Science.gov

Sample records for accelerated cerebral ischemic

  1. Ischemic brain injury in cerebral amyloid angiopathy

    PubMed Central

    van Veluw, Susanne J; Greenberg, Steven M

    2016-01-01

    Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA. PMID:25944592

  2. Sensitivity to acute cerebral ischemic injury in migraineurs

    PubMed Central

    Mawet, Jerome; Eikermann-Haerter, Katharina; Park, Kwang-Yeol; Helenius, Johanna; Daneshmand, Ali; Pearlman, Lea; Avery, Ross; Negro, Andrea; Velioglu, Murat; Arsava, Ethem Murat

    2015-01-01

    Objective: Migraine, particularly with aura, is a risk factor for ischemic stroke. Recent data in migraine mutant mice suggest that cerebral hyperexcitability associated with migraine accelerates recruitment of ischemic penumbra into the core, resulting in faster infarct growth compared with wild type. We hypothesized that individuals with a history of migraine are more likely to exhibit increased recruitment of ischemic tissue into the infarct in acute stroke. Methods: In this retrospective case-control study, we identified participants with reliably documented migraine history, measured lesion volumes on diffusion-weighted and perfusion-weighted MRI obtained within 72 hours of symptom onset, calculated the proportion of ischemic tissue on perfusion-weighted imaging (PWI) hyperintense on diffusion-weighted imaging (DWI), and compared the proportion of patients with no-mismatch pattern defined as DWI lesion >83% of PWI lesion. Results: Migraineurs (n = 45) were younger, more often female, less likely to have vascular risk factors, and more often had cervical artery dissection, but otherwise did not differ from controls (n = 27). A significantly larger proportion of migraineurs had no-mismatch pattern, indicating that the entire perfusion defect was recruited into the infarct by the time of MRI (22% vs 4% of migraineurs and controls, respectively; p = 0.044). The difference was even more prominent in migraineurs with aura (36% vs 4%, p = 0.019). The association between migraine and no-mismatch pattern persisted after adjustment for time to MRI (p = 0.041). Conclusions: This case-control study supports the hypothesis that a history of migraine, particularly with aura, is associated with a no-mismatch pattern during acute ischemic stroke, consistent with data obtained in migraine mutant mice. PMID:26537055

  3. Cerebral circulation during acceleration stress

    NASA Astrophysics Data System (ADS)

    Cirovic, Srdjan

    A mathematical model of the cerebrovascular system has been developed to examine the influence of acceleration on cerebral circulation. The objective is to distinguish the main factors that limit cerebral blood flow in pilots subjected to accelerations which exceed the gravitational acceleration of the earth (Gz > 1). The cerebrovascular system was approximated by an open-loop network of elastic tubes and the flow in blood vessels was modeled according to a one-dimensional theory of flow in collapsible tubes. Since linear analysis showed that the speed of pulse propagation in the intracranial vessels should not be modified by the skull constraint, the same governing equations were used for the intracranial vessels as for the rest of the network. The steady and pulsatile components of the cerebrospinal fluid pressure were determined from the condition that the cranial volume must be conserved. After the qualitative aspects of the model results were verified experimentally, the open-loop geometry was incorporated into a global mathematical model of the cardiovascular system. Both the mathematical models and the experiment show that cerebral blood flow diminishes for Gz > 1 due to an increase in the resistance of the large veins in the neck, which collapse as soon as the venous pressure becomes negative. In contrast, the conservation of the cranial volume requires that the cerebrospinal and venous pressure always be approximately the same, and the vessels contained in the cranial cavity do not collapse. Positive pressure breathing provides protection by elevating blood arterial and venous pressures at the heart, thus preventing the venous collapse and maintaining the normal cerebral vascular resistance.

  4. Bone Fracture Exacerbates Murine Ischemic Cerebral Injury

    PubMed Central

    Degos, Vincent; Maze, Mervyn; Vacas, Susana; Hirsch, Jan; Guo, Yi; Shen, Fanxia; Jun, Kristine; van Rooijen, Nico; Gressens, Pierre; Young, William L.; Su, Hua

    2014-01-01

    Background Bone fracture increases alarmins and pro-inflammatory cytokines in the blood, and provokes macrophage infiltration and pro-inflammatory cytokine expression in the hippocampus. We recently reported that stroke is an independent risk factor after bone surgery for adverse outcome, the impact of bone fracture on stroke outcome is unknown. We tested the hypothesis that bone fracture, shortly after ischemic stroke, enhances stroke-related injuries by augmenting the neuroinflammatory response. Methods Tibia fracture (bone fracture) was induced in mice one day after permanent occlusion of the distal middle cerebral artery (stroke). High-mobility-group box chromosomal protein-1 (HMGB1) was tested to mimic the bone fracture effects. HMGB1 neutralizing antibody and clodrolip (macrophage depletion) were tested to attenuate the bone fracture effects. Neurobehavioral function (n=10), infarct volume, neuronal death, and macrophages/microglia-infiltration (n=6–7) were analyzed three days after. Results We found that mice with both stroke and bone fracture had larger infarct volumes (mean percentage of ipsilateral hemisphere±SD: 30±7% vs. 12±3%, n=6, P<0.001) more severe neurobehavioral dysfunction, and more macrophages/microglia in the peri-infarct region than mice with stroke only. Intraperitoneal injection of HMGB1 mimicked, whereas neutralizing HMGB1 attenuated, the bone fracture effects and the macrophage/microglia infiltration. Depleting macrophages with clodrolip also attenuated the aggravating effects of bone fracture on stroke lesion and behavioral dysfunction. Conclusions These novel findings suggest that bone fracture shortly after stroke enhances stroke injury via augmented inflammation through HMGB1 and macrophage/microglia infiltration. Interventions to modulate early macrophage/microglia activation could be therapeutic goals to limit the adverse consequences of bone fracture after stroke. PMID:23438676

  5. Nicotinamide restores the reduction of parvalbumin in cerebral ischemic injury.

    PubMed

    Koh, Phil-Ok

    2013-02-01

    The aim of this study investigated whether nicotinamide affects parvalbumin expression in focal cerebral ischemic injury. Rats were treated with vehicle or nicotinamide (500 mg/kg) 2 hr after middle cerebral artery occlusion (MCAO), and cerebral cortex tissues were collected 24 hr after MCAO. Nicotinamide significantly decreases the volume of infarct areas in the cerebral cortex. A proteomic approach revealed that MCAO induces decreases of parvalbumin levels, while nicotinamide treatment prevents injury-induced decreases in parvalbumin. RT-PCR and Western blot analyses demonstrated that nicotinamide restores injury-induced decreases in parvalbumin. Moreover, immunohistochemical staining confirmed that the numbers of parvalbumin-positive cells were decreased in vehicle-treated animals with MCAO, and that nicotinamide averted this decrease. In cultured hippocampal cells, nicotinamide treatment prevents the glutamate exposure-induced increase in intracellular Ca(2+) concentration and decrease in parvalbumin expression. These results suggest the fact that the maintenance of parvalbumin expression is mediated to the neuroprotective function of nicotinamide against ischemic brain injury.

  6. Hemorrhagic transformation and cerebral edema in acute ischemic stroke: Link to cerebral autoregulation

    PubMed Central

    Castro, Pedro; Azevedo, Elsa; Serrador, Jorge; Rocha, Isabel; Sorond, Farzaneh

    2017-01-01

    Background Hemorrhagic transformation and cerebral edema are feared complications of acute ischemic stroke but mechanisms are poorly understood and reliable early markers are lacking. Early assessment of cerebrovascular hemodynamics may advance our knowledge in both areas. We examined the relationship between dynamic cerebral autoregulation (CA) in the early hours post ischemia, and the risk of developing hemorrhagic transformation and cerebral edema at 24 h post stroke Methods We prospectively enrolled 46 patients from our center with acute ischemic stroke in the middle cerebral artery territory. Cerebrovascular resistance index was calculated. Dynamic CA was assessed by transfer function analysis (coherence, phase and gain) of the spontaneous blood flow velocity and blood pressure oscillations. Infarct volume, hemorrhagic transformation, cerebral edema, and white matter changes were collected from computed tomography performed at presentation and 24 h. Results At admission, phase was lower (worse CA) in patients with hemorrhagic transformation [6.6 ± 30 versus 45 ± 38°; adjusted odds ratio 0.95 (95% confidence internal 0.94–0.98), p = 0.023] and with cerebral edema [6.6 ± 30 versus 45 ± 38°, adjusted odds ratio 0.96 (0.92–0.999), p = 0.044]. Progression to edema was associated with lower cerebrovascular resistance (1.4 ± 0.2 versus 2.3 ± 1.5 mm Hg/cm/s, p = 0.033) and increased cerebral blood flow velocity (51 ± 25 versus 42 ± 17 cm/s, p = 0.033) at presentation. All hemodynamic differences resolved at 3 months Conclusions Less effective CA in the early hour post ischemic stroke is associated with increased risk of hemorrhagic transformation and cerebral edema, possibly reflecting breakthrough hyperperfusion and microvascular injury. Early assessment of dynamic CA could be useful in identifying individuals at risk for these complications. PMID:28017224

  7. Ketogenic diet prevents cardiac arrest-induced cerebral ischemic neurodegeneration.

    PubMed

    Tai, K-K; Nguyen, N; Pham, L; Truong, D D

    2008-07-01

    Ketogenic diet (KD) is an effective treatment for intractable epilepsies. We recently found that KD can prevent seizure and myoclonic jerk in a rat model of post-hypoxic myoclonus. In the present study, we tested the hypothesis that KD can prevent the cerebral ischemic neurodegeneration in this animal model. Rats fed a standard diet or KD for 25 days were being subjected to mechanically induced cardiac arrest brain ischemia for 8 min 30 s. Nine days after cardiac arrest, frozen rat brains were sectioned for evaluation of ischemia-induced neurodegeneration using fluoro-jade (FJ) staining. The FJ positive degenerating neurons were counted manually. Cardiac arrest-induced cerebral ischemia in rats fed the standard diet exhibited extensive neurodegeneration in the CA1 region of the hippocampus, the number of FJ positive neurons was 822+/-80 (n=4). They also showed signs of neurodegeneration in the Purkinje cells of the cerebellum and in the thalamic reticular nucleus, the number of FJ positive neurons in the cerebellum was 55+/-27 (n=4), the number of FJ positive neurons in the thalamic reticular nucleus was 22+/-5 (n=4). In contrast, rats fed KD showed no evidence of neurodegeneration, the number of FJ positive neurons in these areas were zero. The results demonstrate that KD can prevent cardiac arrest-induced cerebral ischemic neurodegeneration in selected brain regions.

  8. Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity.

    PubMed

    Choe, Chi-un; Lewerenz, Jan; Fischer, Gerry; Uliasz, Tracy F; Espey, Michael Graham; Hummel, Friedhelm C; King, Stephen Bruce; Schwedhelm, Edzard; Böger, Rainer H; Gerloff, Christian; Hewett, Sandra J; Magnus, Tim; Donzelli, Sonia

    2009-09-01

    Nitroxyl (HNO) donor compounds function as potent vasorelaxants, improve myocardial contractility and reduce ischemia-reperfusion injury in the cardiovascular system. With respect to the nervous system, HNO donors have been shown to attenuate NMDA receptor activity and neuronal injury, suggesting that its production may be protective against cerebral ischemic damage. Hence, we studied the effect of the classical HNO-donor, Angeli's salt (AS), on a cerebral ischemia/reperfusion injury in a mouse model of experimental stroke and on related in vitro paradigms of neurotoxicity. I.p. injection of AS (40 mumol/kg) in mice prior to middle cerebral artery occlusion exacerbated cortical infarct size and worsened the persistent neurological deficit. AS not only decreased systolic blood pressure, but also induced systemic oxidative stress in vivo indicated by increased isoprostane levels in urine and serum. In vitro, neuronal damage induced by oxygen-glucose-deprivation of mature neuronal cultures was exacerbated by AS, although there was no direct effect on glutamate excitotoxicity. Finally, AS exacerbated oxidative glutamate toxicity - that is, cell death propagated via oxidative stress in immature neurons devoid of ionotropic glutamate receptors. Taken together, our data indicate that HNO might worsen cerebral ischemia-reperfusion injury by increasing oxidative stress and decreasing brain perfusion at concentrations shown to be cardioprotective in vivo.

  9. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke.

    PubMed

    Hu, Xiaoming; De Silva, T Michael; Chen, Jun; Faraci, Frank M

    2017-02-03

    The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury after ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in blood-brain barrier integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events.

  10. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy.

    PubMed

    Distefano, Giuseppe; Praticò, Andrea D

    2010-09-16

    Hypoxic-ischemic encephalopathy (HIE) is the most important cause of cerebral damage and long-term neurological sequelae in the perinatal period both in term and preterm infant. Hypoxic-ischemic (H-I) injuries develop in two phases: the ischemic phase, dominated by necrotic processes, and the reperfusion phase, dominated by apoptotic processes extending beyond ischemic areas. Due to selective ischemic vulnerability, cerebral damage affects gray matter in term newborns and white matter in preterm newborns with the typical neuropathological aspects of laminar cortical necrosis in the former and periventricular leukomalacia in the latter. This article summarises the principal physiopathological and biochemical processes leading to necrosis and/or apoptosis of neuronal and glial cells and reports recent insights into some endogenous and exogenous cellular and molecular mechanisms aimed at repairing H-I cerebral damage.

  11. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy

    PubMed Central

    2010-01-01

    Hypoxic-ischemic encephalopathy (HIE) is the most important cause of cerebral damage and long-term neurological sequelae in the perinatal period both in term and preterm infant. Hypoxic-ischemic (H-I) injuries develop in two phases: the ischemic phase, dominated by necrotic processes, and the reperfusion phase, dominated by apoptotic processes extending beyond ischemic areas. Due to selective ischemic vulnerability, cerebral damage affects gray matter in term newborns and white matter in preterm newborns with the typical neuropathological aspects of laminar cortical necrosis in the former and periventricular leukomalacia in the latter. This article summarises the principal physiopathological and biochemical processes leading to necrosis and/or apoptosis of neuronal and glial cells and reports recent insights into some endogenous and exogenous cellular and molecular mechanisms aimed at repairing H-I cerebral damage. PMID:20846380

  12. Cerebral ischemic events in patients with pancreatic cancer

    PubMed Central

    Bonnerot, Mathieu; Humbertjean, Lisa; Mione, Gioia; Lacour, Jean-Christophe; Derelle, Anne-Laure; Sanchez, Jean-Charles; Riou-Comte, Nolwenn; Richard, Sébastien

    2016-01-01

    Abstract Stroke is a dramatic complication of pancreatic cancer with mechanisms related to oncological disease. A better description of the characteristics of cerebrovascular events would help better understand the pathogeny and protect vulnerable patients. We thus conducted a descriptive analysis of clinical, biological, and radiological features of patients from our centers and literature. We reviewed consecutive cases of patients who presented cerebrovascular events and pancreatic cancer in 4 stroke units in Lorrain (France) between January 1, 2009 and March 31, 2015, and all reported cases of literature. We identified 17 cases in our centers and 18 reported cases. Fifty-seven per cent of patients were male. Median age was 63 ± 14 years and ranged from 23 to 81 years. All cerebral events were ischemic. At the onset of stroke, pancreatic cancer had already been diagnosed in 59% of the patients in our centers for a mean time of 5.4 months. Five of them (29%) were being treated with gemcitabine and 2 (12%) with folfirinox. Adenocarcinoma at metastatic stage was reported in 82% of cases overall. Brain imaging revealed disseminated infarctions in 64%. High median levels of D-dimer (7600 ± 5 × 107 μg/L), C-reactive protein (63 ± 43 mg/L), and elevated prothrombin time (19 ± 6 seconds) were found. Thirty-six per cent of patients explored with echocardiography were diagnosed with nonbacterial thrombotic endocarditis. Ten of our patients received anticoagulant therapy as secondary stroke prevention without any documented recurrence. Nevertheless, outcome was poor with a median survival time of 28 ± 14 days after stroke onset. Cerebral ischemic events occur at advanced stages of pancreatic cancer, most likely by a thromboembolic mechanism. Disseminated infarctions and high D-dimer, C-reactive protein levels, and a high prothrombin time are the most constant characteristics found in this context. All patients should be screened for

  13. Temperature modulation of cerebral depolarization during focal cerebral ischemia in rats: correlation with ischemic injury.

    PubMed

    Chen, Q; Chopp, M; Bodzin, G; Chen, H

    1993-05-01

    The role of cerebral depolarizations in focal cerebral ischemia is unknown. We therefore measured the direct current (DC) electrical activity in the cortex of Wistar rats subjected to transient occlusion of the middle cerebral artery (MCA). Focal ischemia was induced for 90 min by insertion of an intraluminal filament to occlude the MCA. To modulate cell damage, we subjected the rats to hypothermic (30 degrees C, n = 4), normothermic (37 degrees C, n = 4), and hyperthermic (40 degrees C, n = 6) ischemia. Controlled temperatures were also maintained during 1 h of reperfusion. Continuous cortical DC potential changes were measured using two active Ag-AgCl electrodes placed in the cortical lesion. Animals were killed 1 week after ischemia. The brains were sectioned and stained with hematoxylin and eosin, for evaluation of neuronal damage, and calculation of infarct volume. All animals exhibited an initial depolarization within 30 min of ischemia, followed by a single depolarization event in hypothermic animals, and multiple periodic depolarization events in both normothermic and hyperthermic animals. Hyperthermic animals exhibited significantly more (p < 0.05) DC potential deflections (n = 6.17 +/- 0.67) than normothermic animals (n = 2.75 +/- 0.96). The ischemic infarct volume (% of hemisphere) was significantly different for the various groups; hypothermic animals exhibited no measurable infarct volume, while the ischemic infarct volume was 10.2 +/- 12.3% in normothermic animals and 36.5 +/- 3.4% in hyperthermic animals (p < 0.05). A significant correlation was detected between the volume of infarct and number of depolarization events (r = 0.90, p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Delayed treatment with ADAMTS13 ameliorates cerebral ischemic injury without hemorrhagic complication.

    PubMed

    Nakano, Takafumi; Irie, Keiichi; Hayakawa, Kazuhide; Sano, Kazunori; Nakamura, Yoshihiko; Tanaka, Masayoshi; Yamashita, Yuta; Satho, Tomomitsu; Fujioka, Masayuki; Muroi, Carl; Matsuo, Koichi; Ishikura, Hiroyasu; Futagami, Kojiro; Mishima, Kenichi

    2015-10-22

    Tissue plasminogen activator (tPA) is the only approved therapy for acute ischemic stroke. However, delayed tPA treatment increases the risk of cerebral hemorrhage and can result in exacerbation of nerve injury. ADAMTS13, a von Willebrand factor (VWF) cleaving protease, has a protective effect against ischemic brain injury and may reduce bleeding risk by cleaving VWF. We examined whether ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA in mice subjected to middle cerebral artery occlusion (MCAO). ADAMTS13 (0.1mg/kg) or tPA (10mg/kg) was administered i.v., immediately after reperfusion of after 2-h or 4-h MCAO for comparison of the therapeutic time windows in ischemic stroke. Infarct volume, hemorrhagic volume, plasma high-mobility group box1 (HMGB1) levels and cerebral blood flow were measured 24h after MCAO. Both ADAMTS13 and tPA improved the infarct volume without hemorrhagic complications in 2-h MCAO mice. On the other hand, ADAMTS13 reduced the infarct volume and plasma HMGB1 levels, and improved cerebral blood flow without hemorrhagic complications in 4-h MCAO mice, but tPA was not effective and these animals showed massive intracerebral hemorrhage. These results indicated that ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA, and ADAMTS13 may be useful as a new therapeutic agent for ischemic stroke.

  15. miR-455 inhibits neuronal cell death by targeting TRAF3 in cerebral ischemic stroke

    PubMed Central

    Yao, Shengtao; Tang, Bo; Li, Gang; Fan, Ruiming; Cao, Fang

    2016-01-01

    Ischemic stroke is one of the leading causes of brain disease, with high morbidity, disability, and mortality. MicroRNAs (miRNAs) have been identified as vital gene regulators in various types of human diseases. Accumulating evidence has suggested that aberrant expression of miRNAs play critical roles in the pathologies of ischemic stroke. Yet, the precise mechanism by which miRNAs control cerebral ischemic stroke remains unclear. In the present study, we explored whether miR-455 suppresses neuronal death by targeting TRAF3 in cerebral ischemic stroke. The expression levels of miR-455 and TRAF3 were detected by quantitative real-time polymerase chain reaction and Western blot. The role of miR-455 in cell death caused by oxygen–glucose deprivation (OGD) was assessed using Cell Counting Kit-8 (CCK-8) assay. The influence of miR-455 on infarct volume was evaluated in mouse brain after middle cerebral artery occlusion (MCAO). Bioinformatics softwares and luciferase analysis were used to find and confirm the targets of miR-455. The results showed that the expression levels of miR-455 significantly decreased in primary neuronal cells subjected to OGD and mouse brain subjected to MCAO. In addition, forced expression of miR-455 inhibited neuronal death and weakened ischemic brain infarction in focal ischemia-stroked mice. Furthermore, TRAF3 was proved to be a direct target of miR-455, and miR-455 could negatively suppress TRAF3 expression. Biological function analysis showed that TRAF3 silencing displayed the neuroprotective effect in ischemic stroke and could enhance miR-455-induced positive impact on ischemic injury both in vitro and in vivo. Taken together, miR-455 played a vital role in protecting neuronal cells from death by downregulating TRAF3 protein expression. These findings may represent a novel latent therapeutic target for cerebral ischemic stroke. PMID:27980410

  16. TNFR1 mediates increased neuronal membrane EAAT3 expression after in vivo cerebral ischemic preconditioning.

    PubMed

    Pradillo, J M; Hurtado, O; Romera, C; Cárdenas, A; Fernández-Tomé, P; Alonso-Escolano, D; Lorenzo, P; Moro, M A; Lizasoain, I

    2006-01-01

    A short ischemic event (ischemic preconditioning) can result in subsequent resistance to severe ischemic injury (ischemic tolerance). Glutamate is released after ischemia and produces cell death. It has been described that after ischemic preconditioning, the release of glutamate is reduced. We have shown that an in vitro model of ischemic preconditioning produces upregulation of glutamate transporters which mediates brain tolerance. We have now decided to investigate whether ischemic preconditioning-induced glutamate transporter upregulation takes also place in vivo, its cellular localization and the mechanisms by which this upregulation is controlled. A period of 10 min of temporary middle cerebral artery occlusion was used as a model of ischemic preconditioning in rat. EAAT1, EAAT2 and EAAT3 glutamate transporters were found in brain from control animals. Ischemic preconditioning produced an up-regulation of EAAT2 and EAAT3 but not of EAAT1 expression. Ischemic preconditioning-induced increase in EAAT3 expression was reduced by the TNF-alpha converting enzyme inhibitor BB1101. Intracerebral administration of either anti-TNF-alpha antibody or of a TNFR1 antisense oligodeoxynucleotide also inhibited ischemic preconditioning-induced EAAT3 up-regulation. Immunohistochemical studies suggest that, whereas the expression of EAAT3 is located in both neuronal cytoplasm and plasma membrane, ischemic preconditioning-induced up-regulation of EAAT3 is mainly localized at the plasma membrane level. In summary, these results demonstrate that in vivo ischemic preconditioning increases the expression of EAAT2 and EAAT3 glutamate transporters the upregulation of the latter being at least partly mediated by TNF-alpha converting enzyme/TNF-alpha/TNFR1 pathway.

  17. Peripheral administration of fetuin-A attenuates early cerebral ischemic injury in rats

    PubMed Central

    Wang, Haichao; Li, Wei; Zhu, Shu; Li, Jianhua; D'Amore, Jason; Ward, Mary F; Yang, Huan; Wu, Rongqian; Jahnen-Dechent, Willi; Tracey, Kevin J; Wang, Ping; Sama, Andrew E

    2010-01-01

    Cerebral ischemia-elicited inflammatory responses are driven by inflammatory mediators produced both by central (e.g., neurons and microglia) and infiltrating peripheral immune cells (e.g., macrophage/monocyte), and contribute to the evolution of tissue injury. A ubiquitous molecule, spermine, is released from injured cells, and counter-regulates release of various proinflammatory cytokines. However, the spermine-mediated anti-inflammatory activities are dependent on the availability of fetuin-A, a liver-derived negative acute-phase protein. Using an animal model of focal cerebral ischemia (i.e., permanent middle cerebral artery occlusion, MCAo), we found that levels of fetuin-A in the ischemic brain tissue were elevated in a time-dependent manner, starting between 2 and 6 h, peaking around 24 to 48 h, and returning to baseline 72 h after MCAo. When administered peripherally, exogenous fetuin-A gained entry across the BBB into the ischemic brain tissue, and dose dependently reduced brain infarct volume at 24 h after MCAo. Meanwhile, fetuin-A effectively attenuated (i) ischemia-induced HMGB1 depletion from the ischemic core; (ii) activation of centrally (e.g., microglia) and peripherally derived immune cells (e.g., macrophage/monocytes); and (iii) TNF production in ischemic brain tissue. Taken together, these experimental data suggest that fetuin-A protects against early cerebral ischemic injury partly by attenuating the brain inflammatory response. PMID:19953099

  18. Silent ischemic lesion laterality in asymptomatic internal carotid artery stenosis relates to reduced cerebral vasoreactivity

    PubMed Central

    Isozaki, Makoto; Kataoka, Hiroharu; Fukushima, Kazuhito; Ishibashi-Ueda, Hatsue; Yamada, Naoaki; Iida, Hidehiro; Iihara, Koji

    2017-01-01

    Background: We investigated the relationship between silent ischemic lesions, defined as hyperintense lesions on T2-weighted magnetic resonance imaging scans of brain white matter and cerebral hemodynamics (baseline cerebral blood flow and cerebral vasoreactivity). Methods: Between January 2007 and December 2012, 61 patients with asymptomatic internal carotid artery stenosis were evaluated for asymptomatic silent ischemic lesions, acute infarction, and cerebral hemodynamics. Patients were divided into 2 groups based on silent ischemic lesion distribution; the Symmetry group (n = 34) included patients who showed symmetrical distribution of lesions (or had no lesions), and the Asymmetry group (n = 27) included patients with a greater number of lesions in the ipsilateral than that in the contralateral hemisphere. The Asymmetry group was further divided into Internal (n = 15) and External (n = 12) types. Results: Two External-type patients (17%) showed spotty asymptomatic acute infarction in the ipsilateral hemisphere. There were no significant differences in patient characteristics, histopathological findings, vascular risk factors, or cerebral blood flow values between the groups. The mean cerebral vasoreactivity value in the ipsilateral hemisphere for the Internal type was 13.0 ± 15.2% (range: −11.4% to 41.6%), which was significantly lower than values of the contralateral hemisphere (36.7 ± 20.8%; range: 3.9% to 75.7%; P <.01) and ipsilateral hemispheres of the other groups (P <.01). Conclusions: The finding that increased ipsilateral asymmetrical silent ischemic lesions correlated with cerebral vasoreactivity reduction may help predict the risk of cerebral infarction in patients with asymptomatic internal carotid artery stenosis. PMID:28217385

  19. Cerebral Hemodynamics and Vascular Reactivity in Mild and Severe Ischemic Rodent Middle Cerebral Artery Occlusion Stroke Models

    PubMed Central

    Sim, Jeongeun; Jo, Areum; Kang, Bok-Man; Lee, Sohee; Bang, Oh Young; Heo, Chaejeong; Jhon, Gil-Ja; Lee, Youngmi

    2016-01-01

    Ischemia can cause decreased cerebral neurovascular coupling, leading to a failure in the autoregulation of cerebral blood flow. This study aims to investigate the effect of varying degrees of ischemia on cerebral hemodynamic reactivity using in vivo real-time optical imaging. We utilized direct cortical stimulation to elicit hyper-excitable neuronal activation, which leads to induced hemodynamic changes in both the normal and middle cerebral artery occlusion (MCAO) ischemic stroke groups. Hemodynamic measurements from optical imaging accurately predict the severity of occlusion in mild and severe MCAO animals. There is neither an increase in cerebral blood volume nor in vessel reactivity in the ipsilateral hemisphere (I.H) of animals with severe MCAO. The pial artery in the contralateral hemisphere (C.H) of the severe MCAO group reacted more slowly than both hemispheres in the normal and mild MCAO groups. In addition, the arterial reactivity of the I.H in the mild MCAO animals was faster than the normal animals. Furthermore, artery reactivity is tightly correlated with histological and behavioral results in the MCAO ischemic group. Thus, in vivo optical imaging may offer a simple and useful tool to assess the degree of ischemia and to understand how cerebral hemodynamics and vascular reactivity are affected by ischemia. PMID:27358581

  20. Severe Cerebral Vasospasm and Childhood Arterial Ischemic Stroke After Intrathecal Cytarabine.

    PubMed

    Tibussek, Daniel; Natesirinilkul, Rungrote; Sun, Lisa R; Wasserman, Bruce A; Brandão, Leonardo R; deVeber, Gabrielle

    2016-02-01

    We report on 2 patients who developed widespread cerebral vasospasm and arterial ischemic strokes (AIS) after application of intrathecal (IT) cytarabine. In a 3-year-old child with acute lymphoblastic leukemia (ALL), left leg weakness, hyperreflexia, and clonus were noted 4 days after her first dose of IT cytarabine during the induction phase of her chemotherapy. Cerebral MRI revealed multiple acute cerebral ischemic infarcts and widespread cerebral vasospasm. A 5-year-old girl complained of right arm and leg pain and began limping 11 days after IT cytarabine. Symptoms progressed to right dense hemiplegia, left gaze deviation, headache, and speech arrest. MRI revealed 2 large cortical areas of diffusion restriction in the right frontal and left parietal lobes. Cerebral magnetic resonance angiography (MRA) showed irregular narrowing affecting much of the intracranial arterial circulation. Although the first child fully recovered from her neurologic symptoms, the second patient had persistent hemiplegia on follow-up. Including this report, there are now 4 pediatric ALL cases of severe cerebral vasospasm and AIS in the context of IT cytarabine administration, strongly suggesting a true association. Differential diagnosis and management issues are discussed. Along with the more widespread use of MRI and MRA, the true frequency of this severe adverse effect will become clearer in future. For any child with neurologic symptoms within hours or days of receiving IT cytarabine, a low threshold for cerebral imaging with MRI and MRA is recommended.

  1. Intake of antioxidants and B vitamins is inversely associated with ischemic stroke and cerebral atherosclerosis

    PubMed Central

    Choe, Hansaem; Hwang, Ji-Yun; Yun, Jin A; Kim, Ji-Myung; Song, Tae-Jin; Chang, Namsoo; Kim, Yong-Jae

    2016-01-01

    BACKGROUND/OBJECTIVES This study was conducted to examine relationships between dietary habits and intakes of antioxidants and B vitamins and the risk of ischemic stroke, and to compare dietary factors according to the presence of cerebral artery atherosclerosis and stroke subtypes. SUBJECTS/METHODS A total of 147 patients and 144 control subjects were recruited consecutively in the metropolitan area of Seoul, Korea. Sixty participants each in the case and control groups were included in analyses after 1:1 frequency matching. In addition, 117 acute ischemic stroke patients were classified into subtypes according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) guidelines. Dietary intake was measured using a semi-quantitative food frequency questionnaire composed of 111 food items and plasma lipid and homocysteine levels were analyzed. RESULTS When compared with control subjects, stroke patients had unfavorable dietary behaviors and lower intakes of fruits (73.1 ± 83.2 g vs. 230.9 ± 202.1 g, P < 0.001), vegetables (221.1 ± 209.0 g vs. 561.7 ± 306.6 g, P < 0.001), and antioxidants, including vitamins C, E, B6, β-carotene, and folate. The intakes of fruits, vegetables, vitamin C, and folate were inversely associated with the risk of ischemic stroke after adjusting for confounding factors. Intakes of vegetables, vitamins C, B6, B12, and folate per 1,000 kcal were lower in ischemic stroke with cerebral atherosclerosis than in those without. Overall vitamin B12 intake per 1,000 kcal differed according to the TOAST classification (P = 0.004), but no differences among groups existed based on the post-hoc test. CONCLUSIONS When compared with control subjects, ischemic stroke patients, particularly those with cerebral atherosclerosis, had unfavorable dietary intake, which may have contributed to the development of ischemic stroke. These results indicate that proper dietary recommendations are important for the prevention of ischemic stroke. PMID:27698959

  2. Frequency of Atrial Septal Aneurysms in Patients with Cerebral Ischemic Events

    NASA Technical Reports Server (NTRS)

    Agmon, Yoram; Khandheria, Bijoy K.; Meissner, Irene; Gentile, Federico; Whisnant, Jack P.; Sicks, JoRean D.; O'Fallon, W. Michael; Covalt, Jody L.; Wiebers, David O.; Seward, James B.

    1999-01-01

    Background-Atrial septal aneurysm (ASA) is a putative risk factor for cardioembolism. However, the frequency of ASA in the general population has not been adequately determined. Therefore, the frequency in patients with cerebral ischemic events, compared with the frequency in the general population, is poorly defined. We sought to determine the frequency of ASA in the general population and to compare the frequency of ASA in patients with cerebral ischemic events with the frequency in the general population. Methods and Results-The frequency of ASA in the population was determined in 363 subjects, a sample of the participants in the Stroke Prevention: Assessment of Risk in a Community study (control subjects), and was compared with the frequency in 355 age- and sex-matched patients undergoing transesophageal echocardiography in search of a cardiac source of embolism after a focal cerebral ischemic event. The proportion with ASA was 7.9% in patients versus 2.2% in control subjects (P=0.002; odds ratio of ASA, 3.65; 95% CI, 1.64 to 8.13, in patients versus control subjects). Patent foramen ovale (PFO) was detected with contrast injections in 56% of subjects with ASA. The presence of ASA predicted the presence of PFO (odds ratio of PFO, 4.57; 95% CI, 2.18 to 9.57, in subjects with versus those without ASA). In 86% of subjects with ASA and cerebral ischemia, transesophageal echocardiography did not detect an alternative source of cardioembolism other than an associated PFO. Conclusions-The prevalence of ASA based on this population-based study is 2.2%. The frequency of ASA is relatively higher in patients evaluated with transesophageal echocardiography after a cerebral ischemic event. ASA is frequently associated with PFO, suggesting paradoxical embolism as a mechanism of cardioembolism. In patients with cerebral ischemia and ASA, ASA (with or without PFO) commonly is the only potential cardioembolic source detected with transesophageal echocardiography.

  3. Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats

    PubMed Central

    2010-01-01

    Background Excitatory amino acid toxicity, oxidative stress, intracellular calcium overload, as well as inflammation and apoptosis are involved in the pathological process after cerebral ischemic reperfusion injury. Picrodide 2 could inhibit neuronal apoptosis and play anti-oxidant and anti-inflammation role in cerebral ischemia/reperfusion injuries, but the exact mechanism is not very clear. This study aims to explore the anti-inflammation mechanism of picroside 2 in cerebral ischemic reperfusion injury in rats. Methods The middle cerebral artery occlusion reperfusion models were established with intraluminal thread methods in 90 adult healthy female Wistar rats. Picroside 2 and salvianic acid A sodium were respectively injected from tail vein at the dosage of 10 mg/kg for treatment. The neurobehavioral function was evaluated with Bederson's test and the cerebral infarction volume was observed with tetrazolium chloride (TTC) staining. The apoptotic cells were counted by in situ terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end labeling (TUNEL) assay. The immunohistochemistry stain was used to determine the expressions of toll-like receptor 4 (TLR4), nuclear transcription factor κB (NFκB) and tumor necrosis factor α (TNFα). The concentrations of TLR4, NFκB and TNFα in brain tissue were determined by enzyme linked immunosorbent assay (ELISA). Results After cerebral ischemic reperfusion, the rats showed neurobehavioral function deficit and cerebral infarction in the ischemic hemisphere. The number of apoptotic cells, the expressions and the concentrations in brain tissue of TLR4, NFκB and TNFα in ischemia control group increased significantly than those in the sham operative group (P < 0.01). Compared with the ischemia control group, the neurobehavioral scores, the infarction volumes, the apoptotic cells, the expressions and concentrations in brain tissue of TLR4, NFκB and TNFα were obviously decreased both in

  4. Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema.

    PubMed

    Penet, Marie-France; Viola, Angèle; Confort-Gouny, Sylviane; Le Fur, Yann; Duhamel, Guillaume; Kober, Frank; Ibarrola, Danielle; Izquierdo, Marguerite; Coltel, Nicolas; Gharib, Bouchra; Grau, Georges E; Cozzone, Patrick J

    2005-08-10

    The first in vivo magnetic resonance study of experimental cerebral malaria is presented. Cerebral involvement is a lethal complication of malaria. To explore the brain of susceptible mice infected with Plasmodium berghei ANKA, multimodal magnetic resonance techniques were applied (imaging, diffusion, perfusion, angiography, spectroscopy). They reveal vascular damage including blood-brain barrier disruption and hemorrhages attributable to inflammatory processes. We provide the first in vivo demonstration for blood-brain barrier breakdown in cerebral malaria. Major edema formation as well as reduced brain perfusion was detected and is accompanied by an ischemic metabolic profile with reduction of high-energy phosphates and elevated brain lactate. In addition, angiography supplies compelling evidence for major hemodynamics dysfunction. Actually, edema further worsens ischemia by compressing cerebral arteries, which subsequently leads to a collapse of the blood flow that ultimately represents the cause of death. These findings demonstrate the coexistence of inflammatory and ischemic lesions and prove the preponderant role of edema in the fatal outcome of experimental cerebral malaria. They improve our understanding of the pathogenesis of cerebral malaria and may provide the necessary noninvasive surrogate markers for quantitative monitoring of treatment.

  5. Cerebral collateral therapeutics in acute ischemic stroke: A randomized preclinical trial of four modulation strategies.

    PubMed

    Beretta, Simone; Versace, Alessandro; Carone, Davide; Riva, Matteo; Dell'Era, Valentina; Cuccione, Elisa; Cai, Ruiyao; Monza, Laura; Pirovano, Silvia; Padovano, Giada; Stiro, Fabio; Presotto, Luca; Paternò, Giovanni; Rossi, Emanuela; Giussani, Carlo; Sganzerla, Erik P; Ferrarese, Carlo

    2017-01-01

    Cerebral collaterals are dynamically recruited after arterial occlusion and highly affect tissue outcome in acute ischemic stroke. We investigated the efficacy and safety of four pathophysiologically distinct strategies for acute modulation of collateral flow (collateral therapeutics) in the rat stroke model of transient middle cerebral artery (MCA) occlusion. A composed randomization design was used to assign rats (n = 118) to receive phenylephrine (induced hypertension), polygeline (intravascular volume load), acetazolamide (cerebral arteriolar vasodilation), head down tilt (HDT) 15° (cerebral blood flow diversion), or no treatment, starting 30 min after MCA occlusion. Compared to untreated animals, treatment with collateral therapeutics was associated with lower infarct volumes (62% relative mean difference; 51.57 mm(3) absolute mean difference; p < 0.001) and higher chance of good functional outcome (OR 4.58, p < 0.001). Collateral therapeutics acutely increased cerebral perfusion in the medial (+40.8%; p < 0.001) and lateral (+19.2%; p = 0.016) MCA territory compared to pretreatment during MCA occlusion. Safety indicators were treatment-related mortality and cardiorespiratory effects. The highest efficacy and safety profile was observed for HDT. Our findings suggest that acute modulation of cerebral collaterals is feasible and provides a tissue-saving effect in the hyperacute phase of ischemic stroke prior to recanalization therapy.

  6. Ameliorative effects of Gualou Guizhi decoction on inflammation in focal cerebral ischemic-reperfusion injury

    PubMed Central

    ZHANG, YUQIN; ZHANG, SHENGNAN; LI, HUANG; HUANG, MEI; XU, WEI; CHU, KEDAN; CHEN, LIDIAN; CHEN, XIANWEN

    2015-01-01

    Gualou Guizhi decoction (GLGZD) is a well-established Traditional Chinese Medicinal formulation which has long been used to treat stroke in a clinical setting in China. The present study investigated the ameliorative effects of GLGZD on inflammation in focal cerebral ischemic-reperfusion injury. A rat model of middle cerebral artery occlusion (MCAO) was employed. Rats were administrated GLGZD (7.2 and 14.4 g/kg per day) or saline as control 2 h after reperfusion and daily over the following seven days. Neurological deficit score and screen test were evaluated at 1, 3, 5 and 7 days after MCAO. Brain infarct size and brain histological changes were observed via 2,3,5-triphenyltetrazolium chloride staining and regular hematoxylin & eosin staining. Furthermore, inflammation mediators and nuclear factor-κB (NF-κB) were investigated using ELISA and immunohistochemistry. GLGZD treatment significantly improved neurological function, ameliorated histological changes to the brain and decreased infarct size in focal cerebral ischemic-reperfusion injury. GLGZD was found to significantly reduce interleukin (IL)-1, tumor necrosis factor-α and NF-κB levels, while increasing levels of IL-10. In conclusion, the present study suggested that GLGZD has a neuroprotective effect on focal cerebral ischemic-reperfusion injury and this effect is likely to be associated with the anti-inflammatory function of GLGZD. PMID:25815894

  7. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke

    PubMed Central

    Wang, Hailian; Li, Peiying; Xu, Na; Zhu, Ling; Cai, Mengfei; Yu, Weifeng; Gao, Yanqin

    2016-01-01

    Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms. PMID:28217291

  8. Growth factor- and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization

    PubMed Central

    Peplow, Philip V.

    2014-01-01

    Endothelial progenitor cells are resident in the bone marrow blood sinusoids and circulate in the peripheral circulation. They mobilize from the bone marrow after vascular injury and home to the site of injury where they differentiate into endothelial cells. Activation and mobilization of endothelial progenitor cells from the bone marrow is induced via the production and release of endothelial progenitor cell-activating factors and includes specific growth factors and cytokines in response to peripheral tissue hypoxia such as after acute ischemic stroke or trauma. Endothelial progenitor cells migrate and home to specific sites following ischemic stroke via growth factor/cytokine gradients. Some growth factors are less stable under acidic conditions of tissue ischemia, and synthetic analogues that are stable at low pH may provide a more effective therapeutic approach for inducing endothelial progenitor cell mobilization and promoting cerebral neovascularization following ischemic stroke. PMID:25317152

  9. [Antiphospholipid antibodies and cerebral ischemic infarction in a 6-year-old boy].

    PubMed

    Forastiero, R R; Falcón, C; Rodrigué, S; Kordich, L C; Carreras, L O

    1993-04-01

    Lupus anticoagulant activity and anti-phospholipid antibodies (aPL) were found in a six-year-old child with cerebral ischemic infarction in the absence of any underlying disease. The association of these antibodies with thrombosis has been well documented in adult patients. In view of our observation, we believe that aPL may also be involved in the pathogenesis of arterial thrombotic events in childhood, and aPL should be systematically searched in these cases.

  10. [Prevention of vascular events after transient ischemic attack or cerebral infarct].

    PubMed

    Leys, Didier; Cordonnier, Charlotte

    2006-09-15

    After a first cerebral ischemic event, secondary prevention should be started as soon as possible, especially in transient ischemic attacks where the risk of recurrence is the highest, especially during the first week, needing a diagnostic workup in a short period of time, secondary prevention measures depending on the presumed cause of the event. Secondary prevention of vascular events after transient ischemic attack or cerebral infarct consists of 3 types of strategies: 1. treatment of risk factors for stroke, especially high blood pressure, high cholesterol and smoking cessation; 2. aspirin (50 to 325 mg), or clopidogrel, or association aspirine-dipyridamole in high-risk subjects, or warfarin in patients with high-risk cardiopathies; and 3. carotid surgery in patients selected by clinical and imaging criteria. Other strategies are currently partly under evaluation: statins in normocholesterolemic ischemic stroke patients without coronary event, angioplasty with stenting. Audits of practice are necessary to determine whether patients are actually treated according to scientific evidence. This is a crucial issue if we want the results of trials to be translated in the true life, and really improve health at the community level.

