Science.gov

Sample records for accelerated carbon ions

  1. Electron string ion sources for carbon ion cancer therapy accelerators.

    PubMed

    Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C(4+) and C(6+) ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10(10) C(4+) ions per pulse and about 5 × 10(9) C(6+) ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10(11) C(6+) ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the (11)C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C(4+) ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of (11)C, transporting to the tumor with the primary accelerated (11)C(4+) beam, this efficiency is preliminarily considered to be large enough to produce the (11)C(4+) beam from radioactive methane and to inject this beam into synchrotrons. PMID:26329182

  2. Electron string ion sources for carbon ion cancer therapy accelerators

    NASA Astrophysics Data System (ADS)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  3. Electron string ion sources for carbon ion cancer therapy accelerators

    SciTech Connect

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.; Katagiri, K.; Noda, K.

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  4. Carbon stripper foils for heavy-ion accelerators

    SciTech Connect

    Thomas, G.E.

    1980-01-01

    Carbon stripper foils have for many years been successfully used with accelerators because they yield higher average charge states than gas strippers. However, with the development of heavy ion accelerators and the resulting use of heavier ions, the carbon stripper foil lifetimes are greatly reduced. Even when using the new foils changer systems, which typically contain two hundred foils or more, it becomes necessary to have frequent accelerator shutdowns for foil reloading. The rate of experiment interruption makes it clear a new approach is necessary to increase foil lifetimes. Several techniques have been tried with varying degrees of success to strengthen these foils so that they will last longer; the most successful one reported a lifetime increase of the order of a factor of 30 over foils produced in the conventional manner. Methods of producing various types of foils will be presented, a discussion will be given on theories for foil breakage, and some new ideas will be introduced for further increasing foil lifetimes.

  5. Generation of quasi-monoenergetic carbon ions accelerated parallel to the plane of a sandwich target

    SciTech Connect

    Wang, J. W.; Murakami, M.; Weng, S. M.; Xu, H.; Ju, J. J.; Luan, S. X.; Yu, W.

    2014-12-15

    A new ion acceleration scheme, namely, target parallel Coulomb acceleration, is proposed in which a carbon plate sandwiched between gold layers is irradiated with intense linearly polarized laser pulses. The high electrostatic field generated by the gold ions efficiently accelerates the embedded carbon ions parallel to the plane of the target. The ion beam is found to be collimated by the concave-shaped Coulomb potential. As a result, a quasi-monoenergetic and collimated C{sup 6+}-ion beam with an energy exceeding 10 MeV/nucleon is produced at a laser intensity of 5 × 10{sup 19} W/cm{sup 2}.

  6. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-07-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration.

  7. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces.

    PubMed

    Dalui, Malay; Wang, W-M; Trivikram, T Madhu; Sarkar, Subhrangsu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J; Ayyub, P; Sheng, Z M; Krishnamurthy, M

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈ 0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2 × 10(18)  W/cm(2). However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  8. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    PubMed Central

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  9. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  10. Imaging using accelerated heavy ions

    SciTech Connect

    Chu, W.T.

    1982-05-01

    Several methods for imaging using accelerated heavy ion beams are being investigated at Lawrence Berkeley Laboratory. Using the HILAC (Heavy-Ion Linear Accelerator) as an injector, the Bevalac can accelerate fully stripped atomic nuclei from carbon (Z = 6) to krypton (Z = 34), and partly stripped ions up to uranium (Z = 92). Radiographic studies to date have been conducted with helium (from 184-inch cyclotron), carbon, oxygen, and neon beams. Useful ranges in tissue of 40 cm or more are available. To investigate the potential of heavy-ion projection radiography and computed tomography (CT), several methods and instrumentation have been studied.

  11. Field ionization model implemented in Particle In Cell code and applied to laser-accelerated carbon ions

    SciTech Connect

    Nuter, R.; Gremillet, L.; Lefebvre, E.; Levy, A.; Ceccotti, T.; Martin, P.

    2011-03-15

    A novel numerical modeling of field ionization in PIC (Particle In Cell) codes is presented. Based on the quasistatic approximation of the ADK (Ammosov Delone Krainov) theory and implemented through a Monte Carlo scheme, this model allows for multiple ionization processes. Two-dimensional PIC simulations are performed to analyze the cut-off energies of the laser-accelerated carbon ions measured on the UHI 10 Saclay facility. The influence of the target and the hydrocarbon pollutant composition on laser-accelerated carbon ion energies is demonstrated.

  12. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  13. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  14. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  15. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  16. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  17. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  18. The measurement results of carbon ion beam structure extracted by bent crystal from U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Barnov, E. V.; Britvich, G. I.; Chesnokov, Yu A.; Chirkov, P. N.; Durum, A. A.; Kostin, M. Yu; Maisheev, V. A.; Pitalev, V. I.; Reshetnikov, S. F.; Yanovich, A. A.; Nazhmudinov, R. M.; Kubankin, A. S.; Shchagin, A. V.

    2016-07-01

    The carbon ion +6C beam with energy 25 GeV/nucleon was extracted by bent crystal from the U-70 ring. The bent angle of silicon crystal was 85 mrad. About 2×105 particles for 109 circulated ions in the ring were observed in beam line 4a after bent crystal. Geometrical parameters, time structure and ion beam structure were measured. The ability of the bent monocrystal to extract and generate ion beam with necessary parameters for regular usage in physical experiments is shown in the first time.

  19. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  20. Use of accelerated helium-3 ions for determining oxygen and carbon impurities in some pure materials

    NASA Technical Reports Server (NTRS)

    Aleksandrova, G. I.; Borisov, G. I.; Demidov, A. M.; Zakharov, Y. A.; Sukhov, G. V.; Shmanenkova, G. I.; Shchelkova, V. P.

    1978-01-01

    Methods are developed for the determination of O impurity in Be and Si carbide and concurrent determination of C and O impurities in Si and W by irradiation with accelerated He-3 ions and subsequent activity measurements of C-11 and F-18 formed from C and O with the aid of a gamma-gamma coincidence spectrometer. Techniques for determining O in Ge and Ga arsenide with radiochemical separation of F-18 are also described.

  1. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    NASA Astrophysics Data System (ADS)

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori; Oyaizu, Michihiro; Hattori, Toshiyuki

    2013-04-01

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 μg/cm2 thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 μg/cm2 in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 μg/cm2 because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was less than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.

  2. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori; Oyaizu, Michihiro; Hattori, Toshiyuki

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was less than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.

  3. Ion wave breaking acceleration

    NASA Astrophysics Data System (ADS)

    Liu, B.; Meyer-ter-Vehn, J.; Bamberg, K.-U.; Ma, W. J.; Liu, J.; He, X. T.; Yan, X. Q.; Ruhl, H.

    2016-07-01

    Laser driven ion wave breaking acceleration (IWBA) in plasma wakefields is investigated by means of a one-dimensional (1D) model and 1D/3D particle-in-cell (PIC) simulations. IWBA operates in relativistic transparent plasma for laser intensities in the range of 1020- 1023 W /cm2 . The threshold for IWBA is identified in the plane of plasma density and laser amplitude. In the region just beyond the threshold, self-injection takes place only for a fraction of ions and in a limited time period. This leads to well collimated ion pulses with peaked energy spectra, in particular for 3D geometry.

  4. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT1). A similar analysis that was conducted for the NASA's Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future post-test analyses are incorporated. The worst-case impact of carbon

  5. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NEXT (NASA's Evolutionary Xenon Thruster) Long Duration Test (LDT1). A similar analysis that was conducted for the NSTAR (NASA's Solar Electric Propulsion Technology Applications Readiness Program) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future posttest analyses are incorporated. The worst-case impact of carbon back

  6. Bacterial cells enhance laser driven ion acceleration

    PubMed Central

    Dalui, Malay; Kundu, M.; Trivikram, T. Madhu; Rajeev, R.; Ray, Krishanu; Krishnamurthy, M.

    2014-01-01

    Intense laser produced plasmas generate hot electrons which in turn leads to ion acceleration. Ability to generate faster ions or hotter electrons using the same laser parameters is one of the main outstanding paradigms in the intense laser-plasma physics. Here, we present a simple, albeit, unconventional target that succeeds in generating 700 keV carbon ions where conventional targets for the same laser parameters generate at most 40 keV. A few layers of micron sized bacteria coating on a polished surface increases the laser energy coupling and generates a hotter plasma which is more effective for the ion acceleration compared to the conventional polished targets. Particle-in-cell simulations show that micro-particle coated target are much more effective in ion acceleration as seen in the experiment. We envisage that the accelerated, high-energy carbon ions can be used as a source for multiple applications. PMID:25102948

  7. Review of ion accelerators

    SciTech Connect

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

  8. Ion Accelerator Merges Several Beams

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1984-01-01

    Intense ion beam formed by merging multiple ion beamlets into one concentrated beam. Beamlet holes in graphite screen and focusing grids arranged in hexagonal pattern. Merged beam passes through single hole in each of aluminum accelerator and decelerator grids. Ion extraction efficiency, beam intensity, and focusing improved.

  9. Medical heavy ion accelerator proposals

    NASA Astrophysics Data System (ADS)

    Gough, R. A.

    1985-05-01

    For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms. Specialized techniques for shaping the dose to conform to irregularly-shaped target volumes, while simultaneously sparing surrounding, healthy tissue and critical structures, are employed in each treatment room, together with the sophisticated dosimetry necessary for verification, monitoring, and patient safety.

  10. Compact ion accelerator source

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  11. Modeling Ion Acceleration Using LSP

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew

    This thesis presents the development of simulations modeling ion acceleration using the particle-in-cell code LSP. A new technique was developed to model the Target Normal Sheath Acceleration (TNSA) mechanism. Multiple simulations are performed, each optimized for a certain part of the TNSA process with appropriate information being passed from one to the next. The technique allows for tradeoffs between accuracy and speed. Physical length and timescales are met when necessary and different physical models are employed as needed. This TNSA modeling technique is used to perform a study on the effect front-surface structures have on the resulting ion acceleration. The front-surface structures tested have been shown to either modify the electron kinetic energy spectrum by increasing the maximum energy obtained or by increasing the overall coupling of laser energy to electron energy. Both of these types of front-surface structures are tested for their potential benefits for the accelerated ions. It is shown that optimizing the coupling of laser energy to electron energy is more important than producing extremely energetic electrons in the case of the TNSA ions. Simulations modeling the interaction of an intense laser with very thin (<100 nm thick) liquid crystal targets, modeled for the first time, are presented. Modeling this interaction is difficult and the effect of different simulation design choices is explored in depth. In particular, it is shown that the initial electron temperature used in the simulation has a significant effect on the resulting ion acceleration and light transmitted through the target. This behavior is explored through numerous 1D simulations.

  12. Ion Acceleration in Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.; Weir, Sue B.

    1996-01-01

    Solar flares are among the most energetic and interesting phenomena in the Solar system, releasing up to 1032 ergs of energy on timescales of several tens of seconds to several tens of minutes. Much of this energy is in the form of suprathermal electrons and ions, which remain trapped at the Sun and produce a wide variety of radiations, as well as escape into interplanetary space, where they can be directly observed. The radiation from trapped particles consists in general of (1) continuum emission; (2) narrow gamma-ray nuclear deexcitation lines; and (3) high-energy neutrons observed in space or by ground-based neutron monitors. The particles that escape into space consist of both electrons and ions, which often have compositions quite different than that of the ambient solar atmosphere. Flares thus present many diagnostics of the particle acceleration mechanism(s), the identification of which is the ultimate goal of flare research. Moreover, flares in fact offer the only opportunity in astrophysics to study the simultaneous energization of both electrons and ions. Hopefully, an understanding of flares with their wealth of diagnostic data will lead to a better understanding of particle acceleration at other sites in the Universe. It is now generally accepted that flares are roughly divided into two classes: impulsive and gradual. Gradual events are large, occur high in the corona, have long-duration soft and hard X-rays and gamma rays, are electron poor, are associated with Type II radio emission and coronal mass ejections (CMEs), and produce energetic ions with coronal abundance ratios. Impulsive events are more compact, occur lower in the corona, produce short-duration radiation, and exhibit dramatic abundance enhancements in the energetic ions. Their He-3/He-4 ratio is - 1, which is a huge increase over the coronal value of about 5 x 10(exp -4), and they also posses smaller but still significant enhancements of Ne, Mg, Si, and Fe relative to He-4, C, N, and O

  13. heavy ion acceleration at shocks

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. I.; Galinsky, V.

    2009-12-01

    The theoretical study of alpha particle acceleration at a quasi-parallel shock due to interaction with Alfven waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model [1]. The model uses conservation laws and resonance conditions to find where waves will be generated or dumped and hence particles will be pitch--angle scattered as well as the change of the wave energy due to instability or damping. It includes in consideration the total distribution function (the bulk plasma and high energy tail), so no any assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles) are required. In previous studies heavy ions were treated as perfect test particles, they only experienced the Alfven turbulence excited by protons and didn’t contribute to turbulence generation. In contrast to this approach, we consider the ion scattering on hydromagnetic turbulence generated by both protons and ions themselves. It is important for alpha particles with their relatively large mass-loading parameter that defines efficiency of the wave excitation by alpha particles. The energy spectra of alpha particles is found and compared with those obtained in test particle approximation. [1] Galinsky, V.L., and V.I. Shevchenko, Astrophys. J., 669, L109, 2007.

  14. Accelerating Mineral Carbonation Using Carbonic Anhydrase.

    PubMed

    Power, Ian M; Harrison, Anna L; Dipple, Gregory M

    2016-03-01

    Carbonic anhydrase (CA) enzymes have gained considerable attention for their potential use in carbon dioxide (CO2) capture technologies because they are able to catalyze rapidly the interconversion of aqueous CO2 and bicarbonate. However, there are challenges for widespread implementation including the need to develop mineralization process routes for permanent carbon storage. Mineral carbonation of highly reactive feedstocks may be limited by the supply rate of CO2. This rate limitation can be directly addressed by incorporating enzyme-catalyzed CO2 hydration. This study examined the effects of bovine carbonic anhydrase (BCA) and CO2-rich gas streams on the carbonation rate of brucite [Mg(OH)2], a highly reactive mineral. Alkaline brucite slurries were amended with BCA and supplied with 10% CO2 gas while aqueous chemistry and solids were monitored throughout the experiments (hours to days). In comparison to controls, brucite carbonation using BCA was accelerated by up to 240%. Nesquehonite [MgCO3·3H2O] precipitation limited the accumulation of hydrated CO2 species, apparently preventing BCA from catalyzing the dehydration reaction. Geochemical models reproduce observed reaction progress in all experiments, revealing a linear correlation between CO2 uptake and carbonation rate. Data demonstrates that carbonation in BCA-amended reactors remained limited by CO2 supply, implying further acceleration is possible. PMID:26829491

  15. Calcium Carbonate Phosphate Binding Ion Exchange Filtration and Accelerated Denitrification Improve Public Health Standards and Combat Eutrophication in Aquatic Ecosystems

    PubMed Central

    Yanamadala, Vijay

    2010-01-01

    Hektoen agar. Initial analyses suggest a strong correlation between phosphate concentrations and bacterial populations; a 66% decrease in phosphate resulted in a 35% reduction in bacterial populations and a 45% reduction in enteropathogenic populations. Likewise, a strong correlation was shown between calcium carbonate concentrations and bacterial reduction greater than that which can be attributed to the phosphate reduction alone. This was followed by the construction of various phosphate binding calcium carbonate filters, which used the ion exchange principle, including a spring loading filter, PVC pipe filter, and a galvanized filter. All were tested with the aid of Stoke's law formulation. The experiment was extremely successful in designing a working phosphate-binding and ammonia-reducing filter, and a large-scale agitator-clarifier filter system is currently being planned for construction in Madrona Marsh; this filter will reduce phosphate and ammonia levels substantially in the following years, bringing ecological, economical, and health-related improvements to the overall ecosystem and habitat. PMID:16381147

  16. Compact RF ion source for industrial electrostatic ion accelerator.

    PubMed

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described. PMID:26932115

  17. Compact RF ion source for industrial electrostatic ion accelerator

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  18. A review of ion sources for medical accelerators (invited)

    SciTech Connect

    Muramatsu, M.; Kitagawa, A.

    2012-02-15

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespread since the 1990s. The energy and intensity are typically over 200 MeV and several 10{sup 10} pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV/u. Although the beam intensity depends on the irradiation method, it is typically several 10{sup 8} or 10{sup 9} pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of

  19. A review of ion sources for medical accelerators (invited).

    PubMed

    Muramatsu, M; Kitagawa, A

    2012-02-01

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespread since the 1990s. The energy and intensity are typically over 200 MeV and several 10(10) pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV∕u. Although the beam intensity depends on the irradiation method, it is typically several 10(8) or 10(9) pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are

  20. High-current ion-ring accelerator

    SciTech Connect

    Sudan, R.N. )

    1993-03-15

    An accelerator concept is outlined which enables 10[sup 15] to 10[sup 18] ions in the form of a charge neutralized ion ring to be accelerated to GeV energies. A repetition rate of 10 Hz will deliver an average current in the range of 0.1 A.

  1. The Pulse Line Ion Accelerator Concept

    SciTech Connect

    Briggs, Richard J.

    2006-02-15

    The Pulse Line Ion Accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The concept might be described crudely as an ''air core'' induction linac where the PFN is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  2. Electron Acceleration by Transient Ion Foreshock Phenomena

    NASA Astrophysics Data System (ADS)

    Wilson, L. B., III; Turner, D. L.

    2015-12-01

    Particle acceleration is a topic of considerable interest in space, laboratory, and astrophysical plasmas as it is a fundamental physical process to all areas of physics. Recent THEMIS [e.g., Turner et al., 2014] and Wind [e.g., Wilson et al., 2013] observations have found evidence for strong particle acceleration at macro- and meso-scale structures and/or pulsations called transient ion foreshock phenomena (TIFP). Ion acceleration has been extensively studied, but electron acceleration has received less attention. Electron acceleration can arise from fundamentally different processes than those affecting ions due to differences in their gyroradii. Electron acceleration is ubiquitous, occurring in the solar corona (e.g., solar flares), magnetic reconnection, at shocks, astrophysical plasmas, etc. We present new results analyzing the dependencies of electron acceleration on the properties of TIFP observed by the THEMIS spacecraft.

  3. Heavy Ion Fusion Accelerator Research (HIFAR)

    SciTech Connect

    Not Available

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C{sub s}+ sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac.

  4. Carbon Multicharged Ion Generation from Laser Plasma

    NASA Astrophysics Data System (ADS)

    Balki, Oguzhan; Elsayed-Ali, Hani E.

    2014-10-01

    Multicharged ions (MCI) have potential uses in different areas such as microelectronics and medical physics. Carbon MCI therapy for cancer treatment is considered due to its localized energy delivery to hard-to-reach tumors at a minimal damage to surrounding tissues. We use a Q-switched Nd:YAG laser with 40 ns pulse width operated at 1064 nm to ablate a graphite target in ultrahigh vacuum. A time-of-flight energy analyzer followed by a Faraday cup is used to characterize the carbon MCI extracted from the laser plasma. The MCI charge state and energy distribution are obtained. With increase in the laser fluence, the ion charge states and ion energy are increased. Carbon MCI up to C+9 are observed along with carbon clusters. When an acceleration voltage is applied between the carbon target and a grounded mesh, ion extraction is observed to increase with the applied voltage. National Science Foundation.

  5. Double Acceleration of Ions and Application in Biomaterials

    SciTech Connect

    Lorusso, Antonella; Nassisi, Vincenzo; Siciliano, Maria Vittoria; Velardi, Luciano

    2010-02-02

    Ions of different elements were generated by laser-induced-plasma and accelerated by a two adjacent cavities. Therefore, the ions undergo a double acceleration imparting a maximum ion energy of 160 keV per charge state. We analyzed the extracted charge from a Cu target as a function of the accelerating voltage. At 60 kV of total accelerating voltage, the maximum current peak was of 5.3 mA. The ion flux resulted of 3.4x10{sup 11} ions/cm{sup 2}. The normalized emittance measured by pepper pot method at 60 kV was of 0.22 pi mm mrad. By means of this machine, biomedical materials as UHMWPE were implanted with carbon and titanium ions. At a total ion flux of 2x10{sup 15} ions/cm{sup 2} the polyethylene surface increased its micro hardness of about 3-hold measured by the scratch test. Considering the ion emission cone dimension, we estimated a total extracted charge per pulse of 200 nC.

  6. Ion acceleration to cosmic ray energies

    NASA Technical Reports Server (NTRS)

    Lee, Martin A.

    1990-01-01

    The acceleration and transport environment of the outer heliosphere is described schematically. Acceleration occurs where the divergence of the solar-wind flow is negative, that is at shocks, and where second-order Fermi acceleration is possible in the solar-wind turbulence. Acceleration at the solar-wind termination shock is presented by reviewing the spherically-symmetric calculation of Webb et al. (1985). Reacceleration of galactic cosmic rays at the termination shock is not expected to be important in modifying the cosmic ray spectrum, but acceleration of ions injected at the shock up to energies not greater than 300 MeV/charge is expected to occur and to create the anomalous cosmic ray component. Acceleration of energetic particles by solar wind turbulence is expected to play almost no role in the outer heliosphere. The one exception is the energization of interstellar pickup ions beyond the threshold for acceleration at the quasi-perpendicular termination shock.

  7. Laser ion sources for particle accelerators

    NASA Astrophysics Data System (ADS)

    Sherwood, T. R.

    1996-05-01

    There is an interest in accelerating atomic nuclei to produce particle beams for medical therapy, atomic and nuclear physics, inertial confinement fusion and particle physics. Laser Ion Sources, in which ions are extracted from plasma created when a high power density laser beam pulse strikes a solid surface in a vacuum, are not in common use. However, some new developments in which heavy ions have been accelerated show that such sources have the potential to provide the beams required for high-energy accelerator systems.

  8. Process in high energy heavy ion acceleration

    NASA Astrophysics Data System (ADS)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  9. [Effect of accelerated heavy ions of carbon 12C, neon 20Ne and iron 56Fe on the chromosomal apparatus of human blood lymphocytes in vitro].

    PubMed

    Repina, L A

    2011-01-01

    Cytogenetic assay of the chromosomal apparatus of human blood lymphocytes was carried out after in vitro irradiation by heavy charged particles with high LET values. Blood plasm samples enriched with lymphocytes were irradiated by accelerated ions of carbon 12C (290 MeV/nucleon and LET = 70 keV/microm), neon 20Ne (400 MeV/nucleon and LET = 70 keV/microm), and iron 56Fe (500 MeV/nucleon and LET = 200 keV/microm) in the dose range from 0.25 to 1 Gy. Rate of chromosome aberrations showed a linear dependence on doses from the densely ionizing radiations with high LET values. Frequency of dicentrics and centric rings in human lymphocytes irradiated by 12C with the energy of 290 MeV/nucleon was maximal at 1 Gy (p < 0.05) relative to the other heavy particles. It was found that relative biological effectiveness of heavy nuclei is several times higher than of 60Co gamma-radiation throughout the range of doses in this investigation. PMID:22312859

  10. Perpendicular ion acceleration in whistler turbulence

    SciTech Connect

    Saito, S.; Nariyuki, Y.

    2014-04-15

    Whistler turbulence is an important contributor to solar wind turbulence dissipation. This turbulence contains obliquely propagating whistler waves at electron scales, and these waves have electrostatic components perpendicular to the mean magnetic field. In this paper, a full kinetic, two-dimensional particle-in-cell simulation shows that whistler turbulence can accelerate ions in the direction perpendicular to the mean magnetic field. When the ions pass through wave-particle resonances region in the phase space during their cyclotron motion, the ions are effectively accelerated in the perpendicular direction. The simulation results suggest that whistler turbulence contributes to the perpendicular heating of ions observed in the solar wind.

  11. Ion acceleration in expanding ionospheric plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Schunk, R. W.

    1986-01-01

    Plasma expansion along the ambient magnetic field in regions of density gradients provides a mechanism for accelerating ions. A brief review of the basic phenomenon of plasma expansion is given. Estimates of the energies of the accelerated ions in an expanding ionospheric plasma along geomagnetic flux tubes are obtained by solving the time-dependent hydrodynamic equations. It is found that, over certain altitude ranges, each ion species can be the most energetic; the maximum energies of the different ions are found to be limited to less than about 10 eV for H(+), 5 eV for He(+), and less than about 1.5 eV for O(+).

  12. Single grid accelerator for an ion thrustor

    NASA Technical Reports Server (NTRS)

    Margosian, P. M.; Nakanishi, S. (Inventor)

    1973-01-01

    A single grid accelerator system for an ion thrustor is discussed. A layer of dielectric material is interposed between this metal grid and the chamber containing an ionized propellant for protecting the grid against sputtering erosion.

  13. Accelerator mass spectrometry with heavy ions

    NASA Astrophysics Data System (ADS)

    Haberstock, Günther; Heinzl, Johann; Korschinek, Gunther; Morinaga, Haruhiko; Nolte, Eckehart; Ratzinger, Ulrich; Kato, Kazuo; Wolf, Manfred

    1986-11-01

    Accelerator mass spectrometry measurements with fully stripped 36Cl ions have been performed at the Munich accelerator laboratory in order to date groundwaters and palaeontological samples, to study anthropogenic 36Cl produced through nuclear tests and to determine the fast neutron flux of the Hiroshima A-bomb.

  14. Transversely accelerated ions in the topside ionosphere

    NASA Technical Reports Server (NTRS)

    Retterer, John M.; Chang, Tom; Jasperse, J. R.

    1994-01-01

    Data from the rocket campaigns Mechanism in the Auroral Region for Ion Energization (MARIE) and TOpside Probe of the Auroral Zone (TOPAZ) III, within regions of low-altitude transversely accelerated ions, are interpreted to explain the acceleration of the ions. Using the Monte Carlo kinetic technique to evaluate the ion heating produced by the simultaneously observed lower hybrid waves, we find that their observed electric field amplitudes are sufficient to explain the observed ion energies in the MARIE event. Much of the uncertainty in evaluating the efficiency of a plasma wave induced particle heating process which is dependent on a velocity resonance comes from the lack of information on the phase velocities of the waves. In the case of the MARIE observations, our modeling efforts show that features in the ion velocity distribution are consistent with the wave phase velocities inferred from interferometer measurements of wavelengths. The lower hybrid waves with which low-altitude transversely accelerated ions are associated are frequently observed to be concentrated in small-scale wave packets called 'spikelets'. We demonstrate through the scaling of the size of these wave packets that they are consistent with the theory of lower hybrid collapse. Using the Monte Carlo technique, we find that if the lower hybrid field energy is concentrated in these wave packets, it is still adequate to accelerate the ionospheric ions to the observed energies.

  15. Pulsed Operation of an Ion Accelerator

    NASA Technical Reports Server (NTRS)

    Wirz, Richard; Gamero-Castano, Manuel; Goebel, Dan

    2009-01-01

    Electronic circuitry has been devised to enable operation of an ion accelerator in either a continuous mode or a highpeak power, low-average-power pulsed mode. In the original intended application, the ion accelerator would be used as a spacecraft thruster and the pulse mode would serve to generate small increments of impulse for precise control of trajectories and attitude. The present electronic drive circuitry generates the extraction voltage in pulses. Pulse-width modulation can affect rapid, fine control of time-averaged impulse or ion flux down to a minimum level much lower than that achievable in continuous operation.

  16. Ion acceleration in impulsive solar flares

    NASA Technical Reports Server (NTRS)

    Steinacker, Jurgen; Jaekel, Uwe; Schlickeiser, Reinhard

    1993-01-01

    Nonrelativistic spectra of protons and ions accelerated in impulsive solar flares are derived using more realistic turbulence power spectra. The calculation is based on a particle transport equation extracted from a second step acceleration model containing stochastic acceleration. The turbulence model is generalized to waves with a small angle to the magnetic field vector and to turbulence power spectra with spectral indices s smaller than 2. Due to the occurrence of impulsive flares at low coronal heights, Coulomb losses at the dense coronal plasma and diffusive particle escape are taken into account. The ion spectra show deviations from long-duration spectra near the Coulomb barrier, where the losses become maximal. The Z-squared/A-dependence of the Coulomb losses leads to spectral variations for different ions. We present a method to estimate the turbulence parameters and injection conditions of the flare particles using ion ratios like Fe/O of impulsive flares.

  17. Effect of the accelerating voltage during pulsed irradiation with Cr+ ions on the surface layer composition of carbon steel St3

    NASA Astrophysics Data System (ADS)

    Vorob'ev, V. L.; Bykov, P. V.; Bayankin, V. Ya.; Bystrov, S. G.; Porsev, V. E.; Bureev, O. A.

    2015-03-01

    The formation of Cr2O3, CrO2, CrO3 and FeO, Fe2O3 oxides in surface layers of steel St3 samples irradiated with Cr+ ions has been revealed. The oxide content decreases with increasing accelerating voltage, which is caused by a more intense surface sputtering and a temperature increase. It has been found that the hardness of a surface layer ˜250 nm deep increases by 20% after irradiation with an accelerating voltage of 20 kV.

  18. Multi-dimensional effects in radiation pressure acceleration of ions

    SciTech Connect

    Tripathi, V. K.

    2015-07-31

    A laser carries momentum. On reflection from an ultra-thin overdense plasma foil, it deposits recoil momentum on the foil, i.e. exerts radiation pressure on the foil electrons and pushes them to the rear. The space charge field thus created takes the ions along, accelerating the electron-ion double layer as a single unit. When the foil has surface ripple, of wavelength comparable to laser wavelength, the radiation pressure acts non-uniformly on the foil and the perturbation grows as Reyleigh-Taylor (RT) instability as the foil moves. The finite spot size of the laser causes foil to bend. These effects limit the quasi-mono energy acceleration of ions. Multi-ion foils, e.g., diamond like carbon foil embedded with protons offer the possibility of suppressing RT instability.

  19. Carbon-carbon grid for ion engines

    NASA Technical Reports Server (NTRS)

    Garner, Charles E. (Inventor)

    1993-01-01

    A method and apparatus of manufacturing a grid member for use in an ion discharge apparatus provides a woven carbon fiber in a matrix of carbon. The carbon fibers are orientated to provide a negatibe coefficient of thermal expansion for at least a portion of the grid member's operative range of use.

  20. Carbon-carbon grid for ion engines

    NASA Technical Reports Server (NTRS)

    Garner, Charles E. (Inventor)

    1995-01-01

    A method and apparatus of manufacturing a grid member for use in an ion discharge apparatus provides a woven carbon fiber in a matrix of carbon. The carbon fibers are orientated to provide a negatibe coefficient of thermal expansion for at least a portion of the grid member's operative range of use.

  1. Hollow cathode and ion accelerator system for current ion sources

    SciTech Connect

    Aston, G.

    1981-01-01

    A small self-heating hollow cathode has been designed and tested which uses a novel flowing plasma starting concept to eliminate the need for cathode heating elements and low work function insert materials. In a magnetic field free ion source, this cathode has reliably and repeatedly produced arc currents, using argon, of 100 ampere (the power supply limit) at arc voltages of 22 volts. The cathode operates with a high gas stagnation pressure and plasma density to produce field enhanced thermionic emission from the electron emitting surface, a 0.02mm thick rolled tungsten foil cylinder, without appreciable erosion of this surface. Possible applications of larger versions of this hollow cathode for use in neutral beam injector ion sources are discussed. An ion accelerator system has also been designed and tested which combines a unique arrangement of multiple hole and slit apertures to amplify the extracted ion current density by a factor of four during the ion acceleration process.

  2. Apparatus for neutralization of accelerated ions

    DOEpatents

    Fink, Joel H.; Frank, Alan M.

    1979-01-01

    Apparatus for neutralization of a beam of accelerated ions, such as hydrogen negative ions (H.sup.-), using relatively efficient strip diode lasers which emit monochromatically at an appropriate wavelength (.lambda. = 8000 A for H.sup.- ions) to strip the excess electrons by photodetachment. A cavity, formed by two or more reflectors spaced apart, causes the laser beams to undergo multiple reflections within the cavity, thus increasing the efficiency and reducing the illumination required to obtain an acceptable percentage (.about. 85%) of neutralization.

  3. High-powered pulsed-ion-beam acceleration and transport

    SciTech Connect

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

  4. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  5. Mercury ion thruster research, 1977. [plasma acceleration

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1977-01-01

    The measured ion beam divergence characteristics of two and three-grid, multiaperture accelerator systems are presented. The effects of perveance, geometry, net-to-total accelerating voltage, discharge voltage and propellant are examined. The applicability of a model describing doubly-charged ion densities in mercury thrusters is demonstrated for an 8-cm diameter thruster. The results of detailed Langmuir probing of the interior of an operating cathode are given and used to determine the ionization fraction as a function of position upstream of the cathode orifice. A mathematical model of discharge chamber electron diffusion and collection processes is presented along with scaling laws useful in estimating performance of large diameter and/or high specific impluse thrusters. A model describing the production of ionized molecular nitrogen in ion thrusters is included.

  6. Preferential acceleration of heavy ions in the reconnection outflow region. Drift and surfatron ion acceleration

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Zimbardo, G.; Ukhorskiy, A. Y.; Fujimoto, M.

    2014-02-01

    Context. Many observations show that heating in the solar corona should be more effective for heavy ions than for protons. Moreover, the efficiency of particle heating also seems to be larger for a larger particle electric charge. The transient magnetic reconnection is one of the most natural mechanisms of charged particle acceleration in the solar corona. However, the role of this process in preferential acceleration of heavy ions has still yet to be investigated. Aims: In this paper, we consider charged particle acceleration in the reconnection outflow region. We investigate the dependence of efficiency of various mechanisms of particle acceleration on particle charge and mass. Methods: We take into account recent in situ spacecraft observations of the nonlinear magnetic waves that have originated in the magnetic reconnection. We use analytical estimates and test-particle trajectories to study resonant and nonresonant particle acceleration by these nonlinear waves. Results: We show that resonant acceleration of heavy ions by nonlinear magnetic waves in the reconnection outflow region is more effective for heavy ions and/or for ions with a larger electric charge. Nonresonant acceleration can be considered as a combination of particle reflections from the front of the nonlinear waves. Energy gain for a single reflection is proportional to the particle mass, while the maximum possible gain of energy corresponds to the classical betatron heating. Conclusions: Small-scale transient magnetic reconnections produce nonlinear magnetic waves propagating away from the reconnection region. These waves can effectively accelerate heavy ions in the solar corona via resonant and nonresonnat regimes of interactions. This mechanism of acceleration is more effective for ions with a larger mass and/or with a larger electric charge.

  7. Induction accelerator development for heavy ion fusion

    SciTech Connect

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE). The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator.

  8. Negative hydrogen ion sources for accelerators

    SciTech Connect

    Moehs, D.P.; Peters, J.; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  9. Accelerated carbonation of brucite in mine tailings for carbon sequestration.

    PubMed

    Harrison, Anna L; Power, Ian M; Dipple, Gregory M

    2013-01-01

    Atmospheric CO(2) is sequestered within ultramafic mine tailings via carbonation of Mg-bearing minerals. The rate of carbon sequestration at some mine sites appears to be limited by the rate of CO(2) supply. If carbonation of bulk tailings were accelerated, large mines may have the capacity to sequester millions of tonnes of CO(2) annually, offsetting mine emissions. The effect of supplying elevated partial pressures of CO(2) (pCO(2)) at 1 atm total pressure, on the carbonation rate of brucite [Mg(OH)(2)], a tailings mineral, was investigated experimentally with conditions emulating those at Mount Keith Nickel Mine (MKM), Western Australia. Brucite was carbonated to form nesquehonite [MgCO(3) · 3H(2)O] at a rate that increased linearly with pCO(2). Geochemical modeling indicated that HCO(3)(-) promoted dissolution accelerated brucite carbonation. Isotopic and aqueous chemistry data indicated that equilibrium between CO(2) in the gas and aqueous phases was not attained during carbonation, yet nesquehonite precipitation occurred at equilibrium. This implies CO(2) uptake into solution remains rate-limiting for brucite carbonation at elevated pCO(2), providing potential for further acceleration. Accelerated brucite carbonation at MKM offers the potential to offset annual mine emissions by ~22-57%. Recognition of mechanisms for brucite carbonation will guide ongoing work to accelerate Mg-silicate carbonation in tailings. PMID:22770473

  10. Beam Control for Ion Induction Accelerators

    SciTech Connect

    Sangster, T.C.; Ahle, L.

    2000-02-17

    Coordinated bending and acceleration of an intense space-charge-dominated ion beam has been achieved for the first time. This required the development of a variable waveform, precision, bi-polar high voltage pulser and a precision, high repetition rate induction core modulator. Waveforms applied to the induction cores accelerate the beam as the bi-polar high voltage pulser delivers a voltage ramp to electrostatic dipoles which bend the beam through a 90 degree permanent magnet quadrupole lattice. Further work on emittance minimization is also reported.

  11. Synchronized Ion Acceleration by Ultraintense Slow Light.

    PubMed

    Brantov, A V; Govras, E A; Kovalev, V F; Bychenkov, V Yu

    2016-02-26

    An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils. PMID:26967421

  12. Synchronized Ion Acceleration by Ultraintense Slow Light

    NASA Astrophysics Data System (ADS)

    Brantov, A. V.; Govras, E. A.; Kovalev, V. F.; Bychenkov, V. Yu.

    2016-02-01

    An effective scheme of synchronized laser-triggered ion acceleration and the corresponding theoretical model are proposed for a slow light pulse of relativistic intensity, which penetrates into a near-critical-density plasma, strongly slows, and then increases its group velocity during propagation within a target. The 3D particle-in-cell simulations confirm this concept for proton acceleration by a femtosecond petawatt-class laser pulse experiencing relativistic self-focusing, quantify the characteristics of the generated protons, and demonstrate a significant increase of their energy compared with the proton energy generated from optimized ultrathin solid dense foils.

  13. Strongly nonlinear magnetosonic waves and ion acceleration

    SciTech Connect

    Rau, B.; Tajima, T.

    1997-11-01

    The electromagnetic fields associated with a nonlinear compressional Alfven wave propagating perpendicular to an external magnetic field of arbitrary strength are derived. For the strongly magnetized and high phase velocity case relevant for ion acceleration to high energies, we show that the electric field increases proportionally only to the external magnetic field O (B{sub ext}[in T] MV/cm) and the electrostatic potential increases with the square root of the ion-to-electron mass ratio {radical}M{sub i}/m{sub e}.

  14. Ion Acceleration and Transport in Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1995-01-01

    The purpose of the work proposed for this grant was to develop a promising model for ion acceleration in impulsive solar flares. Solar flares are among the most energetic and interesting phenomena in the solar system, releasing up to 10(exp 32) ergs of energy over timescales ranging from a few tens of seconds to a few tens of minutes. Much of this energy appears as energetic electrons and ions, which produce a wide range of observable radiations. These radiations, in turn, are valuable diagnostics of the acceleration mechanism, the identification of which is the fundamental goal of solar flare research. The specific mechanism we proposed to investigate was based on cascading Alfven waves, the essence of which was as follows: During the primary flare energy release, it is widely believed that magnetic free energy is made available through the large-scale restructuring of the flare magnetic field. Any perturbation of a magnetic field will lead to the formation of MagnetoHydroDynamic (MHD) waves of wavelength comparable to the initial scale of the perturbation. Since the scalesize of a flare energy release region will likely be 10(exp 8)-10(exp 9) cm, the MHD waves will be of very long wavelength. However, it is well known that wave steepening will lead to a cascade of wave energy to smaller wavelengths. Now, MHD waves consist of two specific modes-the Alfven wave and the fast mode wave, and it is the Alfven wave which can interact with the ambient ions and accelerate them via cyclotron resonance. As the Alfven waves cascade to smaller wavenumbers, they can resonate with ions of progressively lower energy, until they eventually (actually, this is less than approx. 1 s) can resonate with ions in the thermal distribution. These ions are then energized out of the thermal background and, since lower-frequency waves are already present as a result of the cascading, to relativistic energies. Hence, cascading Alfven waves naturally accelerate ions from thermal to

  15. Optimizing direct intense-field laser acceleration of ions

    SciTech Connect

    Harman, Zoltan; Salamin, Yousef I.; Galow, Benjamin J.; Keitel, Christoph H.

    2011-11-15

    The dynamics of ion acceleration in tightly focused laser beams is investigated in relativistic simulations. Studies are performed to find the optimal parameters which maximize the energy gain, beam quality, and flux. The exit ionic kinetic energy and its uncertainty are improved and the number of accelerated particles is increased by orders of magnitude over our earlier results, especially when working with a longer laser wavelength. Laser beams of powers of 0.1-10 petawatts and focused to subwavelength spot radii are shown to directly accelerate protons and bare nuclei of helium, carbon, and oxygen from a few to several hundred MeV/nucleon. Variation of the volume of the initial ionic ensemble, as well as the introduction of a pulse shape on the laser fields, have been investigated and are shown to influence the exit particle kinetic energies only slightly.

  16. Recent advances for ion beam therapy accelerators using synchrotrons

    NASA Astrophysics Data System (ADS)

    Weinrich, U.

    2011-12-01

    Ion beam therapy has evolved a lot during the last years. After more than a decade of successful clinical studies and first treatment in hospital environment, the carbon beam treatment, which always relies on a synchrotron as main accelerator, has clearly shown its own potential. The clinical success of carbon beam treatment is indicated by the growing number of new fully clinical based facilities. There is a lot of improvement potential for these facilities in order to increase their treatment quality, functionality and capacity as well as the cost effectiveness of the patient treatment. This article focuses on the currently ongoing investigations to fully explore this potential. It can be concluded that synchrotron based ion beam facilities are improving into many directions. This will further improve their impact on the cancer treatment and consequently their benefit to the whole society.

  17. Influence of Reverse Expansion of Laser Plasma on Ions Acceleration

    NASA Astrophysics Data System (ADS)

    Sysoev, Alexander A.; Gracheva, O. I.; Karpov, A. V.

    Effect of laser plasma reverse extension is described in this paper. Influence of the effect on ion acceleration in a laser ion source is researched. This effect leads to sedimentation of ions on metal target, which significantly impacts acceleration time of other ions. In this case, the ions also tend to travel major part of their path with constant velocity. This allows one to consider movement of the ions in plasma drift space, when optimizing time focusing ability of the TOF analyzer.

  18. Laser Driven Ion accelerators - current status and perspective

    SciTech Connect

    Zepf, M.; Robinson, A. P. L.

    2009-01-22

    The interaction of ultra-intense lasers with thin foil targets has recently emerged as a route to achieving extreme acceleration gradients and hence ultra-compact proton and ion accelerators. There are a number of distinct physical processes by which the protons/ions can be accelerated to energies in excess of 10 MeV. The recent development is discussed and a new mechanism--Radiation Pressure Acceleration is highlighted as a route to achieving efficient production of relativistic ions beams.

  19. Ion acceleration mechanism in electron beams

    SciTech Connect

    Popov, A.F.

    1982-07-01

    Analysis of experimental data reveals that several processes observed in diodes and during the transport of intense electron beams in a neutral gas result from polarization of a plasma in an electric field. Under certain conditions this effect gives rise to a high-field region at the boundary of a plasma column. The electron beam is strongly focused in this region. As a result, a two-dimensional potential well forms at the crossover point of a strongly focused beam. The electric field at this well can reach several megavolts per centimeter. The crossover point moves as a result of expansion of the plasma cloud. The ions trapped in the potential well are accelerated. There is effective acceleration over a distance of the order of a few times the beam radius. A new physical model gives a satisfactory explanation of the experimental results.

