMP-2 (p < 0.05). In contrast, administration of 10 μg rhBMP-2 resulted in no additive effect on bone regeneration in combination with PEMF. Groups receiving no rhBMP-2 showed distinct bone regeneration in the central zone of the bone defect when treated with PEMF, whereas they failed to bridge the defect space without PEMF. Among the groups without PEMF, soft tissue infiltrations from the outer surface on the skin side were common. Among groups with PEMF, the groups receiving 5 and 10 μg rhBMP-2 displayed denser bone with significantly reduced dead spaces. The application of PEMF did not result in an accelerated effect on bone regeneration in groups treated with 10 μg rhBMP-2. Therefore, our data

  3. Mechanisms of osteoclast-dependent bone formation

    PubMed Central

    Teti, Anna

    2013-01-01

    Should we believe that osteoclasts are only involved in bone resorption? What about their contribution to bone formation? In this article I will review evidence that bone formation can be regulated by osteoclasts. Why is this? Likely because in the physiologic condition of bone remodeling, bone resorption and formation are balanced, and there is no better way to control this equilibrium than through a concerted action between the two cell types. Although the influence of osteoblasts on osteoclastic bone resorption is well documented and consolidated over time, what osteoclasts do to regulate osteoblast activity is still matter of intense investigation. The original hypothesis that all is in the osteoblast-seeking factors stored in the bone matrix, released and activated during bone resorption, is now being challenged by several studies, suggesting that osteoclasts are also capable of producing ‘clastokines' that regulate osteoblast performance. Indeed, several of them have been demonstrated to orchestrate osteoclast–osteoblast activities. However, we are probably still at the dawn of a new era, and future work will tell us whether any of these clastokines can be exploited to stimulate bone formation and rebalance bone remodeling in skeletal diseases. PMID:24422142

  4. Management of Buccal Gap and Resorption of Buccal Plate in Immediate Implant Placement: A Clinical Case Report

    PubMed Central

    Mehta, Hardik; Shah, Sheekha

    2015-01-01

    When a dental implant is placed into a fresh extraction socket, a space between the implant periphery and surrounding bone occurs. A gap can occur on any aspect of an immediately placed implant: Buccal, lingual or proximally. The objective of immediate implant placement is to provide an osseointegrated fixture suitable for an aesthetic and functional restoration. Bone fill in the gap between the implant and the peripheral bone is important. Surgical management of the buccal gap to obtain an optimal result is controversial and confusing with respect to the best techniques to achieve the following: Optimal bone fills in the gap, most coronal level of bone-to-implant contact, and the least amount of buccal bone loss and soft tissue recession. This clinical case report illustrates the management of the buccal gap and reducing buccal plate resorption when contemplating immediate implant placement. PMID:26225110

  5. Early tissue responses to zoledronate, locally delivered by bone screw, into a compromised cancellous bone site: a pilot study

    PubMed Central

    2014-01-01

    Background In fracture treatment, adequate fixation of implants is crucial to long-term clinical performance. Bisphosphonates (BP), potent inhibitors of osteoclastic bone resorption, are known to increase peri-implant bone mass and accelerate primary fixation. However, adverse effects are associated with systemic use of BPs. Thus, Zoledronic acid (ZOL) a potent BP was loaded on bone screws and evaluated in a local delivery model. Whilst mid- to long-term effects are already reported, early cellular events occurring at the implant/bone interface are not well described. The present study investigated early tissue responses to ZOL locally delivered, by bone screw, into a compromised cancellous bone site. Methods ZOL was immobilized on fibrinogen coated titanium screws. Using a bilateral approach, ZOL loaded test and non-loaded control screws were implanted into femoral condyle bone defects, created by an overdrilling technique. Histological analyses of the local tissue effects such as new bone formation and osteointegration were performed at days 1, 5 and 10. Results Histological evaluation of the five day ZOL group, demonstrated a higher osseous differentiation trend. At ten days an early influx of mesenchymal and osteoprogenitor cells was seen and a higher level of cellular proliferation and differentiation (p < 5%). In the ZOL group bone-to-screw contact and bone volume values within the defect tended to increase. Local drug release did not induce any adverse cellular effects. Conclusion This study indicates that local ZOL delivery into a compromised cancellous bone site actively supports peri-implant osteogenesis, positively affecting mesenchymal cells, at earlier time points than previously reported in the literature. PMID:24656151

  6. Oxytocin and bone.

    PubMed

    Colaianni, Graziana; Sun, Li; Zaidi, Mone; Zallone, Alberta

    2014-10-15

    One of the most meaningful results recently achieved in bone research has been to reveal that the pituitary hormones have profound effect on bone, so that the pituitary-bone axis has become one of the major topics in skeletal physiology. Here, we discuss the relevant evidence about the posterior pituitary hormone oxytocin (OT), previously thought to exclusively regulate parturition and breastfeeding, which has recently been established to directly regulate bone mass. Both osteoblasts and osteoclasts express OT receptors (OTR), whose stimulation enhances bone mass. Consistent with this, mice deficient in OT or OTR display profoundly impaired bone formation. In contrast, bone resorption remains unaffected in OT deficiency because, even while OT stimulates the genesis of osteoclasts, it inhibits their resorptive function. Furthermore, in addition to its origin from the pituitary, OT is also produced by bone marrow osteoblasts acting as paracrine-autocrine regulator of bone formation modulated by estrogens. In turn, the power of estrogen to increase bone mass is OTR-dependent. Therefore, OTR(-/-) mice injected with 17β-estradiol do not show any effects on bone formation parameters, while the same treatment increases bone mass in wild-type mice. These findings together provide evidence for an anabolic action of OT in regulating bone mass and suggest that bone marrow OT may enhance the bone-forming action of estrogen through an autocrine circuit. This established new physiological role for OT in the maintenance of skeletal integrity further suggests the potential use of this hormone for the treatment of osteoporosis. PMID:25209411

  7. Resorption Rate Tunable Bioceramic: Si, Zn-Modified Tricalcium Phosphate

    SciTech Connect

    Xiang Wei

    2006-08-09

    This dissertation is organized in an alternate format. Several manuscripts which have already been published or are to be submitted for publication have been included as separate chapters. Chapter 1 is a general introduction which describes the dissertation organization and introduces the human bone and ceramic materials as bone substitute. Chapter 2 is the background and literature review on dissolution behavior of calcium phosphate, and discussion of motivation for this research. Chapter 3 is a manuscript entitled ''Si,Zn-modified tricalcium phosphate: a phase composition and crystal structure study'', which was published in ''Key Engineering Materials'' [1]. Chapter 4 gives more crystal structure details by neutron powder diffraction, which identifies the position for Si and Zn substitution and explains the stabilization mechanism of the structure. A manuscript entitled ''Crystal structure analysis of Si, Zn-modified Tricalcium phosphate by Neutron Powder Diffraction'' will be submitted to Biomaterials [2]. Chapter 5 is a manuscript, entitled ''Dissolution behavior and cytotoxicity test of Si, Zn-modified tricalcium phosphate'', which is to be submitted to Biomaterials [3]. This paper discusses the additives effect on the dissolution behavior of TCP, and cytotoxicity test result is also included. Chapter 6 is the study of hydrolysis process of {alpha}-tricalcium phosphate in the simulated body fluid, and the phase development during drying process is discussed. A manuscript entitled ''Hydrolysis of {alpha}-tricalcium phosphate in simulated body fluid and phase transformation during drying process'' is to be submitted to Biomaterials [4]. Ozan Ugurlu is included as co-authors in these two papers due to his TEM contributions. Appendix A is the general introduction of the materials synthesis, crystal structure and preliminary dissolution result. A manuscript entitled ''Resorption rate tunable bioceramic: Si and Zn-modified tricalcium phosphate'' was published in

