Science.gov

Sample records for accelerated carbon ions

  1. Electron string ion sources for carbon ion cancer therapy accelerators.

    PubMed

    Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C(4+) and C(6+) ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10(10) C(4+) ions per pulse and about 5 × 10(9) C(6+) ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10(11) C(6+) ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the (11)C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C(4+) ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of (11)C, transporting to the tumor with the primary accelerated (11)C(4+) beam, this efficiency is preliminarily considered to be large enough to produce the (11)C(4+) beam from radioactive methane and to inject this beam into synchrotrons.

  2. Electron string ion sources for carbon ion cancer therapy accelerators.

    PubMed

    Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C(4+) and C(6+) ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10(10) C(4+) ions per pulse and about 5 × 10(9) C(6+) ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10(11) C(6+) ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the (11)C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C(4+) ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of (11)C, transporting to the tumor with the primary accelerated (11)C(4+) beam, this efficiency is preliminarily considered to be large enough to produce the (11)C(4+) beam from radioactive methane and to inject this beam into synchrotrons. PMID:26329182

  3. Electron string ion sources for carbon ion cancer therapy accelerators

    SciTech Connect

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.; Katagiri, K.; Noda, K.

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  4. Generation of quasi-monoenergetic carbon ions accelerated parallel to the plane of a sandwich target

    SciTech Connect

    Wang, J. W.; Murakami, M.; Weng, S. M.; Xu, H.; Ju, J. J.; Luan, S. X.; Yu, W.

    2014-12-15

    A new ion acceleration scheme, namely, target parallel Coulomb acceleration, is proposed in which a carbon plate sandwiched between gold layers is irradiated with intense linearly polarized laser pulses. The high electrostatic field generated by the gold ions efficiently accelerates the embedded carbon ions parallel to the plane of the target. The ion beam is found to be collimated by the concave-shaped Coulomb potential. As a result, a quasi-monoenergetic and collimated C{sup 6+}-ion beam with an energy exceeding 10 MeV/nucleon is produced at a laser intensity of 5 × 10{sup 19} W/cm{sup 2}.

  5. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    PubMed Central

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  6. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces.

    PubMed

    Dalui, Malay; Wang, W-M; Trivikram, T Madhu; Sarkar, Subhrangsu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J; Ayyub, P; Sheng, Z M; Krishnamurthy, M

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈ 0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2 × 10(18)  W/cm(2). However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  7. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  8. Controllable Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  9. Imaging using accelerated heavy ions

    SciTech Connect

    Chu, W.T.

    1982-05-01

    Several methods for imaging using accelerated heavy ion beams are being investigated at Lawrence Berkeley Laboratory. Using the HILAC (Heavy-Ion Linear Accelerator) as an injector, the Bevalac can accelerate fully stripped atomic nuclei from carbon (Z = 6) to krypton (Z = 34), and partly stripped ions up to uranium (Z = 92). Radiographic studies to date have been conducted with helium (from 184-inch cyclotron), carbon, oxygen, and neon beams. Useful ranges in tissue of 40 cm or more are available. To investigate the potential of heavy-ion projection radiography and computed tomography (CT), several methods and instrumentation have been studied.

  10. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  11. Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Horioka, Kazuhiko

    The description of beams in RF and induction accelerators share many common features. Likewise, there is considerable commonality between electron induction accelerators (see Chap. 7) and ion induction accelerators. However, in contrast to electron induction accelerators, there are fewer ion induction accelerators that have been operated as application-driven user facilities. Ion induction accelerators are envisioned for applications (see Chap. 10) such as Heavy Ion Fusion (HIF), High Energy Density Physics (HEDP), and spallation neutron sources. Most ion induction accelerators constructed to date have been limited scale facilities built for feasibility studies for HIF and HEDP where a large numbers of ions are required on target in short pulses. Because ions are typically non-relativistic or weakly relativistic in much of the machine, space-charge effects can be of crucial importance. This contrasts the situation with electron machines, which are usually strongly relativistic leading to weaker transverse space-charge effects and simplified longitudinal dynamics. Similarly, the bunch structure of ion induction accelerators relative to RF machines results in significant differences in the longitudinal physics.

  12. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  13. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  14. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  15. The measurement results of carbon ion beam structure extracted by bent crystal from U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Barnov, E. V.; Britvich, G. I.; Chesnokov, Yu A.; Chirkov, P. N.; Durum, A. A.; Kostin, M. Yu; Maisheev, V. A.; Pitalev, V. I.; Reshetnikov, S. F.; Yanovich, A. A.; Nazhmudinov, R. M.; Kubankin, A. S.; Shchagin, A. V.

    2016-07-01

    The carbon ion +6C beam with energy 25 GeV/nucleon was extracted by bent crystal from the U-70 ring. The bent angle of silicon crystal was 85 mrad. About 2×105 particles for 109 circulated ions in the ring were observed in beam line 4a after bent crystal. Geometrical parameters, time structure and ion beam structure were measured. The ability of the bent monocrystal to extract and generate ion beam with necessary parameters for regular usage in physical experiments is shown in the first time.

  16. Let dependence of cell death, mutation induction and chromatin damage in human cells irradiated with accelerated carbon ions

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Watanabe, M.; Kanai, T.; Kase, Y.; Yatagai, F.; Kato, T.; Matsubara, S.

    We investigated the LET dependence of cell death, mutation induction and chromatin break induction in human embryo (HE) cells irradiated by accelerated carbon-ion beams. The results showed that cell death, mutation induction and induction of non-rejoining chromatin breaks detected by the premature chromosome condensation (PCC) technique had the same LET dependence. Carbon ions of 110 to 124keV/mum were the most effective at all endpoints. However, the number of initially induced chromatin breaks was independent of LET. About 10 to 15 chromatin breaks per Gy per cell were induced in the LET range of 22 to 230 keV/mum. The deletion pattern of exons in the HPRT locus, analyzed by the polymerase chain reaction (PCR), was LET-specific. Almost all the mutants induced by 124 keV/mum carbon-ion beams showed deletion of the entire gene, while all mutants induced by 230keV/mum carbon-ion beams showed no deletion. These results suggest that the difference in the density distribution of carbon-ion track and secondary electron with various LET is responsible for the LET dependency of biological effects.

  17. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  18. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori; Oyaizu, Michihiro; Hattori, Toshiyuki

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was less than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.

  19. Ion wave breaking acceleration

    NASA Astrophysics Data System (ADS)

    Liu, B.; Meyer-ter-Vehn, J.; Bamberg, K.-U.; Ma, W. J.; Liu, J.; He, X. T.; Yan, X. Q.; Ruhl, H.

    2016-07-01

    Laser driven ion wave breaking acceleration (IWBA) in plasma wakefields is investigated by means of a one-dimensional (1D) model and 1D/3D particle-in-cell (PIC) simulations. IWBA operates in relativistic transparent plasma for laser intensities in the range of 1020- 1023 W /cm2 . The threshold for IWBA is identified in the plane of plasma density and laser amplitude. In the region just beyond the threshold, self-injection takes place only for a fraction of ions and in a limited time period. This leads to well collimated ion pulses with peaked energy spectra, in particular for 3D geometry.

  20. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NEXT (NASA's Evolutionary Xenon Thruster) Long Duration Test (LDT1). A similar analysis that was conducted for the NSTAR (NASA's Solar Electric Propulsion Technology Applications Readiness Program) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future posttest analyses are incorporated. The worst-case impact of carbon back

  1. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT1). A similar analysis that was conducted for the NASA's Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future post-test analyses are incorporated. The worst-case impact of carbon

  2. Bacterial cells enhance laser driven ion acceleration

    PubMed Central

    Dalui, Malay; Kundu, M.; Trivikram, T. Madhu; Rajeev, R.; Ray, Krishanu; Krishnamurthy, M.

    2014-01-01

    Intense laser produced plasmas generate hot electrons which in turn leads to ion acceleration. Ability to generate faster ions or hotter electrons using the same laser parameters is one of the main outstanding paradigms in the intense laser-plasma physics. Here, we present a simple, albeit, unconventional target that succeeds in generating 700 keV carbon ions where conventional targets for the same laser parameters generate at most 40 keV. A few layers of micron sized bacteria coating on a polished surface increases the laser energy coupling and generates a hotter plasma which is more effective for the ion acceleration compared to the conventional polished targets. Particle-in-cell simulations show that micro-particle coated target are much more effective in ion acceleration as seen in the experiment. We envisage that the accelerated, high-energy carbon ions can be used as a source for multiple applications. PMID:25102948

  3. Medical heavy ion accelerator proposals

    NASA Astrophysics Data System (ADS)

    Gough, R. A.

    1985-05-01

    For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms. Specialized techniques for shaping the dose to conform to irregularly-shaped target volumes, while simultaneously sparing surrounding, healthy tissue and critical structures, are employed in each treatment room, together with the sophisticated dosimetry necessary for verification, monitoring, and patient safety.

  4. Applications of Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Briggs*, Richard J.

    As discussed in Chap. 9, the physics of ion induction accelerators has many commonalities with the physics of electron induction accelerators. However, there are important differences, arising because of the different missions of ion machines relative to electron machines and also because the velocity of the ions is usually non-relativistic in these applications. The basic architectures and layout reflects these differences. In Chaps. 6, 7, and 8 a number of examples of electron accelerators and their applications were given, including machines that have already been constructed. In this chapter, we give several examples of potential uses for ion induction accelerators. Although, as of this writing, none of these applications have come to fruition, in the case of heavy ion fusion (HIF) , small scale experiments have been carried out and a sizable effort has been made in laying the groundwork for such an accelerator. A second application, using ion beams for study of High Energy Density Physics (HEDP) or Warm Dense Matter (WDM) physics will soon be realized and the requirements for this machine will be discussed in detail. Also, a concept for a spallation neutron source is discussed in lesser detail.

  5. Compact ion accelerator source

    DOEpatents

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  6. Modeling Ion Acceleration Using LSP

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew

    This thesis presents the development of simulations modeling ion acceleration using the particle-in-cell code LSP. A new technique was developed to model the Target Normal Sheath Acceleration (TNSA) mechanism. Multiple simulations are performed, each optimized for a certain part of the TNSA process with appropriate information being passed from one to the next. The technique allows for tradeoffs between accuracy and speed. Physical length and timescales are met when necessary and different physical models are employed as needed. This TNSA modeling technique is used to perform a study on the effect front-surface structures have on the resulting ion acceleration. The front-surface structures tested have been shown to either modify the electron kinetic energy spectrum by increasing the maximum energy obtained or by increasing the overall coupling of laser energy to electron energy. Both of these types of front-surface structures are tested for their potential benefits for the accelerated ions. It is shown that optimizing the coupling of laser energy to electron energy is more important than producing extremely energetic electrons in the case of the TNSA ions. Simulations modeling the interaction of an intense laser with very thin (<100 nm thick) liquid crystal targets, modeled for the first time, are presented. Modeling this interaction is difficult and the effect of different simulation design choices is explored in depth. In particular, it is shown that the initial electron temperature used in the simulation has a significant effect on the resulting ion acceleration and light transmitted through the target. This behavior is explored through numerous 1D simulations.

  7. Accelerators for heavy ion fusion

    SciTech Connect

    Bangerter, R.O.

    1985-10-01

    Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

  8. Ion beam parameters of a plasma accelerator

    SciTech Connect

    Nazarov, V.G.; Vinogradov, A.M.; Veselovzorov, A.N.; Efremov, V.K.

    1987-08-01

    The aim of this investigation was to determine the dependences of the current density, the energy, and the divergence of the ion beams of an UZDP-type source (a plasma accelerator with closed electron drift in the accelerator channel and an extended zone of ion acceleration) on the parameters which determine its performance, and to establish qualitative relationships between these values.

  9. Compact RF ion source for industrial electrostatic ion accelerator

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  10. Compact RF ion source for industrial electrostatic ion accelerator.

    PubMed

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  11. Calcium Carbonate Phosphate Binding Ion Exchange Filtration and Accelerated Denitrification Improve Public Health Standards and Combat Eutrophication in Aquatic Ecosystems

    PubMed Central

    Yanamadala, Vijay

    2010-01-01

    Hektoen agar. Initial analyses suggest a strong correlation between phosphate concentrations and bacterial populations; a 66% decrease in phosphate resulted in a 35% reduction in bacterial populations and a 45% reduction in enteropathogenic populations. Likewise, a strong correlation was shown between calcium carbonate concentrations and bacterial reduction greater than that which can be attributed to the phosphate reduction alone. This was followed by the construction of various phosphate binding calcium carbonate filters, which used the ion exchange principle, including a spring loading filter, PVC pipe filter, and a galvanized filter. All were tested with the aid of Stoke's law formulation. The experiment was extremely successful in designing a working phosphate-binding and ammonia-reducing filter, and a large-scale agitator-clarifier filter system is currently being planned for construction in Madrona Marsh; this filter will reduce phosphate and ammonia levels substantially in the following years, bringing ecological, economical, and health-related improvements to the overall ecosystem and habitat. PMID:16381147

  12. Accelerating Mineral Carbonation Using Carbonic Anhydrase.

    PubMed

    Power, Ian M; Harrison, Anna L; Dipple, Gregory M

    2016-03-01

    Carbonic anhydrase (CA) enzymes have gained considerable attention for their potential use in carbon dioxide (CO2) capture technologies because they are able to catalyze rapidly the interconversion of aqueous CO2 and bicarbonate. However, there are challenges for widespread implementation including the need to develop mineralization process routes for permanent carbon storage. Mineral carbonation of highly reactive feedstocks may be limited by the supply rate of CO2. This rate limitation can be directly addressed by incorporating enzyme-catalyzed CO2 hydration. This study examined the effects of bovine carbonic anhydrase (BCA) and CO2-rich gas streams on the carbonation rate of brucite [Mg(OH)2], a highly reactive mineral. Alkaline brucite slurries were amended with BCA and supplied with 10% CO2 gas while aqueous chemistry and solids were monitored throughout the experiments (hours to days). In comparison to controls, brucite carbonation using BCA was accelerated by up to 240%. Nesquehonite [MgCO3·3H2O] precipitation limited the accumulation of hydrated CO2 species, apparently preventing BCA from catalyzing the dehydration reaction. Geochemical models reproduce observed reaction progress in all experiments, revealing a linear correlation between CO2 uptake and carbonation rate. Data demonstrates that carbonation in BCA-amended reactors remained limited by CO2 supply, implying further acceleration is possible.

  13. Accelerating Mineral Carbonation Using Carbonic Anhydrase.

    PubMed

    Power, Ian M; Harrison, Anna L; Dipple, Gregory M

    2016-03-01

    Carbonic anhydrase (CA) enzymes have gained considerable attention for their potential use in carbon dioxide (CO2) capture technologies because they are able to catalyze rapidly the interconversion of aqueous CO2 and bicarbonate. However, there are challenges for widespread implementation including the need to develop mineralization process routes for permanent carbon storage. Mineral carbonation of highly reactive feedstocks may be limited by the supply rate of CO2. This rate limitation can be directly addressed by incorporating enzyme-catalyzed CO2 hydration. This study examined the effects of bovine carbonic anhydrase (BCA) and CO2-rich gas streams on the carbonation rate of brucite [Mg(OH)2], a highly reactive mineral. Alkaline brucite slurries were amended with BCA and supplied with 10% CO2 gas while aqueous chemistry and solids were monitored throughout the experiments (hours to days). In comparison to controls, brucite carbonation using BCA was accelerated by up to 240%. Nesquehonite [MgCO3·3H2O] precipitation limited the accumulation of hydrated CO2 species, apparently preventing BCA from catalyzing the dehydration reaction. Geochemical models reproduce observed reaction progress in all experiments, revealing a linear correlation between CO2 uptake and carbonation rate. Data demonstrates that carbonation in BCA-amended reactors remained limited by CO2 supply, implying further acceleration is possible. PMID:26829491

  14. A review of ion sources for medical accelerators (invited).

    PubMed

    Muramatsu, M; Kitagawa, A

    2012-02-01

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespread since the 1990s. The energy and intensity are typically over 200 MeV and several 10(10) pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV∕u. Although the beam intensity depends on the irradiation method, it is typically several 10(8) or 10(9) pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are

  15. The Pulse Line Ion Accelerator Concept

    SciTech Connect

    Briggs, Richard J.

    2006-02-15

    The Pulse Line Ion Accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The concept might be described crudely as an ''air core'' induction linac where the PFN is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  16. Carbon/Carbon Grids For Ion Sources

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.

    1995-01-01

    Ion-extraction grids made of carbon/carbon composites used in spacecraft ion engines and industrial ion sources in place of molybdenum grids. In principle, carbon/carbon grids offer greater extraction efficiency and longer life. Grid fabricated by mechanical drilling, laser drilling, or electrical-discharge machining of array of holes in sheet of carbon/carbon. Advantages; better alignment and slower erosion.

  17. Heavy Ion Fusion Accelerator Research (HIFAR)

    SciTech Connect

    Not Available

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C{sub s}+ sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac.

  18. Electron Acceleration by Transient Ion Foreshock Phenomena

    NASA Astrophysics Data System (ADS)

    Wilson, L. B., III; Turner, D. L.

    2015-12-01

    Particle acceleration is a topic of considerable interest in space, laboratory, and astrophysical plasmas as it is a fundamental physical process to all areas of physics. Recent THEMIS [e.g., Turner et al., 2014] and Wind [e.g., Wilson et al., 2013] observations have found evidence for strong particle acceleration at macro- and meso-scale structures and/or pulsations called transient ion foreshock phenomena (TIFP). Ion acceleration has been extensively studied, but electron acceleration has received less attention. Electron acceleration can arise from fundamentally different processes than those affecting ions due to differences in their gyroradii. Electron acceleration is ubiquitous, occurring in the solar corona (e.g., solar flares), magnetic reconnection, at shocks, astrophysical plasmas, etc. We present new results analyzing the dependencies of electron acceleration on the properties of TIFP observed by the THEMIS spacecraft.

  19. Double Acceleration of Ions and Application in Biomaterials

    SciTech Connect

    Lorusso, Antonella; Nassisi, Vincenzo; Siciliano, Maria Vittoria; Velardi, Luciano

    2010-02-02

    Ions of different elements were generated by laser-induced-plasma and accelerated by a two adjacent cavities. Therefore, the ions undergo a double acceleration imparting a maximum ion energy of 160 keV per charge state. We analyzed the extracted charge from a Cu target as a function of the accelerating voltage. At 60 kV of total accelerating voltage, the maximum current peak was of 5.3 mA. The ion flux resulted of 3.4x10{sup 11} ions/cm{sup 2}. The normalized emittance measured by pepper pot method at 60 kV was of 0.22 pi mm mrad. By means of this machine, biomedical materials as UHMWPE were implanted with carbon and titanium ions. At a total ion flux of 2x10{sup 15} ions/cm{sup 2} the polyethylene surface increased its micro hardness of about 3-hold measured by the scratch test. Considering the ion emission cone dimension, we estimated a total extracted charge per pulse of 200 nC.

  20. Process in high energy heavy ion acceleration

    NASA Astrophysics Data System (ADS)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  1. Perpendicular ion acceleration in whistler turbulence

    SciTech Connect

    Saito, S.; Nariyuki, Y.

    2014-04-15

    Whistler turbulence is an important contributor to solar wind turbulence dissipation. This turbulence contains obliquely propagating whistler waves at electron scales, and these waves have electrostatic components perpendicular to the mean magnetic field. In this paper, a full kinetic, two-dimensional particle-in-cell simulation shows that whistler turbulence can accelerate ions in the direction perpendicular to the mean magnetic field. When the ions pass through wave-particle resonances region in the phase space during their cyclotron motion, the ions are effectively accelerated in the perpendicular direction. The simulation results suggest that whistler turbulence contributes to the perpendicular heating of ions observed in the solar wind.

  2. High efficiency ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    An ion accelerator system that successfully combines geometrical and electrostatic focusing principles is presented. This accelerator system uses thin, concave, multiple-hole, closely spaced graphite screen and focusing grids which are coupled to single slot accelerator and decelerator grids to provide high ion extraction efficiency and good focusing. Tests with the system showed a substantial improvement in ion beam current density and collimation as compared with a Pierce electrode configuration. Durability of the thin graphite screen and focusing grids has been proven, and tests are being performed to determine the minimum screen and focusing grid spacing and thickness required to extract the maximum reliable beam current density. Compared with present neutral beam injector accelerator systems, this one has more efficient ion extraction, easier grid alignment, easier fabrication, a less cumbersome design, and the capacity to be constructed in a modular fashion. Conceptual neutral beam injector designs using this modular approach have electrostatic beam deflection plates downstream of each module.

  3. Single grid accelerator for an ion thrustor

    NASA Technical Reports Server (NTRS)

    Margosian, P. M.; Nakanishi, S. (Inventor)

    1973-01-01

    A single grid accelerator system for an ion thrustor is discussed. A layer of dielectric material is interposed between this metal grid and the chamber containing an ionized propellant for protecting the grid against sputtering erosion.

  4. [Effect of accelerated heavy ions of carbon 12C, neon 20Ne and iron 56Fe on the chromosomal apparatus of human blood lymphocytes in vitro].

    PubMed

    Repina, L A

    2011-01-01

    Cytogenetic assay of the chromosomal apparatus of human blood lymphocytes was carried out after in vitro irradiation by heavy charged particles with high LET values. Blood plasm samples enriched with lymphocytes were irradiated by accelerated ions of carbon 12C (290 MeV/nucleon and LET = 70 keV/microm), neon 20Ne (400 MeV/nucleon and LET = 70 keV/microm), and iron 56Fe (500 MeV/nucleon and LET = 200 keV/microm) in the dose range from 0.25 to 1 Gy. Rate of chromosome aberrations showed a linear dependence on doses from the densely ionizing radiations with high LET values. Frequency of dicentrics and centric rings in human lymphocytes irradiated by 12C with the energy of 290 MeV/nucleon was maximal at 1 Gy (p < 0.05) relative to the other heavy particles. It was found that relative biological effectiveness of heavy nuclei is several times higher than of 60Co gamma-radiation throughout the range of doses in this investigation. PMID:22312859

  5. [Effect of accelerated heavy ions of carbon 12C, neon 20Ne and iron 56Fe on the chromosomal apparatus of human blood lymphocytes in vitro].

    PubMed

    Repina, L A

    2011-01-01

    Cytogenetic assay of the chromosomal apparatus of human blood lymphocytes was carried out after in vitro irradiation by heavy charged particles with high LET values. Blood plasm samples enriched with lymphocytes were irradiated by accelerated ions of carbon 12C (290 MeV/nucleon and LET = 70 keV/microm), neon 20Ne (400 MeV/nucleon and LET = 70 keV/microm), and iron 56Fe (500 MeV/nucleon and LET = 200 keV/microm) in the dose range from 0.25 to 1 Gy. Rate of chromosome aberrations showed a linear dependence on doses from the densely ionizing radiations with high LET values. Frequency of dicentrics and centric rings in human lymphocytes irradiated by 12C with the energy of 290 MeV/nucleon was maximal at 1 Gy (p < 0.05) relative to the other heavy particles. It was found that relative biological effectiveness of heavy nuclei is several times higher than of 60Co gamma-radiation throughout the range of doses in this investigation.

  6. Transversely accelerated ions in the topside ionosphere

    NASA Technical Reports Server (NTRS)

    Retterer, John M.; Chang, Tom; Jasperse, J. R.

    1994-01-01

    Data from the rocket campaigns Mechanism in the Auroral Region for Ion Energization (MARIE) and TOpside Probe of the Auroral Zone (TOPAZ) III, within regions of low-altitude transversely accelerated ions, are interpreted to explain the acceleration of the ions. Using the Monte Carlo kinetic technique to evaluate the ion heating produced by the simultaneously observed lower hybrid waves, we find that their observed electric field amplitudes are sufficient to explain the observed ion energies in the MARIE event. Much of the uncertainty in evaluating the efficiency of a plasma wave induced particle heating process which is dependent on a velocity resonance comes from the lack of information on the phase velocities of the waves. In the case of the MARIE observations, our modeling efforts show that features in the ion velocity distribution are consistent with the wave phase velocities inferred from interferometer measurements of wavelengths. The lower hybrid waves with which low-altitude transversely accelerated ions are associated are frequently observed to be concentrated in small-scale wave packets called 'spikelets'. We demonstrate through the scaling of the size of these wave packets that they are consistent with the theory of lower hybrid collapse. Using the Monte Carlo technique, we find that if the lower hybrid field energy is concentrated in these wave packets, it is still adequate to accelerate the ionospheric ions to the observed energies.

  7. Overview of The Pulse Line Ion Accelerator

    SciTech Connect

    Briggs, R.J.; Bieniosek, F.M.; Coleman, J.E.; Eylon, S.; Henestroza, E.; Leitner, M.; Logan, B.G.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Caporaso, G.J.; Friedman, A.; Grote, D.P.; Nelson, S.D.

    2006-06-29

    An overview of the Pulse Line Ion Accelerator (PLIA) concept and its development is presented. In the PLIA concept a pulse power driver applied to one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines a heavy ion beam pulse The motivation for its development at the IFE-VNL is the acceleration of intense, short pulse, heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The main attraction of the concept is the very low cost it promises. It might be described crudely as an ''air core'' induction linac where the pulse-forming network is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  8. Ion Injectors for High-Intensity Accelerators

    NASA Astrophysics Data System (ADS)

    Stockli, Martin P.; Nakagawa, Takahide

    2014-02-01

    There are a growing number of applications for ion accelerators, with increasingly complex beam requirements and progressively higher beam intensities. The performance of the ion injector is critical to the success of these projects. First, there is the ion source that has to produce the desired ion species, with a large variety of desired species requiring vastly different ion sources. In addition, the ion source has to produce those ions with the desired rate and without debilitating impurities, as well as with the desired duty factor. Several examples will show that very successful ion sources can fail when the duty factor is increased because their lifetime becomes too short or their failure rate too high. Equally important is the extraction of those ions and their transport to the next stage of acceleration, because the slow ion velocities pose a serious challenge to increasing the intensity. As the beam intensity is increased, its emittance, stability and controllability become more important. This article cannot cover this subject in depth. It tries to provide a flavor of the complexities and serve as an introduction to further reading and studies.

  9. Multi-dimensional effects in radiation pressure acceleration of ions

    SciTech Connect

    Tripathi, V. K.

    2015-07-31

    A laser carries momentum. On reflection from an ultra-thin overdense plasma foil, it deposits recoil momentum on the foil, i.e. exerts radiation pressure on the foil electrons and pushes them to the rear. The space charge field thus created takes the ions along, accelerating the electron-ion double layer as a single unit. When the foil has surface ripple, of wavelength comparable to laser wavelength, the radiation pressure acts non-uniformly on the foil and the perturbation grows as Reyleigh-Taylor (RT) instability as the foil moves. The finite spot size of the laser causes foil to bend. These effects limit the quasi-mono energy acceleration of ions. Multi-ion foils, e.g., diamond like carbon foil embedded with protons offer the possibility of suppressing RT instability.

  10. Apparatus for neutralization of accelerated ions

    DOEpatents

    Fink, Joel H.; Frank, Alan M.

    1979-01-01

    Apparatus for neutralization of a beam of accelerated ions, such as hydrogen negative ions (H.sup.-), using relatively efficient strip diode lasers which emit monochromatically at an appropriate wavelength (.lambda. = 8000 A for H.sup.- ions) to strip the excess electrons by photodetachment. A cavity, formed by two or more reflectors spaced apart, causes the laser beams to undergo multiple reflections within the cavity, thus increasing the efficiency and reducing the illumination required to obtain an acceptable percentage (.about. 85%) of neutralization.

  11. Radiocarbon dating using electrostatic accelerators: negative ions provide the key.

    PubMed

    Bennett, C L; Beukens, R P; Clover, M R; Gove, H E; Liebert, R B; Litherland, A E; Purser, K H; Sondheim, W E

    1977-11-01

    Mass spectrometric methods have long been suggested as ways of measuring (14)C/(12)C ratios for carbon dating. One problem has been to distinguish between (14)N and (14)C. With negative ions and a tandem electrostatic accelerator, the (14)N background is virtually absent and fewer than three (14)C atoms in 10(16) atoms of (12)C have been easily measured.

  12. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  13. Mercury ion thruster research, 1977. [plasma acceleration

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1977-01-01

    The measured ion beam divergence characteristics of two and three-grid, multiaperture accelerator systems are presented. The effects of perveance, geometry, net-to-total accelerating voltage, discharge voltage and propellant are examined. The applicability of a model describing doubly-charged ion densities in mercury thrusters is demonstrated for an 8-cm diameter thruster. The results of detailed Langmuir probing of the interior of an operating cathode are given and used to determine the ionization fraction as a function of position upstream of the cathode orifice. A mathematical model of discharge chamber electron diffusion and collection processes is presented along with scaling laws useful in estimating performance of large diameter and/or high specific impluse thrusters. A model describing the production of ionized molecular nitrogen in ion thrusters is included.

  14. Heavy Ion Accelerator-Driven Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Hofmann, Ingo

    The idea of using accelerators in the production of energy by inertial confinement fusion has been developed since the mid-1970s. The basic concept is to use accelerated beams of heavy ions to provide energy to implode and ignite a small fusion pellet. Accelerators have been seen as attractive for this application due to their reliability, high repetition rate, and potential efficiency. They are therefore competitive with high power lasers at least for the commercial production of electrical power. This review summarizes part of the development and scientific efforts directed toward this application, which has been realized over time to be an extremely demanding one. Here we focus primarily on the rf linac/storage ring driver system approach and summarize the specific development that culminated in the European HIDIF study of the late 1990s. We also discuss some of the relevant followup accelerator studies.

  15. Induction accelerator development for heavy ion fusion

    SciTech Connect

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE). The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator.

  16. Negative hydrogen ion sources for accelerators

    SciTech Connect

    Moehs, D.P.; Peters, J.; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  17. Beam Control for Ion Induction Accelerators

    SciTech Connect

    Sangster, T.C.; Ahle, L.

    2000-02-17

    Coordinated bending and acceleration of an intense space-charge-dominated ion beam has been achieved for the first time. This required the development of a variable waveform, precision, bi-polar high voltage pulser and a precision, high repetition rate induction core modulator. Waveforms applied to the induction cores accelerate the beam as the bi-polar high voltage pulser delivers a voltage ramp to electrostatic dipoles which bend the beam through a 90 degree permanent magnet quadrupole lattice. Further work on emittance minimization is also reported.

  18. Strongly nonlinear magnetosonic waves and ion acceleration

    SciTech Connect

    Rau, B.; Tajima, T.

    1997-11-01

    The electromagnetic fields associated with a nonlinear compressional Alfven wave propagating perpendicular to an external magnetic field of arbitrary strength are derived. For the strongly magnetized and high phase velocity case relevant for ion acceleration to high energies, we show that the electric field increases proportionally only to the external magnetic field O (B{sub ext}[in T] MV/cm) and the electrostatic potential increases with the square root of the ion-to-electron mass ratio {radical}M{sub i}/m{sub e}.

  19. Accelerated carbonation of brucite in mine tailings for carbon sequestration.

    PubMed

    Harrison, Anna L; Power, Ian M; Dipple, Gregory M

    2013-01-01

    Atmospheric CO(2) is sequestered within ultramafic mine tailings via carbonation of Mg-bearing minerals. The rate of carbon sequestration at some mine sites appears to be limited by the rate of CO(2) supply. If carbonation of bulk tailings were accelerated, large mines may have the capacity to sequester millions of tonnes of CO(2) annually, offsetting mine emissions. The effect of supplying elevated partial pressures of CO(2) (pCO(2)) at 1 atm total pressure, on the carbonation rate of brucite [Mg(OH)(2)], a tailings mineral, was investigated experimentally with conditions emulating those at Mount Keith Nickel Mine (MKM), Western Australia. Brucite was carbonated to form nesquehonite [MgCO(3) · 3H(2)O] at a rate that increased linearly with pCO(2). Geochemical modeling indicated that HCO(3)(-) promoted dissolution accelerated brucite carbonation. Isotopic and aqueous chemistry data indicated that equilibrium between CO(2) in the gas and aqueous phases was not attained during carbonation, yet nesquehonite precipitation occurred at equilibrium. This implies CO(2) uptake into solution remains rate-limiting for brucite carbonation at elevated pCO(2), providing potential for further acceleration. Accelerated brucite carbonation at MKM offers the potential to offset annual mine emissions by ~22-57%. Recognition of mechanisms for brucite carbonation will guide ongoing work to accelerate Mg-silicate carbonation in tailings.

  20. Biomedical research with heavy ions at the IMP accelerators

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    The main ion-beam acceleration facilities and research activities at the Institute of Modern Physics (IMP), Chinese Academy of Sciences are briefly introduced. Some of the biomedical research with heavy ions such as heavy-ion biological effect, basic research related to heavy-ion cancer therapy and radiation breeding at the IMP accelerators are presented.

  1. Accelerator mass spectrometry of molecular ions

    NASA Astrophysics Data System (ADS)

    Golser, Robin; Gnaser, Hubert; Kutschera, Walter; Priller, Alfred; Steier, Peter; Vockenhuber, Christof; Wallner, Anton

    2005-10-01

    The use of tandem accelerators for accelerator mass spectrometry (AMS) allows to literally "analyze" molecules. When a molecular ion with mass M and charge Q is injected at the low-energy side, it is efficiently broken up into its atomic constituents during the stripping process in the terminal. At the high-energy side the positively charged atomic ions are again analyzed by their mass-to-charge ratio and by their energy in the detector (and eventually by their nuclear charge, too). We show the usefulness of the AMS method by identifying unambiguously the doubly-charged negative molecule (43Ca19F4)2- for the first time. It considerably eases the task that the total mass M = 119 is odd, so the di-anion is injected at the half-integer mass-to-charge ratio M/Q = 59.5, where no singly charged ions can interfere. The full power of AMS is needed when we try to proof the existence of di-anions with an integer M/Q, e.g. (23Na35Cl3)2-, whose stability is of interest for atomic physics theory.

  2. Laser Driven Ion accelerators - current status and perspective

    SciTech Connect

    Zepf, M.; Robinson, A. P. L.

    2009-01-22

    The interaction of ultra-intense lasers with thin foil targets has recently emerged as a route to achieving extreme acceleration gradients and hence ultra-compact proton and ion accelerators. There are a number of distinct physical processes by which the protons/ions can be accelerated to energies in excess of 10 MeV. The recent development is discussed and a new mechanism--Radiation Pressure Acceleration is highlighted as a route to achieving efficient production of relativistic ions beams.

  3. Oncological hadrontherapy with laser ion accelerators

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Khoroshkov, V. S.; Kuznetsov, A. V.; Pegoraro, F.

    2002-11-01

    === Effective ion acceleration during the interaction of an ultra short and ultra intense laser pulse with matter is one of the most important applications of the presently available compact laser systems with multi-terawatt and petawatt power. The use of an intense collimated beam of protons produced by a high-intensity laser pulse interacting with a plasma for the proton treatment of oncological diseases [1,2] is discussed. The fast proton beam is produced at the target by direct laser acceleration. An appropriately designed double-layer target scheme is proposed in order to achieve high-quality proton beams. The generation of high quality proton beams is proved with Particle in Cell simulations. === [1] S. V. Bulanov, V. S. Khoroshkov, Plasma Phys. Rep. 28, 453 (2002). [2] S. V. Bulanov, T. Zh. Esirkepov, V. S. Khoroshkov, A.V. Kuznetsov, F. Pegoraro, Phys. Lett. A 299, 240 (2002)

  4. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Astrophysics Data System (ADS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-09-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  5. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  6. Controllability in Multi-Stage Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  7. Accelerated carbonation treatment of industrial wastes

    SciTech Connect

    Gunning, Peter J.; Hills, Colin D.; Carey, Paula J.

    2010-06-15

    The disposal of industrial waste presents major logistical, financial and environmental issues. Technologies that can reduce the hazardous properties of wastes are urgently required. In the present work, a number of industrial wastes arising from the cement, metallurgical, paper, waste disposal and energy industries were treated with accelerated carbonation. In this process carbonation was effected by exposing the waste to pure carbon dioxide gas. The paper and cement wastes chemically combined with up to 25% by weight of gas. The reactivity of the wastes to carbon dioxide was controlled by their constituent minerals, and not by their elemental composition, as previously postulated. Similarly, microstructural alteration upon carbonation was primarily influenced by mineralogy. Many of the thermal wastes tested were classified as hazardous, based upon regulated metal content and pH. Treatment by accelerated carbonation reduced the leaching of certain metals, aiding the disposal of many as stable non-reactive wastes. Significant volumes of carbon dioxide were sequestrated into the accelerated carbonated treated wastes.

  8. Development of high intensity linear accelerator for heavy ion inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan

    2013-11-01

    In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.

  9. Directional Laser-Driven Ion Acceleration from Microspheres

    SciTech Connect

    Sokollik, T.; Schnuerer, M.; Steinke, S.; Nickles, P. V.; Sandner, W.; Amin, M.; Toncian, T.; Willi, O.; Andreev, A. A.

    2009-09-25

    Laser-driven ion acceleration is capable of generating ion beams of MeV energy exhibiting unique attributes such as ultralow emittance. Research is still focusing on fundamental laser-target interactions to control further beam attributes. In this Letter we present the observation of directional ion acceleration of irradiated spherical targets through proton imaging. This feature, together with an earlier observed quasimonoenergetic proton burst makes spherical targets extremely attractive candidates for high quality, high repetition rate sources of laser accelerated particles.

  10. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  11. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited).

    PubMed

    Kitagawa, A; Drentje, A G; Fujita, T; Muramatsu, M; Fukushima, K; Shiraishi, N; Suzuki, T; Takahashi, K; Takasugi, W; Biri, S; Rácz, R; Kato, Y; Uchida, T; Yoshida, Y

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  12. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M.; Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W.; Biri, S.; Rácz, R.; Kato, Y.; Uchida, T.; Yoshida, Y.

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  13. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited).

    PubMed

    Kitagawa, A; Drentje, A G; Fujita, T; Muramatsu, M; Fukushima, K; Shiraishi, N; Suzuki, T; Takahashi, K; Takasugi, W; Biri, S; Rácz, R; Kato, Y; Uchida, T; Yoshida, Y

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex. PMID:26932117

  14. Post-acceleration of laser-induced ion beams

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.

    2015-04-01

    A complete review of the essential and recent developments in the field of post-acceleration of laser-induced ion beams is presented. After a brief introduction to the physics of low-intensity nanosecond laser-matter interaction, the details of ions extraction and acceleration are critically analyzed and the key parameters to obtain good-quality ion beams are illustrated. A description of the most common ion beam diagnosis system is given, together with the associated analytical techniques.

  15. Clinical advantages of carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Tsujii, Hirohiko; Kamada, Tadashi; Baba, Masayuki; Tsuji, Hiroshi; Kato, Hirotoshi; Kato, Shingo; Yamada, Shigeru; Yasuda, Shigeo; Yanagi, Takeshi; Kato, Hiroyuki; Hara, Ryusuke; Yamamoto, Naotaka; Mizoe, Junetsu

    2008-07-01

    Carbon-ion radiotherapy (C-ion RT) possesses physical and biological advantages. It was started at NIRS in 1994 using the Heavy Ion Medical Accelerator in Chiba (HIMAC); since then more than 50 protocol studies have been conducted on almost 4000 patients with a variety of tumors. Clinical experiences have demonstrated that C-ion RT is effective in such regions as the head and neck, skull base, lung, liver, prostate, bone and soft tissues, and pelvic recurrence of rectal cancer, as well as for histological types including adenocarcinoma, adenoid cystic carcinoma, malignant melanoma and various types of sarcomas, against which photon therapy could be less effective. Furthermore, when compared with photon and proton RT, a significant reduction of overall treatment time and fractions has been accomplished without enhancing toxicities. Currently, the number of irradiation sessions per patient averages 13 fractions spread over approximately three weeks. This means that in a carbon therapy facility a larger number of patients than is possible with other modalities can be treated over the same period of time.

  16. Intense ion beams accelerated by relativistic laser plasmas

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, Thomas E.; Gauthier, Jean-Claude J.; Allen, Matthew; Audebert, Patrick; Blazevic, Abel; Fuchs, Julien; Geissel, Matthias; Hegelich, Manuel; Karsch, S.; Meyer-ter-Vehn, Jurgen; Pukhov, Alexander; Schlegel, Theodor

    2001-12-01

    We have studied the influence of the target properties on laser-accelerated proton and ion beams generated by the LULI multi-terawatt laser. A strong dependence of the ion emission on the surface conditions, conductivity, shape and material of the thin foil targets were observed. We have performed a full characterization of the ion beam using magnetic spectrometers, Thompson parabolas, radiochromic film and nuclear activation techniques. The strong dependence of the ion beam acceleration on the conditions on the target back surface was found in agreement with theoretical predictions based on the target normal sheath acceleration (TNSA) mechanism. Proton kinetic energies up to 25 MeV have been observed.

  17. Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses

    SciTech Connect

    Henig, A.; Hoerlein, R.; Kiefer, D.; Jung, D.; Habs, D.; Steinke, S.; Schnuerer, M.; Sokollik, T.; Nickles, P. V.; Sandner, W.; Schreiber, J.; Hegelich, B. M.; Yan, X. Q.; Meyer-ter-Vehn, J.; Tajima, T.

    2009-12-11

    We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5x10{sup 19} W/cm{sup 2}. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell simulations reveal that those C{sup 6+} ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.

  18. Laser ion acceleration toward future ion beam cancer therapy - Numerical simulation study -

    PubMed Central

    Kawata, Shigeo; Izumiyama, Takeshi; Nagashima, Toshihiro; Takano, Masahiro; Barada, Daisuke; Kong, Qing; Gu, Yan Jun; Wang, Ping Xiao; Ma, Yan Yun; Wang, Wei Min

    2013-01-01

    Background: Ion beam has been used in cancer treatment, and has a unique preferable feature to deposit its main energy inside a human body so that cancer cell could be killed by the ion beam. However, conventional ion accelerator tends to be huge in its size and its cost. In this paper a future intense-laser ion accelerator is proposed to make the ion accelerator compact. Subjects and methods: An intense femtosecond pulsed laser was employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching and the ion particle energy control. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. Results: When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near-critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. Conclusions: The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. PMID:24155555

  19. A microsecond-pulsewidth, intense, light-ion beam accelerator

    SciTech Connect

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Greenly, J.B.; Waganaar, W.J.

    1993-07-01

    A relatively long-pulsewidth (0.1-1 {mu}s) intense ion beam accelerator has been built for materials processing applications. An applied-B{sub r}, magnetically-insulated extraction ion diode with dielectric flashover ion source is installed directly onto the output of a 1.2-MV, 300-kJ Marx generator. Initial operation of the accelerator at 0.4 MV indicates satisfactory performance without the need for additional pulse-shaping.

  20. "Super-acceleration" of ions in a stationary plasma discharge

    NASA Astrophysics Data System (ADS)

    Bardakov, Vladimir; Ivanov, Sergey; Kazantsev, Alexander; Strokin, Nikolay; Stupin, Aleksey

    2016-10-01

    We report on the detection of the acceleration effect of the bulk of ions in a stationary plasma E × B discharge to energies exceeding considerably the value equivalent to the discharge voltage. We determined the conditions necessary for the generation of high-energy ions, and ascertained the influence exerted on the value of the ion energies by pressure (flow rate) and the kind of plasma-producing gas, and by the value of discharge current. The possible acceleration mechanism is suggested.

  1. The production of accelerated radioactive ion beams

    SciTech Connect

    Olsen, D.K.

    1993-11-01

    During the last few years, substantial work has been done and interest developed in the scientific opportunities available with accelerated radioactive ion beams (RIBs) for nuclear physics, astrophysics, and applied research. This interest has led to the construction, development, and proposed development of both first- and second-generation RIB facilities in Asia, North America, and Europe; international conferences on RIBs at Berkeley and Louvain-la-Neuve; and many workshops on specific aspects of RIB production and science. This paper provides a discussion of both the projectile fragmentation, PF, and isotope separator on-line, ISOL, approach to RIB production with particular emphasis on the latter approach, which employs a postaccelerator and is most suitable for nuclear structure physics. The existing, under construction, and proposed facilities worldwide are discussed. The paper draws heavily from the CERN ISOLDE work, the North American IsoSpin Laboratory (ISL) study, and the operating first-generation RIB facility at Louvain-la-Neuve, and the first-generation RIB project currently being constructed at ORNL.