  20. Oncological hadrontherapy with laser ion accelerators

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Khoroshkov, V. S.; Kuznetsov, A. V.; Pegoraro, F.

    2002-11-01

    === Effective ion acceleration during the interaction of an ultra short and ultra intense laser pulse with matter is one of the most important applications of the presently available compact laser systems with multi-terawatt and petawatt power. The use of an intense collimated beam of protons produced by a high-intensity laser pulse interacting with a plasma for the proton treatment of oncological diseases [1,2] is discussed. The fast proton beam is produced at the target by direct laser acceleration. An appropriately designed double-layer target scheme is proposed in order to achieve high-quality proton beams. The generation of high quality proton beams is proved with Particle in Cell simulations. === [1] S. V. Bulanov, V. S. Khoroshkov, Plasma Phys. Rep. 28, 453 (2002). [2] S. V. Bulanov, T. Zh. Esirkepov, V. S. Khoroshkov, A.V. Kuznetsov, F. Pegoraro, Phys. Lett. A 299, 240 (2002)

  1. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  2. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Astrophysics Data System (ADS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-09-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  3. Heavy-Ion Fusion Accelerator Research, 1992

    SciTech Connect

    Not Available

    1993-06-01

    The National Energy Strategy calls for a demonstration IFE power plant by the year 2025. The cornerstone of the plan to meet this ambitious goal is research and development for heavy-ion driver technology. A series of successes indicates that the technology being studied by the HIFAR Group -- the induction accelerator -- is a prime candidate for further technology development toward this long-range goal. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions; the understanding of the scaling laws that apply in this hitherto little-explored physics regime; and the validation of new, potentially more economical accelerator strategies. Key specific elements to be addressed include: fundamental physical limits of transverse and longitudinal beam quality; development of induction modules for accelerators, along with multiple-beam hardware, at reasonable cost; acceleration of multiple beams, merging of the beams, and amplification of current without significant dilution of beam quality; final bunching, transport, and focusing onto a small target. In 1992, the HIFAR Program was concerned principally with the next step toward a driver: the design of ILSE, the Induction Linac Systems Experiments. ILSE will address most of the remaining beam-control and beam-manipulation issues at partial driver scale. A few parameters -- most importantly, the line charge density and consequently the size of the ILSE beams -- will be at full driver scale. A theory group closely integrated with the experimental groups continues supporting present-day work and looking ahead toward larger experiments and the eventual driver. Highlights of this long-range, driver-oriented research included continued investigations of longitudinal instability and some new insights into scaled experiments with which the authors might examine hard-to-calculate beam-dynamics phenomena.

  4. Ion acceleration by hot electrons in microclusters

    SciTech Connect

    Breizman, Boris N.; Arefiev, Alexey V.

    2007-07-15

    A self-consistent analytical description is presented for collisionless expansion of a fully ionized cluster with a two-component electron distribution. The problem is solved for an initial 'water-bag' distribution of hot electrons with no angular momentum, which reflects the mechanism of electron heating. This distribution evolves in time due to adiabatic cooling of hot electrons. The solution involves a cold core of the cluster, a thin double layer at the cluster edge, and a quasineutral flow with a rarefaction wave. The presented analysis predicts a substantial number of accelerated ions with energies greater than the cutoff energy of the initial distribution of the hot electrons.

  5. Controllability in Multi-Stage Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  6. Heavy ion acceleration at parallel shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2010-11-01

    A study of alpha particle acceleration at parallel shock due to an interaction with Alfvén waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model (Galinsky and Shevchenko, 2000, 2007). The model uses conservation laws and resonance conditions to find where waves will be generated or damped and hence where particles will be pitch-angle scattered. It considers the total distribution function (for the bulk plasma and high energy tail), so no standard assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles) are required. The heavy ion scattering on hydromagnetic turbulence generated by both protons and ions themselves is considered. The contribution of alpha particles to turbulence generation is important because of their relatively large mass-loading parameter Pα=nαmα/npmp (mp, np and mα, nα are proton and alpha particle mass and density) that defines efficiency of wave excitation. The energy spectra of alpha particles are found and compared with those obtained in test particle approximation.

  7. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited).

    PubMed

    Kitagawa, A; Drentje, A G; Fujita, T; Muramatsu, M; Fukushima, K; Shiraishi, N; Suzuki, T; Takahashi, K; Takasugi, W; Biri, S; Rácz, R; Kato, Y; Uchida, T; Yoshida, Y

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex. PMID:26932117

  8. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M.; Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W.; Biri, S.; Rácz, R.; Kato, Y.; Uchida, T.; Yoshida, Y.

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  9. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  10. Post-acceleration of laser-induced ion beams

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.

    2015-04-01

    A complete review of the essential and recent developments in the field of post-acceleration of laser-induced ion beams is presented. After a brief introduction to the physics of low-intensity nanosecond laser-matter interaction, the details of ions extraction and acceleration are critically analyzed and the key parameters to obtain good-quality ion beams are illustrated. A description of the most common ion beam diagnosis system is given, together with the associated analytical techniques.

  11. A review of ion sources for medical accelerators (invited)a)

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.

    2012-02-01

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespread since the 1990s. The energy and intensity are typically over 200 MeV and several 1010 pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV/u. Although the beam intensity depends on the irradiation method, it is typically several 108 or 109 pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are under

  12. Clinical advantages of carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Tsujii, Hirohiko; Kamada, Tadashi; Baba, Masayuki; Tsuji, Hiroshi; Kato, Hirotoshi; Kato, Shingo; Yamada, Shigeru; Yasuda, Shigeo; Yanagi, Takeshi; Kato, Hiroyuki; Hara, Ryusuke; Yamamoto, Naotaka; Mizoe, Junetsu

    2008-07-01

    Carbon-ion radiotherapy (C-ion RT) possesses physical and biological advantages. It was started at NIRS in 1994 using the Heavy Ion Medical Accelerator in Chiba (HIMAC); since then more than 50 protocol studies have been conducted on almost 4000 patients with a variety of tumors. Clinical experiences have demonstrated that C-ion RT is effective in such regions as the head and neck, skull base, lung, liver, prostate, bone and soft tissues, and pelvic recurrence of rectal cancer, as well as for histological types including adenocarcinoma, adenoid cystic carcinoma, malignant melanoma and various types of sarcomas, against which photon therapy could be less effective. Furthermore, when compared with photon and proton RT, a significant reduction of overall treatment time and fractions has been accomplished without enhancing toxicities. Currently, the number of irradiation sessions per patient averages 13 fractions spread over approximately three weeks. This means that in a carbon therapy facility a larger number of patients than is possible with other modalities can be treated over the same period of time.

  13. Mobile ions on carbonate surfaces

    NASA Astrophysics Data System (ADS)

    Kendall, Treavor A.; Martin, Scot T.

    2005-07-01

    Surface ions move during the dissolution and growth of minerals. The present study investigates the density and the mobility of surface ions and the structure of the adsorbed water layer with changes in relative humidity (RH). The time evolution of the polarization force, which is induced by an electrically biased tip of an atomic force microscope, shows that the density and the mobility of surface ions increase with rising humidity, a finding which is consistent with increasing surface hydration. A marked change in the observations above 55% RH indicates a transition from a water layer formed by heteroepitaxial two-dimensional growth at low RH to one formed by multilayer three-dimensional growth at high RH. A comparison of the results of several rhombohedral carbonates ( viz. CaCO 3, FeCO 3, ZnCO 3, MgCO 3, and MnCO 3) shows that a long relaxation time of the polarization force at high RH is predictive of a rapid dissolution rate. This finding is rationalized by long lifetimes in terrace positions and hence greater opportunities for detachment of the ion to aqueous solution (i.e., dissolution). Our findings on the density and the mobility of surface ions therefore help to better constrain mechanistic models of hydration, ion exchange, and dissolution/growth.

  14. Shaping laser accelerated ions for future applications - The LIGHT collaboration

    NASA Astrophysics Data System (ADS)

    Busold, S.; Almomani, A.; Bagnoud, V.; Barth, W.; Bedacht, S.; Blažević, A.; Boine-Frankenheim, O.; Brabetz, C.; Burris-Mog, T.; Cowan, T. E.; Deppert, O.; Droba, M.; Eickhoff, H.; Eisenbarth, U.; Harres, K.; Hoffmeister, G.; Hofmann, I.; Jaeckel, O.; Jaeger, R.; Joost, M.; Kraft, S.; Kroll, F.; Kaluza, M.; Kester, O.; Lecz, Z.; Merz, T.; Nürnberg, F.; Al-Omari, H.; Orzhekhovskaya, A.; Paulus, G.; Polz, J.; Ratzinger, U.; Roth, M.; Schaumann, G.; Schmidt, P.; Schramm, U.; Schreiber, G.; Schumacher, D.; Stoehlker, T.; Tauschwitz, A.; Vinzenz, W.; Wagner, F.; Yaramyshev, S.; Zielbauer, B.

    2014-03-01

    The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.

  15. Intense ion beams accelerated by relativistic laser plasmas

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, Thomas E.; Gauthier, Jean-Claude J.; Allen, Matthew; Audebert, Patrick; Blazevic, Abel; Fuchs, Julien; Geissel, Matthias; Hegelich, Manuel; Karsch, S.; Meyer-ter-Vehn, Jurgen; Pukhov, Alexander; Schlegel, Theodor

    2001-12-01

    We have studied the influence of the target properties on laser-accelerated proton and ion beams generated by the LULI multi-terawatt laser. A strong dependence of the ion emission on the surface conditions, conductivity, shape and material of the thin foil targets were observed. We have performed a full characterization of the ion beam using magnetic spectrometers, Thompson parabolas, radiochromic film and nuclear activation techniques. The strong dependence of the ion beam acceleration on the conditions on the target back surface was found in agreement with theoretical predictions based on the target normal sheath acceleration (TNSA) mechanism. Proton kinetic energies up to 25 MeV have been observed.

  16. Implantation of nitrogen, carbon, and phosphorus ions into metals

    SciTech Connect

    Guseva, M.I.; Gordeeva, G.V.

    1987-01-01

    The application of ion implantation for alloying offers a unique opportunity to modify the chemical composition, phase constitution, and microstructure of the surface layers of metals. The authors studied ion implantation of nitrogen and carbon into the surface layers of metallic targets. The phase composition of the implanted layers obtained on the Kh18N10T stainless steel, the refractory molybdenum alloy TsM-6, niobium, and nickel was determined according to the conventional method of recording the x-ray diffraction pattern of the specimens using monochromatic FeK/sub alpha/-radiation on a DRON-2,0 diffractometer. The targets were bombarded at room temperature in an ILU-3 ion accelerator. The implantation of metalloid ions was also conducted with the targets being bombarded with 100-keV phosphorus ions and 40-keV carbon ions.

  17. Diagnostics for studies of novel laser ion acceleration mechanisms

    SciTech Connect

    Senje, Lovisa; Aurand, Bastian; Wahlström, Claes-Göran; Yeung, Mark; Kuschel, Stephan; Rödel, Christian; Wagner, Florian; Roth, Markus; Li, Kun; Neumayer, Paul; Dromey, Brendan; Jung, Daniel; Bagnoud, Vincent; Zepf, Matthew; Kuehl, Thomas

    2014-11-15

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

  18. The LICPA accelerator of dense plasma and ion beams

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabloński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Raczka, P.; Rosiński, M.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.; Torrisi, L.

    2014-04-01

    Laser-induced cavity pressure acceleration (LICPA) is a novel scheme of acceleration of dense matter having a potential to accelerate plasma projectiles with the energetic efficiency much higher than the achieved so far with other methods. In this scheme, a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and accelerated along a guiding channel by the thermal pressure created in the cavity by the laser-produced plasma or by the photon pressure of the ultraintense laser radiation trapped in the cavity. This paper summarizes briefly the main results of our recent LICPA studies, in particular, experimental investigations of ion beam generation and heavy macroparticle acceleration in the hydrodynamic LICPA regime (at moderate laser intensities ~ 1015W/cm2) and numerical, particle-in-cell (PIC) studies of production of ultraintense ion beams and fast macroparticles using the photon pressure LICPA regime (at high laser intensities > 1020 W/cm2). It is shown that in both LICPA regimes the macroparticles and ion beams can be accelerated much more efficiently than in other laser-based acceleration scheme commonly used and the accelerated plasma/ion bunches can have a wide variety of parameters. It creates a prospect for a broad range of applications of the LICPA accelerator, in particular in such domains as high energy density physics, ICF research (ion fast ignition, impact ignition) or nuclear physics.

  19. Cyclinac medical accelerators using pulsed C6+/H2+ ion sources

    NASA Astrophysics Data System (ADS)

    Garonna, A.; Amaldi, U.; Bonomi, R.; Campo, D.; Degiovanni, A.; Garlasché, M.; Mondino, I.; Rizzoglio, V.; Verdú Andrés, S.

    2010-09-01

    Charged particle therapy, or so-called hadrontherapy, is developing very rapidly. There is large pressure on the scientific community to deliver dedicated accelerators, providing the best possible treatment modalities at the lowest cost. In this context, the Italian research Foundation TERA is developing fast-cycling accelerators, dubbed `cyclinacs'. These are a combination of a cyclotron (accelerating ions to a fixed initial energy) followed by a high gradient linac boosting the ions energy up to the maximum needed for medical therapy. The linac is powered by many independently controlled klystrons to vary the beam energy from one pulse to the next. This accelerator is best suited to treat moving organs with a 4D multipainting spot scanning technique. A dual proton/carbon ion cyclinac is here presented. It consists of an Electron Beam Ion Source, a superconducting isochronous cyclotron and a high-gradient linac. All these machines are pulsed at high repetition rate (100-400 Hz). The source should deliver both C6+ and H2+ ions in short pulses (1.5 μs flat-top) and with sufficient intensity (at least 108 fully stripped carbon ions per pulse at 300 Hz). The cyclotron accelerates the ions to 120 MeV/u. It features a compact design (with superconducting coils) and a low power consumption. The linac has a novel C-band high-gradient structure and accelerates the ions to variable energies up to 400 MeV/u. High RF frequencies lead to power consumptions which are much lower than the ones of synchrotrons for the same ion extraction energy. This work is part of a collaboration with the CLIC group, which is working at CERN on high-gradient electron-positron colliders.

  20. Ponderomotive effects on ion acceleration in the auroral zone

    NASA Technical Reports Server (NTRS)

    Li, Xinlin; Temerin, M.

    1993-01-01

    Low frequency, large amplitude Alfven waves occur in the auroral zone. Such waves have a ponderomotive effect on both ions and electrons. In the region between the large wave field and the ionosphere, the ponderomotive force accelerates electrons downward and ions upward, which produces an ambipolar electric field. The combined effect is to produce a differential acceleration between O(+) and H(+) with the O(+) accelerated more out of the ionosphere. The typical resulting energization for O(+) is tens of eV, which is sufficient for the ions to escape the ionosphere. We demonstrate this by means of analysis and test-particle calculation.

  1. Laser-ion acceleration through controlled surface contamination

    SciTech Connect

    Hou Bixue; Nees, John A.; He Zhaohan; Easter, James H.; Thomas, Alexander G. R.; Krushelnick, Karl M.; Petrov, George; Davis, Jack

    2011-04-15

    In laser-plasma ion accelerators, control of target contamination layers can lead to selection of accelerated ion species and enhancement of acceleration. To demonstrate this, deuterons up to 75 keV are accelerated from an intense laser interaction with a glass target simply by placing 1 ml of heavy water inside the experimental chamber prior to pumping to generate a deuterated contamination layer on the target. Using the same technique with a deuterated-polystyrene-coated target also enhances deuteron yield by a factor of 3 to 5, while increasing the maximum energy of the generated deuterons to 140 keV.

  2. Acceleration schedules for a recirculating heavy-ion accelerator

    SciTech Connect

    Sharp, W.M.; Grote, D.P.

    2002-05-01

    Recent advances in solid-state switches have made it feasible to design programmable, high-repetition-rate pulsers for induction accelerators. These switches could lower the cost of recirculating induction accelerators, such as the ''small recirculator'' at Lawrence Livermore National Laboratory (LLNL), by substantially reducing the number of induction modules. Numerical work is reported here to determine what effects the use of fewer pulsers at higher voltage would have on the beam quality of the LLNL small recirculator. Lattices with different numbers of pulsers are examined using the fluid/envelope code CIRCE, and several schedules for acceleration and compression are compared for each configuration. For selected schedules, the phase-space dynamics is also studied using the particle-in-cell code WARP3d.

  3. Energetic ion acceleration during magnetic reconnection in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Imada, Shinsuke; Hirai, Mariko; Hoshino, Masahiro

    2015-12-01

    In this paper, we present a comprehensive study of the energetic ion acceleration during magnetic reconnection in the Earth's magnetosphere using the Geotail data. A clear example of the energetic ion acceleration up to 1 MeV around an X-type neutral line is shown. We find that the energetic ions are localized at far downstream of reconnection outflow. The time variation of energetic ion and electron is almost the same. We observe ˜100 keV ions over the entire observation period. We study ten events in which the Geotail satellite observed in the vicinity of diffusion region in order to understand the reconnection characteristics that determine the energetic ion acceleration efficiency. We find that the reconnection electric field, total amount of reduced magnetic energy, reconnection rate, satellite location in the Earth's magnetosphere (both X GSM and Y GSM) show high correlation with energetic ion acceleration efficiency. Also, ion temperature, electron temperature, ion/electron temperature ratio, current sheet thickness, and electric field normal to the neutral sheet show low correlation. We do not find any correlation with absolute value of outflow velocity and current density parallel to magnetic field. The energetic ion acceleration efficiency is well correlated with large-scale parameters (e.g., total amount of reduced magnetic energy and satellite location), whereas the energetic electron acceleration efficiency is correlated with small-scale parameters (e.g., current sheet thickness and electric field normal to the neutral sheet). We conclude that the spatial size of magnetic reconnection is important for energetic ion acceleration in the Earth's magnetotail.

  4. Localized Ionospheric Particle Acceleration and Wave Acceleration of Auroral Ions: Amicist Data Set

    NASA Technical Reports Server (NTRS)

    Lynch, Kristina A.

    1999-01-01

    Research supported by this grant covered two main topics: auroral ion acceleration from ELF-band wave activity, and from VLF-spikelet (lower hybrid solitary structure) wave activity. Recent auroral sounding rocket data illustrate the relative significance of various mechanisms for initiating auroral ion outflow. Two nightside mechanisms are shown in detail. The first mechanism is ion acceleration within lower hybrid solitary wave events. The new data from this two payload mission show clearly that: (1) these individual events are spatially localized to scales approximately 100 m wide perpendicular to B, in agreement with previous investigations of these structures, and (2) that the probability of occurrence of the events is greatest at times of maximum VLF wave intensity. The second mechanism is ion acceleration by broadband, low frequency electrostatic waves, observed in a 30 km wide region at the poleward edge of the arc. The ion fluxes from the two mechanisms are compared and it is shown that while lower hybrid solitary structures do indeed accelerate ions in regions of intense VLF waves, the outflow from the electrostatic ion wave acceleration region is dominant for the aurora investigated by this sounding rocket, AMICIST. The fluxes are shown to be consistent with DE-1 and Freja outflow measurements, indicating that the AMICIST observations show the low altitude, microphysical signatures of nightside auroral outflow. In this paper, we present a review of sounding rocket observations of the ion acceleration seen nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations, we will demonstrate the following characteristics of transverse ion acceleration (TAI) in LHSS. The ion acceleration process is narrowly confined to 90 degrees pitch angle, in spatially confined regions of up to a

  5. High Intensity heavy ion Accelerator Facility (HIAF) in China

    NASA Astrophysics Data System (ADS)

    Yang, J. C.; Xia, J. W.; Xiao, G. Q.; Xu, H. S.; Zhao, H. W.; Zhou, X. H.; Ma, X. W.; He, Y.; Ma, L. Z.; Gao, D. Q.; Meng, J.; Xu, Z.; Mao, R. S.; Zhang, W.; Wang, Y. Y.; Sun, L. T.; Yuan, Y. J.; Yuan, P.; Zhan, W. L.; Shi, J.; Chai, W. P.; Yin, D. Y.; Li, P.; Li, J.; Mao, L. J.; Zhang, J. Q.; Sheng, L. N.

    2013-12-01

    HIAF (High Intensity heavy ion Accelerator Facility), a new facility planned in China for heavy ion related researches, consists of two ion sources, a high intensity Heavy Ion Superconducting Linac (HISCL), a 45 Tm Accumulation and Booster Ring (ABR-45) and a multifunction storage ring system. The key features of HIAF are unprecedented high pulse beam intensity and versatile operation mode. The HIAF project aims to expand nuclear and related researches into presently unreachable region and give scientists possibilities to conduct cutting-edge researches in these fields. The general description of the facility is given in this article with a focus on the accelerator design.

  6. Searching For A Suitable Gas Ion Source For 14C Accelerator Mass Spectrometry

    SciTech Connect

    Reden, Karl von; Roberts, Mark; Han, Baoxi; Schneider, Robert; Wills, John

    2007-08-10

    This paper describes the challenges facing 14C Accelerator Mass Spectrometry (AMS) in the effort to directly analyze the combusted effluent of a chromatograph (or any other continuous source of sample material). An efficient, low-memory negative gas ion source would greatly simplify the task to make this a reality. We discuss our tests of a microwave ion source charge exchange canal combination, present an improved design, and hope to generate more interest in the negative ion source community to develop a direct-extraction negative carbon gas ion source for AMS.

  7. Carbon nanotube foils for electron stripping in tandem accelerators

    NASA Astrophysics Data System (ADS)

    von Reden, Karl; Zhang, Mei; Meigs, Martha; Sichel, Enid; Fang, Shaoli; Baughman, Ray H.

    2007-08-01

    Carbon nanotube technology has rapidly advanced in recent years, making it possible to create meter-long, ∼4 cm wide films of multi-walled tubes of less than 3 μg/cm2 areal density in a bench top open-air procedure. The physical properties of individual carbon nanotubes have been well established, equaling or surpassing electrical and thermal conductivity and mechanical strength of most other materials, graphite in particular. The handling and transport of such nanotube films, dry-mounted self-supporting on metal frames with several cm2 of open area, is problem-free: the aerogel films having a volumetric density of about 1.5 mg/cm3 survived the trip by car and air from Dallas to Oak Ridge without blemish. In this paper we will present the results of first tests of these nanotube films as electron stripper media in a tandem accelerator. The tests were performed in the Model 25 URC tandem accelerator of the Holifield radioactive ion beam facility (HRIBF) at Oak Ridge National Laboratory. We will discuss the performance of nanotube films in comparison with chemical vapor deposition and laser-ablated carbon foils.

  8. Multiple beam induction accelerators for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Barnard, John J.; Faltens, Andris; Friedman, Alex; Waldron, William L.

    2014-01-01

    Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

  9. An RFQ accelerator system for MeV ion implantation

    NASA Astrophysics Data System (ADS)

    Hirakimoto, Akira; Nakanishi, Hiroaki; Fujita, Hiroyuki; Konishi, Ikuo; Nagamachi, Shinji; Nakahara, Hiroshi; Asari, Masatoshi

    1989-02-01

    A 4-vane-type Radio-Frequency Quadrupole (RFQ) accelerator system for MeV ion implantation has been constructed and ion beams of boron and nitrogen have been accelerated successfully up to an energy of 1.01 and 1.22 MeV, respectively. The acceleration of phosphorus is now ongoing. The design was performed with two computer codes called SUPERFISH and PARMTEQ. The energy of the accelerated ions was measured by Rutherford backscattering spectroscopy. The obtained values agreed well with the designed ones. Thus we have confirmed the validity of our design and have found the possibility that the present RFQ will break through the production-use difficulty of MeV ion implantation.

  10. Laser ion acceleration from mass-limited targets with preplasma

    NASA Astrophysics Data System (ADS)

    Lezhnin, K. V.; Kamenets, F. F.; Esirkepov, T. Zh.; Bulanov, S. V.; Klimo, O.; Weber, S.; Korn, G.

    2016-05-01

    The interaction of high intensity laser radiation with mass-limited target exhibits significant enhancement of the ion acceleration when the target is surrounded by an underdense plasma corona, as seen in numerical simulations. The self-generated quasistatic magnetic field squeezes the corona causing the intensification of a subsequent Coulomb explosion of the target. The electric field intensification at the target edges and plasma resonance effects results in the generation of characteristic density holes and further contributes to the ion acceleration.

  11. Accelerating degradation rate of pure iron by zinc ion implantation.

    PubMed

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-12-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  12. Accelerating degradation rate of pure iron by zinc ion implantation

    PubMed Central

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-01-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  13. Polymer processing by a low energy ion accelerator

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Velardi, L.; Nassisi, V.; Paladini, F.; Visco, A. M.; Campo, N.; Torrisi, L.; Margarone, D.; Giuffrida, L.; Rainò, A.

    2008-05-01

    Ion implantation is a process in which ions are accelerated toward a substrate at energies high enough to bury them just below the surface substrate in order to modify the surface characteristics. Laser-produced plasma is a very suitable and low cost technique in the production of ion sources. In this work, a laser ion source is developed by a UV pulsed laser of about 108 W/cm2 power density, employing a C target and a post ion acceleration of 40 kV to increase the ion energy. In this work, we implanted C ions on ultra-high-molecular-weight-polyethylene (UHMWPE) and low-density polyethylene (LDPE). We present the preliminary results of surface property modifications for both samples. In particular, we have studied the modifications of the surface micro-hardness of the polymers by applying the "scratch test" method as well as the hydrophilicity modifications by the contact angle measurements.

  14. Will peak oil accelerate carbon dioxide emissions?

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Davis, S. J.; Cao, L.

    2008-12-01

    The relative scarcity of oil suggests that oil production is peaking and will decline thereafter. Some have suggested that this represents an opportunity to reduce carbon dioxide emissions. However, in the absence of constraints on carbon dioxide emission, "peak oil" may drive a shift towards increased reliance on coal as a primary energy source. Because coal per unit energy, in the absence of carbon capture and disposal, releases more carbon dioxide to the atmosphere than oil, "peak oil" may lead to an acceleration of carbon dioxide emissions. We will never run out of oil. As oil becomes increasingly scarce, prices will rise and therefore consumption will diminish. As prices rise, other primary energy sources will become increasingly competitive with oil. The developed world uses oil primarily as a source of transportation fuels. The developing world uses oil primarily for heat and power, but the trend is towards increasing reliance on oil for transportation. Liquid fuels, including petroleum derivatives such as gasoline and diesel fuel, are attractive as transportation fuels because of their relative abundance of energy per unit mass and volume. Such considerations are especially important for the air transport industry. Today, there is little that can compete with petroleum-derived transportation fuels. Future CO2 emissions from the transportation sector largely depend on what replaces oil as a source of fuel. Some have suggested that biomass-derived ethanol, hydrogen, or electricity could play this role. Each of these potential substitutes has its own drawbacks (e.g., low power density per unit area in the case of biomass, low power density per unit volume in the case of hydrogen, and low power density per unit mass in the case of battery storage). Thus, it is entirely likely that liquefaction of coal could become the primary means by which transportation fuels are produced. Since the burning of coal produces more CO2 per unit energy than does the burning of

  15. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  16. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4. PMID:26932119

  17. Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas.

    PubMed

    Bin, J H; Ma, W J; Wang, H Y; Streeter, M J V; Kreuzer, C; Kiefer, D; Yeung, M; Cousens, S; Foster, P S; Dromey, B; Yan, X Q; Ramis, R; Meyer-ter-Vehn, J; Zepf, M; Schreiber, J

    2015-08-01

    Ultraintense laser pulses with a few-cycle rising edge are ideally suited to accelerating ions from ultrathin foils, and achieving such pulses in practice represents a formidable challenge. We show that such pulses can be obtained using sufficiently strong and well-controlled relativistic nonlinearities in spatially well-defined near-critical-density plasmas. The resulting ultraintense pulses with an extremely steep rising edge give rise to significantly enhanced carbon ion energies consistent with a transition to radiation pressure acceleration. PMID:26296119

  18. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  19. Acceleration of ampere class H(-) ion beam by MeV accelerator.

    PubMed

    Taniguchi, M; Inoue, T; Umeda, N; Kashiwagi, M; Watanabe, K; Tobari, H; Dairaku, M; Sakamoto, K

    2008-02-01

    The H(-) ion accelerator R&D to realize the international thermonuclear experimental reactor neutral beam is ongoing at Japan Atomic Energy Agency (JAEA). The required performance for the prototype MeV accelerator developed at JAEA is 1 MeV, 500 mA (current density of 200 A/m(2)) H(-) ion beam at the beamlet divergence angle of less than 7 mrad. Up to 2005, 836 keV, 146 A/m(2) H(-) ion beam was successfully accelerated as the highest record of the current density at MeV class energy beams. In the present work, high current negative ion beam acceleration test was performed by increasing the beam extraction apertures from 3 x 3 (9 apertures) to 3 x 5 (15 apertures). By fixing the air leak at the source chamber due to backstream ions as well as the improvement of voltage holding capability by a new fiber reinforced plastic insulator ring, the performance of the MeV accelerator was improved. So far, H(-) ion beam of 320 mA was successfully accelerated up to 796 keV with the beam divergence angle of 5.5 mrad. The accelerated drain current including the electron reaches close to the power supply limit for the MeV test facility. The heat flux by the backstream ion during the above beam acceleration was estimated to be 360 W/cm(2). The Cs leakage to the accelerator during the test campaign (Cs total input of 5.0 g) was 0.26 mg (7.0 microg/cm(2)). This is considered to be the allowable level from the viewpoint of voltage holding. PMID:18315236

  20. Acceleration of heavy ions in the AGS

    SciTech Connect

    Barton, M.Q.

    1983-01-01

    It is possible to use the Brookhaven AGS as a heavy ion machine by adding a cyclotron to the Tandem and using this combination as injector. An intermediate step for lighter ions might consist of injecting the Tandem beam directly into the AGS. In either case, quite high intensities should be possible.

  1. Instability-free ion acceleration by two laser pulses

    NASA Astrophysics Data System (ADS)

    Zhou, M. L.; Zhao, S.; Wang, H. Y.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Tajima, T.; He, X. T.; Chen, C. E.; Gu, Y. Q.; Yan, X. Q.

    2014-05-01

    We demonstrate the instability-free ion acceleration regime by introducing laser control with two parallel circularly polarized laser pulses at an intensity of I = 6.8 × 1021 W/cm2, normally incident on a hydrogen foil. The special structure of the equivalent wave front of those two pulses, which contains Gaussian peaks in both sides and a concavity in the centre (2D), can suppress the transverse instabilities and hole boring effects to constrain a high density ion clump in the centre of the foil, leading to an acceleration over a long distance and gain above 1GeV/u for the ion bunches.

  2. GeV Laser Ion Acceleration from Ultrathin Targets: The Laser Break-Out Afterburner

    NASA Astrophysics Data System (ADS)

    Yin, Lin

    2006-10-01

    A new laser-driven ion acceleration mechanism has been identified using particle-in-cell simulations. After a brief period of target normal sheath acceleration (TNSA) [S. P. Hatchett, et al., Phys. Plasmas, 7, 2076 (2000)], two distinct stages follow: first, a period of enhanced TNSA during which the cold electron background converts entirely to hot electrons, and second, the ``laser break-out afterburner'' (BOA) when the laser penetrates to the rear of the target and generates a large longitudinal electric field localized at the rear of the target with the location of the peak field co-moving with the ions. This mechanism allows ion acceleration to GeV energies at vastly reduced laser intensities compared with earlier acceleration schemes. The new mechanism enables the acceleration of carbon ions to greater than 2 GeV energy at a laser intensity of only 10^21 W/cm^2, an intensity that has been realized in existing laser systems. Other techniques for achieving these energies in the literature [D. Habs et al., Progress in Particle and Nuclear Physics, 46, 375 (2001); T. Esirkepov et al., Phys. Rev. Lett. 92, 175003-1 (2004)] rely upon intensities of 10^24 W/cm^2 or above, i.e., 2-3 orders of magnitude higher than any laser intensity that has been demonstrated to date. Also, the BOA mechanism attains higher energy and efficiency than TNSA where the scaling laws [Hegelich et al., Phys. Plasmas, 12, 056314 (2005)] predict carbon energies of 50 MeV/u for identical laser conditions. In the early stages of the BOA, the carbon ions accelerate as a quasi-monoenergetic bunch with median energy higher than that realized recently experimentally [Hegelich et al., Nature, 441, 439 (2006)].

  3. Laser-driven multicharged heavy ion beam acceleration

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Z.; Nishio, K.; Pikuz, T. A.; Faenov, A. Y.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2015-05-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. The laser pulse of <10 J laser energy, 36 fs pulse width, and the contrast level of ~1010 from 200 TW class Ti:sapphire J-KAREN laser system at JAEA is used in the experiment. Almost fully stripped Fe ions accelerated up to 0.9 GeV are demonstrated. This is achieved by the high intensity laser field of ˜ 1021Wcm-2 interacting with the solid density target. The demonstrated iron ions with high charge to mass ratio (Q/M) is difficult to be achieved by the conventional heavy ion source technique in the accelerators.

  4. Residual skin damage in rats 1 year after exposure to x rays or accelerated heavy ions

    SciTech Connect

    Leith, J.T.; McDonald, M.; Howard, J.

    1982-01-01

    In conjunction with a study on the biological effects of accelerated heavy ions on rat spinal cord, we were able to assess the residual skin damage remaining 1 year postirradiation. In this study, rats were irradiated with 230-kVp fractionated doses of either X rays, carbon ions, or neon ions. Four radiation fractions were given at daily intervals. For the carbon and neon ion exposures, rats were irradiated in both the plateau and spread Bragg peak (4 cm) regions of ionization. Comparing doses that produced complete epilation with a slight suggestion of a residual radiation scar, it was found that the relative biological effectivesness (RBE) values 1 year postirradiation for the four fraction irradiations were: carbon ions (plateau ionization region), 1.06; carbon ions (spread Bragg peak ionization region), 1.88; neon ions (plateau region of ionization), 1.55; and neon ions (spread Bragg peak ionization region), 2.26. RBE values for production of paralysis after spinal cord irradiation (using the same X-ray total dose levels for comparison purposes) were in all cases higher than the RBE values obtained from assessment of residual skin injury.

  5. Approach towards quasi-monoenergetic laser ion acceleration with doped target

    SciTech Connect

    Morita, Toshimasa

    2014-05-15

    Ion acceleration using a laser pulse irradiating a disk target that includes hydrogen and carbon is examined using three-dimensional particle-in-cell simulations. It is shown that over 200 MeV protons can be generated using a 620 TW, 5 × 10{sup 21} W/cm{sup 2} laser pulse. In a polyethylene (CH{sub 2}) target, protons and carbon ions separate and form two layers by radiation pressure acceleration. A strong Coulomb explosion in this situation and Coulomb repulsion between each layer generates high energy protons. A doped target consisting of low density hydrogen within a carbon disk becomes a double layer target that is comprised of a thin low density hydrogen disk on the surface of a high-Z atom layer. This then generates a quasi-monoenergetic proton beam.

  6. Characterization of ion accelerating systems on NASA LeRC's ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1992-01-01

    An investigation is conducted regarding ion-accelerating systems for two NASA thrusters to study the limits of ion-extraction capability or perveance. A total of nine two-grid ion-accelerating systems are tested with the 30- and 50-cm-diam ring-cusp inert-gas ion thrusters emphasizing the extension of ion-extraction. The vacuum-tank testing is described using xenon, krypton, and argon propellants, and thruster performance is computed with attention given to theoretical design considerations. Reductions in perveance are noted with decreasing accelerator-hole-to-screen-hole diameter ratios. Perveance values vary indirectly with the ratio of discharge voltage to total accelerating voltage, and screen/accelerator electrode hole-pair alignment is also found to contribute to perveance values.

  7. Thermal mechanical analyses of large diameter ion accelerator systems

    SciTech Connect

    Brophy, J.R.; Aston, G.

    1989-01-01

    Thermal mechanical analyses of large diameter ion accelerator systems are performed using commercially available finite element software executed on a desktop computer. Finite element models of a 30-cm-diameter accelerator system formulated using plate/shell elements give calculated results which agree well with similar published obtained on a mainframe computer. Analyses of a 50-cm-diameter, three-grid accelerator system using measured grid temperatures (corresponding to discharge powers of 653 and 886 watts) indicate that thermally induced grid movements need not be the performance limiting phenomena for accelerator systems of this size. 8 refs.

  8. Thermal mechanical analyses of large diameter ion accelerator systems

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    Thermal mechanical analyses of large diameter ion accelerator systems are performed using commercially available finite element software executed on a desktop computer. Finite element models of a 30-cm-diameter accelerator system formulated using plate/shell elements give calculated results which agree well with similar published obtained on a mainframe computer. Analyses of a 50-cm-diameter, three-grid accelerator system using measured grid temperatures (corresponding to discharge powers of 653 and 886 watts) indicate that thermally induced grid movements need not be the performance limiting phenomena for accelerator systems of this size.

  9. Overview of LANL short-pulse ion acceleration activities

    SciTech Connect

    Flippo, Kirk A.; Schmitt, Mark J.; Offermann, Dustin; Cobble, James A.; Gautier, Donald; Kline, John; Workman, Jonathan; Archuleta, Fred; Gonzales, Raymond; Hurry, Thomas; Johnson, Randall; Letzring, Samuel; Montgomery, David; Reid, Sha-Marie; Shimada, Tsutomu; Gaillard, Sandrine A.; Sentoku, Yasuhiko; Bussman, Michael; Kluge, Thomas; Cowan, Thomas E.; Rassuchine, Jenny M.; Lowenstern, Mario E.; Mucino, J. Eduardo; Gall, Brady; Korgan, Grant; Malekos, Steven; Adams, Jesse; Bartal, Teresa; Chawla, Surgreev; Higginson, Drew; Beg, Farhat; Nilson, Phil; Mac Phee, Andrew; Le Pape, Sebastien; Hey, Daniel; Mac Kinnon, Andy; Geissel, Mattias; Schollmeier, Marius; Stephens, Rich

    2009-12-02

    An overview of Los Alamos National Laboratory's activities related to short-pulse ion acceleration is presented. LANL is involved is several projects related to Inertial Confinement Fusion (Fast Ignition) and Laser-Ion Acceleration. LANL has an active high energy X-ray backlighter program for radiographing ICF implosions and other High Energy Density Laboratory Physics experiments. Using the Trident 200TW laser we are currently developing high energy photon (>10 keV) phase contrast imaging techniques to be applied on Omega and the NIF. In addition we are engaged in multiple programs in laser ion acceleration to boost the ion energies and efficiencies for various potential applications including Fast Ignition, active material interrogation, and medical applications. Two basic avenues to increase ion performance are currently under study: one involves ultra-thin targets and the other involves changing the target geometry. We have recently had success in boosting proton energies above 65 MeV into the medical application range. Highlights covered in the presentation include: The Trident Laser System; X-ray Phase Contrast Imaging for ICF and HEDLP; Improving TNSA Ion Acceleration; Scaling Laws; Flat Targets; Thin Targets; Cone Targets; Ion Focusing;Trident; Omega EP; Scaling Comparisons; and, Conclusions.

  10. Selective deuterium ion acceleration using the Vulcan petawatt laser

    NASA Astrophysics Data System (ADS)

    Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W / cm 2 laser pulse by cryogenically freezing heavy water (D2O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  11. Energy Release, Acceleration, and Escape of Solar Energetic Ions

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Ireland, J.; Ryan, J. M.; Young, C. A.

    2013-12-01

    Solar flares are prodigious producers of energetic particles, and thus a rich laboratory for studying particle acceleration. The acceleration occurs through the release of magnetic energy, a significant fraction of which can go into the acceleration of particles. Coronal mass ejections (CMEs) certainly produce shocks that both accelerate particles and provide a mechanism for escape into the interplanetary medium (IP). What is less well understood is whether accelerated particles produced from the flare reconnection process escape, and if so, how these same particles are related to solar energetic particles (SEPs) detected in-situ. Energetic electron SEPs have been shown to be correlated with Type III radio bursts, hard X-ray emission, and EUV jets, making a very strong case for the connection between acceleration at the flare and escape along open magnetic field lines. Because there has not been a clear signature of ion escape, as is the case with the Type III radio emission for electrons, sorting out the avenues of escape for accelerated flare ions and the possible origin of the impulsive SEPs continues to be a major challenge. The key to building a clear picture of particle escape relies on the ability to map signatures of escape such as EUV jets at the Sun and to follow the progression of these escape signatures as they evolve in time. Furthermore, nuclear γ-ray emissions provide critical context relating ion acceleration to that of escape. With the advent observations from Fermi as well as RHESSI and the Solar Dynamics Observatory (SDO), the challenge of ion escape from the Sun can now be addressed. We present a preliminary study of the relationship of EUV jets with nuclear γ-ray emission and Type III radio observations and discuss the implications for possible magnetic topologies that allow for ion escape from deep inside the corona to the interplanetary medium.

  12. The beat in laser-accelerated ion beams

    SciTech Connect

    Schnürer, M.; Abicht, F.; Bränzel, J.; Koschitzki, Ch.; Andreev, A. A.; Platonov, K. Yu.; Priebe, G.; Sandner, W.

    2013-10-15

    Regular modulation in the ion velocity distribution becomes detectable if intense femtosecond laser pulses with very high temporal contrast are used for target normal sheath acceleration of ions. Analytical and numerical analysis of the experimental observation associates the modulation with the half-cycle of the driving laser field period. In processes like ion acceleration, the collective and laser-frequency determined electron dynamics creates strong fields in plasma to accelerate the ions. Even the oscillatory motion of electrons and its influence on the acceleration field can dominate over smoothing effects in plasma if a high temporal contrast of the driving laser pulse is given. Acceleration parameters can be directly concluded out of the experimentally observed modulation period in ion velocity spectra. The appearance of the phenomenon at a temporal contrast of ten orders between the intensity of the pulse peak and the spontaneous amplified emission background as well as remaining intensity wings at picosecond time-scale might trigger further parameter studies with even higher contrast.

  13. Heavy ion acceleration at the AGS: Present and future plans

    SciTech Connect

    Lee, Y.Y.

    1989-01-01

    The Brookhaven AGS is alternating gradient synchrotron, 807 meters in circumference, which was originally designed for only protons. Using the 15 MV Brookhaven Tandem Van de Graaff as an injector, the AGS started to accelerate heavy ions of mass lighter than sulfur. Because of the relatively poor vacuum (/approximately/10/sup /minus/8/ Torr), the AGS is not able to accelerate heavier ions which could not be fully stripped of electrons at the Tandem energy. When the AGS Booster, which is under construction, is completed the operation will be extended to all species of heavy ions including gold and uranium. Because ultra-high vacuum (/approximately/10/sup /minus/11/ Torr) is planned, the Booster can accelerate partially stripped elements. The operational experience, the parameters, and scheme of heavy ion acceleration will be presented in detail from injection to extraction, as well as future injection into the new Relativistic Heavy Ion Collider (RHIC). A future plan to improve intensity of the accelerator will also be presented. 5 figs., 4 tabs.