  8. Incorporation of raloxifene-impregnated allograft around orthopedic titanium implants impairs early fixation but improves new bone formation

    PubMed Central

    Hermansen, Lars L; Sørensen, Mette; Barckman, Jeppe; Bechtold, Joan E; Søballe, Kjeld; Baas, Jørgen

    2015-01-01

    Background The anti-osteoporotic drug raloxifene reduces the risk of vertebral fractures by increasing bone mass density. We investigated whether raloxifene offers any benefits in augmenting early fixation of orthopedic implants in the setting of impaction bone grafting. Methods 24 non-weight-bearing grafted gap implants were inserted bilaterally into the tibia of 12 dogs. The 2.5-mm peri-implant gap was filled with either raloxifene-impregnated or untreated bone allograft. Implants were harvested after 28 days. Implant fixation was assessed by mechanical testing and histomorphometric evaluation. Results Raloxifene-treated allograft reduced early implant fixation compared to untreated allograft, as measured by inferior maximum shear strength (p < 0.001) and apparent shear stiffness (p = 0.001). We found that the raloxifene group had more newly formed bone in the gap around the implant (p = 0.02), but also less allograft (p = 0.03). Interpretation The accelerated allograft resorption in the raloxifene group explained the impaired early fixation, despite its stimulation of new bone formation. Our results with local and possible high-dose treatment are not consistent with current theory regarding the mechanism of how systemic raloxifene administration counteracts the decrease in BMD in postmenopausal women. Instead of being solely anti-resorptive as generally held, our results indicate a possible anabolic side of raloxifene. PMID:25175661

  9. [Resorption of hydrocyanic acid from linseed].

    PubMed

    Schulz, V; Löffler, A; Gheorghiu, T

    1983-01-01

    Resorption of hydrocyanic acid after ingestion of linseed was investigated in 20 healthy volunteers and 5 patients. The persons investigated took a single dose of 30 g or of 100 g of linseed or they received throughout several weeks 15 g. t.i.d. One volunteer also took for purposes of comparison bitter almonds or potassium cyanide. Before, during and after the periods of ingestion plasma levels of hydrocyanic acid and of thiocyanate were normal. During long-term trials urinary excretion of thiocyanate was monitored regularly. Intake of linseed even in extremely high dosages never caused significant rises of plasma thiocyanate levels; this, however, was the case after intake of bitter almonds or potassium cyanide. Thus, it can be excluded, that intoxication by hydrocyanic acid can be caused by linseed. Long-term intake of linseed however, raised plasma levels of thiocyanate significantly; at the same time urinary excretion of thiocyanate increased. PMID:6302421

  10. Exploring the Bone Proteome to Help Explain Altered Bone Remodeling and Preservation of Bone Architecture and Strength in Hibernating Marmots.

    PubMed

    Doherty, Alison H; Roteliuk, Danielle M; Gookin, Sara E; McGrew, Ashley K; Broccardo, Carolyn J; Condon, Keith W; Prenni, Jessica E; Wojda, Samantha J; Florant, Gregory L; Donahue, Seth W

    2016-01-01

    Periods of physical inactivity increase bone resorption and cause bone loss and increased fracture risk. However, hibernating bears, marmots, and woodchucks maintain bone structure and strength, despite being physically inactive for prolonged periods annually. We tested the hypothesis that bone turnover rates would decrease and bone structural and mechanical properties would be preserved in hibernating marmots (Marmota flaviventris). Femurs and tibias were collected from marmots during hibernation and in the summer following hibernation. Bone remodeling was significantly altered in cortical and trabecular bone during hibernation with suppressed formation and no change in resorption, unlike the increased bone resorption that occurs during disuse in humans and other animals. Trabecular bone architecture and cortical bone geometrical and mechanical properties were not different between hibernating and active marmots, but bone marrow adiposity was significantly greater in hibernators. Of the 506 proteins identified in marmot bone, 40 were significantly different in abundance between active and hibernating marmots. Monoaglycerol lipase, which plays an important role in fatty acid metabolism and the endocannabinoid system, was 98-fold higher in hibernating marmots compared with summer marmots and may play a role in regulating the changes in bone and fat metabolism that occur during hibernation. PMID:27617358

  11. Conservative Nonsurgical Treatment of Class 4 Invasive Cervical Resorption: A Case Series.

    PubMed

    Salzano, Stefano; Tirone, Federico

    2015-11-01

    External cervical resorption, also called invasive cervical resorption (ICR), is a pathological process difficult to diagnose that causes a progressive replacement of dentin by granulation tissue and results in complete tooth destruction. According to the literature, class 4 ICR can be expected to have success rates of 12.5% if treated. In this case series, we show nonsurgical conservative treatment of 4 patients affected by class 4 ICR. In 4 patients affected by class 4 ICRs, granulomatous tissue was orthograde removed with the help of an operating microscope and cone-beam computed tomographic imaging. The teeth were devitalized, the granulomatous tissue was mechanically removed, and the defects were filled with either mineral trioxide aggregate or Biodentine (Septodont, Saint-Maur-des-Fossés, France). After a follow-up period varying from 18 months for case 1 to 4 months for case 4, neither signs of periradicular bone rarefaction nor recurrence of resorption were observed. The teeth were asymptomatic, and conservative restorations appeared to be in excellent condition. Given the results achieved in this case series, it may be assumed that many class 4 ICRs could be successfully treated with the help of an operating microscope and cone-beam computed tomographic imaging. PMID:26395913

  12. TRAFD1 (FLN29) Interacts with Plekhm1 and Regulates Osteoclast Acidification and Resorption

    PubMed Central

    Witwicka, Hanna; Jia, Hong; Kutikov, Artem; Reyes-Gutierrez, Pablo; Li, Xiangdong; Odgren, Paul R.

    2015-01-01

    Plekhm1 is a large, multi-modular, adapter protein implicated in osteoclast vesicle trafficking and bone resorption. In patients, inactivating mutations cause osteopetrosis, and gain-of-function mutations cause osteopenia. Investigations of potential Plekhm1 interaction partners by mass spectrometry identified TRAFD1 (FLN29), a protein previously shown to suppress toll-like receptor signaling in monocytes/macrophages, thereby dampening inflammatory responses to innate immunity. We mapped the binding domains to the TRAFD1 zinc finger (aa 37-60), and to the region of Plekhm1 between its second pleckstrin homology domain and its C1 domain (aa 784-986). RANKL slightly increased TRAFD1 levels, particularly in primary osteoclasts, and the co-localization of TRAFD1 with Plekhm1 also increased with RANKL treatment. Stable knockdown of TRAFD1 in RAW 264.7 cells inhibited resorption activity proportionally to the degree of knockdown, and inhibited acidification. The lack of acidification occurred despite the presence of osteoclast acidification factors including carbonic anhydrase II, a3-V-ATPase, and the ClC7 chloride channel. Secretion of TRAP and cathepsin K were also markedly inhibited in knockdown cells. Truncated Plekhm1 in ia/ia osteopetrotic rat cells prevented vesicle localization of Plekhm1 and TRAFD1. We conclude that TRAFD1, in association with Plekhm1/Rab7-positive late endosomes-early lysosomes, has a previously unknown role in vesicle trafficking, acidification, and resorption in osteoclasts. PMID:25992615

  13. Novel use of a Dektak 150 surface profiler unmasks differences in resorption pit profiles between control and Charcot patient osteoclasts.