  11. Dynamic functional cerebral blood volume responses to normobaric hyperoxia in acute ischemic stroke

    PubMed Central

    Wu, Ona; Lu, Jie; Mandeville, Joseph B; Murata, Yoshihiro; Egi, Yasu; Dai, Guangping; Marota, John J; Diwan, Izzuddin; Dijkhuizen, Rick M; Kwong, Kenneth K; Lo, Eng H; Singhal, Aneesh B

    2012-01-01

    Studies suggest that neuroprotective effects of normobaric oxygen (NBO) therapy in acute stroke are partly mediated by hemodynamic alterations. We investigated cerebral hemodynamic effects of repeated NBO exposures. Serial magnetic resonance imaging (MRI) was performed in Wistar rats subjected to focal ischemic stroke. Normobaric oxygen-induced functional cerebral blood volume (fCBV) responses were analyzed. All rats had diffusion-weighted MRI (DWI) lesions within larger perfusion deficits, with DWI lesion expansion after 3 hours. Functional cerebral blood volume responses to NBO were spatially and temporally heterogeneous. Contralateral healthy tissue responded consistently with vasoconstriction that increased with time. No significant responses were evident in the acute DWI lesion. In hypoperfused regions surrounding the acute DWI lesion, tissue that remained viable until the end of the experiment showed relative preservation of mean fCBV at early time points, with some rats showing increased fCBV (vasodilation); however, these regions later exhibited significantly decreased fCBV (vasoconstriction). Tissue that became DWI abnormal by study-end initially showed marginal fCBV changes that later became moderate fCBV reductions. Our results suggest that a reverse-steal hemodynamic effect may occur in peripheral ischemic zones during NBO treatment of focal stroke. In addition, CBV responses to NBO challenge may have potential as an imaging marker to distinguish ischemic core from salvageable tissues. PMID:22739619

  12. Acetylbritannilactone Modulates MicroRNA-155-Mediated Inflammatory Response in Ischemic Cerebral Tissues

    PubMed Central

    Wen, Ya; Zhang, Xiangjian; Dong, Lipeng; Zhao, Jingru; Zhang, Cong; Zhu, Chunhua

    2015-01-01

    Inflammatory responses play a critical role in ischemic brain injury. MicroRNA-155 (miR-155) induces the expression of inflammatory cytokines, and acetylbritannilactone (ABL) exerts potent antiinflammatory actions by inhibiting expression of inflammation-related genes. However, the functions of miR-155 and the actual relationship between ABL and miR-155 in ischemia-induced cerebral inflammation remain unclear. In this study, cerebral ischemia of wild-type (WT) and miR-155−/− mice was induced by permanent middle cerebral artery occlusion (MCAO). pAd-miR-155 was injected into the lateral cerebral ventricle 24 h before MCAO to induce miR-155 overexpression. MCAO mice and oxygen-glucose deprivation (OGD)-treated BV2 cells were used to examine the effects of ABL and miR-155 overexpression or deletion on the expression of proinflammatory cytokines. We demonstrated that ABL treatment significantly reduced neurological deficits and cerebral infarct volume by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) expression in ischemic cerebral tissue and OGD-treated BV2 cells. Mechanistic studies suggested that the observed decrease in TNF-α and IL-1β expression was attributable to the ABL-induced suppression of the expression of nuclear factor-kappa B (NF-κB) and Toll-like receptor 4 (TLR4). We further found that miR-155 promoted TNF-α and IL-1β expression by upregulating TLR4 and downregulating the expression of suppressor of cytokine signaling 1 (SOCS1) and myeloid differentiation primary response gene 88 (MyD88), while ABL exerted an inhibitory effect on miR-155-mediated gene expression. In conclusion, miR-155 mediates inflammatory responses in ischemic cerebral tissue by modulating TLR4/MyD88 and SOCS1 expression, and ABL exerts its antiinflammatory action by suppressing miR-155 expression, suggesting a novel miR-155-based therapy for ischemic stroke. PMID:25811992

  13. Ischemic Postconditioning Alleviates Brain Edema After Focal Cerebral Ischemia Reperfusion in Rats Through Down-Regulation of Aquaporin-4.

    PubMed

    Han, Dong; Sun, Miao; He, Ping-Ping; Wen, Lu-Lu; Zhang, Hong; Feng, Juan

    2015-07-01

    Cerebral edema is a serious complication associated with cerebral ischemia/reperfusion (I/R). Aquaporin-4 (AQP4) plays a role in generating postischemic edema after reperfusion. Recently, ischemic postconditioning (Postcond) has been shown to produce neuroprotective effects and reduce brain edema in rats after cerebral I/R. It is unclear if ischemic Postcond alleviates brain edema injury through regulation of AQP4. In this study, middle cerebral artery occlusion (MCAO) was induced in rats by filament insertion for 2 h following 24-h reperfusion: ischemic Postcond treatment was performed before reperfusion in the experimental group. We used the wet-dry weight ratio and transmission electron microscopy to evaluate brain edema after 24 h of reperfusion. We used immunohistochemistry and Western blot analyses to evaluate the distribution and expression of AQP4. Ischemic Postcond significantly reduced the water content of the brain tissue and swelling of the astrocytic foot processes. AQP4 expression increased in the I/R and Postcond groups compared to the sham group, but it decreased in the Postcond group compared to the I/R group. The results of our study suggest that ischemic Postcond effectively reduces brain edema after reperfusion by inhibiting AQP4 expression. The data in this study support the use of ischemic Postcond for alleviating brain edema after cerebral I/R.

  14. Post-ischemic salubrinal treatment results in a neuroprotective role in global cerebral ischemia.

    PubMed

    Anuncibay-Soto, Berta; Pérez-Rodríguez, Diego; Santos-Galdiano, María; Font, Enrique; Regueiro-Purriños, Marta; Fernández-López, Arsenio

    2016-07-01

    This study describes the neuroprotective effect of treatment with salubrinal 1 and 24 h following 15 min of ischemia in a two-vessel occlusion model of global cerebral ischemia. The purpose of this study was to determine if salubrinal, an enhancer of the unfolded protein response, reduces the neural damage modulating the inflammatory response. The study was performed in CA1 and CA3 hippocampal areas as well as in the cerebral cortex whose different vulnerability to ischemic damage is widely described. Characterization of proteins was made by western blot, immunofluorescence, and ELISA, whereas mRNA levels were measured by Quantitative PCR. The salubrinal treatment decreased the cell demise in CA1 at 7 days as well as the levels of matrix metalloprotease 9 (MMP-9) in CA1 and cerebral cortex at 48 h and ICAM-1 and VCAM-1 cell adhesion molecules. However, increases in tumor necrosis factor α and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inflammatory markers were observed at 24 h. Glial fibrillary acidic protein levels were not modified by salubrinal treatment in CA1 and cerebral cortex. We describe a neuroprotective effect of the post-ischemic treatment with salubrinal, measured as a decrease both in CA1 cell demise and in the blood-brain barrier impairment. We hypothesize that the ability of salubrinal to counteract the CA1 cell demise is because of a reduced ability of this structure to elicit unfolded protein response which would account for its greater ischemic vulnerability. Data of both treated and non-treated animals suggest that the neurovascular unit present a structure-dependent response to ischemia and a different course time for CA1/cerebral cortex compared with CA3. Finally, our study reveals a high responsiveness of endothelial cells to salubrinal in contrast to the limited responsiveness of astrocytes. The alleviation of ER stress by enhancing UPR with salubrinal treatment reduces the ischemic damage. This effect

  15. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic–ischemic encephalopathy

    PubMed Central

    Tian, Fenghua; Tarumi, Takashi; Liu, Hanli; Zhang, Rong; Chalak, Lina

    2016-01-01

    Cerebral autoregulation represents the physiological mechanisms that keep brain perfusion relatively constant in the face of changes in blood pressure and thus plays an essential role in normal brain function. This study assessed cerebral autoregulation in nine newborns with moderate-to-severe hypoxic–ischemic encephalopathy (HIE). These neonates received hypothermic therapy during the first 72 h of life while mean arterial pressure (MAP) and cerebral tissue oxygenation saturation (SctO2) were continuously recorded. Wavelet coherence analysis, which is a time-frequency domain approach, was used to characterize the dynamic relationship between spontaneous oscillations in MAP and SctO2. Wavelet-based metrics of phase, coherence and gain were derived for quantitative evaluation of cerebral autoregulation. We found cerebral autoregulation in neonates with HIE was time-scale-dependent in nature. Specifically, the spontaneous changes in MAP and SctO2 had in-phase coherence at time scales of less than 80 min (< 0.0002 Hz in frequency), whereas they showed anti-phase coherence at time scales of around 2.5 h (~ 0.0001 Hz in frequency). Both the in-phase and anti-phase coherence appeared to be related to worse clinical outcomes. These findings suggest the potential clinical use of wavelet coherence analysis to assess dynamic cerebral autoregulation in neonatal HIE during hypothermia. PMID:26937380

  16. Activation of cannabinoid CB2 receptor-mediated AMPK/CREB pathway reduces cerebral ischemic injury.

    PubMed

    Choi, In-Young; Ju, Chung; Anthony Jalin, Angela M A; Lee, Da In; Prather, Paul L; Kim, Won-Ki

    2013-03-01

    The type 2 cannabinoid receptor (CB2R) was recently shown to mediate neuroprotection in ischemic injury. However, the role of CB2Rs in the central nervous system, especially neuronal and glial CB2Rs in the cortex, remains unclear. We, therefore, investigated anti-ischemic mechanisms of cortical CB2R activation in various ischemic models. In rat cortical neurons/glia mixed cultures, a CB2R agonist, trans-caryophyllene (TC), decreased neuronal injury and mitochondrial depolarization caused by oxygen-glucose deprivation/re-oxygenation (OGD/R); these effects were reversed by the selective CB2R antagonist, AM630, but not by a type 1 cannabinoid receptor antagonist, AM251. Although it lacked free radical scavenging and antioxidant enzyme induction activities, TC reduced OGD/R-evoked mitochondrial dysfunction and intracellular oxidative stress. Western blot analysis demonstrated that TC enhanced phosphorylation of AMP-activated protein kinase (AMPK) and cAMP responsive element-binding protein (CREB), and increased expression of the CREB target gene product, brain-derived neurotrophic factor. However, TC failed to alter the activity of either Akt or extracellular signal-regulated kinase, two major CB2R signaling pathways. Selective AMPK and CREB inhibitors abolished the neuroprotective effects of TC. In rats, post-ischemic treatment with TC decreased cerebral infarct size and edema, and increased phosphorylated CREB and brain-derived neurotrophic factor expression in neurons. All protective effects of TC were reversed by co-administration with AM630. Collectively, these data demonstrate that cortical CB2R activation by TC ameliorates ischemic injury, potentially through modulation of AMPK/CREB signaling, and suggest that cortical CB2Rs might serve as a putative therapeutic target for cerebral ischemia.

  17. TGF-β1/Smad3 Signaling Pathway Suppresses Cell Apoptosis in Cerebral Ischemic Stroke Rats

    PubMed Central

    Zhu, Haiping; Gui, Qunfeng; Hui, Xiaobo; Wang, Xiaodong; Jiang, Jian; Ding, Lianshu; Sun, Xiaoyang; Wang, Yanping; Chen, Huaqun

    2017-01-01

    Background We desired to observe the changes of transforming growth factor-β1/drosophila mothers against decapentaplegic protein (TGF-β1/Smad3) signaling pathway in the hippocampus region of cerebral ischemic stroke rats so that the effects of this pathway on nerve cells can be investigated. Material/Methods The ischemic stroke models were built by middle cerebral artery occlusion (MCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro. TGF-β1 and TGF-β1 inhibitors were injected into rat models while TGF-β1, TGF-β1 siRNA, Smad3, and Smad3 siRNA were transfected into cells. Infarct sizes were measured using triphenyltetrazolium chloride (TTC) staining, while the apoptosis rate of cells were calculated by Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining. Levels of TGF-β1, Smad3, and Bcl-2 were examined by real-time polymerase chain reaction (RT-PCR), immunohistochemical, and Western blot analysis. Results The expressions of TGF-β1/Smad3 signal pathway were significantly increased in both model rats and BV2 cells, whereas the expression of Bcl-2 was down-regulated (P<0.05). The TGF-β1/Smad3 signal pathway exhibited protective effects, including the down-regulation of infarction size in cerebral tissues and the down-regulation of apoptosis rate of BV2 cells by increasing the expression of Bcl-2 (P<0.05). In addition, these effects could be antagonized by the corresponding inhibitors and siRNA (P<0.05). Conclusions The TGF-β1/Smad3 signaling pathway was up-regulated once cerebral ischemic stroke was simulated. TGF-β1 may activate the expression of Bcl-2 via Smad3 to suppress the apoptosis of neurons. PMID:28110342

  18. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice.

    PubMed

    Miyanohara, Jun; Shirakawa, Hisashi; Sanpei, Kazuaki; Nakagawa, Takayuki; Kaneko, Shuji

    2015-11-20

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca(2+) permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia.

  19. Resveratrol preconditioning protects against cerebral ischemic injury via Nrf2

    PubMed Central

    Narayanan, Srinivasan V.; Dave, Kunjan R.; Saul, Isa; Perez-Pinzon, Miguel A.

    2015-01-01

    Background and Purpose Nuclear erythroid 2 related factor 2 (Nrf2) is an astrocyte-enriched transcription factor that has previously been shown to upregulate cellular antioxidant systems in response to ischemia. While resveratrol preconditioning (RPC) has emerged as a potential neuroprotective therapy, the involvement of Nrf2 in RPC-induced neuroprotection and mitochondrial reactive oxygen species (ROS) production following cerebral ischemia remains unclear. The goal of our study was to study the contribution of Nrf2 to RPC and its effects on mitochondrial function. Methods We used rodent astrocyte cultures and an in vivo stroke model with RPC. An Nrf2 DNA-binding ELISA and protein analysis via Western blotting of downstream Nrf2 targets were performed to determine RPC-induced activation of Nrf2 in rat and mouse astrocytes. Following RPC, mitochondrial function was determined by measuring ROS production and mitochondrial respiration in both wild-type (WT) and Nrf2−/− mice. Infarct volume was measured to determine neuroprotection, while protein levels were measured by immunoblotting. Results We report that Nrf2 is activated by RPC in rodent astrocyte cultures, and that loss of Nrf2 reduced RPC-mediated neuroprotection in a mouse model of focal cerebral ischemia. In addition, we observed that wild-type and Nrf2−/− cortical mitochondria exhibited increased uncoupling and ROS production following RPC treatments, Finally, Nrf2−/− astrocytes exhibited decreased mitochondrial antioxidant expression and were unable to upregulate cellular antioxidants following RPC treatment. Conclusion Nrf2 contributes to RPC-induced neuroprotection through maintaining mitochondrial coupling and antioxidant protein expression. PMID:25908459

  20. Disruption of thrombospondin-2 accelerates ischemic fracture healing.

    PubMed

    Miedel, Emily; Dishowitz, Michael I; Myers, Marc H; Dopkin, Derek; Yu, Yan-Yiu; Miclau, Ted S; Marcucio, Ralph; Ahn, Jaimo; Hankenson, Kurt D

    2013-06-01

    Thrombospondin-2 (TSP2) is a matricellular protein that is highly up-regulated during fracture healing. TSP2 negatively regulates vascularity, vascular reperfusion following ischemia, and cutaneous wound healing. As well, TSP2-null mice show increased endocortical bone formation due to an enhanced number of mesenchymal progenitor cells and show increased cortical thickness. Mice deficient in TSP2 (TSP2-null) show an alteration in fracture healing, that is unrelated to their cortical bone phenotype, which is characterized by enhanced vascularization with a shift towards an intramembranous healing phenotype; thus, we hypothesized that there would be enhanced ischemic fracture healing in the absence of TSP2. We investigated whether an absence of TSP2 would enhance ischemic fracture healing utilizing Laser doppler, µCT and histological analysis. Ischemic tibial fractures were created in wildtype (WT) and TSP2-null mice and harvested 10, 20, or 40 days post-fracture. TSP2-null mice show enhanced vascular perfusion following ischemic fracture. At day 10 post-fracture, TSP2-null mice have 115% greater bone volume than WT mice. This is associated with a 122% increase in vessel density, 20% increase in cell proliferation, and 15% decrease in apoptosis compared to WT. At day 20, TSP2-null mice have 34% more bone volume, 51% greater bone volume fraction, and 37% more bone tissue mineral density than WT. By 40 days after fracture the TSP2-null mice have a 24% increase in bone volume fraction, but other parameters show no significant differences. These findings indicate TSP2 is a negative regulator of ischemic fracture healing and that in the absence of TSP2 bone regeneration is enhanced.

  1. Effects of cerebral ischemic and reperfusion on T2*-weighted MRI responses to brief oxygen challenge.

    PubMed

    Shen, Qiang; Du, Fang; Huang, Shiliang; Duong, Timothy Q

    2014-01-01

    This study characterized the effects of cerebral ischemia and reperfusion on T2*-weighted magnetic resonance image (MRI) responses to brief oxygen challenge (OC) in transient (60 minutes) cerebral ischemia in rats. During occlusion, the ischemic core tissue showed no significant OC response, whereas the perfusion-diffusion mismatch tissue showed markedly higher percent changes relative to normal tissue. After reperfusion, much of the pixels with initial exaggerated OC responses showed normal OC responses, and the majority of these tissues were salvaged as defined by endpoint T2 MRI. The initial core pixels showed exaggerated OC responses after reperfusion, but the majority of the core pixels eventually became infarct, suggesting exaggerated OC responses do not necessarily reflect salvageable tissue. Twenty-four hours after stroke, basal T1 increased in the ischemic core. Oxygen challenge decreased T1 significantly in the core, indicative of the substantial increases in dissolved oxygen in the core as the result of hyperperfusion. We concluded that exaggerated T2*-weighted MRI responses to OC offer useful insight in ischemic tissue fates. However, exaggerated OC pixels are not all salvageable, and they exhibited complex dynamics depending on reperfusion status, hyperperfusion, and edema effects.

  2. Ischemic damage and subsequent proliferation of oligodendrocytes in focal cerebral ischemia.

    PubMed

    Mandai, K; Matsumoto, M; Kitagawa, K; Matsushita, K; Ohtsuki, T; Mabuchi, T; Colman, D R; Kamada, T; Yanagihara, T

    1997-04-01

    In order to achieve a better understanding of the pathophysiology of ischemic white matter lesions, oligodendrocytic degeneration and subsequent proliferation were examined in the mouse model of middle cerebral artery occlusion. In situ hybridization histochemistry for proteolipid protein messenger RNA was employed as a sensitive and specific marker of oligodendrocytes, and immunohistochemistry for myelin basic protein was used as a compact myelin marker. Immunohistochemistry for microtubule-associated protein 2 and albumin was employed to monitor neuronal degeneration and the breakdown of the blood brain barrier, respectively. In the ischemic core of the caudoputamen, the immunoreactivity for microtubule-associated protein 2 disappeared and massive albumin extravasation occurred several hours after vessel occlusion, while proteolipid protein messenger RNA signals remained relatively strong at this time. The messenger RNA signals began to attenuate 12 h after ischemia and were hardly detectable 24 h after ischemia in the whole ischemic lesion. In situ end-labeling of fragmented DNA showed some cells with proteolipid protein messenger RNAs to have DNA fragmentation at this period. In contrast to proteolipid protein messenger RNA signals, the immunoreactivity for myelin basic protein was detected as long as five days after ischemia. An apparent increase in the cells possessing strong proteolipid protein messenger RNA signals was found five days after ischemia, mainly in the corpus callosum and the cortex bordering the infarcted areas. A double simultaneous procedure with in situ hybridization for proteolipid protein messenger RNA and immunohistochemistry for glial fibrillary acid protein or lectin histochemistry for macrophages/microglia showed proliferating oligodendrocytes to be co-localized with reactive astrocytes and macrophages/microglia. These findings show that oligodendrocytic damage occurred following ischemic neuronal damage and the breakdown of the blood

  3. Ischemic postconditioning may not influence early brain injury induced by focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Kim, Yoo Kyung; Shin, Jin Woo; Joung, Kyoung Woon

    2010-01-01

    Background Experimental studies have shown that ischemic postconditioning can reduce neuronal injury in the setting of cerebral ischemia, but the mechanisms are not yet clearly elucidated. This study was conducted to determine whether ischemic postconditioning can alter expression of heat shock protein 70 and reduce acute phase neuronal injury in rats subjected to transient focal cerebral ischemia/reperfusion. Methods Focal cerebral ischemia was induced by intraluminal middle cerebral artery occlusion for 60 min in twenty male Sprague-Dawley rats (250-300 g). Rats were randomized into control group and an ischemic postconditioning group (10 rats per group). The animals of control group had no intervention either before or after MCA occlusion. Ischemic postconditioning was elicited by 3 cycles of 30 s reperfusion interspersed by 10 s ischemia immediately after onset of reperfusion. The infarct ratios, brain edema ratios and motor behavior deficits were analyzed 24 hrs after ischemic insult. Caspase-3 reactive cells and cells showing heat shock protein 70 activity were counted in the caudoputamen and frontoparietal cortex. Results Ischemic postconditiong did not reduce infarct size and brain edema ratios compared to control group. Neurologic scores were not significantly different between groups. The number of caspase-3 reactive cells in the ischemic postconditioning group was not significantly different than the value of the control group in the caudoputamen and frontoparietal cortex. The number of cells showing heat shock protein 70 activity was not significantly different than the control group, as well. Conclusions These results suggest that ischemic postconditioning may not influence the early brain damage induced by focal cerebral ischemia in rats. PMID:20498797

  4. Cerebrolysin effects on neurological outcomes and cerebral blood flow in acute ischemic stroke

    PubMed Central

    Amiri-Nikpour, Mohammad Reza; Nazarbaghi, Surena; Ahmadi-Salmasi, Babak; Mokari, Tayebeh; Tahamtan, Urya; Rezaei, Yousef

    2014-01-01

    Background Cerebrolysin, a brain-derived neuropeptide, has been shown to improve the neurological outcomes of stroke, but no study has demonstrated its effect on cerebral blood flow. This study aimed to determine the cerebrolysin impact on the neurological outcomes and cerebral blood flow. Methods In a randomized, double-blinded, placebo-controlled trial, 46 patients who had acute focal ischemic stroke were randomly assigned into two groups to receive intravenously either 30 mL of cerebrolysin diluted in normal saline daily for 10 days (n=23) or normal saline alone (n=23) adjunct to 100 mg of aspirin daily. All patients were examined using the National Institutes of Health Stroke Scale and transcranial Doppler to measure the mean flow velocity and pulsatility index (PI) of their cerebral arteries at baseline as well as on days 30, 60, and 90. Results The patients’ mean age was 60±9.7 years, and 51.2% of patients were male. The National Institutes of Health Stroke Scale was significantly lower in the cerebrolysin group compared with the placebo group on day 60 (median 10, interquartile range 9–11, P=0.008) and day 90 (median 11, interquartile range 10–13.5, P=0.001). The median of PI in the right middle cerebral artery was significantly lower in the cerebrolysin group compared with the placebo group on days 30, 60, and 90 (P<0.05). One patient in the cerebrolysin group and two patients in the placebo group died before day 30 (4.3% versus 8.7%). Conclusion Cerebrolysin can be useful to improve the neurological outcomes and the PI of middle cerebral artery in patients with acute focal ischemic stroke. PMID:25516711

  5. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic–Ischemic Brain Injury

    PubMed Central

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J.

    2016-01-01

    Seizures are common following hypoxic–ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic–ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  6. Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke.

    PubMed

    Zhou, Da; Fang, Ting; Lu, Lin-Qing; Yi, Li

    2016-08-01

    During the previous years, with the emerging of nanotechnology, the enormous capabilities of nanoparticles have drawn great attention from researchers in terms of their potentials in various aspects of pharmacology. Cerium oxide nanoparticles (nanoceria), considered as one of the most widely used nanomaterials, due to its tempting catalytic antioxidant properties, show a promising potential in diverse disorders, such as cerebral ischemic stroke (CIS), cancer, neurodegenerative and inflammatory diseases. Overwhelming generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during cerebral ischemia and reperfusion periods is known to aggravate brain damage via sophisticated cellular and molecular mechanisms, and therefore exploration of the antioxidant capacities of nanoceria becomes a new approach in reducing cerebral ischemic injury. Furthermore, utilizing nanoceria as a drug carrier might display the propensity to overcome limitations or inefficacy of other conceivable neuroprotectants and exhibit synergistic effects. In this review, we emphasize on the principle features of nanoceria and current researches concerning nanoceria as a potential therapeutic agent or carrier in improving the prognosis of CIS.

  7. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    SciTech Connect

    Jing, Xu; Ren, Dongmei; Wei, Xinbing; Shi, Huanying; Zhang, Xiumei; Perez, Ruth G.; Lou, Haiyan; Lou, Hongxiang

    2013-12-15

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury.

  8. Radioactive microsphere study of cerebral blood flow under acceleration. Technical report

    SciTech Connect

    Greenlees, K.J.; Yoder, J.E.; Toth, D.M.; Oloff, C.M.; Karl, A.

    1980-11-01

    A study using radioactive microspheres for the investigation of cerebral blood flow during acceleration is described. Details of a technique for the blunt dissection of cerebral tissues are included. Results of flow studies at 3 and 5 G sub z acceleration stress indicate there is no selective regional preservation of cerebral tissue. (Author)

  9. MicroRNA-378 Alleviates Cerebral Ischemic Injury by Negatively Regulating Apoptosis Executioner Caspase-3

    PubMed Central

    Zhang, Nan; Zhong, Jie; Han, Song; Li, Yun; Yin, Yanling; Li, Junfa

    2016-01-01

    miRNAs have been linked to many human diseases, including ischemic stroke, and are being pursued as clinical diagnostics and therapeutic targets. Among the aberrantly expressed miRNAs in our previous report using large-scale microarray screening, the downregulation of miR-378 in the peri-infarct region of middle cerebral artery occluded (MCAO) mice can be reversed by hypoxic preconditioning (HPC). In this study, the role of miR-378 in the ischemic injury was further explored. We found that miR-378 levels significantly decreased in N2A cells following oxygen-glucose deprivation (OGD) treatment. Overexpression of miR-378 significantly enhanced cell viability, decreased TUNEL-positive cells and the immunoreactivity of cleaved-caspase-3. Conversely, downregulation of miR-378 aggravated OGD-induced apoptosis and ischemic injury. By using bioinformatic algorithms, we discovered that miR-378 may directly bind to the predicted 3′-untranslated region (UTR) of Caspase-3 gene. The protein level of caspase-3 increased significantly upon OGD treatment, and can be downregulated by pri-miR-378 transfection. The luciferase reporter assay confirmed the binding of miR-378 to the 3′-UTR of Caspase-3 mRNA and repressed its translation. In addition, miR-378 agomir decreased cleaved-caspase-3 ratio, reduced infarct volume and neural cell death induced by MCAO. Furthermore, caspase-3 knockdown could reverse anti-miR-378 mediated neuronal injury. Taken together, our data demonstrated that miR-378 attenuated ischemic injury by negatively regulating the apoptosis executioner, caspase-3, providing a potential therapeutic target for ischemic stroke. PMID:27598143

  10. Difference in the Location and Risk Factors of Cerebral Microbleeds According to Ischemic Stroke Subtypes

    PubMed Central

    Kim, Bum Joon; Yoon, Youngshin; Sohn, Hoyon; Kang, Dong-Wha; Kim, Jong S.; Kwon, Sun U.

    2016-01-01

    Background and Purpose The location of cerebral microbleeds (CMBs) may differ according to ischemic stroke subtype, and the underlying pathomechanism may differ by their location. Here, we investigated the characteristics of CMBs according to various ischemic stroke subtypes to verify this issue. Methods Patients with acute ischemic stroke were consecutively included. The presence of CMBs was determined by gradient echo image sequence. The distribution of CMBs was classified as deep, lobar, or diffuse (both deep and lobar). The prevalence, risk factors, and distribution of CMBs were compared among patients with different stroke subtypes. Factors associated with the distribution of CMBs were investigated. Results Among the 1033 patients included in this study, ischemic stroke subtypes were classified as large artery atherosclerosis (LAA; n=432), small vessel occlusion (SVO; n=304), and cardioembolism (CE; n=297). The prevalence of CMBs was highest in patients with SVO (40.5%), followed by CE (33.0%) and LAA (24.8%; P<0.001). The locations of CMBs was different according to subtype (P=0.004). CE [odds ratio (OR)=1.85 (1.02-3.34); P=0.042] and the use of antithrombotics [OR=1.80 (1.10-2.94); P=0.019] were associated with lobar CMBs, and old age [OR=1.02 (1.00-1.04); P=0.015] and hypertension [OR=1.61 (1.08-2.40); P=0.020] were associated with deep CMBs. Conclusions CMBs were frequently located in the lobar area in patients with CE. Previous use of antithrombotic agents is associated with lobar CMBs. The pathogenic mechanism of CMB may differ according to ischemic stroke subtype and location. PMID:27733027

  11. Expression of the RNA-binding protein TIAR is increased in neurons after ischemic cerebral injury.

    PubMed

    Jin, K; Li, W; Nagayama, T; He, X; Sinor, A D; Chang, J; Mao, X; Graham, S H; Simon, R P; Greenberg, D A

    2000-03-15

    T-cell restricted intracellular antigen-related protein (TIAR) is an RNA recognition motif-type RNA-binding protein that has been implicated in the apoptotic death of T-lymphocytes and retinal pigment epithelial cells. Western blots prepared with a monoclonal antibody against TIAR showed expression in normal rat hippocampus, and induction by 15 min of global cerebral ischemia. This increased expression was evident at 8 hr after ischemia and maximal at 24 hr, whereas expression at 72 hr was reduced below basal levels. Expression of TIAR protein was also increased in parietal cortex 6 and 24 hr after 90 min of focal cerebral ischemia induced by middle cerebral artery (MCA) occlusion, as well as in cultured cortical neurons and astroglia after exposure to hypoxia in vitro. Immunocytochemistry showed that increased expression of TIAR occurred mainly in the CA1 sector of hippocampus 24 hr after global ischemia, and in cortical and striatal neurons 24 hr after 20 or 90 min of focal ischemia. Double-labeling studies showed that TIAR protein expression was co-localized with DNA damage in neuronal cells. The findings suggest that TIAR may be involved in neuronal cell death after cerebral ischemic injury.

  12. Progressive Ischemic Stroke due to Thyroid Storm-Associated Cerebral Venous Thrombosis

    PubMed Central

    Tanabe, Natsumi; Hiraoka, Eiji; Hoshino, Masataka; Deshpande, Gautam A.; Sawada, Kana; Norisue, Yasuhiro; Tsukuda, Jumpei; Suzuki, Toshihiko

    2017-01-01

    Patient: Female, 49 Final Diagnosis: Cerebral venous thrombosis Symptoms: Altered mental state • weakness in limbs Medication: — Clinical Procedure: — Specialty: Endocrinology and Metabolic Objective: Rare co-existance of disease or pathology Background: Cerebral venous thrombosis (CVT) is a rare but fatal complication of hyperthyroidism that is induced by the hypercoagulable state of thyrotoxicosis. Although it is frequently difficult to diagnose CVT promptly, it is important to consider it in the differential diagnosis when a hyperthyroid patient presents with atypical neurologic symptoms. Care Report: A 49-year-old Japanese female with unremarkable medical history came in with thyroid storm and multiple progressive ischemic stroke identified at another hospital. Treatment for thyroid storm with beta-blocker, glucocorticoid, and potassium iodide-iodine was started and MR venography was performed on hospital day 3 for further evaluation of her progressive ischemic stroke. The MRI showed CVT, and anticoagulation therapy, in addition to the anti-thyroid agents, was initiated. The patient’s thyroid function was successfully stabilized by hospital day 10 and further progression of CVT was prevented. Conclusions: Physicians should consider CVT when a patient presents with atypical course of stroke or with atypical MRI findings such as high intensity area in apparent diffusion coefficient (ADC) mapping. Not only is an early diagnosis and initiation of anticoagulation important, but identifying and treating the underlying disease is essential to avoid the progression of CVT. PMID:28228636

  13. Prevalence and Characteristics of Unruptured Cerebral Aneurysms in Ischemic Stroke Patients

    PubMed Central

    Kim, Ji Hwa; Suh, Sang Hyun; Chung, Joonho; Oh, Yeo-Jin; Ahn, Sung Jun; Lee, Kyung-Yul

    2016-01-01

    Background and Purpose The prevalence of unruptured cerebral aneurysms (UCAs) in ischemic stroke patients is not clearly defined. This study aimed to measure the prevalence and characteristics of UCAs in patients with acute ischemic stroke (AIS) and to compare our findings with those of the general population. In addition, we investigated the factors associated with cerebral aneurysms in AIS patients. Methods We retrospectively reviewed the brain magnetic resonance angiography images of 955 patients with AIS and 2,118 controls who had received a brain magnetic resonance angiography as part of a health check-up. We investigated the prevalence, size, location, and risk factors of the subjects in the context of UCAs. Results UCAs were found in 74 patients with AIS (7.7%) and in 79 who received a health check-up (3.7%). The prevalence of UCAs was significantly higher in the AIS group than in the health check-up group (odds ratio 2.17, 95% confidence interval 1.56-3.01). The mean aneurysm diameter was larger in the AIS group than in the health check-up group (3.75 mm vs. 3.02 mm, P=0.009). UCAs were primarily located in the internal carotid artery in both groups, and aneurysms in the middle cerebral artery were particularly common in the AIS group. According to multivariate analysis, hypertension alone was associated with an increased prevalence of UCAs in stroke patients. Conclusions This study identified a higher prevalence and larger size of UCAs in AIS patients than in the general population. Hypertension was an independent risk factor of UCA in AIS. PMID:27488981

  14. Ameliorating effect of hypothalamic brain-derived neurotrophic factor against impaired glucose metabolism after cerebral ischemic stress in mice.

    PubMed

    Harada, Shinichi; Fujita-Hamabe, Wakako; Tokuyama, Shogo

    2012-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has potent neuroprotective effects against brain injury. We recently reported that glucose intolerance/hyperglycemia could be induced by ischemic stress (i.e., post-ischemic glucose intolerance) following ischemic neuronal damage. Therefore, the aim of this study was to determine the effects of BDNF on the development of post-ischemic glucose intolerance and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. On day 1, the expression levels of BDNF were significantly decreased in the cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor, a BDNF receptor, decreased in the hypothalamus and liver and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of BDNF (50 ng/mouse) suppressed the development of post-ischemic glucose intolerance on day 1 and neuronal damage on day 3 after MCAO. In the liver and skeletal muscle, the expression levels of insulin receptors decreased, while gluconeogenic enzyme levels increased on day 1 after MCAO. These changes completely recovered to normal levels in the presence of BDNF. These results indicate that regulation of post-ischemic glucose intolerance by BDNF may suppress ischemic neuronal damage.

  15. Nicotinamide attenuates the decrease of astrocytic phosphoprotein PEA-15 in focal cerebral ischemic injury.

    PubMed

    Koh, Phil-Ok

    2012-03-01

    Nicotinamide exerts neuroprotective effects against focal cerebral ischemic injury. Phosphoprotein enriched in astrocytes 15 (PEA-15) is prominently expressed in astrocytes that exert broad anti-apoptotic functions. This study investigated whether nicotinamide modulates PEA-15 and levels of two phosphorylated PEA-15 (Serine 104 and 116) in an animal model of middle cerebral artery occlusion (MCAO)-induced injury. Adult male rats were treated with vehicle or nicotinamide (500 mg/kg) 2 hr after the onset of MCAO and cerebral cortices were collected at 24 hr after MCAO. In a proteomic approach, MCAO induced decreases of PEA-15 levels, while nicotinamide treatment attenuated the injury-induced decrease in PEA-15. The results of Western blot analysis suggest that nicotinamide prevented injury-induced reduction in phospho-PEA-15 (Serine 104) and phospho-PEA-15 (Serine 116) levels. The phosphorylation of PEA-15 exerts anti-apoptotic functions, and reduction of PEA-15 phosphorylation leads to apoptotic cell death. These results suggest that nicotinamide exerts a neuroprotective effect by attenuating the injury-induced decreases of PEA-15 and phospho-PEA-15 (Ser 104 and Ser 116) proteins.

  16. Down-regulated Na+/K+-ATPase activity in ischemic penumbra after focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Huang, Hao; Chen, Yang-Mei; Zhu, Fei; Tang, Shi-Ting; Xiao, Ji-Dong; Li, Lv-Li; Lin, Xin-Jing

    2015-01-01

    This study was aimed to examine whether the Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na+/K+-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na+/K+-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na+/K+-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na+/K+-ATPase activity. Our results suggest that down-regulated Na+/K+-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease. PMID:26722460

  17. Cerebral Blood Flow in Ischemic Vascular Dementia and Alzheimer's Disease By Arterial Spin Labeling MRI

    PubMed Central

    Schuff, N.; Matsumoto, S.; Kmiecik, J.; Studholme, C.; Du, A.T.; Ezekiel, F.; Miller, B.L.; Kramer, J.H.; Jagust, W.J.; Chui, H.C.; Weiner, M.W.

    2009-01-01

    Background The objectives were first to compare the effects of subcortical ischemic vascular dementia (SIVD) and Alzheimer's disease (AD) on cerebral blood flow (CBF) and second to analyze the relationship between CBF and subcortical vascular disease, measured as volume of white matter lesions (WML). Methods Eight mildly demented patients with SIVD (77 ± 8 years, 26 ± 3 MMSE) and 14 patients with AD were compared to 18 cognitively normal elderly. All subjects had CBF measured using arterial spin labeling MRI and brain volumes assessed using structural MRI. Results AD and SIVD showed marked CBF reductions in frontal (p = 0.001) and parietal (p = 0.001) cortex. In SIVD, increased subcortical WML were associated with reduced CBF in frontal cortex (p = 0.04) in addition to cortical atrophy (frontal: p = 0.05; parietal: p = 0.03). Conclusions Subcortical vascular disease is associated with reduced CBF in the cortex, irrespective of brain atrophy. PMID:19896584

  18. Decreased oxygen saturation in asymmetrically prominent cortical veins in patients with cerebral ischemic stroke.

    PubMed

    Xia, Shuang; Utriainen, David; Tang, Jin; Kou, Zhifeng; Zheng, Gang; Wang, Xuesong; Shen, Wen; Haacke, E Mark; Lu, Guangming

    2014-12-01

    Decreased oxygen saturation in asymmetrically prominent cortical veins (APCV) seen in ischemic stroke has been hypothesized to correlate with an increase of de-oxygenated hemoglobin. Our goal is to quantify magnetic susceptibility to define APCV by establishing a cutoff above which the deoxyhemoglobin levels are considered abnormal. A retrospective study was conducted on 26 patients with acute ischemic stroke in one cerebral hemisphere that exhibited APCV with 30 age- and sex-matched healthy controls. Quantitative susceptibility mapping (QSM) was used to calculate the magnetic susceptibility of the cortical veins. A paired t-test was used to compare the susceptibility of the cortical veins in the left and right hemispheres for healthy controls as well as in the contralateral hemisphere for stroke patients with APCV. The change in oxygen saturation in the APCV relative to the contralateral side was calculated after thresholding the susceptibility using the mean plus two standard deviations of the contralateral side for each individual. The thresholded susceptibility value of the APCVs in the stroke hemisphere was 254±48 ppb which was significantly higher (p<0.05) than that in the contralateral hemisphere (123±12 ppb) and in healthy controls (125±8 ppb). There was a decrease of oxygen saturation in the APCV ranging from 16% to 44% relative to the veins of the contralateral hemisphere. In conclusion, APCV seen in SWI correspond to reduced levels of oxygen saturation and these abnormal veins can be identified using a susceptibility threshold on the QSM data.

  19. Investigation of cerebral iron deposition in aged patients with ischemic cerebrovascular disease using susceptibility-weighted imaging

    PubMed Central

    Liu, Yin; Liu, Jun; Liu, Huanghui; Liao, Yunjie; Cao, Lu; Ye, Bin; Wang, Wei

    2016-01-01

    Objective The aim of this study was to investigate focal iron deposition level in the brain in patients with ischemic cerebrovascular disease and its correlation with cerebral small vessel disease imaging markers. Patients and methods Seventy-four patients with first-ever transient ischemic attack (median age: 69 years; 30 males and 44 females) and 77 patients with positive ischemic stroke history (median age: 72 years; 43 males and 34 females) were studied retrospectively. On phase image of susceptibility-weighted imaging and regions of interest were manually drawn at the bilateral head of the caudate nucleus, lenticular nucleus (LN), thalamus (TH), frontal white matter, and occipital white matter. The correlation between iron deposition level and the clinical and imaging variables was also investigated. Results Iron deposition level at LN was significantly higher in patients with previous stroke history. It linearly correlated with the presence and number of cerebral microbleeds (CMBs) but not with white matter hyperintensity and lacunar infarct. Multiple linear regression analysis showed that deep structure CMBs were the most relevant in terms of iron deposition at LN. Conclusion Iron deposition at LN may increase in cases of more severe ischemia in aged patients with transient ischemic attack, and it may be an imaging marker for CMB of ischemic origin. PMID:27574434

  20. Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia

    PubMed Central

    2016-01-01

    Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs) stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation. PMID:27703487

  1. Early retinal inflammatory biomarkers in the middle cerebral artery occlusion model of ischemic stroke

    PubMed Central

    Ritzel, Rodney M.; Pan, Sarah J.; Verma, Rajkumar; Wizeman, John; Crapser, Joshua; Patel, Anita R.; Lieberman, Richard; Mohan, Royce

    2016-01-01

    Purpose The transient middle cerebral artery occlusion (MCAO) model of stroke is one of the most commonly used models to study focal cerebral ischemia. This procedure also results in the simultaneous occlusion of the ophthalmic artery that supplies the retina. Retinal cell death is seen days after reperfusion and leads to functional deficits; however, the mechanism responsible for this injury has not been investigated. Given that the eye may have a unique ocular immune response to an ischemic challenge, this study examined the inflammatory response to retinal ischemia in the MCAO model. Methods Young male C57B/6 mice were subjected to 90-min transient MCAO and were euthanized at several time points up to 7 days. Transcription of inflammatory cytokines was measured with quantitative real-time PCR, and immune cell activation (e.g., phagocytosis) and migration were assessed with ophthalmoscopy and flow cytometry. Results Observation of the affected eye revealed symptoms consistent with Horner’s syndrome. Light ophthalmoscopy confirmed the reduced blood flow of the retinal arteries during occlusion. CX3CR1-GFP reporter mice were then employed to evaluate the extent of the ocular microglia and monocyte activation. A significant increase in green fluorescent protein (GFP)-positive macrophages was seen throughout the ischemic area compared to the sham and contralateral control eyes. RT–PCR revealed enhanced expression of the monocyte chemotactic molecule CCL2 early after reperfusion followed by a delayed increase in the proinflammatory cytokine TNF-α. Further analysis of peripheral leukocyte recruitment by flow cytometry determined that monocytes and neutrophils were the predominant immune cells to infiltrate at 72 h. A transient reduction in retinal microglia numbers was also observed, demonstrating the ischemic sensitivity of these cells. Blood–eye barrier permeability to small and large tracer molecules was increased by 72 h. Retinal microglia exhibited enhanced

  2. The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model

    PubMed Central

    Østergaard, Leif; Jespersen, Sune Nørhøj; Mouridsen, Kim; Mikkelsen, Irene Klærke; Jonsdottír, Kristjana Ýr; Tietze, Anna; Blicher, Jakob Udby; Aamand, Rasmus; Hjort, Niels; Iversen, Nina Kerting; Cai, Changsi; Hougaard, Kristina Dupont; Simonsen, Claus Z; Von Weitzel-Mudersbach, Paul; Modrau, Boris; Nagenthiraja, Kartheeban; Riisgaard Ribe, Lars; Hansen, Mikkel Bo; Bekke, Susanne Lise; Dahlman, Martin Gervais; Puig, Josep; Pedraza, Salvador; Serena, Joaquín; Cho, Tae-Hee; Siemonsen, Susanne; Thomalla, Götz; Fiehler, Jens; Nighoghossian, Norbert; Andersen, Grethe

    2013-01-01

    The pathophysiology of cerebral ischemia is traditionally understood in relation to reductions in cerebral blood flow (CBF). However, a recent reanalysis of the flow-diffusion equation shows that increased capillary transit time heterogeneity (CTTH) can reduce the oxygen extraction efficacy in brain tissue for a given CBF. Changes in capillary morphology are typical of conditions predisposing to stroke and of experimental ischemia. Changes in capillary flow patterns have been observed by direct microscopy in animal models of ischemia and by indirect methods in humans stroke, but their metabolic significance remain unclear. We modeled the effects of progressive increases in CTTH on the way in which brain tissue can secure sufficient oxygen to meet its metabolic needs. Our analysis predicts that as CTTH increases, CBF responses to functional activation and to vasodilators must be suppressed to maintain sufficient tissue oxygenation. Reductions in CBF, increases in CTTH, and combinations thereof can seemingly trigger a critical lack of oxygen in brain tissue, and the restoration of capillary perfusion patterns therefore appears to be crucial for the restoration of the tissue oxygenation after ischemic episodes. In this review, we discuss the possible implications of these findings for the prevention, diagnosis, and treatment of acute stroke. PMID:23443173

  3. PET imaging of cerebral perfusion and oxygen consumption in acute ischemic stroke: Relation to outcome

    SciTech Connect

    Marchal, G.; Serrati, C.; Rioux, P.; Petit-Taboue, M.C.; Viader, F.; Sayette, V. de la; Doze, F. le; Lonchon, P; Derlon, J.M.; Orgogozo, J.M.; Baron, J.C.