  14. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University

    PubMed Central

    Oike, Takahiro; Sato, Hiro; Noda, Shin-ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  15. Extraction and Acceleration of Ions from an Ion-Ion Plasma

    SciTech Connect

    Popelier, Lara; Aanesland, Ane; Chabert, Pascal

    2011-09-26

    Extraction and acceleration of positive and negative ions from a strong electronegative plasma and from an ion-ion plasma is investigated in the PEGASES thruster, working with SF{sub 6}. The plasma is generated in a cylindrical quartz tube terminated by metallic endplates. The electrons are confined by a static magnetic field along the axis of the cylinder. The electron mobility along the field is high and the electrons are determining the sheaths in front of the endplates. The core plasma potential can therefore be controlled by the bias applied to the endplates. An ion-ion plasma forms at the periphery as a result of electron confinement and ions can freely diffuse along the perpendicular direction or extraction axis. Langmuir probe and RFEA measurements are carried out along this axis. The measured ion energy distributions shows a single peak centered around a potential consistent with the plasma potential and the peak position could be controlled with a positive voltage applied to the endplates. When the endplates are biased negatively, the plasma potential saturates and remained close to 15 V. A beam of negatively charged particles can be observed under certain conditions when the endplates were biased negatively.

  16. Stochastic ion acceleration by beating electrostatic waves.

    PubMed

    Jorns, B; Choueiri, E Y

    2013-01-01

    A study is presented of the stochasticity in the orbit of a single, magnetized ion produced by the particle's interaction with two beating electrostatic waves whose frequencies differ by the ion cyclotron frequency. A second-order Lie transform perturbation theory is employed in conjunction with a numerical analysis of the maximum Lyapunov exponent to determine the velocity conditions under which stochasticity occurs in this dynamical system. Upper and lower bounds in ion velocity are found for stochastic orbits with the lower bound approximately equal to the phase velocity of the slower wave. A threshold condition for the onset of stochasticity that is linear with respect to the wave amplitudes is also derived. It is shown that the onset of stochasticity occurs for beating electrostatic waves at lower total wave energy densities than for the case of a single electrostatic wave or two nonbeating electrostatic waves. PMID:23410446

  17. Laser Acceleration of Ultrashort Ion Bunches and Femtosecond Neutron Sources

    SciTech Connect

    Macchi, A.; Cattani, F.; Liseykina, T. V.; Cornolti, F.

    2006-04-07

    We have theoretically investigated the acceleration of ions in the interaction of high intensity, circularly polarized laser pulses with overdense plasmas. By using 1D and 2D particle-in-cell (PIC) simulations we find that high-density, short duration ion bunches moving into the plasma are promptly generated at the laser-plasma interaction surface. This regime is qualitatively different from ion acceleration regimes driven by fast electrons, such as sheath acceleration at the back of the target or shock acceleration at the front, which occur for linear polarization. A simple analytical model accounts for the numerical observations and provides scaling laws for the ion bunch velocity and generation time as a function of pulse intensity and plasma density. The present mechanism based on circular polarization of the laser pulse leads to moderate ion energies (in the 100 keV-1 MeV range) but very high ion densities and low beam divergence. These ion bunches might be of interest for problems of compression and acceleration of high-density matter by short pulses as well as for the development of compact neutron sources. We analyzed a scheme based on two-side irradiation of a thin foil deuterated target, where two colliding ion bunches are produced leading to an ultrashort neutron burst. We evaluated that, for intensities of a few 1019 W cm-2, more than 103 neutrons per Joule may be produced within a time shorter than one femtosecond. Another scheme based on a layered deuterium-tritium target is outlined.

  18. Ion acceleration enhanced by target ablation

    SciTech Connect

    Zhao, S.; Lin, C. Wang, H. Y.; Lu, H. Y.; He, X. T.; Yan, X. Q.; Chen, J. E.; Cowan, T. E.

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  19. Ion dynamics in an E × B Hall plasma accelerator

    NASA Astrophysics Data System (ADS)

    Young, Christopher V.; Lucca Fabris, Andrea; Cappelli, Mark A.

    2015-01-01

    We show the time evolution of the ion velocity distribution function in a Hall plasma accelerator during a 20 kHz natural, quasi-periodic plasma oscillation. We apply a time-synchronized laser induced fluorescence technique at different locations along the channel midline, obtaining time- and spatially resolved ion velocity measurements. Strong velocity and density fluctuations and multiple ion populations are observed throughout the so-called "breathing mode" ionization instability, opening an experimental window into the detailed ion dynamics and physical processes at the heart of such devices.

  20. Studies of the Mirrortron ion accelerator concept and its application to heavy-ion drivers

    SciTech Connect

    Post, R.F.; Schwager, L.A. ); Douglass, S.R.; Jones, B.R.; Lambert, M.A.; Larson, D.L. . Dept. of Applied Science)

    1990-11-30

    The Mirrortron accelerator is a plasma-based ion accelerator concept that, when implemented, should permit both higher acceleration gradients and higher peak-current capabilities than is possible with conventional induction-type accelerators. Control over the acceleration and focussing of an accelerated beam should approach that achieved in vacuum-field-based ion accelerators. In the Mirrortron a low density (10{sup 10} to 10{sup 11} cm{sup {minus}3}) hot electron'' plasma is confined by a long solenoidal magnetic field capped by mirrors.'' Acceleration of pre-bunched ions is accomplished by activating a series of fast-pulsed mirror coils spaced along the acceleration tube. The hot electrons, being repelled by mirror action, leave the plasma ions behind to create a localized region of high electrical gradient (up to of order 100 MV/m). At the laboratory an experiment and analyses to elucidate the concept and its scaling laws as applied to heavy-ion drivers are underway and will be described. 4 refs., 5 figs.

  1. Towards GeV laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Hegelich, B. M.; Yin, L.; Albright, B. J.; Flippo, K. A.; Gautier, D. C.; Johnson, R. P.; Letzring, S.; Shah, R. C.; Shimada, T.; Fernandez, J. C.; Henig, A.; Kiefer, D.; Liechtenstein, V.; Schreiber, J.; Habs, D.; Meyer-Ter-Vehn, J.; Rykovanov, S.; Wu, H. C.

    2008-11-01

    Applications like ion-driven fast ignition (IFI) with heavy ions or laser-based hadron therapy require efficient laser-driven ion acceleration to ˜ 0.1 -- 1 GeV. The Break-Out Afterburner (BOA) [1] regime and the Phase-Stable Acceleration (PSA) [2] regime, also reported as Radiation Pressure Acceleration (RPA) [3], promise quasi-monoenergetic beams at such energies, with ˜ 10% efficiency,. This talk summarizes our joint exploratory research program in this new and exciting area, emphasizing the realization of these mechanisms with today's lasers. The laser requirements are discussed, especially pulse contrast. The first experimental results are reported. [1] L. Yin et al., Laser & Part. Beams 24, 1-8 (2006) [2] X. Zhang et al., Phys. Plasmas 14, 123108 (2007) [3] A. P. L. Robinson et al., New J. Phys. 10, 013021 (2008)

  2. A study of light ion accelerators for cancer treatment

    SciTech Connect

    Prelec, K.

    1997-07-01

    This review addresses several issues, such as possible advantages of light ion therapy compared to protons and conventional radiation, the complexity of such a system and its possible adaptation to a hospital environment, and the question of cost-effectiveness compared to other modalities for cancer treatment or to other life saving procedures. Characteristics and effects of different types of radiation on cells and organisms will be briefly described; this will include conventional radiation, protons and light ions. The status of proton and light ion cancer therapy will then be described, with more emphasis on the latter; on the basis of existing experience the criteria for the use of light ions will be listed and areas of possible medical applications suggested. Requirements and parameters of ion beams for cancer treatment will then be defined, including ion species, energy and intensity, as well as parameters of the beam when delivered to the target (scanning, time structure, energy spread). Possible accelerator designs for light ions will be considered, including linear accelerators, cyclotrons and synchrotrons and their basic features given; this will be followed by a review of existing and planned facilities for light ions. On the basis of these considerations a tentative design for a dedicated light ion facility will be suggested, a facility that would be hospital based, satisfying the clinical requirements, simple to operate and reliable, concluding with its cost-effectiveness in comparison with other modalities for treatment of cancer.

  3. Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-03-10

    We use two-dimensional and three-dimensional hybrid (kinetic ions-fluid electrons) simulations to investigate particle acceleration and magnetic field amplification at non-relativistic astrophysical shocks. We show that diffusive shock acceleration operates for quasi-parallel configurations (i.e., when the background magnetic field is almost aligned with the shock normal) and, for large sonic and Alfvénic Mach numbers, produces universal power-law spectra ∝p {sup –4}, where p is the particle momentum. The maximum energy of accelerated ions increases with time, and it is only limited by finite box size and run time. Acceleration is mainly efficient for parallel and quasi-parallel strong shocks, where 10%-20% of the bulk kinetic energy can be converted to energetic particles and becomes ineffective for quasi-perpendicular shocks. Also, the generation of magnetic turbulence correlates with efficient ion acceleration and vanishes for quasi-perpendicular configurations. At very oblique shocks, ions can be accelerated via shock drift acceleration, but they only gain a factor of a few in momentum and their maximum energy does not increase with time. These findings are consistent with the degree of polarization and the morphology of the radio and X-ray synchrotron emission observed, for instance, in the remnant of SN 1006. We also discuss the transition from thermal to non-thermal particles in the ion spectrum (supra-thermal region) and we identify two dynamical signatures peculiar of efficient particle acceleration, namely, the formation of an upstream precursor and the alteration of standard shock jump conditions.

  4. Transverse emittance studies of an induction accelerator of heavy ions

    SciTech Connect

    Garvey, T.; Eylon, S.; Fessenden, T.J.; Hahn, K.; Henestroza, E.

    1991-04-01

    Current amplification of heavy ion beams is an integral feature of the induction linac approach to heavy ion fusion. As part of the Heavy Ion Fusion Accelerator Research program at LBL we have been studying the evolution of the transverse emittance of ion beams while they are undergoing current amplification, achieved by longitudinal bunch compression and acceleration. Experiments are conducted on MBE-4, a four beam Cs{sup +} induction linac. The space-charge dominated beams of MBE-4 are focused by electrostatic quadrupoles while they are accelerated from nominally 200 keV up to {approximately} 1 MeV by 24 accelerating gaps. Initially the beams have currents of typically 4 mA to 10 mA per beam. Early experimental results showed a growth of the normalized emittance by a factor of 2 while the beam current was amplified by up to 9 times its initial value. We will discuss the results of recent experiments in which a mild bunch length compression rate, more typical of that required by a fusion driver, has shown that the normalized emittance can be maintained at its injection value (0.03 mm-mr) during acceleration. 4 refs., 4 figs., 1 tab.

  5. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  6. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    SciTech Connect

    Ostroumov, Peter N.; Asseev, Vladislav N.; Mustapha, and Brahim

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modern ion linear accelerators and beam transport systems.

  7. High performance auxiliary-propulsion ion thruster with ion-machined accelerator grid

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Banks, B. A.

    1975-01-01

    An improvement in thruster performance was achieved by reducing the diameter of the accelerator grid holes. The smaller accelerator grid holes resulted in a reduction in neutral mercury atoms escaping the discharge chamber, which in turn enhanced the discharge propellant utilization from approximately 68 percent to 92 percent. The accelerator grids were fabricated by ion machining with an 8-centimeter-diameter thruster, and the screen grid holes individually focused ion beamlets onto the blank accelerator grid. The resulting accelerator grid holes are less than 1.12 millimeters in diameter, while previously used accelerator grids had hole diameters of 1.69 millimeters. The thruster could be operated with the small-hole accelerator grid at neutralizer potential.

  8. ION-STABILIZED ELECTRON INDUCTION ACCELERATOR

    DOEpatents

    Finkelstein, D.

    1960-03-22

    A method and apparatus for establishing an ion-stabilized self-focusing relativistic electron beam from a plasma are reported. A plasma is introduced into a specially designed cavity by plasma guns, and a magnetic field satisfying betatron conditions is produced in the cavity by currents flowing in the highly conductive, non-magnetic surface of the cavity. This field forms the electron beam by induction from the plasma.

  9. Laser-driven ion acceleration from relativistically transparent nanotargets

    NASA Astrophysics Data System (ADS)

    Hegelich, B. M.; Pomerantz, I.; Yin, L.; Wu, H. C.; Jung, D.; Albright, B. J.; Gautier, D. C.; Letzring, S.; Palaniyappan, S.; Shah, R.; Allinger, K.; Hörlein, R.; Schreiber, J.; Habs, D.; Blakeney, J.; Dyer, G.; Fuller, L.; Gaul, E.; Mccary, E.; Meadows, A. R.; Wang, C.; Ditmire, T.; Fernandez, J. C.

    2013-08-01

    Here we present experimental results on laser-driven ion acceleration from relativistically transparent, overdense plasmas in the break-out afterburner (BOA) regime. Experiments were preformed at the Trident ultra-high contrast laser facility at Los Alamos National Laboratory, and at the Texas Petawatt laser facility, located in the University of Texas at Austin. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  10. Investigation of charge balance in ion accelerator TEMP-4M

    NASA Astrophysics Data System (ADS)

    Khailov, I. P.; Pak, V. G.

    2014-10-01

    The paper presents the results of a study on the balance of charge in accelerator TEMP-4M operating in double-pulse mode with resistance load and ion diode. Crucially, it was found, that during the switching there is no losses of accumulated charge. It means, that all accumulated charge transferred to the load. However when the charge is transferred from the Marx generator to Blumlein line the half of accumulated charge is lost. Calibration of diagnostic equipment showed a good agreement between the calculated and experimental values of voltage and current. It means, that our diagnostic system is correct for registration parameters of the ion accelerator. A distinctive feature of the ion accelerators with self-magnetically insulated diode is that there is no need to use additional energy source for the creation of an external magnetic field. That's why the efficiency of ion diodes with an external magnetic field is not more than 10-15%. The efficiency of energy conversion in self-magnetically insulated diodes will be determined by not only the efficiency of the diode, but the energy losses in the units of the accelerator. The aim of the researches is the analysis of the balance of charge in units of the ion beams pulsed generator and definition of the most significant channels of energy loss.

  11. Stochastic acceleration of ions driven by Pc1 wave packets

    SciTech Connect

    Khazanov, G. V. Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-07-15

    The stochastic motion of protons and He{sup +} ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10{sup −4} nT{sup 2}/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  12. Spatial and Temporal Distribution of Ion Engine Accelerator Grid Erosion

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    1995-01-01

    Structural failure of the accelerator grid in two-grid ion optics due to charge exchange ion erosion is considered one of the dominant failure modes for ion engines. A detailed examination of three accelerator grids used in long duration tests of inert gas ion thrusters was undertaken to characterize the radial mass loss distribution, the local distribution of mass loss in the erosion pattern and how it varies as the pattern evolves. The results show significant broadening of the radial profile compared to what is expected in space with significant variations from grid to grid. The local distribution of mass loss and how it varies with increasing total mass loss in the erosion pattern was also found to differ considerably among the three grids. The results indicate that the details of the erosion geometry cannot be ignored when generalizing test results or modeling grid failure to calculate useful engine service life.

  13. Accelerated Auroral Zone Ions: Results from the VISIONS Mission

    NASA Astrophysics Data System (ADS)

    Clemmons, J. H.; Lemon, C. L.; Hecht, J. H.; Rowland, D. E.; Pfaff, R. F.; Klenzing, J.

    2013-12-01

    Presented are results from the VISIONS auroral sounding rocket mission. The presentation focuses on the measured fluxes of locally-accelerated ions and the accompanying measurements of electron fluxes, electric and magnetic DC and wave fields, and auroral emissions. The accelerated ions are shown to have their highest energies and most intense fluxes near the poleward auroral boundary, and are present at all down-going pitch angles. They are also proximate to intense fluxes of field-aligned electrons and strong waves, and appear in conjunction with the intensification of an isotropic population of much more energetic ion precipitation. The measurements are interpreted in the context of the 'pressure cooker' mechanism used to explain similar observations, and the implications of this interpretation for the ion outflow process in this event are discussed.

  14. Spot size dependence of laser accelerated protons in thin multi-ion foils

    SciTech Connect

    Liu, Tung-Chang Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2014-06-15

    We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, a laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10{sup 8} protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen.

  15. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targetsa)

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Hegelich, B. M.; Bowers, K. J.; Flippo, K. A.; Kwan, T. J. T.; Fernández, J. C.

    2007-05-01

    A new laser-driven ion acceleration mechanism using ultrathin targets has been identified from particle-in-cell simulations. After a brief period of target normal sheath acceleration (TNSA) [S. P. Hatchett et al., Phys. Plasmas 7, 2076 (2000)], two distinct stages follow: first, a period of enhanced TNSA during which the cold electron background converts entirely to hot electrons, and second, the "laser breakout afterburner" (BOA) when the laser penetrates to the rear of the target where a localized longitudinal electric field is generated with the location of the peak field co-moving with the ions. During this process, a relativistic electron beam is produced by the ponderomotive drive of the laser. This beam is unstable to a relativistic Buneman instability, which rapidly converts the electron energy into ion energy. This mechanism accelerates ions to much higher energies using laser intensities comparable to earlier TNSA experiments. At a laser intensity of 1021W/cm2, the carbon ions accelerate as a quasimonoenergetic bunch to 100s of MeV in the early stages of the BOA with conversion efficiency of order a few percent. Both are an order of magnitude higher than those realized from TNSA in recent experiments [Hegelich et al., Nature 441, 439 (2006)]. The laser-plasma interaction then evolves to produce a quasithermal energy distribution with maximum energy of ˜2GeV.

  16. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets

    SciTech Connect

    Yin, L.; Albright, B. J.; Hegelich, B. M.; Bowers, K. J.; Flippo, K. A.; Kwan, T. J. T.; Fernandez, J. C.

    2007-05-15

    A new laser-driven ion acceleration mechanism using ultrathin targets has been identified from particle-in-cell simulations. After a brief period of target normal sheath acceleration (TNSA) [S. P. Hatchett et al., Phys. Plasmas 7, 2076 (2000)], two distinct stages follow: first, a period of enhanced TNSA during which the cold electron background converts entirely to hot electrons, and second, the ''laser breakout afterburner'' (BOA) when the laser penetrates to the rear of the target where a localized longitudinal electric field is generated with the location of the peak field co-moving with the ions. During this process, a relativistic electron beam is produced by the ponderomotive drive of the laser. This beam is unstable to a relativistic Buneman instability, which rapidly converts the electron energy into ion energy. This mechanism accelerates ions to much higher energies using laser intensities comparable to earlier TNSA experiments. At a laser intensity of 10{sup 21} W/cm{sup 2}, the carbon ions accelerate as a quasimonoenergetic bunch to 100 s of MeV in the early stages of the BOA with conversion efficiency of order a few percent. Both are an order of magnitude higher than those realized from TNSA in recent experiments [Hegelich et al., Nature 441, 439 (2006)]. The laser-plasma interaction then evolves to produce a quasithermal energy distribution with maximum energy of {approx}2 GeV.

  17. Accelerator physics in ERL based polarized electron ion collider

    SciTech Connect

    Hao, Yue

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  18. Mitigation of Ion Motion in future Plasma Wakefield Accelerators

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Reza; Katsouleas, Tom; Muggli, Patric; Mori, Warren

    2007-11-01

    Simulation and analysis of the ion motion in a plasma wakefield accelerator is presented for the parameters required for a future ILC afterburner. We Show that although ion motion leads to substantial emittance growth for extreme parameters of future colliders in the sub-micron transverse beam Size regime, several factors that can mitigate the effect are explored. These include synchrotron radiation damping, plasma density gradients and hot plasmas.

  19. Temporal Variability of Ion Acceleration and Abundances in Solar Flares

    NASA Technical Reports Server (NTRS)

    Shih, Albert

    2011-01-01

    Solar flares accelerate both ions and electrons to high energies, and their X-ray and gamma-ray signatures not only probe the relationship between their respective acceleration, but also allow for the measurement of accelerated and ambient abundances. RHESSI observations have shown a striking close linear correlation of gamma-ray line fluence from accelerated ions greater than approximately 20 MeV and bremsstrahlung emission from relativistic accelerated electrons greater than 300 keV, when integrated over complete flares, suggesting a common acceleration mechanism. SMM/GRS observations, however, show a weaker correlation, and this discrepancy might be associated with previously observed electron-rich episodes within flares and/or temporal variability of gamma-ray line fluxes over the course of flares. We use the latest RHESSI gamma-ray analysis techniques to study the temporal behavior of the RHESSI flares, and determine what changes can be attributed to an evolving acceleration mechanism or to evolving abundances. We also discuss possible explanations for changing abundances.

  20. Temporal Variability of Ion Acceleration and Abundances in Solar Flares

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2012-01-01

    solar flares accelerate both ions and electrons to high energies, and their x-ray and gamma-ray signatures not only probe the relationship between their respective acceleration, but also allow for the measurement of accelerated and ambient abundances. RHESSI observations have shown a striking close linear correlation of gamma-ray line fluence from accelerated ions > approx 20 MeV and bremsstrahlung emission from relativistic accelerated electrons >300 kev, when integrated over complete flares, suggesting a common acceleration mechanism. SMM/GRS observations, however, show a weaker correlation, and this discrepancy might be associated with previously observed electron-rich episodes within flares and/or temporal variability of gamma-ray line fluxes over the course of flares. We use the latest RHESSI gamma-ray analysis techniques to study the temporal behavior of the RHESSI flares, and determine what changes can be attributed to an evolving acceleration mechanism or to evolving abundances. We also discuss possible explanations for changing abundances.

  1. Prompt Gas Desorption Due to Ion Impact on Accelerator Structures

    NASA Astrophysics Data System (ADS)

    Vijay, Sagar; Seidl, Peter A.; Faltens, Andy; Lidia, Steven M.

    2011-10-01

    The repetition rate and peak current of high intensity ion accelerators for inertial fusion or other applications may be limited under certain conditions by the desorption of gas molecules and atoms due to stray ions striking the accelerator structure. We have measured the prompt yield of atoms in close proximity to the point of impact of the ions on a surface. Using the 300-keV, K+ ion beam of the Neutralized Drift Compression Experiment (NDCX-I), ions strike a metal target in a 5-10 microsecond bunch. The collector of a Bayert-Alpert style ionization gauge is used to detect the local pressure burst several centimeters away. Pressure transients are observed on a micro-second time scale due to the initial burst of desorbed gas, and on a much longer (~1 second) timescale, corresponding to the equilibration of the pressure after many ``bounces'' of atoms in the vacuum chamber. We report on these time dependent pressure measurements, modeling of the pressure transient, and implications for high-intensity ion accelerators. Work performed under auspices of U.S. DOE by LBNL under Contract DE-AC02-05CH1123.

  2. Ion acceleration and reflection on magnetotail antidipolarization fronts

    NASA Astrophysics Data System (ADS)

    Zhou, Xu-Zhi; Pan, Dong-Xiao; Angelopoulos, Vassilis; Liu, Jiang; Runov, Andrei; Li, Shan-Shan; Li, Jia-Zheng; Zong, Qiu-Gang; Fu, Sui-Yan

    2015-11-01

    Antidipolarization fronts (ADFs), tailward moving structures in the Earth's magnetotail with sharp decreases in their magnetic Bz component, are thought to be mirror images of earthward propagating dipolarization fronts (DFs) generated on the opposite side of the reconnection site. We use ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) observations and numerical simulations to study the role of ADFs in accelerating and reflecting ambient plasma sheet ions. In both case and statistical observations before ADF arrival, tailward streaming, energy-dispersed ions are seen first. After about 1 min, the ion fluxes are enhanced significantly with the peak shifted duskward, and then the peak gradually shifts back to the tailward direction until the ADF arrives. All these signatures are reproduced by our simulation model of ion acceleration and reflection on ADFs. We further examine typical ion trajectories before and after ADF reflection, to understand these seemingly complicated ion signatures as well as their similarities with and differences from the DF preceding signatures.

  3. Intense ion beams accelerated by ultra-intense laser pulses

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, T. E.; Gauthier, J. C.; Vehn, J. Meyer-Ter; Allen, M.; Audebert, P.; Blazevic, A.; Fuchs, J.; Geissel, M.; Hegelich, M.; Karsch, S.; Pukhov, A.; Schlegel, T.

    2002-04-01

    The discovery of intense ion beams off solid targets irradiated by ultra-intense laser pulses has become the subject of extensive international interest. These highly collimated, energetic beams of protons and heavy ions are strongly depending on the laser parameters as well as on the properties of the irradiated targets. Therefore we have studied the influence of the target conditions on laser-accelerated ion beams generated by multi-terawatt lasers. The experiments were performed using the 100 TW laser facility at Laboratoire pour l'Utilisation des Laser Intense (LULI). The targets were irradiated by pulses up to 5×1019 W/cm2 (~300 fs,λ=1.05 μm) at normal incidence. A strong dependence on the surface conditions, conductivity, shape and purity was observed. The plasma density on the front and rear surface was determined by laser interferometry. We characterized the ion beam by means of magnetic spectrometers, radiochromic film, nuclear activation and Thompson parabolas. The strong dependence of the ion beam acceleration on the conditions on the target back surface was confirmed in agreement with predictions based on the target normal sheath acceleration (TNSA) mechanism. Finally shaping of the ion beam has been demonstrated by the appropriate tailoring of the target. .

  4. Novel carbon-ion fuel cells

    SciTech Connect

    Cocks, F.H.; LaViers, H.

    1995-10-03

    This report details acitvities by the Duke University Department of Mechanical Engineering and Material Science on the Novel Carbon-Ion Fuel Cells for the Department of Energy Advanced Coal Research Program grant for the third quarter of 1995.

  5. An RFQ linac for heavy ion acceleration

    NASA Astrophysics Data System (ADS)

    Ueda, N.; Arai, S.; Nakanishi, T.; Hori, T.; Tokuda, N.; Yamada, S.; Fukushima, T.; Takanaka, M.; Noda, A.; Katayama, T.

    1982-02-01

    An rf characteristic was studied on a radio frequency quadrupole (RFQ) model cavity with two kinds of vanes, straight and modulated. The measured resonant frequency is 295.0 MHz for the TE210 mode and well agrees with the calculated value 296.5 MHz by SUPERFISH for the straight vane. The measured one is 293.5 MHz for the modulated vane which has the same cross section as the straight vane at its quadrupole symmetry plane. The measured electric field in the acceleration bore agrees with the calculated one within the statistical error. A sufficient mode separation and uniform field distribution were obtained with a single loop coupler which matches the cavity to the feeder line.

  6. Progress toward a prototype recirculating ion induction accelerator

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cable, M.D.

    1996-06-01

    The U.S. Inertial Fusion Energy (IFE) Program is developing the physics and technology of ion induction accelerators, with the goal of electric power production by means of heavy ion beam-driven inertial fusion (commonly called heavy ion fusion, or HIF). Such accelerators are the principal candidates for inertial fusion power production applications, because they are expected to enjoy high efficiency, inherently high pulse repetition frequency (power plants are expected to inject and burn several fusion targets per second), and high reliability. In addition (and in contrast with laser beams, which are focused with optical lenses) heavy-ion beams will be focused onto the target by magnetic fields, which cannot be damaged by target explosions. Laser beams are used in present-day and planned near-term facilities (such as LLNUs Nova and the National Ignition Facility, which is being designed) because they can focus beams onto very small, intensely illuminated spots for scaled experiments and because the laser technology is already available. An induction accelerator works by passing the beam through a series of accelerating modules, each of which applies an electromotive force to the beam as it goes by; effectively, the beam acts as the secondary winding of a series of efficient one-turn transformers. The authors present plans for and progress toward the development of a small (4.5-m-diam) prototype recirculator, which will accelerate singly charged potassium ions through 15 laps, increasing the ion energy from 80 to 320 keV and the beam current from 2 to 8 mA. Beam confinement and bending are effected with permanent-magnet quadrupoles and electric dipoles, respectively. The design is based on scaling laws and on extensive particle and fluid simulations of the behavior of the space charge-dominated beam.

  7. Enhanced lithium ion storage in nanoimprinted carbon

    NASA Astrophysics Data System (ADS)

    Wang, Peiqi; Chen, Qian Nataly; Xie, Shuhong; Liu, Xiaoyan; Li, Jiangyu

    2015-07-01

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  8. Enhanced lithium ion storage in nanoimprinted carbon

    SciTech Connect

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu; Xie, Shuhong; Liu, Xiaoyan

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  9. Ion acceleration by petawatt class laser pulses and pellet compression in a fast ignition scenario

    NASA Astrophysics Data System (ADS)

    Benedetti, C.; Londrillo, P.; Liseykina, T. V.; Macchi, A.; Sgattoni, A.; Turchetti, G.

    2009-07-01

    Ion drivers based on standard acceleration techniques have faced up to now several difficulties. We consider here a conceptual alternative to more standard schemes, such as HIDIF (Heavy Ion Driven Inertial Fusion), which are still beyond the present state of the art of particle accelerators, even though the requirements on the total beam energy are lowered by fast ignition scenarios. The new generation of petawatt class lasers open new possibilities: acceleration of electrons or protons for the fast ignition and eventually light or heavy ions acceleration for compression. The pulses of chirped pulse amplification (CPA) lasers allow ions acceleration with very high efficiency at reachable intensities ( I˜1021 W/cm2), if circularly polarized light is used since we enter in the radiation pressure acceleration (RPA) regime. We analyze the possibility of accelerating carbon ion bunches by interaction of a circularly polarized pulses with an ultra-thin target. The advantage would be compactness and modularity, due to identical accelerating units. The laser efficiency required to have an acceptable net gain in the inertial fusion process is still far from the presently achievable values both for CPA short pulses and for long pulses used for direct illumination. Conversely the energy conversion efficiency from the laser pulse to the ion bunch is high and grows with the intensity. As a consequence the energy loss is not the major concern. For a preliminary investigation of the ions bunch production we have used the PIC code ALaDyn developed to analyze the results of the INFN-CNR PLASMONX experiment at Frascati National Laboratories (Rome, Italy) where the 0.3 PW laser FLAME will accelerate electrons and protons. We present the results of some 1D simulations and parametric scan concerning the acceleration of carbon ions that we suppose to be fully ionized. Circularly polarized laser pulses of 50 J and 50-100 fs duration, illuminating a 100 μm2 area of a 20 nm thick carbon

  10. Ion acceleration and cooling in gasless self-sputtering

    SciTech Connect

    Horwat, David; Anders, Andre

    2010-10-31

    Copper plasma with hyperthermal directed velocity (8.8 eV) but very low temperature (0.6 eV) has been obtained using self-sputtering far above the runaway threshold. Ion energy distribution functions (IEDFs) were simultaneously measured at 34 locations. The IEDFs show the tail of the Thompson distribution near the magnetron target. They transform to shifted Maxwellians with the ions being accelerated and cooled. We deduce the existence of a highly asymmetric, pressure-driven potential hump which acts as a controlling"watershed" between the ion return flux and the expanding plasma.

  11. Energy spectrum of neutrals formed in an ion accelerator

    SciTech Connect

    Fink, J.H.

    1982-03-15

    This work presents an estimate of the energy distribution of the neutrals formed in the ion beam accelerator. However it does not determine the fraction of those neutrals which leave the neutral beam injector and go on into the reactor. To do that, more details of the beam line performance are needed.

  12. Wakefield accelerators in the blowout regime with mobile ions

    SciTech Connect

    Lee, S.; Katsouleas, T.

    1999-07-12

    In the Plasma Wakefield Accelerator a high current drive-beam excites a large wake that can accelerate trailing particles. The wake is created when the space charge of the drive beam displaces plasma electrons. The plasma ions provide the restoring force on the displaced electrons. For symmetric bunches, the peak accelerating gradient is proportional to the current over a pulse length. For example, for a Gaussian bunch with 6nC of charge and bunch length {sigma}{sub z}{approx_equal}0.6 mm, a gradient of 1GeV/m can be obtained. For the case of dense (beam density greater than plasma density), narrow (beam spot size {sigma}{sub r} smaller than c/{omega}{sub p}) beams the plasma response is non-linear and is dominated by the radial blow out of all the plasma electrons. However, such dense beams are strongly focused by the plasma lens effect. As a result they become so dense that ion motion should become important even on the electron plasma frequency time-scale. We will present analytic and 2-D particle-in-cell (PIC) models of wake excitation including mobile ions. The effect of the ion motion on the accelerating and focusing wake and the dynamics of the drive beam are discussed.

  13. Wakefield accelerators in the blowout regime with mobile ions

    SciTech Connect

    Lee, S.; Katsouleas, T.

    1999-07-01

    In the Plasma Wakefield Accelerator a high current drive-beam excites a large wake that can accelerate trailing particles. The wake is created when the space charge of the drive beam displaces plasma electrons. The plasma ions provide the restoring force on the displaced electrons. For symmetric bunches, the peak accelerating gradient is proportional to the current over a pulse length. For example, for a Gaussian bunch with 6nC of charge and bunch length {sigma}{sub z}{approx}0.6&hthinsp;mm, a gradient of 1GeV/m can be obtained. For the case of dense (beam density greater than plasma density), narrow (beam spot size {sigma}{sub r} smaller than c/{omega}{sub p}) beams the plasma response is non-linear and is dominated by the radial blow out of all the plasma electrons. However, such dense beams are strongly focused by the plasma lens effect. As a result they become so dense that ion motion should become important even on the electron plasma frequency time-scale. We will present analytic and 2-D particle-in-cell (PIC) models of wake excitation including mobile ions. The effect of the ion motion on the accelerating and focusing wake and the dynamics of the drive beam are discussed. {copyright} {ital 1999 American Institute of Physics.}

  14. Wakefield accelerators in the blowout regime with mobile ions

    NASA Astrophysics Data System (ADS)

    Lee, S.; Katsouleas, T.

    1999-07-01

    In the Plasma Wakefield Accelerator a high current drive-beam excites a large wake that can accelerate trailing particles. The wake is created when the space charge of the drive beam displaces plasma electrons. The plasma ions provide the restoring force on the displaced electrons. For symmetric bunches, the peak accelerating gradient is proportional to the current over a pulse length. For example, for a Gaussian bunch with 6nC of charge and bunch length σz≈0.6 mm, a gradient of 1GeV/m can be obtained. For the case of dense (beam density greater than plasma density), narrow (beam spot size σr smaller than c/ωp) beams the plasma response is non-linear and is dominated by the radial blow out of all the plasma electrons. However, such dense beams are strongly focused by the plasma lens effect. As a result they become so dense that ion motion should become important even on the electron plasma frequency time-scale. We will present analytic and 2-D particle-in-cell (PIC) models of wake excitation including mobile ions. The effect of the ion motion on the accelerating and focusing wake and the dynamics of the drive beam are discussed.

  15. Analysis of ICRF-Accelerated Ions in ASDEX Upgrade

    SciTech Connect

    Mantsinen, M. J.; Eriksson, L.-G.; Noterdaeme, J.-M.

    2007-09-28

    MHD-induced losses of fast ions with energy in the MeV range have been observed during high-power ICRF heating of hydrogen minority ions in the ASDEX Upgrade tokamak (R{sub 0}{approx_equal}1.65 m, a{approx_equal}0.5 m). ICRF heating and ICRF-driven fast ions in discharges exhibiting fast ion losses due to toroidal Alfven eigenmodes and a new core-localised MHD instability are analysed. It is found that the lost ions are ICRF-accelerated trapped protons with energy in the range of 0.3-1.6 MeV, orbit widths of 20-35 cm, and turning points at r/a>0.5 and at major radii close to the cyclotron resonance {omega} = {omega}{sub cH}(R). The presence of such protons is consistent with ICRF modelling.

  16. Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.

    Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed

  17. Enhanced Ion Acceleration from Micro-tube Structured Targets

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; Ji, Liangliang; Akli, Kramer

    2015-11-01

    We present an enhanced ion acceleration method that leverages recent advancements in 3D printing for target fabrication. Using the three-dimensional Particle-in-Cell simulation code Virtual Laser-Plasma Lab (VLPL), we model the interaction of a short pulse, high intensity laser with a micro-tube plasma (MTP) structured target. When compared to flat foils, the MTP target enhances the maximum proton energy by a factor of about 4. The ion enhancement is attributed to two main factors: high energy electrons extracted from the tube structure enhancing the accelerating field and light intensification within the MTP target increasing the laser intensity at the location of the foil. We also present results on ion energy scaling with micro-tube diameter and incident laser pulse intensity. This work was supported by the AFOSR under contract No. FA9550-14-1-0085.

  18. On the acceleration of energetic ions in Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, D. D.; Eviatar, A.; Siscoe, G. L.

    1984-06-01

    Several aspects of the problem of high-energy ions in the Jovian magnetosphere are addressed. Voyager observations pertaining to the problem of high-energy ions in the magnetosphere are summarized, and the charge exchange emission of fast neutral sulfur and oxygen atoms and their subsequent recapture by electron impact, charge exchange, and photoionization is considered. Solutions are given to the diffusion equation assuming a source of ions injected with a gyroenergy corresponding to pickup in the middle and outer magnetosphere. It is concluded that no reasonable model parameters exist to produce the required steep spectra of the particle observations with only pickup and adiabatic radial diffusion included. A local acceleration mechanism based on nonadiabatic wave-particle interactions is needed. The assumptions and model predictions of stochastic acceleration by MHD turbulence for the Jovian magnetosphere are described. The model makes a specific correspondence between MHD wave spectrum properties and particle spectrum properties at energies above the Alfven energy.

  19. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    SciTech Connect

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  20. Engineering study of a 10 MeV heavy ion linear accelerator

    SciTech Connect

    Fong, C.G.; Fessenden, T.J.; Fulton, R.L.; Keefe, D.

    1989-03-01

    LBL's Heavy Ion Fusion Accelerator Research group has completed the engineering study of the Induction Linac Systems Experiment (ILSE). ILSE will address nearly all accelerator physics issues of a scaled heavy ion induction linac inertial fusion pellet driver. Designed as a series of subsystem experiments, ILSE will accelerate 16 parallel carbon ion beams from a 2 MeV injector presently under development to 10 MeV at one ..mu..sec. This overview paper will present the physics and engineering requirements and describe conceptual design approaches for building ILSE. Major ILSE subsystems consist of electrostatic focusing quadrupole matching and accelerating sections, a 16 to 4 beam transverse combining section, a 4 beam magnetic focusing quadrupole accelerating section, a single beam 180 degree bend section, a drift compression section and a final focus and target chamber. These subsystems are the subject of accompanying papers. Also discussed are vacuum and alignment, diagnostics/data acquisition and controls, key conclusions and plans for further development. 10 refs., 4 figs., 1 tab.

  1. Experience with carbon ion radiotherapy at GSI

    NASA Astrophysics Data System (ADS)

    Jäkel, O.; Schulz-Ertner, D.; Karger, C. P.; Heeg, P.; Debus, J.

    2005-12-01

    At GSI, a radiotherapy facility was established using beam scanning and active energy variation. Between December 1997 and April 2004, 220 patients have been treated at this facility with carbon ions. Most patients are treated for chordoma and chondrosarcoma of the base of skull, using a dose of 60 Gye (Gray equivalent) in 20 fractions. Carbon ion therapy is also offered in a combination with conventional radiotherapy for a number of other tumors (adenoidcystic carcinoma, chordoma of the cervical spine and sacrum, atypical menningeoma). The patients treated for skull base tumors showed an overall local control rate after two years of 90%. The overall treatment toxicity was mild. This shows that carbon ion radiotherapy can safely be applied using a scanned beam and encouraged the Heidelberg university hospital to build a hospital based facility for ion therapy.

  2. Mechanical Design of Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Haag, Thomas

    2005-01-01

    Carbon Ion Optics are expected to provide much longer thruster life due to their resistance to sputter erosion. There are a number of different forms of carbon that have been used for fabricating ion thruster optics. The mechanical behavior of carbon is much different than that of most metals, and poses unique design challenges. In order to minimize mission risk, the behavior of carbon must be well understood, and components designed within material limitations. Thermal expansion of the thruster structure must be compatible with thermal expansion of the carbon ion optics. Specially designed interfaces may be needed so that grid gap and aperture alignment are not adversely affected by dissimilar material properties within the thruster. The assembled thruster must be robust and tolerant of launch vibration. The following paper lists some of the characteristics of various carbon materials. Several past ion optics designs are discussed, identifying strengths and weaknesses. Electrostatics and material science are not emphasized so much as the mechanical behavior and integration of grid electrodes into an ion thruster.

  3. Simulation of direct plasma injection for laser ion beam acceleration with a radio frequency quadrupole

    SciTech Connect

    Jin, Q. Y.; Li, Zh. M.; Liu, W.; Zhao, H. Y. Zhang, J. J.; Sha, Sh.; Zhang, Zh. L.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W.

    2014-07-15

    The direct plasma injection scheme (DPIS) has been being studied at Institute of Modern Physics since several years ago. A C{sup 6+} beam with peak current of 13 mA, energy of 593 keV/u has been successfully achieved after acceleration with DPIS method. To understand the process of DPIS, some simulations have been done as follows. First, with the total current intensity and the relative yields of different charge states for carbon ions measured at the different distance from the target, the absolute current intensities and time-dependences for different charge states are scaled to the exit of the laser ion source in the DPIS. Then with these derived values as the input parameters, the extraction of carbon beam from the laser ion source to the radio frequency quadrupole with DPIS is simulated, which is well agreed with the experiment results.

  4. Ion acceleration near CME-driven interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; Dayeh, Maher; Smith, Charles; Mason, Glenn; Lee, Martin

    2012-05-01

    We have surveyed properties of the magnetic field power spectral densities and energetic ions and compared them with the shock normal angles of 74 CME-driven IP shocks observed at ACE and Wind during solar cycle 23. We searched for events that exhibited clear signatures of first-order Fermi acceleration at quasi-parallel shocks and shock-drift acceleration at quasi-perpendicular shocks as predicted by the diffusive shock acceleration theory. Our results show that events with clear signatures of either shock-drift or first-order Fermi acceleration at 1 AU are rare, with 64 of the 74 IP shocks (~87%) exhibiting mixed signatures. We classify the remaining ten events as follows. (1) Four quasi-perpendicular shocks with θBn>70° exhibit no enhancements in the magnetic field power spectrum around the proton gyro-frequency and a slight hardening or no change in the ~80-300 keV/nucleon CNO spectral index across the shocks, indicating the absence of upstream wave activity and the re-acceleration of a pre-existing suprathermal seed spectrum. (2) Six quasi-parallel or oblique IP shocks with θBn<70° exhibit significant enhancements in the power spectral densities around the proton gyro-frequency and are accompanied by unfolding (softening) of the ~80-300 keV/nucleon CNO spectral index across the shocks, indicating the acceleration and efficient trapping of <300 keV/nucleon CNO ions by the Alfvén waves that were most likely excited by the accelerated protons as they streamed away from the shocks. In this paper, we present contrasting energetic particle and magnetic field observations near 2 IP shocks at 1 AU to highlight the complex signatures associated with the two distinct types of shock acceleration mechanisms.

  5. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2016-05-01

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.

  6. Ion Acceleration by Laser Plasma Interaction from Cryogenic Micro Jets - Oral Presentation

    SciTech Connect

    Propp, Adrienne

    2015-08-25

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for this type of interaction, capable of producing the highest proton energies possible with today’s laser technologies. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis and investigate new, potentially more efficient mechanisms of ion acceleration, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we acheived a pure proton beam with an indiciation of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the

  7. Longitudinal emittance in high-current ion accelerators

    SciTech Connect

    Wangler, T.P.; Bhatia, T.S.; Neuschaefer, G.H.; Pabst, M.

    1989-01-01

    The control of longitudinal emittance in an ion linear accelerator is important for minimizing both chromatic aberrations and beam halo. The root-mean-square (rms) longitudinal emittance grouth can result from either the nonlinear rf focusing fields or the nonlinear space-charge fields. We will present conclusions based on numerical beam-dynamics studies for both the radio-frequency quadrupole (RFQ), and the drift-tube linac (DTL). We will discuss the scaling of longitudinal emittance produced during the adiabatic bunching in an RFQ and will show the benefits of ramped DTL accelerating field designs to maintain high longitudinal focusing strength with increasing particle energy. 15 refs., 8 figs.