    PubMed

    Petrova, Nina L; Petrov, Peter K; Edmonds, Michael E; Shanahan, Catherine M

    2014-04-01

    We hypothesized that newly formed osteoclasts from patients with acute Charcot osteoarthropathy can resorb surfaces of bone more extensively compared with controls. Peripheral blood monocytes, isolated from eight Charcot patients and nine controls, were cultured in vitro on 24-well plates and bovine bone discs in duplicate with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast formation was assessed by tartrate-resistant acid phosphatase staining (TRAcP) at day 17. Resorption was measured at day 21 after toluidine blue staining by two methods: (1) area of resorption at the surface by image analysis (%) and (2) area of resorption under the surface (μm(2)) measured by a Dektak 150 Surface Profiler. Ten 1,000 μm-long scans were performed per disc. Pits were classified as unidented, bidented, and multidented according to their shape. Although the number of newly formed TRAcP positive multinucleated cells (>3 nuclei) was similar in M-CSF + RANKL-treated cultures between controls and Charcot patients, the latter exhibited increased resorbing activity. The area of resorption on the surface by image analysis was significantly greater in Charcot patients compared with controls (21.1 % [14.5-26.2] vs. 40.8 % [35.4-46.0], median [25-75th percentile], p < 0.01), as was the area of resorption under the surface (2.7 x 10(3) μm(2) [1.6 x 10(3)- 3.9 x 10(3)] vs. 8.3 x 10(3) μm (2) [5.6 x 10(3)- 10.6 x 10(3), [corrected] p < 0.01) after profilometry. In Charcot patients pits were deeper and wider and more frequently presented as multidented pits. This application of the Dektak 150 Surface Profiler revealed novel differences in resorption pit profile from osteoclasts derived from Charcot patients compared with controls. Resorption in Charcot patients was mediated by highly aggressive newly formed osteoclasts from monocytes eroding large and deep areas of bone. PMID:24322885

  14. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts.

    PubMed

    Gu, Zhipeng; Zhang, Xu; Li, Li; Wang, Qiguang; Yu, Xixun; Feng, Ting

    2013-01-01

    The development of suitable bioactive three-dimensional scaffold for the promotion of bone regeneration is critical in bone tissue engineering. The purpose of this study was to investigate in vivo osteogenesis of the porous strontium-doped calcium polyphosphate (SCPP) scaffolds for bone repair, as well as the relationship between osteogenic properties of SCPP scaffolds and the secretion of bFGF and VEGF from osteoblasts stimulated by SCPP. Besides, the advantages of scaffolds seeded with mesenchymal stem cells (MSCs) for bone repair were also studied. Firstly, the bone repair evaluation of scaffolds was performed on a rabbit segmental bony defects model over a period of 16 weeks by histology combined with X-ray microradiography. And then, in order to avoid the influence from the other factors such as hypoxia which emerge in vivo study and affect the secretion of VEGF and bFGF from host cells, human osteoblast-like cells (MG63) were seeded to SCPP, CPP and HA scaffolds in vitro to determine the ability of these scaffolds to stimulate the secretion of angiogenic growth factors (VEGF and bFGF) from MG63 and further explore the reason for the better osteogenic properties of SCPP scaffolds. The histological and X-ray microradiographic results showed that the SCPP scaffolds presented better osteogenic potential than CPP and HA scaffolds, when combined with MSCs, the SCPP scaffolds could further accelerate the bone repair. And the amounts of VEGF measured by ELISA assay in SCPP, CPP and HA groups after cultured for 7 days were about 364.989 pg/mL, 244.035 pg/mL and 232.785 pg/mL, respectively. Accordingly, the amounts of bFGF were about 27.085 pg/mL, 15.727 pg/mL and 8.326 pg/mL. The results revealed that the SCPP scaffolds significantly enhanced the bFGF and VEGF secretion compared with other scaffolds. The results presented in vivo and in vitro study demonstrated that the SCPP could accelerate bone formation through stimulating the secretion of VEGF and bFGF from

  15. Increased recruitment of bone marrow-derived cells into the brain associated with altered brain cytokine profile in senescence-accelerated mice.

    PubMed

    Hasegawa-Ishii, Sanae; Inaba, Muneo; Li, Ming; Shi, Ming; Umegaki, Hiroyuki; Ikehara, Susumu; Shimada, Atsuyoshi

    2016-04-01

    Bone marrow-derived cells enter the brain in a non-inflammatory condition through the attachments of choroid plexus and differentiate into ramified myeloid cells. Neurodegenerative conditions may be associated with altered immune-brain interaction. The senescence-accelerated mouse prone 10 (SAMP10) undergoes earlier onset neurodegeneration than C57BL/6 (B6) strain. We hypothesized that the dynamics of immune cells migrating from the bone marrow to the brain is perturbed in SAMP10 mice. We created 4 groups of radiation chimeras by intra-bone marrow-bone marrow transplantation using 2-month-old (2 mo) and 10 mo SAMP10 and B6 mice as recipients with GFP transgenic B6 mice as donors, and analyzed histologically 4 months later. In the [B6 → 10 mo SAMP10] chimeras, more ramified marrow-derived cells populated a larger number of discrete brain regions than the other chimeras, especially in the diencephalon. Multiplex cytokine assays of the diencephalon prepared from non-treated 3 mo and 12 mo SAMP10 and B6 mice revealed that 12 mo SAMP10 mice exhibited higher tissue concentrations of CXCL1, CCL11, G-CSF, CXCL10 and IL-6 than the other groups. Immunohistologically, choroid plexus epithelium and ependyma produced CXCL1, while astrocytic processes in the attachments of choroid plexus expressed CCL11 and G-CSF. The median eminence produced CXCL10, hypothalamic neurons G-CSF and tanycytes CCL11 and G-CSF. These brain cytokine profile changes in 12 mo SAMP10 mice were likely to contribute to acceleration of the dynamics of marrow-derived cells to the diencephalon. Further studies on the functions of ramified marrow-derived myeloid cells would enhance our understanding of the brain-bone marrow interaction. PMID:25577138

  16. Uranium inhibits bone formation in physiologic alveolar bone modeling and remodeling

    SciTech Connect

    Ubios, A.M.; Guglielmotti, M.B.; Steimetz, T.; Cabrini, R.L. )

    1991-02-01

    The toxic effect of uranium (U) on bone modeling and remodeling was studied by performing histomorphometric measurements in the periodontal cortical bone of rats. Two different single intraperitoneal doses of uranyl nitrate (238U) were administered to two sets of rats respectively (2 and 0.8 mg/kg body wt). Rats treated with the first dose were killed 14 days postinjection (PI) and those treated with the second were killed 14, 30, and 60 days PI. The results revealed a decrease in bone formation in rats treated with uranium. On the remodeling side the decrease in bone formation was coupled to an increase in bone resorption on the 14th day PI. On the modeling side no bone resorption was observed and the decrease in bone formation was linked to an increase in resting bone zones. Bone formation depression as a key event in U intoxication is stressed.

  17. NSAIDs can have adverse effects on bone healing.

    PubMed

    van Esch, Robert W; Kool, Maurice M; van As, Saskia

    2013-08-01

    The science of osteoimmunology, a relatively new field of research, reveals the important interactions between the immune system and skeletal system. Interactions occur between prostaglandin metabolism, inflammatory proteins and bone metabolism. Systemic as well as local sources of inflammation appear to be actively involved in both bone formation and resorption. Non Steroidal Anti-Inflammatory Drugs (NSAIDs) can play a detrimental role in bone fractures, opposing the aim of the intervention, and can have such a negative impact on the synthesis of prostaglandins that they could even promote bone resorption. When used for a prolonged time, NSAIDs can also cause the development of an inflammatory cascade starting from the gastro-intestinal system, possibly resulting in bone resorption. Several studies show that the use of either selective or non-selective NSAIDs are intimately related to disturbances in immunological allostasis, bone metabolism and the inhibition or impediment of bone healing. PMID:23680000

  18. Leptin Receptor Promotes Adipogenesis and Reduces Osteogenesis by Regulating Mesenchymal Stromal Cells in Adult Bone Marrow.