  2. Diagnostics for studies of novel laser ion acceleration mechanisms

    SciTech Connect

    Senje, Lovisa; Aurand, Bastian; Wahlström, Claes-Göran; Yeung, Mark; Kuschel, Stephan; Rödel, Christian; Wagner, Florian; Roth, Markus; Li, Kun; Neumayer, Paul; Dromey, Brendan; Jung, Daniel; Bagnoud, Vincent; Zepf, Matthew; Kuehl, Thomas

    2014-11-15

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

  3. Diagnostics for studies of novel laser ion acceleration mechanisms.

    PubMed

    Senje, Lovisa; Yeung, Mark; Aurand, Bastian; Kuschel, Stephan; Rödel, Christian; Wagner, Florian; Li, Kun; Dromey, Brendan; Bagnoud, Vincent; Neumayer, Paul; Roth, Markus; Wahlström, Claes-Göran; Zepf, Matthew; Kuehl, Thomas; Jung, Daniel

    2014-11-01

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

  4. Ion motion in self-modulated plasma wakefield accelerators.

    PubMed

    Vieira, J; Fonseca, R A; Mori, W B; Silva, L O

    2012-10-01

    The effects of plasma ion motion in self-modulated plasma-based accelerators are examined. An analytical model describing ion motion in the narrow beam limit is developed and confirmed through multidimensional particle-in-cell simulations. It is shown that the ion motion can lead to the early saturation of the self-modulation instability and to the suppression of the accelerating gradients. This can reduce the total energy that can be transformed into kinetic energy of accelerated particles. For the parameters of future proton-driven plasma accelerator experiments, the ion dynamics can have a strong impact. Possible methods to mitigate the effects of the ion motion in future experiments are demonstrated.

  5. Acceleration schedules for a recirculating heavy-ion accelerator

    SciTech Connect

    Sharp, W.M.; Grote, D.P.

    2002-05-01

    Recent advances in solid-state switches have made it feasible to design programmable, high-repetition-rate pulsers for induction accelerators. These switches could lower the cost of recirculating induction accelerators, such as the ''small recirculator'' at Lawrence Livermore National Laboratory (LLNL), by substantially reducing the number of induction modules. Numerical work is reported here to determine what effects the use of fewer pulsers at higher voltage would have on the beam quality of the LLNL small recirculator. Lattices with different numbers of pulsers are examined using the fluid/envelope code CIRCE, and several schedules for acceleration and compression are compared for each configuration. For selected schedules, the phase-space dynamics is also studied using the particle-in-cell code WARP3d.

  6. Laser-ion acceleration through controlled surface contamination

    SciTech Connect

    Hou Bixue; Nees, John A.; He Zhaohan; Easter, James H.; Thomas, Alexander G. R.; Krushelnick, Karl M.; Petrov, George; Davis, Jack

    2011-04-15

    In laser-plasma ion accelerators, control of target contamination layers can lead to selection of accelerated ion species and enhancement of acceleration. To demonstrate this, deuterons up to 75 keV are accelerated from an intense laser interaction with a glass target simply by placing 1 ml of heavy water inside the experimental chamber prior to pumping to generate a deuterated contamination layer on the target. Using the same technique with a deuterated-polystyrene-coated target also enhances deuteron yield by a factor of 3 to 5, while increasing the maximum energy of the generated deuterons to 140 keV.

  7. Localized Ionospheric Particle Acceleration and Wave Acceleration of Auroral Ions: Amicist Data Set

    NASA Technical Reports Server (NTRS)

    Lynch, Kristina A.

    1999-01-01

    Research supported by this grant covered two main topics: auroral ion acceleration from ELF-band wave activity, and from VLF-spikelet (lower hybrid solitary structure) wave activity. Recent auroral sounding rocket data illustrate the relative significance of various mechanisms for initiating auroral ion outflow. Two nightside mechanisms are shown in detail. The first mechanism is ion acceleration within lower hybrid solitary wave events. The new data from this two payload mission show clearly that: (1) these individual events are spatially localized to scales approximately 100 m wide perpendicular to B, in agreement with previous investigations of these structures, and (2) that the probability of occurrence of the events is greatest at times of maximum VLF wave intensity. The second mechanism is ion acceleration by broadband, low frequency electrostatic waves, observed in a 30 km wide region at the poleward edge of the arc. The ion fluxes from the two mechanisms are compared and it is shown that while lower hybrid solitary structures do indeed accelerate ions in regions of intense VLF waves, the outflow from the electrostatic ion wave acceleration region is dominant for the aurora investigated by this sounding rocket, AMICIST. The fluxes are shown to be consistent with DE-1 and Freja outflow measurements, indicating that the AMICIST observations show the low altitude, microphysical signatures of nightside auroral outflow. In this paper, we present a review of sounding rocket observations of the ion acceleration seen nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations, we will demonstrate the following characteristics of transverse ion acceleration (TAI) in LHSS. The ion acceleration process is narrowly confined to 90 degrees pitch angle, in spatially confined regions of up to a

  8. Multiple beam induction accelerators for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Barnard, John J.; Faltens, Andris; Friedman, Alex; Waldron, William L.

    2014-01-01

    Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (≥10 kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

  9. Searching For A Suitable Gas Ion Source For 14C Accelerator Mass Spectrometry

    SciTech Connect

    Reden, Karl von; Roberts, Mark; Han, Baoxi; Schneider, Robert; Wills, John

    2007-08-10

    This paper describes the challenges facing 14C Accelerator Mass Spectrometry (AMS) in the effort to directly analyze the combusted effluent of a chromatograph (or any other continuous source of sample material). An efficient, low-memory negative gas ion source would greatly simplify the task to make this a reality. We discuss our tests of a microwave ion source charge exchange canal combination, present an improved design, and hope to generate more interest in the negative ion source community to develop a direct-extraction negative carbon gas ion source for AMS.

  10. Development of the C{sup 6+} laser ablation ion source for the KEK digital accelerator

    SciTech Connect

    Munemoto, Naoya; Takayama, Ken; Takano, Susumu; Okamura, Masahiro; Kumaki, Masahumi

    2014-02-15

    A laser ion source that provides a fully ionized carbon ion beam is under joint development at the High Energy Accelerator Research Organization and Brookhaven National Laboratory. Long-pulse (6 ns) and short-pulse (500 ps) laser systems were tested by using them to irradiate a graphite target. Notable differences between the systems were observed in these experiments. Preliminary experimental results, such as the charge-state spectrum, beam intensity, and stability, are discussed.

  11. Accelerating degradation rate of pure iron by zinc ion implantation.

    PubMed

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-12-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  12. Accelerating degradation rate of pure iron by zinc ion implantation

    PubMed Central

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-01-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  13. Gravitational waves generated by laser accelerated relativistic ions

    NASA Astrophysics Data System (ADS)

    Gelfer, Evgeny G.; Kadlecová, Hedvika; Klimo, Ondřej; Weber, Stefan; Korn, Georg

    2016-09-01

    The generation of gravitational waves by laser accelerated relativistic ions is investigated. The piston and light sail models of laser plasma acceleration are considered, and analytical expressions for space-time metric perturbation are derived. For both models, the dependence of gravitational wave amplitude on the laser and plasma parameters as well as gravitational wave spectrum and angular distribution is examined.

  14. Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas.

    PubMed

    Bin, J H; Ma, W J; Wang, H Y; Streeter, M J V; Kreuzer, C; Kiefer, D; Yeung, M; Cousens, S; Foster, P S; Dromey, B; Yan, X Q; Ramis, R; Meyer-ter-Vehn, J; Zepf, M; Schreiber, J

    2015-08-01

    Ultraintense laser pulses with a few-cycle rising edge are ideally suited to accelerating ions from ultrathin foils, and achieving such pulses in practice represents a formidable challenge. We show that such pulses can be obtained using sufficiently strong and well-controlled relativistic nonlinearities in spatially well-defined near-critical-density plasmas. The resulting ultraintense pulses with an extremely steep rising edge give rise to significantly enhanced carbon ion energies consistent with a transition to radiation pressure acceleration. PMID:26296119

  15. Acceleration of ampere class H(-) ion beam by MeV accelerator.

    PubMed

    Taniguchi, M; Inoue, T; Umeda, N; Kashiwagi, M; Watanabe, K; Tobari, H; Dairaku, M; Sakamoto, K

    2008-02-01

    The H(-) ion accelerator R&D to realize the international thermonuclear experimental reactor neutral beam is ongoing at Japan Atomic Energy Agency (JAEA). The required performance for the prototype MeV accelerator developed at JAEA is 1 MeV, 500 mA (current density of 200 A/m(2)) H(-) ion beam at the beamlet divergence angle of less than 7 mrad. Up to 2005, 836 keV, 146 A/m(2) H(-) ion beam was successfully accelerated as the highest record of the current density at MeV class energy beams. In the present work, high current negative ion beam acceleration test was performed by increasing the beam extraction apertures from 3 x 3 (9 apertures) to 3 x 5 (15 apertures). By fixing the air leak at the source chamber due to backstream ions as well as the improvement of voltage holding capability by a new fiber reinforced plastic insulator ring, the performance of the MeV accelerator was improved. So far, H(-) ion beam of 320 mA was successfully accelerated up to 796 keV with the beam divergence angle of 5.5 mrad. The accelerated drain current including the electron reaches close to the power supply limit for the MeV test facility. The heat flux by the backstream ion during the above beam acceleration was estimated to be 360 W/cm(2). The Cs leakage to the accelerator during the test campaign (Cs total input of 5.0 g) was 0.26 mg (7.0 microg/cm(2)). This is considered to be the allowable level from the viewpoint of voltage holding. PMID:18315236

  16. Ion-Hose Instability in Long Pulse Induction Accelerators

    SciTech Connect

    Caporaso, G J; McCarrick, J F

    2000-08-02

    The ion-hose (or fast-ion) instability sets limits on the allowable vacuum in a long-pulse, high current accelerator. Beam-induced ionization of the background gas leads to the formation of an ion channel which couples to the transverse motion of the beam. The instability is studied analytically and numerically for several ion frequency distributions. The effects of beam envelope oscillations on the growth of the instability will be discussed. The saturated non-linear growth of the instability is derived analytically and numerically for two different ion frequency distributions.

  17. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4. PMID:26932119

  18. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  19. PARTICLE ACCELERATION IN RELATIVISTIC MAGNETIZED COLLISIONLESS ELECTRON-ION SHOCKS

    SciTech Connect

    Sironi, Lorenzo; Spitkovsky, Anatoly E-mail: anatoly@astro.princeton.edu

    2011-01-10

    We investigate shock structure and particle acceleration in relativistic magnetized collisionless electron-ion shocks by means of 2.5-dimensional particle-in-cell simulations with ion-to-electron mass ratios (m{sub i} /m{sub e} ) ranging from 16 to 1000. We explore a range of inclination angles between the pre-shock magnetic field and the shock normal. In 'subluminal' shocks, where relativistic particles can escape ahead of the shock along the magnetic field lines, ions are efficiently accelerated via the first-order Fermi process. The downstream ion spectrum consists of a relativistic Maxwellian and a high-energy power-law tail, which contains {approx}5% of ions and {approx}30% of ion energy. Its slope is -2.1 {+-} 0.1. The scattering is provided by short-wavelength non-resonant modes produced by Bell's instability, whose growth is seeded by the current of shock-accelerated ions that propagate ahead of the shock. Upstream electrons enter the shock with lower energy than ions (albeit by only a factor of {approx}5 << m{sub i} /m{sub e} ), so they are more strongly tied to the field. As a result, only {approx}1% of the incoming electrons are accelerated at the shock before being advected downstream, where they populate a steep power-law tail (with slope -3.5 {+-} 0.1). For 'superluminal' shocks, where relativistic particles cannot outrun the shock along the field, the self-generated turbulence is not strong enough to permit efficient Fermi acceleration, and the ion and electron downstream spectra are consistent with thermal distributions. The incoming electrons are heated up to equipartition with ions, due to strong electromagnetic waves emitted by the shock into the upstream. Thus, efficient electron heating ({approx}>15% of the upstream ion energy) is the universal property of relativistic electron-ion shocks, but significant nonthermal acceleration of electrons ({approx}>2% by number, {approx}>10% by energy, with slope flatter than -2.5) is hard to achieve in

  20. Will peak oil accelerate carbon dioxide emissions?

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Davis, S. J.; Cao, L.

    2008-12-01

    The relative scarcity of oil suggests that oil production is peaking and will decline thereafter. Some have suggested that this represents an opportunity to reduce carbon dioxide emissions. However, in the absence of constraints on carbon dioxide emission, "peak oil" may drive a shift towards increased reliance on coal as a primary energy source. Because coal per unit energy, in the absence of carbon capture and disposal, releases more carbon dioxide to the atmosphere than oil, "peak oil" may lead to an acceleration of carbon dioxide emissions. We will never run out of oil. As oil becomes increasingly scarce, prices will rise and therefore consumption will diminish. As prices rise, other primary energy sources will become increasingly competitive with oil. The developed world uses oil primarily as a source of transportation fuels. The developing world uses oil primarily for heat and power, but the trend is towards increasing reliance on oil for transportation. Liquid fuels, including petroleum derivatives such as gasoline and diesel fuel, are attractive as transportation fuels because of their relative abundance of energy per unit mass and volume. Such considerations are especially important for the air transport industry. Today, there is little that can compete with petroleum-derived transportation fuels. Future CO2 emissions from the transportation sector largely depend on what replaces oil as a source of fuel. Some have suggested that biomass-derived ethanol, hydrogen, or electricity could play this role. Each of these potential substitutes has its own drawbacks (e.g., low power density per unit area in the case of biomass, low power density per unit volume in the case of hydrogen, and low power density per unit mass in the case of battery storage). Thus, it is entirely likely that liquefaction of coal could become the primary means by which transportation fuels are produced. Since the burning of coal produces more CO2 per unit energy than does the burning of

  1. Characterization of ion accelerating systems on NASA LeRC's ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1992-01-01

    An investigation is conducted regarding ion-accelerating systems for two NASA thrusters to study the limits of ion-extraction capability or perveance. A total of nine two-grid ion-accelerating systems are tested with the 30- and 50-cm-diam ring-cusp inert-gas ion thrusters emphasizing the extension of ion-extraction. The vacuum-tank testing is described using xenon, krypton, and argon propellants, and thruster performance is computed with attention given to theoretical design considerations. Reductions in perveance are noted with decreasing accelerator-hole-to-screen-hole diameter ratios. Perveance values vary indirectly with the ratio of discharge voltage to total accelerating voltage, and screen/accelerator electrode hole-pair alignment is also found to contribute to perveance values.

  2. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  3. Symmetric neutralized ion beams: Production, acceleration, propagation, and applications

    NASA Astrophysics Data System (ADS)

    Hicks, Nathaniel Kenneth

    This dissertation presents the first integrated experimental, computational, and theoretical research program on symmetric neutralized ion beams. A beam of this type is composed of positive and negative ions having equal charge-to-mass ratios, such that the beam has overall charge neutrality and its constituent ions respond symmetrically to electromagnetic forces. Under the right conditions, these beams may propagate undeflected across transverse magnetic fields due to beam polarization. Such propagation is studied here computationally, using a three-dimensional particle-in-cell code. Also, key theoretical differences between the propagation ability of these beams and that of beams consisting of positive ions and electrons are elucidated. An experimental method of producing a symmetric neutralized ion beam by merging together separate beams of positive and negative ions is demonstrated, and prototype collector hardware to diagnose the composition and energy distribution of the beam is developed. The ability of radio frequency quadrupole accelerators to simultaneously confine and accelerate the positive and negative ions of such a beam is demonstrated computationally and is confirmed experimentally, and a method to reestablish local charge neutrality in the beam after acceleration is conceived and simulated. The favorable scaling of such accelerators to small size and high frequency is illustrated. Finally, applications of the research to magnetic confinement fusion and topics for future study are presented.

  4. Overview of LANL short-pulse ion acceleration activities

    SciTech Connect

    Flippo, Kirk A.; Schmitt, Mark J.; Offermann, Dustin; Cobble, James A.; Gautier, Donald; Kline, John; Workman, Jonathan; Archuleta, Fred; Gonzales, Raymond; Hurry, Thomas; Johnson, Randall; Letzring, Samuel; Montgomery, David; Reid, Sha-Marie; Shimada, Tsutomu; Gaillard, Sandrine A.; Sentoku, Yasuhiko; Bussman, Michael; Kluge, Thomas; Cowan, Thomas E.; Rassuchine, Jenny M.; Lowenstern, Mario E.; Mucino, J. Eduardo; Gall, Brady; Korgan, Grant; Malekos, Steven; Adams, Jesse; Bartal, Teresa; Chawla, Surgreev; Higginson, Drew; Beg, Farhat; Nilson, Phil; Mac Phee, Andrew; Le Pape, Sebastien; Hey, Daniel; Mac Kinnon, Andy; Geissel, Mattias; Schollmeier, Marius; Stephens, Rich

    2009-12-02

    An overview of Los Alamos National Laboratory's activities related to short-pulse ion acceleration is presented. LANL is involved is several projects related to Inertial Confinement Fusion (Fast Ignition) and Laser-Ion Acceleration. LANL has an active high energy X-ray backlighter program for radiographing ICF implosions and other High Energy Density Laboratory Physics experiments. Using the Trident 200TW laser we are currently developing high energy photon (>10 keV) phase contrast imaging techniques to be applied on Omega and the NIF. In addition we are engaged in multiple programs in laser ion acceleration to boost the ion energies and efficiencies for various potential applications including Fast Ignition, active material interrogation, and medical applications. Two basic avenues to increase ion performance are currently under study: one involves ultra-thin targets and the other involves changing the target geometry. We have recently had success in boosting proton energies above 65 MeV into the medical application range. Highlights covered in the presentation include: The Trident Laser System; X-ray Phase Contrast Imaging for ICF and HEDLP; Improving TNSA Ion Acceleration; Scaling Laws; Flat Targets; Thin Targets; Cone Targets; Ion Focusing;Trident; Omega EP; Scaling Comparisons; and, Conclusions.

  5. Residual skin damage in rats 1 year after exposure to x rays or accelerated heavy ions

    SciTech Connect

    Leith, J.T.; McDonald, M.; Howard, J.

    1982-01-01

    In conjunction with a study on the biological effects of accelerated heavy ions on rat spinal cord, we were able to assess the residual skin damage remaining 1 year postirradiation. In this study, rats were irradiated with 230-kVp fractionated doses of either X rays, carbon ions, or neon ions. Four radiation fractions were given at daily intervals. For the carbon and neon ion exposures, rats were irradiated in both the plateau and spread Bragg peak (4 cm) regions of ionization. Comparing doses that produced complete epilation with a slight suggestion of a residual radiation scar, it was found that the relative biological effectivesness (RBE) values 1 year postirradiation for the four fraction irradiations were: carbon ions (plateau ionization region), 1.06; carbon ions (spread Bragg peak ionization region), 1.88; neon ions (plateau region of ionization), 1.55; and neon ions (spread Bragg peak ionization region), 2.26. RBE values for production of paralysis after spinal cord irradiation (using the same X-ray total dose levels for comparison purposes) were in all cases higher than the RBE values obtained from assessment of residual skin injury.

  6. The beat in laser-accelerated ion beams

    SciTech Connect

    Schnürer, M.; Abicht, F.; Bränzel, J.; Koschitzki, Ch.; Andreev, A. A.; Platonov, K. Yu.; Priebe, G.; Sandner, W.

    2013-10-15

    Regular modulation in the ion velocity distribution becomes detectable if intense femtosecond laser pulses with very high temporal contrast are used for target normal sheath acceleration of ions. Analytical and numerical analysis of the experimental observation associates the modulation with the half-cycle of the driving laser field period. In processes like ion acceleration, the collective and laser-frequency determined electron dynamics creates strong fields in plasma to accelerate the ions. Even the oscillatory motion of electrons and its influence on the acceleration field can dominate over smoothing effects in plasma if a high temporal contrast of the driving laser pulse is given. Acceleration parameters can be directly concluded out of the experimentally observed modulation period in ion velocity spectra. The appearance of the phenomenon at a temporal contrast of ten orders between the intensity of the pulse peak and the spontaneous amplified emission background as well as remaining intensity wings at picosecond time-scale might trigger further parameter studies with even higher contrast.

  7. Energy Release, Acceleration, and Escape of Solar Energetic Ions

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Ireland, J.; Ryan, J. M.; Young, C. A.

    2013-12-01

    Solar flares are prodigious producers of energetic particles, and thus a rich laboratory for studying particle acceleration. The acceleration occurs through the release of magnetic energy, a significant fraction of which can go into the acceleration of particles. Coronal mass ejections (CMEs) certainly produce shocks that both accelerate particles and provide a mechanism for escape into the interplanetary medium (IP). What is less well understood is whether accelerated particles produced from the flare reconnection process escape, and if so, how these same particles are related to solar energetic particles (SEPs) detected in-situ. Energetic electron SEPs have been shown to be correlated with Type III radio bursts, hard X-ray emission, and EUV jets, making a very strong case for the connection between acceleration at the flare and escape along open magnetic field lines. Because there has not been a clear signature of ion escape, as is the case with the Type III radio emission for electrons, sorting out the avenues of escape for accelerated flare ions and the possible origin of the impulsive SEPs continues to be a major challenge. The key to building a clear picture of particle escape relies on the ability to map signatures of escape such as EUV jets at the Sun and to follow the progression of these escape signatures as they evolve in time. Furthermore, nuclear γ-ray emissions provide critical context relating ion acceleration to that of escape. With the advent observations from Fermi as well as RHESSI and the Solar Dynamics Observatory (SDO), the challenge of ion escape from the Sun can now be addressed. We present a preliminary study of the relationship of EUV jets with nuclear γ-ray emission and Type III radio observations and discuss the implications for possible magnetic topologies that allow for ion escape from deep inside the corona to the interplanetary medium.

  8. Extraction and Acceleration of Ions from an Ion-Ion Plasma

    SciTech Connect

    Popelier, Lara; Aanesland, Ane; Chabert, Pascal

    2011-09-26

    Extraction and acceleration of positive and negative ions from a strong electronegative plasma and from an ion-ion plasma is investigated in the PEGASES thruster, working with SF{sub 6}. The plasma is generated in a cylindrical quartz tube terminated by metallic endplates. The electrons are confined by a static magnetic field along the axis of the cylinder. The electron mobility along the field is high and the electrons are determining the sheaths in front of the endplates. The core plasma potential can therefore be controlled by the bias applied to the endplates. An ion-ion plasma forms at the periphery as a result of electron confinement and ions can freely diffuse along the perpendicular direction or extraction axis. Langmuir probe and RFEA measurements are carried out along this axis. The measured ion energy distributions shows a single peak centered around a potential consistent with the plasma potential and the peak position could be controlled with a positive voltage applied to the endplates. When the endplates are biased negatively, the plasma potential saturates and remained close to 15 V. A beam of negatively charged particles can be observed under certain conditions when the endplates were biased negatively.

  9. Stochastic ion acceleration by beating electrostatic waves.

    PubMed

    Jorns, B; Choueiri, E Y

    2013-01-01

    A study is presented of the stochasticity in the orbit of a single, magnetized ion produced by the particle's interaction with two beating electrostatic waves whose frequencies differ by the ion cyclotron frequency. A second-order Lie transform perturbation theory is employed in conjunction with a numerical analysis of the maximum Lyapunov exponent to determine the velocity conditions under which stochasticity occurs in this dynamical system. Upper and lower bounds in ion velocity are found for stochastic orbits with the lower bound approximately equal to the phase velocity of the slower wave. A threshold condition for the onset of stochasticity that is linear with respect to the wave amplitudes is also derived. It is shown that the onset of stochasticity occurs for beating electrostatic waves at lower total wave energy densities than for the case of a single electrostatic wave or two nonbeating electrostatic waves. PMID:23410446

  10. Ion acceleration and direct ion heating in three-component magnetic reconnection

    SciTech Connect

    Ono, Y.; Yamada, M.; Akao, T.

    1996-03-01

    Ion acceleration and direct ion heating in magnetic reconnection are experimentally observed during counterhelicity merging of two plasma toroids. Plasma ions are accelerated up to order of the Alfen speed through contraction of the reconnected field-lines with three-components. The large increase in ion thermal energy (from 10 eV up to 200 eV) is attributed to the direct conversion of the magnetic energy into the unmagnetized ion population. This observation is consistent with the magnetohydrodynamic and macro-particle simulations.

  11. Ion acceleration enhanced by target ablation

    SciTech Connect

    Zhao, S.; Lin, C. Wang, H. Y.; Lu, H. Y.; He, X. T.; Yan, X. Q.; Chen, J. E.; Cowan, T. E.

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  12. Studies of the Mirrortron ion accelerator concept and its application to heavy-ion drivers

    SciTech Connect

    Post, R.F.; Schwager, L.A. ); Douglass, S.R.; Jones, B.R.; Lambert, M.A.; Larson, D.L. . Dept. of Applied Science)

    1990-11-30

    The Mirrortron accelerator is a plasma-based ion accelerator concept that, when implemented, should permit both higher acceleration gradients and higher peak-current capabilities than is possible with conventional induction-type accelerators. Control over the acceleration and focussing of an accelerated beam should approach that achieved in vacuum-field-based ion accelerators. In the Mirrortron a low density (10{sup 10} to 10{sup 11} cm{sup {minus}3}) hot electron'' plasma is confined by a long solenoidal magnetic field capped by mirrors.'' Acceleration of pre-bunched ions is accomplished by activating a series of fast-pulsed mirror coils spaced along the acceleration tube. The hot electrons, being repelled by mirror action, leave the plasma ions behind to create a localized region of high electrical gradient (up to of order 100 MV/m). At the laboratory an experiment and analyses to elucidate the concept and its scaling laws as applied to heavy-ion drivers are underway and will be described. 4 refs., 5 figs.

  13. A study of light ion accelerators for cancer treatment

    SciTech Connect

    Prelec, K.

    1997-07-01

    This review addresses several issues, such as possible advantages of light ion therapy compared to protons and conventional radiation, the complexity of such a system and its possible adaptation to a hospital environment, and the question of cost-effectiveness compared to other modalities for cancer treatment or to other life saving procedures. Characteristics and effects of different types of radiation on cells and organisms will be briefly described; this will include conventional radiation, protons and light ions. The status of proton and light ion cancer therapy will then be described, with more emphasis on the latter; on the basis of existing experience the criteria for the use of light ions will be listed and areas of possible medical applications suggested. Requirements and parameters of ion beams for cancer treatment will then be defined, including ion species, energy and intensity, as well as parameters of the beam when delivered to the target (scanning, time structure, energy spread). Possible accelerator designs for light ions will be considered, including linear accelerators, cyclotrons and synchrotrons and their basic features given; this will be followed by a review of existing and planned facilities for light ions. On the basis of these considerations a tentative design for a dedicated light ion facility will be suggested, a facility that would be hospital based, satisfying the clinical requirements, simple to operate and reliable, concluding with its cost-effectiveness in comparison with other modalities for treatment of cancer.

  14. Optimization of quasiperiodic structures in a linear resonance ion accelerator

    NASA Astrophysics Data System (ADS)

    Garashchenko, F. G.; Sokolov, L. S.; Tsulaya, A. V.

    1980-06-01

    A method is proposed for optimizing the parameters of a linear ion accelerator with rectangular or trapezoidal shape of the accelerating voltage between the tubes, systematic allowance being made for the quasiperiodicity of their arrangement. Numerical calculations have demonstrated the effectiveness of the method and also the fairly simple structure of its realization. A detailed algorithm is given. An estimate is made of the interval of entrance phases, the maximal value of which exceeds by several percent the limits previously predicted.

  15. ION-STABILIZED ELECTRON INDUCTION ACCELERATOR

    DOEpatents

    Finkelstein, D.

    1960-03-22

    A method and apparatus for establishing an ion-stabilized self-focusing relativistic electron beam from a plasma are reported. A plasma is introduced into a specially designed cavity by plasma guns, and a magnetic field satisfying betatron conditions is produced in the cavity by currents flowing in the highly conductive, non-magnetic surface of the cavity. This field forms the electron beam by induction from the plasma.

  16. Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-03-10

    We use two-dimensional and three-dimensional hybrid (kinetic ions-fluid electrons) simulations to investigate particle acceleration and magnetic field amplification at non-relativistic astrophysical shocks. We show that diffusive shock acceleration operates for quasi-parallel configurations (i.e., when the background magnetic field is almost aligned with the shock normal) and, for large sonic and Alfvénic Mach numbers, produces universal power-law spectra ∝p {sup –4}, where p is the particle momentum. The maximum energy of accelerated ions increases with time, and it is only limited by finite box size and run time. Acceleration is mainly efficient for parallel and quasi-parallel strong shocks, where 10%-20% of the bulk kinetic energy can be converted to energetic particles and becomes ineffective for quasi-perpendicular shocks. Also, the generation of magnetic turbulence correlates with efficient ion acceleration and vanishes for quasi-perpendicular configurations. At very oblique shocks, ions can be accelerated via shock drift acceleration, but they only gain a factor of a few in momentum and their maximum energy does not increase with time. These findings are consistent with the degree of polarization and the morphology of the radio and X-ray synchrotron emission observed, for instance, in the remnant of SN 1006. We also discuss the transition from thermal to non-thermal particles in the ion spectrum (supra-thermal region) and we identify two dynamical signatures peculiar of efficient particle acceleration, namely, the formation of an upstream precursor and the alteration of standard shock jump conditions.

  17. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  18. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    SciTech Connect

    Ostroumov, Peter N.; Asseev, Vladislav N.; Mustapha, and Brahim

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modern ion linear accelerators and beam transport systems.

  19. High performance auxiliary-propulsion ion thruster with ion-machined accelerator grid

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Banks, B. A.

    1975-01-01

    An improvement in thruster performance was achieved by reducing the diameter of the accelerator grid holes. The smaller accelerator grid holes resulted in a reduction in neutral mercury atoms escaping the discharge chamber, which in turn enhanced the discharge propellant utilization from approximately 68 percent to 92 percent. The accelerator grids were fabricated by ion machining with an 8-centimeter-diameter thruster, and the screen grid holes individually focused ion beamlets onto the blank accelerator grid. The resulting accelerator grid holes are less than 1.12 millimeters in diameter, while previously used accelerator grids had hole diameters of 1.69 millimeters. The thruster could be operated with the small-hole accelerator grid at neutralizer potential.

  20. Laser-driven ion acceleration from relativistically transparent nanotargets

    NASA Astrophysics Data System (ADS)

    Hegelich, B. M.; Pomerantz, I.; Yin, L.; Wu, H. C.; Jung, D.; Albright, B. J.; Gautier, D. C.; Letzring, S.; Palaniyappan, S.; Shah, R.; Allinger, K.; Hörlein, R.; Schreiber, J.; Habs, D.; Blakeney, J.; Dyer, G.; Fuller, L.; Gaul, E.; Mccary, E.; Meadows, A. R.; Wang, C.; Ditmire, T.; Fernandez, J. C.

    2013-08-01

    Here we present experimental results on laser-driven ion acceleration from relativistically transparent, overdense plasmas in the break-out afterburner (BOA) regime. Experiments were preformed at the Trident ultra-high contrast laser facility at Los Alamos National Laboratory, and at the Texas Petawatt laser facility, located in the University of Texas at Austin. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  1. Direct ion acceleration with variable-frequency lasers

    NASA Astrophysics Data System (ADS)

    Peano, Fabio; Vieira, Jorge; Fonseca, Ricardo; Silva, Luis; Coppa, Gianni; Mulas, Roberta

    2007-11-01

    Laser-based ion acceleration commonly relies on indirect schemes, in which the ions are accelerated by the space-charge field in laser-irradiated solid targets, either via plasma-expansion processes [1], or resorting to electrostatic shock structures [2]. Here, we propose the production of monoergetic ion beams via direct acceleration by the laser field (in vacuum or in tenuous plasmas) [3]. The method exploits two counterpropagating lasers with variable frequency to drive a beat-wave structure with variable phase velocity: the ions are trapped in the beat wave and accelerated to high energies. The physical mechanism is described with a 1D theory, providing the general conditions for trapping and scaling laws for the relevant ion-beam features. The validity and the robustness of the method are confirmed by 2D PIC simulations with OSIRIS [4]. [1] J. Fuchs et al., Nature Phys. 2, 48 (2006); L. Robson et al., Nature Phys. 3, 58 (2007); B.M. Hegelich et al., Nature 439, 441 (2006). [2] L.O. Silva et al., Phys. Rev. Lett. 92, 015002 (2004). [3] F. Peano et al., submitted for publication (2007). [4] R. A. Fonseca et al., Lect. Notes Comp. Sci. 2331, 342 (Springer-Verlag, Heidelberg, 2002).

  2. Stochastic acceleration of ions driven by Pc1 wave packets

    SciTech Connect

    Khazanov, G. V. Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-07-15

    The stochastic motion of protons and He{sup +} ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10{sup −4} nT{sup 2}/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  3. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University

    PubMed Central

    Oike, Takahiro; Sato, Hiro; Noda, Shin-ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  4. Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University.

    PubMed

    Oike, Takahiro; Sato, Hiro; Noda, Shin-Ei; Nakano, Takashi

    2016-01-01

    Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by

  5. Accelerator physics in ERL based polarized electron ion collider

    SciTech Connect

    Hao, Yue

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  6. Temporal Variability of Ion Acceleration and Abundances in Solar Flares

    NASA Technical Reports Server (NTRS)

    Shih, Albert

    2011-01-01

    Solar flares accelerate both ions and electrons to high energies, and their X-ray and gamma-ray signatures not only probe the relationship between their respective acceleration, but also allow for the measurement of accelerated and ambient abundances. RHESSI observations have shown a striking close linear correlation of gamma-ray line fluence from accelerated ions greater than approximately 20 MeV and bremsstrahlung emission from relativistic accelerated electrons greater than 300 keV, when integrated over complete flares, suggesting a common acceleration mechanism. SMM/GRS observations, however, show a weaker correlation, and this discrepancy might be associated with previously observed electron-rich episodes within flares and/or temporal variability of gamma-ray line fluxes over the course of flares. We use the latest RHESSI gamma-ray analysis techniques to study the temporal behavior of the RHESSI flares, and determine what changes can be attributed to an evolving acceleration mechanism or to evolving abundances. We also discuss possible explanations for changing abundances.

  7. Temporal Variability of Ion Acceleration and Abundances in Solar Flares

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2012-01-01

    solar flares accelerate both ions and electrons to high energies, and their x-ray and gamma-ray signatures not only probe the relationship between their respective acceleration, but also allow for the measurement of accelerated and ambient abundances. RHESSI observations have shown a striking close linear correlation of gamma-ray line fluence from accelerated ions > approx 20 MeV and bremsstrahlung emission from relativistic accelerated electrons >300 kev, when integrated over complete flares, suggesting a common acceleration mechanism. SMM/GRS observations, however, show a weaker correlation, and this discrepancy might be associated with previously observed electron-rich episodes within flares and/or temporal variability of gamma-ray line fluxes over the course of flares. We use the latest RHESSI gamma-ray analysis techniques to study the temporal behavior of the RHESSI flares, and determine what changes can be attributed to an evolving acceleration mechanism or to evolving abundances. We also discuss possible explanations for changing abundances.

  8. Alumino-silicate ion sources for accelerator applications

    SciTech Connect

    Warwick, A.I.

    1985-04-01

    As part of the program of Heavy Ion Fusion Accelerator Research at the Lawrence Berkeley Laboratory, ion sources have been developed using thermionic emitters of singly charged alkali metal ions. These emitters are flat surfaces of alumino-silicate, loaded with the appropriate ion. They have become convenient and reliable sources producing pulsed beams of very low emittance. Thermionic emission of ions from alumino-silicates has been known for a very long time. Here the author focuses on the practical application as accelerator ion sources. The author discusses the fabrication and heating of large area emitters, uniformity of emission and the maximum ion current density which can be extracted under space charge limited conditions, with zero electric field on the emitter surface. Results are presented for Na, K and Cs ions showing maximum space charge limited current densities of 25, 40 and 120 mAcm/sup -2/ respectively. In the case of cesium the author has produced a 5 mA beam at a kinetic energy of 200 keV with normalized emittance 1.2 x 10/sup -7/ ..pi.. m rad.

  9. Intense ion beams accelerated by ultra-intense laser pulses

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, T. E.; Gauthier, J. C.; Vehn, J. Meyer-Ter; Allen, M.; Audebert, P.; Blazevic, A.; Fuchs, J.; Geissel, M.; Hegelich, M.; Karsch, S.; Pukhov, A.; Schlegel, T.

    2002-04-01

    The discovery of intense ion beams off solid targets irradiated by ultra-intense laser pulses has become the subject of extensive international interest. These highly collimated, energetic beams of protons and heavy ions are strongly depending on the laser parameters as well as on the properties of the irradiated targets. Therefore we have studied the influence of the target conditions on laser-accelerated ion beams generated by multi-terawatt lasers. The experiments were performed using the 100 TW laser facility at Laboratoire pour l'Utilisation des Laser Intense (LULI). The targets were irradiated by pulses up to 5×1019 W/cm2 (~300 fs,λ=1.05 μm) at normal incidence. A strong dependence on the surface conditions, conductivity, shape and purity was observed. The plasma density on the front and rear surface was determined by laser interferometry. We characterized the ion beam by means of magnetic spectrometers, radiochromic film, nuclear activation and Thompson parabolas. The strong dependence of the ion beam acceleration on the conditions on the target back surface was confirmed in agreement with predictions based on the target normal sheath acceleration (TNSA) mechanism. Finally shaping of the ion beam has been demonstrated by the appropriate tailoring of the target. .

  10. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets

    SciTech Connect

    Yin, L.; Albright, B. J.; Hegelich, B. M.; Bowers, K. J.; Flippo, K. A.; Kwan, T. J. T.; Fernandez, J. C.

    2007-05-15

    A new laser-driven ion acceleration mechanism using ultrathin targets has been identified from particle-in-cell simulations. After a brief period of target normal sheath acceleration (TNSA) [S. P. Hatchett et al., Phys. Plasmas 7, 2076 (2000)], two distinct stages follow: first, a period of enhanced TNSA during which the cold electron background converts entirely to hot electrons, and second, the ''laser breakout afterburner'' (BOA) when the laser penetrates to the rear of the target where a localized longitudinal electric field is generated with the location of the peak field co-moving with the ions. During this process, a relativistic electron beam is produced by the ponderomotive drive of the laser. This beam is unstable to a relativistic Buneman instability, which rapidly converts the electron energy into ion energy. This mechanism accelerates ions to much higher energies using laser intensities comparable to earlier TNSA experiments. At a laser intensity of 10{sup 21} W/cm{sup 2}, the carbon ions accelerate as a quasimonoenergetic bunch to 100 s of MeV in the early stages of the BOA with conversion efficiency of order a few percent. Both are an order of magnitude higher than those realized from TNSA in recent experiments [Hegelich et al., Nature 441, 439 (2006)]. The laser-plasma interaction then evolves to produce a quasithermal energy distribution with maximum energy of {approx}2 GeV.

  11. Progress toward a prototype recirculating ion induction accelerator

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cable, M.D.

    1996-06-01

    The U.S. Inertial Fusion Energy (IFE) Program is developing the physics and technology of ion induction accelerators, with the goal of electric power production by means of heavy ion beam-driven inertial fusion (commonly called heavy ion fusion, or HIF). Such accelerators are the principal candidates for inertial fusion power production applications, because they are expected to enjoy high efficiency, inherently high pulse repetition frequency (power plants are expected to inject and burn several fusion targets per second), and high reliability. In addition (and in contrast with laser beams, which are focused with optical lenses) heavy-ion beams will be focused onto the target by magnetic fields, which cannot be damaged by target explosions. Laser beams are used in present-day and planned near-term facilities (such as LLNUs Nova and the National Ignition Facility, which is being designed) because they can focus beams onto very small, intensely illuminated spots for scaled experiments and because the laser technology is already available. An induction accelerator works by passing the beam through a series of accelerating modules, each of which applies an electromotive force to the beam as it goes by; effectively, the beam acts as the secondary winding of a series of efficient one-turn transformers. The authors present plans for and progress toward the development of a small (4.5-m-diam) prototype recirculator, which will accelerate singly charged potassium ions through 15 laps, increasing the ion energy from 80 to 320 keV and the beam current from 2 to 8 mA. Beam confinement and bending are effected with permanent-magnet quadrupoles and electric dipoles, respectively. The design is based on scaling laws and on extensive particle and fluid simulations of the behavior of the space charge-dominated beam.

  12. Spot size dependence of laser accelerated protons in thin multi-ion foils

    SciTech Connect

    Liu, Tung-Chang Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2014-06-15

    We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, a laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10{sup 8} protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen.

  13. Ion acceleration and cooling in gasless self-sputtering

    SciTech Connect

    Horwat, David; Anders, Andre

    2010-10-31

    Copper plasma with hyperthermal directed velocity (8.8 eV) but very low temperature (0.6 eV) has been obtained using self-sputtering far above the runaway threshold. Ion energy distribution functions (IEDFs) were simultaneously measured at 34 locations. The IEDFs show the tail of the Thompson distribution near the magnetron target. They transform to shifted Maxwellians with the ions being accelerated and cooled. We deduce the existence of a highly asymmetric, pressure-driven potential hump which acts as a controlling"watershed" between the ion return flux and the expanding plasma.

  14. PARMELA simulations of RF linear accelerators for ion implantation

    SciTech Connect

    Swenson, D. R.; Wan Zhimin; Di Vergilio, W. F.; Saadatmand, K.

    1999-06-10

    RF linear accelerators (LINACs) offer the highest beam energies and currents available to the high-energy segment of the ion-implantation industry. We are using the computer code PARMELA to simulate a variety of beam parameters. The simulations are used to generate beam tunes, optimize LINAC performance, and to design new LINACs.

  15. Wakefield accelerators in the blowout regime with mobile ions

    NASA Astrophysics Data System (ADS)

    Lee, S.; Katsouleas, T.

    1999-07-01

    In the Plasma Wakefield Accelerator a high current drive-beam excites a large wake that can accelerate trailing particles. The wake is created when the space charge of the drive beam displaces plasma electrons. The plasma ions provide the restoring force on the displaced electrons. For symmetric bunches, the peak accelerating gradient is proportional to the current over a pulse length. For example, for a Gaussian bunch with 6nC of charge and bunch length σz≈0.6 mm, a gradient of 1GeV/m can be obtained. For the case of dense (beam density greater than plasma density), narrow (beam spot size σr smaller than c/ωp) beams the plasma response is non-linear and is dominated by the radial blow out of all the plasma electrons. However, such dense beams are strongly focused by the plasma lens effect. As a result they become so dense that ion motion should become important even on the electron plasma frequency time-scale. We will present analytic and 2-D particle-in-cell (PIC) models of wake excitation including mobile ions. The effect of the ion motion on the accelerating and focusing wake and the dynamics of the drive beam are discussed.

  16. Heavy-ion induced desorption yields of amorphous carbon filmsbombarded with 4.2MeV/u lead ions

    NASA Astrophysics Data System (ADS)

    Mahner, E.; Holzer, D.; Küchler, D.; Scrivens, R.; Costa Pinto, P.; Vallgren, C. Yin; Bender, M.

    2011-10-01

    During the past decade, intense experimental studies on the heavy-ion induced molecular desorption were performed in several particle accelerator laboratories worldwide in order to understand and overcome large dynamic pressure rises caused by lost beam ions. Different target materials and various coatings were studied for desorption and mitigation techniques were applied to heavy-ion accelerators. For the upgrade of the CERN injector complex, a coating of the Super Proton Synchrotron (SPS) vacuum system with a thin film of amorphous carbon is under study to mitigate the electron cloud effect observed during SPS operation with the nominal proton beam for the Large Hadron Collider (LHC). Since the SPS is also part of the heavy-ion injector chain for LHC, dynamic vacuum studies of amorphous carbon films are important to determine their ion induced desorption yields. At the CERN Heavy Ion Accelerator (LINAC 3), carbon-coated accelerator-type stainless steel vacuum chambers were tested for desorption using 4.2MeV/u Pb54+ ions. We describe the experimental setup and method, present the results for unbaked and baked films, and summarize surface characterizations such as secondary electron yield measurements, x-ray photoemission spectroscopy, and scanning electron microscopy studies. Finally, we present a high-energy scaling of lead-ion induced desorption yields from the MeV/u to GeV/u range.

  17. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.

    PubMed

    Inoue, T; Hattori, T; Sugimoto, S; Sasai, K

    2014-02-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz. PMID:24593537

  18. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    SciTech Connect

    Inoue, T. Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-02-15

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  19. Ion acceleration from laser-driven electrostatic shocks

    SciTech Connect

    Fiuza, F.; Stockem, A.; Boella, E.; Fonseca, R. A.; Silva, L. O.; Haberberger, D.; Tochitsky, S.; Mori, W. B.; Joshi, C.