  8. Development of an ion beam analyzing system for the KBSI heavy-ion accelerator.

    PubMed

    Bahng, Jungbae; Hong, Jonggi; Park, Jin Yong; Kim, Seong Jun; Ok, Jung-Woo; Choi, Seyong; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Lee, Byoung-Seob; Kim, Eun-San

    2016-02-01

    The Korea Basic Science Institute (KBSI) has been developing a heavy ion accelerator system to accelerate high current, multi-charge state ions produced by a 28 GHz superconducting electron cyclotron ion source. A beam analyzing system as a part of the low energy beam transport apparatus was developed to select charged particles with desirable charge states from the ion beams. The desired species of ion, which is generated and extracted from the ECR ion source including various ion particles, can be selected by 90° dipole electromagnet. Due to the non-symmetrical structure in the coil as well as the non-linear permeability of the yoke material coil, a three dimensional analysis was carried out to confirm the design parameters. In this paper, we present the experimental results obtained as result of an analysis of KBSI accelerator. The effectiveness of beam selection was confirmed during the test of the analyzing system by injecting an ion beam from an ECR ion source. PMID:26932105

  9. Development of an ion beam analyzing system for the KBSI heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Hong, Jonggi; Park, Jin Yong; Kim, Seong Jun; Ok, Jung-Woo; Choi, Seyong; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Lee, Byoung-Seob; Kim, Eun-San

    2016-02-01

    The Korea Basic Science Institute (KBSI) has been developing a heavy ion accelerator system to accelerate high current, multi-charge state ions produced by a 28 GHz superconducting electron cyclotron ion source. A beam analyzing system as a part of the low energy beam transport apparatus was developed to select charged particles with desirable charge states from the ion beams. The desired species of ion, which is generated and extracted from the ECR ion source including various ion particles, can be selected by 90° dipole electromagnet. Due to the non-symmetrical structure in the coil as well as the non-linear permeability of the yoke material coil, a three dimensional analysis was carried out to confirm the design parameters. In this paper, we present the experimental results obtained as result of an analysis of KBSI accelerator. The effectiveness of beam selection was confirmed during the test of the analyzing system by injecting an ion beam from an ECR ion source.

  10. Note: A pulsed laser ion source for linear induction accelerators

    SciTech Connect

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  11. Note: A pulsed laser ion source for linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-01

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  12. Heavy ion beam-ionosphere interactions - Electron acceleration

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Arnoldy, R. L.; Moore, T. E.; Kintner, P. M.; Cahill, L. J., Jr.

    1985-01-01

    Moore et al. (1982) described a number of unexpected effects which were observed during the first Argon Release Controlled Study (ARCS 1, or rocket flight 29:014). The present paper provides a description of detailed analyses of the interaction of the argon beam with the ionosphere. An important feature of the considered test was that all detectors and the Ar(+) gun remained attached to the rocket throughout the flight. It is pointed out that the most dramatic effect of ion gun operation on ARCS 1 involved large changes in the fluxes of electrons with energies below about 600 eV. The observations are discussed, taking into account the distribution functions, azimuth dependence, and electron and ion trajectories. Attention is given to the perpendicular ion beam, the parallel ion beam, the acceleration of downgoing and upgoing electrons, and aspects of wave generation.

  13. Heavy ion beam-ionosphere interactions - Electron acceleration

    NASA Astrophysics Data System (ADS)

    Kaufmann, R. L.; Arnoldy, R. L.; Moore, T. E.; Kintner, P. M.; Cahill, L. J., Jr.

    1985-10-01

    Moore et al. (1982) described a number of unexpected effects which were observed during the first Argon Release Controlled Study (ARCS 1, or rocket flight 29:014). The present paper provides a description of detailed analyses of the interaction of the argon beam with the ionosphere. An important feature of the considered test was that all detectors and the Ar(+) gun remained attached to the rocket throughout the flight. It is pointed out that the most dramatic effect of ion gun operation on ARCS 1 involved large changes in the fluxes of electrons with energies below about 600 eV. The observations are discussed, taking into account the distribution functions, azimuth dependence, and electron and ion trajectories. Attention is given to the perpendicular ion beam, the parallel ion beam, the acceleration of downgoing and upgoing electrons, and aspects of wave generation.

  14. Pickup Ion Acceleration at Low-{beta}{sub p} Perpendicular Shocks

    SciTech Connect

    Lipatov, A.S.; Zank, G.P.; Lipatov, A.S.

    1999-05-01

    Multiscale hybrid kinetic simulations of low-{beta}{sub p} supercritical shocks demonstrate that pickup ions may be strongly accelerated by shock surfing, also known as multiply reflected ion acceleration. {copyright} {ital 1999} {ital The American Physical Society}

  15. Experimental study of ion heating and acceleration during magnetic reconnection

    SciTech Connect

    Hsu, S.C.

    2000-01-28

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  16. Selective deuterium ion acceleration using the Vulcan petawatt laser

    SciTech Connect

    Krygier, A. G.; Morrison, J. T.; Kar, S. Ahmed, H.; Alejo, A.; Green, A.; Jung, D.; Clarke, R.; Notley, M.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-15

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, >10{sup 20}W/cm{sup 2} laser pulse by cryogenically freezing heavy water (D{sub 2}O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°–8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  17. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    NASA Astrophysics Data System (ADS)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  18. Study of Direct Current Negative Ion Source for Medicine Accelerator

    SciTech Connect

    Belchenko, Yu.; Ivanov, I.; Piunov, I.

    2005-04-06

    Status of dc H- ion source development for tandem accelerator of boron capture neutron therapy is described. Upgrade and study of the Penning surface-plasma source with hollow cathodes was continued. Results of source optimization, of ion optic computer simulation, and of emittance measurement are presented. The upgraded source delivers dc H- beam with energy 25 kV, current 8 mA, 1rms emittance JukcyX {approx} 0.2 {pi} mm{center_dot}mrad, JukcyY {approx} 0.3 {pi} mm{center_dot}mrad at discharge power {<=} 0.5 kW.

  19. Charge Strippers of Heavy Ions for High Intensity Accelerators

    NASA Astrophysics Data System (ADS)

    Nolen, Jerry A.; Marti, Felix

    2014-02-01

    Charge strippers play a critical role in many high intensity heavy ion accelerators. Here we present some history of recent stripper technology development and indicate the capabilities and limitations of the various approaches. The properties of solid, gaseous, and liquid strippers are covered. In particular, the limitations of solid strippers for high intensity, high atomic number heavy ions and the unique features of helium gas and liquid lithium for high intensity applications are covered. The need for high quality simulation of stripper performance as important input for system optimization is explained and examples of the current simulation codes are given.

  20. Phase and Radial Motion in Ion Linear Accelerators

    SciTech Connect

    Takeda, H.; Billen, J. H.

    2007-03-29

    Parmila is an ion-linac particle-dynamics code. The name comes from the phrase, "Phase and Radial Motion in Ion Linear Accelerators." The code generates DTL, CCDTL, and CCL accelerating cells and, using a "drift-kick" method, transforms the beam, represented by a collection of particles, through the linac. The code includes a 2-D and 3-D space-charge calculations. Parmila uses data generated by the Poisson Superfish postprocessor SEC. This version of Parmila was written by Harunori Takeda and was supported through Feb. 2006 by James H. Billen. Setup installs executable programs Parmila.EXE, Lingraf.EXE, and ReadPMI.EXE in the LANL directory. The directory LANL\\Examples\\Parmila contains several subdirectories with sample files for Parmila.

  1. Bipolar pulse generator for intense pulsed ion beam accelerator

    SciTech Connect

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-15

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time.

  2. Bipolar pulse generator for intense pulsed ion beam accelerator.

    PubMed

    Ito, H; Igawa, K; Kitamura, I; Masugata, K

    2007-01-01

    A new type of pulsed ion beam accelerator named "bipolar pulse accelerator" (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time. PMID:17503918

  3. Phase and Radial Motion in Ion Linear Accelerators

    2007-03-29

    Parmila is an ion-linac particle-dynamics code. The name comes from the phrase, "Phase and Radial Motion in Ion Linear Accelerators." The code generates DTL, CCDTL, and CCL accelerating cells and, using a "drift-kick" method, transforms the beam, represented by a collection of particles, through the linac. The code includes a 2-D and 3-D space-charge calculations. Parmila uses data generated by the Poisson Superfish postprocessor SEC. This version of Parmila was written by Harunori Takeda andmore » was supported through Feb. 2006 by James H. Billen. Setup installs executable programs Parmila.EXE, Lingraf.EXE, and ReadPMI.EXE in the LANL directory. The directory LANL\\Examples\\Parmila contains several subdirectories with sample files for Parmila.« less

  4. Linear ion source with closed drift and extended acceleration region

    SciTech Connect

    Park, Dong-Hee; Kim, Ji-Hwan; Ermakov, Yury; Choi, Won-Kook

    2008-02-15

    Ion source with closed drift, which is caused by ExB field, and extended acceleration region is discussed. Though conventional circular-type closed drift ion source has advantages of high efficiency of gas ionization and low ion beam energy, there is a limitation in enlarging the beam size. Linear ion source with horse-track shape with 270 mm ceramic channel width is newly designed and tested. Inert gas (Ar) and reactive gas (O{sub 2}) are discharged. Discharge is ignited with voltage of 90 V. Discharge current is proportional to discharge voltage and increases up to 16.3 A in argon and 15.6 A in oxygen at discharge voltage of 320 V. Extracted ion beam current is also proportional to discharge voltage and is saturated after 280 V for both gases. It is measured up to 0.78 mA/cm{sup 2} in argon beam and 0.73 mA/cm{sup 2} in oxygen beam at a distance of 100 mm from the ion source. Argon ion beam shows better space uniformity than oxygen across the beam extraction region.

  5. Ion accelerator facilities at the University of Göttingen

    NASA Astrophysics Data System (ADS)

    Uhrmacher, M.; Hofsäss, H.

    2005-10-01

    The accelerators at the II. Physikalisches Institut of the University of Göttingen were reinstalled in a new building during the summer of 2003. They cover a wide energy range and are used for many different applications. The highest energies are obtained with the 3 MV Pelletron MaRPel, which is preferentially used for ion beam analysis. Ions in the energy range from 30 keV to 1000 keV are delivered by the 500 kV heavy ion implanter IONAS which is used for analysis, implantation and ion beam modification. ADONIS and STRINGER are mass-separated ion beam deposition (MSIBD) systems which produce 30 keV mass separated beams which can be decelerated to 20 eV to synthesize isotopically pure hard coatings like cubic BN, tetrahedral bounded amorphous C (ta-C) and BxC. The low energy implanter IOSCHKA delivers ions of 10 keV maximum, which can be slowed down to a few eV. The targets can be transferred in UHV to an STM set-up to investigate surface modifications after single ion impacts or the development of surface ripple patterns.

  6. Pellet ignition using shock-accelerated ions in the corona

    NASA Astrophysics Data System (ADS)

    Bingham, R.; Cairns, R. A.; Boella, E.; Vranic, M.; Silva, L. O.; Trines, R.; Norreys, P.

    2015-11-01

    Recently we have suggested that fast ignition with ions might be possible using a scheme in which, towards the end of the compression phase in inertial fusion, a sequence of intense short pulses is used, first to heat the corona to a high temperature then to launch a shock wave to accelerate ions into the compressed core. This is in contrast to other ion fast ignition schemes in which a separate target is envisaged for the generation of the ions. Initial estimates of the range of energetic ions moving into the core suggest that ions in the 1-10 Mev range will deposit their energy when the density reaches 1025 -1026 cm-3. We will report on detailed studies to identify the range of corona temperatures and shock Mach numbers needed to produce ions of the energy necessary to produce core heating. With the aid of computer simulations of the heating of the corona and production of shock waves in the resulting high electron temperature plasma we will study the requirements for laser systems to make this scheme viable.

  7. Biological systems: from water radiolysis to carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Beuve, Michael; Moreau, Jean-Michel; Rodriguez, Claire; Testa, Etienne

    2015-07-01

    Hadron therapy is an innovative cancer treatment method based on the acceleration of light ions at high energy. In addition to their interesting profile of dose deposition, which ensures accurate targeting of localized tumors, carbon ions offer biological properties that lead to an efficient treatment for radio- and chemo-resistant tumors and to provide a boost for tumors in hypoxia. This paper is a short review of the progress in theoretical, experimental, fundamental and applied research, aiming at understanding the origin of the biological benefits of light ions better. As a limit of such a vast and multidisciplinary domain, this review adopts the point of view of the physicists, leaning on results obtained in connection with CIMAP's IRRABAT platform.

  8. Heavy-ion acceleration with a superconducting linac

    SciTech Connect

    Bollinger, L.M.

    1988-01-01

    This year, 1988, is the tenth anniversary of the first use of RF superconductivity to accelerate heavy ions. In June 1978, the first two superconducting resonators of the Argonne Tandem-Linac Accelerator System (ATLAS) were used to boost the energy of a /sup 19/F beam from the tandem, and by September 1978 a 5-resonator linac provided an /sup 16/O beam for a nuclear-physics experiment. Since then, the superconducting linac has grown steadily in size and capability until now there are 42 accelerating structures and 4 bunchers. Throughout this period, the system was used routinely for physics research, and by now the total time with beam on target is 35,000 hours. Lessons learned from this long running experience and some key technical developments that made it possible are reviewed in this paper. 19 refs., 3 figs., 2 tabs.

  9. Ion acceleration using high-contrast ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Fuchs, J.; Antici, P.; D'Humières, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C.; Toncian, T.; Pépin, H.; Audebert, P.

    2006-06-01

    We have compared the acceleration of high-energy ions from the rear-surface of thin foils for various contrast conditions of the ultra-intense laser pulse irradiating the targets. The experiments were performed using the LULI 100 TW facility. We used Al targets of variable thicknesses and the laser pulse contrast ratio ahead of the main pulse was varied using either a fast Pockels cell or a single or double plasma mirror. The latter was installed at an intermediate field position, in between the focusing optics and the target, so that its effect was optimized. By improving with these two methods the laser pulse contrast, we have observed that we could significantly reduce the thickness of the target used for proton acceleration and at the same time increase both the cut-off energy of the accelerated protons and the energy conversion efficiency of the process.

  10. Carbon Nanotube Based Deuterium Ion Source for Improved Neutron Generators

    SciTech Connect

    Fink, R. L.; Jiang, N.; Thuesen, L.; Leung, K. N.; Antolak, A. J.

    2009-03-10

    Field ionization uses high electric fields to cause the ionization and emission of ions from the surface of a sharp electrode. We are developing a novel field ionization neutron generator using carbon nanotubes (CNT) to produce the deuterium ion current. The generator consists of three major components: a deuterium ion source made of carbon nanotubes, a smooth negatively-biased target electrode, and a secondary electron suppression system. When a negative high voltage is applied on the target electrode, a high gradient electric field is formed at the tips of the carbon nanotubes. This field is sufficiently strong to create deuterium (D) ions at or near the nanotubes which are accelerated to the target causing D-D reactions to occur and the production of neutrons. A cross magnetic field is used to suppress secondary emission electrons generated on the target surface. We have demonstrated field ionization currents of 70 nA (1 {mu}A/cm{sup 2}) at hydrogen gas pressure of 10 mTorr. We have found that the current scales proportionally with CNT area and also with the gas pressure in the range of 1 mTorr to 10 mTorr. We have demonstrated pulse cut-off times as short as 2 {mu}sec. Finally, we have shown the feasibility of generating neutrons using deuterium gas.

  11. LIGHT - from laser ion acceleration to future applications

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Light Collaboration

    2013-10-01

    Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.

  12. What We Don't Understand About Ion Acceleration Flares

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    1999-01-01

    There are now strong associations between the (3)He-rich, Fe-rich ions in "impulsive" solar energetic particle (SEP) events and the similar abundances derived from gamma-ray lines from flares. Compact flares, where wave energy can predominate, are ideal sites for the study of wave-particle physics. Yet there are nagging questions about the magnetic geometry, the relation between ions that escape and those that interact, and the relative roles of cascading Alfven waves and the EMIC waves required to enhance He-3. There are also questions about the relative timing of ion and electron acceleration and of heating; these relate to the variation of ionization states before and during acceleration and during transport out of the corona. We can construct a model that addresses many of these issues, but problems do remain. Our greatest lack is realistic theoretical simulations of element abundances, spectra, and their variations. By contrast, we now have a much better idea of the acceleration at CME-driven shock waves in the rare but large "gradual" SEP events, largely because of their slow temporal evolution and great spatial extent.

  13. Laser acceleration of low emittance, high energy ions and applications

    NASA Astrophysics Data System (ADS)

    Fuchs, Julien; Audebert, Patrick; Borghesi, Marco; Pépin, Henri; Willi, Oswald

    2009-03-01

    Laser-accelerated ion sources have exceptional properties, i.e. high brightness and high spectral cut-off (56 MeV at present), high directionality and laminarity (at least 100-fold better than conventional accelerators beams), short burst duration (ps). Thanks to these properties, these sources open new opportunities for applications. Among these, we have already explored their use for proton radiography of fields in plasmas and for warm dense matter generation. These sources could also stimulate development of compact ion accelerators or be used for medical applications. To extend the range of applications, ion energy and conversion efficiency must however be increased. Two strategies for doing so using present-day lasers have been successfully explored in LULI experiments. In view of applications, it is also essential to control (i.e. collimate and energy select) these beams. For this purpose, we have developed an ultra-fast laser-triggered micro-lens providing tuneable control of the beam divergence as well as energy selection. To cite this article: J. Fuchs et al., C. R. Physique 10 (2009).

  14. Superconducting accelerating structures for very low velocity ion beams

    SciTech Connect

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  15. Double-layer ion acceleration triggered by ion magnetization in expanding radiofrequency plasma sources

    SciTech Connect

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod W.; Fujiwara, Tamiya

    2010-10-04

    Ion energy distribution functions downstream of the source exit in magnetically expanding low-pressure plasmas are experimentally investigated for four source tube diameters ranging from about 5 to 15 cm. The magnetic-field threshold corresponding to a transition from a simple expanding plasma to a double layer-containing plasma is observed to increase with a decrease in the source tube diameter. The results demonstrate that for the four geometries, the double layer and the accelerated ion beam form when the ion Larmour radius in the source becomes smaller than the source tube radius, i.e., when the ions become magnetized in the source tube.

  16. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    SciTech Connect

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-03

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C{sup 4+} based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C{sup 4+} was obtained to be 618 e{mu}A under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  17. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  18. Studying Radiation Damage in Structural Materials by Using Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter

    2011-02-01

    Radiation damage in structural materials is of major concern and a limiting factor for a wide range of engineering and scientific applications, including nuclear power production, medical applications, or components for scientific radiation sources. The usefulness of these applications is largely limited by the damage a material can sustain in the extreme environments of radiation, temperature, stress, and fatigue, over long periods of time. Although a wide range of materials has been extensively studied in nuclear reactors and neutron spallation sources since the beginning of the nuclear age, ion beam irradiations using particle accelerators are a more cost-effective alternative to study radiation damage in materials in a rather short period of time, allowing researchers to gain fundamental insights into the damage processes and to estimate the property changes due to irradiation. However, the comparison of results gained from ion beam irradiation, large-scale neutron irradiation, and a variety of experimental setups is not straightforward, and several effects have to be taken into account. It is the intention of this article to introduce the reader to the basic phenomena taking place and to point out the differences between classic reactor irradiations and ion irradiations. It will also provide an assessment of how accelerator-based ion beam irradiation is used today to gain insight into the damage in structural materials for large-scale engineering applications.

  19. Simulating Electron Clouds in Heavy-Ion Accelerators

    SciTech Connect

    Cohen, R.H.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik,A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J-L.; Stoltz, P.; Veitzer, S.

    2005-04-07

    Contaminating clouds of electrons are a concern for most accelerators of positive-charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly-, weakly-, and un-magnetized. They describe their approach to such self-consistency, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyro period in the magnets. They present tests and applications: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the High-Current Experiment (HCX) at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam and an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-timestep mover to accurately calculate the instability.

  20. Electrostatic ion acceleration across a diverging magnetic field

    NASA Astrophysics Data System (ADS)

    Ichihara, D.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.

    2016-08-01

    Electrostatic ion acceleration across a diverging magnetic field, which is generated by a solenoid coil, permanent magnets, and a yoke between an upstream ring anode and a downstream off-axis hollow cathode, is investigated. The cathode is set in an almost magnetic-field-free region surrounded by a cusp. Inside the ring anode, an insulating wall is set to form an annular slit through which the working gas is injected along the anode inner surface, so the ionization of the working gas is enhanced there. By supplying 1.0 Aeq of argon as working gas with a discharge voltage of 225 V, the ion beam energy reached about 60% of a discharge voltage. In spite of this unique combination of electrodes and magnetic field, a large electrical potential drop is formed almost in the axial direction, located slightly upstream of the magnetic-field-free region. The ion beam current almost equals the equivalent working gas flow rate. These ion acceleration characteristics are useful for electric propulsion in space.

  1. Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Bulanov, S. S.; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-10-15

    When ions are accelerated by the radiation pressure of a laser pulse, their velocity cannot exceed the pulse group velocity which can be considerably smaller than the speed of light in vacuum. This is demonstrated in two cases corresponding to a thin foil target irradiated by high intensity laser light and to the hole boring produced in an extended plasma by the laser pulse. It is found that the beams of accelerated ions are unstable against Buneman-like and Weibel-like instabilities which results in the broadening of the ion energy spectrum.

  2. Activation of accelerator construction materials by heavy ions

    NASA Astrophysics Data System (ADS)

    Katrík, P.; Mustafin, E.; Hoffmann, D. H. H.; Pavlovič, M.; Strašík, I.

    2015-12-01

    Activation data for an aluminum target irradiated by 200 MeV/u 238U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  3. Improving the Total Impulse Capability of the NSTAR Ion Thruster With Thick-Accelerator-Grid Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.

  4. Laboratory Simulation of Ion Acceleration Mechanisms in the Suprauroral Region.

    NASA Astrophysics Data System (ADS)

    Koslover, Robert Avner

    1987-09-01

    We report the results of a series of laboratory experiments intended to simulate particular aspects of ion acceleration processes that have been observed or are believed to occur in the suprauroral region of the Earth's magnetosphere. Beam-generated lower hybrid waves (LHW) and current-driven electrostatic ion cyclotron waves (EICW) have both been proposed as responsible for low-altitude perpendicular ion acceleration, leading to the formation of ion conics at higher altitudes (after mirroring in the geomagnetic field). We model, by experiments in the laboratory, the mechanisms generating the ion velocity distributions and radio frequency waves observed in the suprauroral region. Experiments were performed in two linear plasma devices: the UCI Q -machine and UCI Magnetic Mirror. RF waves were launched by antennas or excited by electron currents or beams. Laser induced fluorescence (LIF) provided a sensitive non-perturbing diagnostic for ion velocity distributions. RF and Langmuir probes were used for electrical measurements. Antenna launched LHW produced considerable perpendicular ion heating, generating 'tail' formation followed by a bulk 'maxwellian' heating. Both broadband and narrowband LHW produced similar effects. Frequency spectra displayed multiple harmonics of the input antenna signal and also signals of lower frequency, the latter identified as due to parametric decay. Operating the UCI Magnetic Mirror as a double plasma device, a low energy, low density electron beam was shown to generate very broadband noise above the LH resonance frequency. Two-probe correlation studies indicated the existence of a wide band of k values as well. The noise has been tentatively identified as beam-generated LHW. In order to study the formation of ion conics, a new diagnostic method making use of LIF and computed tomography was developed. A description is given of this new technique, which we call optical tomography. Using this approach, we successfully observed the

  5. Ultra-relativistic ion acceleration in the laser-plasma interactions

    SciTech Connect

    Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin; Xueqing Yan

    2012-09-15

    An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t{sup 4/5}, where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.

  6. Biotechnology for the acceleration of carbon dioxide capture and sequestration.

    PubMed

    Savile, Christopher K; Lalonde, James J

    2011-12-01

    The potential for enzymatic acceleration of carbon dioxide capture from combustion products of fossil fuels has been demonstrated. Carbonic anhydrase (CA) accelerates post combustion CO(2) capture, but available CAs are woefully inadequate for the harsh conditions employed in most of these processes. In this review, we summarize recent approaches to improve CA, and processes employing this enzyme, to maximize the benefit from this extremely fast biocatalyst. Approaches to overcoming limitations include sourcing CAs from thermophilic organisms, using protein engineering to evolve thermo-tolerant enzymes, immobilizing the enzyme for stabilization and confinement to cooler regions and process modifications that minimize the (thermo-, solvent) stress on the enzyme. PMID:21737251

  7. Mutation Induction in Mammalian Cells by Accelerated Heavy Ions

    NASA Astrophysics Data System (ADS)

    Rosendahl, I. M.; Baumstark-Khan, C.; Rink, H.

    The deleterious effects of accelerated heavy ions on living cells are of increasing importance for long duration human space flight activities. An important aspect of this field is attributed to the type and quality of biological damage induced by these densely ionizing particles. To address this aspect, cell inactivation and mutation induction at the hprt locus (coding for hypoxanthine-guanine-phosphoribosyl-transferase) was investigated in cultured V79 Chinese Hamster Cells irradiated with accelerated heavy ions (8-O, 20-Ca, 79-Au, and 92-U) and X-rays. Specific energies of the ions ranged from 1.9 to 69.7 MeV/u and corresponding LET values were between 62 band 15,580 keV/μ m. 30 spontaneous and 196 heavy-ion induced 6-thioguanine resistant hprt mutant colonies were characterized by Southern technique using the restriction enzymes EcoRI, PstI and BglII and a full length hprt cDNA probe isolated from the plasmid pHpt12 (kindly provided by Dr. J. Thacker). While inactivation cross sections (σ i) rise over the whole LET range, mutation induction cross sections (σ m) increase up to approximately 300 keV/μ m (O-ions) but decline with heavier ions and more extreme LET values. A similar behaviour is seen with mutation frequency dependent on particle fluence. After irradiation with accelerated uranium ions (8.8 MeV/u, 15,580 keV/μ m) a significant decrease of mutation frequency was found with higher particle fluences (3× 106 particles cm-2). Nearly no mutants were recovered with 8× 106 particles cm-2. All restriction patterns of the spontaneous hprt mutants were indistinguishable from the wild type pattern. These mutants probably contain small deletions or point mutations in the hprt locus. In contrast, the overall spectrum of heavy ion induced mutations revealed a majority (67%) of partial or complete deletions of the hprt gene. With constant particle fluence (3× 106 particles cm-2) the quality of heavy ion induced mutations in the hprt locus depends on physical

  8. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  9. Indications of Carbon Ion Therapy at CNAO

    SciTech Connect

    Orecchia, Roberto; Rossi, Sandro; Fossati, Piero

    2009-03-10

    CNAO will be a dual center capable of providing therapeutic beams of protons and carbon ions with maximum energy of 400 MeV/u. At the beginning, it will be equipped with three treatment rooms with fixed horizontal and vertical beam lines. In a subsequent phase, two more rooms with a rotating gantry are foreseen. An active spot scanning dose delivery system will be employed. Initially, 80% of the treatments will be carried out with carbon ions. All patients will be treated within clinical trials to assess carbon ion indications with an evidence-based methodology. Seven disease-specific working groups have been developed: lung tumors, liver tumors, sarcomas, head and neck tumors, central nervous system lesions, eye tumors and pediatric tumors. The last two groups will be treated mainly with protons. In the first phase, CNAO will focus on head and neck cancers, treating inoperable, residual or recurrent malignant salivary gland tumors, mucosal melanoma, adenocarcinoma and unfavorably located SCC (nasal and paranasal sinuses). Carbon ions will be employed as a boost in the treatment of locally advanced, poor prognosis, SCC of the hypopharynx and tongue base. Bone and soft tissue sarcomas of the extremity will be treated with a limb-sparing approach, and trunk sarcomas will be treated with exclusive or post-operative irradiation. Skull base tumors (chordoma and chondrosarcoma), recurrent or malignant meningioma and glial tumors will be treated with carbon ions. After sufficient expertise has been gained in coping with organ motion, CNAO will start treating thoracic and abdominal targets. HCC will be treated in inoperable patients with one or more lesions that can be included in a single CTV. Early stage NSCLC will be treated. In the second phase, two more groups on gynecological malignancies and digestive tumors (esophageal cancer, rectal cancer, pancreatic cancer) will be created.

  10. Indications of Carbon Ion Therapy at CNAO

    NASA Astrophysics Data System (ADS)

    Orecchia, Roberto; Rossi, Sandro; Fossati, Piero

    2009-03-01

    CNAO will be a dual center capable of providing therapeutic beams of protons and carbon ions with maximum energy of 400 MeV/u. At the beginning, it will be equipped with three treatment rooms with fixed horizontal and vertical beam lines. In a subsequent phase, two more rooms with a rotating gantry are foreseen. An active spot scanning dose delivery system will be employed. Initially, 80% of the treatments will be carried out with carbon ions. All patients will be treated within clinical trials to assess carbon ion indications with an evidence-based methodology. Seven disease-specific working groups have been developed: lung tumors, liver tumors, sarcomas, head and neck tumors, central nervous system lesions, eye tumors and pediatric tumors. The last two groups will be treated mainly with protons. In the first phase, CNAO will focus on head and neck cancers, treating inoperable, residual or recurrent malignant salivary gland tumors, mucosal melanoma, adenocarcinoma and unfavorably located SCC (nasal and paranasal sinuses). Carbon ions will be employed as a boost in the treatment of locally advanced, poor prognosis, SCC of the hypopharynx and tongue base. Bone and soft tissue sarcomas of the extremity will be treated with a limb-sparing approach, and trunk sarcomas will be treated with exclusive or post-operative irradiation. Skull base tumors (chordoma and chondrosarcoma), recurrent or malignant meningioma and glial tumors will be treated with carbon ions. After sufficient expertise has been gained in coping with organ motion, CNAO will start treating thoracic and abdominal targets. HCC will be treated in inoperable patients with one or more lesions that can be included in a single CTV. Early stage NSCLC will be treated. In the second phase, two more groups on gynecological malignancies and digestive tumors (esophageal cancer, rectal cancer, pancreatic cancer) will be created.

  11. Neoplastic Transformation Induced by Carbon Ions

    SciTech Connect

    Bettega, Daniela Calzolari, Paola; Hessel, Petra; Stucchi, Claudio G.; Weyrather, Wilma K.

    2009-03-01

    Purpose: The objective of this experiment was to compare the oncogenic potential of carbon ion beams and conventional photon beams for use in radiotherapy. Methods and Materials: The HeLa X human skin fibroblast cell line CGL1 was irradiated with carbon ions of three different energies (270, 100, and 11.4 MeV/u). Inactivation and transformation data were compared with those for 15 MeV photons. Results: Inactivation and transformation frequencies for the 270 MeV/u carbon ions were similar to those for 15-MeV photons. The maximal relative biologic effectiveness (RBE{sub {alpha}}) values for 100MeV/u and 11.4 MeV/u carbon ions, respectively, were as follows: inactivation, 1.6 {+-} 0.2 and 6.7 {+-} 0.7; and transformation per surviving cell, 2.5 {+-} 0.6 and 12 {+-} 3. The curve for dose-transformation per cell at risk exhibited a maximum that was shifted toward lower doses at lower energies. Conclusions: Transformation induction per cell at risk for carbon ions in the entrance channel was comparable to that for photons, whereas for the lower energies, 100 MeV/u and 11 MeV/u, which are representative of the energies delivered to the tumor margins and volume, respectively, the probability of transformation in a single cell was greater than it was for photons. In addition, at isoeffective doses with respect to cell killing, the 11.4-MeV/u beam was more oncogenic than were photons.

  12. Experimental investigation of ionisation track structure of carbon ions at HIL Warsaw.

    PubMed

    Bantsar, A; Hilgers, G; Pszona, S; Rabus, H; Szeflinski, Z

    2015-09-01

    In view of the upcoming radiation therapy with carbon ions, the ionisation structure of the carbon ion track at the nanometre scale is of particular interest. Two different nanodosimeters capable of measuring track structure of ionising particles in a gas target equivalent to a nanometric site in condensed matter were involved in the presented experimental investigation, namely the NCBJ Jet Counter and the PTB Ion Counter. At the accelerator facility of the HIL in Warsaw, simulated nanometric volumes were irradiated with carbon ions of 45 and 76 MeV of kinetic energy, corresponding to a range in the tissue of ∼85 µm and ∼190 µm, respectively. The filling gas of both nanodosimeters' ionisation volume was molecular nitrogen N2, and the ionisation cluster size distributions, i.e. the statistical distribution of the number of ionizations produced by one single primary carbon ion in the filling gas, were measured for the two primary particle energies. PMID:25897141

  13. Carbon Mineralization Using Phosphate and Silicate Ions

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  14. Test-to-Failure of a Two-Grid, 30-cm-dia. Ion Accelerator System

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Polk, J. E.; Pless, L. C.

    1993-01-01

    To determine the failure mechanism and erosion characteristics of an ion accelerator system due to erosion by charge-exchange ions a test was performed in which a 30-cm-diameter, 2-grid ion accelerator system was tested to failure. The erosion charcteristics observed in this test, however, imply significantly shorter accelerator grid life times than typically stated in the literature. Finally, the test suggests that structural failure is probably not the most likely first failure mechanism for the accelerator grid.

  15. Long pulse H- ion beam acceleration in MeV accelerator.

    PubMed

    Taniguchi, M; Mizuno, T; Umeda, N; Kashiwagi, M; Watanabe, K; Tobari, H; Kojima, A; Tanaka, Y; Dairaku, M; Hanada, M; Sakamoto, K; Inoue, T

    2010-02-01

    A multiaperture multigrid accelerator called "MeV accelerator" has been developed for neutral beam injection system of international thermonuclear experimental reactor. In the present work, long pulse H(-) ion beam acceleration was performed by the MeV accelerator equipped with new water-cooled grids. At present, the pulse length was extended to 5 s for the beams of 750 keV, 221 mA, and 10 s for the beams of 600 keV, 158 mA. Energy density, defined as products of beam energy (keV), current (mA), and pulse (s) divided by aperture area (m(2)), increased more than one order of magnitude higher compared with original MeV accelerator without water cooling in its grids. At higher energy and current, the grid was melted by beam deflection. Due to this grid melting, breakdowns occurred between the grids, and hence, the pulse length was limited. Beam deflection will be compensated by aperture displacement in next experiment. PMID:20192408

  16. Niobium resonator development for high-brightness ion beam acceleration

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Roche, C.T.

    1990-01-01

    Two niobium resonant cavities for high-brightness ion beam acceleration have been constructed and tested. The first was based on a coaxial quarter-wave geometry and was optimized for phase velocity {beta}{sub o} = 0.15. This cavity, which resonates at 400 MHz in the fundamental mode, operated at an average (wall-to-wall) accelerating gradient of 12.9 MV/m under continuous-wave (cw) fields. At this gradient, a cavity Q of 1.4 {times} 10{sup 8} was measured. The second was based on a coaxial half-wave geometry and was optimized for {beta}{sub o} = 0.12. This cavity, which resonates at 355 MHz in the fundamental mode, operated at an average accelerating gradient of 18.0 MV/m under cw fields. This is the highest average accelerating gradient achieved to date in low-velocity structures designed for cw operation. At this gradient, a cavity Q of 1.2 {times} 10{sup 8} was measured.

  17. Development of Bipolar Pulse Accelerator for Pulsed Ion Beam Implantation to Semiconductor

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Kawahara, Yoshihiro; Mitsui, Chihiro; Kitamura, Iwao; Takahashi, Takakazu; Tanaka, Yasunori; Tanoue, Hisao; Arai, Kazuo

    2002-12-01

    To improve the purity of the ion beams new type of pulsed power ion accelerator named "bipolar pulse accelerator" was proposed. The accelerator consists of two acceleration gaps (an ion source gap and a post acceleration gap) and a drift tube, and a bipolar pulse is applied to the drift tube to accelerate the beam. In the accelerator intended ions are selectively accelerated and the purity of the ion beam is enhanced. As the first step of the development of the accelerator, a Br-type magnetically insulated acceleration gap is developed. The gap has an ion source of coaxial gas puff plasma gun on the grounded anode and a negative pulse is applied to the cathode to accelerate the ion beam. By using the plasma gun, ion source plasma (nitrogen) of current density around 100 A/cm2 is obtained. In the paper, the experimental results of the evaluation of the ion beam and the characteristics of the gap are shown with the principle and the design concept of the proposed accelerator.

  18. Mutagenesis in human cells with accelerated H and Fe ions

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy

    1994-01-01

    The overall goals of this research were to determine the risks of mutation induction and the spectra of mutations induced by energetic protons and iron ions at two loci in human lymphoid cells. During the three year grant period the research has focused in three major areas: (1) the acquisition of sufficient statistics for human TK6 cell mutation experiments using Fe ions (400 MeV/amu), Fe ions (600 MeV/amu) and protons (250 MeV/amu); (2) collection of thymidine kinase- deficient (tk) mutants or hypoxanthine phosphoribosyltransferase deficient (hprt) mutants induced by either Fe 400 MeV/amu, Fe 600 MeV/amu, or H 250 MeV/amu for subsequent molecular analysis; and (3) molecular characterization of mutants isolated after exposure to Fe ions (600 MeV/amu). As a result of the shutdown of the BEVALAC heavy ion accelerator in December 1992, efforts were rearranged somewhat in time to complete our dose-response studies and to complete mutant collections in particular for the Fe ion beams prior to the shutdown. These goals have been achieved. A major effort was placed on collection, re-screening, and archiving of 3 different series of mutants for the various particle beam exposures: tk-ng mutants, tk-sg mutants, and hprt-deficient mutants. Where possible, groups of mutants were isolated for several particle fluences. Comparative analysis of mutation spectra has occured with characterization of the mutation spectrum for hprt-deficient mutants obtained after exposure of TK6 cells to Fe ions (600 MeV/amu) and a series of spontaneous mutants.

  19. Ion accelerator systems for high power 30-cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    An investigation of two- and three-grid accelerator systems for high power ion thruster operation has been performed. Two-grid translation tests show that overcompensation of the 30-cm thruster SHAG (Small Hole Accelerator Grid) leads to a premature impingement limit. By better matching the SHAG grid set spacing to the 30-cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30-cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  20. Anisotropy of shock-accelerated ion distributions in interplanetary space

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.

    1989-01-01

    The discrepancy between theory and observation is discussed with regard to the ability of interplanetary shock waves to accelerate a small percentage of the thermal ion population. The major point of departure rests with the spatial dependence of the energetic particle intensity and anisotropy in the region upstream of interplanetary shocks. It is argued that the discrepancy is due to the presence of solar flare particles forming an additional seed population which alters the upstream boundary condition of the energetic population. The resulting anisotropy of the energetic particle distribution several scale lengths upstream of the shock is proportional to the ratio of the streaming of the shock-accelerated population to the density of the solar flare population. This theory is then compared with the results of observed upstream anisotropy and measured particle intensities and anisotropies.

  1. Benefit of Carbon Ion Radiotherapy in the Treatment of Radio-resistant Tumors

    NASA Astrophysics Data System (ADS)

    Kamada, Tadashi; Tsujii, Hirohiko; Tsuji, Hiroshi; Yanagi, Tsuyoshi; Imai, Reiko; Mizoe, Jun-etsu; Miyamoto, Tadaaki; Kato, Hirotoshi; Yamada, Shigeru; Kato, Shingo; Yoshikawa, Kyousan; Kandatsu, Susumu

    2003-08-01

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Heavy ions have superior depth-dose distribution and greater cell-killing ability. In June 1994, clinical research for the treatment of cancer was begun using carbon ions generated by HIMAC. Until August 2002, a total of 1,297 patients were enrolled in clinical trials. Most of the patients had locally advanced and/or medically inoperable tumors. Tumors radio-resistant and/or located near critical organs were also included. The clinical trials revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in a variety of tumors that were hard to cure by other modalities.

  2. Benefit of Carbon Ion Radiotherapy in the Treatment of Radio-resistant Tumors

    SciTech Connect

    Kamada, Tadashi; Tsujii, Hirohiko; Tsuji, Hiroshi; Yanagi, Tsuyoshi; Imai, Reiko; Mizoe, Jun-etsu; Miyamoto, Tadaaki; Kato, Hirotoshi; Yamada, Shigeru; Kato, Shingo; Yoshikawa, Kyousan; Kandatsu, Susumu

    2003-08-26

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Heavy ions have superior depth-dose distribution and greater cell-killing ability. In June 1994, clinical research for the treatment of cancer was begun using carbon ions generated by HIMAC. Until August 2002, a total of 1,297 patients were enrolled in clinical trials. Most of the patients had locally advanced and/or medically inoperable tumors. Tumors radio-resistant and/or located near critical organs were also included. The clinical trials revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in a variety of tumors that were hard to cure by other modalities.

  3. Peripheral nerve regeneration through a silicone chamber implanted with negative carbon ions: Possibility to clinical application

    NASA Astrophysics Data System (ADS)

    Ikeguchi, Ryosuke; Kakinoki, Ryosuke; Tsuji, Hiroshi; Yasuda, Tadashi; Matsuda, Shuichi

    2014-08-01

    We investigated whether a tube with its inner surface implanted with negative-charged carbon ions (C- ions) would enable axons to extend over a distance greater than 10 mm. The tube was found to support nerves regenerating across a 15-mm-long inter-stump gap. We also investigated whether a C- ion-implanted tube pretreated with basic fibroblast growth factor (bFGF) promotes peripheral nerve regeneration. The C- ion implanted tube accelerated nerve regeneration, and this effect was enhanced by bFGF. Silicone treated with C- ions showed increased hydrophilic properties and cellular affinity, and axon regeneration was promoted with this increased biocompatibility.

  4. Heavy ion fusion accelerator research (HIFAR) year-end report, April 1, 1987-September 30, 1987

    SciTech Connect

    Not Available

    1987-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to access the suitabilty of heavy ion accelerators as iginiters for Inertial Confinement Fusion (ICF). A specific accerelator techonolgy, the induction linac, has been studied at the Lawerence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the vadidation of new accelerator strategies, to cut costs. The papers in this report that address these goals are: MBE-4 mechanical progress, alignment of MBE-4, a compact energy analyzer for MBE-4, Cs/sup +/ injector modeling with the EGUN code, an improved emittance scanning system for HIFAR, 2-MV injector, carbon arc source development, beam combining in ILSE, emittance growth due to transverse beam combining in ILSE - particle simulation results, achromatic beam combiner for ILSE, additional elements for beam merging, quadrupole magnet design for ILSE, and waveforms and longitudinal beam-parameters for ILSE.

  5. Physics design of linear accelerators for intense ion beams

    SciTech Connect

    Wangler, T.P.

    1988-01-01

    Advances in the physics and technology of linear accelerators for intense ion beams are leading to new methods for the design of such machines. The physical effects that limit beam current and brightness are better understood and provide the criteria for choosing the rf frequency and for determining optimum focusing configurations to control longitudinal and transverse emittances. During the past decade, the use of developments such as the radio-frequency quadrupole, multiple beams, funneling, ramped-field linac tanks, and self-matching linac tanks is leading to greater design flexibility and improved performance capabilities. 39 refs., 3 tabs., 1 fig.