    PubMed

    Yue, Rui; Zhou, Bo O; Shimada, Issei S; Zhao, Zhiyu; Morrison, Sean J

    2016-06-01

    Skeletal stem cells (SSCs) that are the major source of osteoblasts and adipocytes in adult bone marrow express leptin receptor (LepR). To test whether LepR regulates SSC function, we conditionally deleted Lepr from limb bone marrow stromal cells, but not from the axial skeleton or hypothalamic neurons, using Prx1-Cre. Prx1-Cre;Lepr(fl/fl) mice exhibited normal body mass and normal hematopoiesis. However, limb bones from Prx1-Cre;Lepr(fl/fl) mice exhibited increased osteogenesis, decreased adipogenesis, and accelerated fracture healing. Leptin increased adipogenesis and reduced osteogenesis by activating Jak2/Stat3 signaling in bone marrow stromal cells. A high-fat diet increased adipogenesis and reduced osteogenesis in limb bones from wild-type mice, but not from Prx1-Cre;Lepr(fl/fl) mice. This reflected local effects of LepR on osteogenesis and adipogenesis by bone marrow stromal cells and systemic effects on bone resorption. Leptin/LepR signaling regulates adipogenesis and osteogenesis by mesenchymal stromal cells in the bone marrow in response to diet and adiposity. PMID:27053299

  19. Using Micro-Computed Tomography to Evaluate the Dynamics of Orthodontically Induced Root Resorption Repair in a Rat Model

    PubMed Central

    Yang, Fengxue; Wei, Shicheng; Dai, Hongwei

    2016-01-01

    Objective To observe dynamic changes in root resorption repair, tooth movement relapse and alveolar bone microstructure following the application of orthodontic force. Materials and Methods Forces of 20 g, 50 g or 100 g were delivered to the left maxillary first molars of fifteen 10-week-old rats for 14 days. Each rat was subjected to micro-computed tomography scanning at 0, 3, 7, 10, 14, 28 and 42 days after force removal. The root resorption crater volume, tooth movement relapse and alveolar bone microarchitecture were measured at each time point. Results From day 3 to day 14, the root resorption volume decreased significantly in each group. In the 20-g force group, the root resorption volume gradually stabilized after 14 days, whereas in the 50-g and 100-g force groups, it stabilized after 28 days. In all groups, tooth movement relapsed significantly from day 0 to day 14 and then remained stable. From day 3 to day 10, the 20-g group exhibited faster relapse than the 50-g and 100-g groups. In all groups, the structure model index and trabecular separation decreased slowly from day 0 to day 10 and eventually stabilized. Trabecular number increased slowly from day 0 to day 7 and then stabilized. Conclusions The initial stage of root resorption repair did not change significantly and was followed by a dramatic repair period before stabilizing. The most serious tooth movement relapse occurred immediately after the appliance was removed, and then the tooth completely returned to the original position. PMID:26930605

  20. Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeff; Shapiro, Jay; Lang, Tom; Smith, Scott M.; Shackelford, Linda C.; Sibonga, Jean; Evans, Harlan; Spector, Elisabeth; Ploutz-Snyder, Robert; Nakamura, Toshitaka; Kohri,Kenjiro; Ohshima, Hiroshi

    2011-01-01

    Experiment Hypothesis -- The combined effect of anti-resorptive drugs plus in-flight exercise regimen will have a measurable effect in preventing space flight induced bone mass and strength loss and reducing renal stone risk.

  1. Bone-derived IGF mediates crosstalk between bone and breast cancer cells in bony metastases

    PubMed Central

    Hiraga, Toru; Myoui, Akira; Hashimoto, Nobuyuki; Sasaki, Akira; Hata, Kenji; Morita, Yoshihiro; Yoshikawa, Hideki; Rosen, Clifford J.; Mundy, Gregory R.; Yoneda, Toshiyuki

    2012-01-01

    The continuous release of bone-stored growth factors following bone resorption promotes the colonization of circulating cancer cells. However, the precise role of each of the various growth factors remains unclear. In this study, we investigated the role of bone-derived insulin-like growth factor (IGF) in the development of bone metastases in an animal model of breast cancer. We found that local stimulation of calvarial bone resorption prior to cell inoculation stimulated subsequent bone metastases to that site in vivo, while inhibition of bone resorption inhibited bone metastases. Anchorage-independent growth of cancer cells was stimulated by the culture supernatants from resorbed bones, which contained elevated levels of IGF type I (IGF-1). This stimulation was blocked by IGF-1 receptor (IGF1R) neutralizing antibody, but not antibody targeting other bone-stored growth factors including TGFβ, fibroblast growth factors, and platelet derived growth factors. While recombinant human IGF-I caused IGFIR tyrosine autophosphorylation, followed by activation of Akt and NF-κB in cancer cells, dominant-negative inhibition of IGFIR, Akt, or NF-κB significantly reduced bone metastases with increased apoptosis and decreased mitosis in metastatic cells. Together, our findings suggest that bone-derived IGF-I bridges the crosstalk between bone and metastasized cancer cells via activation of the IGFIR/Akt/NF-κB pathway. Disruption of this pathway therefore may represent a promising therapeutic intervention for bone metastasis. PMID:22738911

  2. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants.

    PubMed

    Birmingham, E; Kreipke, T C; Dolan, E B; Coughlin, T R; Owens, P; McNamara, L M; Niebur, G L; McHugh, P E

    2015-04-01

    Low magnitude high frequency (LMHF) loading has been shown to have an anabolic effect on trabecular bone in vivo. However, the precise mechanical signal imposed on the bone marrow cells by LMHF loading, which induces a cellular response, remains unclear. This study investigates the influence of LMHF loading, applied using a custom designed bioreactor, on bone adaptation in an explanted trabecular bone model, which isolated the bone and marrow. Bone adaptation was investigated by performing micro CT scans pre and post experimental LMHF loading, using image registration techniques. Computational fluids dynamic models were generated using the pre-experiment scans to characterise the mechanical stimuli imposed by the loading regime prior to adaptation. Results here demonstrate a significant increase in bone formation in the LMHF loaded group compared to static controls and media flow groups. The calculated shear stress in the marrow was between 0.575 and 0.7 Pa, which is within the range of stimuli known to induce osteogenesis by bone marrow mesenchymal stem cells in vitro. Interestingly, a correlation was found between the bone formation balance (bone formation/resorption), trabecular number, trabecular spacing, mineral resorption rate, bone resorption rate and mean shear stresses. The results of this study suggest that the magnitude of the shear stresses generated due to LMHF loading in the explanted bone cores has a contributory role in the formation of trabecular bone and improvement in bone architecture parameters. PMID:25281407

  3. The effect of central incisor's root proximity to the cortical plate and apical root resorption in extraction and non-extraction treatment

    PubMed Central

    Agarwal, Akhil; Sharma, Vijay P; Singh, Gulshan K; Tikku, Tripti; Agarwal, Nidhi; Mengi, Arvind

    2014-01-01

    Aims: The present study was conducted to investigate the relevance of cortical plate proximity of maxillary central incisor root, maxillary alveolar bone width, and the apical root resorption in extraction and non-extraction orthodontically treated cases. Further, the correlation between the apical root resorption and the various parameters was investigated. Materials and Methods: A total of 80 lateral head cephalographs, 40 pre-treatment and 40 post-treatment, of orthodontic subjects with a mean age of 15 years treated with fixed standard edgewise appliance were obtained. All subjects were divided into two groups as extraction and non-extraction cases. Twelve linear and three angular parameters were measured and evaluated. The paired “t”-test, Pearson's correlation coefficient, and the stepwise regression analysis were done to test the relationship between the apical root resorption and the various parameters. Results and Conclusions: The study revealed slightly greater amount of apical root resorption in extraction subjects as compared to non-extraction subjects. However, no statistically significant difference was found between the two treatment modalities. In extraction subjects, the apical root resorption was directly proportional to the pre-treatment length of maxillary central incisor and inversely proportional to the root width in apical one-third region, though there was a weak correlation. In non-extraction subjects, the pre-treatment anteroposterior position of the root apex of maxillary central incisor in the alveolar bone, in combination with its root width in the apical one-third region formed the predictive factors for the variance in the amount of the apical root resorption, though there was a weak correlation. Furthermore, the changes in the alveolar widths at the root apex and mid-root region were considered as predictive factors for the amount of apical root resorption during extraction and non-extraction treatment, respectively. PMID