    2013-05-15

    Multi-dimensional particle-in-cell simulations are used to study the generation of electrostatic shocks in plasma and the reflection of background ions to produce high-quality and high-energy ion beams. Electrostatic shocks are driven by the interaction of two plasmas with different density and/or relative drift velocity. The energy and number of ions reflected by the shock increase with increasing density ratio and relative drift velocity between the two interacting plasmas. It is shown that the interaction of intense lasers with tailored near-critical density plasmas allows for the efficient heating of the plasma electrons and steepening of the plasma profile at the critical density interface, leading to the generation of high-velocity shock structures and high-energy ion beams. Our results indicate that high-quality 200 MeV shock-accelerated ion beams required for medical applications may be obtained with current laser systems.

  20. Analysis of ICRF-Accelerated Ions in ASDEX Upgrade

    SciTech Connect

    Mantsinen, M. J.; Eriksson, L.-G.; Noterdaeme, J.-M.

    2007-09-28

    MHD-induced losses of fast ions with energy in the MeV range have been observed during high-power ICRF heating of hydrogen minority ions in the ASDEX Upgrade tokamak (R{sub 0}{approx_equal}1.65 m, a{approx_equal}0.5 m). ICRF heating and ICRF-driven fast ions in discharges exhibiting fast ion losses due to toroidal Alfven eigenmodes and a new core-localised MHD instability are analysed. It is found that the lost ions are ICRF-accelerated trapped protons with energy in the range of 0.3-1.6 MeV, orbit widths of 20-35 cm, and turning points at r/a>0.5 and at major radii close to the cyclotron resonance {omega} = {omega}{sub cH}(R). The presence of such protons is consistent with ICRF modelling.

  1. Chirped-Standing-Wave Acceleration of Ions with Intense Lasers.

    PubMed

    Mackenroth, F; Gonoskov, A; Marklund, M

    2016-09-01

    We propose a novel mechanism for ion acceleration based on the guided motion of electrons from a thin layer. The electron motion is locked to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the layer. This provides a stable longitudinal field of charge separation, thus giving rise to chirped-standing-wave acceleration of the residual ions of the layer. We demonstrate, both analytically and numerically, that stable proton beams, with energy spectra peaked around 100 MeV, are feasible for pulse energies at the level of 10 J. Moreover, a scaling law for higher laser intensities and layer densities is presented, indicating stable GeV-level energy gains of dense ion bunches, for soon-to-be-available laser intensities. PMID:27636480

  2. Chirped-Standing-Wave Acceleration of Ions with Intense Lasers.

    PubMed

    Mackenroth, F; Gonoskov, A; Marklund, M

    2016-09-01

    We propose a novel mechanism for ion acceleration based on the guided motion of electrons from a thin layer. The electron motion is locked to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the layer. This provides a stable longitudinal field of charge separation, thus giving rise to chirped-standing-wave acceleration of the residual ions of the layer. We demonstrate, both analytically and numerically, that stable proton beams, with energy spectra peaked around 100 MeV, are feasible for pulse energies at the level of 10 J. Moreover, a scaling law for higher laser intensities and layer densities is presented, indicating stable GeV-level energy gains of dense ion bunches, for soon-to-be-available laser intensities.

  3. Chirped-Standing-Wave Acceleration of Ions with Intense Lasers

    NASA Astrophysics Data System (ADS)

    Mackenroth, F.; Gonoskov, A.; Marklund, M.

    2016-09-01

    We propose a novel mechanism for ion acceleration based on the guided motion of electrons from a thin layer. The electron motion is locked to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the layer. This provides a stable longitudinal field of charge separation, thus giving rise to chirped-standing-wave acceleration of the residual ions of the layer. We demonstrate, both analytically and numerically, that stable proton beams, with energy spectra peaked around 100 MeV, are feasible for pulse energies at the level of 10 J. Moreover, a scaling law for higher laser intensities and layer densities is presented, indicating stable GeV-level energy gains of dense ion bunches, for soon-to-be-available laser intensities.

  4. Enhanced Ion Acceleration from Micro-tube Structured Targets

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; Ji, Liangliang; Akli, Kramer

    2015-11-01

    We present an enhanced ion acceleration method that leverages recent advancements in 3D printing for target fabrication. Using the three-dimensional Particle-in-Cell simulation code Virtual Laser-Plasma Lab (VLPL), we model the interaction of a short pulse, high intensity laser with a micro-tube plasma (MTP) structured target. When compared to flat foils, the MTP target enhances the maximum proton energy by a factor of about 4. The ion enhancement is attributed to two main factors: high energy electrons extracted from the tube structure enhancing the accelerating field and light intensification within the MTP target increasing the laser intensity at the location of the foil. We also present results on ion energy scaling with micro-tube diameter and incident laser pulse intensity. This work was supported by the AFOSR under contract No. FA9550-14-1-0085.

  5. On the acceleration of energetic ions in Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, D. D.; Eviatar, A.; Siscoe, G. L.

    1984-06-01

    Several aspects of the problem of high-energy ions in the Jovian magnetosphere are addressed. Voyager observations pertaining to the problem of high-energy ions in the magnetosphere are summarized, and the charge exchange emission of fast neutral sulfur and oxygen atoms and their subsequent recapture by electron impact, charge exchange, and photoionization is considered. Solutions are given to the diffusion equation assuming a source of ions injected with a gyroenergy corresponding to pickup in the middle and outer magnetosphere. It is concluded that no reasonable model parameters exist to produce the required steep spectra of the particle observations with only pickup and adiabatic radial diffusion included. A local acceleration mechanism based on nonadiabatic wave-particle interactions is needed. The assumptions and model predictions of stochastic acceleration by MHD turbulence for the Jovian magnetosphere are described. The model makes a specific correspondence between MHD wave spectrum properties and particle spectrum properties at energies above the Alfven energy.

  6. X-ray-induced radioresistance against high-LET radiations from accelerated heavy ions in mice.

    PubMed

    Wang, Bing; Tanaka, Kaoru; Varès, Guillaume; Shang, Yi; Fujita, Kazuko; Ninomiya, Yasuharu; Nakajima, Tetsuo; Eguchi-Kasai, Kiyomi; Nenoi, Mitsuru

    2010-10-01

    Induction of an adaptive response by priming X rays in combination with challenge irradiations from high-LET accelerated heavy ions was attempted in young adult female C57BL/6J Jms mice using 30-day survival after the challenge irradiations as an index. Three kinds of accelerated heavy ions from monoenergetic beams of carbon, silicon and iron ions with LETs of about 15, 55 and 200 keV/μm, respectively, were examined. A priming low dose of 0.50 Gy X rays in combination with a challenging dose of 7.50 Gy was used in the animals serving as a positive control group to confirm the successful induction of an adaptive response. The priming low dose of 0.50 Gy X rays was also used in combination with accelerated heavy ions. The priming low dose of X rays significantly reduced the mortality from the high challenge doses of carbon or silicon particles but not from iron particles. These results indicate that an adaptive response could be induced by priming low-LET X rays in combination with subsequent challenge high-LET irradiations from certain kinds of accelerated heavy ions, and successful induction of an adaptive response would possibly be an event related to the LET and/or the type of heavy ions. This is the first time that the existence of an adaptive response induced by low-LET X rays against high-LET whole-body irradiation in mice has been demonstrated. These findings would provide new insight into the radiation-induced adaptive response in vivo.

  7. Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.

    Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed

  8. Ion acceleration near CME-driven interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; Dayeh, Maher; Smith, Charles; Mason, Glenn; Lee, Martin

    2012-05-01

    We have surveyed properties of the magnetic field power spectral densities and energetic ions and compared them with the shock normal angles of 74 CME-driven IP shocks observed at ACE and Wind during solar cycle 23. We searched for events that exhibited clear signatures of first-order Fermi acceleration at quasi-parallel shocks and shock-drift acceleration at quasi-perpendicular shocks as predicted by the diffusive shock acceleration theory. Our results show that events with clear signatures of either shock-drift or first-order Fermi acceleration at 1 AU are rare, with 64 of the 74 IP shocks (~87%) exhibiting mixed signatures. We classify the remaining ten events as follows. (1) Four quasi-perpendicular shocks with θBn>70° exhibit no enhancements in the magnetic field power spectrum around the proton gyro-frequency and a slight hardening or no change in the ~80-300 keV/nucleon CNO spectral index across the shocks, indicating the absence of upstream wave activity and the re-acceleration of a pre-existing suprathermal seed spectrum. (2) Six quasi-parallel or oblique IP shocks with θBn<70° exhibit significant enhancements in the power spectral densities around the proton gyro-frequency and are accompanied by unfolding (softening) of the ~80-300 keV/nucleon CNO spectral index across the shocks, indicating the acceleration and efficient trapping of <300 keV/nucleon CNO ions by the Alfvén waves that were most likely excited by the accelerated protons as they streamed away from the shocks. In this paper, we present contrasting energetic particle and magnetic field observations near 2 IP shocks at 1 AU to highlight the complex signatures associated with the two distinct types of shock acceleration mechanisms.

  9. ION ACCELERATION IN NON-RELATIVISTIC ASTROPHYSICAL SHOCKS

    SciTech Connect

    Gargate, L.; Spitkovsky, A.

    2012-01-01

    We explore the physics of shock evolution and particle acceleration in non-relativistic collisionless shocks using hybrid simulations. We analyze a wide range of physical parameters relevant to the acceleration of cosmic rays (CRs) in astrophysical shock scenarios. We show that there are fundamental differences between high and low Mach number shocks in terms of the electromagnetic turbulence generated in the pre-shock zone; dominant modes are resonant with the streaming CRs in the low Mach number regime, while both resonant and non-resonant modes are present for high Mach numbers. Energetic power-law tails for ions in the downstream plasma account for up to 15% of the incoming upstream flow energy, distributed over {approx}5% of the particles in a power law with slope -2 {+-} 0.2 in energy. Quasi-parallel shocks with {theta} {<=} 45 Degree-Sign are good ion accelerators, while power laws are greatly suppressed for quasi-perpendicular shocks, {theta} > 45 Degree-Sign . The efficiency of conversion of flow energy into the energy of accelerated particles peaks at {theta} = 15 Degree-Sign -30 Degree-Sign and M{sub A} = 6, and decreases for higher Mach numbers, down to {approx}2% for M{sub A} = 31. Accelerated particles are produced by diffusive shock acceleration (DSA) and by shock drift acceleration (SDA) mechanisms, with the SDA contribution to the overall energy gain increasing with magnetic inclination. We also present a direct comparison between hybrid and fully kinetic particle-in-cell results at early times. In supernova remnant (SNR) shocks, particle acceleration will be significant for low Mach number quasi-parallel flows (M{sub A} < 30, {theta} < 45). This finding underscores the need for an effective magnetic amplification mechanism in SNR shocks.

  10. Enhanced lithium ion storage in nanoimprinted carbon

    SciTech Connect

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu; Xie, Shuhong; Liu, Xiaoyan

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  11. Enhanced lithium ion storage in nanoimprinted carbon

    NASA Astrophysics Data System (ADS)

    Wang, Peiqi; Chen, Qian Nataly; Xie, Shuhong; Liu, Xiaoyan; Li, Jiangyu

    2015-07-01

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  12. A Experimental Study of Collective Ion Acceleration and Relativistic Electron Beam Propagation.

    NASA Astrophysics Data System (ADS)

    Smith, John Rudolph

    The collective acceleration of ions from (1) a localized gas distribution and (2) a localized plasma distribution was investigated. An intense relativistic electron beam (0.6 MeV, 30 kA, 60 ns) was injected into an evacuated drift region through a 20 mm diameter anode aperture. Near the anode end of the drift region an ion source was provided and at the opposite drift tube end various ion diagnostics were attached. Also electron beam propagation which accompanies collective ion acceleration was examined. In the first phase of this experiment a fast pulsed gas valve was used to create a localized gas distribution in the drift region near the anode. Ions were created by interaction of beam electrons and gas. Three different gas types were used as the ion source (H(,2), He, N(,2)). For the second phase a preionized source was obtained by vaporization of small diameter wires. An energy storage capacitor was discharged through two 3-mil tungsten wires or two 10-mil aluminum wires to produce the plasma. The wires were located just outside the beam channel in the vicinity of the anode. In addition to ions derived from the ion source many hydrogen and carbon impurity ions were detected. Maximum energies of 1-2 MeV were measured for several ion species (H, He, C, O, Al, Fe). The average maximun ion energy was found to scale as E(,i) = (10.2 (+OR-) 4.5 keV/amu) M + (530 (+OR-) 60 keV), in the mass range from 1-56 amu. Ion energy was found to be independent of charge state. The mass of the anode-cathode was observed to define an upper mass limit for the accelerated ion mass. Using thermoluminescent dosimeters a novel method was implemented to measure axial and azimuthal profiles of beam electrons striking the guide tube wall and endplate. This method revealed the azimuthal dependence of beam propagation that accompanies collective ion acceleration.

  13. Modeling Electron-Cloud Effects in Heavy-Ion Accelerators

    SciTech Connect

    Cohen, R H; Friedman, A; Lund, S M; Molvik, A W; Lee, E P; Azevedo, T; Vay, J; Stoltz, P; Veitzer, S

    2004-09-21

    Stray electrons can arise in positive-ion accelerators for heavy ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary- electron emission. We summarize results from several studies undertaken in conjunction with an effort to develop a self-consistent modeling capability: (1) Calculation of the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls; (2) Simulation of the effect of specified electron cloud distributions on ion beam dynamics; and (3) analysis of an instability associated with a resonance between the beam-envelope ''breathing'' mode and the electron perturbation. We also report first results from a long-timestep algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics. One conclusion from study (2) is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations.

  14. Development of exploding wire ion source for intense pulsed heavy ion beam accelerator

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Ochiai, Yasushi; Murata, Takuya; Masugata, Katsumi

    2012-10-01

    A Novel exploding wire type ion source device is proposed as a metallic ion source of intense pulsed heavy ion beam (PHIB) accelerator. In the device, multiple shot operations are realized without breaking the vacuum. The basic characteristics of the device are evaluated experimentally with an aluminum wire of diameter 0.2 mm and length 25 mm. A capacitor bank of capacitance 3 μF and a charging voltage of 30 kV was used, and the wire was successfully exploded by a discharge current of 15 kA with a rise time of 5.3 μs. Plasma flux of ion current density around 70 A/cm2 was obtained at 150 mm downstream from the device. The drift velocity of ions evaluated by a time-of-flight method was 2.7×104 m/ s, which corresponds to the kinetic energy of 100 eV for aluminum ions. From the measurement of the ion current density distribution, the ion flow is found to be concentrated toward the direction where the ion acceleration gap is placed. From the experiment, the device is found to be acceptable for applying the PHIB accelerator.

  15. Development of an ion beam analyzing system for the KBSI heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Hong, Jonggi; Park, Jin Yong; Kim, Seong Jun; Ok, Jung-Woo; Choi, Seyong; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Lee, Byoung-Seob; Kim, Eun-San

    2016-02-01

    The Korea Basic Science Institute (KBSI) has been developing a heavy ion accelerator system to accelerate high current, multi-charge state ions produced by a 28 GHz superconducting electron cyclotron ion source. A beam analyzing system as a part of the low energy beam transport apparatus was developed to select charged particles with desirable charge states from the ion beams. The desired species of ion, which is generated and extracted from the ECR ion source including various ion particles, can be selected by 90° dipole electromagnet. Due to the non-symmetrical structure in the coil as well as the non-linear permeability of the yoke material coil, a three dimensional analysis was carried out to confirm the design parameters. In this paper, we present the experimental results obtained as result of an analysis of KBSI accelerator. The effectiveness of beam selection was confirmed during the test of the analyzing system by injecting an ion beam from an ECR ion source.

  16. Note: A pulsed laser ion source for linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-01

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  17. Note: A pulsed laser ion source for linear induction accelerators

    SciTech Connect

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  18. Ion Acceleration by Laser Plasma Interaction from Cryogenic Micro Jets - Oral Presentation

    SciTech Connect

    Propp, Adrienne

    2015-08-25

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for this type of interaction, capable of producing the highest proton energies possible with today’s laser technologies. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis and investigate new, potentially more efficient mechanisms of ion acceleration, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we acheived a pure proton beam with an indiciation of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the

  19. Experimental study of ion heating and acceleration during magnetic reconnection

    SciTech Connect

    Hsu, S.C.

    2000-01-28

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  20. Selective deuterium ion acceleration using the Vulcan petawatt laser

    SciTech Connect

    Krygier, A. G.; Morrison, J. T.; Kar, S. Ahmed, H.; Alejo, A.; Green, A.; Jung, D.; Clarke, R.; Notley, M.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-15

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, >10{sup 20}W/cm{sup 2} laser pulse by cryogenically freezing heavy water (D{sub 2}O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°–8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  1. Mechanical Design of Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Haag, Thomas

    2005-01-01

    Carbon Ion Optics are expected to provide much longer thruster life due to their resistance to sputter erosion. There are a number of different forms of carbon that have been used for fabricating ion thruster optics. The mechanical behavior of carbon is much different than that of most metals, and poses unique design challenges. In order to minimize mission risk, the behavior of carbon must be well understood, and components designed within material limitations. Thermal expansion of the thruster structure must be compatible with thermal expansion of the carbon ion optics. Specially designed interfaces may be needed so that grid gap and aperture alignment are not adversely affected by dissimilar material properties within the thruster. The assembled thruster must be robust and tolerant of launch vibration. The following paper lists some of the characteristics of various carbon materials. Several past ion optics designs are discussed, identifying strengths and weaknesses. Electrostatics and material science are not emphasized so much as the mechanical behavior and integration of grid electrodes into an ion thruster.

  2. Ion Beam Transport Simulations for the 1.7 MV Tandem Accelerator at the Michigan Ion Beam Laboratory

    NASA Astrophysics Data System (ADS)

    Naab, F. U.; Toader, O. F.; Was, G. S.

    The Michigan Ion Beam Laboratory houses a 1.7 MV tandem accelerator. For many years this accelerator was configured to run with three ion sources: a TORoidal Volume Ion Source (TORVIS), a Duoplasmatron source and a Sputter source. In this article we describe an application we have created using the SIMION® code to simulate the trajectories of ion beams produced with these sources through the accelerator. The goal of this work is to have an analytical tool to understand the effect of each electromagnetic component on the ion trajectories. This effect is shown in detailed drawings. Each ion trajectory simulation starts at the aperture of the ion source and ends at the position of the target. Using these simulations, new accelerator operators or users quickly understand how the accelerator system works. Furthermore, these simulations allow analysis of modifications in the ion beam optics of the accelerator by adding, removing or replacing components or changing their relative positions.

  3. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    SciTech Connect

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  4. CCD based beam loss monitor for ion accelerators

    NASA Astrophysics Data System (ADS)

    Belousov, A.; Mustafin, E.; Ensinger, W.

    2014-04-01

    Beam loss monitoring is an important aspect of proper accelerator functioning. There is a variety of existing solutions, but each has its own disadvantages, e.g. unsuitable dynamic range or time resolution, high cost, or short lifetime. Therefore, new options are looked for. This paper shows a method of application of a charge-coupled device (CCD) video camera as a beam loss monitor (BLM) for ion beam accelerators. The system was tested with a 500 MeV/u N+7 ion beam interacting with an aluminum target. The algorithms of camera signal processing with LabView based code and beam loss measurement are explained. Limits of applicability of this monitor system are discussed.

  5. Phase and Radial Motion in Ion Linear Accelerators

    2007-03-29

    Parmila is an ion-linac particle-dynamics code. The name comes from the phrase, "Phase and Radial Motion in Ion Linear Accelerators." The code generates DTL, CCDTL, and CCL accelerating cells and, using a "drift-kick" method, transforms the beam, represented by a collection of particles, through the linac. The code includes a 2-D and 3-D space-charge calculations. Parmila uses data generated by the Poisson Superfish postprocessor SEC. This version of Parmila was written by Harunori Takeda andmore » was supported through Feb. 2006 by James H. Billen. Setup installs executable programs Parmila.EXE, Lingraf.EXE, and ReadPMI.EXE in the LANL directory. The directory LANL\\Examples\\Parmila contains several subdirectories with sample files for Parmila.« less

  6. Ion effects in future circular and linear accelerators

    SciTech Connect

    Raubenheimer, T.O.

    1995-05-01

    In this paper, the author discusses ion effects relevant to future storage rings and linear colliders. The author first reviews the conventional ion effects observed in present storage rings and then discusses how these effects will differ in the next generation of rings and linacs. These future accelerators operate in a new regime because of the high current long bunch trains and the very small transverse beam emittances. Usually, storage rings are designed with ion clearing gaps to prevent ion trapping between bunch trains or beam revolutions. Regardless, ions generated within a single bunch train can have significant effects. The same is true in transport lines and linacs, where typical vacuum pressures are relatively high. Amongst other effects, the author addresses the tune spreads due to the ions and the resulting filamentation which can severely limit emittance correction techniques in future linear colliders, the bunch-to-bunch coupling due to the ions which can cause a multi-bunch instability with fast growth rates, and the betatron coupling and beam halo creation which limit the vertical emittance and beam lifetimes.

  7. Acceleration of Ions and Electrons by Coronal Shocks

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2013-12-01

    Diffusive shock acceleration (DSA) of particles at collisionless shock waves driven by coronal mass ejections (CMEs) is the best developed theory for the genesis of gradual solar energetic particle (SEP) events. According to DSA, particles scatter from fluctuations present in the ambient magnetic field, which causes some particles to encounter the shock front repeatedly and to gain energy during each crossing. DSA operating in solar corona is a complex process whose outcome depends on multiple parameters such as shock speed and strength, magnetic geometry, and composition of seed particles. Currently, STEREO and other near-Earth spacecraft are providing valuable multi-point information on how SEP properties, such as composition and energy spectra, vary in longitude. Initial results have shown that longitude distributions of large CME-associated SEP events are much wider than previously thought. These findings have many important consequences on SEP modeling. For example, it is important to extend the present models into two or three spatial coordinates to properly account for the effects of coronal and interplanetary magnetic geometry and the evolution of the CME-driven shock wave on the acceleration and transport of SEPs. We present a new model for the shock acceleration of ions and electrons in the solar corona and discuss implications for particle properties (energy spectra, longitudinal distribution, composition) in the resulting gradual SEP events. We also discuss the possible emission of type II radio waves by the accelerated coronal electrons. In the new model, the ion pitch angle scattering rate is calculated from modeled Alfvén wave power spectra using quasilinear theory. The energy gained by ions in scatterings are self-consistently removed from waves so that total energy (ions+waves) is conserved. New model has been implemented on massively parallel simulation platform Corsair.

  8. Energetics of Accelerated Ions and Electrons in Flares

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Mugler, A. J.; Murphy, R. J.; Schwartz, R. A.

    2001-12-01

    We have analyzed hard X-ray and gamma-ray emission from 176 solar flares observed from 1980 to 1989 by the Solar Maximum Mission HXRBS and GRS experiments. This joint analysis provides flare spectra from ~40 keV to 8.5 MeV. We compare the photon spectra integrated over the same time intervals by the two experiments. The agreement in most instances is good. We present the combined spectra for all of the flares. These combined spectra can be used to study the shape of the bremsstrahlung continuum and therefore the shape of the accelerated electron spectrum over a broad range in energy. We estimate the energy contained in accelerated electrons above cutoffs of 20 keV and 70 keV using the X-ray data obtained with the HXRBS experiment. These energies range from ~ 1028 to 1034 ergs for a cutoff of 20 keV and from ~ 1027 to 1032 ergs for a cutoff of 70 keV. The energy in accelerated ions can be estimated from the gamma-ray fluxes in nuclear lines. These lines are strong enough to individually determine the energy contained in ions for about 40 flares. We plan to sum gamma-ray spectra from the remaining flares, grouped by the energy contained in electrons, to reveal the weak nuclear lines and therefore to determine the average energy contained in ions in these groupings. This work expands on the study performed by Ramaty and Mandzhavize (2000) for 19 intense nuclear line flares where they concluded that energy is often equipartitioned between accelerated ions and electrons.

  9. MIAMI: Microscope and ion accelerator for materials investigations

    SciTech Connect

    Hinks, J. A.; Berg, J. A. van den; Donnelly, S. E.

    2011-03-15

    A transmission electron microscope (TEM) with in situ ion irradiation has been built at the University of Salford, U.K. The system consists of a Colutron G-2 ion source connected to a JEOL JEM-2000FX TEM via an in-house designed and constructed ion beam transport system. The ion source can deliver ion energies from 0.5 to 10 keV for singly charged ions and can be floated up to 100 kV to allow acceleration to higher energies. Ion species from H to Xe can be produced for the full range of energies allowing the investigation of implantation with light ions such as helium as well as the effects of displacing irradiation with heavy inert or self-ions. The ability to implant light ions at energies low enough such that they come to rest within the thickness of a TEM sample and to also irradiate with heavier species at energies sufficient to cause large numbers of atomic displacements makes this facility ideally suited to the study of materials for use in nuclear environments. TEM allows the internal microstructure of a sample to be imaged at the nanoscale. By irradiating in situ it is possible to observe the dynamic evolution of radiation damage which can occur during irradiation as a result of competing processes within the system being studied. Furthermore, experimental variables such as temperature can be controlled and maintained throughout both irradiation and observation. This combination of capabilities enables an understanding of the underlying atomistic processes to be gained and thus gives invaluable insights into the fundamental physics governing the response of materials to irradiation. Details of the design and specifications of the MIAMI facility are given along with examples of initial experimental results in silicon and silicon carbide.

  10. Ion acceleration using high-contrast ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Fuchs, J.; Antici, P.; D'Humières, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C.; Toncian, T.; Pépin, H.; Audebert, P.

    2006-06-01

    We have compared the acceleration of high-energy ions from the rear-surface of thin foils for various contrast conditions of the ultra-intense laser pulse irradiating the targets. The experiments were performed using the LULI 100 TW facility. We used Al targets of variable thicknesses and the laser pulse contrast ratio ahead of the main pulse was varied using either a fast Pockels cell or a single or double plasma mirror. The latter was installed at an intermediate field position, in between the focusing optics and the target, so that its effect was optimized. By improving with these two methods the laser pulse contrast, we have observed that we could significantly reduce the thickness of the target used for proton acceleration and at the same time increase both the cut-off energy of the accelerated protons and the energy conversion efficiency of the process.

  11. What We Don't Understand About Ion Acceleration Flares

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    1999-01-01

    There are now strong associations between the (3)He-rich, Fe-rich ions in "impulsive" solar energetic particle (SEP) events and the similar abundances derived from gamma-ray lines from flares. Compact flares, where wave energy can predominate, are ideal sites for the study of wave-particle physics. Yet there are nagging questions about the magnetic geometry, the relation between ions that escape and those that interact, and the relative roles of cascading Alfven waves and the EMIC waves required to enhance He-3. There are also questions about the relative timing of ion and electron acceleration and of heating; these relate to the variation of ionization states before and during acceleration and during transport out of the corona. We can construct a model that addresses many of these issues, but problems do remain. Our greatest lack is realistic theoretical simulations of element abundances, spectra, and their variations. By contrast, we now have a much better idea of the acceleration at CME-driven shock waves in the rare but large "gradual" SEP events, largely because of their slow temporal evolution and great spatial extent.

  12. Laser acceleration of low emittance, high energy ions and applications

    NASA Astrophysics Data System (ADS)

    Fuchs, Julien; Audebert, Patrick; Borghesi, Marco; Pépin, Henri; Willi, Oswald

    2009-03-01

    Laser-accelerated ion sources have exceptional properties, i.e. high brightness and high spectral cut-off (56 MeV at present), high directionality and laminarity (at least 100-fold better than conventional accelerators beams), short burst duration (ps). Thanks to these properties, these sources open new opportunities for applications. Among these, we have already explored their use for proton radiography of fields in plasmas and for warm dense matter generation. These sources could also stimulate development of compact ion accelerators or be used for medical applications. To extend the range of applications, ion energy and conversion efficiency must however be increased. Two strategies for doing so using present-day lasers have been successfully explored in LULI experiments. In view of applications, it is also essential to control (i.e. collimate and energy select) these beams. For this purpose, we have developed an ultra-fast laser-triggered micro-lens providing tuneable control of the beam divergence as well as energy selection. To cite this article: J. Fuchs et al., C. R. Physique 10 (2009).

  13. Electrostatic ion acceleration across a diverging magnetic field

    NASA Astrophysics Data System (ADS)

    Ichihara, D.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.

    2016-08-01

    Electrostatic ion acceleration across a diverging magnetic field, which is generated by a solenoid coil, permanent magnets, and a yoke between an upstream ring anode and a downstream off-axis hollow cathode, is investigated. The cathode is set in an almost magnetic-field-free region surrounded by a cusp. Inside the ring anode, an insulating wall is set to form an annular slit through which the working gas is injected along the anode inner surface, so the ionization of the working gas is enhanced there. By supplying 1.0 Aeq of argon as working gas with a discharge voltage of 225 V, the ion beam energy reached about 60% of a discharge voltage. In spite of this unique combination of electrodes and magnetic field, a large electrical potential drop is formed almost in the axial direction, located slightly upstream of the magnetic-field-free region. The ion beam current almost equals the equivalent working gas flow rate. These ion acceleration characteristics are useful for electric propulsion in space.

  14. Simulating Electron Clouds in Heavy-Ion Accelerators

    SciTech Connect

    Cohen, R.H.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik,A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J-L.; Stoltz, P.; Veitzer, S.

    2005-04-07

    Contaminating clouds of electrons are a concern for most accelerators of positive-charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly-, weakly-, and un-magnetized. They describe their approach to such self-consistency, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyro period in the magnets. They present tests and applications: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the High-Current Experiment (HCX) at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam and an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-timestep mover to accurately calculate the instability.

  15. Activation of accelerator construction materials by heavy ions

    NASA Astrophysics Data System (ADS)

    Katrík, P.; Mustafin, E.; Hoffmann, D. H. H.; Pavlovič, M.; Strašík, I.

    2015-12-01

    Activation data for an aluminum target irradiated by 200 MeV/u 238U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  16. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    NASA Astrophysics Data System (ADS)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  17. Improving the Total Impulse Capability of the NSTAR Ion Thruster With Thick-Accelerator-Grid Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.

  18. Ultra-relativistic ion acceleration in the laser-plasma interactions

    SciTech Connect

    Huang Yongsheng; Wang Naiyan; Tang Xiuzhang; Shi Yijin; Xueqing Yan

    2012-09-15

    An analytical relativistic model is proposed to describe the relativistic ion acceleration in the interaction of ultra-intense laser pulses with thin-foil plasmas. It is found that there is a critical value of the ion momentum to make sure that the ions are trapped by the light sail and accelerated in the radiation pressure acceleration (RPA) region. If the initial ion momentum is smaller than the critical value, that is in the classical case of RPA, the potential has a deep well and traps the ions to be accelerated, as the same described before by simulation results [Eliasson et al., New J. Phys. 11, 073006 (2009)]. There is a new ion acceleration region different from RPA, called ultra-relativistic acceleration, if the ion momentum exceeds the critical value. In this case, ions will experience a potential downhill. The dependence of the ion momentum and the self-similar variable at the ion front on the acceleration time has been obtained. In the ultra-relativistic limit, the ion momentum at the ion front is proportional to t{sup 4/5}, where t is the acceleration time. In our analytical hydrodynamical model, it is naturally predicted that the ion distribution from RPA is not monoenergetic, although the phase-stable acceleration mechanism is effective. The critical conditions of the laser and plasma parameters which identify the two acceleration modes have been achieved.

  19. Radiotherapy with beams of carbon ions

    NASA Astrophysics Data System (ADS)

    Amaldi, Ugo; Kraft, Gerhard

    2005-08-01

    In cancer treatment, the introduction of MeV bremsstrahlung photons has been instrumental in delivering higher doses to deep-seated tumours, while reducing the doses absorbed by the surrounding healthy tissues. Beams of protons and carbon ions have a much more favourable dose-depth distribution than photons (called 'x-rays' by medical doctors) and are the new frontiers of cancer radiation therapy. Section 2 presents the status of the first form of hadrontherapy which uses beams of 200-250 MeV protons. The central part of this review is devoted to the discussion of the physical, radiobiological and clinical bases of the use of 400 MeV µ-1 carbon ions in the treatment of radio-resistant tumours. These resist irradiation with photon as well as proton beams. The following section describes the carbon ion facilities that are either running or under construction. Finally, the projects recently approved or proposed are reviewed here.

  20. Biological systems: from water radiolysis to carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Beuve, Michael; Moreau, Jean-Michel; Rodriguez, Claire; Testa, Etienne

    2015-07-01

    Hadron therapy is an innovative cancer treatment method based on the acceleration of light ions at high energy. In addition to their interesting profile of dose deposition, which ensures accurate targeting of localized tumors, carbon ions offer biological properties that lead to an efficient treatment for radio- and chemo-resistant tumors and to provide a boost for tumors in hypoxia. This paper is a short review of the progress in theoretical, experimental, fundamental and applied research, aiming at understanding the origin of the biological benefits of light ions better. As a limit of such a vast and multidisciplinary domain, this review adopts the point of view of the physicists, leaning on results obtained in connection with CIMAP's IRRABAT platform.

  1. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    SciTech Connect

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-03

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C{sup 4+} based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C{sup 4+} was obtained to be 618 e{mu}A under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  2. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  3. Mutagenesis in human cells with accelerated H and Fe ions

    NASA Technical Reports Server (NTRS)

    Kronenberg, Amy

    1994-01-01

    The overall goals of this research were to determine the risks of mutation induction and the spectra of mutations induced by energetic protons and iron ions at two loci in human lymphoid cells. During the three year grant period the research has focused in three major areas: (1) the acquisition of sufficient statistics for human TK6 cell mutation experiments using Fe ions (400 MeV/amu), Fe ions (600 MeV/amu) and protons (250 MeV/amu); (2) collection of thymidine kinase- deficient (tk) mutants or hypoxanthine phosphoribosyltransferase deficient (hprt) mutants induced by either Fe 400 MeV/amu, Fe 600 MeV/amu, or H 250 MeV/amu for subsequent molecular analysis; and (3) molecular characterization of mutants isolated after exposure to Fe ions (600 MeV/amu). As a result of the shutdown of the BEVALAC heavy ion accelerator in December 1992, efforts were rearranged somewhat in time to complete our dose-response studies and to complete mutant collections in particular for the Fe ion beams prior to the shutdown. These goals have been achieved. A major effort was placed on collection, re-screening, and archiving of 3 different series of mutants for the various particle beam exposures: tk-ng mutants, tk-sg mutants, and hprt-deficient mutants. Where possible, groups of mutants were isolated for several particle fluences. Comparative analysis of mutation spectra has occured with characterization of the mutation spectrum for hprt-deficient mutants obtained after exposure of TK6 cells to Fe ions (600 MeV/amu) and a series of spontaneous mutants.

  4. Ion Acceleration at Injection Fronts in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, A. Y.; Sitnov, M. I.; Gkioulidou, M.; Merkin, V. G.; Artemyev, A.

    2014-12-01

    During geomagnetic storms a large volume of ions are transported from the magnetotail deep into the inner magnetosphere leading to ion acceleration to the energies of tens to hundreds keV. Energized ions become the dominant source of plasma pressure in the inner magnetosphere. Hot plasma pressure drives large electrical currents which determine global electrodynamics and coupling of the inner magnetosphere-ionosphere system. Recent analysis of ion measurements from the RBSPICE experiment of the Van Allen Probes mission showed that the buildup of plasma pressure in the inner magnetosphere largely occurs in the form of localized discrete injections similar to dipolarization fronts observed in the magnetotail. According to previous studies, in the magnetotail ions can be rapidly energized to ~100 keV in the process of nonlinear trapping enabled by magnetic field reconnection and/or an electrostatic field ahead of dipolarization fronts. It is not clear whether similar processes can operate in the inner magnetosphere where the ambient magnetic field is much higher and the propagation speeds of injection fronts are much lower. The goal of this paper is to investigate the mechanisms of ion energization at injection fronts in the inner magnetosphere with the use three-dimensional test-particle simulations and the comparison with ion measurements at RBSPICE. For this purpose we construct an analytical model of the electric and magnetic field perturbations associated with the injection fronts which are superimposed onto the ambient magnetic field. The model reproduces characteristic properties of injection fronts derived from spacecraft measurements and particle-in-cell kinetic simulations.

  5. Acceleration of Ions from a near critical density gaseous target

    NASA Astrophysics Data System (ADS)

    Helle, Michael; Gordon, Daniel; Kaganovich, Dmitri; Ting, Antonio

    2013-10-01

    Efficient acceleration of ions by means of high power laser radiation requires electron plasma densities at or in excess of the critical density. For optical wavelengths where most of the world's high intensity lasers operate, the critical density is nCRIT ~ 2*1021 cm-3. This value lies between gaseous and solid like densities making it difficult to obtain. In order to reach these densities a ``gas foil'' target has been developed at the Naval Research Laboratory. The target is created by igniting an optically driven hydrodynamic shock into the gas flow of a gas jet in vacuum. Experiments have shown that a laser-ignited shock is capable of producing <10 μm gradients, thicknesses ~ 100 μm, and peak densities >4 times ambient. 3D PIC simulations of the interaction of an intense laser pulse with this type of thin, near critical density target have shown characteristics of the recently purposed Magnetic Vortex Acceleration mechanism. This mechanism takes advantage of an inductive accelerating field at the rear of the target. This field is generated by the strong azimuthal magnetic field produced by electrons accelerating through the target. Simulations and preliminary experimental results using the TFL laser system at NRL will be discussed. This work is supported by the Department of Energy and the Naval Research Laboratory Base Program.

  6. Niobium resonator development for high-brightness ion beam acceleration

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Roche, C.T.

    1990-01-01

    Two niobium resonant cavities for high-brightness ion beam acceleration have been constructed and tested. The first was based on a coaxial quarter-wave geometry and was optimized for phase velocity {beta}{sub o} = 0.15. This cavity, which resonates at 400 MHz in the fundamental mode, operated at an average (wall-to-wall) accelerating gradient of 12.9 MV/m under continuous-wave (cw) fields. At this gradient, a cavity Q of 1.4 {times} 10{sup 8} was measured. The second was based on a coaxial half-wave geometry and was optimized for {beta}{sub o} = 0.12. This cavity, which resonates at 355 MHz in the fundamental mode, operated at an average accelerating gradient of 18.0 MV/m under cw fields. This is the highest average accelerating gradient achieved to date in low-velocity structures designed for cw operation. At this gradient, a cavity Q of 1.2 {times} 10{sup 8} was measured.

  7. Resistance-driven bunching mode of an accelerated ion pulse

    SciTech Connect

    Lee, E.P.

    1981-10-16

    Amplification of a longitudinal perturbation of an ion pulse in a linear induction accelerator is calculated. The simplified accelerator model consists only of an applied field (E/sub a/), distributed gap impedance per meter (R) and beam-pipe capacity per meter (C). The beam is treated as a cold, one-dimensional fluid. It is found that normal mode frequencies are nearly real, with only a very small damping rate proportional to R. This result is valid for a general current profile and is not restricted to small R. However, the mode structure exhibits spatial amplification from pulse head to tail by the factor exp(RCLv/sub o//2), where L is pulse length and v/sub 0/ is drift velocity. This factor is very large for typical HIF parameters. An initially small disturbance, when expanded in terms of the normal modes, is found to oscillate with maximum amplitude proportional to the amplification factor.

  8. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    SciTech Connect

    Adonin, A. A. Hollinger, R.

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  9. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    PubMed

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  10. Ion accelerator systems for high power 30 cm thruster operation

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1982-01-01

    Two and three-grid accelerator systems for high power ion thruster operation were investigated. Two-grid translation tests show that over compensation of the 30 cm thruster SHAG grid set spacing the 30 cm thruster radial plasma density variation and by incorporating grid compensation only sufficient to maintain grid hole axial alignment, it is shown that beam current gains as large as 50% can be realized. Three-grid translation tests performed with a simulated 30 cm thruster discharge chamber show that substantial beamlet steering can be reliably affected by decelerator grid translation only, at net-to-total voltage ratios as low as 0.05.

  11. Heavy ion fusion accelerator research (HIFAR) year-end report, April 1, 1987-September 30, 1987

    SciTech Connect

    Not Available

    1987-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to access the suitabilty of heavy ion accelerators as iginiters for Inertial Confinement Fusion (ICF). A specific accerelator techonolgy, the induction linac, has been studied at the Lawerence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the vadidation of new accelerator strategies, to cut costs. The papers in this report that address these goals are: MBE-4 mechanical progress, alignment of MBE-4, a compact energy analyzer for MBE-4, Cs/sup +/ injector modeling with the EGUN code, an improved emittance scanning system for HIFAR, 2-MV injector, carbon arc source development, beam combining in ILSE, emittance growth due to transverse beam combining in ILSE - particle simulation results, achromatic beam combiner for ILSE, additional elements for beam merging, quadrupole magnet design for ILSE, and waveforms and longitudinal beam-parameters for ILSE.

  12. Acceleration of suprathermal ions by lightning-generated ion cyclotron waves.

    NASA Astrophysics Data System (ADS)

    Kuzichev, Ilya; Shklyar, David

    Lightning-induced emissions play important role in ion dynamics in the low-altitude magnetosphere. In particular, resonant interaction of ions with lower hybrid waves excited by lightning discharges leads to efficient ion heating; and the interaction with ion cyclotron waves is considered as a preheating mechanism. Such resonant wave-particle interaction is usually considered in two limiting cases: in the framework of quasi-linear theory, when the interaction with small amplitude wide spectrum waves is assumed, and in the case of monochromatic waves. In this report, we discuss resonant interaction of ions with special ion cyclotron wave packets which do not correspond to any of these cases. Some of wave packets formed of ion cyclotron waves generated by lightning strokes have a peculiar type of trajectories: they get stuck in the region where wave frequency becomes close to the local ion cyclotron frequency. These wave packets are characterized by wave frequency and wave vector which vary in space and time and, thus, along particle trajectory. What is more, the wave vector increases linearly with time. We derive the equations describing resonant interaction of ions with such ion cyclotron wave packets and obtain the resonance conditions. For suprathermal ions under consideration, the first cyclotron resonance gives the main contribution to resonant interaction. We show that the resonance condition for this resonance is defined by the detuning of the wave frequency from the local ion cyclotron frequency. The equations of motion have been solved numerically for test particles. Numerical results and analytical estimates demonstrate the essential difference between the interaction under consideration and the case of wide spectrum waves described by quasi-linear theory. Whereas the latter leads to particle diffusion in the phase space, the interaction we study leads to preferential ion acceleration. Hence, the ion energization has a non-diffusive character. The results

  13. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    PubMed

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles. PMID:26932019

  14. Ion and neutral dynamics in Hall plasma accelerator ionization instabilities

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2015-09-01

    Hall thrusters, the extensively studied E × B devices used for space propulsion applications, are rife with instabilities and fluctuations. Many are thought to be fundamentally linked to microscopic processes like electron transport across magnetic field lines and propellant ionization that in turn affect macroscopic properties like device performance and lifetime. One of the strongest oscillatory regimes is the ``breathing mode,'' characterized by a propagating ionization front, time-varying ion acceleration profiles, and quasi-periodic 10-50 kHz current oscillations. Determining the temporal and spatial evolution of plasma properties is critical to achieving a fundamental physical understanding of these processes. We present non-intrusive laser-induced fluorescence measurements of the local ion and neutral velocity distribution functions synchronized with the breathing mode oscillations. Measurements reveal strong ion velocity fluctuations, multiple ion populations arising in narrow time windows throughout the near-field plume, and the periodic population and depopulation of neutral excited states. Analyzing these detailed experimental results in the context of the existing literature clarifies the fundamental physical processes underlying the breathing mode. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. M. Birkan as program manager. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  15. Carbon Mineralization Using Phosphate and Silicate Ions

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  16. Indications of Carbon Ion Therapy at CNAO

    NASA Astrophysics Data System (ADS)

    Orecchia, Roberto; Rossi, Sandro; Fossati, Piero

    2009-03-01

    CNAO will be a dual center capable of providing therapeutic beams of protons and carbon ions with maximum energy of 400 MeV/u. At the beginning, it will be equipped with three treatment rooms with fixed horizontal and vertical beam lines. In a subsequent phase, two more rooms with a rotating gantry are foreseen. An active spot scanning dose delivery system will be employed. Initially, 80% of the treatments will be carried out with carbon ions. All patients will be treated within clinical trials to assess carbon ion indications with an evidence-based methodology. Seven disease-specific working groups have been developed: lung tumors, liver tumors, sarcomas, head and neck tumors, central nervous system lesions, eye tumors and pediatric tumors. The last two groups will be treated mainly with protons. In the first phase, CNAO will focus on head and neck cancers, treating inoperable, residual or recurrent malignant salivary gland tumors, mucosal melanoma, adenocarcinoma and unfavorably located SCC (nasal and paranasal sinuses). Carbon ions will be employed as a boost in the treatment of locally advanced, poor prognosis, SCC of the hypopharynx and tongue base. Bone and soft tissue sarcomas of the extremity will be treated with a limb-sparing approach, and trunk sarcomas will be treated with exclusive or post-operative irradiation. Skull base tumors (chordoma and chondrosarcoma), recurrent or malignant meningioma and glial tumors will be treated with carbon ions. After sufficient expertise has been gained in coping with organ motion, CNAO will start treating thoracic and abdominal targets. HCC will be treated in inoperable patients with one or more lesions that can be included in a single CTV. Early stage NSCLC will be treated. In the second phase, two more groups on gynecological malignancies and digestive tumors (esophageal cancer, rectal cancer, pancreatic cancer) will be created.