  6. Ion accelerator systems for high power 30 cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  7. Ambipolar acceleration of ions in a magnetic nozzle

    SciTech Connect

    Arefiev, Alexey V.; Breizman, Boris N.

    2008-04-15

    This paper describes a magnetic nozzle with a magnetic mirror configuration that transforms a collisionless subsonic plasma flow into a supersonic jet expanding into the vacuum. The nozzle converts electron thermal energy into the ion kinetic energy via an ambipolar electric field. The ambipolar potential in the expanding plume involves a time-dependent rarefaction wave. Travelling through the rarefaction wave, electrons lose some kinetic energy and can become trapped downstream from the mirror throat. This work presents a rigorous adiabatic description of the trapped electron population. It examines the impact of the adiabatic cooling of the trapped electrons on the ambipolar potential and the ensuing ion acceleration. The problem is formulated for an arbitrary incoming electron distribution and then a ''water-bag'' electron distribution is used to obtain a closed-form analytical solution.

  8. Improved ion acceleration via laser surface plasma waves excitation

    SciTech Connect

    Bigongiari, A.

    2013-05-15

    The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.

  9. Laser induced electron acceleration in an ion-channel guiding

    SciTech Connect

    Esmaeilzadeh, Mahdi; Taghavi, Amin; Hanifpour, Maryam

    2011-09-15

    Direct electron acceleration by a propagating laser pulse of circular polarization in an ion-channel guiding is studied by developing a relativistic three-dimensional single particle code. The electron chaotic dynamic is also studied using time series, power spectrum, and Liapunov exponent. It is found that the electron motion is regular (non-chaotic) for laser pulse with short time duration, while for long enough time duration, the electron motion may be chaotic. In the case of non-chaotic motion, the electron can gain and retain very high energy in the presence of ion-channel before reaching the steady-state, whereas in the case of chaotic motion, the electron gains energy and then loses it very rapidly in an unpredictable manner.

  10. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ˜16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  11. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    PubMed

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles. PMID:26932019

  12. Electron dynamics and ion acceleration in expanding-plasma thrusters

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Cannat, F.; Jarrige, J.; Elias, P. Q.; Packan, D.

    2015-12-01

    In most expanding-plasma thrusters, ion acceleration occurs due to the formation of ambipolar-type electric fields; a process that depends strongly on the electron dynamics of the discharge. The electron properties also determine the heat flux leaving the thruster as well as the maximum ion energy, which are important parameters for the evaluation of thruster performance. Here we perform an experimental and theoretical investigation with both magnetized, and unmagnetized, low-pressure thrusters to explicitly determine the relationship between the ion energy, E i , and the electron temperature, T e0. With no magnetic field a relatively constant value of {{E}i}/{{T}e0}≈ 6 is found for xenon, while when a magnetic nozzle is present, {{E}i}/{{T}e0} is between about 4-5. These values are shown to be a function of both the magnetic field strength, as well as the electron energy distribution function, which changes significantly depending on the mass flow rate (and hence neutral gas pressure) used in the thruster. The relationship between the ion energy and electron temperature allows estimates to be made for polytropic indices of use in a number of fluid models, as well as estimates of the upper limits to the performance of these types of systems, which for xenon and argon result in maximum specific impulses of about 2500 s and 4500 s respectively.

  13. Ion and neutral dynamics in Hall plasma accelerator ionization instabilities

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2015-09-01

    Hall thrusters, the extensively studied E × B devices used for space propulsion applications, are rife with instabilities and fluctuations. Many are thought to be fundamentally linked to microscopic processes like electron transport across magnetic field lines and propellant ionization that in turn affect macroscopic properties like device performance and lifetime. One of the strongest oscillatory regimes is the ``breathing mode,'' characterized by a propagating ionization front, time-varying ion acceleration profiles, and quasi-periodic 10-50 kHz current oscillations. Determining the temporal and spatial evolution of plasma properties is critical to achieving a fundamental physical understanding of these processes. We present non-intrusive laser-induced fluorescence measurements of the local ion and neutral velocity distribution functions synchronized with the breathing mode oscillations. Measurements reveal strong ion velocity fluctuations, multiple ion populations arising in narrow time windows throughout the near-field plume, and the periodic population and depopulation of neutral excited states. Analyzing these detailed experimental results in the context of the existing literature clarifies the fundamental physical processes underlying the breathing mode. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. M. Birkan as program manager. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  14. The effect of accelerated argon ions on the retina.

    PubMed

    Krebs, W; Krebs, I; Merriam, G R; Worgul, B V

    1988-07-01

    It has been postulated that high energy heavy ions cause a unique form of damage in living tissue, which results from the high linear energy transfer of accelerated single particles. We have searched for these single-particle effects, so-called "microlesions," in composite electron micrographs of retinas of rats which had been irradiated with a dose of 1 Gy of 570 MeV/amu argon ions. The calculated rate of energy deposition of the radiation in the retina was about 100 keV/micron and the influence was four particles per 100 micron 2. Different areas of the irradiated retinas which combined would have been expected to be traversed by approximately 2400 particles were examined. We were unable to detect ultrastructural changes in the irradiated retinas distinct from those of controls. The spatial cellular densities of pigment epithelial and photoreceptor cells remained within the normal range when examined at 24 h and at 6 months after irradiation. These findings suggest that the retina is relatively resistant to heavy-ion irradiation and that under the experimental conditions the passage of high energy argon ions does not cause retinal microlesions that can be detected by ultrastructural analysis. PMID:3393633

  15. Carbon Nanotube Doped Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Raffaelle, Ryne P.; Difelice, Ron; van Derveer, William R.; Gennett, Tom; Maranchi, Jeff; Kumta, Prashant; Hepp, Aloysius F.

    2002-03-01

    We have characterized thin film lithium ion batteries that contain high purity single wall carbon nanotube-doped polymer anodes. Highly purified single-walled carbon nanotubes (SWCNT) were obtained through chemical refinement of soot generated by pulsed laser ablation. The purity of the nanotubes was determined via thermogravimetric analysis, two wavelength Raman spectroscopy, spectrophotometry, scanning electron microscopy and transmission electron microscopy. The specific surface area and lithium capacity of the SWCNT was compared to that of other conventional anode materials (i.e., carbon black, graphite, and multi-walled carbon nanotubes). The SWCNT exhibited a specific surface area that greatly exceeded the other carbonaceous materials. Anodes were prepared by casting thin films directly onto copper foil of several ionically conductive polymers (i.e., PAN, PVDF, PEO) doped with the SWCNT. The lithium-ion capacity of the materials was measured using a standard 3-electrode cell. The electrochemical discharge capacity of the purified single walled carbon nanotubes in PVDF was in excess of 1300 mAh/g after 30 charge/discharge cycles when tested using a current density of 20µA/cm^2. The SWCNT anodes were incorporated into all-polymer thin film batteries containing LiNiCoO_2-doped polymer cathodes. Cycling results on the various SWCNT polymer combinations will be presented.

  16. F values for isoelectronic ions of carbon

    NASA Astrophysics Data System (ADS)

    Ganas, P. S.

    1981-10-01

    An analytic atomic independent particle model is used to generate wave functions for the valence and excited states of isoelectronic ions of carbon up to Z = 20. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, f values are calculated for various transitions from the 2p2(3P0) ground state. The results are compared with those from other works.

  17. Mutagenic effect of accelerated heavy ions on bacterial cells

    NASA Astrophysics Data System (ADS)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  18. Microdosimetry of proton and carbon ions

    SciTech Connect

    Liamsuwan, Thiansin; Hultqvist, Martha; Lindborg, Lennart; Nikjoo, Hooshang; Uehara, Shuzo

    2014-08-15

    carbon ion beams. The results are useful for characterizing ion beams of practical importance for biophysical modeling of radiation-induced DNA damage response and repair in the depth profiles of protons and carbon ions used in radiotherapy.

  19. Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.; Schuck, P.; Bonnell, J. W.; Coffey, V.

    In this paper we present a review of sounding rocket observations of the ion acceleration seen in nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations we will demonstrate the following characteristics of transverse acceleration of ions (TAI) in lower hybrid solitary structures (LHSS). The ion acceleration process is narrowly confined to 90° pitch angle, in spatially confined regions of up to a few hundred meters across B. The acceleration process does not affect the thermal core of the ambient distribution and does not directly create a measurable effect on the ambient ion population outside the LHSS themselves. This precludes observation with these data of any nonlinear feedback between the ion acceleration and the existence or evolution of the density irregularities on which these LHSS events grow. Within the LHSS region the acceleration process creates a high-energy tail beginning at a few times the thermal ion speed. The ion acceleration events are closely associated with localized wave events. Accelerated ions bursts are also seen without a concurrent observation of a localized wave event, for two possible reasons. In some cases, the pitch angles of the accelerated tail ions are elevated above perpendicular; that is, the acceleration occurred below the observer and the mirror force has begun to act upon the distribution, moving it upward from the source. In other cases, the accelerated ion structure is spatially larger than the wave event structure, and the observation catches only the ion event. The occurrence rate of these ion acceleration events is related to the ambient environment in two ways: its altitude dependence can be modeled with the parameter B2/ne, and it is highest in regions of intense VLF activity. The cumulative ion outflow from these LHSS TAI is

  20. Ion-acoustic shocks with self-regulated ion reflection and acceleration

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Sagdeev, R. Z.; Dudnikova, G. I.; Liseykina, T. V.; Diamond, P. H.; Papadopoulos, K.; Liu, C.-S.; Su, J. J.

    2016-04-01

    An analytic solution describing an ion-acoustic collisionless shock, self-consistently with the evolution of shock-reflected ions, is obtained. The solution extends the classic soliton solution beyond a critical Mach number, where the soliton ceases to exist because of the upstream ion reflection. The reflection transforms the soliton into a shock with a trailing wave and a foot populated by the reflected ions. The solution relates parameters of the entire shock structure, such as the maximum and minimum of the potential in the trailing wave, the height of the foot, as well as the shock Mach number, to the number of reflected ions. This relation is resolvable for any given distribution of the upstream ions. In this paper, we have resolved it for a simple "box" distribution. Two separate models of electron interaction with the shock are considered. The first model corresponds to the standard Boltzmannian electron distribution in which case the critical shock Mach number only insignificantly increases from M ≈1.6 (no ion reflection) to M ≈1.8 (substantial reflection). The second model corresponds to adiabatically trapped electrons. They produce a stronger increase, from M ≈3.1 to M ≈4.5 . The shock foot that is supported by the reflected ions also accelerates them somewhat further. A self-similar foot expansion into the upstream medium is described analytically.

  1. PIC Simulations Of Ion Acceleration By Linearly And Circularly Polarized Laser Pulses

    SciTech Connect

    Limpouch, Jiri; Klimo, Ondrej; Psikal, Jan; Tikhonchuk, Vladimir T.; Kawata, Shigeo; Andreev, Alexander A.

    2008-06-24

    Linearly polarized laser radiation accelerates electrons to very high velocities and these electron form a sheath layer on the rear side of thin targets where preferentially protons are accelerated. When mass-limited targets are used, the lateral transport of the absorbed laser energy is reduced and the accelerating field is enhanced. For targets consisting of two ion species, heavier ions facilitate formation of quasi-monoenergetic bunch of lighter ions. For circularly polarized light, fast electron production is suppressed by the absence of the oscillatory component of the ponderomotive force. Ions are accelerated on the front side by the separation field and very thin foil can be accelerated as one massive quasi-neutral block. As all ion species acquire the same velocity, this acceleration mechanism is preferred for heavier ions.

  2. Linear induction accelerator requirements for ion fast ignition

    SciTech Connect

    Logan, G.

    1998-01-26

    Fast ignition (fast heating of DT cores afief compression) reduces driver energy (by 10 X or more) by reducing the implosion velocity and energy for a given fuel compression ratio. For any type of driver that can deliver the ignition energy fast enough, fast ignition increases the target gain compared to targets using fast implosions for central ignition, as long as the energy to heat the core after compression is comparable to or less than the slow compression energy, and as long as the coupling efficiency of the fast ignitor beam to heat the core is comparable to the overall efficiency of compressing the core (in terms of beam energy-to-DT-efficiency). Ion driven fast ignition, compared to laser-driven fast ignition, has the advantage of direct (dE/dx) deposition of beam energy to the DT, eliminating inefficiencies for conversion into hot electrons, and direct ion heating also has a more favorable deposition profile with the Bragg-peak near the end of an ion range chosen to be deep inside a compressed DT core. While Petawatt laser experiments at LLNL have demonstrated adequate light-to-hot-electron conversion efficiency, it is not yet known if light and hot electrons can channel deeply enough to heat a small portion of a IOOOxLD compressed DT core to ignition. On the other hand, lasers with chirped-pulse amplification giving thousand-fold pulse compressions have been demonstrated to produce the short pulses, small focal spots and Petawatt peak powers approaching those required for fast ignition, whereas ion accelerators that can produce sufficient beam quality for similar compression ratios and focal spot sizes of ion bunches have not yet been demonstrated, where an imposed coherent velocity tilt plays the analogous role for beam compression as does frequency chirp with lasers. Accordingly, it is the driver technology, not the target coupling physics, that poses the main challenge to ion-driven fast ignition. As the mainline HIF program is concentrating on

  3. Precision spectroscopy at heavy ion ring accelerator SIS300

    NASA Astrophysics Data System (ADS)

    Backe, Hartmut

    2006-07-01

    Unique spectroscopic possibilities open up if a laser beam interacts with relativistic lithium-like ions stored in the heavy ion ring accelerator SIS300 at the future Facility for Antiproton and Ion Research FAIR in Darmstadt, Germany. At a relativistic factor γ = 36 the 2P1/2 level can be excited from the 2S1/2 ground state for any element with frequency doubled dye-lasers in collinear geometry. Precise transition energy measurements can be performed if the fluorescence photons, boosted in forward direction into the X-ray region, are energetically analyzed with a single crystal monochromator. The hyperfine structure can be investigated at the 2P1/2-2S1/2 transition for all elements and at the 2P3/2-2S1/2 transition for elements with Z≤50. Isotope shifts and nuclear moments can be measured with unprecedented precision, in principle even for only a few stored radioactive species with known nuclear spin. A superior relative line width in the order of 5·10-7 may be feasible after laser cooling, and even polarized external beams may be prepared by optical pumping.

  4. Precision spectroscopy at heavy ion ring accelerator SIS300

    NASA Astrophysics Data System (ADS)

    Backe, Hartmut

    Unique spectroscopic possibilities open up if a laser beam interacts with relativistic lithium-like ions stored in the heavy ion ring accelerator SIS300 at the future Facility for Antiproton and Ion Research FAIR in Darmstadt, Germany. At a relativistic factor γ=36 the 2P1/2 level can be excited from the 2S1/2 ground state for any element with frequency doubled dye-lasers in collinear geometry. Precise transition energy measurements can be performed if the fluorescence photons, boosted in forward direction into the X-ray region, are energetically analyzed with a single crystal monochromator. The hyperfine structure can be investigated at the 2P1/2-2S1/2 transition for all elements and at the 2P3/2-2S1/2 transition for elements with Z≤50. Isotope shifts and nuclear moments can be measured with unprecedented precision, in principle even for only a few stored radioactive species with known nuclear spin. A superior relative line width in the order of 5·10-7 may be feasible after laser cooling, and even polarized external beams may be prepared by optical pumping.

  5. Heating and acceleration of ions in nonresonant Alfvenic turbulence

    SciTech Connect

    Nariyuki, Y.; Hada, T.; Tsubouchi, K.

    2010-07-15

    Nonlinear scattering of protons and alpha particles during the dissipation of the finite amplitude, low-frequency Alfvenic turbulence is studied. The process discussed here is not the coherent scattering and acceleration, as those often treated in the past studies, but is an incoherent process in which it is essential that the Alfvenic turbulence has a broadband spectrum. The presence of such an Alfvenic turbulence is widely recognized observationally both in the solar corona and in the solar wind. Numerical results suggest that, although there is no apparent sign of the occurrence of any parametric instabilities, the ions are heated efficiently by the nonlinear Landau damping, i.e., trapping and phase mixing by Alfven wave packets which are generated by beating of finite amplitude Alfven waves. The heating occurs both in the parallel and in the perpendicular directions, and the ion distribution function which is asymmetric with respect to the parallel velocity is produced. Eventual perpendicular energy of ions is much influenced by the spectrum and polarization of the given Alfvenic turbulence since the turbulence initially possess transverse energy as specified by Walen's relation.

  6. Applied-B ion diode experiments on the Particle Beam Fusion Accelerator-I

    NASA Astrophysics Data System (ADS)

    Dreike, P. L.; Burns, E. J. T.; Slutz, S. A.; Crow, J. T.; Johnson, D. J.; Johnson, P. R.; Leeper, R. J.; Miller, P. A.; Mix, L. P.; Seidel, D. B.; Wenger, D. F.

    1986-08-01

    A series of experiments was performed with an Applied-B ion diode on the Particle Beam Fusion Accelerator-I, with peak voltage, current, and power of approximately 1.8 MV, 6 MA, and 6 TW, respectively. The purpose of these experiments was to explore issues of scaling of Applied-B diode operation from the sub-TW level on single module accelerators to the multi-TW level on a low impedance, self-magnetically insulated, multimodule accelerator. This is an essential step in the development of the 100-TW level light ion beam driver required for inertial confinement fusion. The accelerator and the diode are viewed as a whole because the power pulse delivered by the 36 imperfectly synchronized magnetically insulated transmission lines to the single diode affects module addition, diode operation, and ion beam focusability. We studied electrical coupling between the accelerator and the diode, power flow symmetry, the ionic composition of the beam, and the focusability of the proton component of the beam. Scaling of the diode impedance behavior and beam quality with electrical drive power is obtained from comparison with lower-power experiments. The diode impedance lifetime was about 10 ns, several times shorter than for lower-power experiments. Azimuthal and top-to-bottom variations of the diode and ion currents were found to be approximately ±10%, compared with an estimated requirement of 5%-7% uniformity to avoid focal blurring by self-magnetic field effects. The ion production efficiency was 80%-90%. However, only 50%±10% of the ion current was carried by protons; the balance was carried by multiply charged carbon and oxygen ions. Activation measurements showed a proton beam energy of approximately 50 kJ. A gas cell filled with 5 Torr of argon was used for beam transport. The macroscopic divergence was 15±10 mrad and the microscopic divergence was 20±15 mrad, values that are similar to those from lower-power experiments. A model of beam focusing is formulated that

  7. Chemical Accelerator Studies of Ion-Molecule Reaction Dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Jingfeng

    1995-01-01

    A chemical accelerator instrument has been used to study the dynamics of ion-molecule reaction processes in the gas phase. Specifically, the following reactions are investigated: eqalign{rm CO^+ + H_2&longrightarrowrm HCO ^+ + Hcrrm CO^+ + D_2& longrightarrowrm DCO^+ + Dcrrm CO^+ + HDlongrightarrow &rm HCO ^+ (DCO^+) + D (H)cr} . Both angular and velocity distributions of reactively scattered product ions are measured, as well as reaction cross sections as a function of reactant relative translational energy. Formation of HCO^+ ion from rm CO^+ + H_2 over the collision energy range from 0.35 to 3.02 eV (c.m.) follows closely the predictions of the spectator stripping model, and results in highly excited HCO^+ product ions. This reaction is found to proceed via a direct impulsive mechanism, without any long-lived intermediate complexes involved. The reaction cross section is proportional to E_{T} ^{-1/2}, where E_ {rm T} is the reactant ion relative translational energy. Deuterium atom transfer from D_2 to CO^+ over the collision energy range from 0.41 to 5.14 eV (c.m.) occurs also in a direct process. Reaction cross section is proportional to rm E_{T}^{ -1/2}. The results are very similar to those of the reaction rm CO^+ + H_2. The reaction CO^+ + HD has two product channels, leading to the formation of HCO ^+ and DCO^+, respectively. The reaction is studied over the energy range from 0.88 to 5.00 eV (c.m.). It is found that the production of HCO^+ is consistently the slightly favored reaction channel, which is attributed to the orientation isotope effect. The translational exoergicity for both reaction channels follows closely the prediction of spectator stripping model. Product DCO^+ ions are in higher excited states than HCO ^+ ions. Product velocity distribution contour maps indicate that, at the lowest energies, the DCO ^+ production channel has a longer reaction duration than the HCO^+ production channel, but both reaction channels are dominated by direct

  8. Ion accelerator system mounting design and operating characteristics for a 5 kW 30-cm xenon ion engine

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Brophy, John R.

    1987-01-01

    Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.

  9. Characteristics of a 30-cm thruster operated with small hole accelerator grid ion optics

    NASA Technical Reports Server (NTRS)

    Vahrenkamp, R. P.

    1976-01-01

    Small hole accelerator grid ion optical systems have been tested as a possible means of improving 30-cm ion thruster performance. The effects of small hole grids on the critical aspects of thruster operation including discharge chamber performance, doubly-charged ion concentration, effluent beam characteristics, and plasma properties have been evaluated. In general, small hole accelerator grids are beneficial in improving thruster performance while maintaining low double ion ratios. However, extremely small accelerator aperture diameters tend to degrade beam divergence characteristics. A quantitative discussion of these advantages and disadvantages of small hole accelerator grids, as well as resulting variations in thruster operation characteristics, is presented.

  10. Microbially Accelerated Carbonate Mineral Precipitation as a Strategy for in Situ Carbon Sequestration and Rehabilitation of Asbestos Mine Sites.

    PubMed

    McCutcheon, Jenine; Wilson, Siobhan A; Southam, Gordon

    2016-02-01

    A microbially accelerated process for the precipitation of carbonate minerals was implemented in a sample of serpentinite mine tailings collected from the abandoned Woodsreef Asbestos Mine in New South Wales, Australia as a strategy to sequester atmospheric CO2 while also stabilizing the tailings. Tailings were leached using sulfuric acid in reaction columns and subsequently inoculated with an alkalinity-generating cyanobacteria-dominated microbial consortium that was enriched from pit waters at the Woodsreef Mine. Leaching conditions that dissolved 14% of the magnesium from the serpentinite tailings while maintaining circumneutral pH (1800 ppm, pH 6.3) were employed in the experiment. The mineralogy, water chemistry, and microbial colonization of the columns were characterized following the experiment. Micro-X-ray diffraction was used to identify carbonate precipitates as dypingite [Mg5(CO3)4(OH)2·5H2O] and hydromagnesite [Mg5(CO3)4(OH)2·4H2O] with minor nesquehonite (MgCO3·3H2O). Scanning electron microscopy revealed that carbonate mineral precipitates form directly on the filamentous cyanobacteria. These findings demonstrate the ability of these organisms to generate localized supersaturating microenvironments of high concentrations of adsorbed magnesium and photosynthetically generated carbonate ions while also acting as nucleation sites for carbonate precipitation. This study is the first step toward implementing in situ carbon sequestration in serpentinite mine tailings via microbial carbonate precipitation reactions. PMID:26720600

  11. Carbonate ions and arsenic dissolution by groundwater

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate

  12. Enhanced ion beam energy by relativistic transparency in laser-driven shock ion acceleration

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Hur, Min Sup

    2015-11-01

    We investigated the effects of relativistic transparency (RT) on electrostatic shock ion acceleration. Penetrating portion of the laser pulse directly heats up the electrons to a very high temperature in backside of the target, resulting in a condition of high shock velocity. The reflected portion of the pulse can yield a fast hole boring and density compression in near-critical density plasma to satisfy the electrostatic shock condition; 1.5 ions up to velocity ~2vsh. In 1D PIC simulation, we have clearly observed RT-based shock acceleration which generates significantly higher ion beam energy in comparison to that in a purely opaque plasma. In multi-dimensional systems, various instabilities should be considered such as Weibel-like instability, which causes filamentation during the laser penetration. From series of comparisons of linearly polarized and circularly polarized pulses for the RT-based shock, we observed the circularly polarized pulse is usually more advantageous in reducing the instability, possibly leading to better RT-based shock acceleration. The Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (Grant number NRF- 2013R1A1A2006353).

  13. Residual activity induced by heavy ions and beam-loss criteria for heavy-ion accelerators

    NASA Astrophysics Data System (ADS)

    Strašík, I.; Mustafin, E.; Pavlovič, M.

    2010-07-01

    The paper presents results of FLUKA simulations of the residual activity induced by heavy ions in two target configurations representing: (1) a beam pipe of an accelerator and (2) a bulky accelerator structure like a magnet yoke or a coil. The target materials were stainless steel and copper representing the most common construction materials used for basic accelerator components. For these two materials, the inventory of the induced isotopes depends mainly on the target material and much less on the projectile species. Time evolution of the induced activity can be described by means of a generic curve that is independent from the projectile mass. Dependence of the induced residual activity on selected ion beam parameters was studied. The main goal of the study was establishing a scaling law expanding the existing proton beam-loss tolerance to heavy-ion beams. This scaling law enables specifying beam-loss criteria for projectile species from proton up to uranium at energies from 200MeV/u up to 1GeV/u.

  14. METHOD OF PRODUCING AND ACCELERATING AN ION BEAM

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2005-01-01

    A method of producing and accelerating an ion beam comprising the steps of providing a magnetic field with a cusp that opens in an outward direction along a centerline that passes through a vertex of the cusp: providing an ionizing gas that sprays outward through at least one capillary-like orifice in a plenum that is positioned such that the orifice is on the centerline in the cusp, outward of the vortex of the cusp; providing a cathode electron source, and positioning it outward of the orifice and off of the centerline; and positively charging the plenum relative to the cathode electron source such that the plenum functions as m anode. A hot filament may be used as the cathode electron source, and permanent magnets may be used to provide the magnetic field.

  15. Laser acceleration of protons using multi-ion plasma gaseous targets

    SciTech Connect

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; Eliasson, Bengt; W. T. Hill, III; Wang, Jyhpyng; Chen, Shih -Hung

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such a laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.

  16. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE PAGESBeta

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; Eliasson, Bengt; W. T. Hill, III; Wang, Jyhpyng; Chen, Shih -Hung

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  17. Fast acceleration of ions at quasi-perpendicular shocks

    SciTech Connect

    Balogh, A. ); Erdos, G. )

    1991-09-01

    Acceleration of low-energy protons by quasi-perpendicular shocks is investigated. The pitch angle distribution of ions in the energy range 35 keV to 1 MeV has been determined across the interplanetary shock that passed through the ISEE 3 spacecraft on November 30, 1979. Upstream of the shock a bidirectional angular distribution was observed. It is suggested that multiple crossings of the field line with the surface of the shock, forming a magnetic bottle, may account for such an unusual angular distribution. The shock event was modeled by integrating particle trajectories numerically. Qualitative agreement between observations and simulations supports the idea of magnetic bottle field line formation. A detailed numerical study of particle acceleration has shown that in the bottle topology the particle flux is enhanced close to the shock front, contrary to the original scatter-free model, i.e., assuming homogeneous magnetic fields on both sides of the shock. It is suggested that multiple crossings of the field line with the shock may explain shock spike events.

  18. Scintillator diagnostics for the detection of laser accelerated ion beams

    NASA Astrophysics Data System (ADS)

    Cook, N.; Tresca, O.; Lefferts, R.

    2014-09-01

    Laser plasma interaction with ultraintense pulses present exciting schemes for accelerating ions. One of the advantages conferred by using a gaseous laser and target is the potential for a fast (several Hz) repetition rate. This requires diagnostics which are not only suited for a single shot configuration, but also for repeated use. We consider several scintillators as candidates for an imaging diagnostic for protons accelerated to MeV energies by a CO2 laser focused on a gas jet target. We have measured the response of chromium-doped alumina (chromox) and polyvinyl toluene (PVT) screens to protons in the 2-8 MeV range. We have calibrated the luminescent yield in terms of photons emitted per incident proton for each scintillator. We also discuss how light scattering and material properties affect detector resolution. Furthermore, we consider material damage and the presence of an afterglow under intense exposures. Our analysis reveals a near order of magnitude greater yield from chromox in response to proton beams at > 8 MeV energies, while scattering effects favor PVT-based scintillators at lower energies.

  19. Final Progress Report - Heavy Ion Accelerator Theory and Simulation

    SciTech Connect

    Haber, Irving

    2009-10-31

    The use of a beam of heavy ions to heat a target for the study of warm dense matter physics, high energy density physics, and ultimately to ignite an inertial fusion pellet, requires the achievement of beam intensities somewhat greater than have traditionally been obtained using conventional accelerator technology. The research program described here has substantially contributed to understanding the basic nonlinear intense-beam physics that is central to the attainment of the requisite intensities. Since it is very difficult to reverse intensity dilution, avoiding excessive dilution over the entire beam lifetime is necessary for achieving the required beam intensities on target. The central emphasis in this research has therefore been on understanding the nonlinear mechanisms that are responsible for intensity dilution and which generally occur when intense space-charge-dominated beams are not in detailed equilibrium with the external forces used to confine them. This is an important area of study because such lack of detailed equilibrium can be an unavoidable consequence of the beam manipulations such as acceleration, bunching, and focusing necessary to attain sufficient intensity on target. The primary tool employed in this effort has been the use of simulation, particularly the WARP code, in concert with experiment, to identify the nonlinear dynamical characteristics that are important in practical high intensity accelerators. This research has gradually made a transition from the study of idealized systems and comparisons with theory, to study the fundamental scaling of intensity dilution in intense beams, and more recently to explicit identification of the mechanisms relevant to actual experiments. This work consists of two categories; work in direct support beam physics directly applicable to NDCX and a larger effort to further the general understanding of space-charge-dominated beam physics.

  20. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    conclusively distinguished whether C is taken up only as CO2 by passive diffusion or also by active transport of CO2 or HCO^{3-} . In reality, the patterns of stable isotopic variations in coccoliths may provide more constraints for unraveling the cellular C transport and the calcification mechanisms. We will present latest findings on these issues, both from culture experiments and sediment traps located in the Bay of Bengal. Coccolith species separated from these sediment traps also show evidence of carbonate ion effects.

  1. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator.

    PubMed

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described. PMID:26932088

  2. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  3. Lithium ion diffusion through glassy carbon plate

    SciTech Connect

    Inaba, M.; Nohmi, S.; Funabiki, A.; Abe, T.; Ogumi, Z.

    1998-07-01

    The electrochemical permeation method was applied to the determination of the diffusion coefficient of Li{sup +} ion (D{sub Li{sup +}}) in a glassy carbon (GC) plate. The cell was composed of two compartments, which were separated by the GC plate. Li{sup +} ions were inserted electrochemically from one face, and extracted from the other. The flux of the permeated Li{sup +} ions was monitored as an oxidation current at the latter face. The diffusion coefficient was determined by fitting the transient current curve with a theoretical one derived from Fick's law. When the potential was stepped between two potentials in the range of 0 to 0.5 V, transient curves were well fitted with the theoretical one, which gave D{sub Li{sup +}} values on the order of 10{sup {minus}8} cm{sup {minus}2} s{sup {minus}1}. In contrast, when the potential was stepped between two potentials across 0.5 V, significant deviation was observed. The deviation indicated the presence of trap sites as well as diffusion sites for Li{sup +} ions, the former of which is the origin of the irreversible capacity of GC.

  4. Carbon ion radiotherapy of skull base chondrosarcomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Nikoghosyan, Anna; Hof, Holger; Didinger, Bernd; Combs, Stephanie E.; Jaekel, Oliver; Karger, Christian P.; Edler, Lutz; Debus, Juergen

    2007-01-01

    Purpose: To evaluate the effectiveness and toxicity of carbon ion radiotherapy in chondrosarcomas of the skull base. Patients and Methods: Between November 1998 and September 2005, 54 patients with low-grade and intermediate-grade chondrosarcomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany. All patients had gross residual tumors after surgery. Median total dose was 60 CGE (weekly fractionation 7 x 3.0 CGE). All patients were followed prospectively in regular intervals after treatment. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) score. Results: Median follow-up was 33 months (range, 3-84 months). Only 2 patients developed local recurrences. The actuarial local control rates were 96.2% and 89.8% at 3 and 4 years; overall survival was 98.2%at 5 years. Only 1 patient developed a mucositis CTCAE Grade 3; the remaining patients did not develop any acute toxicities >CTCAE Grade 2. Five patients developed minor late toxicities (RTOG/EORTC Grades 1-2), including bilateral cataract (n = 1), sensory hearing loss (n = 1), a reduction of growth hormone (n = 1), and asymptomatic radiation-induced white matter changes of the adjacent temporal lobe (n = 2). Grade 3 late toxicity occurred in 1 patient (1.9%) only. Conclusions: Carbon ion RT is an effective treatment for low- and intermediate-grade chondrosarcomas of the skull base offering high local control rates with low toxicity.

  5. Accelerated High-Resolution Differential Ion Mobility Separations Using Hydrogen

    PubMed Central

    Shvartsburg, Alexandre A.; Smith, Richard D.

    2011-01-01

    The resolving power of differential ion mobility spectrometry (FAIMS) was dramatically increased recently by carrier gases comprising up to 75% He or various vapors, enabling many new applications. However, the need for resolution of complex mixtures is virtually open-ended and many topical analyses demand yet finer separations. Also, the resolving power gains are often at the expense of speed, in particular making high-resolution FAIMS incompatible with online liquid-phase separations. Here, we report FAIMS employing hydrogen, specifically in mixtures with N2 containing up to 90% H2. Such compositions raise the mobilities of all ions and thus the resolving power beyond that previously feasible, while avoiding the electrical breakdown inevitable in He-rich mixtures. The increases in resolving power and ensuing peak resolution are especially significant at H2 fractions above ~50%. Higher resolution can be exchanged for acceleration of the analyses by up to ~4 times, at least. For more mobile species such as multiply-charged peptides, this exchange is presently forced by the constraints of existing FAIMS devices, but future designs optimized for H2 should consistently improve resolution for all analytes. PMID:22074292

  6. Acid neutralisation capacity of accelerated carbonated stainless steel slag.

    PubMed

    Johnson, D C; MacLeod, C L; Hills, C D

    2003-05-01

    The acid neutralisation capacity test is widely used to assess the long-term performance of waste materials prior to disposal. Samples of fixed mass are exposed to increasing additions of nitric add in sealed containers and the resultant pH is plotted as a titration curve. In this work, the add neutralisation capacity test was used in the assessment of an accelerated carbonated stainless steel slag. Difficulties arose in applying the test procedure to this material. This was largely because of the raised pressure from significant volumes of released carbon dioxide trapped in the sealed sample containers, causing an alteration to leachate pH values. Consequently, the add neutralisation capacity test was modified to enable testing of samples in equilibrium with the atmosphere. No adverse effects on the results from testing of a carbonate free material were recorded. PMID:12803247

  7. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    PubMed

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2). PMID:24593581

  8. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  9. Charge steering of laser plasma accelerated fast ions in a liquid spray — creation of MeV negative ion and neutral atom beams

    SciTech Connect

    Schnürer, M.; Abicht, F.; Priebe, G.; Braenzel, J.; Prasad, R.; Borghesi, M.; Andreev, A.; Nickles, P. V.; Jequier, S.; Tikhonchuk, V.; Ter-Avetisyan, S.

    2013-11-15

    The scenario of “electron capture and loss” has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, et al., Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.

  10. Collective acceleration of xenon ions in a plasma-anode vircator

    NASA Astrophysics Data System (ADS)

    Chelpanov, V. I.; Golyakov, P. I.; Kornilov, V. G.; Volkov, A. A.; Dubinov, A. E.; Selemir, V. D.; Zhdanov, V. S.

    2009-01-01

    The collective acceleration of xenon ions in a plasma-anode vircator is studied. It is shown that the energy of accelerated ions may reach 900 MeV. The image of a bremsstrahlung source on the target suggests effective transport of relativistic electrons in the drift channel.

  11. SETUP AND PERFORMANCE OF THE RHIC INJECTOR ACCELERATORS FOR THE 2005 RUN WITH COPPER IONS.

    SciTech Connect

    AHRENS, L.; ALESSI, J.; GARDNER, C.J.

    2005-05-16

    Copper ions for the 2005 run [1] of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of these accelerators with copper are reviewed in this paper.

  12. Acceleration and stability of a high-current ion beam in induction fields

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-01

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  13. Acceleration and stability of a high-current ion beam in induction fields

    SciTech Connect

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-15

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  14. Carbon ion beam focusing using laser irradiated heated diamond hemispherical shells

    SciTech Connect

    Offermann, Dustin T; Flippo, Kirk A; Gaillard, Sandrine A

    2009-01-01

    Experiments preformed at the Los Alamos National Laboratory's Trident Laser Facility were conducted to observe the acceleration and focusing of carbon ions via the TNSA mechanism using hemispherical diamond targets. Trident is a 200TW class laser system with 80J of 1 {micro}m, short-pulse light delivered in 0.5ps, with a peak intensity of 5 x 10{sup 20} W/cm{sup 2}. Targets where Chemical Vapor Deposition (CVD) diamonds formed into hemispheres with a radius of curvature of 400{micro}m and a thickness of 5{micro}m. The accelerated ions from the hemisphere were diagnosed by imaging the shadow of a witness copper mesh grid located 2mm behind the target onto a film pack located 5cm behind the target. Ray tracing was used to determine the location of the ion focal spot. The TNSA mechanism favorably accelerates hydrogen found in and on the targets. To make the carbon beam detectable, targets were first heated to several hundred degrees Celsius using a CW, 532nm, 8W laser. Imaging of the carbon beam was accomplished via an auto-radiograph of a nuclear activated lithium fluoride window in the first layer of the film pack. The focus of the carbon ion beam was determined to be located 630 {+-} 110 {micro}m from the vertex of the hemisphere.

  15. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  16. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  17. Focused Ion Beam Microscopy of ALH84001 Carbonate Disks

    NASA Astrophysics Data System (ADS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Bazylinski, D. A.; Kirschvink, J. L.; McKay, D. S.; Vali, H.; Gibson, E. K., Jr.; Romanek, C. S.

    2005-03-01

    Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy.

  18. Guided post-acceleration of laser-driven ions by a miniature modular structure

    NASA Astrophysics Data System (ADS)

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-04-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m-1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  19. Effect of metallic nanoparticles in thin foils for laser ion acceleration

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cutroneo, M.; Ceccio, G.

    2015-01-01

    Nanostructured materials having a high absorption coefficient for visible and near-IR wavelengths can be employed to enhance the laser light energy release in micrometric thin foils in order to generate hot non-equilibrium plasmas and to transfer higher ion acceleration energy. Thin polymeric films containing nanometric spheres of metals (Ti, Cu, Ag, and Au) can be employed to be laser irradiated in a high vacuum and to study the consequent plasma ion acceleration process. Infrared laser irradiations at 1010 W cm-2 intensity, 3 ns pulse duration, and 1064 nm wavelength were employed to produce plasma accelerating ions in the backward direction. Measurements have demonstrated that the presence of nanostructures significantly increases the laser absorption effect and consequently the plasma electron temperature and density and the electric field driving the ion acceleration. Target preparation will be extended to submit thin targets to high laser intensity irradiation above 1015 W cm-2, where the effect of ion acceleration should be enhanced.

  20. Relativistic laser piston model: Ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses

    NASA Astrophysics Data System (ADS)

    Schlegel, T.; Naumova, N.; Tikhonchuk, V. T.; Labaune, C.; Sokolov, I. V.; Mourou, G.

    2009-08-01

    Laser ponderomotive force at superhigh intensities provides an efficient ion acceleration in bulk dense targets and evacuates a channel enabling further laser beam propagation. The developed quasistationary model of a laser piston—a double layer structure supported by the radiation pressure—predicts the general parameters of the acceleration process in homogeneous and inhomogeneous overdense plasmas. Particle-in-cell simulations confirm the estimated characteristics in a wide range of laser intensities and ion densities and show advantages of circularly polarized laser pulses. Two nonstationary effects are identified in the simulations. First, oscillations of the piston velocity and of the thickness of the ion charge separation layer broaden the energy spectrum of accelerated ions. Second, the electrons accelerated toward the incoming laser wave emit strong high-frequency radiation, enabling a cooling effect, which helps to sustain high charge neutrality in the piston and to maintain an efficient ion acceleration.

  1. Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    SciTech Connect

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarela-tivistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

  2. Optimized laser pulse profile for efficient radiation pressure acceleration of ions

    SciTech Connect

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-09-15

    The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover, the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarelativistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

  3. Collisionless shocks driven by 800 nm laser pulses generate high-energy carbon ions

    SciTech Connect

    Zhang, H.; Shen, B. F. Wang, W. P.; Xu, Y.; Liu, Y. Q.; Liang, X. Y.; Leng, Y. X.; Li, R. X. Xu, Z. Z.; Yan, X. Q.; Chen, J. E.

    2015-01-15

    We present experimental studies on ion acceleration from diamond-like carbon (DLC) foils irradiated by 800 nm, linearly polarized laser pulses with peak intensity of 1.7 × 10{sup 19 }W/cm{sup 2} to 3.5 × 10{sup 19 }W/cm{sup 2} at oblique incidence. Diamond-like carbon foils are heated by the prepulse of a high-contrast laser pulse and expand to form plasmas of near-critical density caused by thermal effect before the arrival of the main pulse. It is demonstrated that carbon ions are accelerated by a collisionless shock wave in slightly overdense plasma excited by forward-moving hot electrons generated by the main pulse.

  4. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1990--September 30, 1990

    SciTech Connect

    Not Available

    1990-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, induction acceleration, is being studied at the Lawrence Berkeley Laboratory and at the Lawrence Livermore National Laboratory. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies to cut costs. Key elements to be addressed include: (1) beam quality limits set by transverse and longitudinal beam physics; (2) development of induction accelerating modules, and multiple-beam hardware, at affordable costs; (3) acceleration of multiple beams with current amplification without significant dilution of the optical quality of the beams; (4) final bunching, transport, and accurate focusing on a small target.

  5. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30-cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with previously published experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  6. Effect of electromagnetic pulse transverse inhomogeneity on ion acceleration by radiation pressure

    SciTech Connect

    Lezhnin, K. V.; Kamenets, F. F.; Beskin, V. S.; Kando, M.; Esirkepov, T. Zh.; Bulanov, S. V.

    2015-03-15

    During ion acceleration by radiation pressure, a transverse inhomogeneity of an electromagnetic pulse leads to an off-axis displacement of the irradiated target, limiting the achievable ion energy. This effect is analytically described within the framework of a thin foil target model and with particle-in-cell simulations showing that the maximum energy of the accelerated ions decreases as the displacement from the axis of the target's initial position increases. The results obtained can be applied to the optimization of ion acceleration by the laser radiation pressure with mass-limited targets.

  7. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30 cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  8. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  9. Shunting arc plasma source for pure carbon ion beama)

    NASA Astrophysics Data System (ADS)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  10. A Review of Update Clinical Results of Carbon Ion Radiotherapy

    PubMed Central

    Tsujii, Hirohiko; Kamada, Tadashi

    2012-01-01

    Among various types of ion species, carbon ions are considered to have the most balanced, optimal properties in terms of possessing physically and biologically effective dose localization in the body. This is due to the fact that when compared with photon beams, carbon ion beams offer improved dose distribution, leading to the concentration of the sufficient dose within a target volume while minimizing the dose in the surrounding normal tissues. In addition, carbon ions, being heavier than protons, provide a higher biological effectiveness, which increases with depth, reaching the maximum at the end of the beam's range. This is practically an ideal property from the standpoint of cancer radiotherapy. Clinical studies have been carried out in the world to confirm the efficacy of carbon ions against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. Through clinical experiences of carbon ion radiotherapy at the National Institute of Radiological Sciences and Gesellschaft für Schwerionenforschung, a significant reduction in the overall treatment time with acceptable toxicities has been obtained in almost all types of tumors. This means that carbon ion radiotherapy has meanwhile achieved for itself a solid place in general practice. This review describes clinical results of carbon ion radiotherapy together with physical, biological and technological aspects of carbon ions. PMID:22798685

  11. Workshop on Accelerators for Heavy Ion Fusion: Summary Report of the Workshop

    SciTech Connect

    Seidl, P.A.; Barnard, J.J.