  4. Zinc-deficient rats have more limited bone recovery during repletion than diet-restricted rats.

    PubMed

    Hosea, Heather J; Taylor, Carla G; Wood, Trisha; Mollard, Rebecca; Weiler, Hope A

    2004-04-01

    The objective of this study was to investigate the effects of dietary zinc deficiency and diet restriction on bone development in growing rats, and to determine whether any adverse effects could be reversed by dietary repletion. Weanling rats were fed either a zinc-deficient diet ad libitum (ZD; <1 mg zinc/kg) or nutritionally complete diet (30 mg zinc/kg) either ad libitum (CTL) or pair-fed to the intake of the ZD group (DR; diet-restricted) for 3 weeks (deficiency phase) and then all groups were fed the zinc-adequate diet ad libitum for 3, 7, or 23 days (repletion phase). Excised femurs were analyzed for bone mineral density (BMD) using dual-energy x-ray absorptiometry, and plasma was analyzed for markers of bone formation (osteocalcin) and resorption (Ratlaps). After the deficiency phase, ZD had lower body weight and reduced femur BMD, zinc, and phosphorus concentrations compared with DR; and these parameters were lower in DR compared with CTL. Femur calcium concentrations were unchanged among the groups. Reduced plasma osteocalcin in ZD and elevated plasma Ratlaps in DR suggested that zinc deficiency limits bone formation while diet restriction accelerates bone resorption activity. After 23 days of repletion, femur size, BMD, and zinc concentrations remained lower in ZD compared with DR and CTL. Body weight and femur phosphorus concentrations remained lower in both ZD and DR compared with CTL after repletion. There were no differences in plasma osteocalcin concentrations after the repletion phase, but the plasma Ratlaps concentrations remained elevated in DR compared with CTL. In summary, both ZD and DR lead to osteopenia during rapid growth, but the mechanisms appear to be due to reduced modeling in ZD and higher turnover in DR. Zinc deficiency was associated with a greater impairment in bone development than diet restriction, and both deficiencies limited bone recovery during repletion in growing rats. PMID:15044713

  5. Bone Metabolism on ISS Missions

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.

    2014-01-01

    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those

  6. Porous Surface Modified Bioactive Bone Cement for Enhanced Bone Bonding

    PubMed Central

    Huang, Li; Dong, Jingjing; Guo, Dagang; Mao, Mengmeng; Kong, Liang; Li, Yang; Wu, Zixiang; Lei, Wei

    2012-01-01

    Background Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. Materials and Methods The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant–bone interface was also investigated by push-out tests. Results The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect. Conclusions

  7. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    SciTech Connect

    Nurmio, Mirja; Joki, Henna; Kallio, Jenny; Maeaettae, Jorma A.; Vaeaenaenen, H. Kalervo; Toppari, Jorma; Jahnukainen, Kirsi; Laitala-Leinonen, Tiina

    2011-08-01

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered)) . Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research Highlights: > 3-Day imatinib treatment. > Causes growth plate anomalies in young rats. > Causes biomechanical changes and significant bone loss at distal trabecular bone. > Results in loss of osteoclasts at osteochondral junction.

  8. A new approach to quantify trabecular resorption adjacent to cemented knee arthroplasty.

    PubMed

    Mann, Kenneth A; Miller, Mark A; Pray, Caitlin L; Verdonschot, Nico; Janssen, Dennis

    2012-02-23

    A new micro-computed tomography (μCT) image processing approach to estimate the loss of cement-bone interlock was developed using the concept that PMMA cement flows and cures around trabeculae during the total knee arthroplasty procedure. The initial mold shape of PMMA cement was used to estimate the amount of interdigitated bone at the time of implantation and following in vivo service using enbloc human postmortem retrievals. Laboratory prepared specimens, where there would be no biological bone resorption, were used as controls to validate the approach and estimate errors. The image processing technique consisted of identifying bone and cement from the μCT scan set, dilation of the cement to identify the cement cavity space, and Boolean operations to identify the different components of the interdigitated cement-bone regions. For laboratory prepared specimens, there were small errors in the estimated resorbed bone volume fraction (reBVfr=0.11 ± 0.09) and loss in contact area fraction (CAfr=0.06 ± 0.15). These values would be zero if there were no error in the method. For the postmortem specimens, the resorbed volume fraction (reBVfr=0.85 ± 0.16) was large, meaning that only 15% of the cement mold shape was still filled with bone. The loss of contact area fraction (CAfr=0.84 ± 0.17) was similarly large. This new approach provides a convenient method to visualize and quantify trabecular bone loss from interdigitated regions from postmortem retrievals. The technique also illustrates for the first time that there are dramatic changes in how bone is fixed to cement following in vivo service. PMID:22227315

  9. The Role of IL-1β in the Bone Loss during Rheumatic Diseases

    PubMed Central

    Ruscitti, Piero; Cipriani, Paola; Carubbi, Francesco; Liakouli, Vasiliki; Di Benedetto, Paola; Berardicurti, Onorina; Alesse, Edoardo; Giacomelli, Roberto

    2015-01-01

    Several inflammatory diseases have been associated with increased bone resorption and fracture rates and different studies supported the relation between inflammatory cytokines and osteoclast activity. The main factor required for osteoclast activation is the stimulation by receptor activator of nuclear factor kappa-B ligand (RANKL) expressed on osteoblasts. In this context, interleukin- (IL-) 1β, one of the most powerful proinflammatory cytokines, is a strong stimulator of in vitro and in vivo bone resorption via upregulation of RANKL that stimulates the osteoclastogenesis. The resulting effects lead to an imbalance in bone metabolism favouring bone resorption and osteoporosis. In this paper, we review the available literature on the role of IL-1β in the pathogenesis of bone loss. Furthermore, we analysed the role of IL-1β in bone resorption during rheumatic diseases and, when available, we reported the efficacy of anti-IL-1β therapy in this field. PMID:25954061

  10. Sika Deer Antler Collagen Type I-Accelerated Osteogenesis in Bone Marrow Mesenchymal Stem Cells via the Smad Pathway.

    PubMed

    Li, Na; Zhang, Min; Drummen, Gregor P C; Zhao, Yu; Tan, Yin Fen; Luo, Su; Qu, Xiao Bo

    2016-01-01

    Deer antler preparations have been used to strengthen bones for centuries. It is particularly rich in collagen type I. This study aimed to unravel part of the purported bioremedial effect of Sika deer antler collagen type I (SDA-Col I) on bone marrow mesenchymal stem cells. The results suggest that SDA-Col I might be used to promote and regulate osteoblast proliferation and differentiation. SDA-Col I might potentially provide the basis for novel therapeutic strategies in the treatment of bone injury and/or in scaffolds for bone replacement strategies. Finally, isolation of SDA-Col I from deer antler represents a renewable, green, and uncomplicated way to obtain a biomedically valuable therapeutic. PMID:27066099

  11. Sika Deer Antler Collagen Type I-Accelerated Osteogenesis in Bone Marrow Mesenchymal Stem Cells via the Smad Pathway

    PubMed Central

    Li, Na; Zhang, Min; Drummen, Gregor P. C.; Zhao, Yu; Tan, Yin Fen; Luo, Su; Qu, Xiao Bo

    2016-01-01

    Deer antler preparations have been used to strengthen bones for centuries. It is particularly rich in collagen type I. This study aimed to unravel part of the purported bioremedial effect of Sika deer antler collagen type I (SDA-Col I) on bone marrow mesenchymal stem cells. The results suggest that SDA-Col I might be used to promote and regulate osteoblast proliferation and differentiation. SDA-Col I might potentially provide the basis for novel therapeutic strategies in the treatment of bone injury and/or in scaffolds for bone replacement strategies. Finally, isolation of SDA-Col I from deer antler represents a renewable, green, and uncomplicated way to obtain a biomedically valuable therapeutic. PMID:27066099

  12. Acceleration of Bone Repair in NOD/SCID Mice by Human Monoosteophils, Novel LL-37-Activated Monocytes

    PubMed Central

    Zhang, Zhifang; Shively, John E.