    1993-04-10

    The authors used positron emission tomography (PET) to assess the relation between combined imaging of cerebral blood flow and oxygen consumption 5-18 h after first middle cerebral artery (MCA) stroke and neurological outcome at 2 months. All 18 patients could be classified into three visually defined PET patterns of perfusion and oxygen consumption changes. Pattern 1 suggested extensive irreversible damage and was consistently associated with poor outcome. Pattern 2 suggested continuing ischemia and was associated with variable outcome. Pattern 3 with hyperperfusion and little or no metabolic alteration, was associated with excellent recovery, which suggests that early reperfusion is beneficial. This relation between PET and outcome was highly significant. The results suggest that within 5-18 h of stroke onset, PET is a good predictor of outcome in patterns 1 and 3, for which therapy seems limited. The absence of predictive value for pattern 2 suggests that it is due to a reversible ischemic state that is possibly amenable to therapy. These findings may have important implications for acute MCA stroke management and for patients' selection for therapeutic trials.

  4. Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice

    PubMed Central

    ZHAO, PENG; ZHOU, RU; ZHU, XIAO-YUN; HAO, YIN-JU; LI, NAN; WANG, JIE; NIU, YANG; SUN, TAO; LI, YU-XIANG; YU, JIAN-QIANG

    2015-01-01

    cerebral ischemic injury and that these effects are associated with its antioxidant and anti-apoptotic properties. PMID:26135032

  5. Longitudinal MR imaging study in the prediction of ischemic susceptibility after cerebral hypoperfusion in rats: Influence of aging and hypertension.

    PubMed

    Lee, J-T; Liu, H-L; Yang, J-T; Yang, S-T; Lin, J-R; Lee, T-H

    2014-01-17

    Our previous study has shown that aging and hypertension may alter apparent diffusion coefficient (ADC) and cerebral blood flow (CBF) and increase ischemic susceptibility in the non-ischemic rat brain. The present study wishes to further investigate whether aging and hypertension may influence cerebral diffusion/perfusion and increase ischemic susceptibility in the ischemic brain. Brain magnetic resonance (MR) imaging was examined 1day before and 1 and 7days after bilateral common carotid artery occlusion. Young and middle-aged normotensive Wistar-Kyoto rats and young and middle-aged spontaneously hypertensive rats (SHRs) were studied. Infarction occurred mainly in the parietal cortex and was larger in middle-aged SHRs than the other three groups (P<0.05). In pre-operation, ADC was higher and CBF was lower in middle-aged/hypertensive rats than young/normotensive rats (P<0.05). The ADC was higher in the parietal cortex of the rats with infarction at 7days when compared to the rats without infarction [receiver operating characteristic curve (ROC), P=0.001; binary logistic regression (BLR), P=0.006]. However, there was no difference in the hippocampus and thalamus. At day 1 post-operation, CBF reduced and ADC/CBF ratio elevated significantly in the parietal cortex of the rats with infarction when compared to the rats without infarction (CBF: ROC, P=0.002; BLR, P=0.017. ADC/CBF ratio: ROC, P=0.001; BLR, P=0.018). Our results demonstrated that pre-operation ADC and post-operation CBF and ADC/CBF ratio can be used as good MR markers in the prediction of ischemic susceptibility after cerebral hypoperfusion.

  6. Intra-arterial Tirofiban Infusion for Partial Recanalization with Stagnant Flow in Hyperacute Cerebral Ischemic Stroke

    PubMed Central

    Baik, S.K.; Oh, S.J.; Park, K-P.; Lee, J-H.

    2011-01-01

    Summary Early reocclusion is a major concern associated with poor clinical outcomes in patients with an ischemic cerebral stroke. This occurs most frequently in patients with partial initial recanalization. This study focuses on partial recanalization with stagnant antegrade flow after intravenous (IV) tPA or spontaneously, treated with the administration of intra-arterial (IA) tirofiban. Three patients with initial M1 occlusion on diagnostic studies had an occluded segment that was recanalized with stagnant flow after IV tPA or spontaneously. In all cases, IA tirofiban was administrated. We evaluated the distal blood flow and the degree of vascular narrowing in the pre and post-procedure angiography and at follow-up in addition to the clinical status. In all patients, severe vascular narrowing with stagnation of blood flow was detected in the initial M1. After infusion of IA tirofiban, improvement of the distal blood flow was achieved rapidly within 40 minutes in all patients. The severe vascular narrowing resolved rapidly in two patients without residual stenosis. In one patient, moderate vascular narrowing was still present. The median baseline National Institutes of Health Stroke Scale (NIHSS) scores were 18 and the median post-procedural NIHSS scores were 2 at two weeks. No intracerebral hemorrhage occurred in any of the patients. Treatment with IA tirofiban was safe and effective in patients with partial initial recanalization. It can be suggested that detection of any partial recanalization is time for administration of glycoprotein IIb-IIIa receptor inhibitor in hyperacute ischemic stroke. PMID:22192548

  7. Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice

    PubMed Central

    2012-01-01

    Introduction The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is considered to be a potential therapeutic agent for prevention of cerebral ischemia. Ischemia is a most common cause of death after heart attack and cancer causing major negative social and economic consequences. This study was designed to investigate the effect of PACAP38 injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO) along with corresponding SHAM control that used 0.9% saline injection. Methods Ischemic and non-ischemic brain tissues were sampled at 6 and 24 hours post-treatment. Following behavioral analyses to confirm whether the ischemia has occurred, we investigated the genome-wide changes in gene and protein expression using DNA microarray chip (4x44K, Agilent) and two-dimensional gel electrophoresis (2-DGE) coupled with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS), respectively. Western blotting and immunofluorescent staining were also used to further examine the identified protein factor. Results Our results revealed numerous changes in the transcriptome of ischemic hemisphere (ipsilateral) treated with PACAP38 compared to the saline-injected SHAM control hemisphere (contralateral). Previously known (such as the interleukin family) and novel (Gabra6, Crtam) genes were identified under PACAP influence. In parallel, 2-DGE analysis revealed a highly expressed protein spot in the ischemic hemisphere that was identified as dihydropyrimidinase-related protein 2 (DPYL2). The DPYL2, also known as Crmp2, is a marker for the axonal growth and nerve development. Interestingly, PACAP treatment slightly increased its abundance (by 2-DGE and immunostaining) at 6 h but not at 24 h in the ischemic hemisphere, suggesting PACAP activates neuronal defense mechanism early on. Conclusions This study provides a detailed inventory of PACAP influenced gene expressions and protein targets

  8. Ischemic postconditioning alleviates neuronal injury caused by relief of carotid stenosis in a rat model of cerebral hypoperfusion.

    PubMed

    Feng, Chunsheng; Luo, Tianfei; Qi, Li; Wang, Boyu; Luo, Yinan; Ge, Pengfei

    2012-10-18

    The effects of early relief of heavy bilateral carotid stenosis and ischemic postconditioning on hippocampus CA1 neurons are still unclear. In this study, we used a rat model to imitate severe bilateral carotid stenosis in humans. The rats were divided into sham group, carotid stenosis group, stenosis relief group and ischemic postconditioning group. Ischemic postconditioning consisted of three cycles of 30 s ischemia and 30 s reperfusion. The cerebral blood flow was measured with a laser Doppler flowmeter. Neuronal death in the CA1 region was observed by hematoxylin-eosin staining, and the number of live neurons was assessed by cell counting under a light microscope. The levels of oxidative products MDA and 8-iso-PGF2α, inflammatory factors IL-1β and TNF-α, and the activities of anti-oxidative enzymes SOD and CAT were assayed by specific enzyme-linked immunosorbent assay (ELISA) kits, respectively. We found that relief of carotid stenosis and ischemic postconditioning could increase cerebral blood flow. When stenosis was relieved, the percentage of live neurons was 66.6% ± 6.2% on day 3 and 62.3% ± 9.8% on day 27, which was significantly higher than 55.5% ± 4.8% in stenosis group. Ischemic postconditioning markedly improved the live neurons to 92.5% ± 6.7% on day 3 and 88.6% ± 9.1% on day 27. Further study showed that, neuronal death caused by relief of stenosis is associated with increased oxidative stress and enhanced inflammatory response, and the protection of ischemic postconditioning is related to inhibition of oxidative stress and suppression of inflammatory response.

  9. Early Cerebral Hemodynamic, Metabolic, and Histological Changes in Hypoxic–Ischemic Fetal Lambs during Postnatal Life

    PubMed Central

    Rey-Santano, Carmen; Mielgo, Victoria E.; Gastiasoro, Elena; Murgia, Xabier; Lafuente, Hector; Ruiz-del-Yerro, Estibaliz; Valls-i-Soler, Adolf; Hilario, Enrique; Alvarez, Francisco J.

    2011-01-01

    The hemodynamic, metabolic, and biochemical changes produced during the transition from fetal to neonatal life may be aggravated if an episode of asphyxia occurs during fetal life. The aim of the study was to examine regional cerebral blood flow (RCBF), histological changes, and cerebral brain metabolism in preterm lambs, and to analyze the role of oxidative stress in the first hours of postnatal life following severe fetal asphyxia. Eighteen chronically instrumented newborn lambs were randomly assigned to either a control group or the hypoxic–ischemic (HI) group, in which case fetal asphyxia was induced just before delivery. All the animals were maintained on intermittent positive pressure ventilation for 3 h after delivery. During the HI insult, the injured group developed acidosis, hypoxia, hypercapnia, lactic acidosis, and tachycardia (relative to the control group), without hypotension. The intermittent positive pressure ventilation transiently improved gas exchange and cardiovascular parameters. After HI injury and during ventilatory support, there continued to be an increased RCBF in inner regions among the HI group, but no significant differences were detected in cortical flow compared to the control group. Also, the magnitude of the increase in TUNEL positive cells (apoptosis) and antioxidant enzymes, and decrease of ATP reserves was significantly greater in the brain regions where the RCBF was not higher. In conclusion, our findings identify early metabolic, histological, and hemodynamic changes involved in brain damage in premature asphyxiated lambs. Such changes have been described in human neonates, so our model could be useful to test the safety and the effectiveness of different neuroprotective or ventilation strategies applied in the first hours after fetal HI injury. PMID:21960958

  10. Periodic 17β-Estradiol Pretreatment Protects Rat Brain from Cerebral Ischemic Damage via Estrogen Receptor-β

    PubMed Central

    Raval, Ami P.; Borges-Garcia, Raquel; Javier Moreno, William; Perez-Pinzon, Miguel A.; Bramlett, Helen

    2013-01-01

    Although chronic 17β-estradiol (E2) has been shown to be a cognition-preserving and neuroprotective agent in animal brain injury models, concern regarding its safety was raised by the failed translation of this phenomenon to the clinic. Previously, we demonstrated that a single bolus of E2 48 hr prior to ischemia protected the hippocampus from damage in ovariectomized rats via phosphorylation of cyclic-AMP response element binding protein, which requires activation of estrogen receptor subtype beta (ER-β). The current study tests the hypothesis that long-term periodic E2-treatment improves cognition and reduces post-ischemic hippocampal injury by means of ER-β activation. Ovariectomized rats were given ten injections of E2 at 48 hr intervals for 21 days. Hippocampal-dependent learning, memory and ischemic neuronal loss were monitored. Results demonstrated that periodic E2 treatments improved spatial learning, memory and ischemic neuronal survival in ovariectomized rats. Additionally, periodic ER-β agonist treatments every 48 hr improved post-ischemic cognition. Silencing of hippocampal ER-β attenuated E2-mediated ischemic protection suggesting that ER-β plays a key role in mediating the beneficial effects of periodic E2 treatments. This study emphasizes the need to investigate a periodic estrogen replacement regimen to reduce cognitive decline and cerebral ischemia incidents/impact in post-menopausal women. PMID:23593292

  11. Cerebroprotective effect of Moringa oleifera against focal ischemic stroke induced by middle cerebral artery occlusion.

    PubMed

    Kirisattayakul, Woranan; Wattanathorn, Jintanaporn; Tong-Un, Terdthai; Muchimapura, Supaporn; Wannanon, Panakaporn; Jittiwat, Jinatta

    2013-01-01

    The protection against ischemic stroke is still required due to the limitation of therapeutic efficacy. Based on the role of oxidative stress in stroke pathophysiology, we determined whether Moringa oleifera, a plant possessing potent antioxidant activity, protected against brain damage and oxidative stress in animal model of focal stroke. M. oleifera leaves extract at doses of 100, 200 and 400 mg·kg(-1) was orally given to male Wistar rats (300-350 g) once daily at a period of 2 weeks before the occlusion of right middle cerebral artery (Rt.MCAO) and 3 weeks after Rt.MCAO. The determinations of neurological score and temperature sensation were performed every 7 days throughout the study period, while the determinations of brain infarction volume, MDA level, and the activities of SOD, CAT, and GSH-Px were performed 24 hr after Rt.MCAO. The results showed that all doses of extract decreased infarction volume in both cortex and subcortex. The protective effect of medium and low doses of extract in all areas occurred mainly via the decreased oxidative stress. The protective effect of the high dose extract in striatum and hippocampus occurred via the same mechanism, whereas other mechanisms might play a crucial role in cortex. The detailed mechanism required further exploration.

  12. The Neuroprotective Effect of Rosemary (Rosmarinus officinalis L.) Hydro-alcoholic Extract on Cerebral Ischemic Tolerance in Experimental Stroke

    PubMed Central

    Seyedemadi, Parisa; Rahnema, Mehdi; Bigdeli, Mohammad Reza; Oryan, Shahrebano; Rafati, Hassan

    2016-01-01

    The prevention of BBB breakdown and the subsequent vasogenic edema are important parts of the medical management of ischemic stroke. The purpose of this study was to investigate the ischemic tolerance effect of Rosmarinus officinalis leaf hydro-alcoholic extract (RHE). Five groups of animals were designed: sham (underwent surgery without MCAO) and MCAO groups, the MCAO groups were pretreated orally by gavages with RHE (50, 75, and 100 mg/Kg/day), daily for 30 days. Two hours after the last dose, serum lipid levels were determined and then the rats were subjected to 60 min of middle cerebral artery occlusion followed by 24 h of reperfusion. Subsequently, brain infarct size, brain edema and Evans Blue dye extravasations were measured and neurological deficits were scored. Dietary RHE could significantly reduce cortical and sub-cortical infarct volumes (211.55 ± 24.88 mm3 vs. 40.59 ± 10.04 mm3 vs. 29.96 ± 12.19 mm3vs. 6.58 ± 3.2 mm3), neurologic deficit scores, cerebral edema (82.34 ± 0.42% vs. 79.92 ± 0.49% vs. 79.45 ± 0.26% vs. 79.30 ± 0.19%), blood–brain barrier (BBB) permeability (7.73 ± 0.4 μg/g tissue vs. 4.1 ± 0.23 μg/g tissue vs. 3.58 ± 0.3 μg/g tissue vs. 3.38 ± 0.25 μg/g tissue) in doses of 50, 75 and 100 mg/Kg/day as compared with the control group in the transient model of focal cerebral ischemia. Although pretreatment with RHE plays an important role in the generation of tolerance against cerebral I/R injury, further studies are needed to clarify the mechanism of the ischemic tolerance. PMID:28243285

  13. Electroacupuncture stimulation of the brachial plexus trunk on the healthy side promotes brain-derived neurotrophic factor mRNA expression in the ischemic cerebral cortex of a rat model of cerebral ischemia/reperfusion injury.

    PubMed

    Guo, Zongjun; Wang, Lumin

    2012-07-25

    A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2-6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.

  14. Salvage of focal cerebral ischemic damage by transfusion of high O2-affinity recombinant hemoglobin polymers in mouse

    PubMed Central

    Nemoto, Masaaki; Mito, Toshiaki; Brinigar, William S; Fronticelli, Clara; Koehler, Raymond C.

    2006-01-01

    Cell-free hemoglobin solutions with high oxygen affinity might be beneficial for selectively delivering oxygen to ischemic tissue. A recombinant hybrid hemoglobin molecule was designed using the human α-subunit and the bovine β-subunit, with placement of surface cysteines to permit disulfide bond polymerization of the tetramers. The resulting protein generated from an Escherichia coli expression system had a molecular mass >1 MDa, a P50 of ~3 Torr, and a cooperativity of n = 1.0. Anesthetized mice were transfused during 2-h occlusion of the middle cerebral artery. Compared with transfusion with 5% albumin, cerebral infarct volume was reduced by 41% with transfusion of a 3% solution of the high oxygen-affinity hemoglobin polymer and by 50% with transfusion of a 6% solution of the polymer. Transfusion of a 6% solution of a 500-kDa polymer possessing a P50 of 17 Torr and a cooperativity of n = 2.0 resulted in a 66% reduction of infarct volume. These results indicate that cell-free Hb polymers with P50 values much lower than that of red blood cell hemoglobin are highly capable of salvaging ischemic brain. The assumption that the P50 of blood substitutes should be similar to that of blood might not be warranted when used during ischemic conditions. PMID:16424069

  15. Fullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats.

    PubMed

    Fluri, Felix; Grünstein, Dan; Cam, Ertugrul; Ungethuem, Udo; Hatz, Florian; Schäfer, Juliane; Samnick, Samuel; Israel, Ina; Kleinschnitz, Christoph; Orts-Gil, Guillermo; Moch, Holger; Zeis, Thomas; Schaeren-Wiemers, Nicole; Seeberger, Peter

    2015-03-01

    Cerebral inflammation plays a crucial role in the pathophysiology of ischemic stroke and is involved in all stages of the ischemic cascade. Fullerene derivatives, such as fullerenol (OH-F) are radical scavengers acting as neuroprotective agents while glucosamine (GlcN) attenuates cerebral inflammation after stroke. We created novel glucosamine-fullerene conjugates (GlcN-F) to combine their protective effects and compared them to OH-F regarding stroke-induced cerebral inflammation and cellular damage. Fullerene derivatives or vehicle was administered intravenously in normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) immediately after transient middle cerebral artery occlusion (tMCAO). Infarct size was determined at day 5 and neurological outcome at days 1 and 5 after tMCAO. CD68- and NeuN-staining were performed to determine immunoreactivity and neuronal survival respectively. Cytokine and toll like receptor 4 (TLR-4) expression was assessed using quantitative real-time PCR. Magnetic resonance imaging revealed a significant reduction of infarct volume in both, WKY and SHR that were treated with fullerene derivatives. Treated rats showed an amelioration of neurological symptoms as both OH-F and GlcN-F prevented neuronal loss in the perilesional area. Cerebral immunoreactivity was reduced in treated WKY and SHR. Expression of IL-1β and TLR-4 was attenuated in OH-F-treated WKY rats. In conclusion, OH-F and GlcN-F lead to a reduction of cellular damage and inflammation after stroke, rendering these compounds attractive therapeutics for stroke.

  16. Post-hypoxic and ischemic neuroprotection of BMP-7 in the cerebral cortex and caudate-putamen tissue of rat.

    PubMed

    Luan, Liju; Yang, Xiaomei; Zhou, Changman; Wang, Ke; Qin, Lihua

    2015-03-01

    Previous reports have indicated that exogenous bone morphogenetic protein-7 (BMP-7) has a neuroprotective effect after cerebral ischemia injury and promotes motor function recovery, but the appropriate BMP-7 concentration and time course are unclear. Here, we assessed endogenous BMP-7 expression in hypoxia and ischemia-damaged brain tissues and investigated the effects of different BMP-7 concentrations in pre- and post-hypoxic primary rat neurons. The results showed that BMP-7 expression was significantly higher in the ischemic hemisphere. The expressions of BMP-7 and caspase-3 were localized in the cytoplasm of the primary cerebral cortical and caudate-putamen neurons 24h after hypoxia/reoxygenation. After BMP-7 treatment, the number of caspase-3 positive neurons began to decrease with increasing BMP-7 concentrations up to 80ng/ml, but not beyond. Although the numbers of caspase-3-positive neurons between pre- and post-hypoxia/reoxygenation were not significantly different, more dendrites were observed in the groups treated prior to hypoxia/reoxygenation. These results suggest that increased BMP-7 expression can be induced in the cerebral cortex and caudate-putamen both in vivo and in vitro in hypoxic-ischemic states. The neuroprotective mechanism of BMP-7 may include apoptosis suppression, and its effect was enhanced from 40 to 80ng/ml. Pre-hypoxic BMP-7 treatment may be useful to stimulate dendrite sprouting in non-injured neurons.

  17. Proteomic analysis of PSD-93 knockout mice following the induction of ischemic cerebral injury.

    PubMed

    Rong, Rong; Yang, Hui; Rong, Liangqun; Wei, Xiue; Li, Qingjie; Liu, Xiaomei; Gao, Hong; Xu, Yun; Zhang, Qingxiu

    2016-03-01

    Postsynaptic density protein-93 (PSD-93) is enriched in the postsynaptic density and is involved in N-methyl-d-aspartate receptor (NMDAR) triggered neurotoxicity through PSD-93/NMDAR/nNOS signaling pathway. In the present study, we found that PSD-93 deficiency reduced infarcted volume and neurological deficits induced by transient middle cerebral artery occlusion (tMCAO) in the mice. To identify novel targets of PSD-93 related neurotoxicity, we applied isobaric tags for relative and absolute quantitative (iTRAQ) labeling and combined this labeling with on-line two-dimensional LC/MS/MS technology to elucidate the changes in protein expression in PSD-93 knockout mice following tMCAO. The proteomic data set consisted of 1892 proteins. Compared to control group, differences in expression levels in ischemic group >1.5-fold and <0.66-fold were considered as differential expression. A total of 104 unique proteins with differential abundance levels were identified, among which 17 proteins were selected for further validation. Gene ontology analysis using UniProt database revealed that these differentially expressed proteins are involved in diverse function such as synaptic transmission, neuronal neurotransmitter and ion transport, modification of organelle membrane components. Moreover, network analysis revealed that the interacting proteins were involved in the transport of synaptic vesicles, the integrity of synaptic membranes and the activation of the ionotropic glutamate receptors NMDAR1 and NMDAR2B. Finally, RT-PCR and Western blot analysis showed that SynGAP, syntaxin-1A, protein kinase C β, and voltage-dependent L-type calcium channels were inhibited by ischemia-reperfusion. Identification of these proteins provides valuable clues to elucidate the mechanisms underlying the actions of PSD-93 in ischemia-reperfusion induced neurotoxicity.

  18. Accelerated development of cerebral small vessel disease in young stroke patients

    PubMed Central

    Arntz, Renate M.; van den Broek, Steffen M.A.; van Uden, Inge W.M.; Ghafoorian, Mohsen; Platel, Bram; Rutten-Jacobs, Loes C.A.; Maaijwee, Noortje A.M.; Schaapsmeerders, Pauline; Schoonderwaldt, Hennie C.; van Dijk, Ewoud J.

    2016-01-01

    Objective: To study the long-term prevalence of small vessel disease after young stroke and to compare this to healthy controls. Methods: This prospective cohort study comprises 337 patients with an ischemic stroke or TIA, aged 18–50 years, without a history of TIA or stroke. In addition, 90 age- and sex-matched controls were included. At follow-up, lacunes, microbleeds, and white matter hyperintensity (WMH) volume were assessed using MRI. To investigate the relation between risk factors and small vessel disease, logistic and linear regression were used. Results: After mean follow-up of 9.9 (SD 8.1) years, 337 patients were included (227 with an ischemic stroke and 110 with a TIA). Mean age of patients was 49.8 years (SD 10.3) and 45.4% were men; for controls, mean age was 49.4 years (SD 11.9) and 45.6% were men. Compared with controls, patients more often had at least 1 lacune (24.0% vs 4.5%, p < 0.0001). In addition, they had a higher WMH volume (median 1.5 mL [interquartile range (IQR) 0.5–3.7] vs 0.4 mL [IQR 0.0–1.0], p < 0.001). Compared with controls, patients had the same volume WMHs on average 10–20 years earlier. In the patient group, age at stroke (β = 0.03, 95% confidence interval [CI] 0.02–0.04) hypertension (β = 0.22, 95% CI 0.04–0.39), and smoking (β = 0.18, 95% CI 0.01–0.34) at baseline were associated with WMH volume. Conclusions: Patients with a young stroke have a higher burden of small vessel disease than controls adjusted for confounders. Cerebral aging seems accelerated by 10–20 years in these patients, which may suggest an increased vulnerability to vascular risk factors. PMID:27521431

  19. Potential non-hypoxic/ischemic causes of increased cerebral interstitial fluid lactate/pyruvate ratio: a review of available literature.

    PubMed

    Larach, Daniel B; Kofke, W Andrew; Le Roux, Peter

    2011-12-01

    Microdialysis, an in vivo technique that permits collection and analysis of small molecular weight substances from the interstitial space, was developed more than 30 years ago and introduced into the clinical neurosciences in the 1990s. Today cerebral microdialysis is an established, commercially available clinical tool that is focused primarily on markers of cerebral energy metabolism (glucose, lactate, and pyruvate) and cell damage (glycerol), and neurotransmitters (glutamate). Although the brain comprises only 2% of body weight, it consumes 20% of total body energy. Consequently, the ability to monitor cerebral metabolism can provide significant insights during clinical care. Measurements of lactate, pyruvate, and glucose give information about the comparative contributions of aerobic and anaerobic metabolisms to brain energy. The lactate/pyruvate ratio reflects cytoplasmic redox state and thus provides information about tissue oxygenation. An elevated lactate pyruvate ratio (>40) frequently is interpreted as a sign of cerebral hypoxia or ischemia. However, several other factors may contribute to an elevated LPR. This article reviews potential non-hypoxic/ischemic causes of an increased LPR.

  20. Effects of angiopoietin-1 on hemorrhagic transformation and cerebral edema after tissue plasminogen activator treatment for ischemic stroke in rats.

    PubMed

    Kawamura, Kunio; Takahashi, Tetsuya; Kanazawa, Masato; Igarashi, Hironaka; Nakada, Tsutomu; Nishizawa, Masatoyo; Shimohata, Takayoshi

    2014-01-01

    An angiogenesis factor, angiopoietin-1 (Ang1), is associated with the blood-brain barrier (BBB) disruption after focal cerebral ischemia. However, whether hemorrhagic transformation and cerebral edema after tissue plasminogen activator (tPA) treatment are related to the decrease in Ang1 expression in the BBB remains unknown. We hypothesized that administering Ang1 might attenuate hemorrhagic transformation and cerebral edema after tPA treatment by stabilizing blood vessels and inhibiting hyperpermeability. Sprague-Dawley rats subjected to thromboembolic focal cerebral ischemia were assigned to a permanent ischemia group (permanent middle cerebral artery occlusion; PMCAO) and groups treated with tPA at 1 h or 4 h after ischemia. Endogenous Ang1 expression was observed in pericytes, astrocytes, and neuronal cells. Western blot analyses revealed that Ang1 expression levels on the ischemic side of the cerebral cortex were decreased in the tPA-1h, tPA-4h, and PMCAO groups as compared to those in the control group (P = 0.014, 0.003, and 0.014, respectively). Ang1-positive vessel densities in the tPA-4h and PMCAO groups were less than that in the control group (p = 0.002 and <0.001, respectively) as well as that in the tPA-1h group (p = 0.047 and 0.005, respectively). These results suggest that Ang1-positive vessel density was maintained when tPA was administered within the therapeutic time window (1 h), while it was decreased when tPA treatment was given after the therapeutic time window (4 h). Administering Ang1 fused with cartilage oligomeric protein (COMP) to supplement this decrease has the potential to suppress hemorrhagic transformation as measured by hemoglobin content in a whole cerebral homogenate (p = 0.007) and cerebral edema due to BBB damage (p = 0.038), as compared to administering COMP protein alone. In conclusion, Ang1 might be a promising target molecule for developing vasoprotective therapies for controlling hemorrhagic transformation and cerebral edema

  1. Neuroprotection by Methylene Blue in Cerebral Global Ischemic Injury Induced Blood-Brain Barrier Disruption and Brain Pathology: A Review.

    PubMed

    Wiklund, Lars; Sharma, Aruna; Sharma, Hari Shanker

    2016-01-01

    Transient global ischemic cerebral injury is a consequence of cardiac arrest and accounts for approximately 450,000 annual deaths with a mortality of approximately 90%. Serious morbidity follows for many of the survivors and up to 16% of patients achieving restoration of spontaneous circulation develop brain death. Other survivors are left with persistent cognitive impairment such as memory and sensimotor deficits, reducing quality of life and resulting in heavy costs on society. Many studies over the years have been devoted to improving outcome after cardiac arrest and have, to a certain degree succeeded, especially locally in areas where improvement of ambulance organizations have been effective. In spite of this serious problems remain and the chances of cerebral survival need to increase if over-all results, i.e. survival as well as cognitive function, are to improve. Methylene blue, a textile dye synthesized in the late 19th century has also been used in medicine for different purposes. One of its effects is to increase systemic blood pressure, but other effects have been documented, among which are its neuroprotective effects well-noted during the last few years. In this review we have appraised these findings in relation to global ischemic injury.

  2. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model

    PubMed Central

    Nagai, Noriaki; Yoshioka, Chiaki; Ito, Yoshimasa; Funakami, Yoshinori; Nishikawa, Hiroyuki; Kawabata, Atsufumi

    2015-01-01

    It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage. PMID:26690139

  3. Computer-aided diagnosis of acute ischemic stroke based on cerebral hypoperfusion using 4D CT angiography

    NASA Astrophysics Data System (ADS)

    Charbonnier, Jean-Paul; Smit, Ewoud J.; Viergever, Max A.; Velthuis, Birgitta K.; Vos, Pieter C.

    2013-02-01

    The presence of collateral blood flow is found to be a strong predictor of patient outcome after acute ischemic stroke. Collateral blood flow is defined as an alternative way to provide oxygenated blood to ischemic cerebral tissue. Assessment of collateral blood supply is currently performed by visual inspection of a Computed Tomography Angiogram (CTA) which introduces inter-observer variability and depends on the grading scale. Furthermore, variations in the arterial contrast arrival time may lead to underestimation of collateral blood supply in a CTA which exerts a negative influence on the prediction of patient outcome. In this study, the feasibility of a Computer-aided Diagnosis system is investigated capable of objectively predicting patient outcome. We present a novel automatic method for quantitative assessment of cerebral hypoperfusion in timing-invariant (i.e. delay insensitive) CTA (TI-CTA). The proposed Vessel Density Symmetry algorithm automatically generates descriptive maps based on hemispheric asymmetry of blood vessels. Intensity and symmetry based features are extracted from these descriptive maps and subjected to a best-first-search feature selection. Linear Discriminant Analysis is performed to combine selected features into a likelihood of good patient outcome. Receiver operating characteristic (ROC) analysis is conducted to evaluate the diagnostic performance of the CAD by leave-one- patient-out cross validation. A Positive Predicting Value of 1 was obtained at a sensitivity of 25% with an area under the ROC-curve of 0.86. The results show that the CAD is feasible to objectively predict patient outcome. The presented CAD could make an important contribution to acute ischemic stroke diagnosis and treatment.

  4. Computer Modeling of Acceleration Effects on Cerebral Oxygen Saturation

    DTIC Science & Technology

    2007-04-01

    a significant physiological threat to etrate the cranium and enter the cerebral cortex. Hongo high-performance aircraft pilots since the development...et al. and Hongo et al. (7,8). blackened out and all that could be seen was the target, The primary focus of this effort was to build a model i.e...O6GInduced.html. 87:402. 12. Tripp LD, Arnold A, Bagian J, et al. Psychophysiological effects 8. Hongo K, Kobayashi S, Okudera H, et al. Noninvasive cerebral of

  5. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor {kappa}B p65 activation

    SciTech Connect

    Xue, Xia; Qu, Xian-Jun; Yang, Ying; Sheng, Xie-Huang; Cheng, Fang; Jiang, E-Nang; Wang, Jian-hua; Bu, Wen; Liu, Zhao-Ping

    2010-12-17

    Research highlights: {yields} Permanent NF-{kappa}B p65 activation contributes to the infarction after ischemia-reperfusion injury in rats. {yields} Baicalin can markedly inhibit the nuclear NF-{kappa}B p65 expression and m RNA levels after ischemia-reperfusion injury in rats. {yields} Baicalin decreased the cerebral infarction area via inhibiting the activation of nuclear NF-{kappa}B p65. -- Abstract: Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at doses of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-{kappa}B p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 {+-} 0.7 to 1.2 {+-} 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-{kappa}B p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-{kappa}B p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-{kappa}B p65.

  6. Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat.

    PubMed

    Chen, H; Chopp, M; Zhang, R L; Bodzin, G; Chen, Q; Rusche, J R; Todd, R F

    1994-04-01

    We investigated the effect of an anti-CD11b monoclonal antibody (1B6c) on ischemic cell damage after transient middle cerebral artery occlusion. We divided animals into three groups: MAb 1 group (n = 5)--rats were subjected to 2 hours of transient occlusion and 1B6c (1 mg/kg) was administered intravenously at 0 and 22 hours of reperfusion; MAb 2 group (n = 5)--same experimental protocol as MAb 1 group, except that the initial dose of 1B6c was increased to 2 mg/kg; and control group (n = 5)--same experimental protocol as MAb 2 group, except that an isotype-matched control antibody was administered. Animals were weighed and tested for neurological function before and after occlusion of the middle cerebral artery. Forty-six hours after reperfusion, brain sections were stained with hematoxylin and eosin for histology evaluation. We observed a significant reduction of weight loss and improvement in neurological function after ischemia in the MAb 2 animals compared to MAb 1 and vehicle-treated animals (p < 0.05). The lesion volume was significantly smaller in the MAb 2 group (19.5 +/- 1.9%) compared to MAb 1 (29.9 +/- 2.6%) and vehicle-treated (34.2 +/- 5.4%) groups (p < 0.01). Tissue polymorphonuclear cell numbers were reduced in both 1B6c-administered groups. Our data demonstrate that administration of anti-CD11b antibody results in a dose-dependent, significant functional improvement and reduction of ischemic cell damage after transient focal cerebral ischemia in the rat.

  7. Cerebrolysin adjuvant treatment in Broca's aphasics following first acute ischemic stroke of the left middle cerebral artery

    PubMed Central

    Muresanu, DF; Bajenaru, O; Popescu, BO; Deme, SM; Moessler, H; Meinzingen, SZ; Petrica, L; Serpe, M; Ursoniu, S

    2010-01-01

    Background: The aim of our study was to assess the efficacy of Cerebrolysin administration in Broca's aphasics with acute ischemic stroke. Methods: We registered 2,212 consecutive Broca's aphasics following an acute ischemic stroke admitted in four departments of neurology in Romania, between September 2005 and September 2009. Language was evaluated with the Romanian version of the Western Aphasia Battery (WAB). The following inclusion criteria were used for this study: age 20%75 years, admission in the hospital within 12 hours from the onset of the symptoms, diagnosis of first acute left middle cerebral artery (MCA) ischemic stroke, presence of large artery disease (LAD) stroke, a NIHSS score of 5%22 points, and a therapeutic time window within 72 h. Fifty two patients were treated with Cerebrolysin (Cerebrolysin group) as an adjunctive treatment. A placebo group, which received saline infusions (n=104 patients) were matched to the NIHSS and WAB scores, gender and age of the Cerebrolysin group at baseline. We assessed spontaneous speech (SS), comprehension (C), repetition (R), naming (N), and Aphasia Quotient (AQ) scores of the two groups in an open label design, over 90 days, the mRS scores and mortality. Results: The Cerebrolysin and the placebo groups had similar age (66+/%8 versus 65+/%8 years) and sex ratio (14/38 versus 30/74). The mean AQ scores and the mean subscores for 3 subtests of WAB (SS, R, N) were similar at baseline and improved in the Cerebrolysin group significantly (p<0.05) over placebo group at all study time points. The mRS score at 90 days was also lower in the Cerebrolysin group than in the placebo group. Cerebrolysin and placebo were both tolerated and safe, and no difference in the mortality rate was seen (3.8% in each group). Conclusion: Cerebrolysin is effective for the treatment of Broca's aphasics with a first acute ischemic stroke of the left MCA territory. PMID:20945821

  8. Tumor necrosis factor-α inhibition attenuates middle cerebral artery remodeling but increases cerebral ischemic damage in hypertensive rats.

    PubMed

    Pires, Paulo W; Girgla, Saavia S; Moreno, Guillermo; McClain, Jonathon L; Dorrance, Anne M

    2014-09-01

    Hypertension causes vascular inflammation evidenced by an increase in perivascular macrophages and proinflammatory cytokines in the arterial wall. Perivascular macrophage depletion reduced tumor necrosis factor (TNF)-α expression in cerebral arteries of hypertensive rats and attenuated inward remodeling, suggesting that TNF-α might play a role in the remodeling process. We hypothesized that TNF-α inhibition would improve middle cerebral artery (MCA) structure and reduce damage after cerebral ischemia in hypertensive rats. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were treated with the TNF-α inhibitor etanercept (ETN; 1.25 mg·kg(-1)·day(-1) ip daily) or PBS (equivolume) for 6 wk. The myogenic tone generation, postischemic dilation, and passive structure of MCAs were assessed by pressure myography. Cerebral ischemia was induced by MCA occlusion (MCAO). Myogenic tone was unchanged, but MCAs from SHRSP + ETN had larger passive lumen diameter and reduced wall thickness and wall-to-lumen ratio. Cerebral infarct size was increased in SHRSP + ETN after transient MCAO, despite an improvement in dilation of nonischemic MCA. The increase in infarct size was linked to a reduction in the number of microglia in the infarct core and upregulation of markers of classical macrophage/microglia polarization. There was no difference in infarct size after permanent MCAO or when untreated SHRSP subjected to transient MCAO were given ETN at reperfusion. Our data suggests that TNF-α inhibition attenuates hypertensive MCA remodeling but exacerbates cerebral damage following ischemia/reperfusion injury likely due to inhibition of the innate immune response of the brain.

  9. AN EVALUATION OF CEREBRAL AND SYSTEMIC PREDICTORS OF 18 MONTH OUTCOMES FOR NEONATES WITH HYPOXIC ISCHEMIC ENCEPHALOPATHY

    PubMed Central

    Shellhaas, Renée A.; Kushwaha, Juhi S.; Plegue, Melissa A.; Selewski, David T.; DE Barks, John

    2015-01-01

    Amplitude-integrated EEG (aEEG) is a commonly-used predictor of outcome after hypoxic ischemic encephalopathy (HIE). Cerebral and systemic near-infrared spectroscopy (NIRS) and acute kidney injury (AKI) might also have prognostic value. We monitored neonates with aEEG, cerebral and systemic NIRS during therapeutic hypothermia, assigned an AKI stage, and measured neurodevelopmental outcome. For 18 infants, cerebral NIRS variables did not differentiate between those with favorable (N=13) versus adverse (death or moderate-severe disability; N=5) 18-month outcomes. However, systemic rSO2 variability was higher during hours 48–72 of cooling among those with favorable outcomes (0.020.05). aEEG is a useful prognostic tool for outcomes after neonatal HIE, but the role of NIRS in the hypothermia-treated population remains uncertain. PMID:25724376

  10. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion.

    PubMed

    Chan, P H; Kawase, M; Murakami, K; Chen, S F; Li, Y; Calagui, B; Reola, L; Carlson, E; Epstein, C J

    1998-10-15

    Transient global cerebral ischemia resulting from cardiac arrest is known to cause selective death in vulnerable neurons, including hippocampal CA1 pyramidal neurons. It is postulated that oxygen radicals, superoxide in particular, are involved in cell death processes. To test this hypothesis, we first used in situ imaging of superoxide radical distribution by hydroethidine oxidation in vulnerable neurons. We then generated SOD1 transgenic (Tg) rats with a five-fold increase in copper zinc superoxide dismutase activity. The Tg rats and their non-Tg wild-type littermates were subjected to 10 min of global ischemia followed by 1 and 3 d of reperfusion. Neuronal damage, as assessed by cresyl violet staining and DNA fragmentation analysis, was significantly reduced in the hippocampal CA1 region, cortex, striatum, and thalamus in SOD1 Tg rats at 3 d, as compared with the non-Tg littermates. There were no changes in the hippocampal CA3 subregion and dentate gyrus, resistant areas in both SOD1 Tg and non-Tg rats. Quantitative analysis of the damaged CA1 subregion showed marked neuroprotection against transient global cerebral ischemia in SOD1 Tg rats. These results suggest that superoxide radicals play a role in the delayed ischemic death of hippocampal CA1 neurons. Our data also indicate that SOD1 Tg rats are useful tools for studying the role of oxygen radicals in the pathogenesis of neuronal death after transient global cerebral ischemia.