    2011-04-29

    The Workshop on Accelerators for Heavy Ion Fusion was held at Lawrence Berkeley National Laboratory May 23-26, 2011. The workshop began with plenary sessions to review the state of the art in HIF (heavy ion fusion), followed by parallel working groups, and concluded with a plenary session to review the results. There were five working groups: IFE (inertial fusion energy) targets, RF approach to HIF, induction accelerator approach to HIF, chamber and driver interface, ion sources and injectors.

  12. Observation of Ion Acceleration and Heating during Collisionless Magnetic Reconnection in a Laboratory Plasma

    SciTech Connect

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Myers, Clayton E.

    2012-12-10

    The ion dynamics in a collisionless magnetic reconnection layer are studied in a laboratory plasma. The measured in-plane plasma potential profile, which is established by electrons accelerated around the electron diffusion region, shows a saddle-shaped structure that is wider and deeper towards the outflow direction. This potential structure ballistically accelerates ions near the separatrices toward the outflow direction. Ions are heated as they travel into the high pressure downstream region.

  13. Ion Acceleration by Magnetic Pinch Instabilities- Powerful Neutron Sources

    NASA Astrophysics Data System (ADS)

    Hayes, Anna; Li, Hui

    2014-10-01

    Since the 1950s pinch discharges with deuterium gas have been known to produce large neutron bursts. During these early quests for laboratory fusion it was initially believed that the heat produced in the pinch led to sufficently high temperatures that these neutrons resulted from thermonuclear (TN) burn. However, a series of careful measurements led by Stirling Colgate was carried out to show that these neutrons did not result form TN burn. Rather, they resulted from an m = 0 sausage mode instability that accelerated the ions, causing beam-target interactions. Today, this same mechanism is used in dense plasma focus machines to generate intense neutron pulses for neutron activation experiments. One such experiment, to test the citicality of aging plutonium, is currently being planned at the Nevada Test Site. Helping to characterize the neutrons from the dense palsma focus to be used in this large experiment was the last applied physics project that Stirling work on. In this talk we will summarize the physics issues involved both in the original discovery in the 1950s and in today's experiments.

  14. Observations of energetic water-group ions at Comet Giacobini-Zinner - Implications for ion acceleration processes

    NASA Astrophysics Data System (ADS)

    Richardson, I. G.; Cowley, S. W. H.; Hynds, R. J.; Tranquille, C.; Sanderson, T. R.; Wenzel, K.-P.

    1987-10-01

    Observations of energetic water-group pick-up ions made by the EPAS instrument during ICE fly-by of Comet P/Giacobini-Zinner are investigated for evidence concerning the processes which accelerate the ions from initial pick-up energies of around 10 keV to energies of a few hundred keV. The form of the ion spectrum in the ion rest frame is investigated and compared with theoretical suggestions that exponential energy distributions might be produced by either first- or second-order Fermi acceleration in the cometary environment. It is shown that such distributions do not fit the data at all well, but that rather the observed distribution functions closely approximate an exponential in ion speed. The variations of ion intensity and spectral hardness which occur during the comet encounter are investigated, and an indication of the degree of isotropy of the ion distribution in the rest frame of the flow is obtained.

  15. Measurements of 12 C ion fragmentation on thin carbon target from the FIRST collaboration at GSI

    NASA Astrophysics Data System (ADS)

    Toppi, M.; FIRST Collaboration

    2015-04-01

    The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at GSI laboratory took data in summer 2011, studying the collisions of a 12C ion beam with Carbon and Au thin targets. The experiment main purpose is the double differential cross section measurement of the carbon ion fragmentation at energies that are relevant both for tumor therapy and space radiation protection applications (100-1000 MeV/u). The FIRST dataset contains carbon ions collisions on a 3.43 g·Cin-2 carbon target (about 24 M events) and on a 0.96 g·cm-2 Au target (about 4.5 M events). The SIS (heavy ion synchrotron) was used to accelerate the 12C ions at the energy of 400 MeV/u. The preliminary results of differential cross sections measurements as a function of angle and energy for carbon target, in the small angle region (θ ≤ 5°), are presented.

  16. Space radiation accelerator experiments - The role of neutrons and light ions

    NASA Astrophysics Data System (ADS)

    Norbury, John W.; Slaba, Tony C.

    2014-10-01

    The importance of neutrons and light ions is considered when astronauts spend considerable time in thickly shielded regions of a spacecraft. This may be relevant for space missions both in and beyond low Earth orbit (LEO). In addition to heavy ion experiments at accelerators, it is suggested that an increased emphasis on experiments with lighter ions may be useful in reducing biological uncertainties.

  17. Enhancement of accelerated carbonation of alkaline waste residues by ultrasound.

    PubMed

    Araizi, Paris K; Hills, Colin D; Maries, Alan; Gunning, Peter J; Wray, David S

    2016-04-01

    The continuous growth of anthropogenic CO2 emissions into the atmosphere and the disposal of hazardous wastes into landfills present serious economic and environmental issues. Reaction of CO2 with alkaline residues or cementitius materials, known as accelerated carbonation, occurs rapidly under ambient temperature and pressure and is a proven and effective process of sequestering the gas. Moreover, further improvement of the reaction efficiency would increase the amount of CO2 that could be permanently sequestered into solid products. This paper examines the potential of enhancing the accelerated carbonation of air pollution control residues, cement bypass dust and ladle slag by applying ultrasound at various water-to-solid (w/s) ratios. Experimental results showed that application of ultrasound increased the CO2 uptake by up to four times at high w/s ratios, whereas the reactivity at low water content showed little change compared with controls. Upon sonication, the particle size of the waste residues decreased and the amount of calcite precipitates increased. Finally, the sonicated particles exhibited a rounded morphology when observed by scanning electron microscopy. PMID:26905698

  18. Electromagnetic and geometric characterization of accelerated ion beams by laser ablation

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Velardi, L.; Side, D. Delle

    2013-05-01

    Laser ion sources offer the possibility to get ion beam useful to improve particle accelerators. Pulsed lasers at intensities of the order of 108 W/cm2 and of ns pulse duration, interacting with solid matter in vacuum, produce plasma of high temperature and density. The charge state distribution of the plasma generates high electric fields which accelerate ions along the normal to the target surface. The energy of emitted ions has a Maxwell-Boltzmann distribution which depends on the ion charge state. To increase the ion energy, a post-acceleration system can be employed by means of high voltage power supplies of about 100 kV. The post acceleration system results to be a good method to obtain high ion currents by a not expensive system and the final ion beams find interesting applications in the field of the ion implantation, scientific applications and industrial use. In this work we compare the electromagnetic and geometric properties, like emittance, of the beams delivered by pure Cu, Y and Ag targets. The characterization of the plasma was performed by a Faraday cup for the electromagnetic characteristics, whereas a pepper pot system was used for the geometric ones. At 60 kV accelerating voltage the three examined ion bunches get a current peak of 5.5, 7.3 and 15 mA, with a normalized beam emittance of 0.22, 0.12 and 0.09 π mm mrad for the targets of Cu, Y, and Ag, respectively.

  19. Advanced techniques in laser-ion acceleration: Conversion efficiency, beam distribution and energy scaling in the Break-Out Afterburner regime

    NASA Astrophysics Data System (ADS)

    Jung, Daniel; Yin, Lin; Albright, Brian; Gautier, Donald; Hoerlein, Rainer; Johnson, Randall; Kiefer, Daniel; Letzring, Sam; Shah, Rahul; Palaniyappan, Sasikumar; Shimada, Tsutomu; Habs, Dietrich; Fernandez, Juan; Hegelich, Manuel

    2011-10-01

    Recently, increasing laser intensities and contrast made acceleration mechanisms such as the radiation pressure acceleration or the Break-Out Afterburner (BOA) accessible. These mechanisms efficiently couple laser energy into all target ion species, making them a competitive alternative to conventional accelerators. We here present experimental data addressing conversion efficiency and ion distribution scaling for both carbon C6+ and protons within the BOA regime and the transit into the TNSA regime. Unique high resolution measurements of angularly resolved carbon C6+ and proton energy spectra for targets ranging from 30nm to 25microns - recorded with a novel ion wide angle spectrometer - are presented and used to derive thickness scaling estimates. While the measured conversion efficiency for C6+ reaches up to ~6%, peak energies of 1GeV and 120MeV have been measured for C6+ and protons, respectively.

  20. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1--September 30, 1988

    SciTech Connect

    Not Available

    1988-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; final bunching, transport, and accurate focusing on a small target.

  1. Ion acceleration and plasma jet formation in ultra-thin foils undergoing expansion and relativistic transparency

    NASA Astrophysics Data System (ADS)

    King, M.; Gray, R. J.; Powell, H. W.; MacLellan, D. A.; Gonzalez-Izquierdo, B.; Stockhausen, L. C.; Hicks, G. S.; Dover, N. P.; Rusby, D. R.; Carroll, D. C.; Padda, H.; Torres, R.; Kar, S.; Clarke, R. J.; Musgrave, I. O.; Najmudin, Z.; Borghesi, M.; Neely, D.; McKenna, P.

    2016-09-01

    At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.

  2. Break-out afterburner ion acceleration in the longer laser pulse length regime

    SciTech Connect

    Yin, L.; Albright, B. J.; Shah, R. C.; Palaniyappan, S.; Fernndez, J. C.; Jung, D.; Henig, A.; Bowers, K. J.; Hegelich, B. M.

    2011-06-15

    Kinetic simulations of break-out-afterburner (BOA) ion acceleration from nm-scale targets are examined in a longer pulse length regime than studied previously. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  3. Break-out afterburner ion acceleration in the longer laser pulse length regime

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Jung, D.; Shah, R. C.; Palaniyappan, S.; Bowers, K. J.; Henig, A.; Fern´ndez, J. C.; Hegelich, B. M.

    2011-06-01

    Kinetic simulations of break-out-afterburner (BOA) ion acceleration from nm-scale targets are examined in a longer pulse length regime than studied previously. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  4. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Takezaki, Taichi; Takahashi, Kazumasa; Sasaki, Toru; Kikuchi, Takashi; Harada, Nob.

    2016-06-01

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell method have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.

  5. Acceleration of Solar Wind Ions to 1 Mev by Electromagnetic Moguls in the Foreshock

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K.; Strumik, M.; Markidis, S.; Eliasson, B.; Yamauchi, M.

    2013-05-01

    We present measurements from the ESA/NASA Cluster mission that show in situ acceleration of ions to energies of 1 MeV outside the bow shock. The observed heating can be associated with the presence of electromagnetic structures with strong spatial gradients (divergence) of the electric field that lead to ion gyro-phase breaking and to the onset of chaos in ion trajectories. It results in rapid, stochastic acceleration of ions in the direction perpendicular to the ambient magnetic field. The electric potential of the structures can be compared to a field of moguls on a ski slope, capable of accelerating and ejecting the fast running skiers out of piste. This mechanism may represent the universal, basic mechanism for perpendicular acceleration and heating of ions in the magnetosphere, the solar corona and in astrophysical plasmas.

  6. Evaluation of neutron radiation field in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Xu, Jun-Kui; Su, You-Wu; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2016-01-01

    Carbon ions have significant advantages in tumor therapy because of their physical and biological properties. In view of the radiation protection, the safety of patients is the most important issue in therapy processes. Therefore, the effects of the secondary particles produced by the carbon ions in the tumor therapy should be carefully considered, especially for the neutrons. In the present work, the neutron radiation field induced by carbon ions was evaluated by using the FLUKA code. The simulated results of neutron energy spectra and neutron dose was found to be in good agreement with the experiment data. In addition, energy deposition of carbon ions and neutrons in tissue-like media was studied, it is found that the secondary neutron energy deposition is not expected to exceed 1% of the carbon ion energy deposition in a typical treatment.

  7. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  8. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to the dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  9. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    NASA Astrophysics Data System (ADS)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  10. Development of a low-energy beam transport system at KBSI heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Lee, Byoung-Seob; Sato, Yoichi; Ok, Jung-Woo; Park, Jin Yong; Yoon, Jang-Hee; Choi, Seyong; Won, Mi-Sook; Kim, Eun-San

    2015-01-01

    The Korea Basic Science Institute has developed a heavy ion accelerator for fast neutron radiography [1]. To meet the requirements for fast neutron generation, we have developed an accelerator system that consists of an electron cyclotron resonance ion source (ECR-IS), low-energy beam transport (LEBT) system, radio-frequency quadrupole (RFQ), medium-energy beam transport system, and drift tube linac. In this paper, we present the development of the LEBT system as a part of the heavy ion accelerator system, which operates from the ECR-IS to the RFQ entrance.

  11. Investigation on target normal sheath acceleration through measurements of ions energy distribution

    NASA Astrophysics Data System (ADS)

    Tudisco, S.; Altana, C.; Lanzalone, G.; Muoio, A.; Cirrone, G. A. P.; Mascali, D.; Schillaci, F.; Brandi, F.; Cristoforetti, G.; Ferrara, P.; Fulgentini, L.; Koester, P.; Labate, L.; Palla, D.; Gizzi, L. A.

    2016-02-01

    An experimental campaign aiming at investigating the ion acceleration mechanisms through laser-matter interaction in femtosecond domain has been carried out at the Intense Laser Irradiation Laboratory facility with a laser intensity of up to 2 × 1019 W/cm2. A Thomson parabola spectrometer was used to obtain the spectra of the ions of the different species accelerated. Here, we show the energy spectra of light-ions and we discuss their dependence on structural characteristics of the target and the role of surface and target bulk in the acceleration process.

  12. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  13. Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime

    SciTech Connect

    Jung, D.; Department für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching; Max-Planck-Institut für Quantenoptik, D-85748 Garching ; Yin, L.; Gautier, D. C.; Wu, H.-C.; Letzring, S.; Shah, R.; Palaniyappan, S.; Shimada, T.; Johnson, R. P.; Fernández, J. C.; Hegelich, B. M.; Albright, B. J.; Dromey, B.; Schreiber, J.; Habs, D.; Max-Planck-Institut für Quantenoptik, D-85748 Garching

    2013-08-15

    Experimental data are presented for laser-driven carbon C{sup 6+} ion-acceleration, verifying 2D-PIC studies for multi-species targets in the Break-Out Afterburner regime. With Trident's ultra-high contrast at relativistic intensities of 5 × 10{sup 20} W/cm{sup 2} and nm-scale diamond targets, acceleration of carbon ions has been optimized by using target laser-preheating for removal of surface proton contaminants. Using a high-resolution wide angle spectrometer, carbon C{sup 6+} ion energies exceeding 1 GeV or 83 MeV/amu have been measured, which is a 40% increase in maximum ion energy over uncleaned targets. These results are consistent with kinetic plasma modeling and analytic theory.

  14. Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime

    NASA Astrophysics Data System (ADS)

    Jung, D.; Yin, L.; Gautier, D. C.; Wu, H.-C.; Letzring, S.; Dromey, B.; Shah, R.; Palaniyappan, S.; Shimada, T.; Johnson, R. P.; Schreiber, J.; Habs, D.; Fernández, J. C.; Hegelich, B. M.; Albright, B. J.

    2013-08-01

    Experimental data are presented for laser-driven carbon C6+ ion-acceleration, verifying 2D-PIC studies for multi-species targets in the Break-Out Afterburner regime. With Trident's ultra-high contrast at relativistic intensities of 5 × 1020 W/cm2 and nm-scale diamond targets, acceleration of carbon ions has been optimized by using target laser-preheating for removal of surface proton contaminants. Using a high-resolution wide angle spectrometer, carbon C6+ ion energies exceeding 1 GeV or 83 MeV/amu have been measured, which is a 40% increase in maximum ion energy over uncleaned targets. These results are consistent with kinetic plasma modeling and analytic theory.

  15. [Relative biological effectiveness of accelerated heavy ions and fast neutrons estimated from frequency of aberration mytoses in the retinal epithelium].

    PubMed

    Vorozhtsova, S V; Shafirkin, A V; Fedorenko, B S

    2006-01-01

    Analyzed was the literature and authors' experimental data concerning lesion and recovery of epithelium cells of mice retina immediately and long after irradiation at different sources including single and partly fractionated irradiation by gamma- and X-rays, accelerated protons, helium, carbon and boron ions, and fast neutrons of the reactor range in a large spectrum of doses and LET. Reviewed are some new techniques of determining the RBE coefficient for these types of radiation; large values of the RBE coefficients for accelerated ions and neutrons (5-10 times higher than RBE coefficients calculated for the next day following irradiation) are a result of integration into calculation of the available data about the delayed disorders in retinal epithelium cell regeneration. PMID:17193969

  16. Collisionless electrostatic shock generation and ion acceleration by ultraintense laser pulses in overdense plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Min; Sheng, Zheng-Ming; Dong, Quan-Li; He, Min-Qing; Li, Yu-Tong; Bari, Muhammad Abbas; Zhang, Jie

    2007-05-01

    Collisionless electrostatic shock (CES) generation and subsequent ion acceleration in laser plasma interaction are studied numerically by particle-in-cell simulations. Usually a CES is composed of a high ion density spike surrounded by a bipolar electric field. Ions in front of it can be either submerged or reflected by the shock front. The submerged ions experience few oscillations before becoming part of the shock itself, while the reflected ions are accelerated to twice the shock speed. The effects of the target thickness, density, ion mass, preplasma conditions, as well as the laser intensity on the shock generation are examined. Simulations show that such shocks can be formed in a wide range of laser and target conditions. The characteristic of the shock propagation through a plane interface between two targets with different properties is also investigated. These results are useful for future experimental studies of shock generation and acceleration.

  17. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    PubMed

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration. PMID:25860747

  18. Heavy ions acceleration in RF wells of 2-frequency electromagnetic field and in the inverted FEL

    SciTech Connect

    Dzergach, A.I.; Kabanov, V.S.; Nikulin, M.G.; Vinogradov, S.V.

    1995-03-01

    Last results of the study of heavy ions acceleration by electrons trapped in moving 2-frequency 3-D RF wells are described. A linearized theoretical model of ions acceleration in a polarized spheroidal plasmoid is proposed. The equilibrium state of this plasmoid is described by the modified microcanonical distribution of the Courant-Snyder invariant ({open_quotes}quasienergy{close_quotes} of electrons). Some new results of computational simulation of the acceleration process are given. The method of computation takes into account the given cylindrical field E{sub 011}({var_phi},r,z) and the self fields of electrons and ions. The results of the computation at relatively short time intervals confirm the idea and estimated parameters of acceleration. The heavy ion accelerator using this principle may be constructed with the use of compact cm band iris-loaded and biperiodical waveguides with double-sided 2-frequency RF feeding. It can accelerate heavy ions with a charge number Z{sub i} from small initial energies {approximately} 50 keV/a.u. with the rate {approximately} Z{sub i} {center_dot} 10 MeV/m. Semirelativistic ions may be accelerated with similar rate also in the inverted FEL.

  19. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were treated on five different 30 cm diameter bombardment thrusters to evaluate the effects of grid geometry variations on thruster discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. The effects on discharge chamber performance of main magnetic field changes, magnetic baffle current, cathode pole piece length and cathode position were also investigated.

  20. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were tested on five different 30-cm diameter bombardment thrustors to evaluate the effects of grid geometry variations on thrustor discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole-diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. Also investigated were the effects on discharge chamber performance of main magnetic field changes, magnetic baffle current cathode pole piece length and cathode position.

  1. Ion acceleration to supra-thermal energies in the near-Earth magnetotail

    NASA Astrophysics Data System (ADS)

    Elena, Kronberg

    2016-07-01

    We here present an analysis of ion composition measurements by the RAPID instruments onboard Cluster. We discuss the evidence for an acceleration of ions to energies above 100 keV in the near-Earth current sheet, in the vicinity of a possible near-Earth neutral line, and we investigate the physical details of such an acceleration. We present observations of tailward bulk flows in the near-Earth tail associated with plasmoid-like magnetic structures. These flows are superimposed by low-frequency magnetic and electric field fluctuations. Observations and modelling show that resonant interactions between ions and low-frequency electromagnetic fluctuations facilitate the ion energization inside plasmoids.

  2. An Innovative Manufacturing of CCC Ion Thruster Grids by North Carolina A&T's RTM Carbon/Carbon Process

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Electric ion thrusters are the preferred engines for deep space missions, because of very high specific impulse. The ion engine consists of screen and accelerator grids containing thousands of concentric very small holes. The xenon gas accelerates between the two grids, thus developing the impulse force. The dominant life-limiting mechanism in the state-of-the-art molybdenum thrusters is the xenon ion sputter erosion of the accelerator grid. Carbon/carbon composites (CCC) have shown to be have less than 1/7 the erosion rates than the molybdenum, thus for interplanetary missions CCC engines are inevitable. Early effort to develop CCC composite thrusters had a limited success because of limitations of the drilling technology and the damage caused by drilling. The proposed is an in-situ manufacturing of holes while the CCC is made. Special low CTE molds will be used along with the NC A&T s patented resin transfer molding (RTM) technology to manufacture the CCC grids. First, a manufacture process for 10-cm diameter thruster grids will be developed and verified. Quality of holes, density, CTE, tension, flexure, transverse fatigue and sputter yield properties will be measured. After establishing the acceptable quality and properties, the process will be scaled to manufacture 30-cm diameter grids. The properties of the two grid sizes are compared with each other.

  3. Performance of MBE-4: An experimental multiple beam induction linear accelerator for heavy ions

    SciTech Connect

    Warwick, A.I.; Fessenden, T.J.; Keefe, D.; Kim, C.H.; Meuth, H.

    1988-06-01

    An experimental induction linac, called MBE-4, has been constructed to demonstrate acceleration and current amplification of multiple heavy ion beams. This work is part of a program to study the use of such an accelerator as a driver for heavy ion inertial fusion. MBE-4 is 16m long and accelerates four space-charge-dominated beams of singly-charged cesium ions, in this case from 200 keV to 700 keV, amplifying the current in each beam from 10mA by a factor of nine. Construction of the experiment was completed late in 1987 and we present the results of detailed measurements of the longitudinal beam dynamics. Of particular interest is the contribution of acceleration errors to the growth of current fluctuations and to the longitudinal emittance. The effectiveness of the longitudinal focusing, accomplished by means of the controlled time dependence of the accelerating fields, is also discussed. 4 refs., 5 figs., 1 tab.

  4. High contrast ion acceleration at intensities exceeding 10{sup 21} Wcm{sup −2}

    SciTech Connect

    Dollar, F.; Zulick, C.; Matsuoka, T.; McGuffey, C.; Bulanov, S. S.; Chvykov, V.; Kalinchenko, G.; Willingale, L.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.; Davis, J.; Petrov, G. M.

    2013-05-15

    Ion acceleration from short pulse laser interactions at intensities of 2×10{sup 21}Wcm{sup −2} was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the acceleration gradients by using dual plasma mirrors over traditional pulse cleaning techniques. Extremely high efficiency acceleration gradients were produced, accelerating both the contaminant layer and high charge state ions from the bulk of the target. Two dimensional particle-in-cell simulations enabled the study of the influence of scale length on submicron targets, where hydrodynamic expansion affects the rear surface as well as the front. Experimental evidence of larger electric fields for sharp density plasmas is observed in simulation results as well for such targets, where target ions are accelerated without the need for contaminant removal.

  5. High contrast ion acceleration at intensities exceeding 1021 Wcm-2a)

    NASA Astrophysics Data System (ADS)

    Dollar, F.; Zulick, C.; Matsuoka, T.; McGuffey, C.; Bulanov, S. S.; Chvykov, V.; Davis, J.; Kalinchenko, G.; Petrov, G. M.; Willingale, L.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2013-05-01

    Ion acceleration from short pulse laser interactions at intensities of 2×1021Wcm-2 was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the acceleration gradients by using dual plasma mirrors over traditional pulse cleaning techniques. Extremely high efficiency acceleration gradients were produced, accelerating both the contaminant layer and high charge state ions from the bulk of the target. Two dimensional particle-in-cell simulations enabled the study of the influence of scale length on submicron targets, where hydrodynamic expansion affects the rear surface as well as the front. Experimental evidence of larger electric fields for sharp density plasmas is observed in simulation results as well for such targets, where target ions are accelerated without the need for contaminant removal.

  6. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1985-September 30, 1985

    SciTech Connect

    Not Available

    1985-10-01

    The heavy ion accelerator is profiled. Energy losses, currents, kinetic energy, beam optics, pulse models and mechanical tolerances are included in the discussion. In addition, computational efforts and an energy analyzer are described. 37 refs., 27 figs. (WRF)

  7. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.

    PubMed

    Bolton, P R; Borghesi, M; Brenner, C; Carroll, D C; De Martinis, C; Fiorini, Francesca; Flacco, A; Floquet, V; Fuchs, J; Gallegos, P; Giove, D; Green, J S; Green, S; Jones, B; Kirby, D; McKenna, P; Neely, D; Nuesslin, F; Prasad, R; Reinhardt, S; Roth, M; Schramm, U; Scott, G G; Ter-Avetisyan, S; Tolley, M; Turchetti, G; Wilkens, J J

    2014-05-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. PMID:24100298

  8. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE PAGESBeta

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  9. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

  10. Global change accelerates carbon assimilation by a wetland ecosystem engineer

    NASA Astrophysics Data System (ADS)

    Caplan, Joshua S.; Hager, Rachel N.; Megonigal, J. Patrick; Mozdzer, Thomas J.

    2015-11-01

    The primary productivity of coastal wetlands is changing dramatically in response to rising atmospheric carbon dioxide (CO2) concentrations, nitrogen (N) enrichment, and invasions by novel species, potentially altering their ecosystem services and resilience to sea level rise. In order to determine how these interacting global change factors will affect coastal wetland productivity, we quantified growing-season carbon assimilation (≈gross primary productivity, or GPP) and carbon retained in living plant biomass (≈net primary productivity, or NPP) of North American mid-Atlantic saltmarshes invaded by Phragmites australis (common reed) under four treatment conditions: two levels of CO2 (ambient and +300 ppm) crossed with two levels of N (0 and 25 g N added m-2 yr-1). For GPP, we combined descriptions of canopy structure and leaf-level photosynthesis in a simulation model, using empirical data from an open-top chamber field study. Under ambient CO2 and low N loading (i.e., the Control), we determined GPP to be 1.66 ± 0.05 kg C m-2 yr-1 at a typical Phragmites stand density. Individually, elevated CO2 and N enrichment increased GPP by 44 and 60%, respectively. Changes under N enrichment came largely from stimulation to carbon assimilation early and late in the growing season, while changes from CO2 came from stimulation during the early and mid-growing season. In combination, elevated CO2 and N enrichment increased GPP by 95% over the Control, yielding 3.24 ± 0.08 kg C m-2 yr-1. We used biomass data to calculate NPP, and determined that it represented 44%-60% of GPP, with global change conditions decreasing carbon retention compared to the Control. Our results indicate that Phragmites invasions in eutrophied saltmarshes are driven, in part, by extended phenology yielding 3.1× greater NPP than native marsh. Further, we can expect elevated CO2 to amplify Phragmites productivity throughout the growing season, with potential implications including accelerated spread

  11. The precise energy spectra measurement of laser-accelerated MeV/n-class high-Z ions and protons using CR-39 detectors

    NASA Astrophysics Data System (ADS)

    Kanasaki, M.; Jinno, S.; Sakaki, H.; Kondo, K.; Oda, K.; Yamauchi, T.; Fukuda, Y.

    2016-03-01

    The diagnosis method, using a combination of a permanent magnet and CR-39 track detectors, has been developed to separately measure the energy spectrum of the laser-accelerated MeV/n-class high-Z ions and that of MeV protons. The main role of magnet is separating between high-Z ions and protons, not for the usual energy spectrometer, while ion energy was precisely determined from careful analysis of the etch pit shapes and the etch pit growth behaviors in the CR-39. The method was applied to laser-driven ion acceleration experiments using CO2 clusters embedded in a background H2 gas. Ion energy spectra with uncertainty ΔE  =  0.1 MeV n‑1 for protons and carbon/oxygen ions were simultaneously obtained separately. The maximum energies of carbon/oxygen ions and protons were determined as 1.1  ±  0.1 MeV and 1.6  ±  0.1 MeV n‑1, respectively. The sharp decrease around 1 MeV n‑1 observed in the energy spectrum of carbon/oxygen ions could be due to a trace of the ambipolar hydrodynamic expansion of CO2 clusters. Thanks to the combination of the magnet and the CR-39, the method is robust against electromagnetic pulse (EMP).

  12. Laboratory simulation of ion acceleration in the presence of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    McWilliams, R.; Koslover, R.; Boehmer, H.; Rynn, N.

    Ion acceleration perpendicular to the geomagnetic field has been observed by satellites and rockets in the suprauroral region. Also found are broadband lower-hybrid waves, and, at higher altitudes, conical upward-flowing ion distributions. The UCI Q-machine has been used to simulate the effect of lower hybrid waves on ion acceleration. Laser induced fluorescence was used for high resolution, non-perturbing measurements of the ion velocity distribution function. The plasma consisted of a 1 m long, 5 cm diameter barium plasma of densities on the order of 1010 per cm3 contained by a 3 kG magnetic field. Substantial changes in the perpendicular ion distribution were found. Main-body ion heating occurred along with non-maxwellian tail production. Over a 10 dB change in input wave power we observed up to a factor of 3 enhancement in main-body ion temperature.

  13. Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Gibson, W. C.; Tomlinson, W. M.; Marshall, J. A.

    1987-01-01

    Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed.

  14. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Ozak, Nataly; Viñas, Adolfo F.

    2016-03-01

    Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  15. Broad beam gas ion source with hollow cathode discharge and four-grid accelerator system

    NASA Astrophysics Data System (ADS)

    Tang, Deli; Pu, Shihao; Huang, Qi; Tong, Honghui; Cui, Xirong; Chu, Paul K.

    2007-04-01

    A broad beam gas ion source based on low-pressure hollow cathode glow discharge is described. An axial magnetic filed produced by AlNiCo permanent magnets enhances the glow discharge in the ion source as a result of the magnetizing electrons between the hollow cathode and rod anode. The gas plasma is produced by magnetron hollow cathode glow discharge in the hollow cathode and a collimated broad ion beam is extracted by a four-grid accelerator system. A weak magnetic field of several millitesla is enough to ignite the magnetron glow discharge at pressure lower than 0.1 Pa, thereby enabling stable and continuous high-current discharge to form the homogeneous plasma. A four-grid accelerator, which separates the extraction and acceleration of the ion beam, is used in this design to generate the high-energy ion beam from 10 keV to 60 keV at a working pressure of 10-4 Torr. Although a higher gas pressure is necessary to maintain the low-pressure glow discharge when compared to hot filament discharge, the hollow cathode ion source is operational with reactive gases such as oxygen in the high-voltage continuous mode. A laterally uniform ion beam can be achieved by using the four-grid accelerator system. The effects of the rod anode length on the characteristics of the plasma discharge as well as ion beam extraction from the ion source are discussed.

  16. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard X-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona? This problem is discussed.

  17. Carbon Nanotube Anodes Being Evaluated for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Gennett, Tom; VanderWal, Randy L.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center is evaluating the use of carbon nanotubes as anode materials for thin-film lithium-ion (Li) batteries. The motivation for this work lies in the fact that, in contrast to carbon black, directed structured nanotubes and nanofibers offer a superior intercalation media for Li-ion batteries. Carbon lamellas in carbon blacks are circumferentially oriented and block much of the particle interior, rendering much of the matrix useless as intercalation material. Nanofibers, on the other hand, can be grown so as to provide 100-percent accessibility of the entire carbon structure to intercalation. These tubes can be visualized as "rolled-up" sheets of carbon hexagons (see the following figure). One tube is approximately 1/10,000th the diameter of a human hair. In addition, the high accessibility of the structure confers a high mobility to ion-exchange processes, a fundamental for the batteries to respond dynamically because of intercalation.

  18. Modified carbon black materials for lithium-ion batteries

    DOEpatents

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  19. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  20. Flyer Acceleration by Pulsed Ion Beam Ablation and Application for Space Propulsion

    SciTech Connect

    Harada, Nobuhiro; Buttapeng, Chainarong; Yazawa, Masaru; Kashine, Kenji; Jiang Weihua; Yatsui, Kiyoshi

    2004-02-04

    Flyer acceleration by ablation plasma pressure produced by irradiation of intense pulsed ion beam has been studied. Acceleration process including expansion of ablation plasma was simulated based on fluid model. And interaction between incident pulsed ion beam and a flyer target was considered as accounting stopping power of it. In experiments, we used ETIGO-II intense pulsed ion beam generator with two kinds of diodes; 1) Magnetically Insulated Diode (MID, power densities of <100 J/cm2) and 2) Spherical-focused Plasma Focus Diode (SPFD, power densities of up to 4.3 kJ/cm2). Numerical results of accelerated flyer velocity agreed well with measured one over wide range of incident ion beam energy density. Flyer velocity of 5.6 km/s and ablation plasma pressure of 15 GPa was demonstrated by the present experiments. Acceleration of double-layer target consists of gold/aluminum was studied. For adequate layer thickness, such a flyer target could be much more accelerated than a single layer. Effect of waveform of ion beam was also examined. Parabolic waveform could accelerate more efficiently than rectangular waveform. Applicability of ablation propulsion was discussed. Specific impulse of 7000{approx}8000 seconds and time averaged thrust of up to 5000{approx}6000N can be expected. Their values can be controllable by changing power density of incident ion beam and pulse duration.

  1. On the acceleration of ions by interplanetary shock waves. 1: Single encounter considerations

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.

    1981-01-01

    The acceleration of energetic ions in interplanetary magnetosonic fast-mode shock waves was studied via analytical modeling and numerical simulations. An analytical model that combines both the shock drift and compressional acceleration mechanisms is presented. The analytical predictions of the model are shown to be in good agreement with numerical simulation results.

  2. Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation

    NASA Astrophysics Data System (ADS)

    Lopez-Arce, Paula; Zornoza-Indart, Ainara

    2015-09-01

    Carbonation of Ca(OH)2 nanoparticles and consolidation of limestone are accelerated by high humidity and a yeast fermentation system that supplies a saturated atmosphere on CO2, H2O vapor and ethanol during 28 days. Nanoparticles were analyzed by X-ray diffraction and differential thermal analyses with thermogravimetry. Spectrophotometry, scanning electron microscopy analyses, and hydric and mechanical tests were also performed in stones specimens. Samples exposed to the yeast environment achieve 100 % relative CaCO3 yield, whereas at high humidity but without the yeast and under laboratory environment, relative yields of 95 % CaCO3 and 15 % CaCO3 are, respectively, reached, with white crusts and glazing left on the stone surfaces when the nanoparticles are applied at a concentration of 25 g/l. The largest increase in the drilling resistance and surface hardness values with slight increase in the capillarity absorption and desorption coefficients and with lesser stone color changes are produced at a concentration of 5 g/l, in the yeast system environment. This especially happens in stone specimens initially with bimodal pore size distributions, more amounts of pores with diameters between 0.1 and 1 µm, higher open porosity values and faster capillary coefficients. An inexpensive and reliable method based on water and yeast-sugar solution is presented to speed up carbonation of Ca(OH)2 nanoparticles used as a consolidating product to improve the mechanical properties of decayed limestone from archaeological and architectural heritage.

  3. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  4. Proton and heavy ion acceleration facilities for space radiation research.

    PubMed

    Miller, Jack

    2003-06-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space. PMID:12959128

  5. Simulation studies of acceleration of heavy ions and their elemental compositions; IFSR--755

    SciTech Connect

    Toida, Mieko; Ohsawa, Yukiharu

    1996-07-01

    By using a one-dimensional, electromagnetic particle simulation code with full ion and electron dynamics, we have studied the acceleration of heavy ions by a nonlinear magnetosonic wave in a multi-ion-species plasma. First, we describe the mechanism of heavy ion acceleration by magnetosonic waves. We then investigate this by particle simulations. The simulation plasma contains four ion species: H, He, O, and Fe. The number density of He is taken to be 10% of that of H, and those of O and Fe are much lower. Simulations confirm that, as in a single-ion-species plasma, some of the hydrogens can be accelerated by the longitudinal electric field formed in the wave. Furthermore, they show that magnetosonic waves can accelerate all the particles of all the heavy species (He, O, and Fe) by a different mechanism, i.e., by the transverse electric field. The maximum speeds of the heavy species are about the same, of the order of the wave propagation speed. These are in good agreement with theoretical prediction. These results indicate that, if high-energy ions are produced in the solar corona through these mechanisms, the elemental compositions of these heavy ions can be similar to that of the background plasma, i.e., the corona.

  6. Ion acceleration by Alfvén waves on auroral field lines

    NASA Astrophysics Data System (ADS)

    Bingham, Robert; Eliasson, Bengt; Tito Mendonça, José; Stenflo, Lennart

    2013-05-01

    Observations of ion acceleration along auroral field lines at the boundary of the plasma sheet and tail lobe of the Earth show that the energy of the ions increases with decreasing density. The observations can be explained by ion acceleration through Landau resonance with kinetic Alfvén waves (KAWs) such that kA·vi = ωA, where kA is the wave vector, vi is the ion resonance velocity and ωA is the Alfvén wave frequency. The ion resonance velocities are proportional to the Alfvén velocity which increases with decreasing density. This is in agreement with the data if the process is occurring at the plasma sheet tail lobe boundary. A quasi-linear theory of ion acceleration by KAWs is presented. These ions propagate both down towards and away from the Earth. The paths of the Freja and Polar satellites indicate that the acceleration takes place between the two satellites, between 1Re and 5Re. The downward propagating ions develop a horseshoe-type of distribution which has a positive slope in the perpendicular direction. This type of distribution can produce intense lower hybrid wave activity, which is also observed. Finally, the filamentation of shear Alfvén waves is considered. It may be responsible for large-scale density striations. In memory of Padma Kant Shukla, a great scientist and a good friend.

  7. Review of heavy-ion induced desorption studies for particle accelerators

    NASA Astrophysics Data System (ADS)

    Mahner, Edgar

    2008-10-01

    During high-intensity heavy-ion operation of several particle accelerators worldwide, large dynamic pressure rises of orders of magnitude were caused by lost beam ions that impacted under grazing angle onto the vacuum chamber walls. This ion-induced desorption, observed, for example, at CERN, GSI, and BNL, can seriously limit the ion intensity, luminosity, and beam lifetime of the accelerator. For the heavy-ion program at CERN’s Large Hadron Collider collisions between beams of fully stripped lead (Pb82+208) ions with a beam energy of 2.76TeV/u and a nominal luminosity of 1027cm-2s-1 are foreseen. The GSI future project FAIR (Facility for Antiproton and Ion Research) aims at a beam intensity of 1012 uranium (U28+238) ions per second to be extracted from the synchrotron SIS18. Over the past years an experimental effort has been made to study the observed dynamic vacuum degradations, which are important to understand and overcome for present and future particle accelerators. The paper reviews the results obtained in several laboratories using dedicated test setups, the mitigation techniques found, and their implementation in accelerators.

  8. Energy Amplification and Beam Bunching in a Pulse Line Ion Accelerator

    SciTech Connect

    Roy, P K; Waldron, W L; Yu, S S; Coleman, J E; Henestroza, E; Grote, D P; Baca, D; Bieniosek, F M; Briggs, R J; Davidson, R C; Eylon, S; Friedman, A; Greenway, W G; Leitner, M; Logan, G B; Reginato, L L; Seidl, P A

    2006-06-08

    In a first beam dynamics validation experiment for a new Pulse Line Ion Acceleration (PLIA) concept, the predicted energy amplification and beam bunching were experimentally observed. Beam energy modulation of -80 keV to +150 keV was measured using a PLIA input voltage waveform of -21 kV to +12 kV. Ion pulses accelerated by 150 keV, and bunching by a factor of four were simultaneously achieved. The measured longitudinal phase space and current waveform of the accelerated beam are in good agreement with 3-D particle-in-cell simulations.

  9. A 2D Particle in Cell model for ion extraction and focusing in electrostatic accelerators

    SciTech Connect

    Veltri, P. Serianni, G.; Cavenago, M.

    2014-02-15

    Negative ions are fundamental to produce intense and high energy neutral beams used to heat the plasma in fusion devices. The processes regulating the ion extraction involve the formation of a sheath on a scale comparable to the Debye length of the plasma. On the other hand, the ion acceleration as a beam is obtained on distances greater than λ{sub D}. The paper presents a model for both the phases of ion extraction and acceleration of the ions and its implementation in a numerical code. The space charge of particles is deposited following usual Particle in Cell codes technique, while the field is solved with finite element methods. Some hypotheses on the beam plasma transition are described, allowing to model both regions at the same time. The code was tested with the geometry of the NIO1 negative ions source, and the results are compared with existing ray tracing codes and discussed.

  10. Influence of target requirements on the production, acceleration, transport, and focusing of ion beams

    SciTech Connect

    Bangerter, R.O.; Mark, J.W.K.; Meeker, D.J.; Judd, D.L.

    1981-01-01

    We have calculated the energy gain of ion-driven fusion targets as a function of input energy, ion range, and focal spot radius. For heavy-ion drivers a given target gain, together with final-lens properties, determines a 6-D phase space volume which must exceed that occupied by the ion beam. Because of Liouville's theorem and the inevitability of some phase space dilutions, the beams's 6-D volume will increase between the ion source and the target. This imposes important requirements on accelerators and on transport and focusing systems.

  11. Ion acceleration in shell cylinders irradiated by a short intense laser pulse

    SciTech Connect

    Andreev, A.; Platonov, K.; Sharma, A.; Murakami, M.

    2015-09-15

    The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.

  12. ECR (Electron Cyclotron Resonance) source for the HHIRF (Holifield Heavy Ion Research Facility) tandem accelerator

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Meigs, M.J.; Mills, G.D.; Mosko, S.W.; Tatum, B.A.

    1990-01-01

    Electron Cyclotron Resonance, ECR, ion source technology has developed rapidly since the original pioneering work of R. Geller and his group at Grenoble in the early 1970s. These ion sources are capable of producing intense beams of highly charged positive ions and are used extensively for cyclotron injection, linac injection, and atomic physics research. In this paper, the advantages of using an ECR heavy-ion source in the terminal of the Holifield Heavy Ion Research Facility (HHIRF) 25-MV tandem accelerator is discussed. A possible ECR system for installation in the HHIRF tandem terminal is described.

  13. Advanced low-beta cavity development for proton and ion accelerators

    NASA Astrophysics Data System (ADS)

    Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions.

  14. Present status and probable future capabilities of heavy-ion linear accelerators

    SciTech Connect

    Bollinger, L.M.

    1984-04-30

    The general characteristics of heavy-ion linacs are summarized, with emphasis on the similarities and differences of systems based on different technologies. The main design considerations of superconducting linacs are outlined, the many projects based on this technology are listed, and a new concept for a superconducting injector linac is described. The role of RFQ structures for heavy-ion acceleration is summarized. A concluding section lists some probable applications of heavy-ion accelerators during the next decade. 17 references, 5 figures, 1 table.