    2013-01-01

    Background An incomplete understanding of bone forming cells during wound healing and ectopic calcification has led to a search for circulating cells that may fulfill this function. Previously, we showed that monoosteophils, a novel lineage of calcifying/bone-forming cells generated by treatment of monocytes with the natural peptide LL-37, are candidates. In this study, we have analyzed their gene expression profile and bone repair function. Methods and Findings Human monoosteophils can be distinguished from monocytes, macrophages and osteoclasts by their unique up-regulation of integrin α3 and down-regulation of CD14 and CD16. Monoosteophils express high mRNA and protein levels of SPP1 (osteopontin), GPNMB (osteoactivin), CHI3L1 (cartilage glycoprotein-39), CHIT1 (Chitinase 1), MMP-7, CCL22 and MAPK13 (p38MAPKδ). Monocytes from wild type, but not MAPK13 KO mice are also capable of monoosteophil differentiation, suggesting that MAPK13 regulates this process. When human monoosteophils were implanted in a freshly drilled hole in mid-diaphyseal femurs of NOD/SCID mice, significant bone repair required only 14 days compared to at least 24 days in control treated injuries. Conclusion Human derived monoosteophils, characterized as CD45+α3+α3β+CD34−CD14−BAP (bone alkaline phosphatase)− cells, can function in an animal model of bone injury. PMID:23844045

  13. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation

    PubMed Central

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-01-01

    ABSTRACT Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. PMID:26157160

  14. Onlay Bone Grafts in Head and Neck Reconstruction

    PubMed Central

    Yazar, Sukru

    2010-01-01

    Bone grafts are used in a variety of clinical situations and can be divided into two categories: treatment of bone gaps (inlay bone grafting) and bone projection (onlay bone grafting). Cortical grafts are useful in situations requiring immediate mechanical strength. These grafts can survive with or without complete revascularization or resorption and are primarily used by plastic surgeons in the treatment of bone volume deficiency. Cancellous grafts, in contrast, have no mechanical strength and therefore require additional support to bridge bone defects. Thus, they are used primarily for the treatment of bone gaps and in general revascularize quickly, resorb completely, and stimulate significant new bone formation. PMID:22550447

  15. Repair of tegmen defect using cranial particulate bone graft.

    PubMed

    Greene, Arin K; Poe, Dennis S

    2015-01-01

    Bone paté is used to repair cranial bone defects. This material contains bone-dust collected during the high-speed burring of the cranium. Clinical and experimental studies of bone dust, however, have shown that it does not have biological activity and is resorbed. We describe the use of bone paté using particulate bone graft. Particulate graft is harvested with a hand-driven brace and 16mm bit; it is not subjected to thermal injury and its large size resists resorption. Bone paté containing particulate graft is much more likely than bone dust to contain viable osteoblasts capable of producing new bone. PMID:25465655

  16. Pathogen infection drives patterns of nutrient resorption in citrus plants.

    PubMed

    Cao, Jirong; Cheng, Chunzhen; Yang, Junjie; Wang, Qibing

    2015-01-01

    Nutrient resorption processes in the plants infected by pathogen remain poorly understood. Huanglongbing (HLB) is a destructive disease of citrus. HLB-pathogen 'Candidatus Liberibacter asiaticus' grows specifically in the phloem of hosts and may cause problems in the plant vascular system after infection. Therefore, it brings a great concern about the phloem nutrient transport and nutrient intra-cycling in HLB-affected plants. We investigated the effects of 'Ca. L. asiaticus' infection on nitrogen (N) and phosphorus (P) concentrations and resorption in different citrus species (i.e. Citrus reticulata, Citrus limon and Citrus maxima). HLB-pathogen infection had distinctive impacts on nutrient resorption in different species. P resorption efficiency substantially decreased in infected C. reticulata plants relative to the healthy plants in summer, which may account for the marked decrease in the average fruit yield. P resorption was more efficient in infected C. limon plants than in the healthy plants. However, for C. maxima plants, HLB had no significant effects on N:P ratio in live leaves and resorption efficiency as well as on fruit yield. Keeping efficient internal nutrient cycling can be a strategy of citrus species being tolerant to HLB. PMID:26419510

  17. Pathogen infection drives patterns of nutrient resorption in citrus plants

    PubMed Central

    Cao, Jirong; Cheng, Chunzhen; Yang, Junjie; Wang, Qibing

    2015-01-01

    Nutrient resorption processes in the plants infected by pathogen remain poorly understood. Huanglongbing (HLB) is a destructive disease of citrus. HLB-pathogen ‘Candidatus Liberibacter asiaticus’ grows specifically in the phloem of hosts and may cause problems in the plant vascular system after infection. Therefore, it brings a great concern about the phloem nutrient transport and nutrient intra-cycling in HLB-affected plants. We investigated the effects of ‘Ca. L. asiaticus’ infection on nitrogen (N) and phosphorus (P) concentrations and resorption in different citrus species (i.e. Citrus reticulata, Citrus limon and Citrus maxima). HLB-pathogen infection had distinctive impacts on nutrient resorption in different species. P resorption efficiency substantially decreased in infected C. reticulata plants relative to the healthy plants in summer, which may account for the marked decrease in the average fruit yield. P resorption was more efficient in infected C. limon plants than in the healthy plants. However, for C. maxima plants, HLB had no significant effects on N:P ratio in live leaves and resorption efficiency as well as on fruit yield. Keeping efficient internal nutrient cycling can be a strategy of citrus species being tolerant to HLB. PMID:26419510

  18. Structural basis of growth-related gain and age-related loss of bone strength

    PubMed Central

    2008-01-01

    If bone strength was the only requirement of skeleton, it could be achieved with bulk, but bone must also be light. During growth, bone modelling and remodelling optimize strength, by depositing bone where it is needed, and minimize mass, by removing it from where it is not. The population variance in bone traits is established before puberty and the position of an individual's bone size and mass tracks in the percentile of origin. Larger cross-sections have a comparably larger marrow cavity, which results in a lower volumetric BMD (vBMD), thereby avoiding bulk. Excavation of a marrow cavity thus minimizes mass and shifts the cortex radially, increasing rigidity. Smaller cross-sections are assembled by excavating a smaller marrow cavity leaving a relatively thicker cortex producing a higher vBMD, avoiding the fragility of slenderness. Variation in cellular activity around the periosteal and endocortical envelopes fashions the diverse shapes of adjacent cross-sections. Advancing age is associated with a decline in periosteal bone formation, a decline in the volume of bone formed by each basic multicellular unit (BMU), continued resorption by each BMU, and high remodelling after menopause. Bone loss in young adulthood has modest structural and biomechanical consequences because the negative BMU balance is driven by reduced bone formation, remodelling is slow and periosteal apposition continues shifting the thinned cortex radially. But after the menopause, increased remodelling, worsening negative BMU balance and a decline in periosteal apposition accelerate cortical thinning and porosity, trabecular thinning and loss of connectivity. Interstitial bone, unexposed to surface remodelling becomes more densely mineralized, has few osteocytes and greater collagen cross-linking, and accumulates microdamage. These changes produce the material and structural abnormalities responsible for bone fragility. PMID:18556646

  19. Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials

    PubMed Central

    Jeon, Ok Hee; Panicker, Leelamma M.; Lu, Qiaozhi; Chae, Jeremy J.; Feldman, Ricardo A.; Elisseeff, Jennifer H.