  11. Therapeutic effects of hydroxysafflor yellow A on focal cerebral ischemic injury in rats and its primary mechanisms.

    PubMed

    Zhu, Hai-Bo; Zhang, Ling; Wang, Zheng-Hua; Tian, Jing-Wei; Fu, Feng-Hua; Liu, Ke; Li, Chang-Ling

    2005-08-01

    The therapeutic effects of hydroxysafflor yellow A (HSYA), extracted from Carthamus tinctorius. L, on focal cerebral ischemic injury in rats and its related mechanisms have been investigated. Focal cerebral ischemia in rats were made by inserting a monofilament suture into internal carotid artery to block the origin of the middle cerebral artery and administrated by HSYA via sublingular vein injection in doses of 1.5, 3.0, 6.0 mg kg(-1) at 30 min after the onset of ischemia, in comparison with the potency of nimodipine at a dose of 0.2 mg kg(-1). Then, 24 h later, the evaluation for neurological deficit scores of the rats were recorded and postmortem infarct areas determined by quantitative image analysis. At the end of the experiment, blood samples were taken to determine plasma 6-Keto-PGF1alpha/TXB2 by radioimmunoassays and blood rheological parameters. The effects exerted by HSYA on thrombosis formation by artery vein by-pass method and ADP-induced platelet aggregation in vivo and in vitro were investigated, respectively. The results indicated that more than 30% of the area of ischemic cerebrum was observed in the ischemic model group. HSYA dose-dependently improved the neurological deficit scores and reduced the cerebral infarct area, and HSYA bore a similarity in potency of the therapeutic effects on focal cerebral ischemia to nimodipine. The inhibition rates of thrombosis formation by HSYA at the designated doses were 20.3%, 43.6% and 54.2%, respectively, compared with saline-treated group. Inhibitory activities of HSYA were observed on ADP-induced platelets aggregation in a dose-dependent manner, and the maximum inhibitory aggregation rate of HSYA was 41.8%. HSYA provided a suppressive effect on production of TXA2 without significant effect on plasma PGI2 concentrations. Blood rheological parameters were markedly improved by HSYA, such as whole blood viscosity (from 21.71 +/- 4.77 to 11.61 +/- 0.90 mPa.s), plasma viscosity (from 2.73 +/- 0.53 to 1.42 +/- 0

  12. Ischemic brain injury decreases dynamin-like protein 1 expression in a middle cerebral artery occlusion animal model and glutamate-exposed HT22 cells

    PubMed Central

    Jang, Ah-Ram

    2016-01-01

    Dynamin-like protein I (DLP-1) is an important mitochondrial fission and fusion protein that is associated with apoptotic cell death in neurodegenerative diseases. In this study, we investigated DLP-1 expression in a focal cerebral ischemia animal model and glutamate-exposed hippocampal-derived cell line. Middle cerebral artery occlusion (MCAO) was surgically induced in adult male rats to induce focal cerebral ischemic injury. Brain tissues were collected 24 hours after the onset of MCAO. MCAO induces an increase in infarct volume and histopathological changes in the cerebral cortex. We identified a decrease in DLP-1 in the cerebral cortices of MCAO-injured animals using a proteomic approach and Western blot analysis. Moreover, glutamate treatment significantly decreased DLP-1 expression in a hippocampal-derived cell line. The decrease in DLP-1 indicates mitochondrial dysfunction. Thus, these results suggest that neuronal cell injury induces a decrease in DLP-1 levels and consequently leads to neuronal cell death. PMID:28053612

  13. Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia

    PubMed Central

    Hong, Seongkweon; Ahn, Ji Yun; Cho, Geum-Sil; Kim, In Hye; Cho, Jeong Hwi; Ahn, Ji Hyeon; Park, Joon Ha; Won, Moo-Ho; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Park, Seung Min; Cho, Jun Hwi; Choi, Soo Young; Lee, Jae-Chul

    2015-01-01

    Monocarboxylate transporters (MCTs), which carry monocarboxylates such as lactate across biological membranes, have been associated with cerebral ischemia/reperfusion process. In this study, we studied the effect of ischemic preconditioning (IPC) on MCT4 immunoreactivity after 5 minutes of transient cerebral ischemia in the gerbil. Animals were randomly designated to four groups (sham-operated group, ischemia only group, IPC + sham-operated group and IPC + ischemia group). A serious loss of neuron was found in the stratum pyramidale of the hippocampal CA1 region (CA1), not CA2/3, of the ischemia-only group at 5 days post-ischemia; however, in the IPC + ischemia groups, neurons in the stratum pyramidale of the CA1 were well protected. Weak MCT4 immunoreactivity was found in the stratum pyramidale of the CA1 in the sham-operated group. MCT4 immunoreactivity in the stratum pyramidale began to decrease at 2 days post-ischemia and was hardly detected at 5 days post-ischemia; at this time point, MCT4 immunoreactivity was newly expressed in astrocytes. In the IPC + sham-operated group, MCT4 immunoreactivity in the stratum pyramidale of the CA1 was increased compared with the sham-operated group, and, in the IPC + ischemia group, MCT4 immunoreactivity was also increased in the stratum pyramidale compared with the ischemia only group. Briefly, present findings show that IPC apparently protected CA1 pyramidal neurons and increased or maintained MCT4 expression in the stratum pyramidale of the CA1 after transient cerebral ischemia. Our findings suggest that MCT4 appears to play a significant role in the neuroprotective mechanism of IPC in the gerbil with transient cerebral ischemia. PMID:26692857

  14. Association between Coagulation Function and Cerebral Microbleeds in Ischemic Stroke Patients with Atrial Fibrillation and/or Rheumatic Heart Disease

    PubMed Central

    Liu, Junfeng; Wang, Deren; Xiong, Yao; Liu, Bian; Lin, Jing; Zhang, Shihong; Wu, Bo; Wei, Chenchen; Liu, Ming

    2017-01-01

    Cerebral microbleeds (CMBs), which indicate hemorrhage-prone disease, may associate with hemostatic abnormalities, but the association between CMBs and coagulation function is uncertain. We aimed to examine this possible association. The following coagulation function indicators were evaluated in 85 consecutive ischemic stroke patients diagnosed with atrial fibrillation and/or rheumatic heart disease: prothrombintime (PT), activated partial thromboplastin time (APTT), and levels of D-dimer and fibrinogen. Indicators were assessed within 24 h after admission. CMBs were identified based on published criteria by two experienced stroke neurologists working independently. PT, APPT, and levels of D-dimer and fibrinogen were compared between patients with and without CMBs using univariate and multivariate analysis. CMBs were detected in 48 patients (56.5%), and fibrinogen levels in these patients were independently and significantly higher than in patients without CMBs after adjustment (OR 2.16, 95% CI 1.20-3.90, P=0.01), whereas the two types of patients did not differ significantly in PT, APPT, or D-dimer levels. The presence of CMBs in ischemic stroke patients with atrial fibrillation and/or rheumatic heart disease is associated with elevated levels of fibrinogen. Larger prospective studies are needed to verify this association and explore the mechanisms involved.

  15. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature.

    PubMed

    Kleinschnitz, Christoph; Kraft, Peter; Dreykluft, Angela; Hagedorn, Ina; Göbel, Kerstin; Schuhmann, Michael K; Langhauser, Friederike; Helluy, Xavier; Schwarz, Tobias; Bittner, Stefan; Mayer, Christian T; Brede, Marc; Varallyay, Csanad; Pham, Mirko; Bendszus, Martin; Jakob, Peter; Magnus, Tim; Meuth, Sven G; Iwakura, Yoichiro; Zernecke, Alma; Sparwasser, Tim; Nieswandt, Bernhard; Stoll, Guido; Wiendl, Heinz

    2013-01-24

    We have recently identified T cells as important mediators of ischemic brain damage, but the contribution of the different T-cell subsets is unclear. Forkhead box P3 (FoxP3)-positive regulatory T cells (Tregs) are generally regarded as prototypic anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. In the present study, we examined the role of Tregs after experimental brain ischemia/reperfusion injury. Selective depletion of Tregs in the DEREG mouse model dramatically reduced infarct size and improved neurologic function 24 hours after stroke and this protective effect was preserved at later stages of infarct development. The specificity of this detrimental Treg effect was confirmed by adoptive transfer experiments in wild-type mice and in Rag1(-/-) mice lacking lymphocytes. Mechanistically, Tregs induced microvascular dysfunction in vivo by increased interaction with the ischemic brain endothelium via the LFA-1/ICAM-1 pathway and platelets and these findings were confirmed in vitro. Ablation of Tregs reduced microvascular thrombus formation and improved cerebral reperfusion on stroke, as revealed by ultra-high-field magnetic resonance imaging at 17.6 Tesla. In contrast, established immunoregulatory characteristics of Tregs had no functional relevance. We define herein a novel and unexpected role of Tregs in a primary nonimmunologic disease state.

  16. Functional Recovery after Scutellarin Treatment in Transient Cerebral Ischemic Rats: A Pilot Study with 18F-Fluorodeoxyglucose MicroPET

    PubMed Central

    Li, Jin-hui; Lu, Jing; Zhang, Hong

    2013-01-01

    Objective. To investigate neuroprotective effects of scutellarin (Scu) in a rat model of cerebral ischemia with use of 18F-fluorodeoxyglucose (18F-FDG) micro positron emission tomography (microPET). Method. Middle cerebral artery occlusion was used to establish cerebral ischemia. Rats were divided into 5 groups: sham operation, cerebral ischemia-reperfusion untreated (CIRU) group, Scu-25 group (Scu 25 mg/kg/d), Scu-50 group (Scu 50 mg/kg/d), and nimodipine (10 mg/Kg/d). The treatment groups were given for 2 weeks. The therapeutic effects in terms of cerebral infarct volume, neurological deficit scores, and cerebral glucose metabolism were evaluated. Levels of vascular density factor (vWF), glial marker (GFAP), and mature neuronal marker (NeuN) were assessed by immunohistochemistry. Results. The neurological deficit scores were significantly decreased in the Scu-50 group compared to the CIRU group (P < 0.001). 18F-FDG accumulation in the ipsilateral cerebral infarction increased steadily over time in Scu-50 group compared with CIRU group (P < 0.01) and Scu-25 group (P < 0.01). Immunohistochemical analysis demonstrated Scu-50 enhanced neuronal maturation. Conclusion. 18F-FDG microPET imaging demonstrated metabolic recovery after Scu-50 treatment in the rat model of cerebral ischemia. The neuroprotective effects of Scu on cerebral ischemic injury might be associated with increased regional glucose activity and neuronal maturation. PMID:23737833

  17. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart

    PubMed Central

    Sugiura, Yuki; Katsumata, Yoshinori; Sano, Motoaki; Honda, Kurara; Kajimura, Mayumi; Fukuda, Keiichi; Suematsu, Makoto

    2016-01-01

    Acute ischemia produces dynamic changes in labile metabolites. To capture snapshots of such acute metabolic changes, we utilized focused microwave treatment to fix metabolic flow in vivo in hearts of mice 10 min after ligation of the left anterior descending artery. The left ventricle was subdivided into short-axis serial slices and the metabolites were analyzed by capillary electrophoresis mass spectrometry and matrix-assisted laser desorption/ionization imaging mass spectrometry. These techniques allowed us to determine the fate of exogenously administered 13C6-glucose and 13C3-lactate. The penumbra regions, which are adjacent to the ischemic core, exhibited the greatest adenine nucleotide energy charge and an adenosine overflow extending from the ischemic core, which can cause ischemic hyperemia. Imaging analysis of metabolic pathway flows revealed that the penumbra executes accelerated glucose oxidation, with remaining lactate utilization for tricarboxylic acid cycle for energy compensation, suggesting unexpected metabolic interplays of the penumbra with the ischemic core and normoxic regions. PMID:27581923

  18. Pretreated quercetin protects gerbil hippocampal CA1 pyramidal neurons from transient cerebral ischemic injury by increasing the expression of antioxidant enzymes

    PubMed Central

    Chen, Bai Hui; Park, Joon Ha; Ahn, Ji Hyeon; Cho, Jeong Hwi; Kim, In Hye; Lee, Jae Chul; Won, Moo-Ho; Lee, Choong-Hyun; Hwang, In Koo; Kim, Jong-Dai; Kang, Il Jun; Cho, Jun Hwi; Shin, Bich Na; Kim, Yang Hee; Lee, Yun Lyul; Park, Seung Min

    2017-01-01

    Quercetin (QE; 3,5,7,3′,4′-pentahydroxyflavone), a well-known flavonoid, has been shown to prevent against neurodegenerative disorders and ischemic insults. However, few studies are reported regarding the neuroprotective mechanisms of QE after ischemic insults. Therefore, in this study, we investigated the effects of QE on ischemic injury and the expression of antioxidant enzymes in the hippocampal CA1 region of gerbils subjected to 5 minutes of transient cerebral ischemia. QE was pre-treated once daily for 15 days before ischemia. Pretreatment with QE protected hippocampal CA1 pyramidal neurons from ischemic injury, which was confirmed by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, pretreatment with QE significantly increased the expression levels of endogenous antioxidant enzymes Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in the hippocampal CA1 pyramidal neurons of animals with ischemic injury. These findings demonstrate that pretreated QE displayed strong neuroprotective effects against transient cerebral ischemia by increasing the expression of antioxidant enzymes.

  19. THE PERIVASCULAR POOL OF AQUAPORIN-4 MEDIATES THE EFFECT OF OSMOTHERAPY IN POST-ISCHEMIC CEREBRAL EDEMA

    PubMed Central

    Zeynalov, Emil; Chen, Chih-Hung; Froehner, Stanley C.; Adams, Marvin E.; Ottersen, Ole Petter; Amiry-Moghaddam, Mahmood; Bhardwaj, Anish

    2009-01-01

    Objective Osmotherapy with hypertonic saline (HS) ameliorates cerebral edema associated with experimental ischemic stroke. We tested the hypothesis that HS exerts its anti-edema effect by promoting an efflux of water from brain via the perivascular aquaporin-4 (AQP4) pool. We utilized mice with targeted disruption of the gene encoding α-syntrophin (α-Syn−/−) that lack the perivascular AQP4 pool but retain the endothelial pool of this protein. Design Prospective laboratory animal study. Setting Research laboratory in a university teaching hospital. Measurements and Main Results Halothane-anesthetized adult male wildtype (WT) C57B/6 and α-Syn−/− mice were subjected to 90 min of transient middle cerebral artery occlusion (MCAO) and treated with either a continuous intravenous infusion of 0.9% saline (NS) or 3% HS (1.5 mL/Kg/hr) for 48 hr. In the first series of experiments (n = 59), brain water content analyzed by wet-to-dry ratios in the ischemic hemisphere of WT mice was attenuated after HS (79.9 ± 0.5%mean ± SEM) but not after NS (82.3 ± 1.0%) treatment. In contrast in α-Syn−/− mice, HS had no effect on the postischemic edema (HS: 80.3 ± 0.7% NS: 80.3 ± 0.4%). In the second series of experiments (n = 31), treatment with HS attenuated post-ischemic BBB disruption at 48 hr in WT mice but not in α-Syn−/− mice; α-Syn deletion alone had no effect on BBB integrity. In the third series of experiments (n=34), α-Syn−/− mice treated with either HS or NS had smaller infarct volume as compared with their WT counterparts. Conclusions These data demonstrate that: 1) osmotherapy with HS exerts anti-edema effects via the perivascular pool of AQP4 2) HS attenuates BBB disruption depending on the presence of perivascular AQP4, and 3) deletion of the perivascular pool of AQP4 alleviates tissue damage following stroke, in mice subjected to osmotherapy as well as in non-treated mice. PMID:18679106

  20. Multiple modes of action of tacrolimus (FK506) for neuroprotective action on ischemic damage after transient focal cerebral ischemia in rats.

    PubMed

    Furuichi, Yasuhisa; Noto, Takahisa; Li, Ji-Yao; Oku, Takuma; Ishiye, Masayuki; Moriguchi, Akira; Aramori, Ichiro; Matsuoka, Nobuya; Mutoh, Seitaro; Yanagihara, Takehiko

    2004-07-16

    While the immunosuppressant tacrolimus (FK506) is known to be neuroprotective following cerebral ischemia, the mechanisms underlying its neuroprotective properties are not fully understood. To determine the mode of action by which tacrolimus ameliorates neurodegeneration after transient focal ischemia, we therefore evaluated the effect of tacrolimus on DNA damage, release of cytochrome c, activation of microglia and infiltration of neutrophils following a 60-min occlusion of the middle cerebral artery (MCA) in rats. In this model, cortical brain damage gradually expanded until 24 h after reperfusion, whereas brain damage in the caudate putamen was fully developed within 5 h. Tacrolimus (1 mg/kg) administered immediately after MCA occlusion significantly reduced ischemic damage in the cerebral cortex, but not in the caudate putamen. Tacrolimus decreased both apoptotic and necrotic cell death at 24 h and reduced the number of cytochrome c immunoreactive cells at 8 h after reperfusion in the ischemic penumbra in the cerebral cortex. In contrast, tacrolimus did not show significant neuroprotection for necrotic cell death and reduction of cytochrome c immunoreactive cells in the caudate putamen. Tacrolimus also significantly decreased microglial activation at 8 h and inflammatory markers (cytokine-induced neutrophil chemoattractant and myeloperoxidase [MPO] activity) at 24 h after reperfusion in the ischemic cortex but not in the caudate putamen. These results collectively suggest that tacrolimus ameliorates the gradually expanded brain damage by inhibiting both apoptotic and necrotic cell death, as well as suppressing inflammatory reactions.

  1. Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair?

    PubMed Central

    Baburamani, Ana A.; Ek, C. Joakim; Walker, David W.; Castillo-Melendez, Margie

    2012-01-01

    As clinicians attempt to understand the underlying reasons for the vulnerability of different regions of the developing brain to injury, it is apparent that little is known as to how hypoxia-ischemia may affect the cerebrovasculature in the developing infant. Most of the research investigating the pathogenesis of perinatal brain injury following hypoxia-ischemia has focused on excitotoxicity, oxidative stress and an inflammatory response, with the response of the developing cerebrovasculature receiving less attention. This is surprising as the presentation of devastating and permanent injury such as germinal matrix-intraventricular haemorrhage (GM-IVH) and perinatal stroke are of vascular origin, and the origin of periventricular leukomalacia (PVL) may also arise from poor perfusion of the white matter. This highlights that cerebrovasculature injury following hypoxia could primarily be responsible for the injury seen in the brain of many infants diagnosed with hypoxic-ischemic encephalopathy (HIE). Interestingly the highly dynamic nature of the cerebral blood vessels in the fetus, and the fluctuations of cerebral blood flow and metabolic demand that occur following hypoxia suggest that the response of blood vessels could explain both regional protection and vulnerability in the developing brain. However, research into how blood vessels respond following hypoxia-ischemia have mostly been conducted in adult models of ischemia or stroke, further highlighting the need to investigate how the developing cerebrovasculature responds and the possible contribution to perinatal brain injury following hypoxia. This review discusses the current concepts on the pathogenesis of perinatal brain injury, the development of the fetal cerebrovasculature and the blood brain barrier (BBB), and key mediators involved with the response of cerebral blood vessels to hypoxia. PMID:23162470

  2. [The follow up of patients with extracranial pathology of the carotid arteries and ischemic disorders of cerebral circulation].

    PubMed

    Dzhibladze, D N; Amintaeva, A G; Lagoda, O V; Ionova, V G

    2003-01-01

    According to the populational studies, about 50% of ischemic disorders of cerebral circulation, both persistent and transient, are induced by thrombotic or embolic complications of atherosclerotic plaques which produce an adverse effect on the large and small caliber arteries; about 20-25% is associated with lesion of the small diameter intracranial vessels, about 20% with embolism from the heart, and the remaining disorders fall within other rare causes. The prevalence of atherosclerotic lesions of the vessels feeding the brain, the severity of their clinical manifestations, insufficient efficacy of conservative therapy and the high risk of surgical treatment remain as before a matter of great medical and social concern. In connection with an appreciable progress of vascular surgery carotid endarterectoray (GEAE) as one of the radical approaches to correction of the pathology of the carotid artery segment is widespread at the large centers of vascular surgery of different countries. However, in spite of the fact that CEAE is an advanced and radical technique of preventive operation, it produces only a local effect on vascular diseases whereas the other, no less important pathogenetic mechanisms leading to disorders of cerebral circulation remain unchanged and demand drug correction to avoid repeated disorders of cerebral circulation. Analysis of the long-tern results evidences a stable and lasting effect of CEAE. The postoperative clinical manifestations can be used as the main criterion for the efficacy of CEAE, especially as compared to the purely conservative therepy. The results of the long-term follow up (over the period as long as 15 years) of a large group of operated patients demonstrate that the majority of them did not show the emergence of the new focal neurologic symptomatology in the ipsilateral hemisphere and only a small percentage of cases developed stroke. The major western statistics provide the analogous results.

  3. Automated Ischemic Lesion Segmentation in MRI Mouse Brain Data after Transient Middle Cerebral Artery Occlusion

    PubMed Central

    Mulder, Inge A.; Khmelinskii, Artem; Dzyubachyk, Oleh; de Jong, Sebastiaan; Rieff, Nathalie; Wermer, Marieke J. H.; Hoehn, Mathias; Lelieveldt, Boudewijn P. F.; van den Maagdenberg, Arn M. J. M.

    2017-01-01

    Magnetic resonance imaging (MRI) has become increasingly important in ischemic stroke experiments in mice, especially because it enables longitudinal studies. Still, quantitative analysis of MRI data remains challenging mainly because segmentation of mouse brain lesions in MRI data heavily relies on time-consuming manual tracing and thresholding techniques. Therefore, in the present study, a fully automated approach was developed to analyze longitudinal MRI data for quantification of ischemic lesion volume progression in the mouse brain. We present a level-set-based lesion segmentation algorithm that is built using a minimal set of assumptions and requires only one MRI sequence (T2) as input. To validate our algorithm we used a heterogeneous data set consisting of 121 mouse brain scans of various age groups and time points after infarct induction and obtained using different MRI hardware and acquisition parameters. We evaluated the volumetric accuracy and regional overlap of ischemic lesions segmented by our automated method against the ground truth obtained in a semi-automated fashion that includes a highly time-consuming manual correction step. Our method shows good agreement with human observations and is accurate on heterogeneous data, whilst requiring much shorter average execution time. The algorithm developed here was compiled into a toolbox and made publically available, as well as all the data sets. PMID:28197090

  4. Pediatric cerebral stroke: susceptibility-weighted imaging may predict post-ischemic malignant edema.

    PubMed

    Bosemani, Thangamadhan; Poretti, Andrea; Orman, Gunes; Meoded, Avner; Huisman, Thierry A G M

    2013-10-01

    Susceptibility-weighted imaging (SWI) is an advanced MRI technique providing information on the blood oxygenation level. Deoxyhemoglobin is increased in hypoperfused tissue characterized by SWI-hypointensity, while high oxyhemoglobin concentration within hyperperfused tissue results in a SWI iso- or hyperintensity compared to healthy brain tissue. We describe a child with a stroke, where SWI in addition to excluding hemorrhage and delineating the thrombus proved invaluable in determining regions of hyperperfusion or luxury perfusion, which contributed further to the prognosis including an increased risk of developing post-ischemic malignant edema.

  5. Pediatric Cerebral Stroke: Susceptibility-Weighted Imaging May Predict Post-Ischemic Malignant Edema

    PubMed Central

    Bosemani, Thangamadhan; Poretti, Andrea; Orman, Gunes; Meoded, Avner; Huisman, Thierry A.G.M.

    2013-01-01

    Summary Susceptibility-weighted imaging (SWI) is an advanced MRI technique providing information on the blood oxygenation level. Deoxyhemoglobin is increased in hypoperfused tissue characterized by SWI-hypointensity, while high oxyhemoglobin concentration within hyperperfused tissue results in a SWI iso- or hyperintensity compared to healthy brain tissue. We describe a child with a stroke, where SWI in addition to excluding hemorrhage and delineating the thrombus proved invaluable in determining regions of hyperperfusion or luxury perfusion, which contributed further to the prognosis including an increased risk of developing post-ischemic malignant edema. PMID:24199819

  6. Immediate remote ischemic postconditioning after hypoxia ischemia in piglets protects cerebral white matter but not grey matter

    PubMed Central

    Ezzati, Mojgan; Bainbridge, Alan; Broad, Kevin D; Kawano, Go; Oliver-Taylor, Aaron; Rocha-Ferreira, Eridan; Alonso-Alconada, Daniel; Fierens, Igor; Rostami, Jamshid; Jane Hassell, K; Tachtsidis, Ilias; Gressens, Pierre; Hristova, Mariya; Bennett, Kate; Lebon, Sophie; Fleiss, Bobbi; Yellon, Derek; Hausenloy, Derek J; Golay, Xavier

    2015-01-01

    Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention whereby brief episodes of ischemia/reperfusion of one organ (limb) mitigate damage in another organ (brain) that has experienced severe hypoxia-ischemia. Our aim was to assess whether RIPostC is protective following cerebral hypoxia-ischemia in a piglet model of neonatal encephalopathy (NE) using magnetic resonance spectroscopy (MRS) biomarkers and immunohistochemistry. After hypoxia-ischemia (HI), 16 Large White female newborn piglets were randomized to: (i) no intervention (n = 8); (ii) RIPostC – with four, 10-min cycles of bilateral lower limb ischemia/reperfusion immediately after HI (n = 8). RIPostC reduced the hypoxic-ischemic-induced increase in white matter proton MRS lactate/N acetyl aspartate (p = 0.005) and increased whole brain phosphorus-31 MRS ATP (p = 0.039) over the 48 h after HI. Cell death was reduced with RIPostC in the periventricular white matter (p = 0.03), internal capsule (p = 0.002) and corpus callosum (p = 0.021); there was reduced microglial activation in corpus callosum (p = 0.001) and more surviving oligodendrocytes in corpus callosum (p = 0.029) and periventricular white matter (p = 0.001). Changes in gene expression were detected in the white matter at 48 h, including KATP channel and endothelin A receptor. Immediate RIPostC is a potentially safe and promising brain protective therapy for babies with NE with protection in white but not grey matter. PMID:26661194

  7. Cilostazol attenuates ischemic brain injury and enhances neurogenesis in the subventricular zone of adult mice after transient focal cerebral ischemia.

    PubMed

    Tanaka, Y; Tanaka, R; Liu, M; Hattori, N; Urabe, T

    2010-12-29

    Evidence suggests that neurogenesis occurs in the adult mammalian brain, and that various stimuli, for example, ischemia/hypoxia, enhance the generation of neural progenitor cells in the subventricular zone (SVZ) and their migration into the olfactory bulb. In a mouse stroke model, focal ischemia results in activation of neural progenitor cells followed by their migration into the ischemic lesion. The present study assessed the in vivo effects of cilostazol, a type 3 phosphodiesterase inhibitor known to activate the cAMP-responsive element binding protein (CREB) signaling, on neurogenesis in the ipsilateral SVZ and peri-infarct area in a mouse model of transient middle cerebral artery occlusion. Mice were divided into sham operated (n=12), vehicle- (n=18) and cilostazol-treated (n=18) groups. Sections stained for 5-bromodeoxyuridine (BrdU) and several neuronal and a glial markers were analyzed at post-ischemia days 1, 3 and 7. Cilostazol reduced brain ischemic volume (P<0.05) and induced earlier recovery of neurologic deficit (P<0.05). Cilostazol significantly increased the density of BrdU-positive newly-formed cells in the SVZ compared with the vehicle group without ischemia. Increased density of doublecortin (DCX)-positive and BrdU/DCX-double positive neural progenitor cells was noted in the ipsilateral SVZ and peri-infarct area at 3 and 7 days after focal ischemia compared with the vehicle group (P<0.05). Cilostazol increased DCX-positive phosphorylated CREB (pCREB)-expressing neural progenitor cells, and increased brain derived neurotrophic factor (BDNF)-expressing astrocytes in the ipsilateral SVZ and peri-infarct area. The results indicated that cilostazol enhanced neural progenitor cell generation in both ipsilateral SVZ and peri-infarct area through CREB-mediated signaling pathway after focal ischemia.

  8. Reduction of ischemic brain injury by administration of palmitoylethanolamide after transient middle cerebral artery occlusion in rats.

    PubMed

    Ahmad, Akbar; Genovese, Tiziana; Impellizzeri, Daniela; Crupi, Rosalia; Velardi, Enrico; Marino, Angela; Esposito, Emanuela; Cuzzocrea, Salvatore

    2012-10-05

    Stroke is the third leading cause of death and the leading cause of long-term disability in adults. Current therapeutic strategies for stroke, including thrombolytic drugs, such as tissue plasminogen activator offer great promise for the treatment, but complimentary neuroprotective treatments are likely to provide a better outcome. To counteract the ischemic brain injury in mice, a new therapeutic approach has been employed by using palmitoylethanolamide (PEA). PEA is one of the members of N-acyl-ethanolamine family maintain not only redox balance but also inhibit the mechanisms of secondary injury on ischemic brain injury. Treatment of the middle cerebral artery occlusion (MCAo)-induced animals with PEA reduced edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride (TTC) staining across brain sections. PEA-mediated improvements in tissues histology shown by reduction of lesion size and improvement in apoptosis level (assayed by Bax and Bcl-2) further support the efficacy of PEA therapy. We demonstrated that PEA treatment blocked infiltration of astrocytes and restored MCAo-mediated reduced expression of PAR, nitrotyrosine, iNOS, chymase, tryptase, growth factors (BDNF and GDNF) and GFAP. PEA also inhibited the MCAo-mediated increased expression of pJNK, NF-κB, and degradation of IκB-α. PEA-treated injured animals improved neurobehavioral functions as evaluated by motor deficits. Based on these findings we propose that PEA would be useful in lowering the risk of damage or improving function in ischemia-reperfusion brain injury-related disorders.

  9. Tongxinluo Enhances Neurogenesis and Angiogenesis in Peri-Infarct Area and Subventricular Zone and Promotes Functional Recovery after Focal Cerebral Ischemic Infarction in Hypertensive Rats

    PubMed Central

    Chen, Li; Wang, Xiaoting; Zhang, Jian; Dang, Chao; Liu, Gang; Liang, Zhijian; Huang, Gelun; Zhao, Weijia; Zeng, Jinsheng

    2016-01-01

    Background. Tongxinluo is a traditional Chinese medicine compound with the potential to promote the neuronal functional recovery in cerebral ischemic infarction. Objective. This study aimed to disclose whether tongxinluo promotes neurological functional recovery and neurogenesis and angiogenesis in the infarcted area and SVZ after cerebral ischemic infarction in hypertensive rats. Methods. The ischemic model was prepared by distal middle cerebral artery occlusion (MCAO) in hypertensive rats. Tongxinluo was administrated 24 h after MCAO and lasted for 3, 7, or 14 days. Behavioral tests were performed to evaluate the protection of tongxinluo. Immunochemical staining was applied on brain tissue to evaluate the effects of tongxinluo on neurogenesis and vascularization in the MCAO model rats. Results. Postinjury administration of tongxinluo ameliorated the neuronal function deficit in the MCAO model rats. As evidenced by the immunochemical staining, BrdU+/DCX+, BrdU+/nestin+, and BrdU+ vascular endothelial cells were promoted to proliferate in SVZ after tongxinluo administration. The matured neurons stained by NeuN and vascularization by laminin staining were observed after tongxinluo administration in the peri-infarct area. Conclusion. Tongxinluo postischemia administration could ameliorate the neurological function deficit in the model rats. Possible mechanisms are related to neurogenesis and angiogenesis in the peri-infarct area and SVZ. PMID:27069496

  10. Mechanism of functional recovery after repetitive transcranial magnetic stimulation (rTMS) in the subacute cerebral ischemic rat model: neural plasticity or anti-apoptosis?

    PubMed

    Yoon, Kyung Jae; Lee, Yong-Taek; Han, Tai Ryoon

    2011-10-01

    Repetitive transcranial magnetic stimulation (rTMS) has been studied increasingly in recent years to determine whether it has a therapeutic benefit on recovery after stroke. However, the underlying mechanisms of rTMS in stroke recovery remain unclear. Here, we evaluated the effect of rTMS on functional recovery and its underlying mechanism by assessing proteins associated with neural plasticity and anti-apoptosis in the peri-lesional area using a subacute cerebral ischemic rat model. Twenty cerebral ischemic rats were randomly assigned to the rTMS or the sham group at post-op day 4. A total of 3,500 impulses with 10 Hz frequency were applied to ipsilesional cortex over a 2-week period. Functional outcome was measured before (post-op day 4) and after rTMS (post-op day 18). The rTMS group showed more functional improvement on the beam balance test and had stronger Bcl-2 and weaker Bax expression on immunohistochemistry compared with the sham group. The expression of NMDA and MAP-2 showed no significant difference between the two groups. These results suggest that rTMS in subacute cerebral ischemia has a therapeutic effect on functional recovery and is associated with an anti-apoptotic mechanism in the peri-ischemic area rather than with neural plasticity.

  11. Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke

    PubMed Central

    Yan, Tao; Chopp, Michael; Chen, Jieli

    2015-01-01

    Stroke, including cerebral ischemia, intracerebral hemorrhage, and subarachnoid hemorrhage, is the leading cause of long-term disability and death worldwide. Animal models have greatly contributed to our understanding of the risk factors and the pathophysiology of stroke, as well as the development of therapeutic strategies for its treatment. Further development and investigation of experimental models, however, are needed to elucidate the pathogenesis of stroke and to enhance and expand novel therapeutic targets. In this article, we provide an overview of the characteristics of commonly-used animal models of stroke and focus on the inflammatory responses to cerebral stroke, which may provide insights into a framework for developing effective therapies for stroke in humans. PMID:26625873

  12. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat.

    PubMed Central

    Garcia, J. H.; Yoshida, Y.; Chen, H.; Li, Y.; Zhang, Z. G.; Lian, J.; Chen, S.; Chopp, M.

    1993-01-01

    Focal brain ischemia induced in rats by occlusion of an intracranial artery is a widely used paradigm of human brain infarct. Details of the structural changes that develop in either the human or the rat brain at various times after occlusion of an intracranial artery are incompletely characterized. We studied, in 48 adult Wistar rats, structural alterations involving the cerebral hemisphere ipsilateral to an arterial occlusion, at intervals ranging from 30 min to 7 days. Microscopic changes developed over time in separate areas of the corresponding cerebral hemisphere in a predictable pattern, appearing as small lesions in the preoptic area (30 minutes), enlarging to involve the striatum, and finally involving the cerebral cortex. Two types of neuronal responses were noted according to the time elapsed; acute changes (up to 6 hours) included scalloping, shrinkage, and swelling, whereas delayed changes (eosinophilia and karyolysis) appeared later (> or = 12 hours). Three types of astrocytic responses were noted. 1) Cytoplasmic disintegration occurred in the preoptic area at a time and in a place where neurons appeared minimally injured. 2) Nuclear and cytoplasmic swelling were prominent responses in the caudoputamen and cerebral cortex at a time when neurons showed minimal alterations. 3) Increased astrocytic glial fibrillary acidic protein reactivity was noted at the interface between the lesion and the surrounding brain tissue after 4 to 6 hours. The gross pattern of the brain lesion and the maturation of neuronal changes typical of a brain infarct have a predictable progression. Focal brain ischemia of up to 6-hour duration does not induce coagulation necrosis. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8434652

  13. Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model.

    PubMed

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2009-08-14

    Measurement of intrinsic optical signals (IOSs) is an attractive technique for monitoring tissue viability in brains since it enables noninvasive, real-time monitoring of morphological characteristics as well as physiological and biochemical characteristics of tissue. We previously showed that light scattering signals reflecting cellular morphological characteristics were closely related to the IOSs associated with the redox states of cytochrome c oxidase in the mitochondrial respiratory chain. In the present study, we examined the relationship between light scattering and energy metabolism. Light scattering signals were transcranially measured in rat brains after oxygen and glucose deprivation, and the results were compared with concentrations of cerebral adenosine triphosphate (ATP) measured by luciferin-luciferase bioluminescence assay. Electrophysiological signal was also recorded simultaneously. After starting saline infusion, EEG activity ceased at 108+/-17s, even after which both the light scattering signal and ATP concentration remained at initial levels. However, light scattering started to change in three phases at 236+/-15s and then cerebral ATP concentration started to decrease at about 260s. ATP concentration significantly decreased during the triphasic scattering change, indicating that the start of scattering change preceded the loss of cerebral ATP. The mean time difference between the start of triphasic scattering change and the onset of ATP loss was about 24s in the present model. DC potential measurement showed that the triphasic scattering change was associated with anoxic depolarization. These findings suggest that light scattering signal can be used as an indicator of loss of tissue viability in brains.

  14. Outcome of cerebral arteriovenous malformations after linear accelerator reirradiation

    PubMed Central

    Moraes, Paulo L.; Dias, Rodrigo S.; Weltman, Eduardo; Giordani, Adelmo J.; Benabou, Salomon; Segreto, Helena R. C.; Segreto, Roberto A.

    2015-01-01

    Background: The aim of this study was to evaluate the clinical outcome of patients undergoing single-dose reirradiation using the Linear Accelerator (LINAC) for brain arteriovenous malformations (AVM). Methods: A retrospective study of 37 patients with brain AVM undergoing LINAC reirradiation between April 2003 and November 2011 was carried out. Patient characteristics, for example, gender, age, use of medications, and comorbidities; disease characteristics, for example, Spetzler–Martin grading system, location, volume, modified Pollock–Flickinger score; and treatment characteristics, for example, embolization, prescription dose, radiation dose–volume curves, and conformity index were analyzed. During the follow-up period, imaging studies were performed to evaluate changes after treatment and AVM cure. Complications, such as edema, rupture of the blood–brain barrier, and radionecrosis were classified as symptomatic and asymptomatic. Results: Twenty-seven patients underwent angiogram after reirradiation and the percentage of angiographic occlusion was 55.5%. In three patients without obliteration, AVM shrinkage made it possible to perform surgical resection with a 2/3 cure rate. A reduction in AVM nidus volume greater than 50% after the first procedure was shown to be the most important predictor of obliteration. Another factor associated with AVM cure was a prescription dose higher than 15.5 Gy in the first radiosurgery. Two patients had permanent neurologic deficits. Factors correlated with complications were the prescription dose and maximum dose in the first procedure. Conclusion: This study suggests that single-dose reirradiation is safe and feasible in partially occluded AVM. Reirradiation may not benefit candidates whose prescribed dose was lower than 15.5 Gy in the first procedure and initial AVM nidus volume did not decrease by more than 50% before reirradiation. PMID:26110078

  15. PACAP38 Differentially Effects Genes and CRMP2 Protein Expression in Ischemic Core and Penumbra Regions of Permanent Middle Cerebral Artery Occlusion Model Mice Brain

    PubMed Central

    Hori, Motohide; Nakamachi, Tomoya; Shibato, Junko; Rakwal, Randeep; Tsuchida, Masachi; Shioda, Seiji; Numazawa, Satoshi

    2014-01-01

    Pituitary adenylate-cyclase activating polypeptide (PACAP) has neuroprotective and axonal guidance functions, but the mechanisms behind such actions remain unclear. Previously we examined effects of PACAP (PACAP38, 1 pmol) injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO) along with control saline (0.9% NaCl) injection. Transcriptomic and proteomic approaches using ischemic (ipsilateral) brain hemisphere revealed differentially regulated genes and proteins by PACAP38 at 6 and 24 h post-treatment. However, as the ischemic hemisphere consisted of infarct core, penumbra, and non-ischemic regions, specificity of expression and localization of these identified molecular factors remained incomplete. This led us to devise a new experimental strategy wherein, ischemic core and penumbra were carefully sampled and compared to the corresponding contralateral (healthy) core and penumbra regions at 6 and 24 h post PACAP38 or saline injections. Both reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to examine targeted gene expressions and the collapsin response mediator protein 2 (CRMP2) protein profiles, respectively. Clear differences in expression of genes and CRMP2 protein abundance and degradation product/short isoform was observed between ischemic core and penumbra and also compared to the contralateral healthy tissues after PACAP38 or saline treatment. Results indicate the importance of region-specific analyses to further identify, localize and functionally analyse target molecular factors for clarifying the neuroprotective function of PACAP38. PMID:25257527

  16. In vivo imaging of hemodynamics and oxygen metabolism in acute focal cerebral ischemic rats with laser speckle imaging and functional photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Deng, Zilin; Wang, Zhen; Yang, Xiaoquan; Luo, Qingming; Gong, Hui

    2012-08-01

    Stroke is a devastating disease. The changes in cerebral hemodynamics and oxygen metabolism associated with stroke play an important role in pathophysiology study. But the changes were difficult to describe with a single imaging modality. Here the changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and oxygen saturation (SO2) were yielded with laser speckle imaging (LSI) and photoacoustic microscopy (PAM) during and after 3-h acute focal ischemic rats. These hemodynamic measures were further synthesized to deduce the changes in oxygen extraction fraction (OEF). The results indicate that all the hemodynamics except CBV had rapid declines within 40-min occlusion of middle cerebral artery (MCAO). CBV in arteries and veins first increased to the maximum value of 112.42±36.69% and 130.58±31.01% by 15 min MCAO; then all the hemodynamics had a persistent reduction with small fluctuations during the ischemic. When ischemia lasted for 3 h, CBF in arteries, veins decreased to 17±14.65%, 24.52±20.66%, respectively, CBV dropped to 62±18.56% and 59±18.48%. And the absolute SO2 decreased by 40.52±22.42% and 54.24±11.77%. After 180-min MCAO, the changes in hemodynamics and oxygen metabolism were also quantified. The study suggested that combining LSI and PAM provides an attractive approach for stroke detection in small animal studies.

  17. In vivo imaging of hemodynamics and oxygen metabolism in acute focal cerebral ischemic rats with laser speckle imaging and functional photoacoustic microscopy.

    PubMed

    Deng, Zilin; Wang, Zhen; Yang, Xiaoquan; Luo, Qingming; Gong, Hui

    2012-08-01

    Stroke is a devastating disease. The changes in cerebral hemodynamics and oxygen metabolism associated with stroke play an important role in pathophysiology study. But the changes were difficult to describe with a single imaging modality. Here the changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and oxygen saturation (SO2) were yielded with laser speckle imaging (LSI) and photoacoustic microscopy (PAM) during and after 3-h acute focal ischemic rats. These hemodynamic measures were further synthesized to deduce the changes in oxygen extraction fraction (OEF). The results indicate that all the hemodynamics except CBV had rapid declines within 40-min occlusion of middle cerebral artery (MCAO). CBV in arteries and veins first increased to the maximum value of 112.42 ± 36.69% and 130.58 ± 31.01% by 15 min MCAO; then all the hemodynamics had a persistent reduction with small fluctuations during the ischemic. When ischemia lasted for 3 h, CBF in arteries, veins decreased to 17 ± 14.65%, 24.52 ± 20.66%, respectively, CBV dropped to 62 ± 18.56% and 59 ± 18.48%. And the absolute SO2 decreased by 40.52 ± 22.42% and 54.24 ± 11.77%. After 180-min MCAO, the changes in hemodynamics and oxygen metabolism were also quantified. The study suggested that combining LSI and PAM provides an attractive approach for stroke detection in small animal studies.

  18. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema.

    PubMed

    Igarashi, Hironaka; Huber, Vincent J; Tsujita, Mika; Nakada, Tsutomu

    2011-02-01

    We investigated the in vivo effects of a novel aquaporin 4 (AQP4) inhibitor 2-(nicotinamide)-1,3,4-thiadiazole, TGN-020, in a mouse model of focal cerebral ischemia using 7.0-T magnetic resonance imaging (MRI). Pretreatment with TGN-020 significantly reduced brain edema associated with brain ischemia, as reflected by percentage of brain swelling volume (%BSV), 12.1 ± 6.3% in the treated group, compared to (20.8 ± 5.9%) in the control group (p < 0.05), and in the size of cortical infarction as reflected by the percentage of hemispheric lesion volume (%HLV), 20.0 ± 7.6% in the treated group, compared to 30.0 ± 9.1% in the control group (p < 0.05). The study indicated the potential pharmacological use of AQP4 inhibition in reducing brain edema associated with focal ischemia.

  19. A case of spontaneous myocardial necrosis and cerebral ischemic lesions in a laboratory beagle dog.

    PubMed

    Matsushita, Kohei; Kohara, Yukari; Ito, Yuko; Yoshikawa, Tsuyoshi; Sato, Makoto; Kitaura, Keisuke; Matsumoto, Satoshi

    2015-10-01

    A beagle dog treated with saline as a control animal in a preclinical study was euthanized due to sudden systemic deterioration. On histopathological examination, contraction band necrosis of myocardial cells was observed widely in the left ventricular wall, including the papillary muscle and apex, and observed slightly in the ventricular septum and left atrium. In the brain, necrosis was observed in neurons and glia of the cerebral cortex, hippocampal pyramidal cells, glial cells of the rostral commissure and Purkinje cells of the cerebellar vermis. It is highly probable that the marked systemic deterioration was caused by cardiac dysfunction due to the spontaneous contraction band necrosis of the myocardial cells, although the pathogenesis of the myocardial lesions remains unclear. Given the distribution of neuronal necrosis in the brain, it is likely that these lesions resulted from the ischemia responsible for acute cardiac failure.