  17. Neoplastic Transformation Induced by Carbon Ions

    SciTech Connect

    Bettega, Daniela Calzolari, Paola; Hessel, Petra; Stucchi, Claudio G.; Weyrather, Wilma K.

    2009-03-01

    Purpose: The objective of this experiment was to compare the oncogenic potential of carbon ion beams and conventional photon beams for use in radiotherapy. Methods and Materials: The HeLa X human skin fibroblast cell line CGL1 was irradiated with carbon ions of three different energies (270, 100, and 11.4 MeV/u). Inactivation and transformation data were compared with those for 15 MeV photons. Results: Inactivation and transformation frequencies for the 270 MeV/u carbon ions were similar to those for 15-MeV photons. The maximal relative biologic effectiveness (RBE{sub {alpha}}) values for 100MeV/u and 11.4 MeV/u carbon ions, respectively, were as follows: inactivation, 1.6 {+-} 0.2 and 6.7 {+-} 0.7; and transformation per surviving cell, 2.5 {+-} 0.6 and 12 {+-} 3. The curve for dose-transformation per cell at risk exhibited a maximum that was shifted toward lower doses at lower energies. Conclusions: Transformation induction per cell at risk for carbon ions in the entrance channel was comparable to that for photons, whereas for the lower energies, 100 MeV/u and 11 MeV/u, which are representative of the energies delivered to the tumor margins and volume, respectively, the probability of transformation in a single cell was greater than it was for photons. In addition, at isoeffective doses with respect to cell killing, the 11.4-MeV/u beam was more oncogenic than were photons.

  18. Indications of Carbon Ion Therapy at CNAO

    SciTech Connect

    Orecchia, Roberto; Rossi, Sandro; Fossati, Piero

    2009-03-10

    CNAO will be a dual center capable of providing therapeutic beams of protons and carbon ions with maximum energy of 400 MeV/u. At the beginning, it will be equipped with three treatment rooms with fixed horizontal and vertical beam lines. In a subsequent phase, two more rooms with a rotating gantry are foreseen. An active spot scanning dose delivery system will be employed. Initially, 80% of the treatments will be carried out with carbon ions. All patients will be treated within clinical trials to assess carbon ion indications with an evidence-based methodology. Seven disease-specific working groups have been developed: lung tumors, liver tumors, sarcomas, head and neck tumors, central nervous system lesions, eye tumors and pediatric tumors. The last two groups will be treated mainly with protons. In the first phase, CNAO will focus on head and neck cancers, treating inoperable, residual or recurrent malignant salivary gland tumors, mucosal melanoma, adenocarcinoma and unfavorably located SCC (nasal and paranasal sinuses). Carbon ions will be employed as a boost in the treatment of locally advanced, poor prognosis, SCC of the hypopharynx and tongue base. Bone and soft tissue sarcomas of the extremity will be treated with a limb-sparing approach, and trunk sarcomas will be treated with exclusive or post-operative irradiation. Skull base tumors (chordoma and chondrosarcoma), recurrent or malignant meningioma and glial tumors will be treated with carbon ions. After sufficient expertise has been gained in coping with organ motion, CNAO will start treating thoracic and abdominal targets. HCC will be treated in inoperable patients with one or more lesions that can be included in a single CTV. Early stage NSCLC will be treated. In the second phase, two more groups on gynecological malignancies and digestive tumors (esophageal cancer, rectal cancer, pancreatic cancer) will be created.

  19. Near-field plume properties of an ion beam formed by alternating extraction and acceleration of oppositely charged ions

    NASA Astrophysics Data System (ADS)

    Oudini, N.; Aanesland, A.; Chabert, P.; Lounes-Mahloul, S.; Bendib, A.

    2016-10-01

    This paper is devoted to study the expansion of a beam composed of packets of positively and negatively charged ions generated by alternating extraction and acceleration. This beam is extracted from an ion-ion plasma, i.e. the electron density is negligible compared to the negative ion density. The alternating acceleration of ions is ensured by two grids placed in the ion-ion plasma region. The screen grid in contact with the plasma is biased with a square voltage waveform while the acceleration grid is grounded. A two-dimensional particle-in-cell (2D-PIC) code and an analytical model are used to study the properties of the near-field plume downstream of the acceleration grid. It is shown that the possible operating bias frequency is delimited by an upper limit and a lower one that are in the low MHz range. The simulations show that alternating acceleration with bias frequencies close to the upper frequency limit for the system can achieve high ion exhaust velocities, similar to traditional gridded ion thrusters, and with lower beam divergence than in classical systems. Indeed, ion-ion beam envelope might be reduced to 15° with 70% of ion flux contained within an angle of 3°. Thus, this alternating acceleration method is promising for electric space propulsion.

  20. Peripheral nerve regeneration through a silicone chamber implanted with negative carbon ions: Possibility to clinical application

    NASA Astrophysics Data System (ADS)

    Ikeguchi, Ryosuke; Kakinoki, Ryosuke; Tsuji, Hiroshi; Yasuda, Tadashi; Matsuda, Shuichi

    2014-08-01

    We investigated whether a tube with its inner surface implanted with negative-charged carbon ions (C- ions) would enable axons to extend over a distance greater than 10 mm. The tube was found to support nerves regenerating across a 15-mm-long inter-stump gap. We also investigated whether a C- ion-implanted tube pretreated with basic fibroblast growth factor (bFGF) promotes peripheral nerve regeneration. The C- ion implanted tube accelerated nerve regeneration, and this effect was enhanced by bFGF. Silicone treated with C- ions showed increased hydrophilic properties and cellular affinity, and axon regeneration was promoted with this increased biocompatibility.

  1. Benefit of Carbon Ion Radiotherapy in the Treatment of Radio-resistant Tumors

    NASA Astrophysics Data System (ADS)

    Kamada, Tadashi; Tsujii, Hirohiko; Tsuji, Hiroshi; Yanagi, Tsuyoshi; Imai, Reiko; Mizoe, Jun-etsu; Miyamoto, Tadaaki; Kato, Hirotoshi; Yamada, Shigeru; Kato, Shingo; Yoshikawa, Kyousan; Kandatsu, Susumu

    2003-08-01

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Heavy ions have superior depth-dose distribution and greater cell-killing ability. In June 1994, clinical research for the treatment of cancer was begun using carbon ions generated by HIMAC. Until August 2002, a total of 1,297 patients were enrolled in clinical trials. Most of the patients had locally advanced and/or medically inoperable tumors. Tumors radio-resistant and/or located near critical organs were also included. The clinical trials revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in a variety of tumors that were hard to cure by other modalities.

  2. Benefit of Carbon Ion Radiotherapy in the Treatment of Radio-resistant Tumors

    SciTech Connect

    Kamada, Tadashi; Tsujii, Hirohiko; Tsuji, Hiroshi; Yanagi, Tsuyoshi; Imai, Reiko; Mizoe, Jun-etsu; Miyamoto, Tadaaki; Kato, Hirotoshi; Yamada, Shigeru; Kato, Shingo; Yoshikawa, Kyousan; Kandatsu, Susumu

    2003-08-26

    The Heavy Ion Medical Accelerator in Chiba (HIMAC) is the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. Heavy ions have superior depth-dose distribution and greater cell-killing ability. In June 1994, clinical research for the treatment of cancer was begun using carbon ions generated by HIMAC. Until August 2002, a total of 1,297 patients were enrolled in clinical trials. Most of the patients had locally advanced and/or medically inoperable tumors. Tumors radio-resistant and/or located near critical organs were also included. The clinical trials revealed that carbon ion radiotherapy provided definite local control and offered a survival advantage without unacceptable morbidity in a variety of tumors that were hard to cure by other modalities.

  3. Mutagenic effect of accelerated heavy ions on bacterial cells

    NASA Astrophysics Data System (ADS)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  4. Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations

    NASA Astrophysics Data System (ADS)

    Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.; Schuck, P.; Bonnell, J. W.; Coffey, V.

    In this paper we present a review of sounding rocket observations of the ion acceleration seen in nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations we will demonstrate the following characteristics of transverse acceleration of ions (TAI) in lower hybrid solitary structures (LHSS). The ion acceleration process is narrowly confined to 90° pitch angle, in spatially confined regions of up to a few hundred meters across B. The acceleration process does not affect the thermal core of the ambient distribution and does not directly create a measurable effect on the ambient ion population outside the LHSS themselves. This precludes observation with these data of any nonlinear feedback between the ion acceleration and the existence or evolution of the density irregularities on which these LHSS events grow. Within the LHSS region the acceleration process creates a high-energy tail beginning at a few times the thermal ion speed. The ion acceleration events are closely associated with localized wave events. Accelerated ions bursts are also seen without a concurrent observation of a localized wave event, for two possible reasons. In some cases, the pitch angles of the accelerated tail ions are elevated above perpendicular; that is, the acceleration occurred below the observer and the mirror force has begun to act upon the distribution, moving it upward from the source. In other cases, the accelerated ion structure is spatially larger than the wave event structure, and the observation catches only the ion event. The occurrence rate of these ion acceleration events is related to the ambient environment in two ways: its altitude dependence can be modeled with the parameter B2/ne, and it is highest in regions of intense VLF activity. The cumulative ion outflow from these LHSS TAI is

  5. Accelerated carbonation of Friedel's salt in calcium aluminate cement paste

    SciTech Connect

    Goni, S.; Guerrero, A

    2003-01-01

    The stability of Friedel's salt with respect to carbonation has been studied in calcium aluminate cement (CAC) pastes containing NaCl (3% of Cl{sup -} by weight of cement). Carbonation was carried out on a powdered sample in flowing 5% CO{sub 2} gas at 65% relative humidity to accelerate the process. At an intermediate carbonation step, a part of the sample was washed and dried up to 10 cycles to simulate a dynamic leaching attack. The two processes were followed by means of X-ray diffraction (XRD), pH and Cl{sup -} analyses in the simulated pore solution.

  6. Carbon-based ion and molecular channels

    NASA Astrophysics Data System (ADS)

    Sint, Kyaw; Wang, Boyang; Kral, Petr

    2008-03-01

    We design ion and molecular channels based on layered carboneous materials, with chemically-functionalized pore entrances. Our molecular dynamics simulations demonstrate that these ultra-narrow pores, with diameters around 1 nm, are highly selective to the charges and sizes of the passing (Na^+ and Cl^-) ions and short alkanes. We demonstrate that the molecular flows through these pores can be easily controlled by electrical and mechanical means. These artificial pores could be integrated in fluidic nanodevices and lab-on-a-chip techniques with numerous potential applications. [1] Kyaw Sint, Boyang Wang and Petr Kral, submitted. [2] Boyang Wang and Petr Kral, JACS 128, 15984 (2006).

  7. Precision spectroscopy at heavy ion ring accelerator SIS300

    NASA Astrophysics Data System (ADS)

    Backe, Hartmut

    2006-07-01

    Unique spectroscopic possibilities open up if a laser beam interacts with relativistic lithium-like ions stored in the heavy ion ring accelerator SIS300 at the future Facility for Antiproton and Ion Research FAIR in Darmstadt, Germany. At a relativistic factor γ = 36 the 2P1/2 level can be excited from the 2S1/2 ground state for any element with frequency doubled dye-lasers in collinear geometry. Precise transition energy measurements can be performed if the fluorescence photons, boosted in forward direction into the X-ray region, are energetically analyzed with a single crystal monochromator. The hyperfine structure can be investigated at the 2P1/2-2S1/2 transition for all elements and at the 2P3/2-2S1/2 transition for elements with Z≤50. Isotope shifts and nuclear moments can be measured with unprecedented precision, in principle even for only a few stored radioactive species with known nuclear spin. A superior relative line width in the order of 5·10-7 may be feasible after laser cooling, and even polarized external beams may be prepared by optical pumping.

  8. Precision spectroscopy at heavy ion ring accelerator SIS300

    NASA Astrophysics Data System (ADS)

    Backe, Hartmut

    Unique spectroscopic possibilities open up if a laser beam interacts with relativistic lithium-like ions stored in the heavy ion ring accelerator SIS300 at the future Facility for Antiproton and Ion Research FAIR in Darmstadt, Germany. At a relativistic factor γ=36 the 2P1/2 level can be excited from the 2S1/2 ground state for any element with frequency doubled dye-lasers in collinear geometry. Precise transition energy measurements can be performed if the fluorescence photons, boosted in forward direction into the X-ray region, are energetically analyzed with a single crystal monochromator. The hyperfine structure can be investigated at the 2P1/2-2S1/2 transition for all elements and at the 2P3/2-2S1/2 transition for elements with Z≤50. Isotope shifts and nuclear moments can be measured with unprecedented precision, in principle even for only a few stored radioactive species with known nuclear spin. A superior relative line width in the order of 5·10-7 may be feasible after laser cooling, and even polarized external beams may be prepared by optical pumping.

  9. Ion Acceleration in Solar Flares Determined by Solar Neutron Observations

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Solar Neutron Observation Group

    2013-05-01

    Large amounts of particles can be accelerated to relativistic energy in association with solar flares and/or accompanying phenomena (e.g., CME-driven shocks), and they sometimes reach very near the Earth and penetrate the Earth's atmosphere. These particles are observed by ground-based detectors (e.g., neutron monitors) as Ground Level Enhancements (GLEs). Some of the GLEs originate from high energy solar neutrons which are produced in association with solar flares. These neutrons are also observed by ground-based neutron monitors and solar neutron telescopes. Recently, some of the solar neutron detectors have also been operating in space. By observing these solar neutrons, we can obtain information about ion acceleration in solar flares. Such neutrons were observed in association with some X-class flares in solar cycle 23, and sometimes they were observed by two different types of detectors. For example, on 2005 September 7, large solar neutron signals were observed by the neutron monitor at Mt. Chacaltaya in Bolivia and Mexico City, and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in Mexico in association with an X17.0 flare. The neutron signal continued for more than 20 minutes with high statistical significance. Intense gamma-ray emission was also registered by INTEGRAL, and by RHESSI during the decay phase. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. (2002), and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the gamma-ray line emission and that ions were continuously accelerated at the emission site. In this paper, we introduce some of the solar neutron observations in solar cycle 23, and discuss the tendencies of the physical parameters of solar neutron GLEs, and the energy spectrum and population of the

  10. Ion accelerator system mounting design and operating characteristics for a 5 kW 30-cm xenon ion engine

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Brophy, John R.

    1987-01-01

    Results from a series of experiments to determine the effect of accelerator grid mount geometry on the performance of the J-series ion optics assembly are described. Three mounting schemes, two flexible and one rigid, are compared for their relative ion extraction capability over a range of total accelerating voltages. The largest ion beam current, for the maximum total voltage investigated, is shown to occur using one of the flexible grid mounting geometries. However, at lower total voltages and reduced engine input power levels, the original rigid J-series ion optics accelerator grid mounts result in marginally better grid system performance at the same cold interelectrode gap.

  11. Microdosimetry of proton and carbon ions

    SciTech Connect

    Liamsuwan, Thiansin; Hultqvist, Martha; Lindborg, Lennart; Nikjoo, Hooshang; Uehara, Shuzo

    2014-08-15

    carbon ion beams. The results are useful for characterizing ion beams of practical importance for biophysical modeling of radiation-induced DNA damage response and repair in the depth profiles of protons and carbon ions used in radiotherapy.

  12. Ion acceleration in a solitary wave by an intense picosecond laser pulse.

    PubMed

    Zhidkov, A; Uesaka, M; Sasaki, A; Daido, H

    2002-11-18

    Acceleration of ions in a solitary wave produced by shock-wave decay in a plasma slab irradiated by an intense picosecond laser pulse is studied via particle-in-cell simulation. Instead of exponential distribution as in known mechanisms of ion acceleration from the target surface, these ions accelerated forwardly form a bunch with relatively low energy spread. The bunch is shown to be a solitary wave moving over expanding plasma; its velocity can exceed the maximal velocity of ions accelerated forward from the rear side of the target.

  13. METHOD OF PRODUCING AND ACCELERATING AN ION BEAM

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2005-01-01

    A method of producing and accelerating an ion beam comprising the steps of providing a magnetic field with a cusp that opens in an outward direction along a centerline that passes through a vertex of the cusp: providing an ionizing gas that sprays outward through at least one capillary-like orifice in a plenum that is positioned such that the orifice is on the centerline in the cusp, outward of the vortex of the cusp; providing a cathode electron source, and positioning it outward of the orifice and off of the centerline; and positively charging the plenum relative to the cathode electron source such that the plenum functions as m anode. A hot filament may be used as the cathode electron source, and permanent magnets may be used to provide the magnetic field.

  14. Acceleration of Fatigue Crack Growth after Overload in Carbon Steel

    NASA Astrophysics Data System (ADS)

    Yamauchi, A.; Miyahara, H.; Makabe, C.; Miyazaki, T.

    The effects of an overload on fatigue crack growth behavior have been investigated by using carbon steel. Delayed retardation and acceleration of crack growth were both observed. These phenomena depended not only on overload conditions but also on the baseline stress conditions. Moreover, the mechanical properties of the materials affected the crack growth rate after overload. It was found that crack growth accelerated when tensile residual stress was distributed in front of the crack tip. The residual stress distribution is related to the crack opening geometry at the overload stage.

  15. Final Progress Report - Heavy Ion Accelerator Theory and Simulation

    SciTech Connect

    Haber, Irving

    2009-10-31

    The use of a beam of heavy ions to heat a target for the study of warm dense matter physics, high energy density physics, and ultimately to ignite an inertial fusion pellet, requires the achievement of beam intensities somewhat greater than have traditionally been obtained using conventional accelerator technology. The research program described here has substantially contributed to understanding the basic nonlinear intense-beam physics that is central to the attainment of the requisite intensities. Since it is very difficult to reverse intensity dilution, avoiding excessive dilution over the entire beam lifetime is necessary for achieving the required beam intensities on target. The central emphasis in this research has therefore been on understanding the nonlinear mechanisms that are responsible for intensity dilution and which generally occur when intense space-charge-dominated beams are not in detailed equilibrium with the external forces used to confine them. This is an important area of study because such lack of detailed equilibrium can be an unavoidable consequence of the beam manipulations such as acceleration, bunching, and focusing necessary to attain sufficient intensity on target. The primary tool employed in this effort has been the use of simulation, particularly the WARP code, in concert with experiment, to identify the nonlinear dynamical characteristics that are important in practical high intensity accelerators. This research has gradually made a transition from the study of idealized systems and comparisons with theory, to study the fundamental scaling of intensity dilution in intense beams, and more recently to explicit identification of the mechanisms relevant to actual experiments. This work consists of two categories; work in direct support beam physics directly applicable to NDCX and a larger effort to further the general understanding of space-charge-dominated beam physics.

  16. Resonant ion acceleration by plasma jets: Effects of jet breaking and the magnetic-field curvature.

    PubMed

    Artemyev, A V; Vasiliev, A A

    2015-05-01

    In this paper we consider resonant ion acceleration by a plasma jet originating from the magnetic reconnection region. Such jets propagate in the background magnetic field with significantly curved magnetic-field lines. Decoupling of ion and electron motions at the leading edge of the jet results in generation of strong electrostatic fields. Ions can be trapped by this field and get accelerated along the jet front. This mechanism of resonant acceleration resembles surfing acceleration of charged particles at a shock wave. To describe resonant acceleration of ions, we use adiabatic theory of resonant phenomena. We show that particle motion along the curved field lines significantly influences the acceleration rate. The maximum gain of energy is determined by the particle's escape from the system due to this motion. Applications of the proposed mechanism to charged-particle acceleration in the planetary magnetospheres and the solar corona are discussed. PMID:26066269

  17. Laser acceleration of protons using multi-ion plasma gaseous targets

    SciTech Connect

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; Eliasson, Bengt; W. T. Hill, III; Wang, Jyhpyng; Chen, Shih -Hung

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such a laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.

  18. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE PAGES

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; Eliasson, Bengt; W. T. Hill, III; Wang, Jyhpyng; Chen, Shih -Hung

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  19. Accelerated High-Resolution Differential Ion Mobility Separations Using Hydrogen

    PubMed Central

    Shvartsburg, Alexandre A.; Smith, Richard D.

    2011-01-01

    The resolving power of differential ion mobility spectrometry (FAIMS) was dramatically increased recently by carrier gases comprising up to 75% He or various vapors, enabling many new applications. However, the need for resolution of complex mixtures is virtually open-ended and many topical analyses demand yet finer separations. Also, the resolving power gains are often at the expense of speed, in particular making high-resolution FAIMS incompatible with online liquid-phase separations. Here, we report FAIMS employing hydrogen, specifically in mixtures with N2 containing up to 90% H2. Such compositions raise the mobilities of all ions and thus the resolving power beyond that previously feasible, while avoiding the electrical breakdown inevitable in He-rich mixtures. The increases in resolving power and ensuing peak resolution are especially significant at H2 fractions above ~50%. Higher resolution can be exchanged for acceleration of the analyses by up to ~4 times, at least. For more mobile species such as multiply-charged peptides, this exchange is presently forced by the constraints of existing FAIMS devices, but future designs optimized for H2 should consistently improve resolution for all analytes. PMID:22074292

  20. Accelerated high-resolution differential ion mobility separations using hydrogen.

    PubMed

    Shvartsburg, Alexandre A; Smith, Richard D

    2011-12-01

    The resolving power of differential ion mobility spectrometry (FAIMS) was dramatically increased recently by carrier gases comprising up to 75% He or various vapors, enabling many new applications. However, the need for resolution of complex mixtures is virtually open-ended and many topical analyses demand yet finer separations. Also, the resolving power gains are often at the expense of speed, in particular making high-resolution FAIMS poorly compatible with online liquid-phase separations. Here, we report FAIMS employing hydrogen, specifically in mixtures with N(2) containing up to 90% H(2). Such compositions raise the mobilities of all ions and thus the resolving power beyond that previously feasible, while avoiding the electrical breakdown inevitable in He-rich mixtures. The increases in resolving power and ensuing peak resolution are especially significant at H(2) fractions above ~50%. Higher resolution can be exchanged for acceleration of the analyses by up to ~4 times. For more mobile species such as multiply charged peptides, this exchange is presently forced by the constraints of existing FAIMS devices, but future designs optimized for H(2) should consistently improve resolution for all analytes.

  1. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  2. Reflected solar wind ions and downward accelerated ionospheric ions during the January 1997 magnetic cloud event

    NASA Astrophysics Data System (ADS)

    Dempsey, D. L.; Burch, J. L.; Huddleston, M. M.; Pollock, C. J.; Waite, J. H., Jr.; Wüest, M.; Moore, T. E.; Shelley, E. G.

    On January 11, 1997, at 03:40:00 UT, while Polar was traveling up the dusk flank toward apogee, two ion instruments, TIDE and TIMAS, detected upflowing H+ with an energy/pitch-angle dispersion resembling an ionospheric reflection of freshly injected solar wind ions. In the same region of space, TIDE and TIMAS observed cold beams of O+ and H+ traveling down the field line with equal bulk velocities. We interpret these ion signatures as concurrent observations of mirrored solar wind ions and downward accelerated ionospheric ions. By 03:42:00, an energy/pitch-angle dispersion of downward moving ions at very low energies was clearly evident in the TIDE data. This additional signature is interpreted as an indication of reconnection on the same field line in the southern hemisphere. We explain this unique combination of plasma distributions in terms of high-latitude reconnection and magnetic field line convection during northward-IMF conditions associated with the January 1997 magnetic cloud event.

  3. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    PubMed

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  4. Carbonate ions and arsenic dissolution by groundwater

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate

  5. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  6. Microbially Accelerated Carbonate Mineral Precipitation as a Strategy for in Situ Carbon Sequestration and Rehabilitation of Asbestos Mine Sites.

    PubMed

    McCutcheon, Jenine; Wilson, Siobhan A; Southam, Gordon

    2016-02-01

    A microbially accelerated process for the precipitation of carbonate minerals was implemented in a sample of serpentinite mine tailings collected from the abandoned Woodsreef Asbestos Mine in New South Wales, Australia as a strategy to sequester atmospheric CO2 while also stabilizing the tailings. Tailings were leached using sulfuric acid in reaction columns and subsequently inoculated with an alkalinity-generating cyanobacteria-dominated microbial consortium that was enriched from pit waters at the Woodsreef Mine. Leaching conditions that dissolved 14% of the magnesium from the serpentinite tailings while maintaining circumneutral pH (1800 ppm, pH 6.3) were employed in the experiment. The mineralogy, water chemistry, and microbial colonization of the columns were characterized following the experiment. Micro-X-ray diffraction was used to identify carbonate precipitates as dypingite [Mg5(CO3)4(OH)2·5H2O] and hydromagnesite [Mg5(CO3)4(OH)2·4H2O] with minor nesquehonite (MgCO3·3H2O). Scanning electron microscopy revealed that carbonate mineral precipitates form directly on the filamentous cyanobacteria. These findings demonstrate the ability of these organisms to generate localized supersaturating microenvironments of high concentrations of adsorbed magnesium and photosynthetically generated carbonate ions while also acting as nucleation sites for carbonate precipitation. This study is the first step toward implementing in situ carbon sequestration in serpentinite mine tailings via microbial carbonate precipitation reactions.

  7. Microbially Accelerated Carbonate Mineral Precipitation as a Strategy for in Situ Carbon Sequestration and Rehabilitation of Asbestos Mine Sites.

    PubMed

    McCutcheon, Jenine; Wilson, Siobhan A; Southam, Gordon

    2016-02-01

    A microbially accelerated process for the precipitation of carbonate minerals was implemented in a sample of serpentinite mine tailings collected from the abandoned Woodsreef Asbestos Mine in New South Wales, Australia as a strategy to sequester atmospheric CO2 while also stabilizing the tailings. Tailings were leached using sulfuric acid in reaction columns and subsequently inoculated with an alkalinity-generating cyanobacteria-dominated microbial consortium that was enriched from pit waters at the Woodsreef Mine. Leaching conditions that dissolved 14% of the magnesium from the serpentinite tailings while maintaining circumneutral pH (1800 ppm, pH 6.3) were employed in the experiment. The mineralogy, water chemistry, and microbial colonization of the columns were characterized following the experiment. Micro-X-ray diffraction was used to identify carbonate precipitates as dypingite [Mg5(CO3)4(OH)2·5H2O] and hydromagnesite [Mg5(CO3)4(OH)2·4H2O] with minor nesquehonite (MgCO3·3H2O). Scanning electron microscopy revealed that carbonate mineral precipitates form directly on the filamentous cyanobacteria. These findings demonstrate the ability of these organisms to generate localized supersaturating microenvironments of high concentrations of adsorbed magnesium and photosynthetically generated carbonate ions while also acting as nucleation sites for carbonate precipitation. This study is the first step toward implementing in situ carbon sequestration in serpentinite mine tailings via microbial carbonate precipitation reactions. PMID:26720600

  8. Charge steering of laser plasma accelerated fast ions in a liquid spray — creation of MeV negative ion and neutral atom beams

    SciTech Connect

    Schnürer, M.; Abicht, F.; Priebe, G.; Braenzel, J.; Prasad, R.; Borghesi, M.; Andreev, A.; Nickles, P. V.; Jequier, S.; Tikhonchuk, V.; Ter-Avetisyan, S.

    2013-11-15

    The scenario of “electron capture and loss” has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, et al., Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.

  9. Sodium-Ion Storage in Pyroprotein-Based Carbon Nanoplates.

    PubMed

    Yun, Young Soo; Park, Kyu-Young; Lee, Byoungju; Cho, Se Youn; Park, Young-Uk; Hong, Sung Ju; Kim, Byung Hoon; Gwon, Hyeokjo; Kim, Haegyeom; Lee, Sungho; Park, Yung Woo; Jin, Hyoung-Joon; Kang, Kisuk

    2015-11-18

    Pyroprotein-based carbon nanoplates are fabricated from self-assembled silk proteins as a versatile platform to examine sodium-ion storage characteristics in various carbon environments. It is found that, depending on the local carbon structure, sodium ions are stored via chemi-/physisorption, insertion, or nanoclustering of metallic sodium.

  10. Lithium ion diffusion through glassy carbon plate

    SciTech Connect

    Inaba, M.; Nohmi, S.; Funabiki, A.; Abe, T.; Ogumi, Z.

    1998-07-01

    The electrochemical permeation method was applied to the determination of the diffusion coefficient of Li{sup +} ion (D{sub Li{sup +}}) in a glassy carbon (GC) plate. The cell was composed of two compartments, which were separated by the GC plate. Li{sup +} ions were inserted electrochemically from one face, and extracted from the other. The flux of the permeated Li{sup +} ions was monitored as an oxidation current at the latter face. The diffusion coefficient was determined by fitting the transient current curve with a theoretical one derived from Fick's law. When the potential was stepped between two potentials in the range of 0 to 0.5 V, transient curves were well fitted with the theoretical one, which gave D{sub Li{sup +}} values on the order of 10{sup {minus}8} cm{sup {minus}2} s{sup {minus}1}. In contrast, when the potential was stepped between two potentials across 0.5 V, significant deviation was observed. The deviation indicated the presence of trap sites as well as diffusion sites for Li{sup +} ions, the former of which is the origin of the irreversible capacity of GC.

  11. High-performance control system for a heavy-ion medical accelerator

    SciTech Connect

    Lancaster, H.D.; Magyary, S.B.; Sah, R.C.

    1983-03-01

    A high performance control system is being designed as part of a heavy ion medical accelerator. The accelerator will be a synchrotron dedicated to clinical and other biomedical uses of heavy ions, and it will deliver fully stripped ions at energies up to 800 MeV/nucleon. A key element in the design of an accelerator which will operate in a hospital environment is to provide a high performance control system. This control system will provide accelerator modeling to facilitate changes in operating mode, provide automatic beam tuning to simplify accelerator operations, and provide diagnostics to enhance reliability. The control system being designed utilizes many microcomputers operating in parallel to collect and transmit data; complex numerical computations are performed by a powerful minicomputer. In order to provide the maximum operational flexibility, the Medical Accelerator control system will be capable of dealing with pulse-to-pulse changes in beam energy and ion species.

  12. Guided post-acceleration of laser-driven ions by a miniature modular structure

    NASA Astrophysics Data System (ADS)

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-04-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m-1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  13. Carbon ion radiotherapy of skull base chondrosarcomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Nikoghosyan, Anna; Hof, Holger; Didinger, Bernd; Combs, Stephanie E.; Jaekel, Oliver; Karger, Christian P.; Edler, Lutz; Debus, Juergen

    2007-01-01

    Purpose: To evaluate the effectiveness and toxicity of carbon ion radiotherapy in chondrosarcomas of the skull base. Patients and Methods: Between November 1998 and September 2005, 54 patients with low-grade and intermediate-grade chondrosarcomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany. All patients had gross residual tumors after surgery. Median total dose was 60 CGE (weekly fractionation 7 x 3.0 CGE). All patients were followed prospectively in regular intervals after treatment. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) score. Results: Median follow-up was 33 months (range, 3-84 months). Only 2 patients developed local recurrences. The actuarial local control rates were 96.2% and 89.8% at 3 and 4 years; overall survival was 98.2%at 5 years. Only 1 patient developed a mucositis CTCAE Grade 3; the remaining patients did not develop any acute toxicities >CTCAE Grade 2. Five patients developed minor late toxicities (RTOG/EORTC Grades 1-2), including bilateral cataract (n = 1), sensory hearing loss (n = 1), a reduction of growth hormone (n = 1), and asymptomatic radiation-induced white matter changes of the adjacent temporal lobe (n = 2). Grade 3 late toxicity occurred in 1 patient (1.9%) only. Conclusions: Carbon ion RT is an effective treatment for low- and intermediate-grade chondrosarcomas of the skull base offering high local control rates with low toxicity.

  14. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    conclusively distinguished whether C is taken up only as CO2 by passive diffusion or also by active transport of CO2 or HCO^{3-} . In reality, the patterns of stable isotopic variations in coccoliths may provide more constraints for unraveling the cellular C transport and the calcification mechanisms. We will present latest findings on these issues, both from culture experiments and sediment traps located in the Bay of Bengal. Coccolith species separated from these sediment traps also show evidence of carbonate ion effects.

  15. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30 cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  16. Effect of electromagnetic pulse transverse inhomogeneity on ion acceleration by radiation pressure

    SciTech Connect

    Lezhnin, K. V.; Kamenets, F. F.; Beskin, V. S.; Kando, M.; Esirkepov, T. Zh.; Bulanov, S. V.

    2015-03-15

    During ion acceleration by radiation pressure, a transverse inhomogeneity of an electromagnetic pulse leads to an off-axis displacement of the irradiated target, limiting the achievable ion energy. This effect is analytically described within the framework of a thin foil target model and with particle-in-cell simulations showing that the maximum energy of the accelerated ions decreases as the displacement from the axis of the target's initial position increases. The results obtained can be applied to the optimization of ion acceleration by the laser radiation pressure with mass-limited targets.

  17. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1990--September 30, 1990

    SciTech Connect

    Not Available

    1990-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, induction acceleration, is being studied at the Lawrence Berkeley Laboratory and at the Lawrence Livermore National Laboratory. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies to cut costs. Key elements to be addressed include: (1) beam quality limits set by transverse and longitudinal beam physics; (2) development of induction accelerating modules, and multiple-beam hardware, at affordable costs; (3) acceleration of multiple beams with current amplification without significant dilution of the optical quality of the beams; (4) final bunching, transport, and accurate focusing on a small target.

  18. Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.

  19. Observation of Ion Acceleration and Heating during Collisionless Magnetic Reconnection in a Laboratory Plasma

    SciTech Connect

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Myers, Clayton E.

    2012-12-10

    The ion dynamics in a collisionless magnetic reconnection layer are studied in a laboratory plasma. The measured in-plane plasma potential profile, which is established by electrons accelerated around the electron diffusion region, shows a saddle-shaped structure that is wider and deeper towards the outflow direction. This potential structure ballistically accelerates ions near the separatrices toward the outflow direction. Ions are heated as they travel into the high pressure downstream region.

  20. Workshop on Accelerators for Heavy Ion Fusion: Summary Report of the Workshop

    SciTech Connect

    Seidl, P.A.; Barnard, J.J.

    2011-04-29

    The Workshop on Accelerators for Heavy Ion Fusion was held at Lawrence Berkeley National Laboratory May 23-26, 2011. The workshop began with plenary sessions to review the state of the art in HIF (heavy ion fusion), followed by parallel working groups, and concluded with a plenary session to review the results. There were five working groups: IFE (inertial fusion energy) targets, RF approach to HIF, induction accelerator approach to HIF, chamber and driver interface, ion sources and injectors.

  1. Ion Acceleration by Magnetic Pinch Instabilities- Powerful Neutron Sources

    NASA Astrophysics Data System (ADS)

    Hayes, Anna; Li, Hui

    2014-10-01

    Since the 1950s pinch discharges with deuterium gas have been known to produce large neutron bursts. During these early quests for laboratory fusion it was initially believed that the heat produced in the pinch led to sufficently high temperatures that these neutrons resulted from thermonuclear (TN) burn. However, a series of careful measurements led by Stirling Colgate was carried out to show that these neutrons did not result form TN burn. Rather, they resulted from an m = 0 sausage mode instability that accelerated the ions, causing beam-target interactions. Today, this same mechanism is used in dense plasma focus machines to generate intense neutron pulses for neutron activation experiments. One such experiment, to test the citicality of aging plutonium, is currently being planned at the Nevada Test Site. Helping to characterize the neutrons from the dense palsma focus to be used in this large experiment was the last applied physics project that Stirling work on. In this talk we will summarize the physics issues involved both in the original discovery in the 1950s and in today's experiments.

  2. Accelerated simulation study of space charge effects in quadrupole ion traps using GPU techniques.

    PubMed

    Xiong, Xingchuang; Xu, Wei; Fang, Xiang; Deng, Yulin; Ouyang, Zheng

    2012-10-01

    Space charge effects play important roles in the performance of various types of mass analyzers. Simulation of space charge effects is often limited by the computation capability. In this study, we evaluate the method of using graphics processing unit (GPU) to accelerate ion trajectory simulation. Simulation using GPU has been compared with multi-core central processing unit (CPU), and an acceleration of about 390 times have been obtained using a single computer for simulation of up to 10(5) ions in quadrupole ion traps. Characteristics of trapped ions can be investigated at detailed levels within a reasonable simulation time. Space charge effects on the trapping capacities of linear and 3D ion traps, ion cloud shapes, ion motion frequency shift, mass spectrum peak coalescence effects between two ion clouds of close m/z are studied with the ion trajectory simulation using GPU.

  3. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  4. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  5. Collisionless shocks driven by 800 nm laser pulses generate high-energy carbon ions

    SciTech Connect

    Zhang, H.; Shen, B. F. Wang, W. P.; Xu, Y.; Liu, Y. Q.; Liang, X. Y.; Leng, Y. X.; Li, R. X. Xu, Z. Z.; Yan, X. Q.; Chen, J. E.

    2015-01-15

    We present experimental studies on ion acceleration from diamond-like carbon (DLC) foils irradiated by 800 nm, linearly polarized laser pulses with peak intensity of 1.7 × 10{sup 19 }W/cm{sup 2} to 3.5 × 10{sup 19 }W/cm{sup 2} at oblique incidence. Diamond-like carbon foils are heated by the prepulse of a high-contrast laser pulse and expand to form plasmas of near-critical density caused by thermal effect before the arrival of the main pulse. It is demonstrated that carbon ions are accelerated by a collisionless shock wave in slightly overdense plasma excited by forward-moving hot electrons generated by the main pulse.

  6. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  7. Shunting arc plasma source for pure carbon ion beama)

    NASA Astrophysics Data System (ADS)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  8. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, October 1, 1987--March 31, 1988

    SciTech Connect

    Not Available

    1988-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification -- both new features in a linac -- without significant dilution of the optical quality of beams; and final bunching, transport, and accurate focusing on a small target.

  9. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1--September 30, 1988

    SciTech Connect

    Not Available

    1988-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; final bunching, transport, and accurate focusing on a small target.

  10. Ion acceleration and plasma jet formation in ultra-thin foils undergoing expansion and relativistic transparency

    NASA Astrophysics Data System (ADS)

    King, M.; Gray, R. J.; Powell, H. W.; MacLellan, D. A.; Gonzalez-Izquierdo, B.; Stockhausen, L. C.; Hicks, G. S.; Dover, N. P.; Rusby, D. R.; Carroll, D. C.; Padda, H.; Torres, R.; Kar, S.; Clarke, R. J.; Musgrave, I. O.; Najmudin, Z.; Borghesi, M.; Neely, D.; McKenna, P.

    2016-09-01

    At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.

  11. Break-out afterburner ion acceleration in the longer laser pulse length regime

    SciTech Connect

    Yin, L.; Albright, B. J.; Shah, R. C.; Palaniyappan, S.; Fernndez, J. C.; Jung, D.; Henig, A.; Bowers, K. J.; Hegelich, B. M.

    2011-06-15

    Kinetic simulations of break-out-afterburner (BOA) ion acceleration from nm-scale targets are examined in a longer pulse length regime than studied previously. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  12. Break-out afterburner ion acceleration in the longer laser pulse length regime

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Jung, D.; Shah, R. C.; Palaniyappan, S.; Bowers, K. J.; Henig, A.; Fern´ndez, J. C.; Hegelich, B. M.

    2011-06-01

    Kinetic simulations of break-out-afterburner (BOA) ion acceleration from nm-scale targets are examined in a longer pulse length regime than studied previously. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  13. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Takezaki, Taichi; Takahashi, Kazumasa; Sasaki, Toru; Kikuchi, Takashi; Harada, Nob.

    2016-06-01

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell method have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.

  14. Ion response to relativistic electron bunches in the blowout regime of laser-plasma accelerators.

    PubMed

    Popov, K I; Rozmus, W; Bychenkov, V Yu; Naseri, N; Capjack, C E; Brantov, A V

    2010-11-01

    The ion response to relativistic electron bunches in the so called bubble or blowout regime of a laser-plasma accelerator is discussed. In response to the strong fields of the accelerated electrons the ions form a central filament along the laser axis that can be compressed to densities 2 orders of magnitude higher than the initial particle density. A theory of the filament formation and a model of ion self-compression are proposed. It is also shown that in the case of a sharp rear plasma-vacuum interface the ions can be accelerated by a combination of three basic mechanisms. The long time ion evolution that results from the strong electrostatic fields of an electron bunch provides a unique diagnostic of laser-plasma accelerators.

  15. Acceleration of Solar Wind Ions to 1 Mev by Electromagnetic Moguls in the Foreshock

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K.; Strumik, M.; Markidis, S.; Eliasson, B.; Yamauchi, M.

    2013-05-01

    We present measurements from the ESA/NASA Cluster mission that show in situ acceleration of ions to energies of 1 MeV outside the bow shock. The observed heating can be associated with the presence of electromagnetic structures with strong spatial gradients (divergence) of the electric field that lead to ion gyro-phase breaking and to the onset of chaos in ion trajectories. It results in rapid, stochastic acceleration of ions in the direction perpendicular to the ambient magnetic field. The electric potential of the structures can be compared to a field of moguls on a ski slope, capable of accelerating and ejecting the fast running skiers out of piste. This mechanism may represent the universal, basic mechanism for perpendicular acceleration and heating of ions in the magnetosphere, the solar corona and in astrophysical plasmas.

  16. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  17. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to the dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  18. Advanced techniques in laser-ion acceleration: Conversion efficiency, beam distribution and energy scaling in the Break-Out Afterburner regime

    NASA Astrophysics Data System (ADS)

    Jung, Daniel; Yin, Lin; Albright, Brian; Gautier, Donald; Hoerlein, Rainer; Johnson, Randall; Kiefer, Daniel; Letzring, Sam; Shah, Rahul; Palaniyappan, Sasikumar; Shimada, Tsutomu; Habs, Dietrich; Fernandez, Juan; Hegelich, Manuel

    2011-10-01

    Recently, increasing laser intensities and contrast made acceleration mechanisms such as the radiation pressure acceleration or the Break-Out Afterburner (BOA) accessible. These mechanisms efficiently couple laser energy into all target ion species, making them a competitive alternative to conventional accelerators. We here present experimental data addressing conversion efficiency and ion distribution scaling for both carbon C6+ and protons within the BOA regime and the transit into the TNSA regime. Unique high resolution measurements of angularly resolved carbon C6+ and proton energy spectra for targets ranging from 30nm to 25microns - recorded with a novel ion wide angle spectrometer - are presented and used to derive thickness scaling estimates. While the measured conversion efficiency for C6+ reaches up to ~6%, peak energies of 1GeV and 120MeV have been measured for C6+ and protons, respectively.

  19. Fabrication and testing of carbon-carbon grids for ion optics

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Brophy, John R.

    1992-01-01

    Ion optics measuring 16.5 cm in diameter and 1.0 mm in thickness were fabricated from carbon-carbon composites that were woven from a high-tensile-modulus carbon fiber. Plate flatness varied by less than 0.05 mm. Several methods were investigated for forming ion-extraction apertures in the carbon-carbon plates, including laser machining, mechanical drilling, and conventional electric discharge machining. Tests conducted using a quartz dilatometer indicated that the coefficient of thermal expansion of the carbon-carbon plates varied between -0.51 to -1.8 x 10 exp -6/degree C at plate temperatures between 173-773 K. Sputter-erosion experiments indicate that carbon-carbon erodes at a rate approximately 25 percent below molybdenum under the same conditions. These material properties indicate that carbon-carbon may be superior to molybdenum for use as ion optics electrodes for ion engines.