    2016-01-01

    Bone substitutes can be designed to replicate physiological structure and function by creating a microenvironment that supports crosstalk between bone and immune cells found in the native tissue, specifically osteoblasts and osteoclasts. Human induced pluripotent stem cells (hiPSC) represent a powerful tool for bone regeneration because they are a source of patient-specific cells that can differentiate into all specialized cell types residing in bone. We show that osteoblasts and osteoclasts can be differentiated from hiPSC-mesenchymal stem cells and macrophages when co-cultured on hydroxyapatite-coated poly(lactic-co-glycolic acid)/poly(L-lactic acid) (HA–PLGA/PLLA) scaffolds. Both cell types seeded on the PLGA/PLLA especially with 5% w/v HA recapitulated the tissue remodeling process of human bone via coupling signals coordinating osteoblast and osteoclast activity and finely tuned expression of inflammatory molecules, resulting in accelerated in vitro bone formation. Following subcutaneous implantation in rodents, co-cultured hiPSC-MSC/-macrophage on such scaffolds showed mature bone-like tissue formation. These findings suggest the importance of coupling matrix remodeling through osteoblastic matrix deposition and osteoclastic tissue resorption and immunomodulation for tissue development. PMID:27225733

  20. Experiment K305: Quantitative analysis of selected bone parameters

    NASA Technical Reports Server (NTRS)

    Wrongski, T. J.; Morey-Holton, E.; Cann, C. E.; Arnaud, C. D.; Baylink, D. J.; Turner, R. T.; Jee, W. S. S.

    1981-01-01

    The skeletal alterations induced by space flight were determined to be a reduced rate of periosteal bone formation in tibial and humeral diaphyses, a decreased trabecular bone volume, and an increased fat content of the bone marrow in the proximal tibial metaphysis. An increased incidence of arrest lines in flight animals suggested that periosteal bone formation may have ceased during space flight. Endosteal bone resorption was not affected markedly.

  1. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on <25 μg of Ca. Results from this new study show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density by X-ray measurements occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker. Bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged over this period. Ca isotopes can in principle be used to quantify net changes in bone mass. Using a mass-balance model, our results indicate an average loss of 0.62 ± 0.16 % in bone mass over the course of this 30-day study. This is consistent with the rate of bone loss in longer-term studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  2. Toward accelerated bone regeneration by altering poly(D,L-lactic-co-glycolic) acid porogen content in calcium phosphate cement.

    PubMed

    van Houdt, C I A; Preethanath, R S; van Oirschot, B A J A; Zwarts, P H W; Ulrich, D J O; Anil, S; Jansen, J A; van den Beucken, J J J P

    2016-02-01

    This work aimed to compare in vitro degradation of dense PLGA microspheres and milled PLGA particles as porogens within CPC, considering that the manufacturing of milled PLGA is more cost-effective when compared with PLGA microspheres. Additionally, we aimed to examine the effect of porogen amount within CPC/PLGA on degradation and bone formation. Our in vitro results showed no differences between both forms of PLGA particles (as porogens in CPC; spherical for microspheres, irregular for milled) regarding morphology, porosity, and degradation. Using milled PLGA as porogens within CPC/PLGA, we evaluated the effect of porogen amount on degradation and bone forming capacity in vivo. Titanium landmarks surrounded by CPC/PLGA with 30 and 50 wt % PLGA, were implanted in forty femoral bone defects of twenty male Wistar rats. Histomorphometrical results showed a significant temporal decrease in the amount of CPC, for both formulas, and confirmed that 50 wt % PLGA degrades faster than 30 wt%, and allows for a 1.5-fold higher amount of newly formed bone. Taken together, this study demonstrated that (i) milled PLGA particles perform equal to PLGA microspheres, and (ii) tuning of the PLGA content in CPC/PLGA is a feasible approach to leverage material degradation and bone formation. PMID:26454146

  3. Bone Remodeling Monitor

    NASA Technical Reports Server (NTRS)

    Foucar, Charlie; Goldberg, Leslie; Hon, Bodin; Moore, Shannon; Williams, Evan

    2009-01-01

    The impact of bone loss due to different mechanical loadings in microgravity is a major concern for astronauts upon reintroduction to gravitational forces in exploration missions to the Moon and Mars. it has been shown that astronauts not only lose bone at differing rates, with levels up to 2% per month, but each astronaut will respond to bone loss treatments differently. Pre- and post-flight imaging techniques and frozen urine samples for post-flight laboratory immunoassays To develop a novel, non-invasive, highly . sensitive, portable, intuitive, and low-powered device to measure bone resorption levels in 'real time' to provide rapid and Individualized feedback to maximize the efficacy of bone loss countermeasures 1. Collect urine specimen and analyze the level of bone resorption marker, DPD (deoxypridinoline) excreted. 2. Antibodies specific to DPD conjugated with nanoshells and mixed with specimen, the change in absorbance from agglutination is measured by an optical device. 3. The concentration of DPD is displayed and recorded on a PDA

  4. Bone and cancer: the osteoncology

    PubMed Central

    Ibrahim, Toni; Mercatali, Laura; Amadori, Dino

    2013-01-01

    Summary In recent years clinicians have witnessed a radical change in the relationship between bone and cancer, with in particular an increase in bone metastases incidence due to an improvement of patients survival. Bone metastases are responsible for the high morbidity in cancer patients with a strong clinical impact. For all these reasons, efforts have been directed to this important field with the foundation of the osteoncology, a new scientific and clinical branch involved in the management of patients with bone cancer disease, including primary bone tumors and bone metastases. Another innovative and important osteoncology topic is the Cancer Treatment Induced Bone Loss (CTIBL) that is mainly caused by antitumoral treatment with bone resorption induction. The diagnostic and therapeutic options are described briefly in order to highlight the importance of the multidisciplinary approach in this new field. PMID:24133529

  5. A decade of bisphosphonate bone complications: what it has taught us about bone physiology.

    PubMed

    Marx, Robert E

    2014-01-01

    While the AIDS epidemic of the 1980s taught the medical and dental professions much about immune cells and the immune system's cellular relationships, the bisphosphonate-induced osteonecrosis epidemic of the past decade has taught these same professions much about bone turnover, bone cell cross talk, the response and functional relationship of bone cells to loading, and drug effects on cellular dynamic relationships. The present article explores the literature as well as both evidence- and experience-based data to discuss known bone pathologies and physiologic mechanisms as well as uncover new findings: (1) bone remodeling is the mechanism by which bone adapts to loading stresses, termed either bone modeling or Wolff's law, and it is also the mechanism for bone renewal; (2) osteoclastic bone resorption triggers bone renewal at a rate of about 0.7%/day by its release of growth factors; (3) bisphosphonates prevent the renewal of old and injured bone, thus making it brittle and more likely to fracture over time; (4) bisphosphonates have a half-life in bone of 11 years because of their irreversible binding to bone via their central carbon atom; (5) when administered intravenously, bisphosphonate loads bone and accumulates in bone 142.8 times faster than when administered orally; (6) osteoclastic resorption of bisphosphonate-loaded bone results in osteoclast death in which the cell bursts, releasing the bisphosphonate molecules to reenter the local bone or bone marrow in a re-dosing effect; (7) endosteal osteoblasts are dependent on the osteoclastic resorption/growth factor release/new bone formation mechanism of bone renewal, whereas periosteal osteoblasts are not; and (8) it is likely that endosteal osteoblasts and periosteal osteoblasts have different cell membrane receptors and arise from separate embryologic niches. PMID:24683588

  6. Somatostatin Analogue Treatment of a TSH-Secreting Adenoma Presenting With Accelerated Bone Metabolism and a Pericardial Effusion: A Case Report.