  15. High-Energy Ions from Near-Critical Density Plasmas via Magnetic Vortex Acceleration

    SciTech Connect

    Nakamura, Tatsufumi; Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki

    2010-09-24

    Ultraintense laser pulses propagating in near-critical density plasmas generate magnetic dipole vortex structures. In the region of decreasing plasma density, the vortex expands both in forward and lateral directions. The magnetic field pressure pushes electrons and ions to form a density jump along the vortex axis and induces a longitudinal electric field. This structure moves together with the expanding dipole vortex. The background ions located ahead of the electric field are accelerated to high energies. The energy scaling of ions generated by this magnetic vortex acceleration mechanism is derived and corroborated using particle-in-cell simulations.

  16. Laser Induced Fluorescence Measurements of Ion Velocity in Magnetic Cusped Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    MacDonald, Natalia; Cappelli, Mark; Hargus, William, Jr.

    2012-10-01

    Cusped Field Thrusters (CFTs) are magnetized plasma accelerators that use strong cusps to shape the magnetic field and hence the electrostatic potential. The cusped magnetic field lines meter the electron transport to the anode and reduce the energetic ion flux towards the dielectric channel walls, thereby reducing the effects of erosion. This work presents time averaged laser induced fluorescence velocity measurements of the ions in the plumes of three CFT variants. These include the Cylindrical Hall Thruster (CHT), Cylindrical Cusped Field Thruster (CCFT), and Diverging Cusped Field Thruster (DCFT). Results indicate that magnetic cusps form equipotential surfaces, and that the majority of ion acceleration occurs outside of the thruster channels.

  17. On carbon nitride synthesis at high-dose ion implantation

    NASA Astrophysics Data System (ADS)

    Romanovsky, E. A.; Bespalova, O. V.; Borisov, A. M.; Goryaga, N. G.; Kulikauskas, V. S.; Sukharev, V. G.; Zatekin, V. V.

    1998-04-01

    Rutherford backscattering spectrometry was used for the study of high dose 35 keV nitrogen ions implantation into graphites and glassy carbon. Quantitative data on depth profiles and its dependencies on irradiation fluence and ion beam density were obtained. The stationary dome-shaped depth profile with maximum nitrogen concentration 22-27 at.% and half-width more than twice exceeding projected range of ions is reached at fluence Φ ˜10 18 cm -2. The dependence of the maximum concentration in the profile on ion current density was studied. The largest concentration was obtained at reduced ion current density.

  18. Electron distribution function behavior during localized transverse ion acceleration events in the topside auroral zone

    NASA Technical Reports Server (NTRS)

    Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.; Vago, J. L.

    1994-01-01

    The Topaz3 auroral sounding rocket made the following observations concerning the transfer of precipitating auroral electron energy to transverse ion acceleration in the topside auroral zone. During the course of the flight, the precipitating electron beam was modified to varying degrees by interaction with VLF hiss, at times changing the beam into a field-aligned plateau. The electron distribution functions throughout the flight are classified according to the extent of this modification, and correspondences with ion acceleration events are sought. The hiss power during most of this rocket flight apparently exceeded the threshold for collapse into solitary structures. At the times of plateaued electron distributions, the collapse of these structures was limited by Landau damping through the ambient ions, resulting in a velocity-dependent acceleration of both protons and oxygen. This initial acceleration is sufficient to supply the number flux of upflowing ions observed at satellite altitudes. The bursty ion acceleration was anticorrelated, on 1-s or smaller timescales, with dispersive bursts of precipitating field-aligned electrons, although on longer timescales the bursty ions and the bursty electrons are correlated.

  19. Ion acceleration beyond 100MeV/amu from relativistic laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Jung, Daniel; Gautier, Cort; Johnson, Randall; Letzring, Samuel; Shah, Rahul; Palaniyappan, Sasikumar; Shimada, Tsutomu; Fernandez, Juan; Hegelich, Manuel; Yin, Lin; Albright, Brian; Habs, Dieter

    2012-10-01

    In the past 10 years laser acceleration of protons and ions was mainly achieved by laser light interacting with micrometer scaled solid matter targets in the TNSA regime, favoring acceleration of protons. Ion acceleration based on this acceleration mechanism seems to have stagnated in terms of particle energy, remaining too low for most applications. The high contrast and relativistic intensities available at the Trident laser allow sub-micron solid matter laser interaction dominated by relativistic transparency of the target. This interaction efficiently couples laser momentum into all target ion species, making it a promising alternative to conventional accelerators. However, little experimental research has up to now studied conversion efficiency or beam distributions, which are essential for application, such as ion based fast ignition (IFI) or hadron cancer therapy. We here present experimental data addressing these aspects for C^6+ ions and protons in comparison with the TNSA regime. Unique measurements of angularly resolved ion energy spectra for targets ranging from 30 nm to 25 micron are presented. While the measured conversion efficiency for C^6+ reaches up to ˜7%, peak energies of 1 GeV and 120 MeV have been measured for C^6+ and protons, respectively.

  20. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  1. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation

    NASA Astrophysics Data System (ADS)

    Hirata, Eri; Miyako, Eijiro; Hanagata, Nobutaka; Ushijima, Natsumi; Sakaguchi, Norihito; Russier, Julie; Yudasaka, Masako; Iijima, Sumio; Bianco, Alberto; Yokoyama, Atsuro

    2016-07-01

    Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration.Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the

  2. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    SciTech Connect

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Dandouras, Iannis E-mail: Kis.Arpad@csfk.mta.hu

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  3. Gyrosurfing Acceleration of Ions in Front of Earth's Quasi-parallel Bow Shock

    NASA Astrophysics Data System (ADS)

    Kis, Arpad; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Khotyaintsev, Yuri V.; Dandouras, Iannis; Lemperger, Istvan; Wesztergom, Viktor

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  4. Oxygen foreshock of Mars and its implication on ion acceleration in the bow shock

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Lundin, Rickard; Frahm, Rudy; Sauvaud, Jean-Andre; Holmstrom, Mats; Barabash, Stas

    2016-04-01

    Ion acceleration inside the bow shock is one of the poorly understood phenomena that has been observed for more than 30 years as the foreshock phenomena. While the Fermi-acceleration mechanism explains the diffuse component of foreshock ions, we still do not know the detailed mechanism that produces the discrete intense ions flowing along the local magnetic field direction (with and without gyration). One of the reasons for such difficulty is that majority of the bow shock study was performed for the Earth's case where Oxygen ions cannot be used to understand the acceleration mechanisms. The planetary oxygen ions that reach the Earth's bow shock have already been significantly accelerated, and are not adequate for such a study. In this sense the Martian bow shock is an ideal place to study the acceleration mechanisms leading to foreshock ions, although the nature of the bow shock is slightly different between the Earth and Mars (Yamauchi et al., 2011). On 21 September 2008, the Mars Express (MEX) Ion Mass Analyser (IMA) detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock. This was the first time that a substantial amount of planetary oxygen was observed upstream of the bow shock. The oxygen energy increased from low energy (< 300 keV) inside the magnetosheath (or it should be called an extended bow shock) to nearly 2 keV at more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. The observation is consistent with an electric potential barrier at the bow shock that simultaneously accelerates the planetary oxygen ions outward (to form the foreshock oxygen ions) and reflects a portion of the solar wind (to

  5. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.

    PubMed

    Wang, H Y; Lin, C; Liu, B; Sheng, Z M; Lu, H Y; Ma, W J; Bin, J H; Schreiber, J; He, X T; Chen, J E; Zepf, M; Yan, X Q

    2014-01-01

    A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2. PMID:24580346

  6. Centrifugal acceleration of ions in the polar magnetosphere

    NASA Technical Reports Server (NTRS)

    Swinney, Kenneth R.; Horwitz, James L.; Delcourt, D.

    1987-01-01

    The transport of ionospheric ions originating near the dayside cusp into the magnetotail is parametrically studied using a 3-D model of ion trajectories. It is shown that the centrifugal term in the guiding center parallel force equation dominates the parallel motion after about 4 Re geocentric distance. The dependence of the equatorial crossing distance on initial latitude, energy and convection electric field is presented for ions originating on the dayside ionosphere in the noon-midnight plane. It is also found that up to altitudes of about 5 Re, the motion is similar to that of a bead on a rotating rod, for which a simple analytical solution exists.

  7. ACCELERATORS Control system for the CSNS ion source test stand

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Hua; Li, Gang; Ouyang, Hua-Fu

    2010-12-01

    A penning plasma surface H- ion source test stand for the CSNS has just been constructed at the IHEP. In order to achieve a safe and reliable system, nearly all devices of the ion source are designed to have the capability of both local and remote operation function. The control system consists of PLCs and EPICS real-time software tools separately serving device control and monitoring, PLC integration and OPI support. This paper summarizes the hardware and software implementation satisfying the requirements of the ion source control system.

  8. Centrifugal acceleration of ions in the polar magnetosphere

    SciTech Connect

    Swinney, K.R.; Horwitz, J.L.; Delcourt, D.

    1987-03-01

    The transport of ionospheric ions originating near the dayside cusp into the magnetotail is parametrically studied using a 3-D model of ion trajectories. It is shown that the centrifugal term in the guiding center parallel force equation dominates the parallel motion after about 4 Re geocentric distance. The dependence of the equatorial crossing distance on initial latitude, energy and convection electric field is presented for ions originating on the dayside ionosphere in the noon-midnight plane. It is also found that up to altitudes of about 5 Re, the motion is similar to that of a bead on a rotating rod, for which a simple analytical solution exists.

  9. Ion adsorption mechanism of bundled single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Tsutsui, M.; Al-zubaidi, A.; Ishii, Y.; Kawasaki, S.

    2016-07-01

    In order to elucidate ion adsorption mechanism of bundled single-walled carbon nanotubes (SWCNTs), in situ synchrotron XRD measurements of SWCNT electrode in alkali halide aqueous electrolyte at several applied potentials were performed. It was found that the surface inside SWCNT is the important ion adsorption site.

  10. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field

    PubMed Central

    Terasaka, K.; Yoshimura, S.; Ogiwara, K.; Aramaki, M.; Tanaka, M. Y.

    2010-01-01

    The flow structure of ions in a diverging magnetic field has been experimentally studied in an electron cyclotron resonance plasma. The flow velocity field of ions has been measured with directional Langmuir probes calibrated with the laser induced fluorescence spectroscopy. For low ion-temperature plasmas, it is concluded that the ion acceleration due to the axial electric field is important compared with that of gas dynamic effect. It has also been found that the detachment of ion stream line from the magnetic field line takes place when the parameter |fciLB∕Vi| becomes order unity, where fci, LB, and Vi are the ion cyclotron frequency, the characteristic scale length of magnetic field inhomogeneity, and the ion flow velocity, respectively. In the detachment region, a radial electric field is generated in the plasma and the ions move straight with the E×B rotation driven by the radial electric field. PMID:20838424

  11. Berkeley Accelerator Space Effects (BASE) Light Ion FacilityUpgrade

    SciTech Connect

    Johnson, Michael B.; McMahan, Margaret A.; Gimpel, Thomas L.; Tiffany, William S.

    2006-07-07

    The BASE Light Ion Facility upgrades have been completed. All proton beams are now delivered to Cave 4A. New control software, a larger diameter beam window, and improved quality assurance measures have been added.

  12. Ion acceleration in multi-species cathodic plasma jet

    NASA Astrophysics Data System (ADS)

    Krasov, V. I.; Paperny, V. L.

    2016-05-01

    A general expression for ion-ion coupling in a multi-species plasma jet was obtained. The expression is valid for any value of the inter-species velocity. This expression has enabled us to review a hydrodynamic problem of expanding the cathodic plasma microjet with two ion species within the respective charge states Z1 = +1 and Z2 = +2 into a vacuum. We were able to illustrate that in scenario when the initial (i.e., acquired during a process of emission from cathode's surface) difference for ion's species velocity exceeds a threshold value, the difference remains noticeable (roughly about 10% of the average jet's velocity) at a distance of a few centimeters from the emission center. At this point, it can be measured experimentally.

  13. POLARIZED ION SOURCES FOR HIGH ENERGY ACCELERATORS AND COLLIDERS

    SciTech Connect

    ZELENSKI,A.N.

    2000-10-16

    The recent progress in polarized ion source development is reviewed. In dc operation a 1.0 mA polarized H{sup -} ion current is now available from the Optically-Pumped Polarized Ion Source (OPPIS) . In pulsed operation a 10 mA polarized H{sup -} ion current was demonstrated at the TRIUMF pulsed OPPIS test bench and a 3.5 mA peak current was obtained from an Atomic Beam Source (ABS) at the INR Moscow test bench. The possibilities for future improvements with both techniques are discussed. A new OPPIS for RHIC spin physics is described. The OPPIS reliably delivered polarized beam for the polarized run at RHIC. The results obtained with a new pulsed ABS injector for the IUCF Cooler Ring are also discussed.

  14. POLARIZED ION SOURCES FOR HIGH ENERGY ACCELERATORS AND COLLIDERS

    SciTech Connect

    ZELENSKI,A.N.

    2000-10-16

    The recent progress in polarized ion source development is reviewed. In dc operation a 1.0 mA polarized H{sup -} ion current is now available from the Optically-Pumped Polarized Ion Source (OPPIS). In pulsed operation a 10 mA polarized H{sup -} ion current was demonstrated at the TRIUMF pulsed OPPIS test bench and a 3.5 mA peak current was obtained from an Atomic Beam Source (ABS) at the INR Moscow test bench. The possibilities for future improvements with both techniques are discussed. A new OPPIS for RHIC spin physics is described. The OPPIS reliably delivered polarized beam for the polarized run at RHIC. The results obtained with a new pulsed ABS injector for the IUCF Cooler Ring are also discussed.

  15. Accelerated Carbonate Dissolution as a CO2 Separation and Sequestration Strategy

    SciTech Connect

    Caldeira, K G; Knauss, K G; Rau, G H

    2004-02-18

    We have proposed a technique that could reduce CO{sub 2} emissions from near coastal fossil-fuel power plants using existing power plant cooling water flow rates (Rau and Caldeira, 1999; Caldeira and Rau, 2000). Preliminary cost estimates are as low as $68 per tonne C sequestered, as compared to > $170 per tonne C estimated for other approaches to CO{sub 2} separation with geologic or deep-ocean storage. Engineers at McDermott Technologies, Inc., have independently estimated the cost of our proposed technique, and came to the conclusion that our cost estimates were at the high end of the likely range. Interest has been expressed in pursuing this approach further both in Norway and in Japan. We have proved the viability of our concept using (1) bench-top laboratory experiments (Figures 1 and 2), (2) computer modeling of those experiments, (3) more sophisticated cost estimates, and (4) three-dimensional computer modeling of the consequences to global ocean chemistry (Figure 3 and 4). The climate and environmental impacts of our current, carbon intensive energy usage demands that effective and practical energy alternatives and CO{sub 2} mitigation strategies be found. As part of this effort, various means of capturing and storing CO{sub 2} generated from fossil-fuel-based energy production are being investigated (e.g. [3,4]). One of the proposed methods involves a geochemistry-based capture and sequestration process [5,6] that hydrates point-source, waste CO{sub 2} with water to produce a carbonic acid solution. This in turn is reacted and neutralized with limestone, thus converting the original CO{sub 2} gas to calcium bicarbonate in solution, the overall reaction being: CO{sub 2(g)} + H{sub 2}O{sub (l)} + CaCO{sub 3(s)} {yields} Ca{sub (aq)}{sup 2+} + 2HCO{sub 3(aq)}{sup -} The dissolved calcium bicarbonate produced is then released and diluted in the ocean where it would add minimally to the large, benign pool of these ions already present in seawater. Such a

  16. Bulk ion acceleration and particle heating during magnetic reconnection in a laboratory plasma

    SciTech Connect

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Jara-Almonte, Jonathan; Myers, Clayton E.

    2014-05-15

    Bulk ion acceleration and particle heating during magnetic reconnection are studied in the collisionless plasma of the Magnetic Reconnection Experiment (MRX). The plasma is in the two-fluid regime, where the motion of the ions is decoupled from that of the electrons within the ion diffusion region. The reconnection process studied here is quasi-symmetric since plasma parameters such as the magnitude of the reconnecting magnetic field, the plasma density, and temperature are compatible on each side of the current sheet. Our experimental data show that the in-plane (Hall) electric field plays a key role in ion heating and acceleration. The electrostatic potential that produces the in-plane electric field is established by electrons that are accelerated near the electron diffusion region. The in-plane profile of this electrostatic potential shows a “well” structure along the direction normal to the reconnection current sheet. This well becomes deeper and wider downstream as its boundary expands along the separatrices where the in-plane electric field is strongest. Since the in-plane electric field is 3–4 times larger than the out-of-plane reconnection electric field, it is the primary source of energy for the unmagnetized ions. With regard to ion acceleration, the Hall electric field causes ions near separatrices to be ballistically accelerated toward the outflow direction. Ion heating occurs as the accelerated ions travel into the high pressure downstream region. This downstream ion heating cannot be explained by classical, unmagnetized transport theory; instead, we conclude that ions are heated by re-magnetization of ions in the reconnection exhaust and collisions. Two-dimensional (2-D) simulations with the global geometry similar to MRX demonstrate downstream ion thermalization by the above mechanisms. Electrons are also significantly heated during reconnection. The electron temperature sharply increases across the separatrices and peaks just outside of the

  17. Accelerating Gas Adsorption on 3D Percolating Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wen, Chenyu; Zhang, Youwei; Wu, Dongping; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-02-01

    In the field of electronic gas sensing, low-dimensional semiconductors such as single-walled carbon nanotubes (SWCNTs) can offer high detection sensitivity owing to their unprecedentedly large surface-to-volume ratio. The sensitivity and responsivity can further improve by increasing their areal density. Here, an accelerated gas adsorption is demonstrated by exploiting volumetric effects via dispersion of SWCNTs into a percolating three-dimensional (3D) network in a semiconducting polymer. The resultant semiconducting composite film is evaluated as a sensing membrane in field effect transistor (FET) sensors. In order to attain reproducible characteristics of the FET sensors, a pulsed-gate-bias measurement technique is adopted to eliminate current hysteresis and drift of sensing baseline. The rate of gas adsorption follows the Langmuir-type isotherm as a function of gas concentration and scales with film thickness. This rate is up to 5 times higher in the composite than only with an SWCNT network in the transistor channel, which in turn results in a 7-fold shorter time constant of adsorption with the composite. The description of gas adsorption developed in the present work is generic for all semiconductors and the demonstrated composite with 3D percolating SWCNTs dispersed in functional polymer represents a promising new type of material for advanced gas sensors.

  18. Accelerating Gas Adsorption on 3D Percolating Carbon Nanotubes

    PubMed Central

    Li, Hui; Wen, Chenyu; Zhang, Youwei; Wu, Dongping; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    In the field of electronic gas sensing, low-dimensional semiconductors such as single-walled carbon nanotubes (SWCNTs) can offer high detection sensitivity owing to their unprecedentedly large surface-to-volume ratio. The sensitivity and responsivity can further improve by increasing their areal density. Here, an accelerated gas adsorption is demonstrated by exploiting volumetric effects via dispersion of SWCNTs into a percolating three-dimensional (3D) network in a semiconducting polymer. The resultant semiconducting composite film is evaluated as a sensing membrane in field effect transistor (FET) sensors. In order to attain reproducible characteristics of the FET sensors, a pulsed-gate-bias measurement technique is adopted to eliminate current hysteresis and drift of sensing baseline. The rate of gas adsorption follows the Langmuir-type isotherm as a function of gas concentration and scales with film thickness. This rate is up to 5 times higher in the composite than only with an SWCNT network in the transistor channel, which in turn results in a 7-fold shorter time constant of adsorption with the composite. The description of gas adsorption developed in the present work is generic for all semiconductors and the demonstrated composite with 3D percolating SWCNTs dispersed in functional polymer represents a promising new type of material for advanced gas sensors. PMID:26888337

  19. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation.

    PubMed

    Hirata, Eri; Miyako, Eijiro; Hanagata, Nobutaka; Ushijima, Natsumi; Sakaguchi, Norihito; Russier, Julie; Yudasaka, Masako; Iijima, Sumio; Bianco, Alberto; Yokoyama, Atsuro

    2016-08-14

    Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration. PMID:27412794

  20. Accelerating Gas Adsorption on 3D Percolating Carbon Nanotubes.

    PubMed

    Li, Hui; Wen, Chenyu; Zhang, Youwei; Wu, Dongping; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    In the field of electronic gas sensing, low-dimensional semiconductors such as single-walled carbon nanotubes (SWCNTs) can offer high detection sensitivity owing to their unprecedentedly large surface-to-volume ratio. The sensitivity and responsivity can further improve by increasing their areal density. Here, an accelerated gas adsorption is demonstrated by exploiting volumetric effects via dispersion of SWCNTs into a percolating three-dimensional (3D) network in a semiconducting polymer. The resultant semiconducting composite film is evaluated as a sensing membrane in field effect transistor (FET) sensors. In order to attain reproducible characteristics of the FET sensors, a pulsed-gate-bias measurement technique is adopted to eliminate current hysteresis and drift of sensing baseline. The rate of gas adsorption follows the Langmuir-type isotherm as a function of gas concentration and scales with film thickness. This rate is up to 5 times higher in the composite than only with an SWCNT network in the transistor channel, which in turn results in a 7-fold shorter time constant of adsorption with the composite. The description of gas adsorption developed in the present work is generic for all semiconductors and the demonstrated composite with 3D percolating SWCNTs dispersed in functional polymer represents a promising new type of material for advanced gas sensors. PMID:26888337

  1. Ion Acceleration at the Quasi-parallel Bow Shock: Decoding the Signature of Injection

    NASA Astrophysics Data System (ADS)

    Sundberg, Torbjörn; Haynes, Christopher T.; Burgess, D.; Mazelle, Christian X.

    2016-03-01

    Collisionless shocks are efficient particle accelerators. At Earth, ions with energies exceeding 100 keV are seen upstream of the bow shock when the magnetic geometry is quasi-parallel, and large-scale supernova remnant shocks can accelerate ions into cosmic-ray energies. This energization is attributed to diffusive shock acceleration however, for this process to become active, the ions must first be sufficiently energized. How and where this initial acceleration takes place has been one of the key unresolved issues in shock acceleration theory. Using Cluster spacecraft observations, we study the signatures of ion reflection events in the turbulent transition layer upstream of the terrestrial bow shock, and with the support of a hybrid simulation of the shock, we show that these reflection signatures are characteristic of the first step in the ion injection process. These reflection events develop in particular in the region where the trailing edge of large-amplitude upstream waves intercept the local shock ramp and the upstream magnetic field changes from quasi-perpendicular to quasi-parallel. The dispersed ion velocity signature observed can be attributed to a rapid succession of ion reflections at this wave boundary. After the ions’ initial interaction with the shock, they flow upstream along the quasi-parallel magnetic field. Each subsequent wavefront in the upstream region will sweep the ions back toward the shock, where they gain energy with each transition between the upstream and the shock wave frames. Within three to five gyroperiods, some ions have gained enough parallel velocity to escape upstream, thus completing the injection process.

  2. Guided post-acceleration of laser-driven ions by a miniature modular structure

    PubMed Central

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  3. Guided post-acceleration of laser-driven ions by a miniature modular structure.

    PubMed

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L S; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P L; Schroer, Anna M; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m(-1), already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  4. Influence of radiation reaction force on ultraintense laser-driven ion acceleration.

    PubMed

    Capdessus, R; McKenna, P

    2015-05-01

    The role of the radiation reaction force in ultraintense laser-driven ion acceleration is investigated. For laser intensities ∼10(23)W/cm(2), the action of this force on electrons is demonstrated in relativistic particle-in-cell simulations to significantly enhance the energy transfer to ions in relativistically transparent targets, but strongly reduce the ion energy in dense plasma targets. An expression is derived for the revised piston velocity, and hence ion energy, taking account of energy loses to synchrotron radiation generated by electrons accelerated in the laser field. Ion mass is demonstrated to be important by comparing results obtained with proton and deuteron plasma. The results can be verified in experiments with cryogenic hydrogen and deuterium targets. PMID:26066270

  5. New methods for high current fast ion beam production by laser-driven acceleration

    SciTech Connect

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Laska, L.; Jungwirth, K.; Mocek, T.; Korn, G.; Rus, B.; Torrisi, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Picciotto, A.; Serra, E.; Giuffrida, L.; Mangione, A.; Rosinski, M.; Parys, P.; and others

    2012-02-15

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10{sup 16}-10{sup 19} W/cm{sup 2}. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  6. Heavy ion acceleration driven by the Interaction between ultraintense Laser pulse and sub-micron foils

    NASA Astrophysics Data System (ADS)

    Yu, Jinqing; McGuffey, C.; Beg, F. N.; High Energy Density Group Team

    2015-11-01

    For ion acceleration at the intensity exceeding 1021W/cm2, Radiation Pressure Acceleration (RPA) could offer advantages over Target Normal Sheath Acceleration (TNSA) and Break-Out Afterburner (BOA). In this ultra-relativistic regime, target electrons become highly relativistic and the results are sensitive to many parameters. Especially for heavy ions acceleration, the understanding of the most important parameter effects is limited due to the lack of experiments and modeling. To further understand the key parameters and determine the most suitable regimes for efficient acceleration of heavy ions, we have carried out two-dimensional Particle-in-Cell simulations with the epoch code. In the simulations, effects of preplasma and optimal targets thicknesses for different laser pulse have been studied in detail. Based on the understanding of ion RPA, we propose some new target parameters to achieve higher ion energy. This work was performed with the support of the Air Force Office of Scientific Research under grant FA9550-14-1-0282.

  7. Key conditions for stable ion radiation pressure acceleration by circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Qiao, B.; Zepf, M.; Gibbon, P.; Borghesi, M.; Schreiber, J.; Geissler, M.

    2011-05-01

    Radiation pressure acceleration (RPA) theoretically may have great potential to revolutionize the study of laserdriven ion accelerators due to its high conversion efficiency and ability to produce high-quality monoenergetic ion beams. However, the instability issue of ion acceleration has been appeared to be a fundamental limitation of the RPA scheme. To solve this issue is very important to the experimental realization and exploitation of this new scheme. In our recent work, we have identified the key condition for efficient and stable ion RPA from thin foils by CP laser pulses, in particular, at currently available moderate laser intensities. That is, the ion beam should remain accompanied with enough co-moving electrons to preserve a local "bunching" electrostatic field during the acceleration. In the realistic LS RPA, the decompression of the co-moving electron layer leads to a change of local electrostatic field from a "bunching" to a "debunching" profile, resulting in premature termination of acceleration. One possible scheme to achieve stable RPA is using a multi-species foil. Two-dimensional PIC simulations show that 100 MeV/u monoenergetic C6+ and/or proton beams are produced by irradiation of a contaminated copper foil with CP lasers at intensities 5 × 1020W/cm2, achievable by current day lasers.

  8. A compact ion source and accelerator based on a piezoelectric driver

    SciTech Connect

    Norgard, P.; Kovaleski, S. D.; VanGordon, J. A.; Baxter, E. A.; Gall, B. B.; Kwon, Jae Wan; Kim, Baek Hyun; Dale, G. E.

    2013-04-19

    Compact ion sources and accelerators using piezoelectric devices for the production of energetic ion beams are being evaluated. A coupled source-accelerator is being tested as a neutron source to be incorporated into oil-well logging diagnostics. Two different ion sources are being investigated, including a piezoelectric transformer-based plasma source and a silicon-based field ion source. The piezoelectric transformer plasma ion source uses a cylindrical, resonantly driven piezoelectric crystal to produce high voltage inside a confined volume filled with low pressure deuterium gas. The plasma generated in the confined chamber is ejected through a small aperture into an evacuated drift region. The silicon field ion source uses localized electric field enhancement produced by an array of sharp emitters etched into a silicon blank to produce ions through field desorption ionization. A second piezoelectric device of a different design is used to generate an accelerating potential on the order of 130 kV; this potential is applied to a deuterated target plate positioned perpendicular to the ion stream produced by either plasma source. This paper discusses the results obtained by the individual components as they relate to the final neutron source.

  9. Trends and applications for MeV electrostatic ion beam accelerators

    NASA Astrophysics Data System (ADS)

    Norton, G. A.; Stodola, S. E.

    2014-08-01

    The 1970s into the 1980s saw a major broadening of applications for electrostatic accelerators. Prior to this time, all accelerators were used primarily for nuclear structure research. In the 70s there was a significant move into production ion implantation with the necessary MeV ion beam analysis techniques such as RBS and ERD. Accelerators are still being built for these materials analysis techniques today. However, there is still a great ongoing expansion of applications for these machines. At the present time, the demand for electrostatic accelerators is near an all time high. The number of applications continues to grow. This paper will touch on some of the current applications which are as diverse as nuclear fission reactor developments and pharmacokinetics. In the field of nuclear engineering, MeV ion beams from electrostatic accelerators are being used in material damage studies and for iodine and actinide accelerator mass spectrometry (AMS). In the field of pharmacokinetics, electrostatic MeV accelerators are being used to detect extremely small amounts of above background 14C. This has significantly reduced the time required to reach first in human studies. These and other applications will be discussed.

  10. Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D.; Ma, W.; Schreiber, J.

    2011-10-01

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the `hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th target and a deuterated CD2 foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 layer of the production target will be accelerated as well, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 1014 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 103 ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

  11. Development of an H- ion source for Japan Proton Accelerator Research Complex upgradea)

    NASA Astrophysics Data System (ADS)

    Ohkoshi, K.; Namekawa, Y.; Ueno, A.; Oguri, H.; Ikegami, K.

    2010-02-01

    A cesium (Cs) free H- ion source driven with a lanthanum hexaboride (LaB6) filament was adopted as an ion source for the first stage of the Japan Proton Accelerator Research Complex (J-PARC). At present, the maximum H- ion current produced by the ion source is 38 mA, using which J-PARC can produce a proton beam power of 0.6 MW by accelerating it with the 181 MeV linac and the 3 GeV rapid cycling synchrotron. In order to satisfy the beam power of 1 MW required for the second stage of the J-PARC in the near future, we have to increase the ion current to more than 60 mA. Therefore, we have started to develop a Cs-seeded ion source by adding an external Cs-seeding system to a J-PARC test ion source that has a structure similar to that of the J-PARC ion source except for the fact that the plasma chamber is slightly larger. As a result, a H- ion current of more than 70 mA was obtained from the ion source using a tungsten filament instead of a LaB6 filament with a low arc discharge power of 15 kW (100 V, 150 A).

  12. Dynamics of ponderomotive ion acceleration in a laser-plasma channel

    SciTech Connect

    Kovalev, V. F.; Bychenkov, V. Yu.

    2015-04-15

    Analytical solution to the Cauchy problem for the kinetic equation describing the radial acceleration of ions under the action of the ponderomotive force of a laser beam undergoing guided propagation in transparent plasma is constructed. Spatial and temporal dependences of the ion distribution function and the integral ion characteristics, such as the density, average velocity, and energy spectrum, are obtained for an axisymmetric laser-plasma channel. The formation of a density peak near the channel boundary and the effect of ion flow breaking for a quasi-stationary laser beam are described analytically.

  13. On the analysis of inhomogeneous magnetic field spectrometer for laser-driven ion acceleration

    SciTech Connect

    Jung, D.; Senje, L.; McCormack, O.; Dromey, B.; Zepf, M.; Yin, L.; Albright, B. J.; Letzring, S.; Gautier, D. C.; Fernandez, J. C.; Toncian, T.; Hegelich, B. M.

    2015-03-15

    We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.

  14. Ion dynamics in an E × B Hall plasma accelerator

    SciTech Connect

    Young, Christopher V. Lucca Fabris, Andrea; Cappelli, Mark A.

    2015-01-26

    We show the time evolution of the ion velocity distribution function in a Hall plasma accelerator during a 20 kHz natural, quasi-periodic plasma oscillation. We apply a time-synchronized laser induced fluorescence technique at different locations along the channel midline, obtaining time- and spatially resolved ion velocity measurements. Strong velocity and density fluctuations and multiple ion populations are observed throughout the so-called “breathing mode” ionization instability, opening an experimental window into the detailed ion dynamics and physical processes at the heart of such devices.

  15. Laboratory simulation of ion acceleration in the presence of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    McWilliams, R.; Koslover, R.; Boehmer, H.; Rynn, N.

    The UCI Q-machine has been used to simulate the effect of lower hybrid waves on ion acceleration. Laser induced fluorescence was used for high resolution, nonperturbing measurements of the ion velocity distribution function. The plasma consisted of a 1 m long, 5 cm diameter barium plasma of densities on the order of 10 to the 10th per cu cm contained by a 3 kG magnetic field. Substantial changes in the perpendicular ion distribution were found. Main-body ion heating occurred along with non-Maxwellian tail production.

  16. Unidirectional stripping extraction from a cyclotron which accelerates light as well as heavy ions

    NASA Astrophysics Data System (ADS)

    Ristić-Djurović, Jasna L.; Ćirković, Saša

    2003-03-01

    The VINCY Cyclotron (VINča CYclotron) is a multipurpose machine intended to accelerate light as well as heavy ions. To extract heavy ions with low energy and light ions an extraction system with stripping foil is used. Heavy ions with high energy will be extracted by means of an electrostatic deflector. The former extraction system will be manufactured and used first. The proposed unidirectional stripping extraction system is the optimal balance between the placement of the extraction line and the required diversity and quality of the extracted beam. The available range of extraction directions is set by geometry limitations.

  17. Acceleration of barium ions near 8000 km above an aurora

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Wescott, E. M.; Foeppl, H.

    1984-01-01

    A barium shaped charge, named Limerick, was released from a rocket launched from Poker Flat Research Range, Alaska, on March 30, 1982, at 1033 UT. The release took place in a small auroral breakup. The jet of ionized barium reached an altitude of 8100 km 14.5 min after release, indicating that there were no parallel electric fields below this altitude. At 8100 km the jet appeared to stop. Analysis shows that the barium at this altitude was effectively removed from the tip. It is concluded that the barium was actually accelerated upward, resulting in a large decrease in the line-of-sight density and hence the optical intensity. The parallel electric potential in the acceleration region must have been greater than 1 kV over an altitude interval of less than 200 km. The acceleration region, although presumably auroral in origin, did not seem to be related to individual auroral structures, but appeared to be a large-scale horizontal structure. The perpendicular electric field below, as deduced from the drift of the barium, was temporally and spatially very uniform and showed no variation related to individual auroral structures passing through.

  18. Summary I - Accelerator Ion sources, Fundamentals and Diagnostics

    SciTech Connect

    Moehs, Douglas P.

    2007-08-10

    The 11th International Symposium on the Production and Neutralization of Negative Ions and Beams was held in Santa Fe, New Mexico on September 12-15, 2006 and was hosted by Los Alamos National Laboratory. This summary covers the first three oral sessions of the symposium.

  19. Summary II - Fusion Ion sources, Beam Formation, Acceleration and Neutralisation

    SciTech Connect

    Jones, T. T. C.

    2007-08-10

    The 11th International Symposium on the Production and Neutralization of Negative Ions and Beams was held in Santa Fe, New Mexico on 13th - 15th September 2006 and was hosted by Los Alamos National Laboratory. This summary covers the sessions of the Symposium devoted to the topics listed in the title.

  20. Summary I - accelerator ion sources, fundamentals and diagnostics

    SciTech Connect

    Moehs, Douglas P.; /Fermilab

    2006-10-01

    The 11th International Symposium on the Production and Neutralization of Negative Ions and Beams was held in Santa Fe, New Mexico on September 12-15, 2006 and was hosted by Los Alamos National Laboratory. This summary covers the first three oral sessions of the symposium.

  1. Carbon, nitrogen, and oxygen ion implantation of stainless steel

    SciTech Connect

    Rej, D.J.; Gavrilov, N.V.; Emlin, D.

    1995-12-31

    Ion implantation experiments of C, N, and O into stainless steel have been performed, with beam-line and plasma source ion implantation methods. Acceleration voltages were varied between 27 and 50 kV, with pulsed ion current densities between 1 and 10 mA/cm{sup 2}. Implanted doses ranged from 0.5 to 3 {times} 10{sup 18}cm{sup -2}, while workpiece temperatures were maintained between 25 and 800 C. Implant concentration profiles, microstructure, and surface mechanical properties of the implanted materials are reported.

  2. Analyses of high power negative ion accelerators for ITER neutral beam injector (invited)a)

    NASA Astrophysics Data System (ADS)

    Kashiwagi, M.; Taniguchi, M.; Dairaku, M.; Grisham, L. R.; Hanada, M.; Mizuno, T.; Tobari, H.; Umeda, N.; Watanabe, K.; Sakamoto, K.; Inoue, T.

    2010-02-01

    In JAEA, research and developments to realize high power accelerator (1 MeV, 40 AD- ion beams for 3600 s) for ITER have been carried out experimentally and numerically utilizing a five stage MAMuG (Multiaperture, Multigrid) accelerator. In this paper, the extension of the gap length, which is required to improve the voltage holding capability, is examined in two dimensional beam optics analyses and also from view point of stripping loss of ions. In order to suppress excess power loadings due to the direct interception of negative ions, which is issued in long pulse tests, the beamlet deflection is analyzed in three dimensional multibeamlet analyses. The necessary modifications shown above are applied to the MAMuG accelerator for coming long pulse tests in JAEA and ITER.

  3. Modeling the Pulse Line Ion Accelerator (PLIA): an algorithm for quasi-static field solution.

    SciTech Connect

    Friedman, A; Briggs, R J; Grote, D P; Henestroza, E; Waldron, W L

    2007-06-18

    The Pulse-Line Ion Accelerator (PLIA) is a helical distributed transmission line. A rising pulse applied to the upstream end appears as a moving spatial voltage ramp, on which an ion pulse can be accelerated. This is a promising approach to acceleration and longitudinal compression of an ion beam at high line charge density. In most of the studies carried out to date, using both a simple code for longitudinal beam dynamics and the Warp PIC code, a circuit model for the wave behavior was employed; in Warp, the helix I and V are source terms in elliptic equations for E and B. However, it appears possible to obtain improved fidelity using a ''sheath helix'' model in the quasi-static limit. Here we describe an algorithmic approach that may be used to effect such a solution.

  4. Analyses of high power negative ion accelerators for ITER neutral beam injector (invited).

    PubMed

    Kashiwagi, M; Taniguchi, M; Dairaku, M; Grisham, L R; Hanada, M; Mizuno, T; Tobari, H; Umeda, N; Watanabe, K; Sakamoto, K; Inoue, T

    2010-02-01

    In JAEA, research and developments to realize high power accelerator (1 MeV, 40 AD(-) ion beams for 3600 s) for ITER have been carried out experimentally and numerically utilizing a five stage MAMuG (Multiaperture, Multigrid) accelerator. In this paper, the extension of the gap length, which is required to improve the voltage holding capability, is examined in two dimensional beam optics analyses and also from view point of stripping loss of ions. In order to suppress excess power loadings due to the direct interception of negative ions, which is issued in long pulse tests, the beamlet deflection is analyzed in three dimensional multibeamlet analyses. The necessary modifications shown above are applied to the MAMuG accelerator for coming long pulse tests in JAEA and ITER. PMID:20192419

  5. The energy transfer in the TEMP-4M pulsed ion beam accelerator

    SciTech Connect

    Isakova, Y. I.; Pushkarev, A. I.; Khaylov, I. P.

    2013-07-15

    The results of a study of the energy transfer in the TEMP-4M pulsed ion beam accelerator are presented. The energy transfer efficiency in the Blumlein and a self-magnetically insulated ion diode was analyzed. Optimization of the design of the accelerator allows for 85% of energy transferred from Blumlein to the diode (including after-pulses), which indicates that the energy loss in Blumlein and spark gaps is insignificant and not exceeds 10%–12%. Most losses occur in the diode. The efficiency of energy supplied to the diode to the energy of accelerated ions is 8%–9% for a planar strip self-magnetic MID, 12%–15% for focusing diode and 20% for a spiral self-magnetic MID.

  6. Ion acceleration in underdense plasmas by ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Lifschitz, A.; Sylla, F.; Kahaly, S.; Flacco, A.; Veltcheva, M.; Sanchez-Arriaga, G.; Lefebvre, E.; Malka, V.

    2014-03-01

    We report on the ion acceleration mechanisms that occur during the interaction of an intense and ultrashort laser pulse (I\\lambda^{2}>10^{18} \\text{W}\\,\\text{cm}^{-2}\\,\\mu \\text{m}^{2}) with an underdense helium plasma produced from an ionized gas jet target. In this unexplored regime, where the laser pulse duration is comparable to the inverse of the electron plasma frequency {{\\omega }_{pe}}, reproducible non-thermal ion bunches have been measured in the radial direction. The two He ion charge states present energy distributions with cutoff energies between 150 and 200 keV, and a striking energy gap around 50 keV appearing consistently for all the shots in a given density range. Fully electromagnetic particle-in-cell simulations explain the experimental behaviors. The acceleration results from a combination of target normal sheath acceleration and Coulomb explosion of a filament formed around the laser pulse propagation axis.

  7. Lower hybrid resonance acceleration of electrons and ions in solar flares and the associated microwave emission

    NASA Technical Reports Server (NTRS)

    Mcclements, K. G.; Bingham, R.; Su, J. J.; Dawson, J. M.; Spicer, D. S.

    1993-01-01

    The particle acceleration processes here studied are driven by the relaxation of unstable ion ring distributions; these produce strong wave activity at the lower hybrid resonance frequency which collapses, and forms energetic electron and ion tails. The results obtained are applied to the problem posed by the production of energetic particles by solar flares. The numerical simulation results thus obtained by a 2 1/2-dimensional particle-in-cell code show a simultaneous acceleration of electrons to 10-500 keV energies, and of ions to as much as the 1 MeV range; the energy of the latter is still insufficient to account for gamma-ray emission in the 4-6 MeV range, but furnish a seed population for further acceleration.

  8. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  9. Microdosimetry for a carbon ion beam using track-etched detectors.

    PubMed

    Ambrožová, I; Vondráček, V; Šefl, M; Štěpán, V; Pachnerová Brabcová, K; Ploc, O; Incerti, S; Davídková, M

    2015-09-01

    Track-etched detectors (TED) have been used as linear energy transfer (LET) spectrometers in heavy ion beams for many years. LET spectra and depth-dose distribution of a carbon ion beam were measured behind polymethylmethacrylate degraders at Heavy Ion Medical Accelerator in Chiba, Japan. The measurements were performed along monoenergetic beam with energy 290 MeV u(-1) in different positions: (1) at beam extraction area, (2) at beginning, (3) maximum and (4) behind the Bragg peak region (0, 117, 147 and 151 mm of water-equivalent depth, respectively). The LET spectra inside and outside of the primary ion beam have been evaluated. TED record only heavy charged particles with LET above 8-10 keV µm(-1), while electrons and ions with lower LET are not detected. The Geant4 simulation toolkit version 4.9.6.P01 has been used to estimate the contribution of non-detected particles to absorbed dose. Presented results demonstrate the applicability of TED for microdosimetry measurements in therapeutic carbon ion beams. PMID:25862534

  10. Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-01-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  11. Magnetosheath filamentary structures formed by ion acceleration at the quasi-parallel bow shock

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-04-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  12. Accelerated soil carbon turnover under tree plantations limits soil carbon storage

    NASA Astrophysics Data System (ADS)

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation’s canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations.