  20. Effect of human mesenchymal stem cell transplantation on cerebral ischemic volume‐controlled photothrombotic mouse model

    PubMed Central

    Choi, Yun‐Kyong; Urnukhsaikhan, Enerelt; Yoon, Hee‐Hoon; Seo, Young‐Kwon

    2016-01-01

    Abstract Various animal models of stroke have been developed to simulate the human stroke with the development of the ischemic method facilitates preclinical stroke research. The photothrombotic ischemia model, based on the intravascular photochemical reaction, is widely used for in vivo studies. However, this study has limitations, which generated a relatively small‐sized infarction model on superficial cortex compared to that of the MCAO stroke model. In this study, the photothorombosis mouse model is adapted and the optimum conditions for generation of cell death and deficits with high reproducibility is determined. The extent of damage within the cortex was assessed by infarct volume and cellular/behavioral analyses. In this model, the neural cell death and inflammatory responses is detected; moreover, the degree of behavioral impairment is correlated with the brain infarct volume. Further, to enhance the understanding of neural repair, the effect of neural differentiation by transplantation of human bone marrow‐derived mesenchymal stem cells (BM‐MSCs) is analyzed. The authors demonstrated that transplantation of BM‐MSCs promoted the neural differentiation and behavioral performance in their photothrombosis model. Therefore, this research was meaningful to provide a stable animal model of stroke with low variability. Moreover, this model will facilitate development of novel MSC‐based therapeutics for stroke. PMID:27440447

  1. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema

    PubMed Central

    Igarashi, Hironaka; Huber, Vincent J.; Tsujita, Mika

    2010-01-01

    We investigated the in vivo effects of a novel aquaporin 4 (AQP4) inhibitor 2-(nicotinamide)-1,3,4-thiadiazole, TGN-020, in a mouse model of focal cerebral ischemia using 7.0-T magnetic resonance imaging (MRI). Pretreatment with TGN-020 significantly reduced brain edema associated with brain ischemia, as reflected by percentage of brain swelling volume (%BSV), 12.1 ± 6.3% in the treated group, compared to (20.8 ± 5.9%) in the control group (p < 0.05), and in the size of cortical infarction as reflected by the percentage of hemispheric lesion volume (%HLV), 20.0 ± 7.6% in the treated group, compared to 30.0 ± 9.1% in the control group (p < 0.05). The study indicated the potential pharmacological use of AQP4 inhibition in reducing brain edema associated with focal ischemia. PMID:20924629

  2. Deconvolution with simple extrapolation for improved cerebral blood flow measurement in dynamic susceptibility contrast magnetic resonance imaging during acute ischemic stroke.

    PubMed

    MacDonald, Matthew Ethan; Smith, Michael Richard; Frayne, Richard

    2011-06-01

    Magnetic resonance (MR) perfusion imaging is a clinical technique for measuring brain blood flow parameters during stroke and other ischemic events. Ischemia in brain tissue can be difficult to accurately measure or visualize when using MR-derived cerebral blood flow (CBF) maps. The deconvolution techniques used to estimate flow can introduce a mean transit time-dependent bias following application of noise stabilization techniques. The underestimation of the CBF values, greatest in normal tissues, causes a decrease in the image contrast observed in CBF maps between normally perfused and ischemic tissues; resulting in ischemic areas becoming less conspicuous. Through application of the proposed simple extrapolation technique, CBF biases are reduced when missing high-frequency signal components in the MR data removed during deconvolution noise stabilization are restored. The extrapolation approach was compared with other methods and showed a statistically significant increase in image contrast in CBF maps between normal and ischemic tissues for white matter (P<.05) and performed better than most other methods for gray matter. Receiver operator characteristic curve analysis demonstrated that extrapolated CBF maps better-detected penumbral regions. Extrapolated CBF maps provided more accurate CBF estimates in simulations, suggesting that the approach may provide a better prediction of outcome in the absence of treatment.

  3. Hyperthermic preconditioning severely accelerates neuronal damage in the gerbil ischemic hippocampal dentate gyrus via decreasing SODs expressions.

    PubMed

    Kim, Dong Won; Cho, Jeong-Hwi; Cho, Geum-Sil; Kim, In Hye; Park, Joon Ha; Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Hong, Seongkweon; Cho, Jun Hwi; Kim, Young-Myeong; Won, Moo-Ho; Lee, Jae-Chul

    2015-11-15

    It is well known that neurons in the dentate gyrus (DG) of the hippocampus are resistant to short period of ischemia. Hyperthermia is a proven risk factor for cerebral ischemia and can produce more extensive brain damage related with mortality rates. The aim of this study was to examine the effect of hyperthermic conditioning (H) on neuronal death, gliosis and expressions of SODs as anti-oxidative enzymes in the gerbil DG following 5 min-transient cerebral ischemia. The animals were randomly assigned to 4 groups: 1) (N+sham)-group was given sham-operation with normothermia (N); 2) (N+ischemia)-group was given 5 min-transient ischemia with N; 3) (H+sham)-group was given sham-operation with H; and 4) (H+ischemia)-group was given 5 min-transient cerebral ischemia with H. H (39±0.5°C) was induced by subjecting the animals to a heating pad for 30 min before and during the operation. In the (N+ischemia)-groups, a significant neuronal death was observed in the polymorphic layer (PL) from 1 day after ischemia-reperfusion. In the (H+ischemia)-groups, neuronal death was also observed in the PL from 1day post-ischemia; the degree of the neuronal death was severer than that in the (N+ischemia)-groups. In addition, we examined the gliosis of astrocytes and microglia using anti-glial fibrillary acidic protein (GFAP) and anti- ionized calcium-binding adapter molecule 1 (Iba-1). GFAP(+) and Iba-1(+) glial cells were much more activated in the (H+ischemia)-groups than those in the (N+ischemia)-groups. On the other hand, immunoreactivities and levels of SOD1 rather than SOD2 were significantly lower in the (H+ischemia)-groups than those in the (N+ischemia)-groups. In brief, on the basis of our findings, we suggest that cerebral ischemic insult with hyperthermic conditioning brings up severer neuronal damage and gliosis in the polymorphic layer through reducing SOD1 expression rather than SOD2 expression in the DG.

  4. Cerebral blood flow velocity and cranial fluid volume decrease during +Gz acceleration

    NASA Technical Reports Server (NTRS)

    Kawai, Y.; Puma, S. C.; Hargens, A. R.; Murthy, G.; Warkander, D.; Lundgren, C. E.

    1997-01-01

    Cerebral blood flow (CBF) velocity and cranial fluid volume, which is defined as the total volume of intra- and extracranial fluid, were measured using transcranial Doppler ultrasonography and rheoencephalography, respectively, in humans during graded increase of +Gz acceleration (onset rate: 0.1 G/s) without straining maneuvers. Gz acceleration was terminated when subjects' vision decreased to an angle of less than or equal to 60 degrees, which was defined as the physiological end point. In five subjects, mean CBF velocity decreased 48% from a baseline value of 59.4 +/- 11.2 cm/s to 31.0 +/- 5.6 cm/s (p<0.01) with initial loss of peripheral vision at 5.7 +/- 0.9 Gz. On the other hand, systolic CBF velocity did not change significantly during increasing +Gz acceleration. Cranial impedance, which is proportional to loss of cranial fluid volume, increased by 2.0 +/- 0.8% above the baseline value at the physiological end point (p<0.05). Both the decrease of CBF velocity and the increase of cranial impedance correlated significantly with Gz. These results suggest that +Gz acceleration without straining maneuvers decreases CBF velocity to half normal and probably causes a caudal fluid shift from both intra- and extracranial tissues.

  5. A modification of intraluminal middle cerebral artery occlusion/reperfusion model for ischemic stroke with laser Doppler flowmetry guidance in mice

    PubMed Central

    Cai, Qiang; Xu, Gang; Liu, Junhui; Wang, Long; Deng, Gang; Liu, Jun; Chen, Zhibiao

    2016-01-01

    Stroke is one of the common causes of death and disability in the world. The intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) model is a “gold standard” in surgical ischemic stroke models. Here, we optimized the procedure of this model by ligating on external carotid artery (ECA) stump and two ligatures prepared on internal carotid artery, which could improve the success and survival rate in mice. The results show that ECA approach was superior to common carotid artery approach. Meanwhile, we found that the exposure of pterygopalatine artery was not an essential step for MCAO/R model in mice. PMID:27843320

  6. Cerebral ischemic post-conditioning induces autophagy inhibition and a HMGB1 secretion attenuation feedback loop to protect against ischemia reperfusion injury in an oxygen glucose deprivation cellular model

    PubMed Central

    Wang, Jue; Han, Dong; Sun, Miao; Feng, Juan

    2016-01-01

    Cerebral ischemic postconditioning (IPOC) has been demonstrated to be neuroprotective against cerebral ischemia reperfusion injury. The present study aimed to determine whether IPOC could inhibit autophagy and high mobility group box 1 (HMGB1) release in a PC12 cell oxygen glucose deprivation/reperfusion (OGD/R) model. An 8 h OGD and 24 h reperfusion cellular model was developed to mimic cerebral ischemia reperfusion injury, with 3 cycles of 10 min OGD/5 min reperfusion treatment to imitate IPOC. Cell viability was determined to demonstrate the efficiency of OGD/R, IPOC and autophagy activator, rapamycin (RAP), treatment. Transmission electron microscopy was performed to observe the formation of autophagosomes, and immunofluorescence, western blot and co-immunoprecipitation were used to examine the expression of autophagy-associated proteins and HMGB1. Enzyme-linked immunosorbent assay analysis was conducted to examine the level of HMGB1 in cell supernatants. Additionally, PC12 cells were treated with RAP to examine the effect of autophagy on HMGB1 release, and the effect of recombinant human HMGB1 and Beclin1 small interfering RNA on autophagy was investigated. The present study confirmed that IPOC inhibited autophagy and HMGB1 secretion, autophagy inhibition induced a decrease in HMGB1 secretion, and HMGB1 secretion attenuation caused autophagy inhibition in return, as demonstrated by immunofluorescence and western blot analyses. Autophagy inhibition and HMGB1 secretion attenuation were, therefore, demonstrated to form a feedback loop under IPOC. These mechanisms illustrated the protective effects of IPOC and may accelerate the clinical use of IPOC. PMID:27666823

  7. Cerebral ischemic post‑conditioning induces autophagy inhibition and a HMGB1 secretion attenuation feedback loop to protect against ischemia reperfusion injury in an oxygen glucose deprivation cellular model.

    PubMed

    Wang, Jue; Han, Dong; Sun, Miao; Feng, Juan

    2016-11-01

    Cerebral ischemic postconditioning (IPOC) has been demonstrated to be neuroprotective against cerebral ischemia reperfusion injury. The present study aimed to determine whether IPOC could inhibit autophagy and high mobility group box 1 (HMGB1) release in a PC12 cell oxygen glucose deprivation/reperfusion (OGD/R) model. An 8 h OGD and 24 h reperfusion cellular model was developed to mimic cerebral ischemia reperfusion injury, with 3 cycles of 10 min OGD/5 min reperfusion treatment to imitate IPOC. Cell viability was determined to demonstrate the efficiency of OGD/R, IPOC and autophagy activator, rapamycin (RAP), treatment. Transmission electron microscopy was performed to observe the formation of autophagosomes, and immunofluorescence, western blot and co‑immunoprecipitation were used to examine the expression of autophagy‑associated proteins and HMGB1. Enzyme‑linked immunosorbent assay analysis was conducted to examine the level of HMGB1 in cell supernatants. Additionally, PC12 cells were treated with RAP to examine the effect of autophagy on HMGB1 release, and the effect of recombinant human HMGB1 and Beclin1 small interfering RNA on autophagy was investigated. The present study confirmed that IPOC inhibited autophagy and HMGB1 secretion, autophagy inhibition induced a decrease in HMGB1 secretion, and HMGB1 secretion attenuation caused autophagy inhibition in return, as demonstrated by immunofluorescence and western blot analyses. Autophagy inhibition and HMGB1 secretion attenuation were, therefore, demonstrated to form a feedback loop under IPOC. These mechanisms illustrated the protective effects of IPOC and may accelerate the clinical use of IPOC.

  8. Granulocyte-Colony Stimulating Factor Increases Cerebral Blood Flow via a NO Surge Mediated by Akt/eNOS Pathway to Reduce Ischemic Injury

    PubMed Central

    Liew, Hock-Kean; Kuo, Jon-Son; Wang, Jia-Yi; Pang, Cheng-Yoong

    2015-01-01

    Granulocyte-colony stimulating factor (G-CSF) protects brain from ischemic/reperfusion (I/R) injury, and inhibition of nitric oxide (NO) synthases partially reduces G-CSF protection. We thus further investigated the effects of G-CSF on ischemia-induced NO production and its consequence on regional cerebral blood flow (rCBF) and neurological deficit. Endothelin-1 (ET-1) microinfused above middle cerebral artery caused a rapid reduction of rCBF (ischemia) which lasted for 30 minutes and was followed by a gradual recovery of blood flow (reperfusion) within the striatal region. Regional NO concentration increased rapidly (NO surge) during ischemia and recovered soon to the baseline. G-CSF increased rCBF resulting in shorter ischemic duration and an earlier onset of reperfusion. The enhancement of the ischemia-induced NO by G-CSF accompanied by elevation of phospho-Akt and phospho-eNOS was noted, suggesting an activation of Akt/eNOS. I/R-induced infarct volume and neurological deficits were also reduced by G-CSF treatment. Inhibition of NO synthesis by L-NG-Nitroarginine Methyl Ester (L-NAME) significantly reduced the effects of G-CSF on rCBF, NO surge, infarct volume, and neurological deficits. We conclude that G-CSF increases rCBF through a NO surge mediated by Akt/eNOS, which partially contributes to the beneficial effect of G-CSF on brain I/R injury. PMID:26146654

  9. Granulocyte-Colony Stimulating Factor Increases Cerebral Blood Flow via a NO Surge Mediated by Akt/eNOS Pathway to Reduce Ischemic Injury.

    PubMed

    Liew, Hock-Kean; Kuo, Jon-Son; Wang, Jia-Yi; Pang, Cheng-Yoong

    2015-01-01

    Granulocyte-colony stimulating factor (G-CSF) protects brain from ischemic/reperfusion (I/R) injury, and inhibition of nitric oxide (NO) synthases partially reduces G-CSF protection. We thus further investigated the effects of G-CSF on ischemia-induced NO production and its consequence on regional cerebral blood flow (rCBF) and neurological deficit. Endothelin-1 (ET-1) microinfused above middle cerebral artery caused a rapid reduction of rCBF (ischemia) which lasted for 30 minutes and was followed by a gradual recovery of blood flow (reperfusion) within the striatal region. Regional NO concentration increased rapidly (NO surge) during ischemia and recovered soon to the baseline. G-CSF increased rCBF resulting in shorter ischemic duration and an earlier onset of reperfusion. The enhancement of the ischemia-induced NO by G-CSF accompanied by elevation of phospho-Akt and phospho-eNOS was noted, suggesting an activation of Akt/eNOS. I/R-induced infarct volume and neurological deficits were also reduced by G-CSF treatment. Inhibition of NO synthesis by L-N(G)-Nitroarginine Methyl Ester (L-NAME) significantly reduced the effects of G-CSF on rCBF, NO surge, infarct volume, and neurological deficits. We conclude that G-CSF increases rCBF through a NO surge mediated by Akt/eNOS, which partially contributes to the beneficial effect of G-CSF on brain I/R injury.

  10. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats.

    PubMed

    Paredes, Sergio D; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A F

    2015-01-01

    Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription-polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1β, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury.

  11. Inhibition of Drp1 by Mdivi-1 attenuates cerebral ischemic injury via inhibition of the mitochondria-dependent apoptotic pathway after cardiac arrest.

    PubMed

    Li, Y; Wang, P; Wei, J; Fan, R; Zuo, Y; Shi, M; Wu, H; Zhou, M; Lin, J; Wu, M; Fang, X; Huang, Z

    2015-12-17

    Mitochondrial fission is predominantly controlled by the activity of dynamin-related protein1 (Drp1), which has been reported to be involved in mitochondria apoptosis pathways. However, the role of Drp1 in a rat model of cardiac arrest remains unknown. In this study, we found that activation of Drp1 in the mitochondria was increased after cardiac arrest and inhibition of Drp1 by 1.2 mg/kg of mitochondrial division inhibitor-1 (Mdivi-1) administration after the restoration of spontaneous circulation (ROSC) significantly protected against cerebral ischemic injury, shown by the increased 72-h survival rate and improved neurological function. Moreover, the increase of the vital neuron and the reduction of cytochrome c (CytC) release, apoptosis-inducing factor (AIF) translocation and caspase-3 activation in the brain indicate that this protection might result from the suppression of neuron apoptosis. Altogether, these results indicated that Drp1 is activated after cardiac arrest and the inhibition of Drp1 is protective against cerebral ischemic injury in a rat of cardiac arrest model via inhibition of the mitochondrial apoptosis pathway.

  12. Neuroprotection of Ischemic Preconditioning is Mediated by Anti-inflammatory, Not Pro-inflammatory, Cytokines in the Gerbil Hippocampus Induced by a Subsequent Lethal Transient Cerebral Ischemia.

    PubMed

    Kim, Dong Won; Lee, Jae-Chul; Cho, Jeong-Hwi; Park, Joon Ha; Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Seo, Jeong Yeol; Cho, Jun Hwi; Kang, Il Jun; Hong, Seongkweon; Kim, Young-Myeong; Won, Moo-Ho; Kim, In Hye

    2015-09-01

    Ischemic preconditioning (IPC) induced by sublethal transient cerebral ischemia could reduce neuronal damage/death following a subsequent lethal transient cerebral ischemia. We, in this study, compared expressions of interleukin (IL)-2 and tumor necrosis factor (TNF)-α as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines in the gerbil hippocampal CA1 region between animals with lethal ischemia and ones with IPC followed by lethal ischemia. In the animals with lethal ischemia, pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region were dead at 5 days post-ischemia; however, IPC protected the CA1 pyramidal neurons from lethal ischemic injury. Expressions of all cytokines were significantly decreased in the SP after lethal ischemia and hardly detected in the SP at 5 days post-ischemia because the CA1 pyramidal neurons were dead. IPC increased expressions of anti-inflammatory cytokines (IL-4 and IL-13) in the stratum pyramidale of the CA1 region following no lethal ischemia (sham-operation), and the increased expressions of IL-4 and IL-13 by IPC were continuously maintained is the SP of the CA1 region after lethal ischemia. However, pro-inflammatory cytokines (IL-2 and TNF-α) in the SP of the CA1 region were similar those in the sham-operated animals with IPC, and the IL-4 and IL-13 expressions in the SP were maintained after lethal ischemia. In conclusion, this study shows that anti-inflammatory cytokines significantly increased and longer maintained by IPC and this might be closely associated with neuroprotection after lethal transient cerebral ischemia.

  13. Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats.

    PubMed

    Fang, Lili; Li, Xue; Zhong, Yinbo; Yu, Jing; Yu, Lina; Dai, Haibin; Yan, Min

    2015-10-01

    Cerebral microvascular endothelial cells (ECs) are crucial for brain vascular repair and maintenance, but their physiological function may be impaired during ischemic stroke and diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, could exacerbate ischemia-induced EC injury and dysfunction. We investigated the protective effect of autophagy on cultured human brain microvascular endothelial cells (HBMEC) that underwent MGO treatment. A further study was conducted to explore the underlying mechanisms of the protective effect. Autophagic activity was assessed by evaluating protein levels, using western blot. 3-methyladenine (3-MA), bafilomycin A1, ammonium chloride (AC), Beclin 1 siRNA, and chloroquine (CQ) were used to cause autophagy inhibition. Alarmar blue assay and lactate dehydrogenase release assay were used to evaluate cell viability. Streptozotocin was administered to induce type I diabetes in rats and post-permanent middle cerebral artery occlusion was performed to elicit cerebral ischemia. Blood-brain barrier permeability was also assessed. Our study found that MGO reduced HBMEC cell viability in a concentration- and time-dependent manner, and triggered the responsive autophagy activation. Autophagy inhibitors bafilomycin A1, AC, 3-MA, and BECN1 siRNA exacerbated MGO-induced HBMEC injury. FAK phosphorylation inhibitor PF573228 inhibited MGO-triggered autophagy and enhanced lactate dehydrogenase release. Meanwhile, similar autophagy activation in brain vascular ECs was observed during permanent middle cerebral artery occlusion-induced cerebral ischemia in diabetic rats, while chloroquine-induced autophagy inhibition enhanced blood-brain barrier permeability. Taken together, our study indicates that autophagy triggered by MGO defends HBMEC against injuries.

  14. Neuroprotection of Ischemic Preconditioning is Mediated by Thioredoxin 2 in the Hippocampal CA1 Region Following a Subsequent Transient Cerebral Ischemia.

    PubMed

    Lee, Jae-Chul; Park, Joon Ha; Kim, In Hye; Cho, Geum-Sil; Ahn, Ji Hyeon; Tae, Hyun-Jin; Choi, Soo Young; Cho, Jun Hwi; Kim, Dae Won; Kwon, Young-Guen; Kang, Il Jun; Won, Moo-Ho; Kim, Young-Myeong

    2016-04-26

    Preconditioning by brief ischemic episode induces tolerance to a subsequent lethal ischemic insult, and it has been suggested that reactive oxygen species are involved in this phenomenon. Thioredoxin 2 (Trx2), a small protein with redox-regulating function, shows cytoprotective roles against oxidative stress. Here, we had focused on the role of Trx2 in ischemic preconditioning (IPC)-mediated neuroprotection against oxidative stress followed by a subsequent lethal transient cerebral ischemia. Animals used in this study were randomly assigned to six groups; sham-operated group, ischemia-operated group, IPC plus (+) sham-operated group, IPC + ischemia-operated group, IPC + auranofin (a TrxR2 inhibitor) + sham-operated group and IPC + auranofin + ischemia-operated group. IPC was subjected to a 2 minutes of sublethal transient ischemia 1 day prior to a 5 minutes of lethal transient ischemia. A significant loss of neurons was found in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) in the ischemia-operated-group 5 days after ischemia-reperfusion; in the IPC + ischemia-operated-group, pyramidal neurons in the SP were well protected. In the IPC + ischemia-operated-group, Trx2 and TrxR2 immunoreactivities in the SP and its protein level in the CA1 were not significantly changed compared with those in the sham-operated-group after ischemia-reperfusion. In addition, superoxide dismutase 2 (SOD2) expression, superoxide anion radical ( O2-) production, denatured cytochrome c expression and TUNEL-positive cells in the IPC + ischemia-operated-group were similar to those in the sham-operated-group. Conversely, the treatment of auranofin to the IPC + ischemia-operated-group significantly increased cell damage/death and abolished the IPC-induced effect on Trx2 and TrxR2 expressions. Furthermore, the inhibition of Trx2R nearly cancelled the beneficial effects of IPC on SOD2 expression, O2- production, denatured cytochrome c

  15. Neuroprotective Effect of Scutellarin on Ischemic Cerebral Injury by Down-Regulating the Expression of Angiotensin-Converting Enzyme and AT1 Receptor

    PubMed Central

    Han, Jichun; Zhou, Mingjie; Ren, Huanhuan; Pan, Qunwen; Zheng, Chunli; Zheng, Qiusheng

    2016-01-01

    Background and Purpose Previous studies have demonstrated that angiotensin-converting enzyme (ACE) is involved in brain ischemic injury. In the present study, we investigated whether Scutellarin (Scu) exerts neuroprotective effects by down-regulating the Expression of Angiotensin-Converting Enzyme and AT1 receptor in a rat model of permanent focal cerebral ischemia. Methods Adult Sprague–Dawley rats were administrated with different dosages of Scu by oral gavage for 7 days and underwent permanent middle cerebral artery occlusion (pMCAO). Blood pressure was measured 7 days after Scu administration and 24 h after pMCAO surgery by using a noninvasive tail cuff method. Cerebral blood flow (CBF) was determined by Laser Doppler perfusion monitor and the neuronal dysfunction was evaluated by analysis of neurological deficits before being sacrificed at 24 h after pMCAO. Histopathological change, cell apoptosis and infarct area were respectively determined by hematoxylin–eosin staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis and 2,3,5-triphenyltetrazolium chloride staining. Tissue angiotensin II (Ang II) and ACE activity were detected by enzyme-linked immunosorbent assays. The expression levels of ACE, Ang II type 1 receptor (AT1R), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were measured by Western blot and real-time PCR. ACE inhibitory activity of Scu in vitro was detected by the photometric determination. Results Scu treatment dose-dependently decreased neurological deficit score, infarct area, cell apoptosis and morphological changes induced by pMCAO, which were associated with reductions of ACE and AT1R expression and the levels of Ang II, TNF-α, IL-6, and IL-1β in ischemic brains. Scu has a potent ACE inhibiting activity. Conclusion Scu protects brain from acute ischemic injury probably through its inhibitory effect on the ACE/Ang II/AT1 axis, CBF preservation and

  16. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 .

  17. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats

    PubMed Central

    Paredes, Sergio D.; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A.F.

    2015-01-01

    Abstract Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription–polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1β, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury. PMID:26594596

  18. Cerebral Blood Volume ASPECTS Is the Best Predictor of Clinical Outcome in Acute Ischemic Stroke: A Retrospective, Combined Semi-Quantitative and Quantitative Assessment

    PubMed Central

    Padroni, Marina; Bernardoni, Andrea; Tamborino, Carmine; Roversi, Gloria; Borrelli, Massimo; Saletti, Andrea; De Vito, Alessandro; Azzini, Cristiano; Borgatti, Luca; Marcello, Onofrio; d’Esterre, Christopher; Ceruti, Stefano; Casetta, Ilaria; Lee, Ting-Yim; Fainardi, Enrico

    2016-01-01

    Introduction The capability of CT perfusion (CTP) Alberta Stroke Program Early CT Score (ASPECTS) to predict outcome and identify ischemia severity in acute ischemic stroke (AIS) patients is still questioned. Methods 62 patients with AIS were imaged within 8 hours of symptom onset by non-contrast CT, CT angiography and CTP scans at admission and 24 hours. CTP ASPECTS was calculated on the affected hemisphere using cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) maps by subtracting 1 point for any abnormalities visually detected or measured within multiple cortical circular regions of interest according to previously established thresholds. MTT-CBV ASPECTS was considered as CTP ASPECTS mismatch. Hemorrhagic transformation (HT), recanalization status and reperfusion grade at 24 hours, final infarct volume at 7 days and modified Rankin scale (mRS) at 3 months after onset were recorded. Results Semi-quantitative and quantitative CTP ASPECTS were highly correlated (p<0.00001). CBF, CBV and MTT ASPECTS were higher in patients with no HT and mRS≤2 and inversely associated with final infarct volume and mRS (p values: from p<0.05 to p<0.00001). CTP ASPECTS mismatch was slightly associated with radiological and clinical outcomes (p values: from p<0.05 to p<0.02) only if evaluated quantitatively. A CBV ASPECTS of 9 was the optimal semi-quantitative value for predicting outcome. Conclusions Our findings suggest that visual inspection of CTP ASPECTS recognizes infarct and ischemic absolute values. Semi-quantitative CBV ASPECTS, but not CTP ASPECTS mismatch, represents a strong prognostic indicator, implying that core extent is the main determinant of outcome, irrespective of penumbra size. PMID:26824672

  19. The Antiepileptic Drug Levetiracetam Suppresses Non-Convulsive Seizure Activity and Reduces Ischemic Brain Damage in Rats Subjected to Permanent Middle Cerebral Artery Occlusion

    PubMed Central

    Cuomo, Ornella; Rispoli, Vincenzo; Leo, Antonio; Politi, Giovanni Bosco; Vinciguerra, Antonio; di Renzo, Gianfranco; Cataldi, Mauro

    2013-01-01

    The antiepileptic drug Levetiracetam (Lev) has neuroprotective properties in experimental stroke, cerebral hemorrhage and neurotrauma. In these conditions, non-convulsive seizures (NCSs) propagate from the core of the focal lesion into perilesional tissue, enlarging the damaged area and promoting epileptogenesis. Here, we explore whether Lev neuroprotective effect is accompanied by changes in NCS generation or propagation. In particular, we performed continuous EEG recordings before and after the permanent occlusion of the middle cerebral artery (pMCAO) in rats that received Lev (100 mg/kg) or its vehicle immediately before surgery. Both in Lev-treated and in control rats, EEG activity was suppressed after pMCAO. In control but not in Lev-treated rats, EEG activity reappeared approximately 30-45 min after pMCAO. It initially consisted in single spikes and, then, evolved into spike-and-wave and polyspike-and-wave discharges. In Lev-treated rats, only rare spike events were observed and the EEG power was significantly smaller than in controls. Approximately 24 hours after pMCAO, EEG activity increased in Lev-treated rats because of the appearance of polyspike events whose power was, however, significantly smaller than in controls. In rats sacrificed 24 hours after pMCAO, the ischemic lesion was approximately 50% smaller in Lev-treated than in control rats. A similar neuroprotection was observed in rats sacrificed 72 hours after pMCAO. In conclusion, in rats subjected to pMCAO, a single Lev injection suppresses NCS occurrence for at least 24 hours. This electrophysiological effect could explain the long lasting reduction of ischemic brain damage caused by this drug. PMID:24236205

  20. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats.

    PubMed

    Justicia, Carles; Panés, Julián; Solé, Sònia; Cervera, Alvaro; Deulofeu, Ramon; Chamorro, Angel; Planas, Anna M

    2003-12-01

    Matrix metalloproteinase-9 (MMP-9) activity increases in the brain during the first day after focal ischemia and might be involved in the pathogenesis of tissue damage. We previously showed MMP-9 in the extracellular space of brain parenchyma along with neutrophil recruitment after ischemia. In the present study, we tested whether neutrophils were a direct source of enhanced MMP-9 in the ischemic brain. Neutrophil infiltration was prevented either by injecting an antibody against ICAM-1, which abrogates neutrophil adhesion to the endothelial vessel wall, or by inducing neutropenia. One-hour intraluminal middle cerebral artery occlusion with reperfusion was induced, and studies were performed at 24 hours. Circulating neutrophils expressed 95-kDa MMP-9 and dimers, and infiltrated neutrophils stained positive for MMP-9. The expression of MMP-9 (mainly 95-kDa proform and dimers and, to a lesser extent, 88-kDa form) increased in brain after ischemia/reperfusion. Treatments preventing neutrophil infiltration failed to preclude the ischemia-induced increase in 88-kDa MMP-9 form and gelatinase activity in neurons and blood vessels. However, these treatments prevented the major increase in 95-kDa MMP-9 form and dimers. We conclude that neutrophil infiltration highly contributes to enhanced MMP-9 in the ischemic brain by releasing MMP-9 proform, which might participate in the tissular inflammatory reaction.

  1. First Autologous Cord Blood Therapy for Pediatric Ischemic Stroke and Cerebral Palsy Caused by Cephalic Molding during Birth: Individual Treatment with Mononuclear Cells

    PubMed Central

    Hamelmann, E.

    2016-01-01

    Intracranial laceration due to traumatic birth injury is an extremely rare event affecting approximately one newborn per a population of 4.5 million. However, depending on the mode of injury, the resulting brain damage may lead to lifelong sequelae, for example, cerebral palsy for which there is no cure at present. Here we report a rare case of neonatal arterial ischemic stroke and cerebral palsy caused by fetal traumatic molding and parietal depression of the head during delivery caused by functional cephalopelvic disproportion due to a “long pelvis.” This patient was treated by autologous cord blood mononuclear cells (45.8 mL, cryopreserved, TNC 2.53 × 10e8) with a remarkable recovery. Active rehabilitation was provided weekly. Follow-up examinations were at 3, 18, 34, and 57 months. Generous use of neonatal head MRI in case of molding, craniofacial deformity, and a sentinel event during parturition is advocated to enhance diagnosis of neonatal brain damage as a basis for fast and potentially causative treatment modalities including autologous cord blood transplantation in a timely manner. PMID:27239361

  2. Rehabilitation Training and Resveratrol Improve the Recovery of Neurological and Motor Function in Rats after Cerebral Ischemic Injury through the Sirt1 Signaling Pathway

    PubMed Central

    Shi, Na; Zhu, Chongtian

    2016-01-01

    This study was conducted to investigate the recovery of motor function in rats through the silent information regulator factor 2-related enzyme 1 (Sirt1) signal pathway-mediated rehabilitation training. Middle cerebral artery occlusion (MACO) was used to induce ischemia/reperfusion injury. The rats were subjected to no treatment (model), rehabilitation training (for 21 days), resveratrol (5 mg/kg for 21 days), and rehabilitation training plus resveratrol treatment. 24 h later, They were assessed for neurobehavioral score and motor behavior score and expression of brain derived-nerve neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB). Compared with sham group, models had significantly higher neurobehavioral scores, balance beam, and rotary stick scores. Compared with the model group, rats in rehabilitation training and resveratrol groups had significantly reduced scores. Compared with rehabilitation training or resveratrol treatment alone, rehabilitation plus resveratrol further reduced the scores significantly. The percentage of cells expressing BDNF and TrkB and expression levels of BDNF and TrkB were similar between the model and sham groups, significantly increased in rehabilitation training and resveratrol groups, and further increased in rehabilitation training plus resveratrol group. These results indicate that rehabilitation raining plus resveratrol can significantly improve the recovery of motor function in rats after cerebral ischemic injury, which is likely related to the upregulation of the BDNF/TrkB signaling pathway. PMID:28116292

  3. A recombinant inhibitory isoform of vascular endothelial growth factor164/165 aggravates ischemic brain damage in a mouse model of focal cerebral ischemia.

    PubMed

    Chaitanya, Ganta V; Cromer, Walter E; Parker, Courtney P; Couraud, Pierre O; Romero, Ignacio A; Weksler, Babette; Mathis, J Michael; Minagar, Alireza; Alexander, J Steven

    2013-09-01

    Vascular endothelial growth factors (VEGF) are a Janus-faced family of growth factors exerting both neuroprotective and maladaptive effects on the blood-brain barrier. For example, VEGFs are beneficial in promoting postischemic brain angiogenesis, but the newly formed vessels are leaky. We investigated the role of the naturally occurring murine inhibitory VEGF isoform VEGF165b in a mouse model of focal cerebral ischemia by middle cerebral artery occlusion and reperfusion (I/R) in male C57BL/6 mice. We investigated the roles of VEGF164/165 and VEGF165b in both brain and nonbrain endothelial barrier, angiogenesis, and neutrophil migration using oxygen glucose deprivation and reoxygenation as in vitro model. We investigated the role of VEGF165b in brain edema, neutrophil infiltration, ischemic brain damage, and neuronal death in vivo using an adenovirus encoding a recombinant VEGF164b isoform. Neither VEGF164/165 nor VEGF165b significantly altered brain endothelial barrier or angiogenesis in vitro. However, treatment of brain endothelial cells with VEGF165b increased neutrophil migration in vitro and exacerbated stroke injury by aggravating neutrophil infiltration and neurodegeneration in vivo. Our results indicate that alterations in the delicate balance in the relative levels of pro- and antiangiogenic VEGF isoforms can result in either adaptive or detrimental effects, depending on the VEGF isoform levels and on the duration and extent of injury.

  4. First Autologous Cell Therapy of Cerebral Palsy Caused by Hypoxic-Ischemic Brain Damage in a Child after Cardiac Arrest—Individual Treatment with Cord Blood

    PubMed Central

    Jensen, A.; Hamelmann, E.

    2013-01-01

    Each year, thousands of children incur brain damage that results in lifelong sequelae. Therefore, based on experimental evidence, we explored the therapeutic potential of human cord blood, known to contain stem cells, to examine the functional neuroregeneration in a child with cerebral palsy after cardiac arrest. The boy, whose cord blood was stored at birth, was 2.5 years old and normally developed when global ischemic brain damage occurred resulting in a persistent vegetative state. Nine weeks later, he received autologous cord blood (91.7 mL, cryopreserved, 5.75 × 10e8 mononuclear cells) intravenously. Active rehabilitation (physio- and ergotherapy) was provided daily, follow-up at 2, 5, 12, 24, 30, and 40 months. At 2-months follow-up the boy's motor control improved, spastic paresis was largely reduced, and eyesight was recovered, as did the electroencephalogram. He smiled when played with, was able to sit and to speak simple words. At 40 months, independent eating, walking in gait trainer, crawling, and moving from prone position to free sitting were possible, and there was significantly improved receptive and expressive speech competence (four-word sentences, 200 words). This remarkable functional neuroregeneration is difficult to explain by intense active rehabilitation alone and suggests that autologous cord blood transplantation may be an additional and causative treatment of pediatric cerebral palsy after brain damage. PMID:23762741

  5. Gene interference regulates aquaporin-4 expression in swollen tissue of rats with cerebral ischemic edema: Correlation with variation in apparent diffusion coefficient.

    PubMed

    Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong

    2012-07-25

    To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25-6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5-4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = -0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time

  6. Crohns disease with central nervous system vasculitis causing subarachnoid hemorrhage due to aneurysm and cerebral ischemic stroke

    PubMed Central

    Garge, Shaileshkumar S.; Vyas, Pooja D.; Modi, Pranav D.; Ghatge, Sharad

    2014-01-01

    Cerebral vasculitis secondary to Crohn's disease (CD) seems to be a very rare phenomenon. We report a 39-year-old male who presented with headache, vomiting, and left-sided weakness in the known case of CD. Cross-sectional imaging (computed tomography and magnetic resonance imaging,) showed right gangliocapsular acute infarct with supraclinoid cistern subarachnoid hemorrhage (SAH). Cerebral digital substraction angiography (DSA) showed dilatation and narrowing of right distal internal carotid artery (ICA). Left ICA was chronically occluded. His inflammatory markers were significantly raised. Imaging features are suggestive of cerebral vasculitis. Arterial and venous infarcts due to thrombosis are known in CD. Our case presented with acute subarachnoid hemorrhage in supraclinoid cistern due to rupture of tiny aneurysm of perforator arteries causing SAH and infarction in right basal ganglia. Patient was treated conservatively with immunosuppression along with medical management of SAH. PMID:25506170

  7. Migraine prophylaxis, ischemic depolarizations and stroke outcomes in mice

    PubMed Central

    Eikermann-Haerter, Katharina; Lee, Jeong Hyun; Yalcin, Nilufer; Yu, Esther Sori; Daneshmand, Ali; Wei, Ying; Zheng, Yi; Can, Anil; Sengul, Buse; Ferrari, Michel D.; van den Maagdenberg, Arn M. J. M.; Ayata, Cenk

    2014-01-01

    Background and Purpose Migraine with aura is an established stroke risk factor, and excitatory mechanisms such as spreading depression are implicated in the pathogenesis of both migraine and stroke. Spontaneous spreading depression waves originate within the peri-infarct tissue and exacerbate the metabolic mismatch during focal cerebral ischemia. Genetically enhanced spreading depression susceptibility facilitates anoxic depolarizations and peri-infarct spreading depressions and accelerates infarct growth, suggesting that susceptibility to spreading depression is a critical determinant of vulnerability to ischemic injury. Because chronic treatment with migraine prophylactic drugs suppresses spreading depression susceptibility, we tested whether migraine prophylaxis can also suppress ischemic depolarizations and improve stroke outcome. Methods We measured the cortical susceptibility to spreading depression and ischemic depolarizations, and determined tissue and neurological outcome after middle cerebral artery occlusion in wild type and familial hemiplegic migraine type 1 knock-in mice treated with vehicle, topiramate or lamotrigine daily for 7 weeks or as a single dose shortly before testing. Results Chronic treatment with topiramate or lamotrigine reduces the susceptibility to KCl- or electrical stimulation-induced spreading depressions as well as ischemic depolarizations in both wild-type and familial hemiplegic migraine type 1 mutant mice. Consequently, both tissue and neurological outcomes are improved. Notably, treatment with a single dose of either drug is ineffective. Conclusions These data underscore the importance of hyperexcitability as a mechanism for increased stroke risk in migraineurs, and suggest that migraine prophylaxis may not only prevent migraine attacks but also protect migraineurs against ischemic injury. PMID:25424478

  8. Focal cerebral ischemic tolerance and change in blood-brain barrier permeability after repetitive pure oxygen exposure preconditioning in a rodent model.

    PubMed

    Wang, Xi; Kang, Kai; Wang, Shiquan; Yao, Jianhua; Zhang, Xijing

    2016-10-01

    OBJECTIVE The goal of this study was to demonstrate that repetitive pure oxygen exposure preconditioning (O2PC) for 8 hours per day for 3 or 7 days, a practicable preconditioning for clinical use, is able to induce cerebral ischemic tolerance (IT) and further clarify the accompanying changes in the blood-brain barrier (BBB) that may be involved. METHODS A total of 68 adult male Sprague-Dawley rats and eight 1-day-old rat pups were used in this study. The adult rats were exposed to pure O2 (38 rats) 8 hours a day for 3 or 7 days or to room air (in an identical setup) for 8 hours a day for 7 days as controls (30 rats). Arterial O2 tension (PaO2) was measured in 6 rats exposed to O2 and 3 controls. Focal cerebral ischemia was elicited by middle cerebral artery occlusion (MCAO) in 37 rats, of which 21 had been exposed to pure O2 for 3 or 7 days and 16 to room air for 7 days as controls. Neurological behavior was scored with the Garcia score in 15 MCAO rats, of which 10 had been exposed to pure O2 for 3 or 7 days and 5 to room air for 7 days as controls, and cerebral infarct volumes were assessed with TTC (2,3,5-triphenyltetrazolium chloride) staining in 10 rats (5 from each group) after 7 days of exposure. Formamide-extraction method was used to detect leakage of Evans blue (EB) dye in 7 rats exposed to pure O2 for 7 days and 7 exposed to room air for 7 days. Fluorescence microscopy was used to analyze the leaked EB in the nonischemic areas of 4 rats exposed to pure O2 for 7 days and 4 exposed to room air for 7 days before MCAO and the brain of the rats that had not been subjected to MCAO. Astrocyte changes associated with O2PC were evaluated by means of fluorescence microscopy and electron microscopy in 14 rats that were exposed to the same O2 or control conditions as the MCAO rats but without MCAO. Astrocytes were also obtained from 8 rat pups and cultured; levels of AQP4 and VEGF were detected by Western blot and ELISA in cells with and without O2 treatment. RESULTS

  9. Unraveling the Specific Ischemic Core and Penumbra Transcriptome in the Permanent Middle Cerebral Artery Occlusion Mouse Model Brain Treated with the Neuropeptide PACAP38

    PubMed Central

    Hori, Motohide; Nakamachi, Tomoya; Shibato, Junko; Rakwal, Randeep; Shioda, Seiji; Numazawa, Satoshi

    2015-01-01

    Our group has been systematically investigating the effects of the neuropeptide pituitary adenylate-cyclase activating polypeptide (PACAP) on the ischemic brain. To do so, we have established and utilized the permanent middle cerebral artery occlusion (PMCAO) mouse model, in which PACAP38 (1 pmol) injection is given intracerebroventrically and compared to a control saline (0.9% sodium chloride, NaCl) injection, to unravel genome-wide gene expression changes using a high-throughput DNA microarray analysis approach. In our previous studies, we have accumulated a large volume of data (gene inventory) from the whole brain (ipsilateral and contralateral hemispheres) after both PMCAO and post-PACAP38 injection. In our latest research, we have targeted specifically infarct or ischemic core (hereafter abbreviated IC) and penumbra (hereafter abbreviated P) post-PACAP38 injections in order to re-examine the transcriptome at 6 and 24 h post injection. The current study aims to delineate the specificity of expression and localization of differentially expressed molecular factors influenced by PACAP38 in the IC and P regions. Utilizing the mouse 4 × 44 K whole genome DNA chip we show numerous changes (≧/≦ 1.5/0.75-fold) at both 6 h (654 and 456, and 522 and 449 up- and down-regulated genes for IC and P, respectively) and 24 h (2568 and 2684, and 1947 and 1592 up- and down-regulated genes for IC and P, respectively) after PACAP38 treatment. Among the gene inventories obtained here, two genes, brain-derived neurotrophic factor (Bdnf) and transthyretin (Ttr) were found to be induced by PACAP38 treatment, which we had not been able to identify previously using the whole hemisphere transcriptome analysis. Using bioinformatics analysis by pathway- or specific-disease-state focused gene classifications and Ingenuity Pathway Analysis (IPA) the differentially expressed genes are functionally classified and discussed. Among these, we specifically discuss some novel and previously

  10. Ischemic preconditioning maintains the immunoreactivities of glucokinase and glucokinase regulatory protein in neurons of the gerbil hippocampal CA1 region following transient cerebral ischemia

    PubMed Central

    CHO, YOUNG SHIN; CHO, JUN HWI; SHIN, BICH-NA; CHO, GEUM-SIL; KIM, IN HYE; PARK, JOON HA; AHN, JI HYEON; OHK, TAEK GEUN; CHO, BYUNG-RYUL; KIM, YOUNG-MYEONG; HONG, SEONGKWEON; WON, MOO-HO; LEE, JAE-CHUL

    2015-01-01

    Glucokinase (GK) is involved in the control of blood glucose homeostasis. In the present study, the effect of ischemic preconditioning (IPC) on the immunoreactivities of GK and its regulatory protein (GKRP) following 5 min of transient cerebral ischemia was investigated in gerbils. The gerbils were randomly assigned to four groups (sham-operated group, ischemia-operated group, IPC + sham-operated group and IPC + ischemia-operated group). IPC was induced by subjecting the gerbils to 2 min of ischemia, followed by 1 day of recovery. In the ischemia-operated group, a significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) at 5 days post-ischemia; however, in the IPC+ischemia-operated group, the neurons in the SP were well protected. Following immunohistochemical investigation, the immunoreactivities of GK and GKRP in the neurons of the SP were markedly decreased in the CA1, but not the CA2/3, from 2 days post-ischemia, and were almost undetectable in the SP 5 days post-ischemia. In the IPC + ischemia-operated group, the immunoreactivities of GK and GKRP in the SP of the CA1 were similar to those in the sham-group. In brief, the findings of the present study demonstrated that IPC notably maintained the immunoreactivities of GK and GKRP in the neurons of the SP of CA1 following ischemia-reperfusion. This indicated that GK and GKRP may be necessary for neuron survival against transient cerebral ischemia. PMID:26134272

  11. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses—An Application in Ischemic Stroke

    PubMed Central

    Guhathakurta, Debarpan; Dutta, Anirban

    2016-01-01

    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about −15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization. PMID:27378836

  12. Intracranial pressure elevation after ischemic stroke in rats: cerebral edema is not the only cause, and short-duration mild hypothermia is a highly effective preventive therapy

    PubMed Central

    Murtha, Lucy A; McLeod, Damian D; Pepperall, Debbie; McCann, Sarah K; Beard, Daniel J; Tomkins, Amelia J; Holmes, William M; McCabe, Christopher; Macrae, I Mhairi; Spratt, Neil J

    2015-01-01

    In both the human and animal literature, it has largely been assumed that edema is the primary cause of intracranial pressure (ICP) elevation after stroke and that more edema equates to higher ICP. We recently demonstrated a dramatic ICP elevation 24 hours after small ischemic strokes in rats, with minimal edema. This ICP elevation was completely prevented by short-duration moderate hypothermia soon after stroke. Here, our aims were to determine the importance of edema in ICP elevation after stroke and whether mild hypothermia could prevent the ICP rise. Experimental stroke was performed in rats. ICP was monitored and short-duration mild (35 °C) or moderate (32.5 °C) hypothermia, or normothermia (37 °C) was induced after stroke onset. Edema was measured in three studies, using wet–dry weight calculations, T2-weighted magnetic resonance imaging, or histology. ICP increased 24 hours after stroke onset in all normothermic animals. Short-duration mild or moderate hypothermia prevented this rise. No correlation was seen between ΔICP and edema or infarct volumes. Calculated rates of edema growth were orders of magnitude less than normal cerebrospinal fluid production rates. These data challenge current concepts and suggest that factors other than cerebral edema are the primary cause of the ICP elevation 24 hours after stroke onset. PMID:25515213

  13. Microglial cells from psychologically stressed mice as an accelerator of cerebral cryptococcosis.

    PubMed

    Shimoda, Masae; Jones, Vickie C; Kobayashi, Makiko; Suzuki, Fujio

    2006-12-01

    Severe stress decreases the resistance of hosts exposed to microbial infections. As compared with two groups of control mice (normal mice, food-and-water-deprived mice [FWD mice]), restraint-stressed mice (RST mice) were shown to be greatly susceptible to intracerebral growth of Cryptococcus neoformans. The susceptibility of FWD mice to cerebral cryptococcosis increased to the level shown in RST mice, when these groups of mice were inoculated with microglial cells from the brains of RST mice. However, the susceptibility of FWD mice to cerebral cryptococcosis was not influenced by the adoptive transfer of microglial cells from normal mice or FWD mice. Microglial cells from RST mice produced CC-chemokine ligand-2 (CCL-2/monocyte chemoattractant protein 1), but not microglial cells from FWD mice. The resistance of RST mice to cerebral cryptococcosis was improved to the extent shown in FWD mice, when they were treated with anti-CCL-2 antibody. However, the susceptibility of normal mice and FWD mice to cerebral cryptococcosis increased to that shown in RST mice, when they were treated with rCCL-2. Microglial cells from RST mice were discriminated from the same cell preparations derived from FWD mice by their abilities to produce CCL-2, to phagocytize C. neoformans cells and to express Toll-like receptor 2. These results indicate that the resistance of RST mice to cerebral cryptococcosis is diminished by CCL-2 produced by microglial cells that are influenced by restraint stress.