  20. Nonthermal ion acceleration in magnetic reconnection: Results from magnetospheric observations and particle simulations

    NASA Astrophysics Data System (ADS)

    Hirai, Mariko; Hoshino, Masahiro

    Nonthermal ion acceleration in magnetic reconnection is investigated by using spacecraft ob-servations in the Earth's magnetotail and particle-in-cell (PIC) simulations. Magnetic recon-nection is believed to be an efficient particle accelerator in various environments in space, such as the pulsar magnetosphere, the solar corona and the Earth's magnetosphere. The Earth's magnetosphere particularly gives crucial clues to understand particle acceleration in magnetic reconnection since precise information on both fields and particles is available from spacecraft observations. Several nonthermal electron acceleration mechanisms, including the acceleration around the X-point and the magnetic pile-up region in the downstream, have been proposed and tested by recent PIC simulations as well as spacecraft observations. However nonthermal ion acceleration in magnetic reconnection still remains to be poorly understood in both ob-servational and simulation studies. We report on the first ever direct observational evidence of nonthermal ion acceleration in magnetic reconnection in the Earth's magnetotail based on the Geotail observations. Nonthermal protons accelerated up to several hundreds keV exhibit a power-law energy spectrum with a typical spectrum index 3-5. By conducting a statistical study on reconnection events in the Earth's magnetotail, we found efficient ion acceleration when the reconnection electric field is strong. On the other hand, the statistical study indicates that the efficiency of electron acceleration is rather controlled by the thickness of the reconnec-tion current sheet. We also performed PIC simulations of driven reconnection to investigate in detail acceleration mechanisms of both ions and electrons. Acceleration mechanisms as well as conditions necessary for the efficient particle acceleration are discussed based on these results.

  1. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probea)

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Yang, X. Y.; Lin, C.; Wang, L.; Xu, M.; Wang, X. G.; Xiao, C. J.

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  2. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    PubMed

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  3. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  4. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    PubMed

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  5. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    PubMed

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration. PMID:25860747

  6. [Relative biological effectiveness of accelerated heavy ions and fast neutrons estimated from frequency of aberration mytoses in the retinal epithelium].

    PubMed

    Vorozhtsova, S V; Shafirkin, A V; Fedorenko, B S

    2006-01-01

    Analyzed was the literature and authors' experimental data concerning lesion and recovery of epithelium cells of mice retina immediately and long after irradiation at different sources including single and partly fractionated irradiation by gamma- and X-rays, accelerated protons, helium, carbon and boron ions, and fast neutrons of the reactor range in a large spectrum of doses and LET. Reviewed are some new techniques of determining the RBE coefficient for these types of radiation; large values of the RBE coefficients for accelerated ions and neutrons (5-10 times higher than RBE coefficients calculated for the next day following irradiation) are a result of integration into calculation of the available data about the delayed disorders in retinal epithelium cell regeneration. PMID:17193969

  7. Low energy ion assisted carbon film growth: Methods and mechanisms

    NASA Astrophysics Data System (ADS)

    Ullmann, Jens

    1997-05-01

    Hydrogen-free amorphous carbon films (a-C) prepared by different ion assisted methods (i) ion assisted evaporation (IAE), (ii) unbalanced magnetron sputtering (MS), (iii) mass separated ion beam deposition (MSIBD) and (iv) filtered vacuum cathodic arc evaporation (VA) in the optimum energy range of about 100 eV were compared. Density data, Raman spectra and surface topography images show a different behaviour of the films. The different growth processes were discussed in connection with results from ion implantation experiments into IAE a-C and computer calculations of the ion-solid interactions by use of the TRIM-code. Self-interstitials in the sub-surface region of the carbon matrix created due to pure carbon ion beam bombardment (MSIBD and VA) are the key for the understanding of the densification process. The lower number of self-interstitials created during the noble-gas ion assisted processes can be compensated by extremely high argon-ion to carbon-neutral arrival ratios in the case of MS. Furthermore, the sputtered carbon atoms with energies in the range of a few eV should assist this deposition process. Without energetic carbon particles (thermal carbon atoms from the evaporation process) as in the case of neon ion assisted evaporation, it is also possible to prepare dense a-C, however with lower density (2.7 g/cm 3).

  8. Enhancement of accelerated carbonation of alkaline waste residues by ultrasound.

    PubMed

    Araizi, Paris K; Hills, Colin D; Maries, Alan; Gunning, Peter J; Wray, David S

    2016-04-01

    The continuous growth of anthropogenic CO2 emissions into the atmosphere and the disposal of hazardous wastes into landfills present serious economic and environmental issues. Reaction of CO2 with alkaline residues or cementitius materials, known as accelerated carbonation, occurs rapidly under ambient temperature and pressure and is a proven and effective process of sequestering the gas. Moreover, further improvement of the reaction efficiency would increase the amount of CO2 that could be permanently sequestered into solid products. This paper examines the potential of enhancing the accelerated carbonation of air pollution control residues, cement bypass dust and ladle slag by applying ultrasound at various water-to-solid (w/s) ratios. Experimental results showed that application of ultrasound increased the CO2 uptake by up to four times at high w/s ratios, whereas the reactivity at low water content showed little change compared with controls. Upon sonication, the particle size of the waste residues decreased and the amount of calcite precipitates increased. Finally, the sonicated particles exhibited a rounded morphology when observed by scanning electron microscopy.

  9. Enhancement of accelerated carbonation of alkaline waste residues by ultrasound.

    PubMed

    Araizi, Paris K; Hills, Colin D; Maries, Alan; Gunning, Peter J; Wray, David S

    2016-04-01

    The continuous growth of anthropogenic CO2 emissions into the atmosphere and the disposal of hazardous wastes into landfills present serious economic and environmental issues. Reaction of CO2 with alkaline residues or cementitius materials, known as accelerated carbonation, occurs rapidly under ambient temperature and pressure and is a proven and effective process of sequestering the gas. Moreover, further improvement of the reaction efficiency would increase the amount of CO2 that could be permanently sequestered into solid products. This paper examines the potential of enhancing the accelerated carbonation of air pollution control residues, cement bypass dust and ladle slag by applying ultrasound at various water-to-solid (w/s) ratios. Experimental results showed that application of ultrasound increased the CO2 uptake by up to four times at high w/s ratios, whereas the reactivity at low water content showed little change compared with controls. Upon sonication, the particle size of the waste residues decreased and the amount of calcite precipitates increased. Finally, the sonicated particles exhibited a rounded morphology when observed by scanning electron microscopy. PMID:26905698

  10. Ion acceleration in the magnetosphere and ionosphere; Proceedings of the Chapman Conference on Ion Acceleration in the Magnetosphere, Wellesley College, MA, June 3-7, 1985

    NASA Astrophysics Data System (ADS)

    Chang, Thomas

    Theoretical, experimental, and observational investigations of magnetospheric ion-acceleration processes (IAPs) are presented in reviews and reports. Topics examined include high-latitude, plasma-sheet, boundary-layer, equatorial-region, active, laboratory, microscopic, and macroscopic IAPs. Consideration is given to observations of coherent transverse IAPs, transverse and parallel acceleration of terrestrial ions at high latitudes, interaction of H(+) and O(+) beams at 2 and 3 earth radii, eigenfunction methods in the theory of magnetospheric radial diffusion, wave-particle-interaction IAPs, IAPs in expanding ionospheric plasmas, and impulsive IAPs in the outer magnetosphere.

  11. Ion acceleration in the magnetosphere and ionosphere; Proceedings of the Chapman Conference on Ion Acceleration in the Magnetosphere, Wellesley College, MA, June 3-7, 1985

    SciTech Connect

    Chang, T.

    1986-01-01

    Theoretical, experimental, and observational investigations of magnetospheric ion-acceleration processes (IAPs) are presented in reviews and reports. Topics examined include high-latitude, plasma-sheet, boundary-layer, equatorial-region, active, laboratory, microscopic, and macroscopic IAPs. Consideration is given to observations of coherent transverse IAPs, transverse and parallel acceleration of terrestrial ions at high latitudes, interaction of H(+) and O(+) beams at 2 and 3 earth radii, eigenfunction methods in the theory of magnetospheric radial diffusion, wave-particle-interaction IAPs, IAPs in expanding ionospheric plasmas, and impulsive IAPs in the outer magnetosphere.

  12. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were tested on five different 30-cm diameter bombardment thrustors to evaluate the effects of grid geometry variations on thrustor discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole-diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. Also investigated were the effects on discharge chamber performance of main magnetic field changes, magnetic baffle current cathode pole piece length and cathode position.

  13. Performance of 30-cm ion thrusters with dished accelerator grids

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Thirteen sets of dished accelerator grids were treated on five different 30 cm diameter bombardment thrusters to evaluate the effects of grid geometry variations on thruster discharge chamber performance. The dished grid parameters varied were: grid-to-grid spacing, screen and accelerator grid hole diameter, screen and accelerator open area fraction, compensation for beam divergence losses, and accelerator grid thickness. The effects on discharge chamber performance of main magnetic field changes, magnetic baffle current, cathode pole piece length and cathode position were also investigated.

  14. 2D accelerator design for SITEX negative ion source

    SciTech Connect

    Whealton, J.H.; Raridon, R.J.; McGaffey, R.W.; McCollough, D.H.; Stirling, W.L.; Dagenhart, W.K.

    1983-01-01

    Solving the Poisson-Vlasov equations where the magnetic field, B, is assumed constant, we optimize the optical system of a SITEX negative ion source in infinite slot geometry. Algorithms designed to solve the above equations were modified to include the curved emitter boundary data appropriate to a negative ion source. Other configurations relevant to negative ion sources are examined.

  15. Ion acceleration to supra-thermal energies in the near-Earth magnetotail

    NASA Astrophysics Data System (ADS)

    Elena, Kronberg

    2016-07-01

    We here present an analysis of ion composition measurements by the RAPID instruments onboard Cluster. We discuss the evidence for an acceleration of ions to energies above 100 keV in the near-Earth current sheet, in the vicinity of a possible near-Earth neutral line, and we investigate the physical details of such an acceleration. We present observations of tailward bulk flows in the near-Earth tail associated with plasmoid-like magnetic structures. These flows are superimposed by low-frequency magnetic and electric field fluctuations. Observations and modelling show that resonant interactions between ions and low-frequency electromagnetic fluctuations facilitate the ion energization inside plasmoids.

  16. Multiwalled carbon nanotubes as apertures and conduits for energetic ions

    SciTech Connect

    Krasheninnikov, A.V.; Nordlund, K.

    2005-06-15

    We perform molecular dynamics simulations to study motion of heavy ions with kilo-electron-volt energies through multiwalled carbon nanotubes. We show that under certain conditions on the tube alignment with respect to the ion beam and on ion energies, the ions can efficiently channel through the empty cores of the nanotubes. We demonstrate that the dependence of the critical angle on ion energy obeys a simple continuum-theory-based equation. We further discuss making a nanotube-based conduit for energetic ions, which should work as an aperture and allow one to manipulate ion beams at the nanoscale.

  17. Acceleration of interstellar pickup ions in the disturbed solar wind observed on Ulysses

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Geiss, J.; Roelof, E. C.; Fisk, L. A.; Ipavich, F. M.; Ogilvie, K. W.; Lanzerotti, L. J.; Von Steiger, R.; Wilken, B.

    1994-01-01

    Acceleration of interstellar pickup H(+) and He(+) as well as of solar wind protons and alpha particles has been observed on Ulysses during the passage of a corotating interaction region (CIR) at approximately 4.5 AU. Injection efficiencies for both the high thermal speed interstellar pickup ions (H(+) and He(+)) and the low thermal speed solar wind ions (H(+) and He(++) are derived using velocity distribution functions of protons, pickup He(+) and alpha particles from less than 1 to 60 keV/e and of ions (principally protons) above approximately 60 keV. The observed spatial variations of the few keV and the few hundred keV accelerated pickup protons across the forward shock of CIR indicate a two stage acceleration mechanism. Thermal ions are first accelerated to speeds of 3 to 4 times the solar wind speed inside the CIR, presumably by some statistical mechanism, before reaching higher energies by a shock acceleration process. Our results also indicate that (1) the injection efficiencies for pickup ions are almost 100 times higher than they are for solar wind ions, (2) pickup H(+) and He(+) are the two most abundant suprathermal ion species and they carry a large fraction of the particle thermal pressure, (3) the injection efficiency is highest for protons, lowest for He(+), and intermediate for alpha particles, (4) both H(+) and He(+) have identical spectral shapes above the cutoff speed for pickup ions, and (5) the solar wind frame velocity distribution function of protons has the form F(w) = F(sub o)w(sup -4) for 1 is less than w is less than approximately 5, where w is the ion speed divided by the solar wind speed. Above w approximately 5-10 the proton spectrum becomes steeper. These results have important implications concerning acceleration of ions by shocks and CIRs, acceleration of anomalous cosmic rays, and particle dynamics in the outer heliosphere.

  18. Enhancement of SPHK1 in vitro by carbon ion irradiation in oral squamous cell carcinoma

    SciTech Connect

    Higo, Morihiro; Uzawa, Katsuhiro . E-mail: uzawak@faculty.chiba-u.jp; Kawata, Tetsuya; Kato, Yoshikuni; Kouzu, Yukinao; Yamamoto, Nobuharu; Shibahara, Takahiko; Mizoe, Jun-etsu; Ito, Hisao; Tsujii, Hirohiko; Tanzawa, Hideki

    2006-07-01

    Purpose The purpose of this study was to assess the gene expression changes in oral squamous cell carcinoma (OSCC) cells after carbon ion irradiation. Methods and Materials Three OSCC cell lines (HSC2, Ca9-22, and HSC3) were irradiated with accelerated carbon ion beams or X-rays using three different doses. The cellular sensitivities were determined by clonogenic survival assay. To identify genes the expression of which is influenced by carbon ion irradiation in a dose-dependent manner, we performed Affymetrix GeneChip analysis with HG-U133 plus 2.0 arrays containing 54,675 probe sets. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time reverse transcriptase-polymerase chain reaction. Results We identified 98 genes with expression levels that were altered significantly at least twofold in each of the three carbon-irradiated OSCC cell lines at all dose points compared with nonirradiated control cells. Among these, SPHK1, the expression of which was significantly upregulated by carbon ion irradiation, was modulated little by X-rays. The function of SPHK1 related to cellular growth and proliferation had the highest p value (p = 9.25e-7 to 2.19e-2). Real-time reverse transcriptase-polymerase chain reaction analysis showed significantly elevated SPHK1 expression levels after carbon ion irradiation (p < 0.05), consistent with microarray data. Clonogenic survival assay indicated that carbon ion irradiation could induce cell death in Ca9-22 cells more effectively than X-rays. Conclusions Our findings suggest that SPHK1 helps to elucidate the molecular mechanisms and processes underlying the biologic response to carbon ion beams in OSCC.

  19. Evaluation of neutron radiation field in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Xu, Jun-Kui; Su, You-Wu; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2016-01-01

    Carbon ions have significant advantages in tumor therapy because of their physical and biological properties. In view of the radiation protection, the safety of patients is the most important issue in therapy processes. Therefore, the effects of the secondary particles produced by the carbon ions in the tumor therapy should be carefully considered, especially for the neutrons. In the present work, the neutron radiation field induced by carbon ions was evaluated by using the FLUKA code. The simulated results of neutron energy spectra and neutron dose was found to be in good agreement with the experiment data. In addition, energy deposition of carbon ions and neutrons in tissue-like media was studied, it is found that the secondary neutron energy deposition is not expected to exceed 1% of the carbon ion energy deposition in a typical treatment.

  20. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  1. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

  2. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1985-September 30, 1985

    SciTech Connect

    Not Available

    1985-10-01

    The heavy ion accelerator is profiled. Energy losses, currents, kinetic energy, beam optics, pulse models and mechanical tolerances are included in the discussion. In addition, computational efforts and an energy analyzer are described. 37 refs., 27 figs. (WRF)

  3. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.

    PubMed

    Bolton, P R; Borghesi, M; Brenner, C; Carroll, D C; De Martinis, C; Fiorini, Francesca; Flacco, A; Floquet, V; Fuchs, J; Gallegos, P; Giove, D; Green, J S; Green, S; Jones, B; Kirby, D; McKenna, P; Neely, D; Nuesslin, F; Prasad, R; Reinhardt, S; Roth, M; Schramm, U; Scott, G G; Ter-Avetisyan, S; Tolley, M; Turchetti, G; Wilkens, J J

    2014-05-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed.

  4. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    NASA Astrophysics Data System (ADS)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  5. Fast ion mass spectrometry and charged particle spectrography investigations of transverse ion acceleration and beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Gibson, W. C.; Tomlinson, W. M.; Marshall, J. A.

    1987-01-01

    Ion acceleration transverse to the magnetic field in the topside ionosphere was investigated. Transverse acceleration is believed to be responsible for the upward-moving conical ion distributions commonly observed along auroral field lines at altitudes from several hundred to several thousand kilometers. Of primary concern in this investigation is the extent of these conic events in space and time. Theoretical predictions indicate very rapid initial heating rates, depending on the ion species. These same theories predict that the events will occur within a narrow vertical region of only a few hundred kilometers. Thus an instrument with very high spatial and temporal resolution was required; further, since different heating rates were predicted for different ions, it was necessary to obtain composition as well as velocity space distributions. The fast ion mass spectrometer (FIMS) was designed to meet these criteria. This instrument and its operation is discussed.

  6. Laser-Accelerated Ions from a Shock-Compressed Gas Foil

    NASA Astrophysics Data System (ADS)

    Helle, M. H.; Gordon, D. F.; Kaganovich, D.; Chen, Y.; Palastro, J. P.; Ting, A.

    2016-10-01

    We present results of energetic laser-ion acceleration from a tailored, near solid density gas target. Colliding hydrodynamic shocks compress a pure hydrogen gas jet into a 70 μ m thick target prior to the arrival of the ultraintense laser pulse. A density scan reveals the transition from a regime characterized by a wide angle, low-energy beam (target normal sheath acceleration) to one of a more focused beam with a high-energy halo (magnetic vortex acceleration). In the latter case, three-dimensional simulations show the formation of a Z pinch driven by the axial current resulting from laser wakefield accelerated electrons. Ions at the rear of the target are then accelerated by a combination of space charge fields from accelerated electrons and Coulombic repulsion as the pinch dissipates.

  7. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Ozak, Nataly; Viñas, Adolfo F.

    2016-03-01

    Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  8. Prompt acceleration of ions by oblique turbulent shocks in solar flares

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1985-01-01

    Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard X-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona? This problem is discussed.

  9. Flyer Acceleration by Pulsed Ion Beam Ablation and Application for Space Propulsion

    SciTech Connect

    Harada, Nobuhiro; Buttapeng, Chainarong; Yazawa, Masaru; Kashine, Kenji; Jiang Weihua; Yatsui, Kiyoshi

    2004-02-04

    Flyer acceleration by ablation plasma pressure produced by irradiation of intense pulsed ion beam has been studied. Acceleration process including expansion of ablation plasma was simulated based on fluid model. And interaction between incident pulsed ion beam and a flyer target was considered as accounting stopping power of it. In experiments, we used ETIGO-II intense pulsed ion beam generator with two kinds of diodes; 1) Magnetically Insulated Diode (MID, power densities of <100 J/cm2) and 2) Spherical-focused Plasma Focus Diode (SPFD, power densities of up to 4.3 kJ/cm2). Numerical results of accelerated flyer velocity agreed well with measured one over wide range of incident ion beam energy density. Flyer velocity of 5.6 km/s and ablation plasma pressure of 15 GPa was demonstrated by the present experiments. Acceleration of double-layer target consists of gold/aluminum was studied. For adequate layer thickness, such a flyer target could be much more accelerated than a single layer. Effect of waveform of ion beam was also examined. Parabolic waveform could accelerate more efficiently than rectangular waveform. Applicability of ablation propulsion was discussed. Specific impulse of 7000{approx}8000 seconds and time averaged thrust of up to 5000{approx}6000N can be expected. Their values can be controllable by changing power density of incident ion beam and pulse duration.

  10. The precise energy spectra measurement of laser-accelerated MeV/n-class high-Z ions and protons using CR-39 detectors

    NASA Astrophysics Data System (ADS)

    Kanasaki, M.; Jinno, S.; Sakaki, H.; Kondo, K.; Oda, K.; Yamauchi, T.; Fukuda, Y.

    2016-03-01

    The diagnosis method, using a combination of a permanent magnet and CR-39 track detectors, has been developed to separately measure the energy spectrum of the laser-accelerated MeV/n-class high-Z ions and that of MeV protons. The main role of magnet is separating between high-Z ions and protons, not for the usual energy spectrometer, while ion energy was precisely determined from careful analysis of the etch pit shapes and the etch pit growth behaviors in the CR-39. The method was applied to laser-driven ion acceleration experiments using CO2 clusters embedded in a background H2 gas. Ion energy spectra with uncertainty ΔE  =  0.1 MeV n-1 for protons and carbon/oxygen ions were simultaneously obtained separately. The maximum energies of carbon/oxygen ions and protons were determined as 1.1  ±  0.1 MeV and 1.6  ±  0.1 MeV n-1, respectively. The sharp decrease around 1 MeV n-1 observed in the energy spectrum of carbon/oxygen ions could be due to a trace of the ambipolar hydrodynamic expansion of CO2 clusters. Thanks to the combination of the magnet and the CR-39, the method is robust against electromagnetic pulse (EMP).

  11. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  12. An Innovative Manufacturing of CCC Ion Thruster Grids by North Carolina A&T's RTM Carbon/Carbon Process

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Electric ion thrusters are the preferred engines for deep space missions, because of very high specific impulse. The ion engine consists of screen and accelerator grids containing thousands of concentric very small holes. The xenon gas accelerates between the two grids, thus developing the impulse force. The dominant life-limiting mechanism in the state-of-the-art molybdenum thrusters is the xenon ion sputter erosion of the accelerator grid. Carbon/carbon composites (CCC) have shown to be have less than 1/7 the erosion rates than the molybdenum, thus for interplanetary missions CCC engines are inevitable. Early effort to develop CCC composite thrusters had a limited success because of limitations of the drilling technology and the damage caused by drilling. The proposed is an in-situ manufacturing of holes while the CCC is made. Special low CTE molds will be used along with the NC A&T s patented resin transfer molding (RTM) technology to manufacture the CCC grids. First, a manufacture process for 10-cm diameter thruster grids will be developed and verified. Quality of holes, density, CTE, tension, flexure, transverse fatigue and sputter yield properties will be measured. After establishing the acceptable quality and properties, the process will be scaled to manufacture 30-cm diameter grids. The properties of the two grid sizes are compared with each other.

  13. Projectile image acceleration, neutralization and electron emission during grazing interactions of multicharged ions with Au(110)

    SciTech Connect

    Meyer, F.W.; Folkerts, L.; Folkerts, H.O.; Schippers, S. |

    1995-03-01

    Recent Oak Ridge work is summarized on projectile energy gain by image charge acceleration, scattered ion charge distributions, and K-Auger electron emission during low energy grazing interactions of highly charged Pb, I, O, and Ar ions with a Au(110) surface.

  14. Simulation studies of acceleration of heavy ions and their elemental compositions; IFSR--755

    SciTech Connect

    Toida, Mieko; Ohsawa, Yukiharu

    1996-07-01

    By using a one-dimensional, electromagnetic particle simulation code with full ion and electron dynamics, we have studied the acceleration of heavy ions by a nonlinear magnetosonic wave in a multi-ion-species plasma. First, we describe the mechanism of heavy ion acceleration by magnetosonic waves. We then investigate this by particle simulations. The simulation plasma contains four ion species: H, He, O, and Fe. The number density of He is taken to be 10% of that of H, and those of O and Fe are much lower. Simulations confirm that, as in a single-ion-species plasma, some of the hydrogens can be accelerated by the longitudinal electric field formed in the wave. Furthermore, they show that magnetosonic waves can accelerate all the particles of all the heavy species (He, O, and Fe) by a different mechanism, i.e., by the transverse electric field. The maximum speeds of the heavy species are about the same, of the order of the wave propagation speed. These are in good agreement with theoretical prediction. These results indicate that, if high-energy ions are produced in the solar corona through these mechanisms, the elemental compositions of these heavy ions can be similar to that of the background plasma, i.e., the corona.

  15. Beam dynamics of a double-gap acceleration cell for ion implantation with multiple atomic species

    SciTech Connect

    Wadlinger, E.A.; Lysenko, W.P.; Rusnak, B.; Saadatmand, K.

    1997-02-01

    As a result of our work on ion implantation, we derived equations for the beam dynamics of a two-gap-resonator cavity for accelerating and bunching various ion species of varying energies with the cavity designed for one particular ion species of a given energy (the design-reference particle). A two gap structure is useful at low resonant frequencies where lumped circuit elements (inductors) can be used and the structure kept small. A single gap structure has the advantage that each gap can be independently phased to produce the desired beam dynamics behavior for various ion species and ion energies. However at low frequencies, single gap resonant structures can be large. We find that the two-gap structure, where the phase difference between gaps, for the design reference particle, is fixed at {pi} radians can give acceptable performance provided that the individual two gap cells in the entire accelerator are optimized for the ion species having the largest mass to charge ratio and having the maximum required output energy. Our equations show how to adjust the cavity phases and electric fields to obtain equivalent first-order accelerator performance for various ion species and energies. These equations allow for the effective evaluation of various accelerator concepts and can facilitate the tuning of a linac when changing energies and ion species. Extensive simulations have confirmed the efficacy of our equations. {copyright} {ital 1997 American Institute of Physics.}

  16. A 2D Particle in Cell model for ion extraction and focusing in electrostatic accelerators.

    PubMed

    Veltri, P; Cavenago, M; Serianni, G

    2014-02-01

    Negative ions are fundamental to produce intense and high energy neutral beams used to heat the plasma in fusion devices. The processes regulating the ion extraction involve the formation of a sheath on a scale comparable to the Debye length of the plasma. On the other hand, the ion acceleration as a beam is obtained on distances greater than λD. The paper presents a model for both the phases of ion extraction and acceleration of the ions and its implementation in a numerical code. The space charge of particles is deposited following usual Particle in Cell codes technique, while the field is solved with finite element methods. Some hypotheses on the beam plasma transition are described, allowing to model both regions at the same time. The code was tested with the geometry of the NIO1 negative ions source, and the results are compared with existing ray tracing codes and discussed.

  17. A 2D Particle in Cell model for ion extraction and focusing in electrostatic accelerators

    SciTech Connect

    Veltri, P. Serianni, G.; Cavenago, M.

    2014-02-15

    Negative ions are fundamental to produce intense and high energy neutral beams used to heat the plasma in fusion devices. The processes regulating the ion extraction involve the formation of a sheath on a scale comparable to the Debye length of the plasma. On the other hand, the ion acceleration as a beam is obtained on distances greater than λ{sub D}. The paper presents a model for both the phases of ion extraction and acceleration of the ions and its implementation in a numerical code. The space charge of particles is deposited following usual Particle in Cell codes technique, while the field is solved with finite element methods. Some hypotheses on the beam plasma transition are described, allowing to model both regions at the same time. The code was tested with the geometry of the NIO1 negative ions source, and the results are compared with existing ray tracing codes and discussed.

  18. Drawing inferences about solar wind acceleration from coronal minor ion observations

    SciTech Connect

    Esser, R.; Holzer, T.E.; Leer, E.

    1987-12-01

    A parameter study is designed and carried out to illustrate the physical effects that can be studied through analysis and interpretation of coronal minor ion spectral line observations. It is shown that minor ion line width, together with the coronal Ly..cap alpha.. line width and coronal white light observations, can yield important information concerning the transport and dissipation of energy carried outward from the coronal base by hydromagnetic waves. Although it is difficult to infer minor ion velocities through the Doppler dimming technique, the application of this technique using both radiatively and collisionally excited lines can provide constraints on the acceleration of coronal minor ions. It is concluded tha the observation of coronal minor ion spectral lines represents an important component of a concerted observational approach to the solar wind acceleration problem. It must be emphasized, however, that the measurement of line widths is the most important coronal minor ion observation to obtain. copyright American Geophysical Union 1987

  19. A 2D Particle in Cell model for ion extraction and focusing in electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Veltri, P.; Cavenago, M.; Serianni, G.

    2014-02-01

    Negative ions are fundamental to produce intense and high energy neutral beams used to heat the plasma in fusion devices. The processes regulating the ion extraction involve the formation of a sheath on a scale comparable to the Debye length of the plasma. On the other hand, the ion acceleration as a beam is obtained on distances greater than λD. The paper presents a model for both the phases of ion extraction and acceleration of the ions and its implementation in a numerical code. The space charge of particles is deposited following usual Particle in Cell codes technique, while the field is solved with finite element methods. Some hypotheses on the beam plasma transition are described, allowing to model both regions at the same time. The code was tested with the geometry of the NIO1 negative ions source, and the results are compared with existing ray tracing codes and discussed.

  20. Global change accelerates carbon assimilation by a wetland ecosystem engineer

    NASA Astrophysics Data System (ADS)

    Caplan, Joshua S.; Hager, Rachel N.; Megonigal, J. Patrick; Mozdzer, Thomas J.

    2015-11-01

    The primary productivity of coastal wetlands is changing dramatically in response to rising atmospheric carbon dioxide (CO2) concentrations, nitrogen (N) enrichment, and invasions by novel species, potentially altering their ecosystem services and resilience to sea level rise. In order to determine how these interacting global change factors will affect coastal wetland productivity, we quantified growing-season carbon assimilation (≈gross primary productivity, or GPP) and carbon retained in living plant biomass (≈net primary productivity, or NPP) of North American mid-Atlantic saltmarshes invaded by Phragmites australis (common reed) under four treatment conditions: two levels of CO2 (ambient and +300 ppm) crossed with two levels of N (0 and 25 g N added m-2 yr-1). For GPP, we combined descriptions of canopy structure and leaf-level photosynthesis in a simulation model, using empirical data from an open-top chamber field study. Under ambient CO2 and low N loading (i.e., the Control), we determined GPP to be 1.66 ± 0.05 kg C m-2 yr-1 at a typical Phragmites stand density. Individually, elevated CO2 and N enrichment increased GPP by 44 and 60%, respectively. Changes under N enrichment came largely from stimulation to carbon assimilation early and late in the growing season, while changes from CO2 came from stimulation during the early and mid-growing season. In combination, elevated CO2 and N enrichment increased GPP by 95% over the Control, yielding 3.24 ± 0.08 kg C m-2 yr-1. We used biomass data to calculate NPP, and determined that it represented 44%-60% of GPP, with global change conditions decreasing carbon retention compared to the Control. Our results indicate that Phragmites invasions in eutrophied saltmarshes are driven, in part, by extended phenology yielding 3.1× greater NPP than native marsh. Further, we can expect elevated CO2 to amplify Phragmites productivity throughout the growing season, with potential implications including accelerated spread

  1. Ion acceleration in shell cylinders irradiated by a short intense laser pulse

    SciTech Connect

    Andreev, A.; Platonov, K.; Sharma, A.; Murakami, M.

    2015-09-15

    The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.

  2. Ion acceleration in shell cylinders irradiated by a short intense laser pulse

    NASA Astrophysics Data System (ADS)

    Andreev, A.; Platonov, K.; Sharma, A.; Murakami, M.

    2015-09-01

    The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.

  3. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  4. Cancellation of the ion deflection due to electron-suppression magnetic field in a negative-ion accelerator

    SciTech Connect

    Chitarin, G.; Agostinetti, P.; Aprile, D.; Marconato, N.; Veltri, P.

    2014-02-15

    A new magnetic configuration is proposed for the suppression of co-extracted electrons in a negative-ion accelerator. This configuration is produced by an arrangement of permanent magnets embedded in one accelerator grid and creates an asymmetric local magnetic field on the upstream and downstream sides of this grid. Thanks to the “concentration” of the magnetic field on the upstream side of the grid, the resulting deflection of the ions due to magnetic field can be “intrinsically” cancelled by calibrating the configuration of permanent magnets. At the same time, the suppression of co-extracted electrons can be improved.

  5. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams.

  6. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-12-31

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams.

  7. Advanced low-beta cavity development for proton and ion accelerators

    NASA Astrophysics Data System (ADS)

    Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions.

  8. Carbon Nanotube Anodes Being Evaluated for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Gennett, Tom; VanderWal, Randy L.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center is evaluating the use of carbon nanotubes as anode materials for thin-film lithium-ion (Li) batteries. The motivation for this work lies in the fact that, in contrast to carbon black, directed structured nanotubes and nanofibers offer a superior intercalation media for Li-ion batteries. Carbon lamellas in carbon blacks are circumferentially oriented and block much of the particle interior, rendering much of the matrix useless as intercalation material. Nanofibers, on the other hand, can be grown so as to provide 100-percent accessibility of the entire carbon structure to intercalation. These tubes can be visualized as "rolled-up" sheets of carbon hexagons (see the following figure). One tube is approximately 1/10,000th the diameter of a human hair. In addition, the high accessibility of the structure confers a high mobility to ion-exchange processes, a fundamental for the batteries to respond dynamically because of intercalation.

  9. Centrifugal acceleration of ions in the polar magnetosphere

    NASA Technical Reports Server (NTRS)

    Swinney, Kenneth R.; Horwitz, James L.; Delcourt, D.

    1987-01-01

    The transport of ionospheric ions originating near the dayside cusp into the magnetotail is parametrically studied using a 3-D model of ion trajectories. It is shown that the centrifugal term in the guiding center parallel force equation dominates the parallel motion after about 4 Re geocentric distance. The dependence of the equatorial crossing distance on initial latitude, energy and convection electric field is presented for ions originating on the dayside ionosphere in the noon-midnight plane. It is also found that up to altitudes of about 5 Re, the motion is similar to that of a bead on a rotating rod, for which a simple analytical solution exists.

  10. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  11. Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation

    NASA Astrophysics Data System (ADS)

    Lopez-Arce, Paula; Zornoza-Indart, Ainara

    2015-09-01

    Carbonation of Ca(OH)2 nanoparticles and consolidation of limestone are accelerated by high humidity and a yeast fermentation system that supplies a saturated atmosphere on CO2, H2O vapor and ethanol during 28 days. Nanoparticles were analyzed by X-ray diffraction and differential thermal analyses with thermogravimetry. Spectrophotometry, scanning electron microscopy analyses, and hydric and mechanical tests were also performed in stones specimens. Samples exposed to the yeast environment achieve 100 % relative CaCO3 yield, whereas at high humidity but without the yeast and under laboratory environment, relative yields of 95 % CaCO3 and 15 % CaCO3 are, respectively, reached, with white crusts and glazing left on the stone surfaces when the nanoparticles are applied at a concentration of 25 g/l. The largest increase in the drilling resistance and surface hardness values with slight increase in the capillarity absorption and desorption coefficients and with lesser stone color changes are produced at a concentration of 5 g/l, in the yeast system environment. This especially happens in stone specimens initially with bimodal pore size distributions, more amounts of pores with diameters between 0.1 and 1 µm, higher open porosity values and faster capillary coefficients. An inexpensive and reliable method based on water and yeast-sugar solution is presented to speed up carbonation of Ca(OH)2 nanoparticles used as a consolidating product to improve the mechanical properties of decayed limestone from archaeological and architectural heritage.

  12. Oxygen foreshock of Mars and its implication on ion acceleration in the bow shock

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Lundin, Rickard; Frahm, Rudy; Sauvaud, Jean-Andre; Holmstrom, Mats; Barabash, Stas

    2016-04-01

    Ion acceleration inside the bow shock is one of the poorly understood phenomena that has been observed for more than 30 years as the foreshock phenomena. While the Fermi-acceleration mechanism explains the diffuse component of foreshock ions, we still do not know the detailed mechanism that produces the discrete intense ions flowing along the local magnetic field direction (with and without gyration). One of the reasons for such difficulty is that majority of the bow shock study was performed for the Earth's case where Oxygen ions cannot be used to understand the acceleration mechanisms. The planetary oxygen ions that reach the Earth's bow shock have already been significantly accelerated, and are not adequate for such a study. In this sense the Martian bow shock is an ideal place to study the acceleration mechanisms leading to foreshock ions, although the nature of the bow shock is slightly different between the Earth and Mars (Yamauchi et al., 2011). On 21 September 2008, the Mars Express (MEX) Ion Mass Analyser (IMA) detected foreshock-like discrete distributions of oxygen ions at around 1 keV in the solar wind attached to the bow shock. This was the first time that a substantial amount of planetary oxygen was observed upstream of the bow shock. The oxygen energy increased from low energy (< 300 keV) inside the magnetosheath (or it should be called an extended bow shock) to nearly 2 keV at more than 2000 km from the bow shock. Foreshock-like protons are also observed but at a shifted location from the oxygen by about 1000 km, at a slightly higher energy, and flowing in a slightly different direction than the oxygen ions. Both protons and oxygen ions are flowing anti-sunward at different angles with respect to the solar wind direction. The observation is consistent with an electric potential barrier at the bow shock that simultaneously accelerates the planetary oxygen ions outward (to form the foreshock oxygen ions) and reflects a portion of the solar wind (to

  13. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    SciTech Connect

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Dandouras, Iannis E-mail: Kis.Arpad@csfk.mta.hu

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  14. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field

    PubMed Central

    Terasaka, K.; Yoshimura, S.; Ogiwara, K.; Aramaki, M.; Tanaka, M. Y.

    2010-01-01

    The flow structure of ions in a diverging magnetic field has been experimentally studied in an electron cyclotron resonance plasma. The flow velocity field of ions has been measured with directional Langmuir probes calibrated with the laser induced fluorescence spectroscopy. For low ion-temperature plasmas, it is concluded that the ion acceleration due to the axial electric field is important compared with that of gas dynamic effect. It has also been found that the detachment of ion stream line from the magnetic field line takes place when the parameter |fciLB∕Vi| becomes order unity, where fci, LB, and Vi are the ion cyclotron frequency, the characteristic scale length of magnetic field inhomogeneity, and the ion flow velocity, respectively. In the detachment region, a radial electric field is generated in the plasma and the ions move straight with the E×B rotation driven by the radial electric field. PMID:20838424

  15. ACCELERATOR PHYSICS ISSUES FOR FUTURE ELECTRON ION COLLIDERS.

    SciTech Connect

    PEGGS,S.; BEN-ZVI,I.; KEWISCH,J.; MURPHY,J.

    2001-06-18

    Interest continues to grow in the physics of collisions between electrons and heavy ions, and between polarized electrons and polarized protons [1,2,3]. Table 1 compares the parameters of some machines under discussion. DESY has begun to explore the possibility of upgrading the existing HERA-p ring to store heavy ions, in order to collide them with electrons (or positrons) in the HERA-e ring, or from TESLA [4]. An upgrade to store polarized protons in the HERA-p ring is also under discussion [1]. BNL is considering adding polarized electrons to the RHIC repertoire, which already includes heavy and light ions, and polarized protons. The authors of this paper have made a first pass analysis of this ''eRHIC'' possibility [5]. MIT-BATES is also considering electron ion collider designs [6].

  16. POLARIZED ION SOURCES FOR HIGH ENERGY ACCELERATORS AND COLLIDERS

    SciTech Connect

    ZELENSKI,A.N.

    2000-10-16

    The recent progress in polarized ion source development is reviewed. In dc operation a 1.0 mA polarized H{sup -} ion current is now available from the Optically-Pumped Polarized Ion Source (OPPIS) . In pulsed operation a 10 mA polarized H{sup -} ion current was demonstrated at the TRIUMF pulsed OPPIS test bench and a 3.5 mA peak current was obtained from an Atomic Beam Source (ABS) at the INR Moscow test bench. The possibilities for future improvements with both techniques are discussed. A new OPPIS for RHIC spin physics is described. The OPPIS reliably delivered polarized beam for the polarized run at RHIC. The results obtained with a new pulsed ABS injector for the IUCF Cooler Ring are also discussed.

  17. POLARIZED ION SOURCES FOR HIGH ENERGY ACCELERATORS AND COLLIDERS

    SciTech Connect

    ZELENSKI,A.N.

    2000-10-16

    The recent progress in polarized ion source development is reviewed. In dc operation a 1.0 mA polarized H{sup -} ion current is now available from the Optically-Pumped Polarized Ion Source (OPPIS). In pulsed operation a 10 mA polarized H{sup -} ion current was demonstrated at the TRIUMF pulsed OPPIS test bench and a 3.5 mA peak current was obtained from an Atomic Beam Source (ABS) at the INR Moscow test bench. The possibilities for future improvements with both techniques are discussed. A new OPPIS for RHIC spin physics is described. The OPPIS reliably delivered polarized beam for the polarized run at RHIC. The results obtained with a new pulsed ABS injector for the IUCF Cooler Ring are also discussed.

  18. Berkeley Accelerator Space Effects (BASE) Light Ion FacilityUpgrade

    SciTech Connect

    Johnson, Michael B.; McMahan, Margaret A.; Gimpel, Thomas L.; Tiffany, William S.

    2006-07-07

    The BASE Light Ion Facility upgrades have been completed. All proton beams are now delivered to Cave 4A. New control software, a larger diameter beam window, and improved quality assurance measures have been added.

  19. Source and Acceleration of Energetic He(+) Ions at the Earth's Bow Shock

    NASA Astrophysics Data System (ADS)

    Wang, Kemei

    1998-12-01

    This thesis have presented the first detailed study of the sources and the acceleration of energetic He+ ions in front of the Earth's bow shock, using data from AMPTE/IRM and AMPTE/CCE. the bow shock was an almost perfect perpendicular shock, we compared the results of a simulation to the observed event. The model provides a good quantitative description of the phase space distribution of the gyrating ions. A large portion (approximately 63%) of the incident pickup ions are reflected and gain energy in the interaction. It is also consistent with their spatial distribution in front of the shock. It is shown that a significant fraction of the upstream ions undergo more than one reflection at the bow shock, and gain substantial energy in this interaction. distributions of H+,/ He2+,/ He+ and O+ ions upstream of the shock, as well as a comparison of the observed spectra upstream of the shock and m the magnetosphere with results from the calculations, we concluded that He+ is locally accelerated. The subsequent modeling of the injection and diffusive acceleration at the shock presented evidence that pickup ions can be injected and accelerated more efficiently than solar wind plasma. pickup ions and anomalous cosmic rays.

  20. Review of MEVVA ion source performance for accelerator injection

    SciTech Connect

    Brown, I.G.; Godechot, X. ); Spaedtke, P.; Emig, H.; Rueck, D.M.; Wolf, B.H. )

    1991-05-01

    The Mevva (metal vapor vacuum arc) ion source provides high current beams of multiply-charged metal ions suitable for use in heavy ion synchrotrons as well as for metallurgical ion implantation. Pulsed beam currents of up to several amperes can be produced at ion energies of up to several hundred keV. Operation has been demonstrate for 48 metallic ion species: Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th and U. When the source is operated optimally the rms fractional beam noise can be as low as 7% of the mean beam current; and when properly triggered the source operates reliably and reproducibly for many tens of thousands of pulses without failure. In this paper we review the source performance referred specifically to its use for synchrotron injection. 15 refs., 3 figs.

  1. Ion Acceleration at the Quasi-parallel Bow Shock: Decoding the Signature of Injection

    NASA Astrophysics Data System (ADS)

    Sundberg, Torbjörn; Haynes, Christopher T.; Burgess, D.; Mazelle, Christian X.

    2016-03-01

    Collisionless shocks are efficient particle accelerators. At Earth, ions with energies exceeding 100 keV are seen upstream of the bow shock when the magnetic geometry is quasi-parallel, and large-scale supernova remnant shocks can accelerate ions into cosmic-ray energies. This energization is attributed to diffusive shock acceleration however, for this process to become active, the ions must first be sufficiently energized. How and where this initial acceleration takes place has been one of the key unresolved issues in shock acceleration theory. Using Cluster spacecraft observations, we study the signatures of ion reflection events in the turbulent transition layer upstream of the terrestrial bow shock, and with the support of a hybrid simulation of the shock, we show that these reflection signatures are characteristic of the first step in the ion injection process. These reflection events develop in particular in the region where the trailing edge of large-amplitude upstream waves intercept the local shock ramp and the upstream magnetic field changes from quasi-perpendicular to quasi-parallel. The dispersed ion velocity signature observed can be attributed to a rapid succession of ion reflections at this wave boundary. After the ions’ initial interaction with the shock, they flow upstream along the quasi-parallel magnetic field. Each subsequent wavefront in the upstream region will sweep the ions back toward the shock, where they gain energy with each transition between the upstream and the shock wave frames. Within three to five gyroperiods, some ions have gained enough parallel velocity to escape upstream, thus completing the injection process.

  2. Properties of acceleration sites in active regions as derived from heavy ion charge states

    NASA Astrophysics Data System (ADS)

    Kartavykh, Y.; Dröge, W.; Klecker, B.; Möbius, E.; Popecki, M.; Mason, G.; Krucker, S.