  13. Accelerated soil carbon turnover under tree plantations limits soil carbon storage.

    PubMed

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation's canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations. PMID:26805949

  14. Accelerated soil carbon turnover under tree plantations limits soil carbon storage

    PubMed Central

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation’s canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations. PMID:26805949

  15. Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-10-10

    We use large hybrid simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient, we find that the upstream magnetic field is significantly amplified. The total amplification factor is larger than 10 for shocks with Alfvénic Mach number M = 100, and scales with the square root of M. The spectral energy density of excited magnetic turbulence is determined by the energy distribution of accelerated particles, and for moderately strong shocks (M ≲ 30) agrees well with the prediction of resonant streaming instability, in the framework of quasilinear theory of diffusive shock acceleration. For M ≳ 30, instead, Bell's non-resonant hybrid (NRH) instability is predicted and found to grow faster than resonant instability. NRH modes are excited far upstream by escaping particles, and initially grow without disrupting the current, their typical wavelengths being much shorter than the current ions' gyroradii. Then, in the nonlinear stage, most unstable modes migrate to larger and larger wavelengths, eventually becoming resonant in wavelength with the driving ions, which start diffuse. Ahead of strong shocks we distinguish two regions, separated by the free-escape boundary: the far upstream, where field amplification is provided by the current of escaping ions via NRH instability, and the shock precursor, where energetic particles are effectively magnetized, and field amplification is provided by the current in diffusing ions. The presented scalings of magnetic field amplification enable the inclusion of self-consistent microphysics into phenomenological models of ion acceleration at non-relativistic shocks.

  16. Multi-charged heavy ion acceleration from the ultra-intense short pulse laser system interacting with the metal target

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Maeda, S.; Sagisaka, A.; Pirozhkov, A. S.; Pikuz, T.; Faenov, A.; Ogura, K.; Kanasaki, M.; Matsukawa, K.; Kusumoto, T.; Tao, A.; Fukami, T.; Esirkepov, T.; Koga, J.; Kiriyama, H.; Okada, H.; Shimomura, T.; Tanoue, M.; Nakai, Y.; Fukuda, Y.; Sakai, S.; Tamura, J.; Nishio, K.; Sako, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.

    2014-02-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. Al ions are accelerated up to 12 MeV/u (324 MeV total energy). To our knowledge, this is far the highest energy ever reported for the case of acceleration of the heavy ions produced by the <10 J laser energy of 200 TW class Ti:sapphire laser system. Adding to that, thanks to the extraordinary high intensity laser field of ˜1021 W cm-2, the accelerated ions are almost fully stripped, having high charge to mass ratio (Q/M).

  17. Separation of Carbon Dioxide from Flue Gas Using Ion Pumping

    SciTech Connect

    Aines, R; Bourcier, W L; Johnson, M R

    2006-04-21

    We are developing a new way of separating carbon dioxide from flue gas based on ionic pumping of carbonate ions dissolved in water. Instead of relying on large temperature or pressure changes to remove carbon dioxide from solvent used to absorb it from flue gas, the ion pump increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, which can be removed from the downstream side of the ion pump as a nearly pure gas. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas. The slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. The simple, robust nature of the process lends itself to small separation plants. Although the energy cost of the ion pump is significant, we anticipate that it will be compete favorably with the current 35% energy penalty of chemical stripping systems in use at power plants. There is the distinct possibility that this simple method could be significantly more efficient than existing processes.

  18. Ion exclusion by sub-2-nm carbon nanotube pores

    PubMed Central

    Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Grigoropoulos, Costas P.; Noy, Aleksandr; Bakajin, Olgica

    2008-01-01

    Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important. PMID:18539773

  19. Acceleration of ions by electric field pulses in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Liu, J.; Angelopoulos, V.; Runov, A.

    2015-06-01

    Intense (˜5-15 mV/m), short-lived (≤1 min) electric field pulses have been observed to accompany earthward propagating, dipolarizing flux bundles (flux tubes with a strong magnetic field) before they are stopped by the strong dipole field. Using Time History of Events and Macroscale Interactions during Substorms observations and test particle modeling, we investigate particle acceleration around L shell ˜7-9 in the nightside magnetosphere and demonstrate that such pulses can effectively accelerate ions with tens of keV initial energy to hundreds of keV. This acceleration occurs because the ion gyroradius is comparable to the spatial scale of the localized electric field pulse at the leading edge of the flux bundle before it stops. The proposed acceleration mechanism can reproduce observed spectra of high-energy ions. We conclude that the electric field associated with dipolarizing flux bundles prior to their stoppage in the inner magnetosphere provides a natural site for intense local ion acceleration.

  20. Investigation of laser ion acceleration inside irradiated solid targets by neutron spectroscopy

    SciTech Connect

    Youssef, A.; Kodama, R.; Tampo, M.

    2006-03-15

    Origins and acceleration directions of accelerated ions inside solid LiF, CH-LiF, and LiF-CH targets irradiated by a 450 fs, 20 J, 1053 nm laser at an intensity of 3x10{sup 18} W/cm{sup 2} have been investigated by neutron spectroscopy. The irradiated targets generate neutrons through the reaction {sup 7}Li (p,n){sup 7}Be between accelerated protons and background {sup 7}Li ions inside the target. The produced neutron spectra observed from two different observation angles 20 deg. and 120 deg. to the target rear-side normal. From the measured and calculated spectra, by three-dimensional Monte Carlo code, the maximum energy, the total number, and the slope temperature of the accelerated ions are investigated. The results indicate that ions are not only accelerated from the front surface toward the rear surface, but also from the rear surface toward the front surface with comparable maximum energy and higher number.

  1. Focused Ion Beam Microscopy of ALH84001 Carbonate Disks

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Vali, Hojatollah; Gibson, Everett K., Jr.; Romanek, Christopher S.

    2005-01-01

    Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. A prerequisite is that a detailed characterization of the chemical and physical properties of the carbonate be established. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy. Our results suggest that the formation of ALH84001 carbonate assemblages were produced by considerably more complex process(es) than simple aqueous precipitation followed by partial thermal decomposition as proposed by other investigators [e.g., 1-3].

  2. Time resolved diagnostics of ions in colliding carbon plasmas

    SciTech Connect

    Singh, Ravi Pratap; Gupta, Shyam L.; Thareja, Raj K.

    2014-11-14

    We report a comparative study of the dynamic behaviour of ions at different pressures in laser ablated colliding and single plasma plumes using 2D imaging, optical emission spectroscopy (OES) and a retarding field analyser (RFA). 2D imaging shows the splitting of plasma plumes due to different velocities of various plasma species. OES shows enhancement in abundance of ionic species with their presence for a longer time in colliding plume. C{sub 2} molecular formation is seen at later time in colliding plume compared to single plume and is attributed to dominating collisional processes in the colliding region of the plumes. The time of flight distribution of ions traced by the RFA shows the variation with change in fluence as well as ambient pressure for both colliding and single plume. Time of flight analysis of ions also shows the appearance of a fast peak in ion signal due to acceleration of ions at larger fluence.

  3. Investigation of ion acceleration mechanism through laser-matter interaction in femtosecond domain

    NASA Astrophysics Data System (ADS)

    Altana, C.; Muoio, A.; Lanzalone, G.; Tudisco, S.; Brandi, F.; Cirrone, G. A. P.; Cristoforetti, G.; Fazzi, A.; Ferrara, P.; Fulgentini, L.; Giove, D.; Koester, P.; Labate, L.; Mascali, D.; Palla, D.; Schillaci, F.; Gizzi, L. A.

    2016-09-01

    An experimental campaign aiming to investigate the ion acceleration mechanisms through laser-matter interaction in the femtosecond domain has been carried out at the ILIL facility at a laser intensity of up to 2×1019 W/cm2. A Thomson Parabola Spectrometer was used to identify different ion species and measure the energy spectra and the corresponding temperature parameters. We discuss the dependence of the protons spectra upon the structural characteristics of the targets (thickness and atomic mass) and the role of surface versus target bulk during acceleration process.

  4. Induction-accelerator heavy-ion fusion: Status and beam physics issues

    SciTech Connect

    Friedman, A.

    1996-01-26

    Inertial confinement fusion driven by beams of heavy ions is an attractive route to controlled fusion. In the U.S., induction accelerators are being developed as {open_quotes}drivers{close_quotes} for this process. This paper is divided into two main sections. In the first section, the concept of induction-accelerator driven heavy-ion fusion is briefly reviewed, and the U.S. program of experiments and theoretical investigations is described. In the second, a {open_quotes}taxonomy{close_quotes} of space-charge-dominated beam physics issues is presented, accompanied by a brief discussion of each area.

  5. Collective acceleration of electrons and ions in a high current relativistic electron beam. Final report

    SciTech Connect

    Nation, J.A.

    1996-12-31

    The original purpose of this research was an investigation into the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three main objectives namely, the development of a suitable ion injector, the growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components parts into a suitable proof of principle demonstration of the wave accelerator. This work focusses on the first two of these objectives.

  6. SETUP AND PERFORMANCE OF THE RHIC INJECTOR ACCELERATORS FOR THE 2007 RUN WITH GOLD IONS

    SciTech Connect

    GARDNER,C.; AHRENS, L.; ALESSI, J.; BENJAMIN, J.; BLASKIEWICZ, M.; ET AL.

    2007-06-25

    Gold ions for the 2007 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators is reviewed with a focus on improvements in the quality of beam delivered to RHIC. In particular, more uniform stripping foils between Booster and AGS7 and a new bunch merging scheme in AGS have provided beam bunches with reduced longitudinal emittance for RHIC.

  7. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1988--March 31, 1989

    SciTech Connect

    Not Available

    1989-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; and final bunching, transport, and accurate focusing on a small target.

  8. Development of polarized ion source for the JINR accelerator complex

    NASA Astrophysics Data System (ADS)

    Fimushkin, V. V.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu V.; Shutov, B.; Belov, A. S.; Zubets, V. N.; Turbabin, A. V.

    2016-02-01

    Status of the JINR polarized ion source development is described. The source is under tests at the test-bench of LHEP, JINR. A charge-exchange plasma ionizer has been tested initially without a storage cell in the ionization region. An unpolarized deuterium ion beam with peak current of 160 mA, 23 keV energy, pulse duration of 100 μs and repetition rate of 1 Hz has been extracted from the ionizer. With a free polarized atomic hydrogen beam injected into the ionizer a polarized proton beam with peak current of 1.4 mA has been obtained. The nearest plans for the source development include tests of the ionizer with the storage cell and tuning of the high frequency transition units installed in their operating position with a Breit-Rabi polarimeter.

  9. Four-rod-λ/2-RFQ for light ion acceleration

    NASA Astrophysics Data System (ADS)

    Schempp, A.; Deitinghoff, H.; Ferch, M.; Junior, P.; Klein, H.

    1985-05-01

    A simple type of RFQ structure with circular rods as electrodes has been developed in Frankfurt. The improved design uses a linear arrangement of supporting stems on a massive common bar. This linear rf structure consists of a chain of λ/2-line pairs and leads to an advantageously simple but nonetheless effective RFQ structure. With this stable cheap type of RFQ resonator preaccelerator prototypes have been built for light ions. New results of electrode and structure optimization and beam measurements are presented.

  10. Modification to the accelerator of the NBI-1B ion source for improving the injection efficiency.

    PubMed

    Kim, T S; Jeong, S H; Chang, D H; In, S R; Park, M; Jung, B K; Lee, K W; Wang, S J; Bae, Y S; Park, H T; Kim, J S; Cho, W; Choi, D J

    2016-02-01

    Minimizing power loss of a neutral beam imposes modification of the accelerator of the ion source for further improvement of the beam optics. The beam optics can be improved by focusing beamlets. The injection efficiencies by the steering of ion beamlets are investigated numerically to find the optimum modification of the accelerator design of the NBI-1B ion source. The beam power loss was reduced by aperture displacement of three edge beamlets arrays considering power loadings on the beamline components. Successful testing and operation of the ion source at 60 keV/84% of injection efficiency led to the possibility of enhancing the system capability to a 2.4 MW power level at 100 keV/1.9 μP. PMID:26932045

  11. Modification to the accelerator of the NBI-1B ion source for improving the injection efficiency

    NASA Astrophysics Data System (ADS)

    Kim, T. S.; Jeong, S. H.; Chang, D. H.; In, S. R.; Park, M.; Jung, B. K.; Lee, K. W.; Wang, S. J.; Bae, Y. S.; Park, H. T.; Kim, J. S.; Cho, W.; Choi, D. J.

    2016-02-01

    Minimizing power loss of a neutral beam imposes modification of the accelerator of the ion source for further improvement of the beam optics. The beam optics can be improved by focusing beamlets. The injection efficiencies by the steering of ion beamlets are investigated numerically to find the optimum modification of the accelerator design of the NBI-1B ion source. The beam power loss was reduced by aperture displacement of three edge beamlets arrays considering power loadings on the beamline components. Successful testing and operation of the ion source at 60 keV/84% of injection efficiency led to the possibility of enhancing the system capability to a 2.4 MW power level at 100 keV/1.9 μP.

  12. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    SciTech Connect

    Kovtun, Maxim Kearsley, Elsabe P. Shekhovtsova, Julia

    2015-06-15

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator.

  13. Single-ion adsorption and switching in carbon nanotubes

    PubMed Central

    Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; Hopkins, Alan R.; Chen, Jihan; Cronin, Stephen B.

    2016-01-01

    Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes, by the mechanism of ion potential-induced carrier depletion, which is supported by density functional and Landauer transport theory. Our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important. PMID:26805462

  14. Single-ion adsorption and switching in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; Hopkins, Alan R.; Chen, Jihan; Cronin, Stephen B.

    2016-01-01

    Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes, by the mechanism of ion potential-induced carrier depletion, which is supported by density functional and Landauer transport theory. Our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.

  15. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1985-March 31, 1986

    SciTech Connect

    Not Available

    1986-05-01

    The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: (1) beam quality limits set by transverse and longitudinal beam physics; (2) development of induction accelerating modules, and multiple beam hardware, at affordable costs; (3) acceleration of multiple beams with current amplification - both new features in a linac - without significant dilution of the optical quality of the beams; (4) fianl bunching, transport, and accurate focussing on a small target.

  16. A singly charged ion source for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  17. A singly charged ion source for radioactive ¹¹C ion acceleration.

    PubMed

    Katagiri, K; Noda, A; Nagatsu, K; Nakao, M; Hojo, S; Muramatsu, M; Suzuki, K; Wakui, T; Noda, K

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source. PMID:26932062

  18. Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Hong, In-Seok

    2016-02-01

    RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement of the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.

  19. Laser ion acceleration by using the dynamic motion of a target

    SciTech Connect

    Morita, Toshimasa

    2013-09-15

    Proton acceleration by using a 620 TW, 18 J laser pulse of peak intensity of 5×10{sup 21} W/cm{sup 2} irradiating a disk target is examined using three-dimensional particle-in-cell simulations. It is shown that protons are accelerated efficiently to high energy for a “light” material in the first layer of a double-layer target, because a strongly inhomogeneous expansion of the first layer occurs by a Coulomb explosion within such a material. Moreover, a large movement of the first layer for the accelerated protons is produced by radiation-pressure-dominant acceleration. A time-varying electric potential produced by this expanding and moving ion cloud accelerates protons effectively. In addition, using the best material for the target, one can generate a proton beam with an energy of 200 MeV and an energy spread of 2%.

  20. H-mode accelerating structures with PMQ focusing for low-beta ion beams

    SciTech Connect

    Kurennoy, Sergey S; O' Hara, James F; Olivas, Eric R; Rybarcyk, Lawrence J

    2010-01-01

    We are developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. Such IH-PMQ accelerating structures following a short RFQ can be used in the front end of ion linacs or in stand-alone applications, e.g. a compact deuteron-beam accelerator up to the energy of several MeV. Results of combined 3-D modeling for a full IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis - are presented. The accelerating field profile in the tank is tuned to provide the best beam propagation using coupled iterations of electromagnetic and beam-dynamics modeling. A cold model of the IH-PMQ tank is being manufactured.

  1. Fluoro-Carbonate Solvents for Li-Ion Cells

    SciTech Connect

    NAGASUBRAMANIAN,GANESAN

    1999-09-17

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

  2. Environmental remediation and conversion of carbon dioxide (CO(2)) into useful green products by accelerated carbonation technology.

    PubMed

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO(2)), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called 'accelerated carbonation', which completes its fast reaction within few hours by using pure CO(2). Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO(2) in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO(2) emissions and environmental remediation. PMID:20195442

  3. Mesenchymal stem cells are resistant to carbon ion radiotherapy

    PubMed Central

    Nicolay, Nils H.; Liang, Yingying; Perez, Ramon Lopez; Bostel, Tilman; Trinh, Thuy; Sisombath, Sonevisay; Weber, Klaus-Josef; Ho, Anthony D.; Debus, Jürgen; Saffrich, Rainer; Huber, Peter E.

    2015-01-01

    Mesenchymal stem cells (MSCs) participate in regeneration of tissues damaged by ionizing radiation. However, radiation can damage MSCs themselves. Here we show that cellular morphology, adhesion and migration abilities were not measurably altered by photon or carbon ion irradiation. The potential for differentiation was unaffected by either form of radiation, and established MSC surface markers were found to be stably expressed irrespective of radiation treatment. MSCs were able to efficiently repair DNA double strand breaks induced by both high-dose photon and carbon ion radiation. We have shown for the first time that MSCs are relatively resistant to therapeutic carbon ion radiotherapy. Additionally, this form of radiation did not markedly alter the defining stem cell properties or the expression of established surface markers in MSCs. PMID:25504442

  4. Energetic-ion acceleration and transport in the upstream region of Jupiter: Voyager 1 and 2

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Zwickl, R. D.; Carbary, J. F.; Krimigis, S. M.; Lepping, R. P.

    1982-01-01

    Long-lived upstream energetic ion events at Jupiter appear to be very similar in nearly all respects to upstream ion events at Earth. A notable difference between the two planetary systems is the enhanced heavy ion compositional signature reported for the Jovian events. This compositional feature has suggested that ions escaping from the Jovian magnetosphere play an important role in forming upstream ion populations at Jupiter. In contrast, models of energetic upstream ions at Earth emphasize in situ acceleration of reflected solar wind ions within the upstream region itself. Using Voyager 1 and 2 energetic ( approximately 30 keV) ion measurements near the magnetopause, in the magnetosheath, and immediately upstream of the bow shock, the compositional patterns are examined together with typical energy spectra in each of these regions. A model involving upstream Fermi acceleration early in events and emphasizing energetic particle escape in the prenoon part of the Jovian magnetosphere late in events is presented to explain many of the features in the upstream region of Jupiter.

  5. PREFERENTIAL ACCELERATION AND PERPENDICULAR HEATING OF MINOR IONS IN A COLLISIONLESS CORONAL HOLE

    SciTech Connect

    Isenberg, Philip A.; Vasquez, Bernard J.

    2009-05-01

    We incorporate the cyclotron-resonant Fermi heating mechanism of Isenberg and Vasquez into an inhomogeneous, collisionless coronal hole model to investigate this kinetic process in the presence of the other known forces on the coronal hole minor ions. The model includes the effects of gravity, charge-separation electric field, and mirroring in the decreasing magnetic field of a super-radially expanding flux tube. The Fermi process, due to the existence of multiple cyclotron resonances for minor ions, acts preferentially since it is not available to thermal protons in the low-beta coronal hole. The minor ions are treated as test particles, and we consider the specific case of O{sup 5+}, which is the principal minor ion observed by the UVCS/Solar and Heliospheric Observatory instrument. We estimate an upper limit to the nonlinearly generated resonant wave power by extrapolating from the observed low-frequency fluctuations, and find that only a small fraction of this power is required to provide the observed minor ion energization. The perpendicular heating provided by this Fermi mechanism accelerates the entire minor ion distribution to high speed with respect to the bulk protons, consistent with the differentially streaming minor ion core distributions which are a distinctive property of the in situ fast solar wind. We conclude that this cyclotron-resonant Fermi process is easily capable of providing the observed preferential acceleration and heating of minor ions in the fast solar wind.

  6. Collisionless shock formation and the prompt acceleration of solar flare ions

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Goodrich, C. C.; Vlahos, L.

    1988-01-01

    The formation mechanisms of collisionless shocks in solar flare plasmas are investigated. The priamry flare energy release is assumed to arise in the coronal portion of a flare loop as many small regions or 'hot spots' where the plasma beta locally exceeds unity. One dimensional hybrid numerical simulations show that the expansion of these 'hot spots' in a direction either perpendicular or oblique to the ambient magnetic field gives rise to collisionless shocks in a few Omega(i), where Omega(i) is the local ion cyclotron frequency. For solar parameters, this is less than 1 second. The local shocks are then subsequently able to accelerate particles to 10 MeV in less than 1 second by a combined drift-diffusive process. The formation mechanism may also give rise to energetic ions of 100 keV in the shock vicinity. The presence of these energetic ions is due either to ion heating or ion beam instabilities and they may act as a seed population for further acceleration. The prompt acceleration of ions inferred from the Gamma Ray Spectrometer on the Solar Maximum Mission can thus be explained by this mechanism.

  7. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments

    PubMed Central

    Armbruster, Ute; Carrillo, L. Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A.; Kramer, David M.; Jonikas, Martin C.

    2014-01-01

    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K+ efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3’s activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. PMID:25451040

  8. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments.

    PubMed

    Armbruster, Ute; Carrillo, L Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A; Kramer, David M; Jonikas, Martin C

    2014-01-01

    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K(+) efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3's activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. PMID:25451040

  9. Thermally Accelerated Oxidative Degradation of Quercetin Using Continuous Flow Kinetic Electrospray-Ion Trap-Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Jeremy S.; Foss, Frank W.; Schug, Kevin A.

    2013-10-01

    Thermally accelerated oxidative degradation of aqueous quercetin at pH 5.9 and 7.4 was kinetically measured using an in-house built online continuous flow device made of concentric capillary tubes, modified to fit to the inlet of an electrospray ionization-ion trap-time-of-flight-mass spectrometer (ESI-IT-TOF-MS). Time-resolved mass spectral measurements ranging from 2 to 21 min were performed in the negative mode to track intermediate degradation products and to evaluate the degradation rate of the deprotonated quercetin ion, [Q-H]-. Upon heating solutions in the presence of dissolved oxygen, degradation of [Q-H]- was observed and was accelerated by an increase in pH and temperature. Regardless of the condition, the same degradation pathways were observed. Degradation mechanisms and structures were determined using higher order tandem mass spectrometry (up to MS3) and high mass accuracy. The observed degradation mechanisms included oxidation, hydroxylation, and ring-cleavage by nucleophilic attack. A chalcan-trione structure formed by C-ring opening after hydroxylation at C2 was believed to be a precursor for other degradation products, formed by hydroxylation at the C2, C3, and C4 carbons from attack by nucleophilic species. This resulted in A-type and B-type ions after cross-ring cleavage of the C-ring. Based on time of appearance and signal intensity, nucleophilic attack at C3 was the preferred degradation pathway, which generated 2,4,6-trihydroxymandelate and 2,4,6-trihydroxyphenylglyoxylate ions. Overall, 23 quercetin-related ions were observed.

  10. Beamed neutron emission driven by laser accelerated light ions

    NASA Astrophysics Data System (ADS)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher–catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ∼ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher–catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  11. Cryogenic molecular separation system for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Suzuki, K.; Nagatsu, K.; Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ramzdorf, A. Yu.; Nakao, M.; Hojo, S.; Wakui, T.; Noda, K.

    2015-12-01

    A 11C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. In the ISOL system, 11CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive 12CH4 gases, which can simulate the chemical characteristics of 11CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  12. Distributed UHV system for the folded tandem ion accelerator facility at BARC

    NASA Astrophysics Data System (ADS)

    Gupta, S. K.; Agarwal, A.; Singh, S. K.; Basu, A.; P, Sapna; Sarode, S. P.; Singh, V. P.; Subrahmanyam, N. B. V.; Bhatt, J. P.; Pol, S. S.; Raut, P. J.; Ware, S. V.; Singh, P.; Choudhury, R. K.; Kailas, S.

    2008-05-01

    The 6 MV Folded Tandem Ion Accelerator (FOTIA) Facility at the Nuclear Physics Division, BARC is operational and accelerated beams of both light and heavy ions are being used extensively for basic and applied research. An average vacuum of the order of 10-8-10-9 Torr is maintained for maximum beam transmission and minimum beam energy spreads. The FOTIA vacuum system comprises of about 55 meter long, 100 mm diameter beam lines including various diagnostic devices, two accelerating tubes and four narrow vacuum chambers. The cross sections of the vacuum chambers are 14mm × 24mm for 180°, 38mm × 60mm and 19 × 44 mm for the and 70° & 90° bending magnets and Switching chambers respectively. All the beam line components are UHV compatible, fabricated from stainless steel 304L grade material fitted with metal gaskets. The total volume ~5.8 × 105 cm3 and surface area of 4.6 × 104 cm2, interspersed with total 18 pumping stations. The accelerating tubes are subjected to very high voltage gradient, 20.4 kV/cm, which requires a hydrocarbon free and clean vacuum for smooth operation of the accelerator. Vacuum interlocks are provided to various devices for safe operation of the accelerator. Specially designed sputter ion pumps for higher environmental pressure of 8 atmospheres are used to pump the accelerating tubes and the vacuum chamber for the 180° bending magnet. Fast acting valves are provided for isolating main accelerator against accidental air rush from rest of the beam lines. All the vacuum readings are displayed locally and are also available remotely through computer interface to the Control Room. Vacuum system details are described in this paper.

  13. Microstructure evolution in carbon-ion implanted sapphire

    SciTech Connect

    Orwa, J. O.; McCallum, J. C.; Jamieson, D. N.; Prawer, S.; Peng, J. L.; Rubanov, S.

    2010-01-15

    Carbon ions of MeV energy were implanted into sapphire to fluences of 1x10{sup 17} or 2x10{sup 17} cm{sup -2} and thermally annealed in forming gas (4% H in Ar) for 1 h. Secondary ion mass spectroscopy results obtained from the lower dose implant showed retention of implanted carbon and accumulation of H near the end of range in the C implanted and annealed sample. Three distinct regions were identified by transmission electron microscopy of the implanted region in the higher dose implant. First, in the near surface region, was a low damage region (L{sub 1}) composed of crystalline sapphire and a high density of plateletlike defects. Underneath this was a thin, highly damaged and amorphized region (L{sub 2}) near the end of range in which a mixture of i-carbon and nanodiamond phases are present. Finally, there was a pristine, undamaged sapphire region (L{sub 3}) beyond the end of range. In the annealed sample some evidence of the presence of diamond nanoclusters was found deep within the implanted layer near the projected range of the C ions. These results are compared with our previous work on carbon implanted quartz in which nanodiamond phases were formed only a few tens of nanometers from the surface, a considerable distance from the projected range of the ions, suggesting that significant out diffusion of the implanted carbon had occurred.

  14. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion acceleration

    SciTech Connect

    Sahai, Aakash A.

    2014-05-15

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a{sub 0}>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.

  15. Direct observation of prompt pre-thermal laser ion sheath acceleration.

    PubMed

    Zeil, K; Metzkes, J; Kluge, T; Bussmann, M; Cowan, T E; Kraft, S D; Sauerbrey, R; Schramm, U

    2012-01-01

    High-intensity laser plasma-based ion accelerators provide unsurpassed field gradients in the megavolt-per-micrometer range. They represent promising candidates for next-generation applications such as ion beam cancer therapy in compact facilities. The weak scaling of maximum ion energies with the square-root of the laser intensity, established for large sub-picosecond class laser systems, motivates the search for more efficient acceleration processes. Here we demonstrate that for ultrashort (pulse duration ~30 fs) highly relativistic (intensity ~10(21) W cm(-2)) laser pulses, the intra-pulse phase of the proton acceleration process becomes relevant, yielding maximum energies of around 20 MeV. Prominent non-target-normal emission of energetic protons, reflecting an engineered asymmetry in the field distribution of promptly accelerated electrons, is used to identify this pre-thermal phase of the acceleration. The relevant timescale reveals the underlying physics leading to the near-linear intensity scaling observed for 100 TW class table-top laser systems. PMID:22673901

  16. Direct observation of prompt pre-thermal laser ion sheath acceleration

    PubMed Central

    Zeil, K.; Metzkes, J.; Kluge, T.; Bussmann, M.; Cowan, T.E.; Kraft, S.D.; Sauerbrey, R.; Schramm, U.

    2012-01-01

    High-intensity laser plasma-based ion accelerators provide unsurpassed field gradients in the megavolt-per-micrometer range. They represent promising candidates for next-generation applications such as ion beam cancer therapy in compact facilities. The weak scaling of maximum ion energies with the square-root of the laser intensity, established for large sub-picosecond class laser systems, motivates the search for more efficient acceleration processes. Here we demonstrate that for ultrashort (pulse duration ~30 fs) highly relativistic (intensity ~1021 W cm−2) laser pulses, the intra-pulse phase of the proton acceleration process becomes relevant, yielding maximum energies of around 20 MeV. Prominent non-target-normal emission of energetic protons, reflecting an engineered asymmetry in the field distribution of promptly accelerated electrons, is used to identify this pre-thermal phase of the acceleration. The relevant timescale reveals the underlying physics leading to the near-linear intensity scaling observed for 100 TW class table-top laser systems. PMID:22673901

  17. Helicon Plasma Injector and Ion Cyclotron Acceleration Development in the VASIMR Experiment

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang, Franklin R.; Jacobson, Verlin T.; McCaskill, Greg E.; Bengtson, Roger D.; Goulding, Richard H.

    2000-01-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) radio frequency (rf) waves both produce the plasma and then accelerate the ions. The plasma production is done by action of helicon waves. These waves are circular polarized waves in the direction of the electron gyromotion. The ion acceleration is performed by ion cyclotron resonant frequency (ICRF) acceleration. The Advanced Space Propulsion Laboratory (ASPL) is actively developing efficient helicon plasma production and ICRF acceleration. The VASIMR experimental device at the ASPL is called VX-10. It is configured to demonstrate the plasma production and acceleration at the 10kW level to support a space flight demonstration design. The VX-10 consists of three electromagnets integrated into a vacuum chamber that produce magnetic fields up to 0.5 Tesla. Magnetic field shaping is achieved by independent magnet current control and placement of the magnets. We have generated both helium and hydrogen high density (>10(exp 18) cu m) discharges with the helicon source. ICRF experiments are underway. This paper describes the VX-10 device, presents recent results and discusses future plans.

  18. Ion beam generation and focusing on PBFA (Particle Beam Fusion Accelerator) II

    SciTech Connect

    Stinnett, R.W.; Bailey, J.E.; Bieg, K.W.; Coats, R.S.; Chandler, G.; Derzon, M.S.; Desjarlais, M.P.; Dreike, P.L.; Gerber, R.A.; Johnson, D.J.; Leeper, R.J.; Lockner, T.R.; Maenchen, J.; Mehlhorn, T.A.; Pregenzer, A.L.; Quintenz, J.P.; Renk, T.J.; Rosenthal, S.E.; Ruiz, C.L.; Slutz, S.A.; Stygar, W.A.; Tisone, G.C.; Woodworth, J.R. ); Maron, Y. (Weizmann Inst. of Science, R

    1990-01-01

    During the past year we have succeeded in obtaining a 5 TW/cm{sup 2} proton focus on Sandia National Laboratories' Particle Beam Fusion Accelerator (PBFA) II. This has allowed us to shift our experimental emphasis to the implementation of an improved ion diode geometry for higher voltage operation, full azimuthal beam characterization, and especially lithium ion source experiments. We have made significant progress in each of these areas during the past year, demonstrating 10 MV diode operation, {plus minus}10% azimuthal beam symmetry, and promising initial results from lithium ion source experiments. 8 refs., 6 figs.

  19. Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient

    SciTech Connect

    Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff

    2004-10-28

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities.

  20. Carbon nitride films formed using sputtering and negative carbon ion sources

    SciTech Connect

    Murzin, I.H.; Tompa, G.S.; Wei, J.; Muratov, V.; Fischer, T.E.; Yakovlev, V.

    1997-12-01

    The authors report the results of using sputtering and negative carbon ion sources to prepare thin films of carbon nitride. In this work, they compare the structural, tribological, and optical properties of the carbon nitride films that were prepared by two different ion assisted techniques. In the first approach they used a magnetron gun to sputter deposit carbon in a nitrogen atmosphere. The second method utilized a beam of negatively charged carbon ions of 1 to 5 {micro}A/cm{sup 2} current density impinging the substrate simultaneously with a positive nitrogen ion beam produced by a Kaufman source. They were able to synthesize microscopically smooth coatings with the carbon to nitrogen ratio of 1:0.47. These films possess wear rates lower than 5 {times} 10{sup {minus}7} mm{sup 3}/Nm and friction coefficients in the range of 0.16 to 0.6. Raman spectroscopy revealed that the magnetron sputtered films are more structurally disordered than those formed with the negative carbon ion gun. FTIR showed the presence of the C{triple_bond}N stretching mode in both types of films. Finally, spectroscopic ellipsometry produced films with dielectric constants as low as 2.3 in the photon energy range from 1.2 to 5 eV.

  1. DEVELOPING THE PHYSICS DESIGN FOR NDCX-II, A UNIQUE PULSE-COMPRESSING ION ACCELERATOR

    SciTech Connect

    Friedman, A.; Barnard, J. J.; Cohen, R. H.; Grote, D. P.; Lund, S. M.; Sharp, W. M.; Faltens, A.; Henestroza, E.; Jung, J-Y.; Kwan, J. W.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Vay, J.-L.; Waldron, W. L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.

    2009-07-20

    The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  2. FAIR - An International Accelerator Facility for Research with Ions and Antiprotons

    SciTech Connect

    Henning, Walter

    2005-06-08

    An overview is given on the international Facility for Antiproton and Ion Research (FAIR) at GSI, its science motivation and goals, the facility lay-out and characteristics, the accelerator design challenges, the schedule for construction, and the international interest/participation in the project.

  3. Developing The Physics Desing for NDCS-II, A Unique Pulse-Compressing Ion Accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J -; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-09-24

    The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  4. Biological and medical research with accelerated heavy ions at the Bevalac, 1977-1980. [Lead abstract

    SciTech Connect

    Pirruccello, M.C.; Tobias, C.A.

    1980-11-01

    Separate abstracts were prepared for the 46 papers presented in this progress report. This report is a major review of studies with accelerated heavy ions carried out by the Biology and Medicine Division of Lawrence Berkeley Laboratory from 1977 to 1980. (KRM)

  5. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  6. Acceleration of electrons and ions by strong lower-hybrid turbulence in solar flares

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Bingham, R.; Su, J. J.; Shapiro, V. D.; Shevchenko, V.; Ma, S.; Dawson, J. M.; Mcclements, K. G.

    1994-01-01

    One of the outstanding problems in solar flare theory is how to explain the 10-20 keV and greater hard x-ray emissions by a thick target bremsstrahlung model. The model requires the acceleration mechanism to accelerate approximately 10(exp 35) electrons sec(exp -l) with comparable energies, without producing a large return current which persists for long time scales after the beam ceases to exist due to Lenz's law, thereby, producing a self-magnetic field of order a few mega-Gauss. In this paper, we investigate particle acceleration resulting from the relaxation of unstable ion ring distributions, producing strong wave activity at the lower hybrid frequency. It is shown that strong lower hybrid wave turbulence collapses in configuration space producing density cavities containing intense electrostatic lower hybrid wave activity. The collapse of these intense nonlinear wave packets saturate by particle acceleration producing energetic electron and ion tails. There are several mechanisms whereby unstable ion distributions could be formed in the solar atmosphere, including reflection at perpendicular shocks, tearing modes, and loss cone depletion. Numerical simulations of ion ring relaxation processes, obtained using a 2 1/2-D fully electromagnetic, relativistic particle in cell code are discussed. We apply the results to the problem of explaining energetic particle production in solar flares. The results show the simultaneous acceleration of both electrons and ions to very high energies: electrons are accelerated to energies in the range 10-500 keV, while ions are accelerated to energies of the order of MeVs, giving rise to x-ray emission and gamma-ray emission respectively. Our simulations also show wave generation at the electron cyclotron frequency. We suggest that these waves are the solar millisecond radio spikes. The strong turbulence collapse process leads to a highly filamented plasma producing many localized regions for particle acceleration and resulting in

  7. High-brightness ion and electron rf linear accelerators

    SciTech Connect

    Jameson, R.A. )

    1989-01-01

    In the past, development work to increase the energy and intensity of particle accelerators tended to be pursued in separate directions, but now almost all modern applications have to achieve an intensity as high as possible at the desired energy, along with a very good beam quality in terms of the beam confinement, aiming, or focusing. The figure of merit used is the beam brightness, defined as the beam power (or current when the energy is fixed) divided by the phase space appropriate to the problem at hand. Phase space for the beam as a whole is six-dimensional, describing the physical size of the beam and change in size with time or distance; the area projected on one plane is called emittance. Achieving high intensity and good quality simultaneously is difficult, primarily because of nonlinear space- charge and focusing forces at nonrelativistic velocities and because of beam-breakup effects for relativistic beams. In recent years, substantial progress has been made in understanding the physics of these effects; some aspects are reviewed here and related to their impact on practical design aspects. 7 refs.

  8. Accelerated Nuclear Energy Materials Development with Multiple Ion Beams

    SciTech Connect

    Fluss, M J; Bench, G

    2009-08-19

    A fundamental issue in nuclear energy is the changes in material properties as a consequence of time, temperature, and neutron fluence. Usually, candidate materials for nuclear energy applications are tested in nuclear reactors to understand and model the changes that arise from a combination of atomic displacements, helium and hydrogen production, and other nuclear transmutations (e.g. fission and the production of fission products). Experiments may be carried out under neutron irradiation conditions in existing nuclear materials test reactors (at rates of 10 to 20 displacements per atom (DPA) per year or burn-up rates of a few percent per year for fertile fuels), but such an approach takes much too long for many high neutron fluence scenarios (300 DPA for example) expected in reactors of the next generation. Indeed it is reasonable to say that there are no neutron sources available today to accomplish sufficiently rapid accelerated aging let alone also provide the temperature and spectral characteristics of future fast spectrum nuclear energy systems (fusion and fission both). Consequently, materials research and development progress continues to be severely limited by this bottleneck.

  9. Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology

    PubMed Central

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation. PMID:20195442

  10. A new beam loss detector for low-energy proton and heavy-ion accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  11. ESS-Bilbao light-ion linear accelerator and neutron source: design and applications

    NASA Astrophysics Data System (ADS)

    Abad, E.; Arredondo, I.; Badillo, I.; Belver, D.; Bermejo, F. J.; Bustinduy, I.; Cano, D.; Cortazar, D.; de Cos, D.; Djekic, S.; Domingo, S.; Echevarria, P.; Eguiraun, M.; Etxebarria, V.; Fernandez, D.; Fernandez, F. J.; Feuchtwanger, J.; Garmendia, N.; Harper, G.; Hassanzadegan, H.; Jugo, J.; Legarda, F.; Magan, M.; Martinez, R.; Megia, A.; Muguira, L.; Mujika, G.; Muñoz, J. L.; Ortega, A.; Ortega, J.; Perlado, M.; Portilla, J.; Rueda, I.; Sordo, F.; Toyos, V.; Vizcaino, A.

    2011-10-01

    The baseline design for the ESS-Bilbao light-ion linear accelerator and neutron source has been completed and the normal conducting section of the linac is at present under construction. The machine has been designed to be compliant with ESS specifications following the international guidelines of such project as described in Ref. [1]. The new accelerator facility in Bilbao will serve as a base for support of activities on accelerator physics carried out in Spain and southern Europe in the frame of different ongoing international collaborations. Also, a number of applications have been envisaged in the new Bilbao facility for the outgoing light ion beams as well as from fast neutrons produced by low-energy neutron-capture targets, which are briefly described.

  12. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    NASA Astrophysics Data System (ADS)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  13. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator.

    PubMed

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project. PMID:26931935

  14. Effects of gamma-ray and high energy carbon ion irradiation on swimming velocity of Euglena gracilis

    NASA Astrophysics Data System (ADS)

    Sakashita, T.; Doi, M.; Yasuda, H.; Fuma, S.; Häder, D.-P.

    The effects of gamma-ray and high energy carbon ion irradiation on the swimming velocity of the photosynthetic flagellate Euglena gracilis strain Z were studied, focusing on a dose-effect relationship. Cells were exposed to 60Co gamma-rays at 6 doses of 10, 15, 20, 40, 100 and 200 Gy for water, and also to 290 MeV/amu carbon ions from the Heavy Ion Medical Accelerator in Chiba at 7 doses (5, 10, 15, 20, 50, 100 and 200 Gy for water). The swimming velocity was measured by a biomonitoring system, called ECOTOX. The swimming velocities of Euglena gracilis cells were significantly decreased by >40 Gy gamma-rays and >5 Gy carbon ions, respectively. The 50% effective doses for inhibition, 34±4 Gy (gamma-rays) and 13±1 Gy (290 MeV/amu carbon ions), were estimated from the best fit to data of the logistic model. The relative biological effectiveness (2.6±0.4) was calculated by the ratio of 50% effective doses. The inhibition of the swimming velocity of the cells irradiated with gamma-rays was still present after 3 days, while recovery of the swimming velocity was shown in the cells exposed to 290 MeV/amu carbon ions. It is suggested that ionizing radiation inhibits ATP production and/or increases frictional drag on beating of the flagellum, thus decreasing swimming velocity.

  15. Detection of single ion channel activity with carbon nanotubes

    PubMed Central

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  16. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  17. Detection of single ion channel activity with carbon nanotubes.

    PubMed

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  18. Energetic Ion Acceleration by Small-scale Solar Wind Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Webb, G. M.; Zank, G. P.; Khabarova, O.

    2015-09-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of supersonic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that ion drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes.

  19. Ions Gyroresonant Surfing Acceleration by Alfven Waves in the Vicinity of SLAMS Boundary

    NASA Astrophysics Data System (ADS)

    Agapitov, Oleksiy; Kis, Arpad; Krasnoselskikh, Vladimir

    2012-07-01

    A well known feature of collisionless shocks which are formed in space plasmas is their capability to accelerate particles to high energies. On the other hand, the exact mechanism how this acceleration takes place is still unknown. This is especially true in the case of the so-called seed particle population, i.e. those particles which are being injected into the process of acceleration. In our study we present a case study of gyroresonant surfing acceleration observed on the quasi-parallel side of the Earth's bow shock. For our analysis we use simultaneous multi-spacecraft measurement data provided by the Cluster spacecraft ion (CIS), magnetic (FGM) and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. Our results show evidence that the gyroresonance surfing acceleration takes place as a consequence of interaction between monochromatic (or quasi-monochromatic) electromagnetic plasma waves and short large amplitude magnetic structures (SLAMS). The magnetic field inhomogeneity mirror force allows to keep the resonant conditions for the ions trapped by wave and thus to increase effectively the particle velocity. Since monochromatic wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in the front of the Earth's quasi-parallel bow shock, thus the gyroresonant surfing acceleration can be an effective particle injection mechanism resulting in the formation of the seed particle population.

  20. Accelerator mass spectrometry with fully stripped 26Al, 63Cl, 41Ca and (su59)Ni ions

    NASA Astrophysics Data System (ADS)

    Faestermann, H.; Kato, K.; Korschinek, G.; Krauthan, P.; Nolte, E.; Rühm, W.; Zerle, L.

    1990-04-01

    The detection system of accelerator mass spectrometry (AMS) with completely stripped ions of 26Al, 36Cl, 41Ca and 59Ni at the Munich accelerator laboratory and measurements with these ions are presented. Detection limits are given. The presented applications are: dating of groundwater of the Milk River aquifer and deduction of the neutron fluence and spectrum of the Hiroshima A-bomb.