  14. [Antioxidant therapy in ischemic stroke].

    PubMed

    Suslina, Z A; Federova, T N; Maksimova, M Iu; Riasina, T V; Stvolinskiĭ, S L; Khrapova, E V; Boldyrev, A A

    2000-01-01

    The paper presents the results of investigation of emoxipin, an antioxidant synthetic drug, for treatment of patients with ischemic disorders of cerebral circulation. The drug produced a beneficial clinical effect in patients with lacunar and cardioembolic strokes of moderate severity. Therapy with emoxipin increased endogenic antioxidant activity and improved a clinical status of the patients. The protective effect of carnosine was demonstrated in experimental acute hypobaric hypoxia and cerebral ischemia in rats. The results obtained permit to recommend an inclusion of both emoxipin and carnosine in a combined treatment of ischemic disorders of cerebral circulation.

  15. Sulforaphane improves outcomes and slows cerebral ischemic/reperfusion injury via inhibition of NLRP3 inflammasome activation in rats.

    PubMed

    Yu, Chang; He, Qi; Zheng, Jing; Li, Ling Yu; Hou, Yang Hao; Song, Fang Zhou

    2017-02-09

    Ischemia/reperfusion (I/R) injury has been correlated with systemic inflammatory response. In addition, NLRP3 has been suggested as a cause in many inflammatory processes. Sulforaphane (SFN) is a naturally occurring isothiocyanate found in cruciferous vegetables, such as broccoli and cabbage. While recent studies have demonstrated that Sulforaphane has protective effects against cerebral ischemia/reperfusion injury, little is known about how those protective effects work. In this study, we focus our investigation on the role and process of Sulforaphane in the inhibition of NLRP3 inflammasome activation, as well as its effect on brain ischemia/reperfusion injury. Adult male Sprague-Dawley rats were injected with Sulforaphane (5 or 10mg/kg) intraperitoneally at the beginning of reperfusion, after a 60min period of occlusion. A neurological score and infarct volume were assessed at 24h after the administration of Sulforaphane. Myeloperoxidase (MPO) activity was measured at 24h to assess neutrophil infiltration in brain tissue. ELISA, RT-PCR and Western blot analyses were used to measure any inflammatory reaction. Sulforaphane treatment significantly reduced infarct volume and improved neurological scores when compared to a vehicle-treated group. Neutrophil infiltration was significantly higher in the vehicle-treated group than in the Sulforaphane treatment group. Sulforaphane treatment inhibits NLRP3 inflammasome activation and the downregulation of cleaved caspase-1, while reducing IL-1β and IL-18 expression. The inhibition of inflammatory response with Sulforaphane treatment improves outcomes after focal cerebral ischemia. This neuroprotective effect is likely exerted by Sulforaphane inhibited NLRP3 inflammasome activation caused by the downregulation of NLRP3, the induction of cleaved caspase-1, and thus the reduction of IL-1β and IL-18.

  16. Hyperglycemia accelerates apparent diffusion coefficient-defined lesion growth after focal cerebral ischemia in rats with and without features of metabolic syndrome.

    PubMed

    Tarr, David; Graham, Delyth; Roy, Lisa A; Holmes, William M; McCabe, Christopher; Mhairi Macrae, I; Muir, Keith W; Dewar, Deborah

    2013-10-01

    Poststroke hyperglycemia is associated with a poor outcome yet clinical management is inadequately informed. We sought to determine whether clinically relevant levels of hyperglycemia exert detrimental effects on the early evolution of focal ischemic brain damage, as determined by magnetic resonance imaging, in normal rats and in those modeling the 'metabolic syndrome'. Wistar Kyoto (WKY) or fructose-fed spontaneously hypertensive stroke-prone (ffSHRSP) rats were randomly allocated to groups for glucose or vehicle administration before permanent middle cerebral artery occlusion. Diffusion-weighted imaging was carried out over the first 4 hours after middle cerebral artery occlusion and lesion volume calculated from apparent diffusion coefficient maps. Infarct volume and immunostaining for markers of oxidative stress were measured in the fixed brain sections at 24 hours. Hyperglycemia rapidly exacerbated early ischemic damage in both WKY and ffSHRSP rats but increased infarct volume only in WKY rats. There was only limited evidence of oxidative stress in hyperglycemic animals. Acute hyperglycemia, at clinically relevant levels, exacerbates early ischemic damage in both normal and metabolic syndrome rats. Management of hyperglycemia may have greatest benefit when performed in the acute phase after stroke in the absence or presence of comorbidities.

  17. Disruption of NMDAR-CRMP-2 signaling protects against focal cerebral ischemic damage in the rat middle cerebral artery occlusion model.

    PubMed

    Brittain, Joel M; Pan, Rui; You, Haitao; Brustovetsky, Tatiana; Brustovetsky, Nickolay; Zamponi, Gerald W; Lee, Wei-Hua; Khanna, Rajesh

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2), traditionally viewed as an axon/dendrite specification and axonal growth protein, has emerged as nidus in regulation of both pre- and post-synaptic Ca ( 2+) channels. Building on our discovery of the interaction and regulation of Ca ( 2+) channels by CRMP-2, we recently identified a short sequence in CRMP-2 which, when appended to the transduction domain of HIV TAT protein, suppressed acute, inflammatory and neuropathic pain in vivo by functionally uncoupling CRMP-2 from the Ca ( 2+) channel. Remarkably, we also found that this region attenuated Ca ( 2+) influx via N-methylD-Aspartate receptors (NMDARs) and reduced neuronal death in a moderate controlled cortical impact model of traumatic brain injury (TBI). Here, we sought to extend these findings by examining additional neuroprotective effects of this peptide (TAT-CBD3) and exploring the biochemical mechanisms by which TAT-CBD3 targets NMDARs. We observed that an intraperitoneal injection of TAT-CBD3 peptide significantly reduced infarct volume in an animal model of focal cerebral ischemia. Neuroprotection was observed when TAT-CBD3 peptide was given either prior to or after occlusion but just prior to reperfusion. Surprisingly, a direct biochemical complex was not resolvable between the NMDAR subunit NR2B and CRMP-2. Intracellular application of TAT-CBD3 failed to inhibit NMDAR current. NR2B interactions with the post synaptic density protein 95 (PSD-95) remained intact and were not disrupted by TAT-CBD3. Peptide tiling of intracellular regions of NR2B revealed two 15-mer sequences, in the carboxyl-terminus of NR2B, that may confer binding between NR2B and CRMP-2 which supports CRMP-2's role in excitotoxicity and neuroprotection.

  18. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS) Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury

    PubMed Central

    Ljubisavljevic, Milos R.; Javid, Asma; Oommen, Joji; Parekh, Khatija; Nagelkerke, Nico; Shehab, Safa; Adrian, Thomas E.

    2015-01-01

    Although repetitive Transcranial Magnetic Stimulation (rTMS) in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO) with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS) and intermittent (iTBS) theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause) in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS) and pattern (cTBS vs. iTBS). The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss functions. PMID

  19. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS) Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury.

    PubMed

    Ljubisavljevic, Milos R; Javid, Asma; Oommen, Joji; Parekh, Khatija; Nagelkerke, Nico; Shehab, Safa; Adrian, Thomas E

    2015-01-01

    Although repetitive Transcranial Magnetic Stimulation (rTMS) in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO) with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS) and intermittent (iTBS) theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause) in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS) and pattern (cTBS vs. iTBS). The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss functions.

  20. Association of MTHFR C677T Genotype With Ischemic Stroke Is Confined to Cerebral Small Vessel Disease Subtype

    PubMed Central

    Traylor, Matthew; Adib-Samii, Poneh; Thijs, Vincent; Sudlow, Cathie; Rothwell, Peter M.; Boncoraglio, Giorgio; Dichgans, Martin; Meschia, James; Maguire, Jane; Levi, Christopher; Rost, Natalia S.; Rosand, Jonathan; Hassan, Ahamad; Bevan, Steve; Markus, Hugh S.

    2016-01-01

    Background and Purpose— Elevated plasma homocysteine levels are associated with stroke. However, this might be a reflection of bias or confounding because trials have failed to demonstrate an effect from homocysteine lowering in stroke patients, although a possible benefit has been suggested in lacunar stroke. Genetic studies could potentially overcome these issues because genetic variants are inherited randomly and are fixed at conception. Therefore, we tested the homocysteine levels–associated genetic variant MTHFR C677T for association with magnetic resonance imaging–confirmed lacunar stroke and compared this with associations with large artery and cardioembolic stroke subtypes. Methods— We included 1359 magnetic resonance imaging–confirmed lacunar stroke cases, 1824 large artery stroke cases, 1970 cardioembolic stroke cases, and 14 448 controls, all of European ancestry. Furthermore, we studied 3670 ischemic stroke patients in whom white matter hyperintensities volume was measured. We tested MTHFR C677T for association with stroke subtypes and white matter hyperintensities volume. Because of the established association of homocysteine with hypertension, we additionally stratified for hypertension status. Results— MTHFR C677T was associated with lacunar stroke (P=0.0003) and white matter hyperintensity volume (P=0.04), but not with the other stroke subtypes. Stratifying the lacunar stroke cases for hypertension status confirmed this association in hypertensive individuals (P=0.0002), but not in normotensive individuals (P=0.30). Conclusions— MTHFR C677T was associated with magnetic resonance imaging–confirmed lacunar stroke, but not large artery or cardioembolic stroke. The association may act through increased susceptibility to, or interaction with, high blood pressure. This heterogeneity of association might explain the lack of effect of lowering homocysteine in secondary prevention trials which included all strokes. PMID:26839351

  1. Adenosine accelerates the healing of diabetic ischemic ulcers by improving autophagy of endothelial progenitor cells grown on a biomaterial

    PubMed Central

    Chen, Wen; Wu, Yangxiao; Li, Li; Yang, Mingcan; Shen, Lei; Liu, Ge; Tan, Ju; Zeng, Wen; Zhu, Chuhong

    2015-01-01

    Endothelial progenitor cells (EPCs) seeded on biomaterials can effectively promote diabetic ischemic wound healing. However, the function of transplanted EPCs is negatively affected by a high-glucose and ischemic microenvironment. Our experiments showed that EPC autophagy was inhibited and mitochondrial membrane potential (MMP) was increased in diabetic patients, while adenosine treatment decreased the energy requirements and increased the autophagy levels of EPCs. In animal experiments, we transplanted a biomaterial seeded with EPCs onto the surface of diabetic wounds and found that adenosine-stimulated EPCs effectively promoted wound healing. Increased microvascular genesis and survival of the transplanted cells were also observed in the adenosine-stimulated groups. Interestingly, our study showed that adenosine increased the autophagy of the transplanted EPCs seeded onto the biomaterial and maintained EPC survival at 48 and 96 hours. Moreover, we observed that adenosine induced EPC differentiation through increasing the level of autophagy. In conclusion, our study indicated that adenosine-stimulated EPCs seeded onto a biomaterial significantly improved wound healing in diabetic mice; mechanistically, adenosine might maintain EPC survival and differentiation by increasing high glucose-inhibited EPC autophagy and maintaining cellular energy metabolism. PMID:26108983

  2. [The relationship between placental lesions and early hemorrhagic-ischemic cerebral injury in very low birth weight infants].

    PubMed

    Vaihinger, Mara; Mazzitelli, Nancy; Balanian, Nora; Grandi, Carlos

    2013-01-01

    Introducción: El examen histopatológico de la placenta es trascendente para evidenciar desordenes relacionados con el embarazo que se asocian a lesiones isquémico hemorrágicas cerebrales (LIHC) en recién nacidos prematuros (RNPT). Objetivo: Estudiar la asociación entre lesiones placentarias y LIHC precoces detectadas con ecografía en RNPT ≤ 1500 g y 32 semanas. Material y Métodos: diseño caso – control. Criterios de inclusión: RNPT ≥ 24 y ≤ 32 semanas, ≥ 500 y ≤ 1500 g, nacidos en la Maternidad Sardá entre años 2006 y 2012. Criterios de exclusión: RNPT gemelares, con malformaciones o infecciones intrauterinas específicas y los fallecidos antes de las 24 horas de vida. Resultados: fueron incluidos 198 RNPT, 49 con LIHC (casos) y 149 sin LIHC (controles). No se encontraron diferencias en las lesiones histopatológicas placentarias entre los dos grupos, aunque se apreció una clara tendencia de lesiones inflamatorias en los casos (67.3%) en comparación con los controles (48 %, p = 0.018). La ruptura prematura de las membranas (p = 0.027) y la corioamnionitis clínica fueron más frecuentes en los casos. Complicaciones fuertemente asociadas a prematurez fueron estadísticamente más evidentes entre los casos. La hemorragia intraventricular fue la lesión cerebral más hallada. El 50% de los casos persistieron con LIHC a las 36-40 semanas, mientras que a mayor edad gestacional el riesgo de LIHC fue menor . Conclusiones: las lesiones histopatológicas placentarias no estuvieron asociadas independientemente a mayor riesgo de LIHC, aunque se observó un predominio de lesiones inflamatorias en los casos.

  3. Effects of ellagic acid pretreatment on renal functions disturbances induced by global cerebral ischemic-reperfusion in rat

    PubMed Central

    Nejad, Khojasteh Hoseiny; Gharib-Naseri, Mohammad Kazem; Sarkaki, Alireza; Dianat, Mahin; Badavi, Mohammad; Farbood, Yaghoub

    2017-01-01

    Objective(s): Global cerebral ischemia-reperfusion (GCIR) causes disturbances in brain functions as well as other organs such as kidney. Our aim was to evaluate the protective effects of ellagic acid (EA) on certain renal disfunction after GCIR. Materials and Methods: Adult male Wistar rats (n=32, 250-300 g) were used. GCIR was induced by bilateral vertebral and common carotid arteries occlusion (4-VO). Animal groups were: 1) received DMSO/saline (10%) as solvent of EA, 2) solvent + GCIR, 3) EA + GCIR, and 4) EA. Under anesthesia with ketamine/xylazine, GCIR was induced (20 and 30 min respectively) in related groups. EA (100 mg/kg, dissolved in DMSO/saline (10%) or solvent was administered (1.5 ml/kg) orally for 10 consecutive days to the related groups. EEG was recorded from NTS in GCIR treated groups. Results: Our data showed that: a) EEG in GCIR treated groups was flattened. b) GCIR reduced GFR (P<0.01) and pretreatment with EA attenuated this reduction. c) BUN was increased by GCIR (P<0.001) and pretreatment with EA improved the BUN to normal level. d) Serum creatinine concentration was elevated by GCIR but not significantly, however, in EA+GCIR group serum creatinine was reduced (P<0.05). e) GCIR induced proteinuria (P<0.05) but, EA was unable to reduced proteinuria. Conclusion: Results indicate that GCIR impairs certain renal functions and EA as an antioxidant can improve these functions. Our results suggest the possible usefulness of ellagic acid in patients with brain stroke. PMID:28133528

  4. pH-Responsive biodegradable polymeric micelles with anchors to interface magnetic nanoparticles for MR imaging in detection of cerebral ischemic area

    NASA Astrophysics Data System (ADS)

    Yang, Hong Yu; Jang, Moon-Sun; Gao, Guang Hui; Lee, Jung Hee; Lee, Doo Sung

    2016-06-01

    A novel type of pH-responsive biodegradable copolymer was developed based on methyloxy-poly(ethylene glycol)-block-poly[dopamine-2-(dibutylamino) ethylamine-l-glutamate] (mPEG-b-P(DPA-DE)LG) and applied to act as an intelligent nanocarrier system for magnetic resonance imaging (MRI). The mPEG-b-P(DPA-DE)LG copolymer was synthesized by a typical ring opening polymerization of N-carboxyanhydrides (NCAs-ROP) using mPEG-NH2 as a macroinitiator, and two types of amine-terminated dopamine groups and pH-sensitive ligands were grafted onto a side chain by a sequential aminolysis reaction. This design greatly benefits from the addition of the dopamine groups to facilitate self-assembly, as these groups can act as high-affinity anchors for iron oxide nanoparticles, thereby increasing long-term stability at physiological pH. The mPEG moiety in the copolymers helped the nanoparticles to remain well-dispersed in an aqueous solution, and pH-responsive groups could control the release of hydrophobic Fe3O4 nanoparticles in an acidic environment. The particle size of the Fe3O4-loaded mPEG-b-P(DPA-DE)LG micelles was measured by dynamic light scattering (DLS) and cryo-TEM. The superparamagnetic properties of the Fe3O4-loaded mPEG-b-P(DPA-DE)LG micelles were confirmed by a superconducting quantum interference device (SQUID). T2-weighted magnetic resonance imaging (MRI) of Fe3O4-loaded mPEG-b-P(DPA-DE)LG phantoms exhibited enhanced negative contrast with an r2 relaxivity of approximately 106.7 mM-1 s-1. To assess the ability of the Fe3O4-loaded mPEG-P(DE-DPA)LG micelles to act as MRI probes, we utilized a cerebral ischemia disease rat model with acidic tissue. We found that a gradual change in contrast in the cerebral ischemic area could be visualized by MRI after 1 h, and maximal signal loss was detected after 24 h post-injection. These results demonstrated that the Fe3O4-loaded mPEG-b-P(DPA-DE)LG micelles can act as pH-triggered MRI probes for diagnostic imaging of acidic

  5. Neuroprotective effect of salvianolic acid B against cerebral ischemic injury in rats via the CD40/NF-κB pathway associated with suppression of platelets activation and neuroinflammation.

    PubMed

    Xu, Shixin; Zhong, Aiqin; Ma, Huining; Li, Dan; Hu, Yue; Xu, Yingzhi; Zhang, Junping

    2017-04-15

    Neuroinflammation plays a critical role in the pathogenesis of ischemia/reperfusion (I/R) injury. Activated platelets are increasingly regarded as initiators and/or amplifiers of inflammatory processes in cerebral I/R injury. Salvianolic acid B (SAB) is the most abundant bioactive compound of Salviae miltiorrhizae, a well-known Chinese herb used to promote blood circulation and eliminating blood stasis. S. miltiorrhizae has been used clinically in Asia for the treatment of ischemic cerebrovascular diseases. In the present study, a rat model of transient middle cerebral artery occlusion (tMCAO) was established to investigate the neuroprotective effects and mechanisms of SAB treatment against focal cerebral I/R insult. The results showed that SAB treatment (3mg/kg, 6mg/kg and 12mg/kg, i.p.) dose-dependently decreased I/R-induced neurological deficits at 24, 48, and 72h after reperfusion and decreased plasma-soluble P-selectin and soluble CD40 ligand as early as 6h after onset of I/R insult. At 24h after reperfusion, SAB treatment significantly reduced neuronal and DNA damage in the hippocampal CA1 region and decreased neural cell loss in the ischemic core. The I/R-induced pro-inflammatory mediator mRNA and protein overexpression in the penumbra cortex, including ICAM-1, IL-1β, IL-6, IL-8, and MCP-1, were significantly inhibited by SAB in a dose-dependent manner. Further studies suggested SAB treatment attenuated CD40 expression and NF-κB activation, which involved NF-κB/p65 phosphorylation and IκBα phosphorylation and degradation. In conclusion, our findings indicated that the neuroprotective effects of SAB post cerebral I/R injury are associated with the inhibition of both platelets activation and production of pro-inflammatory mediators and the downregulation of the CD40/NF-κB pathway.

  6. Accelerated infarct development, cytogenesis and apoptosis following transient cerebral ischemia in aged rats.

    PubMed

    Popa-Wagner, Aurel; Badan, Irina; Walker, Lary; Groppa, Sergiu; Patrana, Nicoleta; Kessler, Christof

    2007-03-01

    Old age is associated with a deficient recovery from stroke, but the cellular mechanisms underlying such phenomena are poorly understood. To address this issue, focal cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery in 3- and 20-month-old male Sprague-Dawley rats. Aged rats showed a delayed and suboptimal functional recovery in the post-stroke period. Using BrdU-labeling, quantitative immunohistochemistry and 3-D reconstruction of confocal images, we found that aged rats are predisposed to rapidly develop an infarct within the first few days after ischemia. The emergence of the necrotic zone is associated with a high rate of cellular degeneration, premature accumulation of proliferating BrdU-positive cells that appear to emanate from capillaries in the infarcted area, and a large number of apoptotic cells. With double labeling techniques, we were able to identify, for the first time, over 60% of BrdU-positive cells either as reactive microglia (45%), oligodendrocyte progenitors (17%), astrocytes (23%), CD8+ lymphocytes (4%), or apoptotic cells (<1%). Paradoxically, despite a robust reactive phenotype of microglia and astrocytes in aged rats, at 1-week post-stroke, the number of proliferating microglia and astrocytes was lower in aged rats than in young rats. Our data indicate that aging is associated with rapid infarct development and a poor prognosis for full recovery from stroke that is correlated with premature cellular proliferation and increased cellular degeneration and apoptosis in the infarcted area.

  7. In Acute Stroke, Can CT Perfusion-Derived Cerebral Blood Volume Maps Substitute for Diffusion-Weighted Imaging in Identifying the Ischemic Core?

    PubMed Central

    Copen, William A.; Morais, Livia T.; Wu, Ona; Schwamm, Lee H.; Schaefer, Pamela W.; González, R. Gilberto; Yoo, Albert J.

    2015-01-01

    Background and Purpose In the treatment of patients with suspected acute ischemic stroke, increasing evidence suggests the importance of measuring the volume of the irreversibly injured “ischemic core.” The gold standard method for doing this in the clinical setting is diffusion-weighted magnetic resonance imaging (DWI), but many authors suggest that maps of regional cerebral blood volume (CBV) derived from computed tomography perfusion imaging (CTP) can substitute for DWI. We sought to determine whether DWI and CTP-derived CBV maps are equivalent in measuring core volume. Methods 58 patients with suspected stroke underwent CTP and DWI within 6 hours of symptom onset. We measured low-CBV lesion volumes using three methods: “objective absolute,” i.e. the volume of tissue with CBV below each of six published absolute thresholds (0.9–2.5 mL/100 g), “objective relative,” whose six thresholds (51%-60%) were fractions of mean contralateral CBV, and “subjective,” in which two radiologists (R1, R2) outlined lesions subjectively. We assessed the sensitivity and specificity of each method, threshold, and radiologist in detecting infarction, and the degree to which each over- or underestimated the DWI core volume. Additionally, in the subset of 32 patients for whom follow-up CT or MRI was available, we measured the proportion of CBV- or DWI-defined core lesions that exceeded the follow-up infarct volume, and the maximum amount by which this occurred. Results DWI was positive in 72% (42/58) of patients. CBV maps’ sensitivity/specificity in identifying DWI-positive patients were 100%/0% for both objective methods with all thresholds, 43%/94% for R1, and 83%/44% for R2. Mean core overestimation was 156–699 mL for objective absolute thresholds, and 127–200 mL for objective relative thresholds. For R1 and R2, respectively, mean±SD subjective overestimation were -11±26 mL and -11±23 mL, but subjective volumes differed from DWI volumes by up to 117 and 124

  8. Ischemic Stroke

    MedlinePlus

    A stroke is a medical emergency. There are two types - ischemic and hemorrhagic. Ischemic stroke is the most common type. It is usually ... are at risk for having a more serious stroke. Symptoms of stroke are Sudden numbness or weakness ...

  9. Chronic lead treatment accelerates photochemically induced platelet aggregation in cerebral microvessels of mice, in vivo

    SciTech Connect

    Al Dhaheri, A.H.; El-Sabban, F.; Fahim, M.A.

    1995-04-01

    Effects of two chronic treatment levels with lead on platelet aggregation in cerebral (pial) microcirculation of the mouse were investigated. Exposure to lead was made by subcutaneous injections for 7 days of lead acetate dissolved in 5% glucose solution, vehicle. Two doses of lead were used, a low dose of 0.1 mg/kg and a high dose of 1.0 mg/kg. Adult male mice were divided into three groups, 10 each; one group was injected with vehicle (control), another was injected with the low dose, and the third was injected with the high dose. Additional mice were used for the determination of hematological parameters and for the lead level in serum of the three groups. On the eighth day, platelet aggregation in pial microvessels of these groups of mice was carried out in vivo. Animals were anesthetized (urethane, 1-2 mg/g, ip), the trachea was intubated, and a craniotomy was performed. Platelet aggregation in pial microvessels was induced photochemically, by activation of circulating sodium fluorescein (0.1 mg/25 g, iv) with an intense mercury light. The time required for the first platelet aggregate to appear in pial arterioles was significantly shorter in the lead-treated mice than in control. This effect was in a dose-dependent manner; 113 {+-} 44 sec for low dose and 71 {+-} 18 sec for high dose vs 155 {+-} 25 sec for control, P < 0.02 and P < 0.001, respectively. Between the two lead-treated groups, the high dose significantly (P < 0.05) shortened the time to first aggregate. These data evidenced an increased susceptibility to cerebrovascular thrombosis as a result of exposure to lead. 26 refs., 4 figs., 2 tabs.

  10. Complications Following Linear Accelerator Based Stereotactic Radiation for Cerebral Arteriovenous Malformations

    SciTech Connect

    Skjoth-Rasmussen, Jane; Roed, Henrik; Ohlhues, Lars; Jespersen, Bo; Juhler, Marianne

    2010-06-01

    Purpose: Primarily, gamma knife centers are predominant in publishing results on arteriovenous malformations (AVM) treatments including reports on risk profile. However, many patients are treated using a linear accelerator-most of these at smaller centers. Because this setting is different from a large gamma knife center, the risk profile at Linac departments could be different from the reported experience. Prescribed radiation doses are dependent on AVM volume. This study details results from a medium sized Linac department center focusing on risk profiles. Method and Materials: A database was searched for all patients with AVMs. We included 50 consecutive patients with a minimum of 24 months follow-up (24-51 months). Results: AVM occlusion was verified in 78% of patients (39/50). AVM occlusion without new deficits (excellent outcome) was obtained in 44%. Good or fair outcome (AVM occlusion with mild or moderate new deficits) was seen in 30%. Severe complications after AVM occlusion occurred in 4% with a median interval of 15 months after treatment (range, 1-26 months). Conclusions: We applied an AVM grading score developed at the Mayo Clinic to predict probable outcome after radiosurgery in a large patient population treated with Gamma knife. A cutoff above and below a score of 1.5 could not discriminate between the likelihood of having an excellent outcome (approximately 45%). The chance of having an excellent or good outcome was slightly higher in patients with an AVM score below 1.5 (64% vs. 57%).

  11. Statins and cerebral hemodynamics

    PubMed Central

    Giannopoulos, Sotirios; Katsanos, Aristeidis H; Tsivgoulis, Georgios; Marshall, Randolph S

    2012-01-01

    HMG-CoA reductase inhibitors (statins) are associated with improved stroke outcome. This observation has been attributed in part to the palliative effect of statins on cerebral hemodynamics and cerebral autoregulation (CA), which are mediated mainly through the upregulation of endothelium nitric oxide synthase (eNOS). Several animal studies indicate that statin pretreatment enhances cerebral blood flow after ischemic stroke, although this finding is not further supported in clinical settings. Cerebral vasomotor reactivity, however, is significantly improved after long-term statin administration in most patients with severe small vessel disease, aneurysmal subarachnoid hemorrhage, or impaired baseline CA. PMID:22929438

  12. [Cerebral ischemia and histamine].

    PubMed

    Adachi, Naoto

    2002-10-01

    Cerebral ischemia induces excess release of glutamate and an increase in the intracellular Ca2+ concentration, which provoke catastrophic enzymatic processes leading to irreversible neuronal injury. Histamine plays the role of neurotransmitter in the central nervous system, and histaminergic fibers are widely distributed in the brain. In cerebral ischemia, release of histamine from nerve endings has been shown to be enhanced by facilitation of its activity. An inhibition of the histaminergic activity in ischemia aggravates the histologic outcome. In contrast, intracerebroventricular administration of histamine improves the aggravation, whereas blockade of histamine H2 receptors aggravates ischemic injury. Furthermore, H2 blockade enhances ischemic release of glutamate and dopamine. These findings suggest that central histamine provides beneficial effects against ischemic neuronal damage by suppressing release of excitatory neurotransmitters. However, histaminergic H2 action facilitates the permeability of the blood-brain barrier and shows deleterious effects on cerebral edema.

  13. Roles of HIF-1α, VEGF, and NF-κB in Ischemic Preconditioning-Mediated Neuroprotection of Hippocampal CA1 Pyramidal Neurons Against a Subsequent Transient Cerebral Ischemia.

    PubMed

    Lee, Jae-Chul; Tae, Hyun-Jin; Kim, In Hye; Cho, Jeong Hwi; Lee, Tae-Kyeong; Park, Joon Ha; Ahn, Ji Hyeon; Choi, Soo Young; Bai, Hui Chen; Shin, Bich-Na; Cho, Geum-Sil; Kim, Dae Won; Kang, Il Jun; Kwon, Young-Guen; Kim, Young-Myeong; Won, Moo-Ho; Bae, Eun Joo

    2016-10-26

    Ischemic preconditioning (IPC) provides neuroprotection against subsequent severe ischemic insults by specific mechanisms. We tested the hypothesis that IPC attenuates post-ischemic neuronal death in the gerbil hippocampal CA1 region (CA1) throughout hypoxia inducible factor-1α (HIF-1α) and its associated factors such as vascular endothelial growth factor (VEGF) and nuclear factor-kappa B (NF-κB). Lethal ischemia (LI) without IPC increased expressions of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) in CA1 pyramidal neurons at 12 h and/or 1-day post-LI; thereafter, their expressions were decreased in the CA1 pyramidal neurons with time and newly expressed in non-pyramidal cells (pericytes), and the CA1 pyramidal neurons were dead at 5-day post-LI, and, at this point in time, their immunoreactivities were newly expressed in pericytes. In animals with IPC subjected to LI (IPC/LI)-group), CA1 pyramidal neurons were well protected, and expressions of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) were significantly increased compared to the sham-group and maintained after LI. Whereas, treatment with 2ME2 (a HIF-1α inhibitor) into the IPC/LI-group did not preserve the IPC-mediated increases of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) expressions and did not show IPC-mediated neuroprotection. In brief, IPC protected CA1 pyramidal neurons from LI by upregulation of HIF-1α, VEGF, and p-IκB-α expressions. This study suggests that IPC increases HIF-1α expression in CA1 pyramidal neurons, which enhances VEGF expression and NF-κB activation and that IPC may be a strategy for a therapeutic intervention of cerebral ischemic injury.

  14. Characterization of the interaction between local cerebral metabolic rate for glucose and acid-base index in ischemic rat brain employing a double-isotope methodology

    SciTech Connect

    Peek, K.E.H.

    1988-01-01

    The association between increases in cerebral glucose metabolism and the development of acidosis is largely inferential, based on reports linking hyperglycemia with poor neurological outcome, lactate accumulation, and the severity of acidosis. We measured local cerebral metabolic rate for glucose (lCMRglc) and an index of brain pH-the acid-base index (ABI)-concurrently and characterized their interaction in a model of focal cerebral ischemia in rats in a double-label autoradiographic study, using ({sup 14}C)2-deoxyglucose and ({sup 14}C)dimethyloxazolidinedione. Computer-assisted digitization and analysis permitted the simultaneous quantification of the two variables on a pixel-by-pixel basis in the same brain slices.

  15. Edaravone-Encapsulated Agonistic Micelles Rescue Ischemic Brain Tissue by Tuning Blood-Brain Barrier Permeability

    PubMed Central

    Jin, Qu; Cai, Yu; Li, Sihan; Liu, Haoran; Zhou, Xingyu; Lu, Chunqiang; Gao, Xihui; Qian, Jun; Zhang, Jun; Ju, Shenghong; Li, Cong

    2017-01-01

    Thrombolysis has been a standard treatment for ischemic stroke. However, only 2-7% patients benefit from it because the thrombolytic agent has to be injected within 4.5 h after the onset of symptoms to avoid the increasing risk of intracerebral hemorrhage. As the only clinically approved neuroprotective drug, edaravone (EDV) rescues ischemic brain tissues by eradicating over-produced reactive oxygen species (ROS) without the limitation of therapeutic time-window. However, EDV's short circulation half-life and inadequate cerebral uptake attenuate its therapeutic efficacy. Here we developed an EDV-encapsulated agonistic micelle (EDV-AM) to specifically deliver EDV into brain ischemia by actively tuning blood-brain barrier (BBB) permeability. The EDV-AM actively up-regulated endothelial monolayer permeability in vitro. HPLC studies showed that EDV-AM delivered more EDV into brain ischemia than free EDV after intravenous injection. Magnetic resonance imaging also demonstrated that EDV-AM more rapidly salvaged ischemic tissue than free EDV. Diffusion tensor imaging indicated the highest efficiency of EDV-AM in accelerating axonal remodeling in the ipsilesional white matter and improving functional behaviors of ischemic stroke models. The agonistic micelle holds promise to improve the therapeutic efficiency of ischemic stroke patients who miss the thrombolytic treatment. PMID:28382161

  16. Drug Delivery to the Ischemic Brain

    PubMed Central

    Thompson, Brandon J.; Ronaldson, Patrick T.

    2014-01-01

    Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events inneurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is re-established. Therefore, there is a critical need for novel therapeutic approaches that can “rescue” salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides (OATPs/Oatps) and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia. PMID:25307217

  17. The Differential Effect of Arm Movements during Gait on the Forward Acceleration of the Centre of Mass in Children with Cerebral Palsy and Typically Developing Children

    PubMed Central

    Meyns, Pieter; Molenaers, Guy; Duysens, Jacques; Jonkers, Ilse

    2017-01-01

    Background: We aimed to study the contribution of upper limb movements to propulsion during walking in typically developing (TD) children (n = 5) and children with hemiplegic and diplegic cerebral palsy (CP; n = 5 and n = 4, respectively). Methods: Using integrated three-dimensional motion capture data and a scaled generic musculoskeletal model that included upper limbs, we generated torque driven simulations of gait in OpenSim. Induced acceleration analyses were then used to determine the contributions of the individual actuators located at the relevant degrees of freedoms of the upper and lower limb joints to the forward acceleration of the COM at each time point of the gait simulation. The mean values of the contribution of the actuators of upper limbs, lower limbs, and gravity in different phases of the gait cycle were compared between the three groups. Findings: The results indicated a limited contribution of the upper limb actuators to COM forward acceleration compared to the contribution of lower limbs and gravity, in the three groups. In diplegic CP, the contribution of the upper limbs seemed larger compared to TD during the preswing and swing phases of gait. In hemiplegic CP, the unaffected arm seemed to contribute more to COM deceleration during (pre)swing, while the affected side contributed to COM acceleration. Interpretation: These findings suggest that in the presence of lower limb dysfunction, the contribution of the upper limbs to forward propulsion is altered, although they remain negligible compared to the lower limbs and gravity. PMID:28298890

  18. Neurovascular Regulation in the Ischemic Brain

    PubMed Central

    Jackman, Katherine

    2015-01-01

    Abstract Significance: The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. Recent Advances and Critical Issues: The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. Future Directions: Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory. Antioxid. Redox Signal. 22, 149–160. PMID:24328757

  19. pH-responsive polymeric micelle based on PEG-poly(β-amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area.

    PubMed

    Gao, Guang Hui; Lee, Jae Won; Nguyen, Minh Khanh; Im, Geun Ho; Yang, Jehoon; Heo, Hyejung; Jeon, Pyoung; Park, Tae Gwan; Lee, Jung Hee; Lee, Doo Sung

    2011-10-10

    A series of pH-responsive polymeric micelles is developed to act as intelligent carriers to deliver iron oxide (Fe(3)O(4)) nanoparticles and respond rapidly to an acidic stimuli environment for magnetic resonance imaging (MRI). The polymeric micelle can be self-assembled at physiological pH by a block copolymer, consisting of a hydrophilic methoxy poly(ethylene glycol) (PEG) and a pH-responsive poly(β-amino ester)/(amido amine) block. Consequently, the Fe(3)O(4) nanoparticles can be well encapsulated into polymeric micelles due to the hydrophobic interaction, shielded by a PEG coronal shell. In an acidic environment, however, the pH-responsive component, which has ionizable tert-amino groups on its backbone, can become protonated to be soluble and release the hydrophobic Fe(3)O(4) nanoparticles. The Fe(3)O(4)-loaded polymeric micelle was measured by dynamic light scattering (DLS), superconducting quantum interference device (SQUID) and a 3.0T MRI scanner. To assess the ability of this MRI probe as a pH-triggered agent, we utilize a disease rat model of cerebral ischemia that produces acidic tissue due to its pathologic condition. We found gradual accumulation of Fe(3)O(4) nanoparticles in the brain ischemic area, indicating that the pH-triggered MRI probe may be effective for targeting the acidic environment and diagnostic imaging of pathologic tissue.

  20. [A clinical case of young, oral combined contraceptive using women, heterozygous carrier of the Factor V (Leiden) which revealed thrombosis of the left internal jugular vein and brain ischemia with cerebral infarction and ischemic stroke].

    PubMed

    Kovachev, S; Ramshev, K; Ramsheva, Z; Ivanov, A; Ganovska, A

    2013-01-01

    Thrombophilia is associated with increased risks of venous thrombosis in women taking oral contraceptive preparations. Universal thrombophilia screening in women prior to prescribing oral contraceptive preparations is not supported by current evidence. The case is presented of a 23 year-old women with a personal history of interruption and on the same day started with oral contraceptive (0.03 microg ethynil estradiol - 0.075 microg gestodene), which due on a 18 pill/day to acute headache, increasing vomiting and speaking defects. Physical/neurologic/gynecologic examinations observed a normal status. The MRI and CT revealed thrombosis of the left internal jugular vein and brain ischemia with cerebral infarction and ischemic stroke. The acute therapy of thrombotic findings was accompanied with many tests. The thrombophilia PCR-Real time - test finds heterozygous carrier of the Factor V (Leiden). This case shows the need of large prospective studies that should be undertaken to refine the risks and establish the associations of thrombophilias with venous thrombosis among contraceptive users. The key to a prompt diagnosis is to know the risk factors. The relative value of a thrombophilia screening programme before contraceptive using needs to be established.

  1. Middle Cerebral Artery Calcification

    PubMed Central

    Kao, Hung-Wen; Liou, Michelle; Chung, Hsiao-Wen; Liu, Hua-Shan; Tsai, Ping-Huei; Chiang, Shih-Wei; Chou, Ming-Chung; Peng, Giia-Sheun; Huang, Guo-Shu; Hsu, Hsian-He; Chen, Cheng-Yu

    2015-01-01

    Abstract Calcification of the middle cerebral artery (MCA) is uncommon in the healthy elderly. Whether calcification of the MCA is associated with cerebral ischemic stroke remains undetermined. We intended to investigate the association using Agatston calcium scoring of the MCA. This study retrospectively included 354 subjects with ischemic stroke in the MCA territory and 1518 control subjects who underwent computed tomography (CT) of the brain. We recorded major known risk factors for ischemic stroke, including age, gender, hypertension, diabetes mellitus, smoking, hyperlipidemia, and obesity, along with the MCA calcium burden, measured with the Agatston calcium scoring method. Univariate and modified logistic regression analyses were performed to examine the association between the MCA calcification and ischemic stroke. The univariate analyses showed significant associations of ischemic stroke with age, hypertension, diabetes mellitus, smoking, total MCA Agatston score, and the presence of calcification on both or either side of the MCA. Subjects with the presence of MCA calcification on both or either side of the MCA were 8.46 times (95% confidence interval, 4.93–14.53; P < 0.001) more likely to have a cerebral infarct than subjects without MCA calcification after adjustment for the major known risk factors, including age, hypertension, diabetes mellitus, and smoking. However, a higher degree of MCA calcification reflected by the Agatston score was not associated with higher risk of MCA ischemic stroke after adjustment for the confounding factors and presence of MCA calcification. These results suggest that MCA calcification is associated with ischemic stroke in the MCA territory. Further prospective studies are required to verify the clinical implications of the MCA calcification. PMID:26683969

  2. Ischemic Colitis

    PubMed Central

    FitzGerald, James F.; Hernandez III, Luis O.