    Charge states of heavy ions in solar energetic particle SEP events are determined by both the plasma conditions in the acceleration region and propagation effects The steep increase of the ionic charge of heavy ions as observed in all 3He- and Fe-rich SEP events suggests that stripping in a dense environment in the low corona is important in all these events The observed charge states and energy spectra of iron ions are used to infer the plasma conditions in the acceleration region by modelling the observations with a combined acceleration and propagation model that includes charge stripping acceleration coulomb losses and recombination in the corona and interplanetary propagation The interplanetary propagation includes anisotropic pitch-angle scattering on magnetic irregularities as well as magnetic focusing convection and adiabatic deceleration in the expanding solar wind To accurately derive the value of the scattering mean free path of particles the intensity profiles and anisotropy data from ACE and Wind spacecraft were used The comparison of the deduced parameters of the acceleration region with coronal density profiles shows that the acceleration of these ions takes place in closed magnetic structures in the low corona

  3. Guided post-acceleration of laser-driven ions by a miniature modular structure

    PubMed Central

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  4. Guided post-acceleration of laser-driven ions by a miniature modular structure.

    PubMed

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L S; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P L; Schroer, Anna M; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m(-1), already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  5. New methods for high current fast ion beam production by laser-driven acceleration

    SciTech Connect

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Laska, L.; Jungwirth, K.; Mocek, T.; Korn, G.; Rus, B.; Torrisi, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Picciotto, A.; Serra, E.; Giuffrida, L.; Mangione, A.; Rosinski, M.; Parys, P.; and others

    2012-02-15

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10{sup 16}-10{sup 19} W/cm{sup 2}. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  6. On carbon nitride synthesis at high-dose ion implantation

    NASA Astrophysics Data System (ADS)

    Romanovsky, E. A.; Bespalova, O. V.; Borisov, A. M.; Goryaga, N. G.; Kulikauskas, V. S.; Sukharev, V. G.; Zatekin, V. V.

    1998-04-01

    Rutherford backscattering spectrometry was used for the study of high dose 35 keV nitrogen ions implantation into graphites and glassy carbon. Quantitative data on depth profiles and its dependencies on irradiation fluence and ion beam density were obtained. The stationary dome-shaped depth profile with maximum nitrogen concentration 22-27 at.% and half-width more than twice exceeding projected range of ions is reached at fluence Φ ˜10 18 cm -2. The dependence of the maximum concentration in the profile on ion current density was studied. The largest concentration was obtained at reduced ion current density.

  7. A compact ion source and accelerator based on a piezoelectric driver

    SciTech Connect

    Norgard, P.; Kovaleski, S. D.; VanGordon, J. A.; Baxter, E. A.; Gall, B. B.; Kwon, Jae Wan; Kim, Baek Hyun; Dale, G. E.

    2013-04-19

    Compact ion sources and accelerators using piezoelectric devices for the production of energetic ion beams are being evaluated. A coupled source-accelerator is being tested as a neutron source to be incorporated into oil-well logging diagnostics. Two different ion sources are being investigated, including a piezoelectric transformer-based plasma source and a silicon-based field ion source. The piezoelectric transformer plasma ion source uses a cylindrical, resonantly driven piezoelectric crystal to produce high voltage inside a confined volume filled with low pressure deuterium gas. The plasma generated in the confined chamber is ejected through a small aperture into an evacuated drift region. The silicon field ion source uses localized electric field enhancement produced by an array of sharp emitters etched into a silicon blank to produce ions through field desorption ionization. A second piezoelectric device of a different design is used to generate an accelerating potential on the order of 130 kV; this potential is applied to a deuterated target plate positioned perpendicular to the ion stream produced by either plasma source. This paper discusses the results obtained by the individual components as they relate to the final neutron source.

  8. On the acceleration of thermal coronal ions by flare induced shock waves

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Pesses, M. E.; Armstrong, T. P.

    1981-01-01

    The energy spectra of solar flare ions are calculated by assuming that the process which accelerates solar wind ions to MeV/ nucleon energies in the interplanetary corotating interaction region (CIR) also occurs in flare induced magnetosonic fast-mode (MFM) shocks in the corona. Solar wind ions are considered to be accelerated to MeV/nucleon energies by wave-particle interactions in the shock front and the downstream flow, being compressed between upstream and downstream magnetic field irregularities, and then accelerated by the shock drift acceleration mechanism. The energy spectra of the accelerated ions is calculated from the number of shock encounters as a function of the post- and preacceleration energies. A best fit by an exponential in momentum is determined for ions in the 50 MeV to a few GeV range, and from 20-80 MeV by a suitable power law in kinetic energy with a mean spectral index. Comparisons with observed solar protons show good agreement.

  9. Heavy ion acceleration driven by the Interaction between ultraintense Laser pulse and sub-micron foils

    NASA Astrophysics Data System (ADS)

    Yu, Jinqing; McGuffey, C.; Beg, F. N.; High Energy Density Group Team

    2015-11-01

    For ion acceleration at the intensity exceeding 1021W/cm2, Radiation Pressure Acceleration (RPA) could offer advantages over Target Normal Sheath Acceleration (TNSA) and Break-Out Afterburner (BOA). In this ultra-relativistic regime, target electrons become highly relativistic and the results are sensitive to many parameters. Especially for heavy ions acceleration, the understanding of the most important parameter effects is limited due to the lack of experiments and modeling. To further understand the key parameters and determine the most suitable regimes for efficient acceleration of heavy ions, we have carried out two-dimensional Particle-in-Cell simulations with the epoch code. In the simulations, effects of preplasma and optimal targets thicknesses for different laser pulse have been studied in detail. Based on the understanding of ion RPA, we propose some new target parameters to achieve higher ion energy. This work was performed with the support of the Air Force Office of Scientific Research under grant FA9550-14-1-0282.

  10. Key conditions for stable ion radiation pressure acceleration by circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Qiao, B.; Zepf, M.; Gibbon, P.; Borghesi, M.; Schreiber, J.; Geissler, M.

    2011-05-01

    Radiation pressure acceleration (RPA) theoretically may have great potential to revolutionize the study of laserdriven ion accelerators due to its high conversion efficiency and ability to produce high-quality monoenergetic ion beams. However, the instability issue of ion acceleration has been appeared to be a fundamental limitation of the RPA scheme. To solve this issue is very important to the experimental realization and exploitation of this new scheme. In our recent work, we have identified the key condition for efficient and stable ion RPA from thin foils by CP laser pulses, in particular, at currently available moderate laser intensities. That is, the ion beam should remain accompanied with enough co-moving electrons to preserve a local "bunching" electrostatic field during the acceleration. In the realistic LS RPA, the decompression of the co-moving electron layer leads to a change of local electrostatic field from a "bunching" to a "debunching" profile, resulting in premature termination of acceleration. One possible scheme to achieve stable RPA is using a multi-species foil. Two-dimensional PIC simulations show that 100 MeV/u monoenergetic C6+ and/or proton beams are produced by irradiation of a contaminated copper foil with CP lasers at intensities 5 × 1020W/cm2, achievable by current day lasers.

  11. Trends and applications for MeV electrostatic ion beam accelerators

    NASA Astrophysics Data System (ADS)

    Norton, G. A.; Stodola, S. E.

    2014-08-01

    The 1970s into the 1980s saw a major broadening of applications for electrostatic accelerators. Prior to this time, all accelerators were used primarily for nuclear structure research. In the 70s there was a significant move into production ion implantation with the necessary MeV ion beam analysis techniques such as RBS and ERD. Accelerators are still being built for these materials analysis techniques today. However, there is still a great ongoing expansion of applications for these machines. At the present time, the demand for electrostatic accelerators is near an all time high. The number of applications continues to grow. This paper will touch on some of the current applications which are as diverse as nuclear fission reactor developments and pharmacokinetics. In the field of nuclear engineering, MeV ion beams from electrostatic accelerators are being used in material damage studies and for iodine and actinide accelerator mass spectrometry (AMS). In the field of pharmacokinetics, electrostatic MeV accelerators are being used to detect extremely small amounts of above background 14C. This has significantly reduced the time required to reach first in human studies. These and other applications will be discussed.

  12. Ion Acceleration by Beating Electrostatic Waves: Theory, Experiments and Relevance to Spacecraft Propulsion

    NASA Astrophysics Data System (ADS)

    Choueiri, Edgar

    2007-10-01

    After a brief overview of electrodeless plasma propulsion concepts, we will focus on a recently discovered ion acceleration mechanism, which appears to occur naturally in Earth's ionosphere, holds promise as an effective means to energize ions for applications in thermonuclear fusion and electrodeless space plasma propulsion. Unlike previously known mechanisms for energizing plasmas with electrostatic (ES) waves, and which accelerate only ions whose initial velocities are above a certain threshold (close to the wave's phase velocity), the new acceleration mechanism, involving pairs of beating ES waves, is non-resonant and can accelerate ions with arbitrarily small initial velocities, thus offering a more effective way to couple energy to plasmas. We will discuss the fundamentals of the nonlinear dynamics of a single magnetized ion interacting with a pair of beating ES waves and show that there exist necessary and sufficient conditions for the phenomenon to occur. We will see how these fundamental conditions are derived by analyzing the motion's Hamiltonian using a second-order perturbation technique in conjunction with Lie transformations. The analysis shows that when the Hamiltonian lies outside the energy barrier defined by the location of the elliptic and hyperbolic critical points of the motion, the electric field of the beating waves can accelerate ions regularly from low initial velocities, then stochastically, to high energies. We will then illustrate real plasma effects using Monte Carlo numerical simulation and discuss the recent results from a dedicated experiment in my lab in which laser-induced fluorescence (LIF) measurements of ion energies have provided the first laboratory observation of this acceleration mechanism. The talk will conclude with a few ideas on how the fundamental insight can be applied to develop novel plasma propulsion concepts.

  13. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation

    NASA Astrophysics Data System (ADS)

    Hirata, Eri; Miyako, Eijiro; Hanagata, Nobutaka; Ushijima, Natsumi; Sakaguchi, Norihito; Russier, Julie; Yudasaka, Masako; Iijima, Sumio; Bianco, Alberto; Yokoyama, Atsuro

    2016-07-01

    Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration.Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the

  14. Stochastic acceleration of cometary pickup ions - The classic leaky box model

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1989-01-01

    The acceleration of cometary pickup ions by magnetohydrodynamic waves at P/Giacobini-Zinner is examined in a model where acceleration predominantly occurs downstream of the bow shock throughout the cometosheath where intense magnetic turbulence exists. The mean free path for scattering by the magnetic fluctuations in this region is less than the characteristic dimension of the cometosheath so that pickup ions are rendered isotropic and energized by a modest amount in the process. This principal loss mechanism for the ions is spatial diffusion out of the acceleration region moderated by the self-same accelerating waves. This particular feature constrains the model in a way that the predicted ion spectrum is uniquely determined by the power spectrum of the magnetic turbulence. At both P/Giacobini-Zinner and P/Halley, the turbulence is non-Kolmogoroff with a spectral index of 2 resulting in an ion spectral behavior that is approximately an exponential in ion speed, consistent with a recent analysis of the Giacobini-Zinner data (see Richardson et al.).

  15. Ion adsorption mechanism of bundled single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Tsutsui, M.; Al-zubaidi, A.; Ishii, Y.; Kawasaki, S.

    2016-07-01

    In order to elucidate ion adsorption mechanism of bundled single-walled carbon nanotubes (SWCNTs), in situ synchrotron XRD measurements of SWCNT electrode in alkali halide aqueous electrolyte at several applied potentials were performed. It was found that the surface inside SWCNT is the important ion adsorption site.

  16. High temperature annealing studies of strontium ion implanted glassy carbon

    NASA Astrophysics Data System (ADS)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L.; Langa, D. F.; Wendler, E.

    2016-03-01

    Glassy carbon samples were implanted with 200 keV strontium ions to a fluence of 2 × 1016 ions/cm2 at room temperature. Analysis with Raman spectroscopy showed that ion bombardment amorphises the glassy carbon structure. Partial recovery of the glassy carbon structure was achieved after the implanted sample was vacuum annealed at 900 °C for 1 h. Annealing the strontium ion bombarded sample at 2000 °C for 5 h resulted in recovery of the glassy carbon substrate with the intensity of the D peak becoming lower than that of the pristine glassy carbon. Rutherford backscattering spectroscopy (RBS) showed that the implanted strontium diffused towards the surface of the glassy carbon after annealing the sample at 900 °C. This diffusion was also accompanied by loss of the implanted strontium. Comparison between the as-implanted and 900 °C depth profiles showed that less than 30% of the strontium was retained in the glassy carbon after heat treatment at 900 °C. The RBS profile after annealing at 2000 °C indicated that no strontium ions were retained after heat treatment at this temperature.

  17. Acceleration of barium ions near 8000 km above an aurora

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Wescott, E. M.; Foeppl, H.

    1984-01-01

    A barium shaped charge, named Limerick, was released from a rocket launched from Poker Flat Research Range, Alaska, on March 30, 1982, at 1033 UT. The release took place in a small auroral breakup. The jet of ionized barium reached an altitude of 8100 km 14.5 min after release, indicating that there were no parallel electric fields below this altitude. At 8100 km the jet appeared to stop. Analysis shows that the barium at this altitude was effectively removed from the tip. It is concluded that the barium was actually accelerated upward, resulting in a large decrease in the line-of-sight density and hence the optical intensity. The parallel electric potential in the acceleration region must have been greater than 1 kV over an altitude interval of less than 200 km. The acceleration region, although presumably auroral in origin, did not seem to be related to individual auroral structures, but appeared to be a large-scale horizontal structure. The perpendicular electric field below, as deduced from the drift of the barium, was temporally and spatially very uniform and showed no variation related to individual auroral structures passing through.

  18. Dynamics of ponderomotive ion acceleration in a laser-plasma channel

    SciTech Connect

    Kovalev, V. F.; Bychenkov, V. Yu.

    2015-04-15

    Analytical solution to the Cauchy problem for the kinetic equation describing the radial acceleration of ions under the action of the ponderomotive force of a laser beam undergoing guided propagation in transparent plasma is constructed. Spatial and temporal dependences of the ion distribution function and the integral ion characteristics, such as the density, average velocity, and energy spectrum, are obtained for an axisymmetric laser-plasma channel. The formation of a density peak near the channel boundary and the effect of ion flow breaking for a quasi-stationary laser beam are described analytically.

  19. On the analysis of inhomogeneous magnetic field spectrometer for laser-driven ion acceleration

    SciTech Connect

    Jung, D.; Senje, L.; McCormack, O.; Dromey, B.; Zepf, M.; Yin, L.; Albright, B. J.; Letzring, S.; Gautier, D. C.; Fernandez, J. C.; Toncian, T.; Hegelich, B. M.

    2015-03-15

    We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.

  20. Ion dynamics in an E × B Hall plasma accelerator

    SciTech Connect

    Young, Christopher V. Lucca Fabris, Andrea; Cappelli, Mark A.

    2015-01-26

    We show the time evolution of the ion velocity distribution function in a Hall plasma accelerator during a 20 kHz natural, quasi-periodic plasma oscillation. We apply a time-synchronized laser induced fluorescence technique at different locations along the channel midline, obtaining time- and spatially resolved ion velocity measurements. Strong velocity and density fluctuations and multiple ion populations are observed throughout the so-called “breathing mode” ionization instability, opening an experimental window into the detailed ion dynamics and physical processes at the heart of such devices.

  1. Summary I - accelerator ion sources, fundamentals and diagnostics

    SciTech Connect

    Moehs, Douglas P.; /Fermilab

    2006-10-01

    The 11th International Symposium on the Production and Neutralization of Negative Ions and Beams was held in Santa Fe, New Mexico on September 12-15, 2006 and was hosted by Los Alamos National Laboratory. This summary covers the first three oral sessions of the symposium.

  2. Summary II - Fusion Ion sources, Beam Formation, Acceleration and Neutralisation

    SciTech Connect

    Jones, T. T. C.

    2007-08-10

    The 11th International Symposium on the Production and Neutralization of Negative Ions and Beams was held in Santa Fe, New Mexico on 13th - 15th September 2006 and was hosted by Los Alamos National Laboratory. This summary covers the sessions of the Symposium devoted to the topics listed in the title.

  3. Summary I - Accelerator Ion sources, Fundamentals and Diagnostics

    SciTech Connect

    Moehs, Douglas P.

    2007-08-10

    The 11th International Symposium on the Production and Neutralization of Negative Ions and Beams was held in Santa Fe, New Mexico on September 12-15, 2006 and was hosted by Los Alamos National Laboratory. This summary covers the first three oral sessions of the symposium.

  4. Commercial accelerators: Compact superconducting synchrocyclotrons with magnetic field up to 10 T for proton and carbon therapy

    NASA Astrophysics Data System (ADS)

    Papash, A. I.; Karamysheva, G. A.; Onishchenko, L. M.

    2012-11-01

    Based on a brief review of accelerators widely used for proton-ion therapy and for curing patients over the last 20 years, the necessity and feasibility of creating compact superconducting synchrocyclotrons with a magnetic field value up to 10 T are outlined. The main component of modern commercial facilities for proton-ion therapy is an isochronous cyclotron with room-temperature or superconducting coils which accelerates protons to 250 MeV or a synchrophasotron with carbon-ion energy reaching 400 MeV/nucleon. Usually the ions are delivered from the accelerator to the medical-treatment room via transport lines, while irradiation is produced by means of a system that is comprised of pointing magnets, collimators, and energy degraders mounted on a rotating gantry. To greatly reduce the price of the facility (by an order of magnitude) and to facilitate the work of hospital personnel, the isocentric rotation of a compact superconducting synchrocyclotron around the patient is proposed. Estimates of the physical and technical parameters of the facility are given.

  5. The energy transfer in the TEMP-4M pulsed ion beam accelerator

    SciTech Connect

    Isakova, Y. I.; Pushkarev, A. I.; Khaylov, I. P.

    2013-07-15

    The results of a study of the energy transfer in the TEMP-4M pulsed ion beam accelerator are presented. The energy transfer efficiency in the Blumlein and a self-magnetically insulated ion diode was analyzed. Optimization of the design of the accelerator allows for 85% of energy transferred from Blumlein to the diode (including after-pulses), which indicates that the energy loss in Blumlein and spark gaps is insignificant and not exceeds 10%–12%. Most losses occur in the diode. The efficiency of energy supplied to the diode to the energy of accelerated ions is 8%–9% for a planar strip self-magnetic MID, 12%–15% for focusing diode and 20% for a spiral self-magnetic MID.

  6. Modeling the Pulse Line Ion Accelerator (PLIA): an algorithm for quasi-static field solution.

    SciTech Connect

    Friedman, A; Briggs, R J; Grote, D P; Henestroza, E; Waldron, W L

    2007-06-18

    The Pulse-Line Ion Accelerator (PLIA) is a helical distributed transmission line. A rising pulse applied to the upstream end appears as a moving spatial voltage ramp, on which an ion pulse can be accelerated. This is a promising approach to acceleration and longitudinal compression of an ion beam at high line charge density. In most of the studies carried out to date, using both a simple code for longitudinal beam dynamics and the Warp PIC code, a circuit model for the wave behavior was employed; in Warp, the helix I and V are source terms in elliptic equations for E and B. However, it appears possible to obtain improved fidelity using a ''sheath helix'' model in the quasi-static limit. Here we describe an algorithmic approach that may be used to effect such a solution.

  7. Accelerated Carbonate Dissolution as a CO2 Separation and Sequestration Strategy

    SciTech Connect

    Caldeira, K G; Knauss, K G; Rau, G H

    2004-02-18

    We have proposed a technique that could reduce CO{sub 2} emissions from near coastal fossil-fuel power plants using existing power plant cooling water flow rates (Rau and Caldeira, 1999; Caldeira and Rau, 2000). Preliminary cost estimates are as low as $68 per tonne C sequestered, as compared to > $170 per tonne C estimated for other approaches to CO{sub 2} separation with geologic or deep-ocean storage. Engineers at McDermott Technologies, Inc., have independently estimated the cost of our proposed technique, and came to the conclusion that our cost estimates were at the high end of the likely range. Interest has been expressed in pursuing this approach further both in Norway and in Japan. We have proved the viability of our concept using (1) bench-top laboratory experiments (Figures 1 and 2), (2) computer modeling of those experiments, (3) more sophisticated cost estimates, and (4) three-dimensional computer modeling of the consequences to global ocean chemistry (Figure 3 and 4). The climate and environmental impacts of our current, carbon intensive energy usage demands that effective and practical energy alternatives and CO{sub 2} mitigation strategies be found. As part of this effort, various means of capturing and storing CO{sub 2} generated from fossil-fuel-based energy production are being investigated (e.g. [3,4]). One of the proposed methods involves a geochemistry-based capture and sequestration process [5,6] that hydrates point-source, waste CO{sub 2} with water to produce a carbonic acid solution. This in turn is reacted and neutralized with limestone, thus converting the original CO{sub 2} gas to calcium bicarbonate in solution, the overall reaction being: CO{sub 2(g)} + H{sub 2}O{sub (l)} + CaCO{sub 3(s)} {yields} Ca{sub (aq)}{sup 2+} + 2HCO{sub 3(aq)}{sup -} The dissolved calcium bicarbonate produced is then released and diluted in the ocean where it would add minimally to the large, benign pool of these ions already present in seawater. Such a

  8. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    SciTech Connect

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  9. Heavy ion acceleration by cascading Alfvén waves in impulsive solar flares

    NASA Astrophysics Data System (ADS)

    Miller, James A.; Reames, Donald V.

    1996-06-01

    We propose that the heavy ion abundance enhancements that are observed for impulsive solar flares result from stochastic acceleration by cascading Alfvén wave turbulence. In our model, Alfvén waves are generated at some large scale and nonlinearly cascade to higher wavenumbers and frequencies. As the waves increase in frequency, they will be able to cyclotron resonate with ions of progressively lower energy. For a thermal plasma there will be no damping at low wavenumbers and the waves will freely cascade. However, when the wave frequency becomes close to an ion cyclotron frequency, thermal ions will be accelerated out of the background and to relativistic energies. The first ion species encountered by the waves will be the one with the lowest cyclotron frequency, namely Fe. Due to the low Fe abundance, the waves will not be completely damped and will continue to cascade up to the group of ions with the next higher cyclotron frequency, namely Ne, Mg, and Si. Again, these ions will be accelerated but the waves will not be totally damped. After Ne, Mg, and Si the waves encounter 4He, C, N, and O, which do completely dissipate the waves and halt the cascade. We show that abundance ratios similar to those observed can result from this process.

  10. Magnetosheath filamentary structures formed by ion acceleration at the quasi-parallel bow shock

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-04-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  11. Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.

    2014-01-01

    Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.

  12. Accelerating Gas Adsorption on 3D Percolating Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wen, Chenyu; Zhang, Youwei; Wu, Dongping; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-02-01

    In the field of electronic gas sensing, low-dimensional semiconductors such as single-walled carbon nanotubes (SWCNTs) can offer high detection sensitivity owing to their unprecedentedly large surface-to-volume ratio. The sensitivity and responsivity can further improve by increasing their areal density. Here, an accelerated gas adsorption is demonstrated by exploiting volumetric effects via dispersion of SWCNTs into a percolating three-dimensional (3D) network in a semiconducting polymer. The resultant semiconducting composite film is evaluated as a sensing membrane in field effect transistor (FET) sensors. In order to attain reproducible characteristics of the FET sensors, a pulsed-gate-bias measurement technique is adopted to eliminate current hysteresis and drift of sensing baseline. The rate of gas adsorption follows the Langmuir-type isotherm as a function of gas concentration and scales with film thickness. This rate is up to 5 times higher in the composite than only with an SWCNT network in the transistor channel, which in turn results in a 7-fold shorter time constant of adsorption with the composite. The description of gas adsorption developed in the present work is generic for all semiconductors and the demonstrated composite with 3D percolating SWCNTs dispersed in functional polymer represents a promising new type of material for advanced gas sensors.

  13. Accelerating Gas Adsorption on 3D Percolating Carbon Nanotubes.

    PubMed

    Li, Hui; Wen, Chenyu; Zhang, Youwei; Wu, Dongping; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    In the field of electronic gas sensing, low-dimensional semiconductors such as single-walled carbon nanotubes (SWCNTs) can offer high detection sensitivity owing to their unprecedentedly large surface-to-volume ratio. The sensitivity and responsivity can further improve by increasing their areal density. Here, an accelerated gas adsorption is demonstrated by exploiting volumetric effects via dispersion of SWCNTs into a percolating three-dimensional (3D) network in a semiconducting polymer. The resultant semiconducting composite film is evaluated as a sensing membrane in field effect transistor (FET) sensors. In order to attain reproducible characteristics of the FET sensors, a pulsed-gate-bias measurement technique is adopted to eliminate current hysteresis and drift of sensing baseline. The rate of gas adsorption follows the Langmuir-type isotherm as a function of gas concentration and scales with film thickness. This rate is up to 5 times higher in the composite than only with an SWCNT network in the transistor channel, which in turn results in a 7-fold shorter time constant of adsorption with the composite. The description of gas adsorption developed in the present work is generic for all semiconductors and the demonstrated composite with 3D percolating SWCNTs dispersed in functional polymer represents a promising new type of material for advanced gas sensors. PMID:26888337

  14. Accelerating Gas Adsorption on 3D Percolating Carbon Nanotubes

    PubMed Central

    Li, Hui; Wen, Chenyu; Zhang, Youwei; Wu, Dongping; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-01-01

    In the field of electronic gas sensing, low-dimensional semiconductors such as single-walled carbon nanotubes (SWCNTs) can offer high detection sensitivity owing to their unprecedentedly large surface-to-volume ratio. The sensitivity and responsivity can further improve by increasing their areal density. Here, an accelerated gas adsorption is demonstrated by exploiting volumetric effects via dispersion of SWCNTs into a percolating three-dimensional (3D) network in a semiconducting polymer. The resultant semiconducting composite film is evaluated as a sensing membrane in field effect transistor (FET) sensors. In order to attain reproducible characteristics of the FET sensors, a pulsed-gate-bias measurement technique is adopted to eliminate current hysteresis and drift of sensing baseline. The rate of gas adsorption follows the Langmuir-type isotherm as a function of gas concentration and scales with film thickness. This rate is up to 5 times higher in the composite than only with an SWCNT network in the transistor channel, which in turn results in a 7-fold shorter time constant of adsorption with the composite. The description of gas adsorption developed in the present work is generic for all semiconductors and the demonstrated composite with 3D percolating SWCNTs dispersed in functional polymer represents a promising new type of material for advanced gas sensors. PMID:26888337

  15. Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-10-10

    We use large hybrid simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient, we find that the upstream magnetic field is significantly amplified. The total amplification factor is larger than 10 for shocks with Alfvénic Mach number M = 100, and scales with the square root of M. The spectral energy density of excited magnetic turbulence is determined by the energy distribution of accelerated particles, and for moderately strong shocks (M ≲ 30) agrees well with the prediction of resonant streaming instability, in the framework of quasilinear theory of diffusive shock acceleration. For M ≳ 30, instead, Bell's non-resonant hybrid (NRH) instability is predicted and found to grow faster than resonant instability. NRH modes are excited far upstream by escaping particles, and initially grow without disrupting the current, their typical wavelengths being much shorter than the current ions' gyroradii. Then, in the nonlinear stage, most unstable modes migrate to larger and larger wavelengths, eventually becoming resonant in wavelength with the driving ions, which start diffuse. Ahead of strong shocks we distinguish two regions, separated by the free-escape boundary: the far upstream, where field amplification is provided by the current of escaping ions via NRH instability, and the shock precursor, where energetic particles are effectively magnetized, and field amplification is provided by the current in diffusing ions. The presented scalings of magnetic field amplification enable the inclusion of self-consistent microphysics into phenomenological models of ion acceleration at non-relativistic shocks.

  16. Heavy ion fusion accelerator research in the US

    SciTech Connect

    Bangerter, R.O.; Godlove, T.F.; Herrmannsfeldt, W.B.; Keefe, D.

    1984-09-01

    Three new development have taken place in the HIFAR program. First, a decision has been made to concentrate the experimental program on the development of multiple-beam induction linacs. Second, new beam transport experiments over a large number of quadrupole elements show that stable beam propagation occurs for significantly higher beam currents than had been believed possible a few years ago. Third, design calculations now show that a test accelerator of modest size and cost can come within a factor of three of testing almost all of the physics and technical issues appropriate to a power-plant driver.

  17. Investigation of laser ion acceleration inside irradiated solid targets by neutron spectroscopy

    SciTech Connect

    Youssef, A.; Kodama, R.; Tampo, M.

    2006-03-15

    Origins and acceleration directions of accelerated ions inside solid LiF, CH-LiF, and LiF-CH targets irradiated by a 450 fs, 20 J, 1053 nm laser at an intensity of 3x10{sup 18} W/cm{sup 2} have been investigated by neutron spectroscopy. The irradiated targets generate neutrons through the reaction {sup 7}Li (p,n){sup 7}Be between accelerated protons and background {sup 7}Li ions inside the target. The produced neutron spectra observed from two different observation angles 20 deg. and 120 deg. to the target rear-side normal. From the measured and calculated spectra, by three-dimensional Monte Carlo code, the maximum energy, the total number, and the slope temperature of the accelerated ions are investigated. The results indicate that ions are not only accelerated from the front surface toward the rear surface, but also from the rear surface toward the front surface with comparable maximum energy and higher number.

  18. Controlled Ion Acceleration in Two Crossed Laser Beams Propagating in Plasmas

    NASA Astrophysics Data System (ADS)

    Tataronis, J. A.; Petržílka, V.; Krlín, L.

    2003-10-01

    Electron acceleration occurs in a single plane laser beam that is in the presence of a secondary perpendicularly propagating plane laser beam with a randomized phase. As the accelerated electrons are pushed away, they leave the heavier ions behind, producing thereby a charge separation electrostatic field and consequent ion flows. The power flux carried by the accelerated ions can be controlled by varying the intensity of the secondary beam. Results of a numerical study of this control process are presented here. The laser beam parameters chosen for the computations of the primary electron acceleration match the parameters available at the Prague Asterix Laser System (PALS)^1. For the modeling, we use an advanced version of our 3-d two-fluid numerical code^2, originally developed for the analysis of fast electron generation and subsequent ion acceleration in front of lower hybrid wave launchers in large tokamaks. [2pt] ^1K. Jungwirth et al., Phys. Plasmas 8, 2495 (2001). [2pt] ^2V. Petržílka et al., Proc. 29th EPS Conference, Montreux, June 2002, paper 2.105.

  19. Investigation of accelerated neutral atom beams created from gas cluster ion beams

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, A.; Kirkpatrick, S.; Walsh, M.; Chau, S.; Mack, M.; Harrison, S.; Svrluga, R.; Khoury, J.

    2013-07-01

    A new concept for ultra-shallow processing of surfaces known as accelerated neutral atom beam (ANAB) technique employs conversion of energetic gas cluster ions produced by the gas cluster ion beam (GCIB) method into intense collimated beams of coincident neutral gas atoms having controllable average energies from less than 10 eV per atom to beyond 100 eV per atom. A beam of accelerated gas cluster ions is first produced as is usual in GCIB, but conditions within the source ionizer and extraction regions are adjusted such that immediately after ionization and acceleration the clusters undergo collisions with non-ionized gas atoms. Energy transfer during these collisions causes the energetic cluster ions to release many of their constituent atoms. An electrostatic deflector is then used to eliminate charged species, leaving the released neutral atoms to still travel collectively at the same velocities they had as bonded components of their parent clusters. Upon target impact, the accelerated neutral atom beams produce effects similar to those normally associated with GCIB, but to shallower depths, with less surface damage and with superior subsurface interfaces. The paper discusses generation and characterization of the accelerated neutral atom beams, describes interactions of the beams with target surfaces, and presents examples of ongoing work on applications for biomedical devices.

  20. Investigation of ion acceleration mechanism through laser-matter interaction in femtosecond domain

    NASA Astrophysics Data System (ADS)

    Altana, C.; Muoio, A.; Lanzalone, G.; Tudisco, S.; Brandi, F.; Cirrone, G. A. P.; Cristoforetti, G.; Fazzi, A.; Ferrara, P.; Fulgentini, L.; Giove, D.; Koester, P.; Labate, L.; Mascali, D.; Palla, D.; Schillaci, F.; Gizzi, L. A.

    2016-09-01

    An experimental campaign aiming to investigate the ion acceleration mechanisms through laser-matter interaction in the femtosecond domain has been carried out at the ILIL facility at a laser intensity of up to 2×1019 W/cm2. A Thomson Parabola Spectrometer was used to identify different ion species and measure the energy spectra and the corresponding temperature parameters. We discuss the dependence of the protons spectra upon the structural characteristics of the targets (thickness and atomic mass) and the role of surface versus target bulk during acceleration process.

  1. Collective acceleration of electrons and ions in a high current relativistic electron beam. Final report

    SciTech Connect

    Nation, J.A.

    1996-12-31

    The original purpose of this research was an investigation into the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three main objectives namely, the development of a suitable ion injector, the growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components parts into a suitable proof of principle demonstration of the wave accelerator. This work focusses on the first two of these objectives.

  2. About 3He Ions Predominant Acceleration During the January 20, 2005 Solar Flare

    NASA Astrophysics Data System (ADS)

    Troitskaya, E. V.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.

    We have studied some properties of the powerful solar flare of January 20, 2005 by methods of nuclear lines analysis. The results of temporal profiles investigation in corresponding to neutron capture energy bands allow the supposition about predominant acceleration of 3He ions in the corona, their subsequent propagation to the low chromosphere and the photosphere where the area of 2.223 MeV γ-line effective productions is located. The characteristics of accelerated 3He ions propagation processes and the basic explanation of observable properties of this solar flare due to the variations of 3He content are discussed in the presented article.

  3. SETUP AND PERFORMANCE OF THE RHIC INJECTOR ACCELERATORS FOR THE 2007 RUN WITH GOLD IONS

    SciTech Connect

    GARDNER,C.; AHRENS, L.; ALESSI, J.; BENJAMIN, J.; BLASKIEWICZ, M.; ET AL.

    2007-06-25

    Gold ions for the 2007 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators is reviewed with a focus on improvements in the quality of beam delivered to RHIC. In particular, more uniform stripping foils between Booster and AGS7 and a new bunch merging scheme in AGS have provided beam bunches with reduced longitudinal emittance for RHIC.

  4. Induction-accelerator heavy-ion fusion: Status and beam physics issues

    SciTech Connect

    Friedman, A.

    1996-01-26

    Inertial confinement fusion driven by beams of heavy ions is an attractive route to controlled fusion. In the U.S., induction accelerators are being developed as {open_quotes}drivers{close_quotes} for this process. This paper is divided into two main sections. In the first section, the concept of induction-accelerator driven heavy-ion fusion is briefly reviewed, and the U.S. program of experiments and theoretical investigations is described. In the second, a {open_quotes}taxonomy{close_quotes} of space-charge-dominated beam physics issues is presented, accompanied by a brief discussion of each area.

  5. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1988--March 31, 1989

    SciTech Connect

    Not Available

    1989-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; and final bunching, transport, and accurate focusing on a small target.

  6. A singly charged ion source for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  7. Laser-driven ion acceleration with hollow laser beams

    SciTech Connect

    Brabetz, C. Kester, O.; Busold, S.; Bagnoud, V.; Cowan, T.; Deppert, O.; Jahn, D.; Roth, M.; Schumacher, D.

    2015-01-15

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10{sup 18} W cm{sup −2} to 10{sup 20} W cm{sup −2}. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

  8. Modification to the accelerator of the NBI-1B ion source for improving the injection efficiency

    NASA Astrophysics Data System (ADS)

    Kim, T. S.; Jeong, S. H.; Chang, D. H.; In, S. R.; Park, M.; Jung, B. K.; Lee, K. W.; Wang, S. J.; Bae, Y. S.; Park, H. T.; Kim, J. S.; Cho, W.; Choi, D. J.

    2016-02-01

    Minimizing power loss of a neutral beam imposes modification of the accelerator of the ion source for further improvement of the beam optics. The beam optics can be improved by focusing beamlets. The injection efficiencies by the steering of ion beamlets are investigated numerically to find the optimum modification of the accelerator design of the NBI-1B ion source. The beam power loss was reduced by aperture displacement of three edge beamlets arrays considering power loadings on the beamline components. Successful testing and operation of the ion source at 60 keV/84% of injection efficiency led to the possibility of enhancing the system capability to a 2.4 MW power level at 100 keV/1.9 μP.

  9. Ion-exchange behavior of alkali metals on treated carbons

    SciTech Connect

    Mohiuddin, G.; Hata, W.Y.; Tolan, J.S.

    1983-01-01

    The ion-exchange behavior of trace quantities of the alkali-metal ions sodium and cesium, on activated carbon impregnated with zirconium phosphate (referred to here as ZrP), was studied. Impregnated carbon had twice as much ion-exchange activity as unimpregnated, oxidized carbon, and 10 times as much as commercial activated carbons. The distribution coefficient of sodium increased with increasing pH; the distribution coefficient of cesium decreased with increasing pH. Sodium and cesium were separated with an electrolytic solution of 0.1 M HCl. Preliminary studies indicated that 0.2 M potassium and cesium can also be separated. Distribution coefficients of the supported ZrP were determined by the elution technique and agreed within 20% of the values for pure ZrP calculated from the literature.

  10. Two-stage acceleration of interstellar ions driven by high-energy lepton plasma flows

    NASA Astrophysics Data System (ADS)

    Cui, YunQian; Sheng, ZhengMing; Lu, QuanMing; Li, YuTong; Zhang, Jie

    2015-10-01

    We present the particle-in-cell (PIC) simulation results of the interaction of a high-energy lepton plasma flow with background electron-proton plasma and focus on the acceleration processes of the protons. It is found that the acceleration follows a two-stage process. In the first stage, protons are significantly accelerated transversely (perpendicular to the lepton flow) by the turbulent magnetic field "islands" generated via the strong Weibel-type instabilities. The accelerated protons shows a perfect inverse-power energy spectrum. As the interaction continues, a shockwave structure forms and the protons in front of the shockwave are reflected at twice of the shock speed, resulting in a quasi-monoenergetic peak located near 200 MeV under the simulation parameters. The presented scenario of ion acceleration may be relevant to cosmic-ray generation in some astrophysical environments.

  11. H-mode accelerating structures with PMQ focusing for low-beta ion beams

    SciTech Connect

    Kurennoy, Sergey S; O' Hara, James F; Olivas, Eric R; Rybarcyk, Lawrence J

    2010-01-01

    We are developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. Such IH-PMQ accelerating structures following a short RFQ can be used in the front end of ion linacs or in stand-alone applications, e.g. a compact deuteron-beam accelerator up to the energy of several MeV. Results of combined 3-D modeling for a full IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis - are presented. The accelerating field profile in the tank is tuned to provide the best beam propagation using coupled iterations of electromagnetic and beam-dynamics modeling. A cold model of the IH-PMQ tank is being manufactured.

  12. Carbon, nitrogen, and oxygen ion implantation of stainless steel

    SciTech Connect

    Rej, D.J.; Gavrilov, N.V.; Emlin, D.

    1995-12-31

    Ion implantation experiments of C, N, and O into stainless steel have been performed, with beam-line and plasma source ion implantation methods. Acceleration voltages were varied between 27 and 50 kV, with pulsed ion current densities between 1 and 10 mA/cm{sup 2}. Implanted doses ranged from 0.5 to 3 {times} 10{sup 18}cm{sup -2}, while workpiece temperatures were maintained between 25 and 800 C. Implant concentration profiles, microstructure, and surface mechanical properties of the implanted materials are reported.

  13. Energetic-ion acceleration and transport in the upstream region of Jupiter: Voyager 1 and 2

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Zwickl, R. D.; Carbary, J. F.; Krimigis, S. M.; Lepping, R. P.

    1982-01-01

    Long-lived upstream energetic ion events at Jupiter appear to be very similar in nearly all respects to upstream ion events at Earth. A notable difference between the two planetary systems is the enhanced heavy ion compositional signature reported for the Jovian events. This compositional feature has suggested that ions escaping from the Jovian magnetosphere play an important role in forming upstream ion populations at Jupiter. In contrast, models of energetic upstream ions at Earth emphasize in situ acceleration of reflected solar wind ions within the upstream region itself. Using Voyager 1 and 2 energetic ( approximately 30 keV) ion measurements near the magnetopause, in the magnetosheath, and immediately upstream of the bow shock, the compositional patterns are examined together with typical energy spectra in each of these regions. A model involving upstream Fermi acceleration early in events and emphasizing energetic particle escape in the prenoon part of the Jovian magnetosphere late in events is presented to explain many of the features in the upstream region of Jupiter.

  14. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments

    PubMed Central

    Armbruster, Ute; Carrillo, L. Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A.; Kramer, David M.; Jonikas, Martin C.

    2014-01-01

    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K+ efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3’s activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. PMID:25451040

  15. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments.

    PubMed

    Armbruster, Ute; Carrillo, L Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A; Kramer, David M; Jonikas, Martin C

    2014-11-13

    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K(+) efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3's activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light.

  16. Ion Emission Characteristics of a Forward Laser Accelerated Plasma Thruster

    SciTech Connect

    Oyaizu, Keishi; Izumi, Masaya; Horisawa, Hideyuki; Kimura, Itsuro

    2005-04-27

    A fundamental study of a forward laser accelerated plasma thruster was conducted. In order to evaluate thrust performances of the thruster, a time-of-flight measurement was conducted for an Al-foil target irradiated with an Nd:YAG laser of 1J/pulse with pulse-width of 10nsec. From the measurement, the average plasma speed was about 53 km/sec. Time-gated imaging of the plasma with an ICCD camera was also conducted. From the observation, rapid plasmas were observed on both sides of the target. Each image from the ICCD camera was processed by an image processing software into an emission intensity distribution of the plasma at every 10nsec. Axial velocity of the plasma was estimated from the temporal evolution of the plasma edge. The average and maximum plasma expansion velocities in a forward direction were estimated about 40 km/s and 160 km/sec, respectively.

  17. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments.

    PubMed

    Armbruster, Ute; Carrillo, L Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A; Kramer, David M; Jonikas, Martin C

    2014-01-01

    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K(+) efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3's activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. PMID:25451040

  18. Collisionless shock formation and the prompt acceleration of solar flare ions

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Goodrich, C. C.; Vlahos, L.

    1988-01-01

    The formation mechanisms of collisionless shocks in solar flare plasmas are investigated. The priamry flare energy release is assumed to arise in the coronal portion of a flare loop as many small regions or 'hot spots' where the plasma beta locally exceeds unity. One dimensional hybrid numerical simulations show that the expansion of these 'hot spots' in a direction either perpendicular or oblique to the ambient magnetic field gives rise to collisionless shocks in a few Omega(i), where Omega(i) is the local ion cyclotron frequency. For solar parameters, this is less than 1 second. The local shocks are then subsequently able to accelerate particles to 10 MeV in less than 1 second by a combined drift-diffusive process. The formation mechanism may also give rise to energetic ions of 100 keV in the shock vicinity. The presence of these energetic ions is due either to ion heating or ion beam instabilities and they may act as a seed population for further acceleration. The prompt acceleration of ions inferred from the Gamma Ray Spectrometer on the Solar Maximum Mission can thus be explained by this mechanism.

  19. Beamed neutron emission driven by laser accelerated light ions

    NASA Astrophysics Data System (ADS)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  20. Cryogenic molecular separation system for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Suzuki, K.; Nagatsu, K.; Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ramzdorf, A. Yu.; Nakao, M.; Hojo, S.; Wakui, T.; Noda, K.

    2015-12-01

    A 11C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. In the ISOL system, 11CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive 12CH4 gases, which can simulate the chemical characteristics of 11CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  1. Time resolved diagnostics of ions in colliding carbon plasmas

    SciTech Connect

    Singh, Ravi Pratap; Gupta, Shyam L.; Thareja, Raj K.

    2014-11-14

    We report a comparative study of the dynamic behaviour of ions at different pressures in laser ablated colliding and single plasma plumes using 2D imaging, optical emission spectroscopy (OES) and a retarding field analyser (RFA). 2D imaging shows the splitting of plasma plumes due to different velocities of various plasma species. OES shows enhancement in abundance of ionic species with their presence for a longer time in colliding plume. C{sub 2} molecular formation is seen at later time in colliding plume compared to single plume and is attributed to dominating collisional processes in the colliding region of the plumes. The time of flight distribution of ions traced by the RFA shows the variation with change in fluence as well as ambient pressure for both colliding and single plume. Time of flight analysis of ions also shows the appearance of a fast peak in ion signal due to acceleration of ions at larger fluence.