    PubMed

    Mousiolis, Athanasios C; Rapti, Eleni; Grammatiki, Maria; Yavropoulou, Maria; Efstathiou, Maria; Foroglou, Nikolaos; Daniilidis, Michalis; Kotsa, Kalliopi

    2016-01-01

    Increased bone turnover and other less frequent comorbidities of hyperthyroidism, such as heart failure, have only rarely been reported in association with central hyperthyroidism due to a thyrotropin (TSH)-secreting pituitary adenoma (TSHoma). Treatment is highly empirical and relies on eliminating the tumor and the hyperthyroid state.We report here an unusual case of a 39-year-old man who was initially admitted for management of pleuritic chest pain and fever of unknown origin. Diagnostic work up confirmed pericarditis and pleural effusion both refractory to treatment. The patient had a previous history of persistently elevated levels of alkaline phosphatase (ALP), indicative of increased bone turnover. He had also initially been treated with thyroxine supplementation due to elevated TSH levels. During the diagnostic process a TSHoma was revealed. Thyroxine was discontinued, and resection of the pituitary tumor followed by treatment with a somatostatin analog led to complete recession of the effusions, normalization of ALP, and shrinkage of pituitary tumor.Accelerated bone metabolism and pericardial and pleural effusions attributed to a TSHoma may resolve after successful treatment of the tumor. The unexpected clinical course of this case highlights the need for careful long-term surveillance in patients with these rare pituitary adenomas. PMID:26765410

  7. Mechanisms of Guided Bone Regeneration: A Review

    PubMed Central

    Liu, Jie; Kerns, David G

    2014-01-01

    Post-extraction crestal bone resorption is common and unavoidable which can lead to significant ridge dimensional changes. To regenerate enough bone for successful implant placement, Guided Bone Regeneration (GBR) is often required. GBR is a surgical procedure that uses barrier membranes with or without particulate bone grafts or/and bone substitutes. There are two approaches of GBR in implant therapy: GBR at implant placement (simultaneous approach) and GBR before implant placement to increase the alveolar ridge or improve ridge morphology (staged approach). Angiogenesis and ample blood supply play a critical role in promoting bone regeneration. PMID:24894890

  8. The effect of movement on the holding power of screws in bone.

    PubMed

    Schatzker, J; Horne, J G; Sumner-Smith, G

    1975-09-01

    Movement between screw threads and bone inhibits bone formation, revascularization and remodeling of dead bone. Movement causes the screw to become enveloped by fibrous tissue in response to necrosis and resorption of adjacent dead cortical bone. This results in a radiologically discernible radiolucent "halo" about the screw, a certain sign of screw loosening. PMID:1157420

  9. Proteomics in bone research.

    PubMed

    Zhang, Hengwei; Recker, Robert; Lee, Wai-Nang Paul; Xiao, Gary Guishan

    2010-02-01

    Osteoporosis is prevalent among the elderly and is a major cause of bone fracture in this population. Bone integrity is maintained by the dynamic processes of bone resorption and bone formation (bone remodeling). Osteoporosis results when there is an imbalance of the two counteracting processes. Bone mineral density, measured by dual-energy x-ray absorptiometry has been the primary method to assess fracture risk for decades. Recent studies demonstrated that measurement of bone turnover markers allows for a dynamic assessment of bone remodeling, while imaging techniques, such as dual-energy x-ray absorptiometry, do not. The application of proteomics has permitted discoveries of new, sensitive, bone turnover markers, which provide unique information for clinical diagnosis and treatment of patients with bone diseases. This review summarizes the recent findings of proteomic studies on bone diseases, properties of mesenchymal stem cells with high expansion rates and osteoblast and osteoclast differentiation, with emphasis on the role of quantitative proteomics in the study of signaling dynamics, biomarkers and discovery of therapeutic targets. PMID:20121480

  10. Bone Loss Triggered by the Cytokine Network in Inflammatory Autoimmune Diseases

    PubMed Central

    Amarasekara, Dulshara Sachini; Yu, Jiyeon; Rho, Jaerang

    2015-01-01

    Bone remodeling is a lifelong process in vertebrates that relies on the correct balance between bone resorption by osteoclasts and bone formation by osteoblasts. Bone loss and fracture risk are implicated in inflammatory autoimmune diseases such as rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, and systemic lupus erythematosus. The network of inflammatory cytokines produced during chronic inflammation induces an uncoupling of bone formation and resorption, resulting in significant bone loss in patients with inflammatory autoimmune diseases. Here, we review and discuss the involvement of the inflammatory cytokine network in the pathophysiological aspects and the therapeutic advances in inflammatory autoimmune diseases. PMID:26065006

  11. Three-Dimensional Quantification of Calcium Salt-Composite Resorption (CSC) In Vitro by Micro-computed Tomography (Micro-CT)

    NASA Astrophysics Data System (ADS)

    Winkler, T.; Dai, X. Y.; Mielke, G.; Vogt, S.; Buechner, H.; Schantz, J. T.; Harder, Y.; Machens, H. G.; Morlock, M. M.; Schilling, A. F.

    2014-04-01

    The commonly applied cell-based, two-dimensional (2D) in vitro resorption assays for biomaterials are limited in a variety of cases, including high initial roughness of material surface, uncontrollable solubilization (or resorption) of the entire material surface, or complex three-dimensional (3D) structure of the bioactive material itself. All these make the accurate assessment and successful selection of the optimal bone substitute material difficult. In vivo, micro-computed tomography (micro-CT) has been widely applied for the analysis of bone physiology and pathology, as well as for the 3D analysis of scaffolds for bone tissue engineering. In this study, we show that micro-CT can also be applied for the in vitro analysis of osteoclast-mediated resorption of biomaterials. For our experiments, we chose a calcium salt-composite (composite of calcium sulphate (CSC), calcium carbonate, glycerin-1,2,3-tripalmiate), which evades common 2D in vitro resorption analysis as a result of its high surface roughness and material composition. Human osteoclasts were differentiated from precursor cells on the surface of the material for 28 days. Cells were analyzed for expression of tartrate-resistant acid phosphatase 5b (TRAP5b), multinuclearity, and size. Volumetric analysis of resorption was performed by micro-CT. Multinucleated osteoclasts developed on the surface of the material. TRAP5b expression of the cells on CSC was comparable with TRAP5b expression of cells cultivated on dentin for the first 3 weeks of culture. At day 28, TRAP5b expression, cell number, and size of the TRAP+ cells were reduced on the CSC when compared with cells on dentin. Volumetric anaylsis by micro-CT showed a strong cellular effect on resorption of CSC. We consider micro-CT to be a promising technique for 3D quantification of cell-based resorption that will allow the study of cellular resorption of materials in vitro, which were up to now confined to animal experimental analysis.

  12. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  13. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  14. Acceleration of Natural-Abundance Solid-State MAS NMR Measurements on Bone by Paramagnetic Relaxation from Gadolinium-DTPA

    PubMed Central

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-01-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylenetriamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. PMID:24881032

  15. In vitro osteoclast formation and resorption of silicon-substituted hydroxyapatite ceramics.

    PubMed

    Friederichs, Robert J; Brooks, Roger A; Ueda, Masato; Best, Serena M

    2015-10-01

    Materials that participate in bone remodeling at the implant/tissue interface represent a modern tissue engineering approach with the aim of balancing implant resorption and nascent tissue formation. Silicon-substituted hydroxyapatite (SiHA) ceramics are capable of stimulating new bone formation, but little is known about their interaction with osteoclasts (OC). The effects of soluble silicate and SiHA on OCs were investigated in this study. Soluble silicate below 500 μM did not stimulate cell metabolism at 4 days or alter resorption area at 7 days o