    2015-01-01

    Most clinicians associate ischemic colitis with elderly patients who have underlying cardiovascular comorbidities. While the majority of cases probably occur in this population, the disease can present in younger patients as a result of different risk factors, making the diagnosis challenging. While a majority of patients respond to medical management, surgery is required in approximately 20% of the cases and is associated with high morbidity and mortality. PMID:26034405

  3. PTEN degradation after ischemic stroke: a double-edged sword.

    PubMed

    Li, W; Huang, R; Chen, Z; Yan, L-J; Simpkins, J W; Yang, S-H

    2014-08-22

    Tumor suppressor phosphatase and tensin homolog (PTEN) is highly expressed in neurons and PTEN inhibition has been reported to be neuroprotective against ischemic stroke in experimental models. On the other hand, PTEN deletion has been shown to lead to cognitive impairment. In the current study, we examined the expression and functions of PTEN in an ischemic stroke rodent model. We found rapid S-nitrosylation and degradation of PTEN after cerebral ischemia/reperfusion injury. PTEN degradation leads to activation of Akt. PTEN partial deletion or PTEN inhibition increased the expression of GABAA receptor (GABAAR) γ2 subunit and enhanced GABAA receptor current. After cerebral ischemia, increased expression of GABAAR γ2 subunit was observed in the ischemia region and the penumbra area. We also observed PTEN loss in astrocytes after cerebral ischemia. Astrocytic PTEN partial knockout increased astrocyte activation and exacerbated ischemic damage. We speculated that ischemic stroke induced neuronal PTEN degradation, hence enhanced GABAA receptor-medicated neuronal activity inhibition which could attenuate excitotoxicity and provide neuroprotection during the acute phase after stroke, while inhibiting long-term functional recovery and contributing to vascular cognitive impairment after stroke. On the other hand, ischemic stroke induced astrocytic PTEN loss and enhanced ischemic damage and astrogliosis. Taken together, our study indicates that ischemic stroke induces rapid PTEN degradation in both neurons and astrocytes which play both protective and detrimental action in a spatiotemporal- and cell-type-dependent manner. Our study provides critical insight for targeting PTEN signaling pathway for stroke treatment.

  4. [Ocular ischemic syndrome--a case report].

    PubMed

    Zemba, M; Avram, Corina Ioana; Ochinciuc, Uliana; Stamate, Alina Cristina; Camburu, Raluca Lăcrămioara

    2013-01-01

    Ocular ischemic syndrome, also known as hypoperfusion/ hypotensive retinopathy or as ischemic oculopathy is a rare ocular disease determined by chronic arterial hypoperfusion through central retinal artery, posterior and anterior ciliary arteries. It is bilateral in 20% of the cases. Most often it appears due to severe occlusion of the carotid arteries (ICA, MCA>ECA), described in 1963 by Kearns and Hollenhorst. Occasionally it can be determined by the obstruction of ophtalmic artery or some arterities (Takayasu, giant cell arteritis). The risk factors are: age between 50-80 years, males (M:F = 2:1), arterial hypertension, diabetes, coronary diseases (5% of the cases develop ocular ischemic syndrome), vascular stroke, hemodialysis. The case we present is of an 63 years old man known with primary arterial hypertension, hypercholesterolemia, diabetes type 2 non insulin dependent and diagnosticated with ischemic cerebral stroke and bilateral obstruction of internal carotid arteries in march 2010, who is presenting for visual impairment in both eyes. The imaging investigations show important carotid occlusion and at the ophthalmologic evaluation there are ocular hypertension and rubeosis iridis at the right eye, optic atrophy at both eyes (complete in the right eye and partial in the left eye), with superior altitudinal visual field defect in left eye. The following diagnosis was established: Chronic ocular ischemic syndrome in both eyes with Neovascular glaucoma at the right eye, Anterior ischemic optic neuropathy at the left eye and laser panphotocoagulation at the right eye was started.

  5. Intermittent fasting attenuates inflammasome activity in ischemic stroke.

    PubMed

    Fann, David Yang-Wei; Santro, Tomislav; Manzanero, Silvia; Widiapradja, Alexander; Cheng, Yi-Lin; Lee, Seung-Yoon; Chunduri, Prasad; Jo, Dong-Gyu; Stranahan, Alexis M; Mattson, Mark P; Arumugam, Thiruma V

    2014-07-01

    Recent findings have revealed a novel inflammatory mechanism that contributes to tissue injury in cerebral ischemia mediated by multi-protein complexes termed inflammasomes. Intermittent fasting (IF) can decrease the levels of pro-inflammatory cytokines in the periphery and brain. Here we investigated the impact of IF (16h of food deprivation daily) for 4months on NLRP1 and NLRP3 inflammasome activities following cerebral ischemia. Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion (I/R). IF decreased the activation of NF-κB and MAPK signaling pathways, the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18 in the ischemic brain tissue. These findings demonstrate that IF can attenuate the inflammatory response and tissue damage following ischemic stroke by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity.

  6. Hypoxic Ischemic Encephalopathy in the Term Infant

    PubMed Central

    Fatemi, Ali; Wilson, Mary Ann; Johnston, Michael V.

    2010-01-01

    Synopsis Hypoxia-ischemia in the perinatal period is an important cause of cerebral palsy and associated disabilities in children. There has been significant research progress in hypoxic-ischemic encephalopathy over the last two decades and many new molecular mechanisms have been identified. Despite all these advances, therapeutic interventions are still limited. In this review paper, we discuss a number of molecular pathways involved in hypoxia-ischemia, and potential therapeutic targets. PMID:19944838

  7. Ischemic Strokes (Clots)

    MedlinePlus

    ... Quiz 5 Things to Know About Stroke Ischemic Strokes (Clots) Updated:Nov 9,2016 Ischemic stroke accounts ... strokes. Read more about silent strokes . TIA and Stroke: Medical Emergencies When someone has shown symptoms of ...

  8. [Intraoperative monitoring of cerebral blood-flow and condition of cerebral at open and endovascular interventions in carotid system].

    PubMed

    Kuntsevich, G I; Tanashian, M M; Skrylev, S I; Krotenkova, M V; Shchipakin, V L; Koshcheev, A Iu; Lagoda, O V; Gemdzhian, E G; Medvedev, R B; Kulikova, S N

    2011-01-01

    The aim of our research is to study hemodynamic and embolic situation during the carotid endarterectomy (CEA), carotid angioplastic and stenting (CAS), and to reveal the prognostic significance of the data provided by intraoperative monitoring of the brain blood flow in exposing acute ischemic lesions in brain. Intraoperative monitoring of blood flow in artery ophthalmic vas carried out with 60% of patients, in the middle cerebral artery-with 40% during the main stages of CEA, and with 64 patients in the middle cerebral artery during CAS. The comparison of the data of intraoperative monitoring of blood flow in middle cerebral artery with the result of brain diffusion-weighted magnetic resonance imaging (DW-MRI) 24 hours after the operation shows, that solid microembolic signals and vasospasm are prognostic signals (sensibility and specifics make up 95%) in the development of acute ischemic cerebral lesions. The monitoring of blood flow in artery ophthalmic is of the greatest diagnostic value in estimation of the hemodynamic situation, but it is of the lowest practical value in detecting microembolic signals. According to the data of the intraoperative blood flow monitoring in middle cerebral artery in group CEA the development of acute ischemic cerebral lesions were predicted with 11,1% of patients and the cause of postoperative stroke, developed by 2,9% of the patients, was specified. According to the result of DW-MRI, acute ischemic cerebral lesions were diagnosed with 21% of patients, that is, 18% of ischemic cerebral lesions were asymptomatic. In group CAS ischemic cerebral lesions were prognosed with 30% of patients, actually they were later detected with 40,6% of cases by means of DW-MRI. According to the data of intraoperative of blood flow monitoring the cause of the development of postoperative stroke was specified in 6,2% of cause; in 34,4% of cause the acute ischemic cerebral lesions were asymptomatic.

  9. Neuroprotection by Alpha 2-Adrenergic Agonists in Cerebral Ischemia

    PubMed Central

    Zhang, Yonghua; Kimelberg, Harold K.

    2005-01-01

    Ischemic brain injury is implicated in the pathophysiology of stroke and brain trauma, which are among the top killers worldwide, and intensive studies have been performed to reduce neural cell death after cerebral ischemia. Alpha 2-adrenergic agonists have been shown to improve the histomorphological and neurological outcome after cerebral ischemic injury when administered during ischemia, and recent studies have provided considerable evidence that alpha 2-adrenergic agonists can protect the brain from ischemia/reperfusion injury. Thus, alpha 2-adrenergic agonists are promising potential drugs in preventing cerebral ischemic injury, but the mechanisms by which alpha 2-adrenergic agonists exert their neuroprotective effect are unclear. Activation of both the alpha 2-adrenergic receptor and imidazoline receptor may be involved. This mini review examines the recent progress in alpha 2-adrenergic agonists - induced neuroprotection and its proposed mechanisms in cerebral ischemic injury. PMID:18369397

  10. Cerebral Gluconeogenesis and Diseases

    PubMed Central

    Yip, James; Geng, Xiaokun; Shen, Jiamei; Ding, Yuchuan

    2017-01-01

    The gluconeogenesis pathway, which has been known to normally present in the liver, kidney, intestine, or muscle, has four irreversible steps catalyzed by the enzymes: pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, and glucose 6-phosphatase. Studies have also demonstrated evidence that gluconeogenesis exists in brain astrocytes but no convincing data have yet been found in neurons. Astrocytes exhibit significant 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity, a key mechanism for regulating glycolysis and gluconeogenesis. Astrocytes are unique in that they use glycolysis to produce lactate, which is then shuttled into neurons and used as gluconeogenic precursors for reduction. This gluconeogenesis pathway found in astrocytes is becoming more recognized as an important alternative glucose source for neurons, specifically in ischemic stroke and brain tumor. Further studies are needed to discover how the gluconeogenesis pathway is controlled in the brain, which may lead to the development of therapeutic targets to control energy levels and cellular survival in ischemic stroke patients, or inhibit gluconeogenesis in brain tumors to promote malignant cell death and tumor regression. While there are extensive studies on the mechanisms of cerebral glycolysis in ischemic stroke and brain tumors, studies on cerebral gluconeogenesis are limited. Here, we review studies done to date regarding gluconeogenesis to evaluate whether this metabolic pathway is beneficial or detrimental to the brain under these pathological conditions. PMID:28101056

  11. Pre-ischemic treadmill training alleviates brain damage via GLT-1-mediated signal pathway after ischemic stroke in rats.

    PubMed

    Wang, X; Zhang, M; Yang, S-D; Li, W-B; Ren, S-Q; Zhang, J; Zhang, F

    2014-08-22

    Physical exercise could play a neuroprotective role in both human and animals. However, the involved signal pathways underlying the neuroprotective effect are still not well established. This study was to investigate the possible signal pathways involved in the neuroprotection of pre-ischemic treadmill training after ischemic stroke. Seventy-two SD rats were randomly assigned into three groups (n=24/group): sham surgery group, middle cerebral artery occlusion (MCAO) group and MCAO with exercise group. Following three weeks of treadmill training exercise, ischemic stroke was induced by occluding the middle cerebral artery (MCA) in rat for 2 h, followed by reperfusion. Twenty-four hours after MCAO/reperfusion, 12 rats in each group were evaluated for neurological deficit scores and then sacrificed to measure the infarct volume (n=6) and cerebral edema (n=6). Six rats in each group were sacrificed to measure the expression level of glutamate transporter-1 (GLT-1), protein kinase C-α (PKC-α), Akt, and phosphatidylinositol 3 kinase (PI3K) (n=6). Two hundred and eighty minutes (4.67 h) after occlusion, six rats in each group were decapitated to detect the mRNA expression level of metabotropic glutamate receptor 5 (mGluR5) and N-methyl-D-aspartate receptor subunit type 2B (NR2B) (n=6).The results demonstrated that pre-ischemic treadmill training exercise reduced brain infarct volume, cerebral edema and neurological deficits, also decreased the over expression of PKC-α and increased the expression level of GLT-1, Akt and PI3K after ischemic stroke (p<0.05). The over-expression of mGluR5 and NR2B mRNA was also inhibited by pre-ischemic exercise (p<0.05). In summary, exercise preconditioning ameliorated brain damage after ischemic stroke, which might be involved in two signal pathways: PKC-α-GLT-1-Glutamate and PI3K/Akt-GLT-1-Glutamate.

  12. Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI - Correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH

    PubMed Central

    Sun, Phillip Zhe; Wang, Enfeng; Cheung, Jerry S

    2011-01-01

    Amide proton transfer (APT) MRI is sensitive to ischemic tissue acidosis and has been increasingly used as a research tool to investigate disrupted tissue metabolism during acute stroke. However, magnetization transfer asymmetry (MTRasym) analysis is often used for calculating APT contrast, which only provides pH-weighted images. In addition to pH- dependent APT contrast, in vivo MTRasym is subject to a baseline shift (ΔMTR′asym) attributable to the slightly asymmetric magnetization transfer (MT) effect. Additionally, APT contrast approximately scales with T1 relaxation time. Tissue relaxation time may also affect the experimentally obtainable APT contrast via saturation efficiency and RF spillover effects. In this study, we acquired perfusion, diffusion, relaxation and pH-weighted APT MRI data, and spectroscopy (MRS) in an animal model of acute ischemic stroke. We modeled in vivo MTRasym as a superposition of pH-dependent APT contrast and a baseline shift ΔMTR′asym (i.e., MTRasym=APTR(pH) + ΔMTR′asym), and quantified tissue pH. We found pH of the contralateral normal tissue to be 7.03 ± 0.05 and the ipsilateral ischemic tissue pH was 6.44 ± 0.24, which correlated with tissue perfusion and diffusion rates. In summary, our study established an endogenous and quantitative pH imaging technique for improved characterization of ischemic tissue acidification and metabolism disruption. PMID:22178815

  13. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke.

    PubMed

    Yang, Fan; Wang, Ziying; Wei, Xinbing; Han, Huirong; Meng, Xianfang; Zhang, Yan; Shi, Weichen; Li, Fengli; Xin, Tao; Pang, Qi; Yi, Fan

    2014-04-01

    Although the innate immune response to induce postischemic inflammation is considered as an essential step in the progression of cerebral ischemia injury, the role of innate immunity mediator NLRP3 in the pathogenesis of ischemic stroke is unknown. In this study, focal ischemia was induced by middle cerebral artery occlusion in NLRP3(-/-), NOX2(-/-), or wild-type (WT) mice. By magnetic resonance imaging (MRI), Evans blue permeability, and electron microscopic analyses, we found that NLRP3 deficiency ameliorated cerebral injury in mice after ischemic stroke by reducing infarcts and blood-brain barrier (BBB) damage. We further showed that the contribution of NLRP3 to neurovascular damage was associated with an autocrine/paracrine pattern of NLRP3-mediated interleukin-1β (IL-1β) release as evidenced by increased brain microvessel endothelial cell permeability and microglia-mediated neurotoxicity. Finally, we found that NOX2 deficiency improved outcomes after ischemic stroke by mediating NLRP3 signaling. This study for the first time shows the contribution of NLRP3 to neurovascular damage and provides direct evidence that NLRP3 as an important target molecule links NOX2-mediated oxidative stress to neurovascular damage in ischemic stroke. Pharmacological targeting of NLRP3-mediated inflammatory response at multiple levels may help design a new approach to develop therapeutic strategies for prevention of deterioration of cerebral function and for the treatment of stroke.

  14. Cerebral emboli of paradoxical origin.

    PubMed

    Jones, H R; Caplan, L R; Come, P C; Swinton, N W; Breslin, D J

    1983-03-01

    A diagnosis of paradoxical cerebral embolus (PCE) was made in five patients aged 31 to 62 years who sustained eight cerebral ischemic events. No patient had evidence of primary carotid system or left heart disease. A probe-patent foramen ovale was the presumed mechanism in four patients, and an unsuspected congenital atrial septal defect was found in the fifth patient. Clinically apparent pulmonary emboli or venous thrombosis preceded the cerebral event in only one instance. Review of the literature reveals a high mortality with PCE. However, careful clinical search for this lesion may be rewarding: four of our five patients survived. One should consider PCE in any patient with cerebral embolus in whom there is no demonstrable left-sided circulatory source. This principle applies particularly if there is concomitant venous thrombosis, pulmonary embolism, or enhanced potential for venous thrombosis due to, for example, morbid obesity, use of hormonal birth control pills, prolonged bed rest (especially postoperatively), or systemic carcinoma.

  15. Elevated blood pressure management in acute ischemic stroke remains controversial: could this issue be resolved?

    PubMed

    Hadjiev, Dimiter I; Mineva, Petya P

    2013-01-01

    A transient elevated arterial blood pressure is common in acute ischemic stroke and is often associated with a poor prognosis. The underlying mechanisms of blood pressure elevation are not well understood and its management is still unresolved. This article focuses on pathophysiology and management of elevated blood pressure in acute ischemic stroke. There is evidence that the main causes of a transient blood pressure elevation in acute ischemic stroke are the focal cerebral hypoperfusion and the stress responses with neuroendocrine systems activation. Clinical trials have reported that blood pressure lowering in acute ischemic stroke may have detrimental effect, probably because of impaired cerebral autoregulation. However, quantitative assessment of cerebral perfusion has not been performed during emergency blood pressure reduction in acute ischemic stroke. We suggest that ultrasound carotid artery disease evaluation and cerebral hemodynamics monitoring using bilateral transcranial ultrasonography, during blood pressure management in acute ischemic stroke might contribute to maintaining of an adequate penumbral perfusion and prevent infarct enlargement. Such an approach could individualize the antihypertensive treatment in acute ischemic stroke and improve functional outcome. Prospective studies are needed to confirm such a treatment strategy.

  16. Oligodendrogenesis after cerebral ischemia

    PubMed Central

    Zhang, Ruilan; Chopp, Michael; Zhang, Zheng Gang

    2013-01-01

    Neural stem cells in the subventricular zone (SVZ) of the lateral ventricle of adult rodent brain generate oligodendrocyte progenitor cells (OPCs) that disperse throughout the corpus callosum and striatum where some of OPCs differentiate into mature oligodendrocytes. Studies in animal models of stroke demonstrate that cerebral ischemia induces oligodendrogenesis during brain repair processes. This article will review evidence of stroke-induced proliferation and differentiation of OPCs that are either resident in white matter or are derived from SVZ neural progenitor cells and of therapies that amplify endogenous oligodendrogenesis in ischemic brain. PMID:24194700

  17. Applicability of biomarkers in ischemic stroke.

    PubMed

    Castellanos, Mar; Serena, Joaquín

    2007-01-01

    Cerebral ischemia results in the activation of a cascade of molecular events as a result of which several substances with the potential characteristics of biomarkers are released into the peripheral blood. Although still in the research phase, the analysis of these biomarkers in the serum has proved to be useful for stroke diagnosis, as well as for the prediction of the evolution of the ischemic lesion and the clinical prognosis. In fact, the feasibility and applicability of a panel of biomarkers for the diagnosis of stroke has recently been tested. Biomarkers of excitotoxicity, inflammation and oxidative stress have been demonstrated as being useful in the prediction of ischemic lesion enlargement and secondary neurological deterioration. On the other hand, biomarkers of endothelial damage have been shown to be especially helpful in the prediction of hemorrhagic transformation of the ischemic lesion, both spontaneously and after the administration of thrombolytic therapy, as well as in the prediction of brain edema with the secondary development of malignant middle-cerebral-artery infarction. Moreover, coagulation and fibrinolytic-cascade markers have been reported as being correlated with the recanalization rate after the administration of thrombolysis, and they might therefore be useful in estimating the effectiveness of thrombolytic therapy. However, for these biomarkers to become applicable to routine clinical practice, faster tests to perform the analyses are required and further studies must be undertaken to validate and generalize the results.

  18. Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury

    PubMed Central

    Guo, Hui; Zhou, Hui; Lu, Jie; Qu, Yi; Yu, Dan; Tong, Yu

    2016-01-01

    Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions. PMID:26981109

  19. [Preditive clinical factors for epileptic seizures after ischemic stroke].

    PubMed

    Fukujima, M M; Cardeal, J O; Lima, J G

    1996-06-01

    Preditive clinical factors for epileptic seizures after ischemic stroke. Clinical features of 35 patients with ischemic stroke who developed epilepsy (Group 1) were compared with those of 35 patients with ischemic stroke without epilepsy (Group 2). The age of the patients did not differ between the groups. There were more men than women and more white than other races in both groups. Diabetes melitus, hypertension, transient ischemic attack, previous stroke, migraine, Chagas disease, cerebral embolism of cardiac origin and use of oral contraceptive did not differ between the groups. Smokers and alcohol users were more frequent in Group 1 (p < 0.05). Most patients of Group 1 presented with hemiparesis; none presented cerebellar or brainstem involvement. Perhaps strokes in smokers have some different aspects, that let them more epileptogenic than in non smokers.

  20. Normobaric oxygen treatment in acute ischemic stroke: a clinical perspective

    PubMed Central

    Shi, Shu-hai; Qi, Zhi-feng; Luo, Yu-min; Ji, Xun-ming; Liu, Ke Jian

    2016-01-01

    Acute ischemic stroke is a common and serious neurological disease. Oxygen therapy has been shown to increase oxygen supply to ischemic tissues and improve outcomes after cerebral ischemia/reperfusion. Normobaric hyperoxia (NBO), an easily applicable and non-invasive method, shows protective effects on acute ischemic stroke animals and patients in pilot studies. However, many critical scientific questions are still unclear, such as the therapeutic time window of NBO, the long-term effects and the benefits of NBO in large clinic trials. In this article, we review the current literatures on NBO treatment of acute ischemic stroke in preclinical and clinical studies and try to analyze and identify the key gaps or unknowns in our understanding about NBO. Based on these analyses, we provide suggestions for future studies. PMID:27867482

  1. A more consistent intraluminal rhesus monkey model of ischemic stroke

    PubMed Central

    Zhao, Bo; Shang, Guowei; Chen, Jian; Geng, Xiaokun; Ye, Xin; Xu, Guoxun; Wang, Ju; Zheng, Jiasheng; Li, Hongjun; Akbary, Fauzia; Li, Shengli; Lu, Jing; Ling, Feng; Ji, Xunming

    2014-01-01

    Endovascular surgery is advantageous in experimentally induced ischemic stroke because it causes fewer cranial traumatic lesions than invasive surgery and can closely mimic the pathophysiology in stroke patients. However, the outcomes are highly variable, which limits the accuracy of evaluations of ischemic stroke studies. In this study, eight healthy adult rhesus monkeys were randomized into two groups with four monkeys in each group: middle cerebral artery occlusion at origin segment (M1) and middle cerebral artery occlusion at M2 segment. The blood flow in the middle cerebral artery was blocked completely for 2 hours using the endovascular microcoil placement technique (1 mm × 10 cm) (undetachable), to establish a model of cerebral ischemia. The microcoil was withdrawn and the middle cerebral artery blood flow was restored. A reversible middle cerebral artery occlusion model was identified by hematoxylin-eosin staining, digital subtraction angiography, magnetic resonance angiography, magnetic resonance imaging, and neurological evaluation. The results showed that the middle cerebral artery occlusion model was successfully established in eight adult healthy rhesus monkeys, and ischemic lesions were apparent in the brain tissue of rhesus monkeys at 24 hours after occlusion. The rhesus monkeys had symptoms of neurological deficits. Compared with the M1 occlusion group, the M2 occlusion group had lower infarction volume and higher neurological scores. These experimental findings indicate that reversible middle cerebral artery occlusion can be produced with the endovascular microcoil technique in rhesus monkeys. The M2 occluded model had less infarction and less neurological impairment, which offers the potential for application in the field of brain injury research. PMID:25657726

  2. A more consistent intraluminal rhesus monkey model of ischemic stroke.

    PubMed

    Zhao, Bo; Shang, Guowei; Chen, Jian; Geng, Xiaokun; Ye, Xin; Xu, Guoxun; Wang, Ju; Zheng, Jiasheng; Li, Hongjun; Akbary, Fauzia; Li, Shengli; Lu, Jing; Ling, Feng; Ji, Xunming

    2014-12-01

    Endovascular surgery is advantageous in experimentally induced ischemic stroke because it causes fewer cranial traumatic lesions than invasive surgery and can closely mimic the pathophysiology in stroke patients. However, the outcomes are highly variable, which limits the accuracy of evaluations of ischemic stroke studies. In this study, eight healthy adult rhesus monkeys were randomized into two groups with four monkeys in each group: middle cerebral artery occlusion at origin segment (M1) and middle cerebral artery occlusion at M2 segment. The blood flow in the middle cerebral artery was blocked completely for 2 hours using the endovascular microcoil placement technique (1 mm × 10 cm) (undetachable), to establish a model of cerebral ischemia. The microcoil was withdrawn and the middle cerebral artery blood flow was restored. A reversible middle cerebral artery occlusion model was identified by hematoxylin-eosin staining, digital subtraction angiography, magnetic resonance angiography, magnetic resonance imaging, and neurological evaluation. The results showed that the middle cerebral artery occlusion model was successfully established in eight adult healthy rhesus monkeys, and ischemic lesions were apparent in the brain tissue of rhesus monkeys at 24 hours after occlusion. The rhesus monkeys had symptoms of neurological deficits. Compared with the M1 occlusion group, the M2 occlusion group had lower infarction volume and higher neurological scores. These experimental findings indicate that reversible middle cerebral artery occlusion can be produced with the endovascular microcoil technique in rhesus monkeys. The M2 occluded model had less infarction and less neurological impairment, which offers the potential for application in the field of brain injury research.

  3. [Cerebral artery thrombosis in pregnancy].

    PubMed

    Charco Roca, L M; Ortiz Sanchez, V E; Hernandez Gutierrez-Manchon, O; Quesada Villar, J; Bonmatí García, L; Rubio Postigo, G

    2015-11-01

    A 28 year old woman, ASA I, who, in the final stages of her pregnancy presented with signs of neural deficit that consisted of distortion of the oral commissure, dysphagia, dysarthria, and weakness on the left side of the body. She was diagnosed with thrombosis in a segment of the right middle cerebral artery which led to an ischemic area in the right frontal lobe. Termination of pregnancy and conservative treatment was decided, with good resolution of the symptoms.

  4. Angiographic findings of ischemic stroke in children.

    PubMed

    Shirane, R; Sato, S; Yoshimoto, T

    1992-12-01

    A cooperative study was undertaken in the Tohoku district of Japan to investigate the relatively rare phenomenon of cerebral infarction in children. The purpose of the present paper is to describe the cerebral angiographic findings in 48 children whose ischemic lesions were confirmed by CT scan. The majority of lesions were considered to be idiopathic. The areas of cerebral infarction appearing in the CT scans were located in the territory of the middle cerebral artery including the basal ganglia. Angiographical abnormalities were observed in 40 patients (83%). The majority occurred in the supraclinoid portion of the internal carotid artery and in the cisternal portion of the middle and anterior cerebral arteries. Multiple lesions, such as in the C1, A1, and M1 or the C1, M1, and M2 segments were observed in 22 cases. These lesions generally appeared in continuation; no bilateral intracranial lesions were observed. Repeated angiography was performed in 22 cases, and in 55% of these some recovery of the lesions was seen.

  5. Stenting for a symptomatic posterior cerebral artery stenosis.

    PubMed

    Xu, Gelin; Zheng, Ling; Zhou, Zhiming; Liu, Xinfeng

    2009-05-01

    Evolvement of endovascular devices and increase of operator expertise have made angioplasty and stenting in intracranial vessels technically possible. Stenting has been reported in treating stenosis in middle and anterior cerebral arteries with favorable outcomes. However, the feasibility of stenting for stenosis in posterior cerebral artery (PCA) has not been established. We report a patient with progressive focal cerebral ischemic symptoms, which were arrested after reconstruction of the associated PCA stenosis with stenting.

  6. [Neuroprotective therapy for the treatment of acute ischemic stroke].

    PubMed

    Naritomi, H

    2001-12-01

    Following cerebral ischemia, various biochemical reactions are provoked in a stepwise manner leading neuronal cells to ischemic death. The prevention of these biochemical reactions may exert neuroprotective actions and consequently reduce the magnitude of ischemic cerebral injury. On the basis of such a view, numerous neuroprotective drugs have been developed during the last decade. Quite a few drugs were found effective in reducing the infarct volume in experimental studies, and more than 15 of them were subjected to clinical phase III trials to see a therapeutic effectiveness. However, the results of phase III trials were disappointing in the majority drugs. Only three drugs, nicaravene, ebselen and edaravone, all radical scavengers, were judged effective by small-sized trials with a wide therapeutic window, 48-72 hours after stroke, in Japan. The fact suggests that a one-point prevention of biochemical reactions by single drug is unable to rescue ischemic neuronal cells. Ischemic insult causes damages of vascular wall including the endothelium which play an important role in the development of hemorrhagic changes or cerebral edema. Vascular protection is considered as important as neuroprotection in treatment of clinical stroke. Mild hypothermia has neuroprotective and vascular protective actions and hence may be more effective than neuroprotective drugs for the treatment of stroke. The prevention of fever, which often occurs in severe stroke, may exert the similar effect as hypothermia in neuroprotection. Neuroprotective therapy in the future should proceed toward the simultaneous protections of neurons and vessels using combination of multiple drugs.

  7. Protective effect of extract of Cordyceps sinensis in middle cerebral artery occlusion-induced focal cerebral ischemia in rats

    PubMed Central

    2010-01-01

    Background Ischemic hypoxic brain injury often causes irreversible brain damage. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines. From the point of view of "self-medication" or "preventive medicine," Cordyceps sinensis was used in the prevention of cerebral ischemia in this paper. Methods The right middle cerebral artery occlusion model was used in the study. The effects of Cordyceps sinensis (Caterpillar fungus) extract on mortality rate, neurobehavior, grip strength, lactate dehydrogenase, glutathione content, Lipid Peroxidation, glutathione peroxidase activity, glutathione reductase activity, catalase activity, Na+K+ATPase activity and glutathione S transferase activity in a rat model were studied respectively. Results Cordyceps sinensis extract significantly improved the outcome in rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. At the same time, supplementation of Cordyceps sinensis extract significantly boosted the defense mechanism against cerebral ischemia by increasing antioxidants activity related to lesion pathogenesis. Restoration of the antioxidant homeostasis in the brain after reperfusion may have helped the brain recover from ischemic injury. Conclusions These experimental results suggest that complement Cordyceps sinensis extract is protective after cerebral ischemia in specific way. The administration of Cordyceps sinensis extract significantly reduced focal cerebral ischemic/reperfusion injury. The defense mechanism against cerebral ischemia was by increasing antioxidants activity related to lesion pathogenesis. PMID:20955613

  8. Hepcidin Is Involved in Iron Regulation in the Ischemic Brain

    PubMed Central

    Shi, Honglian; Zhao, Ya-Shuo; Chang, Shi-Yang; Yu, Peng; Wu, Wen-Shuang; Zhao, Chen-Yang; Chang, Yan-Zhong; Duan, Xiang-Lin

    2011-01-01

    Oxidative stress plays an important role in neuronal injuries caused by cerebral ischemia. It is well established that free iron increases significantly during ischemia and is responsible for oxidative damage in the brain. However, the mechanism of this ischemia-induced increase in iron is not completely understood. In this report, the middle cerebral artery occlusion (MCAO) rat model was performed and the mechanism of iron accumulation in cerebral ischemia-reperfusion was studied. The expression of L-ferritin was significantly increased in the cerebral cortex, hippocampus, and striatum on the ischemic side, whereas H-ferritin was reduced in the striatum and increased in the cerebral cortex and hippocampus. The expression level of the iron-export protein ferroportin1 (FPN1) significantly decreased, while the expression of transferrin receptor 1 (TfR1) was increased. In order to elucidate the mechanisms of FPN1 regulation, we studied the expression of the key regulator of FPN1, hepcidin. We observed that the hepcidin level was significantly elevated in the ischemic side of the brain. Knockdown hepcidin repressed the increasing of L-ferritin and decreasing of FPN1 invoked by ischemia-reperfusion. The results indicate that hepcidin is an important contributor to iron overload in cerebral ischemia. Furthermore, our results demonstrated that the levels of hypoxia-inducible factor-1α (HIF-1α) were significantly higher in the cerebral cortex, hippocampus and striatum on the ischemic side; therefore, the HIF-1α-mediated TfR1 expression may be another contributor to the iron overload in the ischemia-reperfusion brain. PMID:21957487

  9. The Time of Maximum Post-Ischemic Hyperperfusion Indicates Infarct Growth Following Transient Experimental Ischemia

    PubMed Central

    Wegener, Susanne; Artmann, Judith; Luft, Andreas R.; Buxton, Richard B.; Weller, Michael; Wong, Eric C.

    2013-01-01

    After recanalization, cerebral blood flow (CBF) can increase above baseline in cerebral ischemia. However, the significance of post-ischemic hyperperfusion for tissue recovery remains unclear. To analyze the course of post-ischemic hyperperfusion and its impact on vascular function, we used magnetic resonance imaging (MRI) with pulsed arterial spin labeling (pASL) and measured CBF quantitatively during and after a 60 minute transient middle cerebral artery occlusion (MCAO) in adult rats. We added a 5% CO2 - challenge to analyze vasoreactivity in the same animals. Results from MRI were compared to histological correlates of angiogenesis. We found that CBF in the ischemic area recovered within one day and reached values significantly above contralateral thereafter. The extent of hyperperfusion changed over time, which was related to final infarct size: early (day 1) maximal hyperperfusion was associated with smaller lesions, whereas a later (day 4) maximum indicated large lesions. Furthermore, after initial vasoparalysis within the ischemic area, vasoreactivity on day 14 was above baseline in a fraction of animals, along with a higher density of blood vessels in the ischemic border zone. These data provide further evidence that late post-ischemic hyperperfusion is a sequel of ischemic damage in regions that are likely to undergo infarction. However, it is transient and its resolution coincides with re-gaining of vascular structure and function. PMID:23741488

  10. Cerebral Palsy

    MedlinePlus

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  11. Clonidine preconditioning alleviated focal cerebral ischemic insult in rats via up-regulating p-NMDAR1 and down-regulating NMDAR2A / p-NMDAR2B.

    PubMed

    Yanli, Li; Xizhou, Zhang; Yan, Wang; Bo, Zhao; Yunhong, Zha; Zicheng, Li; Lingling, Yu; Lingling, Yan; Zhangao, Chen; Min, Zheng; Zhi, He

    2016-12-15

    A brain ischemia rat model was established by middle cerebral artery occlusion (MCAO) for 2h and reperfusion for 4h to investigate the underlying mechanism of the neuroprotection action of clonidine, a classical alpha-2 adrenergic agonist, on cerebral ischemia. Clonidine and yohimbine were intraperitoneally given to the rats each day for a week before ischemia. Neurological deficits evaluations were carried out at 6h after operation. TTC staining method was used to measure the volume of brain infarction. Expression levels of NMDAR1, NMDAR2A, NMDAR2B were assayed by western blotting. Our data demonstrated that clonidine pretreatment significantly improved the neurological deficit scores and reduced the brain infarct volumes of the rats. Furthermore, protein expression level of p-NMDAR2B in cortex was significantly up-regulated whereas that of p-NMDAR1 was decreased when compared with the sham-operated rats. Remarkably, clonidine treatment led to significant down-regulation of p-NMDAR2B and NMDAR2A in addition to enhancement of the expression level of p-NMDAR1 in cortex. This is the first report illustrating the neuroprotective role of clonidine may be mediated through modulation of the expression levels of p-NMDAR2B, NMDAR2A and p-NMDAR1 during cerebral ischemia.

  12. Morinda citrifolia fruit juice prevents ischemic neuronal damage through suppression of the development of post-ischemic glucose intolerance.

    PubMed

    Harada, Shinichi; Fujita-Hamabe, Wakako; Kamiya, Kohei; Mizushina, Yoshiyuki; Satake, Toshiko; Tokuyama, Shogo

    2010-10-01

    Fruit juice of Morinda citrifolia (Noni juice) is a well-known health drink and has various pharmacological properties including antioxidant and anti-inflammatory effects. We have hitherto found the protective effect of Noni juice on brain damage caused by ischemic stress in mice. In addition, we also recently reported that regulation of post-ischemic glucose intolerance might be important for good prognosis. Here, we focused on the effect of Noni juice on the development of the post-ischemic glucose intolerance as a cerebral protective mechanism. Noni juice was obtained from the mature fruit grown in Okinawa (about 1.5 L/4 kg of fruit; 100% ONJ). Male ddY mice were given 10% ONJ in drinking water for 7 days. Then, mice were subjected to 2 h of middle cerebral artery occlusion (MCAO). Ingestion of 10% ONJ suppressed the development of neuronal damage after MCAO. Interestingly, glucose intolerance observed on the 1st day after MCAO completely disappeared after 10% ONJ administration. Furthermore, ONJ treatment significantly increased serum insulin levels much further than the control group on the 1st day, while serum adiponectin levels were not affected at all. These results suggest that ONJ could facilitate insulin secretion after ischemic stress and may attenuate the development of glucose intolerance. These mechanisms may contribute to the neuronal protective effect of ONJ against ischemic stress.

  13. Factoring in Factor VIII With Acute Ischemic Stroke.

    PubMed

    Siegler, James E; Samai, Alyana; Albright, Karen C; Boehme, Amelia K; Martin-Schild, Sheryl

    2015-10-01

    There is growing research interest into the etiologies of cryptogenic stroke, in particular as it relates to hypercoagulable states. An elevation in serum levels of the procoagulant factor VIII is recognized as one such culprit of occult cerebral infarctions. It is the objective of the present review to summarize the molecular role of factor VIII in thrombogenesis and its clinical use in the diagnosis and prognosis of acute ischemic stroke. We also discuss the utility of screening for serum factor VIII levels among patients at risk for, or those who have experienced, ischemic stroke.

  14. Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke

    PubMed Central

    Srinivasan, Vivek J.; Mandeville, Emiri T.; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H.; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties. PMID:23940761

  15. Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke.

    PubMed

    Srinivasan, Vivek J; Mandeville, Emiri T; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties.

  16. Cerebrovascular adaptations to cocaine-induced transient ischemic attacks in the rodent brain

    PubMed Central

    You, Jiang; Volkow, Nora D.; Park, Kicheon; Zhang, Qiujia; Clare, Kevin; Du, Congwu

    2017-01-01

    Occurrence of transient ischemic attacks (TIA) and cerebral strokes is a recognized risk associated with cocaine abuse. Here, we use a rodent model along with optical imaging to study cocaine-induced TIA and the associated dynamic changes in cerebral blood flow velocity (CBFv) and cerebrovasculature. We show that chronic cocaine exposure in mice resulted in marked cortical hypoperfusion, in significant arterial and venous vasoconstriction, and in a sensitized vascular response to an acute cocaine injection. Starting after 10 days of exposure, an acute cocaine challenge to these mice resulted in a TIA, which presented as hemiparalysis and was associated with an abrupt exacerbation of CBFv. The severity of the TIA correlated with the decreases in cortical CBFv such that the greater the decreases in flow, the longer the TIA duration. The severity of TIA peaked around 17–22 days of cocaine exposure and decreased thereafter in parallel to a reorganization of CBFv from superficial to deep cortical layers, along with an increase in vessel density into these layers. Here, we document for the first time to our knowledge evidence of a TIA in an animal model of chronic cocaine exposure that was associated with profound decreases in CBFv, and we revealed that while the severity of the TIA initially increased with repeated exposures, it subsequently improved in parallel to an increase in the vessel density. This suggests that strategies to accelerate cerebrovascular recovery might be therapeutically beneficial in cocaine abusers. PMID:28289715

  17. Lubiprostone induced ischemic colitis.

    PubMed

    Sherid, Muhammed; Sifuentes, Humberto; Samo, Salih; Deepak, Parakkal; Sridhar, Subbaramiah

    2013-01-14

    Ischemic colitis accounts for 6%-18% of the causes of acute lower gastrointestinal bleeding. It is often multifactorial and more commonly encountered in the elderly. Several medications have been implicated in the development of colonic ischemia. We report a case of a 54-year old woman who presented with a two-hour history of nausea, vomiting, abdominal pain, and bloody stool. The patient had recently used lubiprostone with close temporal relationship between the increase in the dose and her symptoms of rectal bleeding. The radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her condition improved without any serious complications after the cessation of lubiprostone. This is the first reported case of ischemic colitis with a clear relationship with lubiprostone (Naranjo score of 10). Clinical vigilance for ischemic colitis is recommended for patients receiving lubiprostone who are presenting with abdominal pain and rectal bleeding.

  18. The use of erythtropoietin in cerebral diseases.

    PubMed

    Cotena, S; Piazza, O; Tufano, R

    2008-06-01

    Global and focal cerebral ischemia is followed by a secondary damage characterized by oxidative stress, excitotoxicity, inflammation and apoptosis. Erythropoietin (EPO) exerts antiapoptotic, anti-inflammatory, antioxidative, angiogenetic and neurotrophic properties. Its potential therapeutic role has been demonstrated in several animal models of cerebral ischemia and also in a clinical trial of ischemic stroke, so it could be considered an ideal compound for neuroprotection in ischemic stroke and in cardiac arrest. Intracerebral hemorrhage (ICH) is the least treatable form of stroke; the mechanisms involved in the secondary brain injury include hematoma mass effect, neuronal apoptosis and necrosis, inflammation. It has been demonstrated in an experimental ICH that EPO intervenes in the inflammatory process, reduces brain water content, hemorrhage volume and hemispheric atrophy, promotes cell survival, preserves cerebral blood flow, has antiapoptotic protective function against oxidative stress and excitotoxic damage. EPO can attenuate acute vasoconstriction and prevent brain ischemic damage in subarachnoid hemorrhage. The neuroprotective function of EPO has been studied also in traumatic brain injury: it reduces the inflammation and improves cognitive and motor deficits. The authors review some of the physiological actions of EPO in the physiopathology of ischemic and hemorrhagic stroke, subarachnoid hemorrhage and brain trauma, and its potential usefulness in the brain injured patient management.

  19. Optical-resolution photoacoustic microscopy of ischemic stroke

    NASA Astrophysics Data System (ADS)

    Hu, Song; Gonzales, Ernie; Soetikno, Brian; Gong, Enhao; Yan, Ping; Maslov, Konstantin; Lee, Jin-Moo; Wang, Lihong V.

    2011-03-01

    A major obstacle in understanding the mechanism of ischemic stroke is the lack of a tool to noninvasively or minimally invasively monitor cerebral hemodynamics longitudinally. Here, we applied optical-resolution photoacoustic microscopy (OR-PAM) to longitudinally study ischemic stroke induced brain injury in a mouse model with transient middle cerebral artery occlusion (MCAO). OR-PAM showed that, during MCAO, the average hemoglobin oxygen saturation (sO2) values of feeder arteries and draining veins within the stroke core region dropped ~10% and ~34%, respectively. After reperfusion, arterial sO2 recovered back to the baseline; however, the venous sO2 increased above the baseline value by ~7%. Thereafter, venous sO2 values were close to the arterial sO2 values, suggesting eventual brain tissue infarction.

  20. Blood-brain barrier tight junction permeability and ischemic stroke.

    PubMed

    Sandoval, Karin E; Witt, Ken A

    2008-11-01

    The blood-brain barrier (BBB) is formed by the endothelial cells of cerebral microvessels, providing a dynamic interface between the peripheral circulation and the central nervous system. The tight junctions (TJs) between the endothelial cells serve to restrict blood-borne substances from entering the brain. Under ischemic stroke conditions decreased BBB TJ integrity results in increased paracellular permeability, directly contributing to cerebral vasogenic edema, hemorrhagic transformation, and increased mortality. This loss of TJ integrity occurs in a phasic manner, which is contingent on several interdependent mechanisms (ionic dysregulation, inflammation, oxidative and nitrosative stress, enzymatic activity, and angiogenesis). Understanding the inter-relation of these mechanisms is critical for the development of new therapies. This review focuses on those aspects of ischemic stroke impacting BBB TJ integrity and the principle regulatory pathways, respective to the phases of paracellular permeability.