  2. Separation of Carbon Dioxide from Flue Gas Using Ion Pumping

    SciTech Connect

    Aines, R; Bourcier, W L; Johnson, M R

    2006-04-21

    We are developing a new way of separating carbon dioxide from flue gas based on ionic pumping of carbonate ions dissolved in water. Instead of relying on large temperature or pressure changes to remove carbon dioxide from solvent used to absorb it from flue gas, the ion pump increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, which can be removed from the downstream side of the ion pump as a nearly pure gas. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas. The slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. The simple, robust nature of the process lends itself to small separation plants. Although the energy cost of the ion pump is significant, we anticipate that it will be compete favorably with the current 35% energy penalty of chemical stripping systems in use at power plants. There is the distinct possibility that this simple method could be significantly more efficient than existing processes.

  3. Ion exclusion by sub-2-nm carbon nanotube pores

    PubMed Central

    Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Grigoropoulos, Costas P.; Noy, Aleksandr; Bakajin, Olgica

    2008-01-01

    Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important. PMID:18539773

  4. Ion acceleration in the RPA regime by shaped pulses

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Hur, Min Sup

    2012-10-01

    Recently we presented a controllable pulse shaping by relativistic transparency in non-uniform, overdense plasmas [1]. In this shaping scheme, by tapering the density and thickness of an overdense plasma slab, the pulse front can be carved into various figures such as transversely flat or concave shape with longitudinally sharp pulse fronts. As an application of such a novel scheme of the pulse shaping, we studied the effects of the shaped pulse on ion beam energy, charge, and energy spread in the radiation pressure dominant regime. From the 2-dimensional PIC simulations, we observed that the flat pulse produces more energetic proton beam than a usual Gaussian beam, and concave pulse yields even more abundant proton beam. [4pt] [1] M.S. Hur et al., ``Versatile shaping of a relativistic laser pulse from a nonuniform overdense plasma,'' Phys. Plasmas, (accepted, to appear in 2012).

  5. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion acceleration

    SciTech Connect

    Sahai, Aakash A.

    2014-05-15

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a{sub 0}>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.

  6. Accelerated soil carbon turnover under tree plantations limits soil carbon storage

    PubMed Central

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation’s canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations. PMID:26805949

  7. Optimal ion acceleration from ultrathin foils irradiated by a profiled laser pulse of relativistic intensity

    SciTech Connect

    Andreev, A. A.; Steinke, S.; Sokollik, T.; Schnuerer, M.; Nickles, P. V.; Avetsiyan, S. Ter; Platonov, K. Yu.

    2009-01-15

    Recent investigations of relativistic laser plasmas have shown that the energy transfer from the laser field to the kinetic ion energy and therefore the attainable maximum energy of the ions increases when ultrathin targets are irradiated by laser pulse without prepulse. In this paper, the influence of the target thickness and laser pulse contrast on the energy of the accelerated ions has been studied theoretically as well as experimentally. An optimum target was searched if a real laser pulse with a certain prepulse irradiates the target.

  8. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1989--September 30, 1989

    SciTech Connect

    Not Available

    1989-12-01

    This report contains the following topics on heavy ion fusion: MBE-4 drifting beam quadrupole operating range; transverse emittance growth in MBE-4; an improved ion source for MBE-4; drifting beam studies on MBE-4; 2-MV injector; improvements in lifetime of the C{sup +} source; injector control system; Maxwell spark gap test update; ILSE cosine 2{theta} quadrupole magnet development; electrostatic quadrupole prototype development activity; induction accelerator cell development; effect of a spread in beamlet currents on longitudinal stability; and heavy ion linac driver analysis.

  9. Focused Ion Beam Microscopy of ALH84001 Carbonate Disks

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Vali, Hojatollah; Gibson, Everett K., Jr.; Romanek, Christopher S.

    2005-01-01

    Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. A prerequisite is that a detailed characterization of the chemical and physical properties of the carbonate be established. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy. Our results suggest that the formation of ALH84001 carbonate assemblages were produced by considerably more complex process(es) than simple aqueous precipitation followed by partial thermal decomposition as proposed by other investigators [e.g., 1-3].

  10. Performance of a compact injector for heavy-ion medical accelerators

    NASA Astrophysics Data System (ADS)

    Iwata, Y.; Yamada, S.; Murakami, T.; Fujimoto, T.; Fujisawa, T.; Ogawa, H.; Miyahara, N.; Yamamoto, K.; Hojo, S.; Sakamoto, Y.; Muramatsu, M.; Takeuchi, T.; Mitsumoto, T.; Tsutsui, H.; Watanabe, T.; Ueda, T.

    2007-03-01

    A compact injector, designed for a heavy-ion medical accelerator complex, was constructed. It consists of an Electron-Cyclotron-Resonance Ion-Source (ECRIS) and two linacs, which are a Radio-Frequency-Quadrupole linac and an Interdigital H-mode Drift-Tube-Linac (IH-DTL) having the same operating frequency of 200 MHz. For beam focusing of the IH-DTL, the method of Alternating-Phase-Focusing (APF) was employed. The compact injector can accelerate heavy ions having a charge-to-mass ratio of {q}/{m}={1}/{3} up to 4.0 MeV/u. Use of the APF IH-DTL and operating frequency of 200 MHz allowed us to design compact linacs; the total length of the two linacs is less than 6 m. Beam-acceleration tests of the compact injector system were performed. The measured intensity of accelerated C4+12 beams with the compact injector was 380 eμA. Beam transmission of the APF IH-DTL was estimated to be as high as 96%, which is comparable to the value calculated by a simulation code. Transverse phase-space and energy distributions of accelerated beams were measured and compared with those calculated by the simulation code, and we found that they were agreed well with each other.

  11. Helicon Plasma Injector and Ion Cyclotron Acceleration Development in the VASIMR Experiment

    NASA Technical Reports Server (NTRS)

    Squire, Jared P.; Chang, Franklin R.; Jacobson, Verlin T.; McCaskill, Greg E.; Bengtson, Roger D.; Goulding, Richard H.

    2000-01-01

    In the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) radio frequency (rf) waves both produce the plasma and then accelerate the ions. The plasma production is done by action of helicon waves. These waves are circular polarized waves in the direction of the electron gyromotion. The ion acceleration is performed by ion cyclotron resonant frequency (ICRF) acceleration. The Advanced Space Propulsion Laboratory (ASPL) is actively developing efficient helicon plasma production and ICRF acceleration. The VASIMR experimental device at the ASPL is called VX-10. It is configured to demonstrate the plasma production and acceleration at the 10kW level to support a space flight demonstration design. The VX-10 consists of three electromagnets integrated into a vacuum chamber that produce magnetic fields up to 0.5 Tesla. Magnetic field shaping is achieved by independent magnet current control and placement of the magnets. We have generated both helium and hydrogen high density (>10(exp 18) cu m) discharges with the helicon source. ICRF experiments are underway. This paper describes the VX-10 device, presents recent results and discusses future plans.

  12. Single-ion adsorption and switching in carbon nanotubes

    PubMed Central

    Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; Hopkins, Alan R.; Chen, Jihan; Cronin, Stephen B.

    2016-01-01

    Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes, by the mechanism of ion potential-induced carrier depletion, which is supported by density functional and Landauer transport theory. Our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important. PMID:26805462

  13. Single-ion adsorption and switching in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; Hopkins, Alan R.; Chen, Jihan; Cronin, Stephen B.

    2016-01-01

    Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes, by the mechanism of ion potential-induced carrier depletion, which is supported by density functional and Landauer transport theory. Our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.

  14. Developing The Physics Desing for NDCS-II, A Unique Pulse-Compressing Ion Accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J -; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-09-24

    The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  15. DEVELOPING THE PHYSICS DESIGN FOR NDCX-II, A UNIQUE PULSE-COMPRESSING ION ACCELERATOR

    SciTech Connect

    Friedman, A.; Barnard, J. J.; Cohen, R. H.; Grote, D. P.; Lund, S. M.; Sharp, W. M.; Faltens, A.; Henestroza, E.; Jung, J-Y.; Kwan, J. W.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Vay, J.-L.; Waldron, W. L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.

    2009-07-20

    The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  16. FAIR - An International Accelerator Facility for Research with Ions and Antiprotons

    SciTech Connect

    Henning, Walter

    2005-06-08

    An overview is given on the international Facility for Antiproton and Ion Research (FAIR) at GSI, its science motivation and goals, the facility lay-out and characteristics, the accelerator design challenges, the schedule for construction, and the international interest/participation in the project.

  17. Biological and medical research with accelerated heavy ions at the Bevalac, 1977-1980. [Lead abstract

    SciTech Connect

    Pirruccello, M.C.; Tobias, C.A.

    1980-11-01

    Separate abstracts were prepared for the 46 papers presented in this progress report. This report is a major review of studies with accelerated heavy ions carried out by the Biology and Medicine Division of Lawrence Berkeley Laboratory from 1977 to 1980. (KRM)

  18. High-brightness ion and electron rf linear accelerators

    SciTech Connect

    Jameson, R.A. )

    1989-01-01

    In the past, development work to increase the energy and intensity of particle accelerators tended to be pursued in separate directions, but now almost all modern applications have to achieve an intensity as high as possible at the desired energy, along with a very good beam quality in terms of the beam confinement, aiming, or focusing. The figure of merit used is the beam brightness, defined as the beam power (or current when the energy is fixed) divided by the phase space appropriate to the problem at hand. Phase space for the beam as a whole is six-dimensional, describing the physical size of the beam and change in size with time or distance; the area projected on one plane is called emittance. Achieving high intensity and good quality simultaneously is difficult, primarily because of nonlinear space- charge and focusing forces at nonrelativistic velocities and because of beam-breakup effects for relativistic beams. In recent years, substantial progress has been made in understanding the physics of these effects; some aspects are reviewed here and related to their impact on practical design aspects. 7 refs.

  19. Accelerated Nuclear Energy Materials Development with Multiple Ion Beams

    SciTech Connect

    Fluss, M J; Bench, G

    2009-08-19

    A fundamental issue in nuclear energy is the changes in material properties as a consequence of time, temperature, and neutron fluence. Usually, candidate materials for nuclear energy applications are tested in nuclear reactors to understand and model the changes that arise from a combination of atomic displacements, helium and hydrogen production, and other nuclear transmutations (e.g. fission and the production of fission products). Experiments may be carried out under neutron irradiation conditions in existing nuclear materials test reactors (at rates of 10 to 20 displacements per atom (DPA) per year or burn-up rates of a few percent per year for fertile fuels), but such an approach takes much too long for many high neutron fluence scenarios (300 DPA for example) expected in reactors of the next generation. Indeed it is reasonable to say that there are no neutron sources available today to accomplish sufficiently rapid accelerated aging let alone also provide the temperature and spectral characteristics of future fast spectrum nuclear energy systems (fusion and fission both). Consequently, materials research and development progress continues to be severely limited by this bottleneck.

  20. Acceleration of electrons and ions by strong lower-hybrid turbulence in solar flares

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Bingham, R.; Su, J. J.; Shapiro, V. D.; Shevchenko, V.; Ma, S.; Dawson, J. M.; Mcclements, K. G.

    1994-01-01

    One of the outstanding problems in solar flare theory is how to explain the 10-20 keV and greater hard x-ray emissions by a thick target bremsstrahlung model. The model requires the acceleration mechanism to accelerate approximately 10(exp 35) electrons sec(exp -l) with comparable energies, without producing a large return current which persists for long time scales after the beam ceases to exist due to Lenz's law, thereby, producing a self-magnetic field of order a few mega-Gauss. In this paper, we investigate particle acceleration resulting from the relaxation of unstable ion ring distributions, producing strong wave activity at the lower hybrid frequency. It is shown that strong lower hybrid wave turbulence collapses in configuration space producing density cavities containing intense electrostatic lower hybrid wave activity. The collapse of these intense nonlinear wave packets saturate by particle acceleration producing energetic electron and ion tails. There are several mechanisms whereby unstable ion distributions could be formed in the solar atmosphere, including reflection at perpendicular shocks, tearing modes, and loss cone depletion. Numerical simulations of ion ring relaxation processes, obtained using a 2 1/2-D fully electromagnetic, relativistic particle in cell code are discussed. We apply the results to the problem of explaining energetic particle production in solar flares. The results show the simultaneous acceleration of both electrons and ions to very high energies: electrons are accelerated to energies in the range 10-500 keV, while ions are accelerated to energies of the order of MeVs, giving rise to x-ray emission and gamma-ray emission respectively. Our simulations also show wave generation at the electron cyclotron frequency. We suggest that these waves are the solar millisecond radio spikes. The strong turbulence collapse process leads to a highly filamented plasma producing many localized regions for particle acceleration and resulting in

  1. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    NASA Astrophysics Data System (ADS)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  2. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator.

    PubMed

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  3. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator.

    PubMed

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project. PMID:26931935

  4. A new beam loss detector for low-energy proton and heavy-ion accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  5. Signature of solar wind turbulence in the ground magnetic field and its relation to ion acceleration

    NASA Astrophysics Data System (ADS)

    Kronberg, Elena; Gilder, Stuart; Luo, Hao; Daly, Patrick; Grigorenko, Elena

    2016-04-01

    The effect of solar wind turbulence on the magnetospheric environment is still unclear. We show that the strength of the magnetic field variation measured by ground-based observations (INTERMAGNET) is associated with variations of the interplanetary magnetic field direction and the solar wind speed. The variation is strongest during the declining phase of the solar cycle and is associated with high speed streams and Alfvén waves in the solar wind. Using Cluster observations, we show that during the declining phase, the ions are effectively accelerated to energies above 100 keV in the plasma sheet. This implies that on long time scales, enhanced solar wind magnetic field fluctuations and wind speeds lead to favorable conditions for effective ion acceleration in the plasma sheet. The acceleration is associated with magnetic turbulence (ultra-low-frequency) in the plasma sheet.

  6. Modulation of terrestrial ion escape flux composition /by low-altitude acceleration and charge exchange chemistry/

    NASA Technical Reports Server (NTRS)

    Moore, T. E.

    1980-01-01

    Motivated by recent observations of highly variable hot plasma composition in the magnetosphere, control of the ionospheric escape flux composition by low-altitude particle dynamics and ion chemistry has been investigated for an e(-), H(+), O(+) ionosphere. It is found that the fraction of the steady state escape flux which is O(+) can be controlled very sensitively by the occurrence of parallel or transverse ion acceleration at altitudes below the altitude where the neutral oxygen density falls rapidly below the neutral hydrogen density and the ionospheric source of O(+) tends to be rapidly converted by charge exchange to H(+). The acceleration is required both to overcome the gravitational confinement of O(+) and to violate charge exchange equilibrium so that the neutral hydrogen atmosphere appears 'optically' thin to escaping O(+). Constraints are placed on the acceleration processes, and it is shown that O(+) escape is facilitated by observed ionospheric responses to magnetic activity.

  7. Annealing of Diamond and Diamondlike Carbon Films: AN Ion Beam Analysis Study.

    NASA Astrophysics Data System (ADS)

    Zorman, Christian Aaron

    The Van de Graaff accelerator at Case Western Reserve University was used to study annealed diamond and diamondlike carbon films. Rutherford backscattering spectroscopy and elastic recoil detection analysis were used to characterize the as-deposited and annealed samples. The diamond films were deposited by microwave enhanced CVD while the diamondlike carbon films were deposited by plasma enhanced CVD and ion beam techniques. Included in the study were nitrogenated diamondlike carbon films. The samples were annealed inside the ion scattering chamber via a heated sample holder. The samples were annealed in a stepwise manner, beginning at room temperature and ending at 550^circC. RBS and ERD spectra were simultaneously collected at each step in the annealing process. The compositional stability of the diamondlike carbon samples was determined. PECVD diamondlike carbon films remained stable up to 400^circ C, above which the hydrogen effusion was quite high. Nitrogenated diamondlike carbon films containing less than 10 atomic percent hydrogen remained stable up to 400^ circC while the hydrogenated samples were not stable above 200^circC. A distinct hydrogen enriched surface region was observed on the diamond samples. This region disappeared upon annealing at 400^circC and is most likely due to hydrogen containing adsorbates on the surface. The dynamics of this region were investigated and compared with secondary electron emission data on these samples.

  8. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    SciTech Connect

    Kovtun, Maxim Kearsley, Elsabe P. Shekhovtsova, Julia

    2015-06-15

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator.

  9. Mesenchymal stem cells are resistant to carbon ion radiotherapy

    PubMed Central

    Nicolay, Nils H.; Liang, Yingying; Perez, Ramon Lopez; Bostel, Tilman; Trinh, Thuy; Sisombath, Sonevisay; Weber, Klaus-Josef; Ho, Anthony D.; Debus, Jürgen; Saffrich, Rainer; Huber, Peter E.

    2015-01-01

    Mesenchymal stem cells (MSCs) participate in regeneration of tissues damaged by ionizing radiation. However, radiation can damage MSCs themselves. Here we show that cellular morphology, adhesion and migration abilities were not measurably altered by photon or carbon ion irradiation. The potential for differentiation was unaffected by either form of radiation, and established MSC surface markers were found to be stably expressed irrespective of radiation treatment. MSCs were able to efficiently repair DNA double strand breaks induced by both high-dose photon and carbon ion radiation. We have shown for the first time that MSCs are relatively resistant to therapeutic carbon ion radiotherapy. Additionally, this form of radiation did not markedly alter the defining stem cell properties or the expression of established surface markers in MSCs. PMID:25504442

  10. Fluoro-Carbonate Solvents for Li-Ion Cells

    SciTech Connect

    NAGASUBRAMANIAN,GANESAN

    1999-09-17

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

  11. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Johnson, T.; Dumont, R.; Eriksson, J.; Eriksson, L.-G.; Giacomelli, L.; Girardo, J.-B.; Hellsten, T.; Khilkevitch, E.; Kiptily, V. G.; Koskela, T.; Mantsinen, M.; Nocente, M.; Salewski, M.; Sharapov, S. E.; Shevelev, A. E.; Contributors, JET

    2016-11-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli’s theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth.

  12. Ion acceleration by intense, few-cycle laser pulses with nanodroplets

    SciTech Connect

    Di Lucchio, Laura; Andreev, Alexander A.; Gibbon, Paul

    2015-05-15

    The energy distribution of electrons and ions emerging from the interaction of a few-cycle Gaussian laser pulse with spherical nanoclusters is investigated with the aim of determining prospects for accelerating ions in this regime. It is found that the direct conversion of laser energy into dense attosecond electron nanobunches results in rapid charge separation and early onset of Coulomb-explosion-dominated ion dynamics. The ion core of the cluster starts to expand soon after the laser has crossed the droplet, the fastest ions attaining 10 s of MeV at relativistic intensities. The current investigation should serve as a guide for contemporary experiments, i.e., using state-of-the-art few-cycle ultraintense lasers and nanoclusters of solid density.

  13. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-06-01

    Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35Cl/37Cl-ratio and samples highly-enriched in 35Cl (35Cl/37Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between 61 and 1390 s, where the modified DREAMS ion source with values between 156 and 262 s showed the fastest recovery in 80% of the measurements.

  14. Dissipation of Alfven Waves via Generation of High-Frequency Electrostatic Waves and Transverse Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Mukhter, A.; Singh, N.; Khazanov, G.

    2006-12-01

    Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfvén waves (SAWs) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous feature of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvénic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in- cell simulations showing that the ES components are directly generated by cross-field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. In the simulation we drive the plasma by the transverse electric field, Ey, of the EM waves; the frequency of Ey is varied from a frequency below the heavy ion cyclotron frequency to below the light ion cyclotron frequency. We have also performed simulations for Ey having a continuous spectrum given by a power law with different spectral indexes. The driving electric

  15. Stochastic acceleration and charge change of helium ions in the solar flare plasma.

    NASA Astrophysics Data System (ADS)

    Kartavykh, Yu. Yu.; Ostryakov, V. M.; Stepanov, I. Yu.; Yoshimori, M.

    1998-10-01

    In order to explain the energy spectra and abundances of the He+ and He++ solar flare ions measured in some works, the authors calculated the behavior of these ions in solar plasma, taking into account both their stochastic acceleration by Alfvén waves and the possibility of charge exchange with the surrounding plasma. The results agree with the experiments if the plasma in the regions where acceleration takes place has a concentration and temperature on the order of N = 2×107 cm-3 and T = 6.31×104K, respectively. Recent observations of solar flares onboard the Yohkoh satellite have demonstrated that it is apparently impractical to expect the existence of such rarefied and low-temperature plasma in the flare loops. The calculations indicate that the high abundance of He+ is most likely due to its nonsolar origin. Some possibilities of enrichment of energetic particle fluxes by He+ ions are briefly discussed.

  16. Heavy ions from impulsive SEP events and constraints on the plasma temperature in the acceleration site

    NASA Astrophysics Data System (ADS)

    Kartavykh, Yu.; Ostryakov, V.; Ruffolo, D.; Moebius, E.; Popecki, M.

    2001-08-01

    We compare the mean charge states of heavy ions (O, Ne, Mg, Si and Fe) as observed with ACE/SEPICA during several solar energetic particle events in 1998 with model calculations. A model of stochastic acceleration that includes a self-consistent treatment of the charge states of the affected ions is applied to estimate the plasma temperature in the acceleration site for 8 impulsive events. This model takes into account ionization due to collisions with electrons and heavy particles (protons and He) as well as recombination due to collisions with electrons. In general the temperatures obtained for Ne, Mg and Fe ions appear higher than those for O and Si. We briefly compare our results with the corresponding ionization temperatures for gradual events observed in previous solar cycles and in 1997-1998.

  17. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  18. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator

    SciTech Connect

    Chitarin, G.; Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2012-02-15

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  19. Radiation-Pressure Acceleration of Ion Beams from Nanofoil Targets: The Leaky Light-Sail Regime

    SciTech Connect

    Qiao, B.; Zepf, M.; Borghesi, M.; Dromey, B.; Geissler, M.; Karmakar, A.; Gibbon, P.

    2010-10-08

    A new ion radiation-pressure acceleration regime, the 'leaky light sail', is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10{sup 19} W/cm{sup 2}. 100 MeV proton beams are obtained by increasing the intensities to 2x10{sup 20} W/cm{sup 2}.

  20. Environmental remediation and conversion of carbon dioxide (CO(2)) into useful green products by accelerated carbonation technology.

    PubMed

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO(2)), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called 'accelerated carbonation', which completes its fast reaction within few hours by using pure CO(2). Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO(2) in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO(2) emissions and environmental remediation. PMID:20195442

  1. Environmental remediation and conversion of carbon dioxide (CO(2)) into useful green products by accelerated carbonation technology.

    PubMed

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO(2)), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called 'accelerated carbonation', which completes its fast reaction within few hours by using pure CO(2). Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO(2) in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO(2) emissions and environmental remediation.

  2. Preferential perpendicular acceleration of heavy ionospheric ions by interactions with electrostatic hydrogen cyclotron waves

    NASA Astrophysics Data System (ADS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1983-05-01

    Observations in recent years indicate the presence of energetic ions of ionospheric origin in various parts of the magnetosphere. These energetic ions have been found at all latitudes. Observations from the S3-3 satellite have made a great contribution toward an understanding of the energization of ionospheric ions. One of the most interesting observations is related to the finding that ion beams and electrostatic hydrogen cyclotron (EHC) waves are highly correlated and that they show an abrupt increase in their occurrence rate at an altitude of about 5000 km. A statistical survey of upward flowing ion (UFI) events occurring between 6000 and 8000 km has shown that the average energy of O(+) has a strong correlation with that of the H(+) ions. The present investigation has the objective to examine critically the energetics of UFI events in view of the theory of the interaction of a single coherent EHC wave with O(+), He(+), and H(+) ions. It is found that preferential acceleration of heavy ions occurs when such ions interact with an EHC wave.

  3. Preferential perpendicular acceleration of heavy ionospheric ions by interactions with electrostatic hydrogen cyclotron waves

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1983-01-01

    Observations in recent years indicate the presence of energetic ions of ionospheric origin in various parts of the magnetosphere. These energetic ions have been found at all latitudes. Observations from the S3-3 satellite have made a great contribution toward an understanding of the energization of ionospheric ions. One of the most interesting observations is related to the finding that ion beams and electrostatic hydrogen cyclotron (EHC) waves are highly correlated and that they show an abrupt increase in their occurrence rate at an altitude of about 5000 km. A statistical survey of upward flowing ion (UFI) events occurring between 6000 and 8000 km has shown that the average energy of O(+) has a strong correlation with that of the H(+) ions. The present investigation has the objective to examine critically the energetics of UFI events in view of the theory of the interaction of a single coherent EHC wave with O(+), He(+), and H(+) ions. It is found that preferential acceleration of heavy ions occurs when such ions interact with an EHC wave.

  4. Experimental evidence for the acceleration of thermal electrons by ion cyclotron waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Norris, A. J.; Sojka, J. J.; Wrenn, G. L.; Johnson, J. F. E.; Cornilleau-Wehrlin, N.; Perraut, S.; Roux, A.

    1983-01-01

    Experimental evidence is presented for the acceleration of thermal electrons by large amplitude ion cyclotron waves (ICWs). The wave power in the ULF range near the helium gyrofrequency is compared with the distribution function of low energy electrons measured by GEOS satellite instruments. This comparison shows that electrons are accelerated near the geomagnetic equator along field lines, at times when the ICW energy is large and the cold plasma density is below a threshold value. It is suggested that these accelerated electrons can account for the ELF emissions, modulated at the ICW frequency, observed by Wehrlin (1981). A very efficient acceleration of thermal electrons along field lines results from other ULF events having frequencies close to the proton gyrofrequency. Evidence for this lies in the fact that medium energy protons having large temperature anisotropies in the 100-500 eV range are responsible for the ICW wave generation.

  5. Laser-ion accelerators: State-of-the-art and scaling laws

    SciTech Connect

    Borghesi, M.; Kar, S.; Margarone, D.

    2013-07-26

    A significant amount of experimental work has been devoted over the last decade to the development and optimization of proton acceleration based on the so-called Target Normal Sheath acceleration mechanism. Several studies have been dedicated to the determination of scaling laws for the maximum energy of the protons as a function of the parameters of the irradiating pulses, studies based on experimental results and on models of the acceleration process. We briefly summarize the state of the art in this area, and review some of the scaling studies presented in the literature. We also discuss some recent results, and projected scalings, related to a different acceleration mechanism for ions, based on the Radiation Pressure of an ultraintense laser pulse.

  6. Microstructure evolution in carbon-ion implanted sapphire

    SciTech Connect

    Orwa, J. O.; McCallum, J. C.; Jamieson, D. N.; Prawer, S.; Peng, J. L.; Rubanov, S.

    2010-01-15

    Carbon ions of MeV energy were implanted into sapphire to fluences of 1x10{sup 17} or 2x10{sup 17} cm{sup -2} and thermally annealed in forming gas (4% H in Ar) for 1 h. Secondary ion mass spectroscopy results obtained from the lower dose implant showed retention of implanted carbon and accumulation of H near the end of range in the C implanted and annealed sample. Three distinct regions were identified by transmission electron microscopy of the implanted region in the higher dose implant. First, in the near surface region, was a low damage region (L{sub 1}) composed of crystalline sapphire and a high density of plateletlike defects. Underneath this was a thin, highly damaged and amorphized region (L{sub 2}) near the end of range in which a mixture of i-carbon and nanodiamond phases are present. Finally, there was a pristine, undamaged sapphire region (L{sub 3}) beyond the end of range. In the annealed sample some evidence of the presence of diamond nanoclusters was found deep within the implanted layer near the projected range of the C ions. These results are compared with our previous work on carbon implanted quartz in which nanodiamond phases were formed only a few tens of nanometers from the surface, a considerable distance from the projected range of the ions, suggesting that significant out diffusion of the implanted carbon had occurred.

  7. Detection of large ions in time-of-flight mass spectrometry: effects of ion mass and acceleration voltage on microchannel plate detector response.

    PubMed

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv(3.1) (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

  8. Experimental validation of the dual positive and negative ion beam acceleration in the plasma propulsion with electronegative gases thruster

    SciTech Connect

    Rafalskyi, Dmytro Popelier, Lara; Aanesland, Ane

    2014-02-07

    The PEGASES (Plasma Propulsion with Electronegative Gases) thruster is a gridded ion thruster, where both positive and negative ions are accelerated to generate thrust. In this way, additional downstream neutralization by electrons is redundant. To achieve this, the thruster accelerates alternately positive and negative ions from an ion-ion plasma where the electron density is three orders of magnitude lower than the ion densities. This paper presents a first experimental study of the alternate acceleration in PEGASES, where SF{sub 6} is used as the working gas. Various electrostatic probes are used to investigate the source plasma potential and the energy, composition, and current of the extracted beams. We show here that the plasma potential control in such system is key parameter defining success of ion extraction and is sensitive to both parasitic electron current paths in the source region and deposition of sulphur containing dielectric films on the grids. In addition, large oscillations in the ion-ion plasma potential are found in the negative ion extraction phase. The oscillation occurs when the primary plasma approaches the grounded parts of the main core via sub-millimetres technological inputs. By controlling and suppressing the various undesired effects, we achieve perfect ion-ion plasma potential control with stable oscillation-free operation in the range of the available acceleration voltages (±350 V). The measured positive and negative ion currents in the beam are about 10 mA for each component at RF power of 100 W and non-optimized extraction system. Two different energy analyzers with and without magnetic electron suppression system are used to measure and compare the negative and positive ion and electron fluxes formed by the thruster. It is found that at alternate ion-ion extraction the positive and negative ion energy peaks are similar in areas and symmetrical in position with +/− ion energy corresponding to the amplitude of the applied

  9. Acceleration and heating of heavy ions in high speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Gomberoff, L.; Gratton, F. T.; Gnavi, G.

    1995-01-01

    Left hand polarized Alfven waves generated in coronal holes propagate in the direction of high speed solar wind streams, accelerating and heating heavy ions. As the solar wind expands, the ratio between the frequency of the Alfven waves and the proton gyrofrequency increases, due to the decrease of the interplanetary magnetic field, and encounter first the local ion gyrofrequency of the species with the largest M(sub l) = m(sub l)/z(sub l)m(sub p) (m(sub l) is the mass of species l, m(sub p) is the proton mass and z(sub l) is the degree of ionization of species l). It is shown that the Alfven waves experience there strong absorption and cannot propagate any further until the ions are accelerated and heated. Once this occurs, the Alfven waves continue to propagate until they meet the gyrofrequency of the next species giving rise to a similar phenomenon. In order to show this contention, we use the linear dispersion relation of ion cyclotron waves in a multicomponent plasma consisting of oxygen ions, alpha particles and protons. We assume that at any distance from the sun, the Alfven waves follow the local dispersion relation of electromagnetic ion cyclotron waves. To illustrate the results, we solve the dispersion relation for oxygen ions and alpha particles drifting relative to the protons. The dispersion relation has three branches. The first branch starts at zero frequency and goes to the Doppler-shifted oxygen ion gyrofrequency. The second branch starts close to the oxygen gyrofrequency, and goes to the Doppler-shifted alpha particle gyrofrequency. The third branch starts close to the alpha particle gyrofrequency, and goes to the proton gyrofrequency. The Alfven waves propagate following the first branch of the dispersion relation. When they reach the Doppler-shifted oxygen ion gyrofrequency, the ions are accelerated and heated to some definite values. When these values are reached, the dispersion relation changes, and it is now the first branch of the

  10. Application of Carbon Nanomaterials in Lithium-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Jaber-Ansari, Laila

    Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) and graphene have emerged as leading additives for high capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. In this work, the these nanomaterials have been developed and their properties have been fine-tuned to help solve fundamental issues in conventional lithium ion battery electrodes. Towards this end, the application of SWCNTs in lithium-ion anodes has been studied. As-grown SWCNTs possess a distribution of physical and electronic structures, and it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Towards this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations. To understand the interaction of the graphene with lithium ions and electrolyte species during electrochemical we use Raman spectroscopy in a model system of monolayer graphene transferred on a Si(111) substrate and density functional theory (DFT) to investigate defect formation as a function of lithiation. This model system enables the early stages of defect formation to be probed in a manner previously not possible with commonly-used reduced graphene oxide or multilayer graphene substrates. Using ex

  11. Mono-energetic ion acceleration in the RPA regime: a tale of two temperatures

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Shvets, Gennady

    2014-10-01

    We develop an analytical theory of the laser-accelerated plasma target irradiated by a circularly polarized laser pulse in the RPA regime. We demonstrate that relationship between electron and ion temperatures is the key to understanding the structure of the accelerated target. To illustrate this point, we discuss two simplest analytically treatable limiting cases of (1) cold ions and hot electrons, and (2) hot ions and cold electrons. In the first case, hot electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials while the ions are force-balanced by the electrostatic and non-inertial fields. In the second case the situation is very different: hot ions are trapped in the potential well formed by the ion-sheath's electric and non-inertial potentials while the cold electrons are force-balanced by the electrostatic and ponderomotive fields. Using PIC simulations we study the target stability with respect to Rayleigh-Taylor instability. US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.

  12. Variable frequency heavy-ion linac, RILAC I. Design, construction and operation of its accelerating structure

    NASA Astrophysics Data System (ADS)

    Odera, Masatoshi; Chiba, Yoshiaki; Tonuma, Tadao; Hemmi, Masatake; Miyazawa, Yoshitoshi; Inoue, Toshihiko; Kambara, Tadashi; Kase, Masayuki; Kubo, Toshiyuki; Yoshida, Fusako

    1984-11-01

    A variable frequency linear accelerator at RIKEN (IPCR), which is named RILAC, is designed to accelerate ions of almost every element in the periodic table. In this report, the design, construction and performance of the resonator cavities of this linac are described. A new accelerating structure was developed for the variable frequency scheme. The principal aim of the development was to obtain a configuration within the cavity to keep a uniform voltage distribution along the accelerating axis over the wide range of resonant frequencies required. The final form adopted is a coaxial quarter-wave type resonator with a race-track-like cross section for its coaxial inner and outer conductors. It has a movable shorting device as a frequency tuner and its open end is enlarged and loaded with drift tubes, connected to the inner and outer conductors alternatingly. The structure can maintain the required uniformity of the accelerating voltage within 10% in spite of resonant frequency tuning between 17 and 45 MHz. A relatively modest accelerating gradient was chosen so that cw operation could be realized. The RILAC is composed of six such cavities which are independently excited and it succeeded in the acceleration of a beam through all the cavities in 1981.

  13. Tumor therapy with high-energy carbon ion beams

    NASA Astrophysics Data System (ADS)

    Schardt, D.; Heavy-Ion Therapy Collaboration

    2007-05-01

    Heavy-ion beams offer favourable conditions for the treatment of deep-seated local tumors. The well defined range and the small lateral beam spread make it possible to deliver the dose with millimeter precision by applying advanced beam scanning techniques. In addition, heavy ions have an enhanced biological effectiveness in the Bragg peak region which is caused by the dense ionization and the resulting reduced cellular repair rate. Furthermore, heavy ions offer the unique possibility of in-vivo range monitoring by applying Positron-Emission-Tomography (PET) techniques. Taking advantage of these clinically relevant properties, more than 300 patients have been treated with carbon ions at GSI Darmstadt since December 1997 with very promising results. A dedicated heavy-ion treatment center at the Radiological Clinic Heidelberg with a design capacity of 1000 patients per year is under construction and expected to start operation end of 2007.

  14. Detection of single ion channel activity with carbon nanotubes

    PubMed Central

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  15. Detection of single ion channel activity with carbon nanotubes.

    PubMed

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  16. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  17. Ion acceleration in the transparent regime and the critical influence of the plasma density scale length

    NASA Astrophysics Data System (ADS)

    Loch, R. A.; Ceccotti, T.; Quéré, F.; George, H.; Bonnaud, G.; Réau, F.; D'Oliveira, P.; Luttikhof, M. J. H.; Bijkerk, F.; Boller, K.-J.; Blaclard, G.; Combis, P.

    2016-09-01

    The influence of a plasma density gradient on ions accelerated along the specular (back reflection) direction in the transparent Target Normal Sheath Acceleration regime is investigated. Enhanced acceleration of ions is experimentally observed in this regime using high-intensity and ultra-high contrast laser pulses and extremely thin foils of few nanometer thicknesses. The experimental trend for the maximum proton energy appeared quite different from the already published numerical results in this regime where an infinitely steep plasma gradient was assumed. We showed that for a realistic modelling, a finite density gradient has to be taken into account. By means of particle-in-cell (PIC) simulations, we studied for the first time the influence of the plasma density scale length on ion acceleration from these nanofoil targets. Through a qualitative agreement between our numerical particle-in-cell simulations and our experiments, the main conclusion with regard to the experimental requirements is that, in the transparent regime evidenced with nanofoils as compared to the opaque regime, the plasma expansion has to be taken into account and both the pulse contrast and the damage threshold of the material are essential parameters.

  18. Heavy-ion beam dynamics in the RIA post-accelerator.

    SciTech Connect

    Ostroumov, P. N.; Kolomiets, A. A.; Aseev, V. N.; Physics

    2005-01-01

    The RIA post-accelerator (RIB) includes three main sections: a room temperature injector with design ion charge-to-mass ratio 1/240 and output energy of {approx} 93 keV/u, a superconducting (SC) linac for ions with charge-to-mass ratio 1/66 or higher up to an energy of {approx} 1 MeV/u and a higher energy SC linac including existing ATLAS to produce 10 MeV/u beams up to uranium. Two strippers are installed between the sections. Extensive accelerator design studies and end-to-end beam dynamics simulations have been performed to minimize the cost of the linac while providing high-quality and high-intensity radioactive beams. Specifically, we have found that cost-effective acceleration in the front end can be provided by several hybrid RFQs proposed and developed for acceleration of low-velocity heavy ions. For beam focusing in the second section it is appropriate to use electrostatic lenses and SC quadrupoles inside common cryostats with the resonators.

  19. Acceleration of Ultra-Low Emittance Proton and Ion Beams with High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Cowan, Thomas E.

    2002-11-01

    Intense beams of several MeV protons and ions, generated by the interaction of high-intensity short pulse lasers with thin foils, have been observed by many researchers in recent years.(S.P. Hatchett et al., Phys. Plasmas 7, 2076 (2000); T.E. Cowan et al., Nucl. Inst. Meth. A 455, 130 (2000); R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000); S.C. Wilks et al., Phys. Plasmas 8, 532 (2000); E. Clark et al., Phys. Rev. Lett. 84, 670 (2000).) In experiments performed at the 100 TW LULI laser, we have succeeded to control the ion acceleration process to produce ultra high quality proton beams, whose transverse emittance is <0.006 π mm-mrad (rms-normalized), a factor of 100 lower than is typical of conventional RF linear accelerators. Within the envelope of the entire beam, we could focus individual proton beamlets to 100 nm spatial scales. This required control of the laser-plasma interaction, of the transport of MA currents of relativistic electrons through the target substrate, and of the surface topology and source material layering on the target foil rear-surface.(M. Roth et al., Phys. Rev. ST Accel. Beams 5, 061002 (2002).) By varying the source material, we also accelerated light ion beams, such as He-like fluorine, to over 5 MeV/nucleon.(M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002).) From PIC simulations we understand the highest-energy and lowest-divergence proton acceleration as a transient laser-driven virtual cathode effect occurring at the target rear-surface. We have also confirmed the acceleration of ions from the front surface (A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000).), which we find exhibits an intense low-energy component, but only a tenuous high-energy component, in agreement with PIC simulations. This work was performed with corporate support of General Atomics.

  20. Dynamics of Double Layers, Ion Acceleration, and Heat Flux Suppression during Solar Flares

    NASA Astrophysics Data System (ADS)

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2014-09-01

    Observations of flare-heated electrons in the corona typically suggest confinement of electrons. The confinement mechanism, however, remains unclear. The transport of coronal hot electrons into ambient plasma was recently investigated by particle-in-cell (PIC) simulations. Electron transport was significantly suppressed by the formation of a highly localized, nonlinear electrostatic potential in the form of a double layer (DL). In this work large-scale PIC simulations are performed to explore the dynamics of DLs in larger systems where, instead of a single DL, multiple DLs are generated. The primary DL accelerates return current electrons, resulting in high velocity electron beams that interact with ambient ions. This forms a Buneman unstable system that spawns more DLs. Trapping of heated return current electrons between multiple DLs strongly suppresses electron transport. DLs also accelerate ambient ions and produce strong ion flows over an extended region. This clarifies the mechanism by which hot electrons in the corona couple to and accelerate ions to form the solar wind. These new dynamics in larger systems reveal a more likely picture of DL development and their impact on the ambient plasma in the solar corona. They are applicable to the preparation for in situ coronal space missions like the Solar Probe Plus.

  1. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators.

    PubMed

    Sartori, E; Brescaccin, L; Serianni, G

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.

  2. Dynamics of double layers, ion acceleration, and heat flux suppression during solar flares

    SciTech Connect

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2014-09-20

    Observations of flare-heated electrons in the corona typically suggest confinement of electrons. The confinement mechanism, however, remains unclear. The transport of coronal hot electrons into ambient plasma was recently investigated by particle-in-cell (PIC) simulations. Electron transport was significantly suppressed by the formation of a highly localized, nonlinear electrostatic potential in the form of a double layer (DL). In this work large-scale PIC simulations are performed to explore the dynamics of DLs in larger systems where, instead of a single DL, multiple DLs are generated. The primary DL accelerates return current electrons, resulting in high velocity electron beams that interact with ambient ions. This forms a Buneman unstable system that spawns more DLs. Trapping of heated return current electrons between multiple DLs strongly suppresses electron transport. DLs also accelerate ambient ions and produce strong ion flows over an extended region. This clarifies the mechanism by which hot electrons in the corona couple to and accelerate ions to form the solar wind. These new dynamics in larger systems reveal a more likely picture of DL development and their impact on the ambient plasma in the solar corona. They are applicable to the preparation for in situ coronal space missions like the Solar Probe Plus.

  3. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators.

    PubMed

    Sartori, E; Brescaccin, L; Serianni, G

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared. PMID:26931910

  4. Particle acceleration during interactions between transient ion foreshock phenomena and Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Turner, Drew; Angelopoulos, Vassilis; Wilson, Lynn; Hietala, Heli; Omidi, Nick; Masters, Adam

    2014-05-01

    Foreshocks are regions upstream of supercritical astrophysical shock waves that are in communication with the shock via suprathermal charged particles that have been energized and reflected by the shock and are counter-streaming into the incident plasma. These regions form upstream of the quasi-parallel region of the shock, in which the angle between the magnetic field in the incident plasma and the shock normal direction is less than ~40 deg. The relative drift between the reflected suprathermal particles and the incident bulk flow is a source of free energy, which is capable of producing a variety of kinetic plasma instabilities and enhanced wave activity. Simulations and observations of Earth's and other planetary foreshocks have shown that large-scale transient phenomena can also develop due to nonlinear processes and interactions between foreshock particles and discontinuities in the incident solar wind. Several of these transient ion foreshock phenomena (TIFP), such as short large-amplitude magnetic structures (SLAMS), hot flow anomalies (HFAs), and foreshock bubbles (FBs), can result in the development of nonlinear wave activity and additional shocks upstream of the main bow shock. We present in situ observations, made by NASA's THEMIS mission, of ion and electron distributions from within and without SLAMS, HFAs, and FBs, examining the particle heating and acceleration taking place within those TIFP. The observations are compared to theoretical expectations for shock-drift acceleration, Fermi acceleration, and energy diffusion via wave-particle interactions. Our preliminary results show that SLAMS, HFAs, and FBs can be ideal particle accelerators. Finally, we develop an understanding for the upper energy limits for ion and electron acceleration in each of these TIFP at Earth's bow shock and use this to investigate how TIFP may accelerate particles at other astrophysical shocks, such as planetary and astrospherical bow shocks, shocks in stellar winds, and

  5. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field

    SciTech Connect

    Terasaka, K.; Ogiwara, K.; Tanaka, M. Y.; Yoshimura, S.; Aramaki, M.

    2010-07-15

    The flow structure of ions in a diverging magnetic field has been experimentally studied in an electron cyclotron resonance plasma. The flow velocity field of ions has been measured with directional Langmuir probes calibrated with the laser induced fluorescence spectroscopy. For low ion-temperature plasmas, it is concluded that the ion acceleration due to the axial electric field is important compared with that of gas dynamic effect. It has also been found that the detachment of ion stream line from the magnetic field line takes place when the parameter |f{sub ci}L{sub B}/V{sub i}| becomes order unity, where f{sub ci}, L{sub B}, and V{sub i} are the ion cyclotron frequency, the characteristic scale length of magnetic field inhomogeneity, and the ion flow velocity, respectively. In the detachment region, a radial electric field is generated in the plasma and the ions move straight with the ExB rotation driven by the radial electric field.

  6. Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology

    PubMed Central

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation. PMID:20195442

  7. Off-normal and failure condition analysis of the MITICA negative-ion accelerator

    NASA Astrophysics Data System (ADS)

    Chitarin, Giuseppe; Agostinetti, Piero; Aprile, Daniele; Marconato, Nicolò; Marcuzzi, Diego; Serianni, Gianluigi; Veltri, Pierluigi; Zaccaria, Pierluigi

    2016-02-01

    The negative-ion accelerator for the MITICA neutral beam injector has been designed and optimized in order to reduce the thermo-mechanical stresses in all components below limits compatible with the required fatigue life. However, deviation from the expected beam performances can be caused by "off-normal" operating conditions of the accelerator. The purpose of the present work is to identify and analyse all the "off-normal" operating conditions, which could possibly become critical in terms of thermo-mechanical stresses or of degradation of the optical performances of the beam.

  8. System modeling for the longitudinal beam dynamics control problem in heavy ion induction accelerators

    SciTech Connect

    Payne, A.N.

    1993-05-17

    We address the problem of developing system models that are suitable for studying the control of the longitudinal beam dynamics in induction accelerators for heavy ions. In particular, we present the preliminary results of our efforts to devise a general framework for building detailed, integrated models of accelerator systems consisting of pulsed power modular circuits, induction cells, beam dynamics, and control system elements. Such a framework will permit us to analyze and design the pulsed power modulators and the control systems required to effect precise control over the longitudinal beam dynamics.

  9. Application of rf superconductivity to high-brightness ion-beam accelerators

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Roche, C.T.

    1990-01-01

    A development program is underway to apply rf superconductivity to the design of cw linear accelerators for high-brightness ion beams. The key issues associated with this endeavor have been delineated in an earlier paper. Considerable progress has been made both experimentally and theoretically to resolve a number of these issues. In this paper we summarize this progress. We also identify current and future work in the areas of accelerator technology and superconducting materials which will confront the remaining issues and/or provide added capability to the technology. 13 refs., 2 figs.

  10. Off-normal and failure condition analysis of the MITICA negative-ion accelerator.

    PubMed

    Chitarin, Giuseppe; Agostinetti, Piero; Aprile, Daniele; Marconato, Nicolò; Marcuzzi, Diego; Serianni, Gianluigi; Veltri, Pierluigi; Zaccaria, Pierluigi

    2016-02-01

    The negative-ion accelerator for the MITICA neutral beam injector has been designed and optimized in order to reduce the thermo-mechanical stresses in all components below limits compatible with the required fatigue life. However, deviation from the expected beam performances can be caused by "off-normal" operating conditions of the accelerator. The purpose of the present work is to identify and analyse all the "off-normal" operating conditions, which could possibly become critical in terms of thermo-mechanical stresses or of degradation of the optical performances of the beam. PMID:26932039

  11. Detailed Experimental Study of Ion Acceleration by Interaction of an Ultra-Short Intense Laser with an Underdense Plasma

    NASA Astrophysics Data System (ADS)

    Kahaly, S.; Sylla, F.; Lifschitz, A.; Flacco, A.; Veltcheva, M.; Malka, V.

    2016-08-01

    Ion acceleration from intense (Iλ2 > 1018 Wcm‑2 μm2) laser-plasma interaction is experimentally studied within a wide range of He gas densities. Focusing an ultrashort pulse (duration  ion plasma period) on a newly designed submillimetric gas jet system, enabled us to inhibit total evacuation of electrons from the central propagation channel reducing the radial ion acceleration associated with ponderomotive Coulomb explosion, a mechanism predominant in the long pulse scenario. New ion acceleration mechanism have been unveiled in this regime leading to non-Maxwellian quasi monoenergetic features in the ion energy spectra. The emitted nonthermal ion bunches show a new scaling of the ion peak energy with plasma density. The scaling identified in this new regime differs from previously reported studies.

  12. Detailed Experimental Study of Ion Acceleration by Interaction of an Ultra-Short Intense Laser with an Underdense Plasma

    PubMed Central

    Kahaly, S.; Sylla, F.; Lifschitz, A.; Flacco, A.; Veltcheva, M.; Malka, V.

    2016-01-01

    Ion acceleration from intense (Iλ2 > 1018 Wcm−2 μm2) laser-plasma interaction is experimentally studied within a wide range of He gas densities. Focusing an ultrashort pulse (duration  ion plasma period) on a newly designed submillimetric gas jet system, enabled us to inhibit total evacuation of electrons from the central propagation channel reducing the radial ion acceleration associated with ponderomotive Coulomb explosion, a mechanism predominant in the long pulse scenario. New ion acceleration mechanism have been unveiled in this regime leading to non-Maxwellian quasi monoenergetic features in the ion energy spectra. The emitted nonthermal ion bunches show a new scaling of the ion peak energy with plasma density. The scaling identified in this new regime differs from previously reported studies. PMID:27531755

  13. Selectively accelerated lithium ion transport to silicon anodes via an organogel binder

    NASA Astrophysics Data System (ADS)

    Hwang, Chihyun; Cho, Yoon-Gyo; Kang, Na-Ri; Ko, Younghoon; Lee, Ungju; Ahn, Dongjoon; Kim, Ju-Young; Kim, Young-Jin; Song, Hyun-Kon

    2015-12-01

    Silicon, a promising high-capacity anode material of lithium ion batteries, suffers from its volume expansion leading to pulverization and low conductivities, showing capacity decay during cycling and low capacities at fast charging and discharging. In addition to popular active-material-modifying strategies, building lithium-ion-rich environments around silicon surface is helpful in enhancing unsatisfactory performances of silicon anodes. In this work, we accelerated lithium ion transport to silicon surface by using an organogel binder to utilize the electroactivity of silicon in a more efficient way. The cyanoethyl polymer (PVA-CN), characterized by high lithium ion transference number as well as appropriate elastic modulus with strong adhesion, enhanced cycle stability of silicon anodes with high coulombic efficiency even at high temperature (60 °C) as well as at fast charging/discharging rates.

  14. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  15. Generation of electrostatic waves as a consequence of chaotic ion acceleration in the neutral sheet

    NASA Technical Reports Server (NTRS)

    Burinskaya, T.; Schriver, D.; Ashour-Abdalla, M.

    1994-01-01

    The stability of ion distributions with velocity space holes caused by chaotic ion acceleration in the vicinity of the field reversal region in the Earth's magnetotail is investigated. It is shown that such distributions are unstable to electrostatic waves with wave vector directed along the Sun-Earth line. The solution of the quasi-linear equation shows that the saturation of the instability occurs due to velocity space trapping of the low-energy background ions and results in a flattening of the reduced ion distribution function in the region of the original velocity space hole. The energy level of the excited waves in the vicinity of the Earth's midplane is estimated as a function of the initial size of the empty velocity space region.

  16. Modeling Electron Clouds in High-Current Ion Accelerators with Solenoid Focusing

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Cohen, R. H.; Grote, D. P.; Vay, J.-L.; Haber, I.

    2006-10-01

    Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics (HEDP). These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to beam deflection, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations to show the evolution of the electron and ion-beam distributions first in idealized 2-D solenoid fields and then in the 3-D field values obtained from probes. Comparisons are made with experimental data, and several techniques to mitigate electron effects are demonstrated numerically.

  17. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  18. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    SciTech Connect

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-18

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  19. Ion beam and plasma methods of producing diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.

    1988-01-01

    A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.

  20. Stochastic heating and acceleration of minor ions by turbulent Alfven waves

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, B.; Yoon, P. H.; Wu, C. S.

    2011-12-01

    The heating and acceleration of ions in the solar corona and the solar wind is a longstanding topic in solar-terrestrial physics. SOHO observations show that minor heavy ions have higher perpendicular temperature anisotropy and their outflow velocities are significantly higher than that of protons in the solar corona. It is also known that heavy ions, with mass-proportional temperatures, flow faster than the protons by approximately the local Alfven speed in the fast solar wind. The present work addresses the stochastic heating of minor ions by obliquely-propagating low-frequency Alfven waves. An important characteristic of the stochastic heating is unearthed by means of test particle simulation. That is, when the wave amplitude exceeds some threshold condition for stochasticity, the quasi-asymptotic kinetic temperature associated with the minor ions becomes independent of the wave amplitude and proportional to the ion mass, and it always approaches the value dictated by the Alfven speed, to wit, Tkin≈mivA2/2. During the course of the heating process the minor ions gain a net average parallel speed, v||˜vA in the laboratory frame. The physical mechanism for the asymptotically independent heating is the pickup process that involves the formation of spherical shell velocity distribution function via the pitch-angle scattering. These results are generally consistent with observational properties of minor ions. In the corona, minor ions may be not fully picked up and just a partial shell velocity distribution is formed. Thus, the minor ion temperature is highly anisotropic, and flow faster than protons by a fraction of the local Alfven speed. On the other hand, in the interplanetary space, the fully spherical shell velocity distribution may have been nearly formed, so the minor ion temperature is proportional to their mass, and flow faster than protons by about the local Alfven speed.

  1. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  2. Formation of Diamond-like Carbon Thin Films by Ion Beam Assisted Deposition Method

    NASA Astrophysics Data System (ADS)

    Nakamura, Isao; Takano, Ichiro; Sasaki, Michiko; Takashika, Masaru; Kasiwagi, Tomohumi; Sawada, Yohio

    The mechanical properties of diamond-like carbon (DLC) thin films on SUS304 substrate have been studied. DLC thin films were prepared by the ion beam assisted deposition method. In this method, He+ ion irradiation was carried out in a C2H4 gas atmosphere. He+ ions were accelerated at an energy of 15 keV, and the ion beam current densities were changed from 10 to 100 μA/cm2. Atomic concentration and structure of the films were investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The mechanical properties of hardness and friction coefficient were determined using the Knoop hardness tester and the pin-on-disk tribometer. The DLC thin films had amorphous structure that composed chiefly of graphite and disorder of graphite states. The Knoop hardness of the films increased with increasing He+ ion current density, and the film prepared at a current density of 80 μA/cm2 showed the maximum Knoop hardness value of 890 kgf/cm2. The friction coefficient of the film prepared at a current density of 60 μA/cm2 indicated lower value than that of the other current densities. From these results, it was cleared that the mechanical properties and structure of DLC thin films were greatly affected by the He+ ion beam current density.

  3. Rare earth element complexation by carbonate and oxalate ions

    NASA Astrophysics Data System (ADS)

    Cantrell, Kirk J.; Byrne, Robert H.

    1987-03-01

    Rare earth carbonate and oxalate complexation constants have been determined through ex-amination of distribution equilibria between tributyl phosphate and an aqueous perchlorate phase. Carbonate complexation constants appropriate to the REE in seawater (25°C, 35%., 1 atm) can be described in terms of atomic number, Z. nlog swβ1 = 4.853 + 0.1135( Z - 57) - 0.003643( Z - 57) 2log swβ2 = 80.197 + 0.1730( Z - 57) - 0.002714( Z -57) 2 where swβ 1 = [MCO +3] /[M 3+][CO 2-3] T, swβ 2 = [M(CO 3) -3] /[M 3+][CO 2-3] 2' T [ M3+] is an uncomplexed rare earth concentration in seawater, [ MCO+3] and [ M( CO-3) 2] are carbonate complex concentrations, and [CO 2-3] T is the total (free plus ion paired) carbonate ion concentration in seawater (molal scale). Our analyses indicate that in seawater with a total carbonate ion concentration of 1.39 × 10 -4 moles/Kg H 2O, carbonate complexes for the lightest rare earth, La, constitute 86% of the total metal, 7% is free La 3+ and the remaining 7% exists as hydroxide, sulfate, chloride and fluoride complexes. For Lu, the heaviest rare earth, carbonate complexes are 98% of the total metal, 0.3% is uncomplexed and 1.5% is complexed with hydroxide, sulfate, chloride and fluoride. Oxalate and carbonate constants are linearly correlated. This correlation appears to be quite useful for estimating trivalent metal-arbonate stability constants from their respective oxalate stability constants.

  4. Design study of low energy beam transport line for ion beams of the post-accelerator at RAON

    NASA Astrophysics Data System (ADS)

    Lee, Yumi; Kim, Eun-San

    2015-07-01

    Low-energy ions produced by the ion source pass through the focusing and acceleration sections. During this process, the ions accumulate energy and are finally transported to the apparatus that utilizes them for a specific purpose. Thus, in order to increase the transmission efficiency of the ion beams, the low energy beam transport (LEBT) system must minimize the beam loss and the emittance growth. The LEBT system is designed and optimized to transmit 132Sn16+ and 58Ni8+ beams of the post-accelerator at RAON that is the accelerator complex for the rare isotope science. The post-accelerator LEBT line comprises solenoids and electrostatic quadrupoles for transverse focusing and a multi-harmonic buncher for longitudinal focusing. This paper presents the results of the optical design and beam tracking for the post-accelerator LEBT obtained by using TraceWIN and TRACK codes.

  5. Nonlinear development of strong current-driven instabilities and selective acceleration of ^3He ions

    NASA Astrophysics Data System (ADS)

    Toida, Mieko; Okumura, Hayato

    2003-10-01

    In some solar flares, the abundance of high-energy ^3He ions is extremely increased. As a mechanism for these ^3He rich events, current-driven instabilities are believed to be important. Nonlinear development of the strong current-driven instabilities and associated energy transfer to ^3He ions are studied theoretically and numerically [1]. First, by means of a two-dimensional, electrostatic, particle simulation code, it is demonstrated that ^3He ions are selectively accelerated by fundamental H cyclotron waves with frequencies ω ≃ 2Ω_3He (Ω_3He is the cyclotron frequency of ^3He). Then, from the analysis of the dispersion relation of these waves, it is found that the ω ≃ 2 Ω_ 3He waves have the greatest growth rate, if Te > 10 T_H. Energies of the ^3He ions are also discussed. Theoretical expression for the maximum ^3He energy is presented, which is in good agreement with the simulation results. Based on this theory, it is shown that when the initial electron drift energy is of the order of 10 keV, many ^3He ions can be accelerated to energies of the order of MeV/n. [1] M. Toida and H. Okumura, J. Phys. Soc. Jpn. 72,1098 (2003)

  6. Ion acceleration at CME-driven shocks near the Earth and the Sun

    SciTech Connect

    Desai, Mihir; Dayeh, Maher; Ebert, Robert; Smith, Charles; Mason, Glenn; Li, G.

    2012-11-20

    We compare the behavior of heavy ion spectra during an Energetic Storm Particle (ESP) event that exhibited clear evidence of wave excitation with that observed during an intense, large gradual Solar Energetic Particle (SEP) event in which the associated <0.2 MeV/nucleon ions are delayed >12 hr. We interpret that the ESP event is an example of the first-order Fermi acceleration process where enhancements in the magnetic field power spectral densities around local ion cyclotron frequency {nu}{sub pc} indicate the presence of Alfven waves excited by accelerated protons streaming away from the in-situ interplanetary shock. The softening or unfolding of the CNO energy spectrum below {approx}200 keV/nucleon and the systematic organization of the Fe and O spectral roll-overs with the E/q ratio during the ESP event are likely due to M/Q-dependent trapping and scattering of the heavy ions by the proton-excited waves. Based on striking similarities in the spectral behavior observed upstream of both, the ESP and the SEP event, we suggest that coupling between proton-generated Alfven waves and energetic ions is also operating at the distant CME shock during the large, gradual SEP event, thereby providing us with a new, powerful tool to remotely probe the roles of shock geometries and wave-particle interactions at near-Sun CME-driven shocks.

  7. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores

    SciTech Connect

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-04-09

    Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion

  8. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    NASA Astrophysics Data System (ADS)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Gu, Y. Q.; Ma, W. J.; Yan, X. Q.

    2016-08-01

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  9. Construction of a 300-keV compact ion microbeam system with a three-stage acceleration lens

    NASA Astrophysics Data System (ADS)

    Ishii, Yasuyuki; Ohkubo, Takeru; Kojima, Takuji; Kamiya, Tomihiro

    2014-08-01

    Hydrogen ion microbeams were experimentally formed at beam energies below 150 keV using a 300-keV compact microbeam system that was constructed at the Japan Atomic Energy Agency. This paper is a preliminary report on the performance of the three-stage acceleration lens used in the compact microbeam system. This system consists of a three-stage acceleration lens and a plasma-type ion source. Since the three-stage acceleration lens was designed to simultaneously accelerate and focus the ion beam, the compact microbeam system is only about 1-m high and can be placed in a small experimental room. To evaluate the effectiveness of the three-stage acceleration lens, experimentally measured beam sizes are compared with theoretically calculated ones. The calculated and measured beam sizes were consistent within 10%. This shows that the three-stage acceleration lens is effective as a focusing lens for forming microbeams.

  10. Ion chromatography detection of fluoride in calcium carbonate.

    PubMed

    Lefler, Jamie E; Ivey, Michelle M

    2011-09-01

    Fluoride in aquatic systems is increasing due to anthropogenic pollution, but little is known about how this fluoride affects organisms that live in and around aquatic habitats. Fluoride can bioaccumulate in structures comprised of calcium carbonate, such as shells and skeletons of both freshwater and saltwater species as diverse as snails, corals, and coccolithophorid algae. In this article, ion chromatography (IC) techniques are developed to detect and quantify fluoride in a matrix of calcium carbonate. Solid samples are dissolved in hydrochloric acid, pretreated to remove the majority of the chloride ions, and then analyzed using IC. With these methods, the 3σ limit of detection is 0.2 mg of fluoride/kg of calcium carbonate. PMID:21859530

  11. Hydrogen recycling control by helium ion bombardment onto carbonized surfaces

    NASA Astrophysics Data System (ADS)

    Sugai, H.; Toyoda, H.; Ohshita, S.; Yoshida, S.; Sagara, A.

    1989-04-01

    A strong pumping effect was observed in a hydrogen recycling simulation experiment in a carbonized toroidal device at room temperature. The pumping effect was induced by conditioning the carbon-thin-film deposited wall with a short (~10 min) helium glow discharge. A large amount of hydrogen (~10 16cm-2) was desorbed from carbon films with helium ion bombardment at 200 eV. After conditioning, the recycling coefficient was drastically reduced from about 2 to a value close to zero. Furthermore, an advanced (multilayer) coating was developed with use of helium ion induced desorption, where a short burst of methane was admixed at regular intervals in a helium glow discharge. A fairly large wall pumping was realized by the multilayer coating when the thickness of each layer and the helium bombarding time were optimized.

  12. Acceleration of Pickup Ions between the Magnetically-Connected Corotating Interaction Regions

    NASA Astrophysics Data System (ADS)

    Tsubouchi, K.

    2014-12-01

    We perform hybrid simulations to investigate the acceleration process of pickup ions (PUIs) at corotating interaction regions (CIRs) bounded by forward and reverse shocks. It has conventionally been supposed that PUIs accelerate in the direction of the motional electric field along the shock surface via a shock-drift or shock-surfing process. In contrast, we identify a different process that the efficient PUI acceleration takes place in the field-aligned component, as long as the magnetic field is oblique to the shock. This is due to the magnetic mirror effect at the shock, indicating adiabatic acceleration. The PUIs accelerated via this process are reflected back toward the shock upstream. These reflected energetic PUIs can move back and forth along the magnetic field between a pair of CIRs that are magnetically connected. The PUIs are repeatedly accelerated in each reflection, leading to a maximum energy gain close to 100 keV. The results are partly consistent with the observations recently reported by Wu et al. (2014). Furthermore, this mechanism well accounts for the "preacceleration" for the generation of ACRs.

  13. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    SciTech Connect

    Liu, C.; Marusic, A.; Minty, M.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  14. Carbon-Based Ion Optics Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Haag, Thomas; Patterson, Michael; Rawlin, Vince; Soulas, George

    2002-01-01

    With recent success of the NSTAR ion thruster on Deep Space 1, there is continued interest in long term, high propellant throughput thrusters to perform energetic missions. This requires flight qualified thrusters that can operate for long periods at high beam density, without degradation in performance resulting from sputter induced grid erosion. Carbon-based materials have shown nearly an order of magnitude improvement in sputter erosion resistance over molybdenum. NASA Glenn Research Center (GRC) has been active over the past several years pursuing carbon-based grid development. In 1995, NASA GRC sponsored work performed by the Jet Propulsion Laboratory to fabricate carbon/carbon composite grids using a machined panel approach. In 1999, a contract was initiated with a commercial vendor to produce carbon/carbon composite grids using a chemical vapor infiltration process. In 2001, NASA GRC purchased pyrolytic carbon grids from a commercial vendor. More recently, a multi-year contract was initiated with North Carolina A&T to develop carbon/carbon composite grids using a resin injection process. The following paper gives a brief overview of these four programs.

  15. Resonant absorption effects induced by polarized laser light irradiating thin foils in the TNSA regime of ion acceleration

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Badziak, J.; Rosinski, M.; Zaras-Szydlowska, A.; Pfeifer, M.; Torrisi, A.

    2016-04-01

    Thin foils were irradiated by short pulsed lasers at intensities of 1016-19W/cm2 in order to produce non-equilibrium plasmas and ion acceleration from the target-normal-sheath-acceleration (TNSA) regime. Ion acceleration in forward direction was measured by SiC detectors and ion collectors used in the time-of-flight configuration. Laser irradiations were employed using p-polarized light at different incidence angles with respect to the target surface and at different focal distances from the target surface. Measurements demonstrate that resonant absorption effects, due to the plasma wave excitations, enhance the plasma temperature and the ion acceleration with respect to those performed without to use of p-polarized light. Dependences of the ion flux characteristics on the laser energy, wavelength, focal distance and incidence angle will be reported and discussed.

  16. Acceleration of solar wind ions to 1 MeV by electromagnetic structures upstream of the Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K.; Markidis, S.; Eliasson, B.; Strumik, M.; Yamauchi, M.

    2013-05-01

    We present measurements from the ESA/NASA Cluster mission that show in situ acceleration of ions to energies of 1 MeV outside the bow shock. The observed heating can be associated with the presence of electromagnetic structures with strong spatial gradients of the electric field that lead to ion gyro-phase breaking and to the onset of chaos in ion trajectories. It results in rapid, stochastic acceleration of ions in the direction perpendicular to the ambient magnetic field. The electric potential of the structures can be compared to a field of moguls on a ski slope, capable of accelerating and ejecting the fast running skiers out of piste. This mechanism may represent the universal mechanism for perpendicular acceleration and heating of ions in the magnetosphere, the solar corona and in astrophysical plasmas. This is also a basic mechanism that can limit steepening of nonlinear electromagnetic structures at shocks and foreshocks in collisionless plasmas.

  17. Seed population for about 1 MeV per nucleon heavy ions accelerated by interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Klecker, B.; Hovestadt, D.

    1989-01-01

    Data obtained between 1977 and 1982 by the ISEE 1 and ISEE 3 satellites on the composition of heavy ions of about 1 MeV per nucleon, accelerated in interplanetary shock events which followed solar flare events, are examined. It was found that the average relative abundances for C, O, and Fe in the shock events were very close to those found for energetic ions in the solar flares, suggesting that, at these energies, the shock accelerated particles have the solar energetic particles as their seed population. This hypothesis is supported by the fact that the Fe/O ratio in the solar particle events is very strongly correlated with the Fe/O ratio in associated diffusive shock events.

  18. Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Vago, J. L.; Kintner, P. M.; Chesney, S. W.; Arnoldy, R. L.; Lynch, K. A.; Moore, T. E.; Pollock, C. J.

    1992-01-01

    Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O(+) source region below 2000 km. In this paper we demonstrate that intense (100-300 mV/m) lower hybrid waves are responsible for transversely accelerating H(+) and O(+) ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements we discuss were conducted in the nightside auroral zone at latitudes between 500 km and 1100 km. Our results are consistent with theories of lower hybrid wave condensation and collapse.

  19. Charge-exchange erosion studies of accelerator grids in ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Ruyten, Wilhelmus M.; Keefer, Dennis

    1993-01-01

    A particle simulation model is developed to study the charge-exchange grid erosion in ion thrusters for both ground-based and space-based operations. Because the neutral gas downstream from the accelerator grid is different for space and ground operation conditions, the charge-exchange erosion processes are also different. Based on an assumption of now electric potential hill downstream from the ion thruster, the calculations show that the accelerator grid erosion rate for space-based operating conditions should be significantly less than experimentally observed erosion rates from the ground-based tests conducted at NASA Lewis Research Center (LeRC) and NASA Jet Propulsion Laboratory (JPL). To resolve this erosion issue completely, we believe that it is necessary to accurately measure the entire electric potential field downstream from the thruster.

  20. Numerical simulation for the accelerator of the KSTAR neutral beam ion source.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; In, Sang Ryul

    2010-02-01

    Recent experiments with a prototype long-pulse, high-current ion source being developed for the neutral beam injection system of the Korea Superconducting Tokamak Advanced Research have shown that the accelerator grid assembly needs a further upgrade to achieve the final goal of 120keV/65A for the deuterium ion beam. The accelerator upgrade concept was determined theoretically by simulations using the IGUN code. The simulation study was focused on finding parameter sets that raise the optimum perveance as large as possible and reduce the beam divergence as low as possible. From the simulation results, it was concluded that it is possible to achieve this goal by sliming the plasma grid (G1), shortening the second gap (G2-G3), and adjusting the G2 voltage ratio.

  1. Charge state breeding for the acceleration of radioactive ions at TRIUMF

    SciTech Connect

    Ames, F.; Baartman, R.; Bricault, P.; Jayamanna, K.; McDonald, M.; Lamy, T.

    2010-02-15

    A 14.5 GHz electron cyclotron resonance ion source (PHOENIX from Pantechnik) has been set up at the Isotope Separation and ACceleration (ISAC) facility at TRIUMF for the charge state breeding of radioactive ions. After extensive testing and optimization on a test bench it has been moved on-line and put into operation. During a first test in 2008 a beam of {sup 80}Rb{sup 14+} was successfully created from {sup 80}Rb{sup 1+} and accelerated by the ISAC postaccelerator. Further tests with different stable and radioactive isotopes from the ISAC on-line sources and from a test source with stable Cs have been carried out. Until now an efficiency of 1.4% for {sup 124}Cs{sup 20+} has been obtained.

  2. Design and testing of a DC ion injector suitable for accelerator-driven transmutation

    NASA Astrophysics Data System (ADS)

    Schneider, J. David; Meyer, Earl; Stevens, Ralph R.; Hansborough, Lash; Sherman, Joseph

    1995-09-01

    For a number of years, Los Alamos personnel have collaborated with a team of experimentalists at Chalk River Labs (CRL) near Deep River, Ontario, Canada who were pursuing the development of the front end of a high power cw proton accelerator. At the termination of this program last year, Los Alamos acquired this equipment. With the help of internal Laboratory funding and modest defense conversion funds, we have set up and operated the accelerator at Los Alamos. Operational equipment includes a slightly modified Chalk River Injector Test Stand (CRITS) including a 50 keV proton injector and a 1.25 MeV radio-frequency quadrupole (RFQ) with a klystrode rf power system. Substantial upgrading and modification of the ac power system was necessary to provide the required ac voltage (2400 vac) and power (2 MVA) needed for the operation of this equipment. A companion paper describes in detail the first ion source and beam-transport measurements at Los Alamos. Many of the challenges involved in operating an rf linear accelerator to provide neutrons for an accelerator-driven reactor are encountered at the front (low energy) end of this system. The formation of the ion beam, the control of the beam parameters, and the focusing and matching of a highly space-charge-dominated beam are major problems. To address the operating problems in this critical front end, the Accelerator Operations and Technology Division at the Los Alamos National Laboratory has designed the APDF (Accelerator Prototype Demonstration Facility). The front end of this facility is a 75 keV, high-current, ion injector which has been assembled and is now being tested. This paper discusses the design modifications required in going from the 50 keV CRITS injector to the higher current, 75 keV injector. Major innovative changes were made in the design of this injector. This design eliminates all the control electronics and most of the ion source equipment at high potential. Also, a new, high-quality, ion

  3. Heavy ion action on single cells: Cellular inactivation capability of single accelerated heavy ions

    NASA Technical Reports Server (NTRS)

    Kost, M.; Pross, H.-D.; Russmann, C.; Schneider, E.; Kiefer, J.; Kraft, G.; Lenz, G.; Becher, W.

    1994-01-01

    Heavy ions (HZE-particles) constitute an important part of radiation in space. Although their number is small the high amount of energy transferred by individual particles may cause severe biological effects. Their investigation requires special techniques which were tested by experiments performed at the UNILAC at the GSI (Darmstadt). Diploid yeast was used which is a suitable eucaryotic test system because of its resistance to extreme conditions like dryness and vacuum. Cells were placed on nuclear track detector foils and exposed to ions of different atomic number and energy. To assess the action of one single ion on an individual cell, track parameters and the respective colony forming abilities (CFA) were determined with the help of computer aided image analysis. There is mounting evidence that not only the amount of energy deposited along the particle path, commonly given by the LET, is of importance but also the spatial problem of energy deposition at a submicroscopical scale. It is virtually impossible to investigate track structure effects in detail with whole cell populations and (globally applied) high particle fluences. It is, therefore, necessary to detect the action of simple ions in individual cells. The results show that the biological action depends on atomic number and specific energy of the impinging ions, which can be compared with model calculations of recent track structure models.

  4. Ion acceleration in a helicon source due to the self-bias effect

    NASA Astrophysics Data System (ADS)

    Wiebold, Matt; Sung, Yung-Ta; Scharer, John E.

    2012-05-01

    Time-averaged plasma potential differences up to 165 V over several hundred Debye lengths are observed in low pressure (pn < 1 mTorr) expanding argon plasmas in the Madison Helicon eXperiment (MadHeX). The potential gradient leads to ion acceleration greater than that predicted by ambipolar expansion, exceeding Ei ≈ 7 kTe in some cases. RF power up to 500 W at 13.56 MHz is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field, adjustable up to 1 kG. A retarding potential analyzer (RPA) measures the ion energy distribution function (IEDF) and a swept emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in density as RF power is increased. In the capacitive (E) mode, large fluctuations of the plasma potential (Vp -p≳140V, Vp-p/Vp¯≈150%) exist at the RF frequency and its harmonics. The more mobile electrons can easily respond to RF-timescale gradients in the plasma potential whereas the inertially constrained ions cannot, leading to an initial flux imbalance and formation of a self-bias voltage between the source and expansion chambers. In the capacitive mode, the ion acceleration is not well described by an ambipolar relation, while in the inductive and helicon modes the ion acceleration more closely follows an ambipolar relation. The scaling of the potential gradient with the argon flow rate and RF power are investigated, with the largest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees with that predicted for RF self-bias at a wall. Rapid fluctuations in the plasma potential result in a time-dependent axial electron flux that acts to "neutralize" the accelerated ion population, resulting in a zero net time-averaged current through the acceleration region when an

  5. Ion acceleration in a helicon source due to the self-bias effect

    SciTech Connect

    Wiebold, Matt; Sung, Yung-Ta; Scharer, John E.

    2012-05-15

    Time-averaged plasma potential differences up to 165 V over several hundred Debye lengths are observed in low pressure (p{sub n} < 1 mTorr) expanding argon plasmas in the Madison Helicon eXperiment (MadHeX). The potential gradient leads to ion acceleration greater than that predicted by ambipolar expansion, exceeding E{sub i} Almost-Equal-To 7 kT{sub e} in some cases. RF power up to 500 W at 13.56 MHz is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field, adjustable up to 1 kG. A retarding potential analyzer (RPA) measures the ion energy distribution function (IEDF) and a swept emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in density as RF power is increased. In the capacitive (E) mode, large fluctuations of the plasma potential (V{sub p-p} Greater-Than-Or-Equivalent-To 140V, V{sub p-p}/V{sub p} Almost-Equal-To 150%) exist at the RF frequency and its harmonics. The more mobile electrons can easily respond to RF-timescale gradients in the plasma potential whereas the inertially constrained ions cannot, leading to an initial flux imbalance and formation of a self-bias voltage between the source and expansion chambers. In the capacitive mode, the ion acceleration is not well described by an ambipolar relation, while in the inductive and helicon modes the ion acceleration more closely follows an ambipolar relation. The scaling of the potential gradient with the argon flow rate and RF power are investigated, with the largest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees with that predicted for RF self-bias at a wall. Rapid fluctuations in the plasma potential result in a time-dependent axial electron flux that acts to 'neutralize' the accelerated ion population

  6. Modelling of radiation losses for ion acceleration at ultra-high laser intensities

    NASA Astrophysics Data System (ADS)

    Capdessus, Remi; d'Humières, Emmanuel; Tikhonchuk, Vladimir

    2013-11-01

    Radiation losses of charged particles can become important in ultra high intensity laser plasma interaction. This process is described by the radiation back reaction term in the electron equation of motion. This term is implemented in the relativistic particle-in-cell code by using a renormalized Lorentz-Abraham-Dirac model. In the hole boring regime case of laser ion acceleration it is shown that radiation losses results in a decrease of the piston velocity.

  7. Electrostatic Wave Generation and Transverse Ion Acceleration by Alfvenic Wave Components of BBELF Turbulence

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2007-01-01

    We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.

  8. ION EXCHANGE PERFORMANCE OF TITANOSILICATES, GERMANATES AND CARBON NANOTUBES

    SciTech Connect

    Alsobrook, A. N.; Hobbs, D. T.

    2013-04-24

    This report presents a summary of testing the affinity of titanosilicates (TSP), germanium-substituted titanosilicates (Ge-TSP) and multiwall carbon nanotubes (MWCNT) for lanthanide ions in dilute nitric acid solution. The K-TSP ion exchanger exhibited the highest affinity for lanthanides in dilute nitric acid solutions. The Ge-TSP ion exchanger shows promise as a material with high affinity, but additional tests are needed to confirm the preliminary results. The MWCNT exhibited much lower affinities than the K-TSP in dilute nitric acid solutions. However, the MWCNT are much more chemically stable to concentrated nitric acid solutions and, therefore, may candidates for ion exchange in more concentrated nitric acid solutions. This technical report serves as the deliverable documenting completion of the FY13 research milestone, M4FT-13SR0303061 – measure actinide and lanthanide distribution values in nitric acid solutions with sodium and potassium titanosilicate materials.

  9. ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy

    SciTech Connect

    Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S.; Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H.

    1992-07-01

    LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or ``drive`` inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

  10. ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy

    SciTech Connect

    Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S. ); Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H. (Lawrence Liver

    1992-07-01

    LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or drive'' inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

  11. Computational Tools for Accelerating Carbon Capture Process Development

    SciTech Connect

    Miller, David; Sahinidis, N V; Cozad, A; Lee, A; Kim, H; Morinelly, J; Eslick, J; Yuan, Z

    2013-06-04

    This presentation reports development of advanced computational tools to accelerate next generation technology development. These tools are to develop an optimized process using rigorous models. They include: Process Models; Simulation-Based Optimization; Optimized Process; Uncertainty Quantification; Algebraic Surrogate Models; and Superstructure Optimization (Determine Configuration).

  12. Control of laser-accelerated ions: Recent advances and preliminary results from the new Trident 250-TW laser

    NASA Astrophysics Data System (ADS)

    Hegelich, B. Manuel; Albright, Brian J.; Yin, Lin; Flippo, Kirk A.; Cort Gautier, D.; Letzring, Samuel; Schulze, Roland; Schmitt, Mark; Fernandez, Juan C.

    2007-11-01

    Advanced target design, treatment and characterization enable progress in laser-driven ion acceleration. We demonstrate spectral shaping and mono-energetic features from in-situ formed source layers on different substrate materials. Advanced targets and experimental techniques allow control of the properties of laser accelerated ion beams, which is of importance to future applications like Ion Fast Ignition (IFI), WDM research and others. We will also present preliminary results from the new 250-TW Trident laser system that will allow the extrapolation of scaling laws similar to those derived for proton acceleration.

  13. Ultraintense laser interaction with nanoscale target: a simple model for layer expansion and ion acceleration

    SciTech Connect

    Albright, Brian J; Yin, Lin; Hegelich, Bjoorn M; Bowers, Kevin J; Huang, Chengkun; Fernandez, Juan C; Flippo, Kirk A; Gaillard, Sandrine; Kwan, Thomas J T; Henig, Andreas; Yan, Xue Q; Tajima, Toshi; Habs, Dieter

    2009-01-01

    A simple model has been derived for the expansion of a thin (up to 100s of nm thickness), solid-density target driven by an u.ltraintense laser. In this regime, new ion acceleration mechanisms, such as the Break-Out Afterburner (BOA) [1], emerge with the potential to dramatically improve energy, efficiency, and energy spread of laser-driven ion beams. Such beams have been proposed [2] as drivers for fast ignition inertial confinement fusion [3]. Analysis of kinetic simulations of the BOA shows two dislinct times that bound the period of enhanced acceleration: t{sub 1}, when the target becomes relativistically transparent to the laser, and t{sub 2}, when the target becomes classically underdense and the enhanced acceleration terminates. A silllple dynamical model for target expansion has been derived that contains both the early, one-dimensional (lD) expansion of the target as well as three-dimensional (3D) expansion of the plasma at late times, The model assumes that expansion is slab-like at the instantaneous ion sound speed and requires as input target composition, laser intensity, laser spot area, and the efficiency of laser absorption into electron thermal energy.

  14. Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass

    2015-11-01

    Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  15. Iron-ion radiation accelerates atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Yu, Tao; Parks, Brian W; Yu, Shaohua; Srivastava, Roshni; Gupta, Kiran; Wu, Xing; Khaled, Saman; Chang, Polly Y; Kabarowski, Janusz H; Kucik, Dennis F

    2011-06-01

    Radiation exposure from a number of terrestrial sources is associated with an increased risk for atherosclerosis. Recently, concern over whether exposure to cosmic radiation might pose a similar risk for astronauts has increased. To address this question, we examined the effect of 2 to 5 Gy iron ions ((56)Fe), a particularly damaging component of cosmic radiation, targeted to specific arterial sites in male apolipoprotein E-deficient (apoE(-/-)) mice. Radiation accelerated the development of atherosclerosis in irradiated portions of the aorta independent of any systemic effects on plasma lipid profiles or circulating leukocytes. Further, radiation exposure resulted in a more rapid progression of advanced aortic root lesions, characterized by larger necrotic cores associated with greater numbers of apoptotic macrophages and reduced lesional collagen compared to sham-treated mice. Intima media thickening of the carotid arteries was also exacerbated. Exposure to (56)Fe ions can therefore accelerate the development of atherosclerotic lesions and promote their progression to an advanced stage characterized by compositional changes indicative of increased thrombogenicity and instability. We conclude that the potential consequences of radiation exposure for astronauts on prolonged deep-space missions are a major concern. Knowledge gained from further studies with animal models should lead to a better understanding of the pathophysiological effects of accelerated ion radiation to better estimate atherogenic risk and develop appropriate countermeasures to mitigate its damaging effects. PMID:21466380

  16. Impingement-Current-Erosion Characteristics of Accelerator Grids on Two-Grid Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Barker, Timothy

    1996-01-01

    Accelerator grid sputter erosion resulting from charge-exchange-ion impingement is considered to be a primary cause of failure for electrostatic ion thrusters. An experimental method was developed and implemented to measure erosion characteristics of ion-thruster accel-grids for two-grid systems as a function of beam current, accel-grid potential, and facility background pressure. Intricate accelerator grid erosion patterns, that are typically produced in a short time (a few hours), are shown. Accelerator grid volumetric and depth-erosion rates are calculated from these erosion patterns and reported for each of the parameters investigated. A simple theoretical volumetric erosion model yields results that are compared to experimental findings. Results from the model and experiments agree to within 10%, thereby verifying the testing technique. In general, the local distribution of erosion is concentrated in pits between three adjacent holes and trenches that join pits. The shapes of the pits and trenches are shown to be dependent upon operating conditions. Increases in beam current and the accel-grid voltage magnitude lead to deeper pits and trenches. Competing effects cause complex changes in depth-erosion rates as background pressure is increased. Shape factors that describe pits and trenches (i.e. ratio of the average erosion width to the maximum possible width) are also affected in relatively complex ways by changes in beam current, ac tel-grid voltage magnitude, and background pressure. In all cases, however, gross volumetric erosion rates agree with theoretical predictions.

  17. Spectral Modification of Shock Accelerated Ions Using a Hydrodynamically Shaped Gas Target

    NASA Astrophysics Data System (ADS)

    Tresca, O.; Dover, N. P.; Cook, N.; Maharjan, C.; Polyanskiy, M. N.; Najmudin, Z.; Shkolnikov, P.; Pogorelsky, I.

    2015-08-01

    We report on reproducible shock acceleration from irradiation of a λ =10 μ m CO2 laser on optically shaped H2 and He gas targets. A low energy laser prepulse (I ≲1014 W cm-2 ) is used to drive a blast wave inside the gas target, creating a steepened, variable density gradient. This is followed, after 25 ns, by a high intensity laser pulse (I >1016 W cm-2 ) that produces an electrostatic collisionless shock. Upstream ions are accelerated for a narrow range of prepulse energies. For long density gradients (≳40 μ m ), broadband beams of He+ and H+ are routinely produced, while for shorter gradients (≲20 μ m ), quasimonoenergetic acceleration of protons is observed. These measurements indicate that the properties of the accelerating shock and the resultant ion energy distribution, in particular the production of narrow energy spread beams, is highly dependent on the plasma density profile. These findings are corroborated by 2D particle-in-cell simulations.

  18. Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target

    SciTech Connect

    Tresca, O.; Polyanskiy, M. N.; Dover, N. P.; Cook, N.; Maharjan, C.; Najmudin, Z.; Shkolnikov, P.; Pogorelsky, I.

    2015-08-28

    We report on reproducible shock acceleration from irradiation of a λ=10 μm CO2 laser on optically shaped H2 and He gas targets. A low energy laser prepulse (I≲1014 W cm–2) is used to drive a blast wave inside the gas target, creating a steepened, variable density gradient. This is followed, after 25 ns, by a high intensity laser pulse (I>1016 W cm–2) that produces an electrostatic collisionless shock. Upstream ions are accelerated for a narrow range of prepulse energies. For long density gradients (≳40 μm), broadband beams of He+ and H+ were routinely produced, whilst for shorter gradients (≲20 μm), quasimonoenergetic acceleration of protons is observed. These measurements indicate that the properties of the accelerating shock and the resultant ion energy distribution, in particular the production of narrow energy spread beams, is highly dependent on the plasma density profile. These findings are corroborated by 2D particle-in-cell simulations.

  19. Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target

    DOE PAGES

    Tresca, O.; Polyanskiy, M. N.; Dover, N. P.; Cook, N.; Maharjan, C.; Najmudin, Z.; Shkolnikov, P.; Pogorelsky, I.

    2015-08-28

    We report on reproducible shock acceleration from irradiation of a λ=10 μm CO2 laser on optically shaped H2 and He gas targets. A low energy laser prepulse (I≲1014 W cm–2) is used to drive a blast wave inside the gas target, creating a steepened, variable density gradient. This is followed, after 25 ns, by a high intensity laser pulse (I>1016 W cm–2) that produces an electrostatic collisionless shock. Upstream ions are accelerated for a narrow range of prepulse energies. For long density gradients (≳40 μm), broadband beams of He+ and H+ were routinely produced, whilst for shorter gradients (≲20 μm),more » quasimonoenergetic acceleration of protons is observed. These measurements indicate that the properties of the accelerating shock and the resultant ion energy distribution, in particular the production of narrow energy spread beams, is highly dependent on the plasma density profile. These findings are corroborated by 2D particle-in-cell simulations.« less

  20. Spectral Modification of Shock Accelerated Ions Using a Hydrodynamically Shaped Gas Target.

    PubMed

    Tresca, O; Dover, N P; Cook, N; Maharjan, C; Polyanskiy, M N; Najmudin, Z; Shkolnikov, P; Pogorelsky, I

    2015-08-28

    We report on reproducible shock acceleration from irradiation of a λ=10  μm CO_{2} laser on optically shaped H_{2} and He gas targets. A low energy laser prepulse (I≲10^{14}  W cm^{-2}) is used to drive a blast wave inside the gas target, creating a steepened, variable density gradient. This is followed, after 25 ns, by a high intensity laser pulse (I>10^{16}  W cm^{-2}) that produces an electrostatic collisionless shock. Upstream ions are accelerated for a narrow range of prepulse energies. For long density gradients (≳40  μm), broadband beams of He^{+} and H^{+} are routinely produced, while for shorter gradients (≲20  μm), quasimonoenergetic acceleration of protons is observed. These measurements indicate that the properties of the accelerating shock and the resultant ion energy distribution, in particular the production of narrow energy spread beams, is highly dependent on the plasma density profile. These findings are corroborated by 2D particle-in-cell simulations. PMID:26371658