  1. A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats.

    PubMed

    Choi, In-Young; Lee, Jae-Chul; Ju, Chung; Hwang, Sunyoung; Cho, Geum-Sil; Lee, Hyuk Woo; Choi, Won Jun; Jeong, Lak Shin; Kim, Won-Ki

    2011-10-01

    A3 adenosine receptor (A3AR) is recognized as a novel therapeutic target for ischemic injury; however, the mechanism underlying anti-ischemic protection by the A3AR agonist remains unclear. Here, we report that 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyl-4'-thioadenosine (LJ529), a selective A3AR agonist, reduces inflammatory responses that may contribute to ischemic cerebral injury. Postischemic treatment with LJ529 markedly reduced cerebral ischemic injury caused by 1.5-hour middle cerebral artery occlusion, followed by 24-hour reperfusion in rats. This effect was abolished by the simultaneous administration of the A3AR antagonist MRS1523, but not the A2AAR antagonist SCH58261. LJ529 prevented the infiltration/migration of microglia and monocytes occurring after middle cerebral artery occlusion and reperfusion, and also after injection of lipopolysaccharides into the corpus callosum. The reduced migration of microglia by LJ529 could be related with direct inhibition of chemotaxis and down-regulation of spatiotemporal expression of Rho GTPases (including Rac, Cdc42, and Rho), rather than by biologically relevant inhibition of inflammatory cytokine/chemokine release (eg, IL-1β, TNF-α, and MCP-1) or by direct inhibition of excitotoxicity/oxidative stress (not affected by LJ529). The present findings indicate that postischemic activation of A3AR and the resultant reduction of inflammatory response should provide a promising therapeutic strategy for the treatment of ischemic stroke.

  2. EFFECTS OF RAPAMYCIN ON CEREBRAL OXYGEN SUPPLY AND CONSUMPTION DURING REPERFUSION AFTER CEREBRAL ISCHEMIA

    PubMed Central

    CHI, O. Z.; BARSOUM, S.; VEGA-COTTO, N. M.; JACINTO, E.; LIU, X.; MELLENDER, S. J.; WEISS, H. R.

    2016-01-01

    Abstract—Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia–reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1 h and reperfusion for 2 h with and without rapamycin (20 mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C14-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5 ± 0.8% control vs. 21.5 ± 0.9% rapamycin). We also found that ischemia–reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia–reperfusion. PMID:26742793

  3. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia.

    PubMed

    Chi, O Z; Barsoum, S; Vega-Cotto, N M; Jacinto, E; Liu, X; Mellender, S J; Weiss, H R

    2016-03-01

    Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion.

  4. Radionuclide imaging in ischemic stroke.

    PubMed

    Heiss, Wolf-Dieter

    2014-11-01

    Ischemic stroke is caused by interruption or significant impairment of blood supply to the brain, which leads to a cascade of metabolic and molecular alterations resulting in functional disturbance and morphologic damage. The changes in regional cerebral blood flow and regional metabolism can be assessed by radionuclide imaging, especially SPECT and PET. SPECT and PET have broadened our understanding of flow and metabolic thresholds critical for maintenance of brain function and morphology: PET was essential in the transfer of the concept of the penumbra to clinical stroke and thereby had a great impact on developing treatment strategies. Receptor ligands can be applied as early markers of irreversible neuronal damage and can predict the size of the final infarcts, which is important for decisions on invasive therapy in large ("malignant") infarction. With SPECT and PET, the reserve capacity of the blood supply can be tested in obstructive arteriosclerosis, which is essential for planning interventions. The effect of a stroke on surrounding and contralateral primarily unaffected tissue can be investigated, helping to understand symptoms caused by disturbance in functional networks. Activation studies are useful to demonstrate alternative pathways to compensate for lesions and to test the effect of rehabilitative therapy. Radioisotope studies help to detect neuroinflammation and its effect on extension of tissue damage. Despite the limitations of broad clinical application of radionuclide imaging, this technology has a great impact on research in cerebrovascular diseases and still has various applications in the management of stroke.

  5. [NDT-Bobath method used in the rehabilitation of patients with a history of ischemic stroke].

    PubMed

    Klimkiewicz, Paulina; Kubsik, Anna; Woldańska-Okońska, Marta

    2012-01-01

    Ischemic stroke is the third leading cause of death and disability in human. The vitally important problem after ischemic stroke is hemiparesis of the body. The most common methods used in improving the mobility of patients after ischemic stroke is a Bobath-NDT (Neuro-Developmental Treatment - Bobath), which initiated the Berta and Karel Bobath for children with cerebral palsy. It is a method designed to neurophysiological recovery of these vital functions that the patient was lost due to illness, and wants it back.

  6. Alpha 1-Antitrypsin Therapy Mitigated Ischemic Stroke Damage in Rats

    PubMed Central

    Moldthan, Huong L.; Hirko, Aaron C.; Thinschmidt, Jeffrey S.; Grant, Maria; Li, Zhimin; Peris, Joanna; Lu, Yuanqing; Elshikha, Ahmed; King, Michael A.; Hughes, Jeffrey A.; Song, Sihong

    2014-01-01

    Currently, the only effective therapy for acute ischemic stroke is the thrombolytic agent recombinant tissue plasminogen activator. α1-Antitrypsin, an endogenous inhibitor of serine proteinases and a primary acute phase protein with potent anti-inflammatory, anti-apoptotic, antimicrobial and cytoprotective activities, could be beneficial in stroke.. The goal of this study was to test whether α1-antitrypsin could improve ischemic stroke outcome in an established rat model. Middle cerebral artery occlusion was induced in male rats via intracranial microinjection of endothelin-1. Five to ten minutes following stroke induction rats received either intracranial or intravenous delivery of human α1-antitrypsin. Cylinder and vibrissae tests were used to evaluate sensorimotor function before and 72 hours after middle cerebral artery occlusion. Infarct volumes were examined via either 2,3,5-triphenyltetrazolium chloride assay or magnetic resonance imaging 72 hours after middle cerebral artery occlusion. Despite equivalent initial strokes, at 72 hours the infarct volumes of the human α1-antitrypsin treatment groups (local and systemic injection) were statistically significantly reduced by 83% and 63% (p<0.0001 and p < 0.05 respectively) compared with control rats. Human α1-antitrypsin significantly limited sensory motor systems deficits. Human α1-antitrypsin could be a potential novel therapeutic drug for the protection against neurodegeneration following ischemic stroke, but more studies are needed to investigate the protective mechanisms and efficacy in other animal models. PMID:24582784

  7. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke

    PubMed Central

    Martynov, Mikhail Yu; Gusev, Eugeny I

    2015-01-01

    Ischemic stroke is one of the leading causes of long-lasting disability and death. Two main strategies have been proposed for the treatment of ischemic stroke: restoration of blood flow by thrombolysis or mechanical thrombus extraction during the first few hours of ischemic stroke, which is one of the most effective treatments and leads to a better functional and clinical outcome. The other direction of treatment, which is potentially applicable to most of the patients with ischemic stroke, is neuroprotection. Initially, neuroprotection was mainly targeted at protecting gray matter, but during the past few years there has been a transition from a neuron-oriented approach toward salvaging the whole neurovascular unit using multimodal drugs. Citicoline is a multimodal drug that exhibits neuroprotective and neuroregenerative effects in a variety of experimental and clinical disorders of the central nervous system, including acute and chronic cerebral ischemia, intracerebral hemorrhage, and global cerebral hypoxia. Citicoline has a prolonged therapeutic window and is active at various temporal and biochemical stages of the ischemic cascade. In acute ischemic stroke, citicoline provides neuroprotection by attenuating glutamate exitotoxicity, oxidative stress, apoptosis, and blood–brain barrier dysfunction. In the subacute and chronic phases of ischemic stroke, citicoline exhibits neuroregenerative effects and activates neurogenesis, synaptogenesis, and angiogenesis and enhances neurotransmitter metabolism. Acute and long-term treatment with citicoline is safe and in most clinical studies is effective and improves functional outcome. PMID:27186142

  8. Ischemic Colitis Revealing Polyarteritis Nodosa

    PubMed Central

    Hamzaoui, Amira; Litaiem, Noureddine; Smiti Khanfir, M.; Ayadi, Sofiene; Nfoussi, Haifa; Houman, M. H.

    2013-01-01

    Ischemic colitis is one of the most common intestinal ischemic injuries. It results from impaired perfusion of blood to the bowel and is rarely caused by vasculitis. We report a case of ischemic colitis revealing polyarteritis nodosa (PAN) in a 55-year-old man. Histological examination of the resected colon led to the diagnosis of PAN. PMID:24382967

  9. Omega-3 Fatty Acids Protect the Brain against Ischemic Injury by Activating Nrf2 and Upregulating Heme Oxygenase 1

    PubMed Central

    Zhang, Meijuan; Wang, Suping; Mao, Leilei; Leak, Rehana K.; Shi, Yejie; Zhang, Wenting; Hu, Xiaoming; Sun, Baoliang; Cao, Guodong; Gao, Yanqin; Xu, Yun

    2014-01-01

    Ischemic stroke is a debilitating clinical disorder that affects millions of people, yet lacks effective neuroprotective treatments. Fish oil is known to exert beneficial effects against cerebral ischemia. However, the underlying protective mechanisms are not fully understood. The present study tests the hypothesis that omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate ischemic neuronal injury by activating nuclear factor E2-related factor 2 (Nrf2) and upregulating heme oxygenase-1 (HO-1) in both in vitro and in vivo models. We observed that pretreatment of rat primary neurons with docosahexaenoic acid (DHA) significantly reduced neuronal death following oxygen-glucose deprivation. This protection was associated with increased Nrf2 activation and HO-1 upregulation. Inhibition of HO-1 activity with tin protoporphyrin IX attenuated the protective effects of DHA. Further studies showed that 4-hydroxy-2E-hexenal (4-HHE), an end-product of peroxidation of n-3 PUFAs, was a more potent Nrf2 inducer than 4-hydroxy-2E-nonenal derived from n-6 PUFAs. In an in vivo setting, transgenic mice overexpressing fatty acid metabolism-1, an enzyme that converts n-6 PUFAs to n-3 PUFAs, were remarkably resistant to focal cerebral ischemia compared with their wild-type littermates. Regular mice fed with a fish oil-enhanced diet also demonstrated significant resistance to ischemia compared with mice fed with a regular diet. As expected, the protection was associated with HO-1 upregulation, Nrf2 activation, and 4-HHE generation. Together, our data demonstrate that n-3 PUFAs are highly effective in protecting the brain, and that the protective mechanisms involve Nrf2 activation and HO-1 upregulation by 4-HHE. Further investigation of n-3 PUFA neuroprotective mechanisms may accelerate the development of stroke therapies. PMID:24478369

  10. A specific dietary intervention to restore brain structure and function after ischemic stroke

    PubMed Central

    Wiesmann, Maximilian; Zinnhardt, Bastian; Reinhardt, Dirk; Eligehausen, Sarah; Wachsmuth, Lydia; Hermann, Sven; Dederen, Pieter J; Hellwich, Marloes; Kuhlmann, Michael T; Broersen, Laus M; Heerschap, Arend; Jacobs, Andreas H; Kiliaan, Amanda J

    2017-01-01

    Occlusion of the middle cerebral artery (MCAo) is among the most common causes of ischemic stroke in humans. Cerebral ischemia leads to brain lesions existing of an irreversibly injured core and an ischemic boundary zone, the penumbra, containing damaged but potentially salvageable tissue. Using a transient occlusion (30 min) of the middle cerebral artery (tMCAo) mouse model in this cross-institutional study we investigated the neurorestorative efficacy of a dietary approach (Fortasyn) comprising docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium as therapeutic approach to counteract neuroinflammation and impairments of cerebral (structural+functional) connectivity, cerebral blood flow (CBF), and motor function. Male adult C57BL/6j mice were subjected to right tMCAo using the intraluminal filament model. Following tMCAo, animals were either maintained on Control diet or switched to the multicomponent Fortasyn diet. At several time points after tMCAo, behavioral tests, and MRI and PET scanning were conducted to identify the impact of the multicomponent diet on the elicited neuroinflammatory response, loss of cerebral connectivity, and the resulting impairment of motor function after experimental stroke. Mice on the multicomponent diet showed decreased neuroinflammation, improved functional and structural connectivity, beneficial effect on CBF, and also improved motor function after tMCAo. Our present data show that this specific dietary intervention may have beneficial effects on structural and functional recovery and therefore therapeutic potential after ischemic stroke. PMID:28255345

  11. Ischemic Nerve Block.

    ERIC Educational Resources Information Center

    Williams, Ian D.

    This experiment investigated the capability for movement and muscle spindle function at successive stages during the development of ischemic nerve block (INB) by pressure cuff. Two male subjects were observed under six randomly ordered conditions. The duration of index finger oscillation to exhaustion, paced at 1.2Hz., was observed on separate…

  12. Cerebral air embolism from angioinvasive cavitary aspergillosis.

    PubMed

    Lin, Chen; Barrio, George A; Hurwitz, Lynne M; Kranz, Peter G

    2014-01-01

    Background. Nontraumatic cerebral air embolism cases are rare. We report a case of an air embolism resulting in cerebral infarction related to angioinvasive cavitary aspergillosis. To our knowledge, there have been no previous reports associating these two conditions together. Case Presentation. A 32-year-old female was admitted for treatment of acute lymphoblastic leukemia (ALL). Her hospital course was complicated by pulmonary aspergillosis. On hospital day 55, she acutely developed severe global aphasia with right hemiplegia. A CT and CT-angiogram of her head and neck were obtained demonstrating intravascular air emboli within the left middle cerebral artery (MCA) branches. She was emergently taken for hyperbaric oxygen therapy (HBOT). Evaluation for origin of the air embolus revealed an air focus along the left lower pulmonary vein. Over the course of 48 hours, her symptoms significantly improved. Conclusion. This unique case details an immunocompromised patient with pulmonary aspergillosis cavitary lesions that invaded into a pulmonary vein and caused a cerebral air embolism. With cerebral air embolisms, the acute treatment option differs from the typical ischemic stroke pathway and the provider should consider emergent HBOT. This case highlights the importance of considering atypical causes of acute ischemic stroke.

  13. Ischemic optic neuropathy.

    PubMed

    Hayreh, Sohan Singh

    2009-01-01

    Ischemic optic neuropathy is one of the major causes of blindness or seriously impaired vision, yet there is disagreement as to its pathogenesis, clinical features and especially its management. This is because ischemic optic neuropathy is not one disease but a spectrum of several different types, each with its own etiology, pathogenesis, clinical features and management. They cannot be lumped together. Ischemic optic neuropathy is primarily of two types: anterior (AION) and posterior (PION), involving the optic nerve head (ONH) and the rest of the optic nerve respectively. Furthermore, both AION and PION have different subtypes. AION comprises arteritic (A-AION - due to giant cell arteritis) and, non-arteritic (NA-AION - due to causes other than giant cell arteritis); NA-AION can be further classified into classical NA-AION and incipient NA-AION. PION consists of arteritic (A-PION - due to giant cell arteritis), non-arteritic (NA-PION - due to causes other than giant cell arteritis), and surgical (a complication of several systemic surgical procedures). Thus, ischemic optic neuropathy consists of six distinct types of clinical entities. NA-AION is by far the most common type and one of the most prevalent and visually crippling diseases in the middle-aged and elderly. A-AION, though less common, is an ocular emergency and requires early diagnosis and immediate treatment with systemic high dose corticosteroids to prevent further visual loss, which is entirely preventable. Controversy exists regarding the pathogenesis, clinical features and especially management of the various types of ischemic optic neuropathy because there are multiple misconceptions about its many fundamental aspects. Recently emerging information on the various factors that influence the optic nerve circulation, and also the various systemic and local risk factors which play important roles in the development of various types of ischemic optic neuropathy have given us a better understanding of

  14. [Prediction of cerebral stroke using an expert system].

    PubMed

    Semak, A E; Borisov, A V; Churakov, A V; Lur'e, T V

    2006-01-01

    An expert system of cerebral stroke prediction (ESCSP) has been developed. The ESCSP is a Windows supported software based on Bayes formula applied for determination of probability of stroke as well as for estimation of a risk for different types of blood circulation disturbances (ischemic or hemorrhagic stroke). The prediction is possible according to three sets of risk factors: 15, 25 and 52. The study of patients with different types of cerebral stroke has demonstrated high accuracy of the developed ESCSP software.

  15. Physical activity in the prevention of ischemic stroke and improvement of outcomes: a narrative review.

    PubMed

    Middleton, Laura E; Corbett, Dale; Brooks, Dina; Sage, Michael D; Macintosh, Bradley J; McIlroy, William E; Black, Sandra E

    2013-02-01

    Physical activity is an integral component of stroke prevention. Although approximately 80% of strokes are due to cerebral ischemia, the mechanisms linking physical activity to the incidence of and recovery from ischemic stroke are not completely understood. This review summarizes evidence from human and animal studies regarding physical activity in the prevention of overt and covert ischemic stroke and associated injury. In cohort studies, people who are physically active have reduced rates of overt ischemic stroke and ischemic stroke mortality. However, few human studies have examined physical activity and the incidence of covert stroke. Evidence from animal models of ischemic stroke indicates that physical activity reduces injury after ischemic stroke by reducing infarct size and apoptotic cell death. Accordingly, physical activity may reduce the magnitude of injury from ischemic stroke so that there are fewer or less severe symptoms. Future research should investigate physical activity and incidence of covert stroke prospectively, ascertain the optimal dose and type of exercise to prevent ischemic injury, and identify the underlying neuroprotective mechanisms.

  16. Sirt1 in cerebral ischemia

    PubMed Central

    Koronowski, Kevin B.; Perez-Pinzon, Miguel A.

    2015-01-01

    Cerebral ischemia is among the leading causes of death worldwide. It is characterized by a lack of blood flow to the brain that results in cell death and damage, ultimately causing motor, sensory, and cognitive impairments. Today, clinical treatment of cerebral ischemia, mostly stroke and cardiac arrest, is limited and new neuroprotective therapies are desperately needed. The Sirtuin family of oxidized nicotinamide adenine dinucleotide (NAD+)-dependent deacylases has been shown to govern several processes within the central nervous system as well as to possess neuroprotective properties in a variety of pathological conditions such as Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease, among others. Recently, Sirt1 in particular has been identified as a mediator of cerebral ischemia, with potential as a possible therapeutic target. To gather studies relevant to this topic, we used PubMed and previous reviews to locate, select, and resynthesize the lines of evidence presented here. In this review, we will first describe some functions of Sirt1 in the brain, mainly neurodevelopment, learning and memory, and metabolic regulation. Second, we will discuss the experimental evidence that has implicated Sirt1 as a key protein in the regulation of cerebral ischemia as well as a potential target for the induction of ischemic tolerance. PMID:26819971

  17. Electrical coupling of astrocytes in rat hippocampal slices under physiological and simulated ischemic conditions.

    PubMed

    Xu, Guangjin; Wang, Wei; Kimelberg, Harold K; Zhou, Min

    2010-03-01

    Mammalian protoplasmic astrocytes are extensively coupled through gap junction channels but the biophysical properties of these channels under physiological and ischemic conditions in situ are not well defined. Using confocal morphometric analysis of biocytin-filled astrocytic syncytia in rat hippocampal CA1 stratum radiatum we found that each astrocyte directly couples, on average, to 11 other astrocytes with a mean interastrocytic distance of 45 microm. Voltage-independent and bidirectional transjunctional currents were always measured between directly coupled astrocyte pairs in dual voltage-clamp recordings, but never from astrocyte-NG2 glia or astrocyte-interneuron pairs. The electrical coupling ratio varied considerably among astrocytes in developing postnatal day 14 rats (P14, 0.5-12.4%, mean = 3.6%), but became more constant in young adult P21 rats (0.18-3.9%, mean = 1.6%), and the coupling ratio declined exponentially with increasing pair distance. Electrical coupling was not affected by short-term oxygen-glucose deprivation (OGD) treatment, but showed delayed inhibition in an acidic extracellular pH of 6.4. Combination of acidic pH (6.4) and OGD, a condition that better represents cerebral ischemia in vivo, accelerated the inhibition of electrical coupling. Our results show that, under physiological conditions, 20.7-24.2% of K(+) induced currents can travel from any astrocytic soma in CA1 stratum radiatum to the gap junctions of the nearest neighbor astrocytes, but this should be severely inhibited as a consequence of the OGD and acidosis seen in the ischemic brain.

  18. Stroke from Vasospasm due to Marijuana Use: Can Cannabis Synergistically with Other Medications Trigger Cerebral Vasospasm?

    PubMed

    Jamil, Marium; Zafar, Atif; Adeel Faizi, Syed; Zawar, Ifrah

    2016-01-01

    We present a case of imaging proven cerebral vasospasm causing ischemic stroke in a young patient chronically on buprenorphine-naloxone for heroin remission who started smoking cannabis on a daily basis. With cannabis legalization spreading across the states in the USA, it is important for physicians not only to be aware of cannabis reported association with cerebral vasospasm in some patients but also to be on the lookout for possible interacting medications that can synergistically affect cerebral vessels causing debilitating strokes.

  19. [An evaluation of ischemic stroke using dynamic contrast enhanced perfusion MRI].

    PubMed

    Yamaguchi, H; Igarashi, H; Katayama, Y; Terashi, A

    1998-04-01

    Thrombolytic therapy during the hyperacute stage is important for salvaging dying cerebral tissue. To date, however, accurate non-invasive assessment of an ischemic lesion during the hyperacute stage has not been possible. Perfusion MRI may be the key to the quick diagnosis of ischemic lesions. To assess the feasibility of dynamic contrast enhanced perfusion MRI, echo planar imaging was performed in 10 patients with ischemic stroke. The relative cerebral blood volume (rCBV), mean transit time (MTT), and relative cerebral blood flow(rCBF) were measured based on moment analysis and the gamma variate method. These measurements, however, are not suitable for the detection of cerebral ischemia during the hyperacute stage. Therefore, we additionally studied the changes in a concentration curve (time-delta R* curve) of Gd-DTPA, injected into the median vein of the forearm. From the curve the SUM (delta R*) time to peak and the delta R* peak, which may be calculated quickly, were determined and were compared to rCBV, MTT, and rCBF, respectively. The rCBV and the rCBF in the ischemic regions were less than those in the contralateral healthy regions (p < 0.05), and the MTT in the ischemic regions was longer than that in the contralateral healthy regions (p < 0.05). Additionally, SUM (delta R*) and the delta R* peak in the ischemic regions were less, and the time to peak in the ischemic regions was longer than the value in the contralateral healthy regions (p < 0.05), correlating well to the rCBV, rCBF, and MTT measurements. Also, images of these parameters, depicting the ischemic lesion earlier than conventional T2 weighted images, can be easily made by using an MRI console. These results suggest that the SUM (delta R*), time to peak and the delta R* peak images calculated with dynamic contrast enhanced perfusion MRI may be one of the best techniques for the detection of cerebral ischemic lesions during the hyperacute stage.

  20. DRESS and Ischemic Stroke.

    PubMed

    Cahyanur, Rahmat; Oktavia, Dina; Koesno, Sukamto

    2012-07-01

    DRESS (drug rash eosinophilia and systemic symptoms) is a life threatening condition characterized by skin rash, fever, leucocytosis with eosinophilia or atypical lymphocytosis, lymphadenopathy, and internal organ involvement. This case report would like to describe an interesting case of DRESS coincidence with ischemic stroke. A 38 year old woman had been admitted with skin rash and fever since four days before. Four weeks before admission she received antibiotic and multivitamin for one week. The patient looked ill, with body temperature 38.0°C. Marked physical findings were cervical lymphadenopathy and hepatomegaly. Dermatological examination finding was generalized exanthema. Laboratory evaluation showed leucocytosis, eosinophilia, and increased level of ALT and AST. During hospitalization the patient also suffered from ischemic stroke. Treatments administered in this patient were oxygen, adequate intravenous fluid, parenteral nutrition, methyl prednisolone, cethirizin bid, ranitidin bid, and antibiotic. The antibiotic treatment in this case was performed with graded challenge or test dosing.

  1. Cerebral Paragonimiasis.

    PubMed

    Miyazaki, I

    1975-01-01

    The first case of cerebral paragonimiasis was reported by Otani in Japan in 1887. This was nine years after Kerbert's discovery of the fluke in the lungs of Bengal tigers and seven years after a human pulmonary infection by the fluke was demonstrated by Baelz and Manson. The first case was a 26-year-old man who had been suffering from cough and hemosputum for one year. The patient developed convulsive seizures with subsequent coma and died. The postmortem examination showed cystic lesions in the right frontal and occipital lobes. An adult fluke was found in the occipital lesion and another was seen in a gross specimen of normal brain tissue around the affected occipital lobe. Two years after Otani's discovery, at autopsy a 29-year-old man with a history of Jacksonian seizure was reported as having cerebral paragonimiasis. Some time later, however, it was confirmed that the case was actually cerebral schistosomiasis japonica. Subsequently, cases of cerebral paragonimiasis were reported. However, the majority of these cases were not confirmed histologically. It was pointed out that some of these early cases were probably not Paragonimus infection. After World War II, reviews as well as case reports were published. Recently, investigations have been reported from Korea, with a clinicla study on 62 cases of cerebral paragonimiasis seen at the Neurology Department of the National Medical Center, Seoul, between 1958 and 1964. In 1971 Higashi described a statistical study on 105 cases of cerebral paragonimiasis that had been treated surgically in Japan.

  2. Erythropoietin Pretreatment of Transplanted Endothelial Colony-Forming Cells Enhances Recovery in a Cerebral Ischemia Model by Increasing Their Homing Ability: A SPECT/CT Study.

    PubMed

    Garrigue, Philippe; Hache, Guillaume; Bennis, Youssef; Brige, Pauline; Stalin, Jimmy; Pellegrini, Lionel; Velly, Lionel; Orlandi, Francesca; Castaldi, Elena; Dignat-George, Françoise; Sabatier, Florence; Guillet, Benjamin

    2016-11-01

    Endothelial colony-forming cells (ECFCs) are promising candidates for cell therapy of ischemic diseases, as less than 10% of patients with an ischemic stroke are eligible for thrombolysis. We previously reported that erythropoietin priming of ECFCs increased their in vitro and in vivo angiogenic properties in mice with hindlimb ischemia. The present study used SPECT/CT to evaluate whether priming of ECFCs with erythropoietin could enhance their homing to the ischemic site after transient middle cerebral artery occlusion (MCAO) followed by reperfusion in rats and potentiate their protective or regenerative effect on blood-brain barrier (BBB) disruption, cerebral apoptosis, and cerebral blood flow (CBF).

  3. Anti-excitotoxic effects of cannabidiol are partly mediated by enhancement of NCX2 and NCX3 expression in animal model of cerebral ischemia.

    PubMed

    Khaksar, Sepideh; Bigdeli, Mohammad Reza

    2017-01-05

    Excitotoxicity and imbalance of sodium and calcium homeostasis trigger pathophysiologic processes in cerebral ischemia which can accelerate neuronal death. Neuroprotective role of cannabidiol (CBD), one of the main non-psychoactive phytocannabinoids of the cannabis plant, has attracted attention of many researchers in the neurodegenerative diseases studies. The present investigation was designed to determine whether cannabidiol can alleviate the severity of ischemic damages and if it is able to exert its anti-excitotoxic effects through sodium and calcium regulation. By using stereotaxic surgery, a guide cannula was implanted into the lateral ventricle. Cannabidiol (50, 100, and 200ng/rat; i.c.v.) was administrated for 5 consecutive days. After pretreatment, the rats were subjected to 60min of right middle cerebral artery occlusion (MCAO). After 24h, neurological deficits score, infarct volume, brain edema, and blood-brain barrier (BBB) permeability in total of hemisphere, cortex, piriform cortex-amygdala, and striatum were assessed. The expression of Na(+)/Ca(2+) exchangers (NCXs) protein as an endogenous target in these regions was also studied. The present results indicate that administration of cannabidiol (100 and 200ng/rat) in the MCAO-induced cerebral ischemia caused a remarkable reduction in neurological deficit, infarction, brain edema, and BBB permeability in comparison with the vehicle group. Up-regulation of NCX2 and NCX3 in cannabidiol-received groups was also observed. These findings support the view that the reduction of ischemic injuries elicited by cannabidiol can be at least partly due to the enhancement of NCX protein expression and its cerebro-protective role in those cerebral territories supplied by MCA.

  4. Effect of arginine vasopressin on the cortex edema in the ischemic stroke of Mongolian gerbils.

    PubMed

    Zhao, Xue-Yan; Wu, Chun-Fang; Yang, Jun; Gao, Yang; Sun, Fang-Jie; Wang, Da-Xin; Wang, Chang-Hong; Lin, Bao-Cheng

    2015-06-01

    Brain edema formation is one of the most important mechanisms of ischemia-evoked cerebral edema. It has been demonstrated that arginine vasopressin (AVP) receptors are involved in the pathophysiology of secondary brain damage after focal cerebral ischemia. In a well-characterized animal model of ischemic stroke of Mongolian gerbils, the present study was undertaken to clear the effect of AVP on cortex edema in cerebral ischemia. The results showed that (1) occluding the left carotid artery of Mongolian gerbils not only decreased the cortex specific gravity (cortex edema) but also increased AVP levels in the ipsilateral cortex (ischemic area) including left prefrontal lobe, left parietal lobe, left temporal lobe, left occipital lobe and left hippocampus for the first 6 hours, and did not change of the cortex specific gravity and AVP concentration in the right cortex (non-ischemic area); (2) there were many negative relationships between the specific gravity and AVP levels in the ischemic cortex; (3) intranasal AVP (50 ng or 200 ng), which could pass through the blood-brain barrier to the brain, aggravated the focal cortex edema, whereas intranasal AVP receptor antagonist-D(CH2)5Tyr(ET)DAVP (2 µg) mitigated the cortex edema in the ischemic area after occluding the left carotid artery of Mongolian gerbils; and (4) either intranasal AVP or AVP receptor antagonist did not evoke that edema in the non-ischemic cortex. The data indicated that AVP participated in the process of ischemia-evoked cortex edema, and the cerebral AVP receptor might serve as an important therapeutic target for the ischemia-evoked cortex edema.

  5. Cerebral Palsy (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Cerebral Palsy KidsHealth > For Parents > Cerebral Palsy A A A ... kids who are living with the condition. About Cerebral Palsy Cerebral palsy is one of the most common ...

  6. Cerebral palsy - resources

    MedlinePlus

    Resources - cerebral palsy ... The following organizations are good resources for information on cerebral palsy : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/disorders/cerebral_palsy/cerebral_palsy. ...

  7. Protein methionine oxidation augments reperfusion injury in acute ischemic stroke

    PubMed Central

    Gu, Sean X.; Blokhin, Ilya O.; Wilson, Katina M.; Dhanesha, Nirav; Doddapattar, Prakash; Grumbach, Isabella M.; Chauhan, Anil K.; Lentz, Steven R.

    2016-01-01

    Reperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII). In a murine model, MsrA deficiency resulted in increased NF-κB activation and neutrophil infiltration, larger infarct volumes, and more severe neurological impairment after transient cerebral ischemia/reperfusion injury. This phenotype was prevented by inhibition of NF-κB or CaMKII. MsrA-deficient mice also exhibited enhanced leukocyte rolling and upregulation of E-selectin, an endothelial NF-κB–dependent adhesion molecule known to contribute to neurovascular inflammation in ischemic stroke. Finally, bone marrow transplantation experiments demonstrated that the neuroprotective effect was mediated by MsrA expressed in nonhematopoietic cells. These findings suggest that protein methionine oxidation in nonmyeloid cells is a key mechanism of postischemic oxidative injury mediated by NF-κB activation, leading to neutrophil recruitment and neurovascular inflammation in acute ischemic stroke. PMID:27294204

  8. Targeting neutrophils in ischemic stroke: translational insights from experimental studies

    PubMed Central

    Jickling, Glen C; Liu, DaZhi; Ander, Bradley P; Stamova, Boryana; Zhan, Xinhua; Sharp, Frank R

    2015-01-01

    Neutrophils have key roles in ischemic brain injury, thrombosis, and atherosclerosis. As such, neutrophils are of great interest as targets to treat and prevent ischemic stroke. After stroke, neutrophils respond rapidly promoting blood–brain barrier disruption, cerebral edema, and brain injury. A surge of neutrophil-derived reactive oxygen species, proteases, and cytokines are released as neutrophils interact with cerebral endothelium. Neutrophils also are linked to the major processes that cause ischemic stroke, thrombosis, and atherosclerosis. Thrombosis is promoted through interactions with platelets, clotting factors, and release of prothrombotic molecules. In atherosclerosis, neutrophils promote plaque formation and rupture by generating oxidized-low density lipoprotein, enhancing monocyte infiltration, and degrading the fibrous cap. In experimental studies targeting neutrophils can improve stroke. However, early human studies have been met with challenges, and suggest that selective targeting of neutrophils may be required. Several properties of neutrophil are beneficial and thus may important to preserve in patients with stroke including antimicrobial, antiinflammatory, and neuroprotective functions. PMID:25806703

  9. Blood biomarkers in the early stage of cerebral ischemia.

    PubMed

    Maestrini, I; Ducroquet, A; Moulin, S; Leys, D; Cordonnier, C; Bordet, R

    2016-03-01

    In ischemic stroke patients, blood-based biomarkers may be applied for the diagnosis of ischemic origin and subtype, prediction of outcomes and targeted treatment in selected patients. Knowledge of the pathophysiology of cerebral ischemia has led to the evaluation of proteins, neurotransmitters, nucleic acids and lipids as potential biomarkers. The present report focuses on the role of blood-based biomarkers in the early stage of ischemic stroke-within 72h of its onset-as gleaned from studies published in English in such patients. Despite growing interest in their potential role in clinical practice, the application of biomarkers for the management of cerebral ischemia is not currently recommended by guidelines. However, there are some promising clinical biomarkers, as well as the N-methyl-d-aspartate (NMDA) peptide and NMDA-receptor (R) autoantibodies that appear to identify the ischemic nature of stroke, and the glial fibrillary acidic protein (GFAP) that might be able to discriminate between acute ischemic and hemorrhagic strokes. Moreover, genomics and proteomics allow the characterization of differences in gene expression, and protein and metabolite production, in ischemic stroke patients compared with controls and, thus, may help to identify novel markers with sufficient sensitivity and specificity. Additional studies to validate promising biomarkers and to identify novel biomarkers are needed.

  10. Compound porcine cerebroside and ganglioside injection attenuates cerebral ischemia–reperfusion injury in rats by targeting multiple cellular processes

    PubMed Central

    Wang, Mingyang; Zhang, Yi; Feng, Lu; Zheng, Ji; Fan, Shujie; Liu, Junya; Yang, Nan; Liu, Yanyong; Zuo, Pingping

    2017-01-01

    Background Compound porcine cerebroside and ganglioside injection (CPCGI) is a neurotrophic drug used clinically to treat certain functional disorders of brain. Despite its extensive usage throughout China, the exact mechanistic targets of CPCGI are unknown. This study was carried out to investigate the protective effect of CPCGI against ischemic neuronal damage in rats with middle cerebral artery occlusion (MCAO) reperfusion injury and to investigate the neuroprotective mechanisms of CPCGI. Materials and methods Adult male Sprague-Dawley rats were subjected to MCAO surgery for 2 hours followed by reperfusion. The rats were administered CPCGI once a day for 14 days after reperfusion, and behavioral tests were performed 1, 3, 7, and 14 days post MCAO. Hematoxylin–eosin staining was used to measure infarct volume, and immunohistochemical analysis was performed to determine the number of NeuN-positive neurons in the ischemic cortex penumbra. Finally, the relative expression levels of proteins associated with apoptosis (Bcl-2, Bax, and GADD45α), synaptic function (Synaptophysin, SNAP25, Syntaxin, and Complexin-1/2), and mitochondrial function (KIFC2 and UCP3) were determined by Western blot. Results CPCGI treatment reduced infarct size, decreased neurological deficit scores, and accelerated the recovery of somatosensory function 14 days after MCAO. In addition, CPCGI reduced the loss of NeuN-positive cells in the ischemic cortex penumbra. In the ischemic cortex, CPCGI treatment decreased GADD45α expression, increased the Bcl-2/Bax ratio, augmented Synaptophysin, SNAP25, and Complexin-1/2 expression, and increased the expression of KIFC2 and UCP3 compared with sham rats 14 days after MCAO reperfusion injury. Conclusion CPCGI displays neuroprotective properties in rats subjected to MCAO injury by inhibiting apoptosis and improving synaptic and mitochondrial function. PMID:28392696

  11. Acute ischemic stroke update.

    PubMed

    Baldwin, Kathleen; Orr, Sean; Briand, Mary; Piazza, Carolyn; Veydt, Annita; McCoy, Stacey

    2010-05-01

    Stroke is the third most common cause of death in the United States and is the number one cause of long-term disability. Legislative mandates, largely the result of the American Heart Association, American Stroke Association, and Brain Attack Coalition working cooperatively, have resulted in nationwide standardization of care for patients who experience a stroke. Transport to a skilled facility that can provide optimal care, including immediate treatment to halt or reverse the damage caused by stroke, must occur swiftly. Admission to a certified stroke center is recommended for improving outcomes. Most strokes are ischemic in nature. Acute ischemic stroke is a heterogeneous group of vascular diseases, which makes targeted treatment challenging. To provide a thorough review of the literature since the 2007 acute ischemic stroke guidelines were developed, we performed a search of the MEDLINE database (January 1, 2004-July 1, 2009) for relevant English-language studies. Results (through July 1, 2009) from clinical trials included in the Internet Stroke Center registry were also accessed. Results from several pivotal studies have contributed to our knowledge of stroke. Additional data support the efficacy and safety of intravenous alteplase, the standard of care for acute ischemic stroke since 1995. Due to these study results, the American Stroke Association changed its recommendation to extend the time window for administration of intravenous alteplase from within 3 hours to 4.5 hours of symptom onset; this recommendation enables many more patients to receive the drug. Other findings included clinically useful biomarkers, the role of inflammation and infection, an expanded role for placement of intracranial stents, a reduced role for urgent carotid endarterectomy, alternative treatments for large-vessel disease, identification of nontraditional risk factors, including risk factors for women, and newly published pediatric stroke guidelines. In addition, new devices for

  12. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain

    PubMed Central

    Lin, Chi-Hsin; Wang, Chen-Hsuan; Hsu, Shih-Lan; Liao, Li-Ya; Lin, Ting-An; Hsueh, Chi-Mei

    2016-01-01

    The protective value of neuron-derived conditioned medium (NCM) in cerebral ischemia and the underlying mechanism(s) responsible for NCM-mediated brain protection against cerebral ischemia were investigated in the study. NCM was first collected from the neuronal culture growing under the in vitro ischemic condition (glucose-, oxygen- and serum-deprivation or GOSD) for 2, 4 or 6 h. Through the focal cerebral ischemia (bilateral CCAO/unilateral MCAO) animal model, we discovered that ischemia/reperfusion (I/R)-induced brain infarction was significantly reduced by NCM, given directly into the cistern magna at the end of 90 min of CCAO/MCAO. Immunoblocking and chemical blocking strategies were applied in the in vitro ischemic studies to show that NCM supplement could protect microglia, astrocytes and neurons from GOSD-induced cell death, in a growth factor (TGFβ1, NT-3 and GDNF) and p-ERK dependent manner. Brain injection with TGFβ1, NT3, GDNF and ERK agonist (DADS) alone or in combination, therefore also significantly decreased the infarct volume of ischemic brain. Moreover, NCM could inhibit ROS but stimulate IL-1β release from GOSD-treated microglia and limit the infiltration of IL-β-positive microglia into the core area of ischemic brain, revealing the anti-oxidant and anti-inflammatory activities of NCM. In overall, NCM-mediated brain protection against cerebral ischemia has been demonstrated for the first time in S.D. rats, due to its anti-apoptotic, anti-oxidant and potentially anti-glutamate activities (NCM-induced IL-1β can inhibit the glutamate-mediated neurotoxicity) and restriction upon the infiltration of inflammatory microglia into the core area of ischemic brain. The therapeutic potentials of NCM, TGFβ1, GDNF, NT-3 and DADS in the control of cerebral ischemia in human therefore have been suggested and require further investigation. PMID:26745377

  13. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain.

    PubMed

    Lin, Chi-Hsin; Wang, Chen-Hsuan; Hsu, Shih-Lan; Liao, Li-Ya; Lin, Ting-An; Hsueh, Chi-Mei

    2016-01-01

    The protective value of neuron-derived conditioned medium (NCM) in cerebral ischemia and the underlying mechanism(s) responsible for NCM-mediated brain protection against cerebral ischemia were investigated in the study. NCM was first collected from the neuronal culture growing under the in vitro ischemic condition (glucose-, oxygen- and serum-deprivation or GOSD) for 2, 4 or 6 h. Through the focal cerebral ischemia (bilateral CCAO/unilateral MCAO) animal model, we discovered that ischemia/reperfusion (I/R)-induced brain infarction was significantly reduced by NCM, given directly into the cistern magna at the end of 90 min of CCAO/MCAO. Immunoblocking and chemical blocking strategies were applied in the in vitro ischemic studies to show that NCM supplement could protect microglia, astrocytes and neurons from GOSD-induced cell death, in a growth factor (TGFβ1, NT-3 and GDNF) and p-ERK dependent manner. Brain injection with TGFβ1, NT3, GDNF and ERK agonist (DADS) alone or in combination, therefore also significantly decreased the infarct volume of ischemic brain. Moreover, NCM could inhibit ROS but stimulate IL-1β release from GOSD-treated microglia and limit the infiltration of IL-β-positive microglia into the core area of ischemic brain, revealing the anti-oxidant and anti-inflammatory activities of NCM. In overall, NCM-mediated brain protection against cerebral ischemia has been demonstrated for the first time in S.D. rats, due to its anti-apoptotic, anti-oxidant and potentially anti-glutamate activities (NCM-induced IL-1β can inhibit the glutamate-mediated neurotoxicity) and restriction upon the infiltration of inflammatory microglia into the core area of ischemic brain. The therapeutic potentials of NCM, TGFβ1, GDNF, NT-3 and DADS in the control of cerebral ischemia in human therefore have been suggested and require further investigation.

  14. Acute hyperglycemia worsens ischemic stroke-induced brain damage via high mobility group box-1 in rats.

    PubMed

    Huang, Jingyang; Liu, Baoyi; Yang, Chenghui; Chen, Haili; Eunice, Dzivor; Yuan, Zhongrui

    2013-10-16

    Hyperglycemia adversely affects the outcome of ischemic stroke. Extracellular HMGB1 plays a role in aggravating brain damage in the postischemic brain. The aim of this study was to determine whether the extracellular HMGB1 is involved in the worsened ischemic damage during hyperglycemic stroke. Male Wistar rats underwent middle cerebral artery occlusion (MCAO) for 90 min with reperfusion. Acute hyperglycemia was induced by an injection of 50% dextrose. Rats received glycyrrhizin, a specific HMGB1 inhibitor, or vehicle. HMGB-1 in cerebrospinal fluid and in brain parenchyma was detected at 2 or 4 h post-reperfusion. Neurological deficits, infarct volume and cerebral edema were assessed 24 h post-MCAO the disruption of blood-brain barrier (BBB) and the expression of tight junction protein Occludin were measured at 4 h post-reperfusion. Hyperglycemia enhanced the early release of HMGB1 from ischemic brain tissue, which was accompanied by increased infarct volume, neurological deficit, cerebral edema and BBB disruption. Glycyrrhizin alleviated the aggravation of infarct volume, neurological deficit, cerebral edema and BBB disruption by decreasing the degradation of tight junction protein Occludin in the ischemic hemisphere of hyperglycemic rats. In conclusion, enhanced early extracellular release of HMGB1 might represent an important mechanism for worsened ischemic damage, particularly early BBB disruption, during hyperglycemic stroke. An HMGB1 inhibitor glycyrrhizin is a potential therapeutic option for hyperglycemic stroke.

  15. Developing drug strategies for the neuroprotective treatment of acute ischemic stroke.

    PubMed

    Tuttolomondo, Antonino; Pecoraro, Rosaria; Arnao, Valentina; Maugeri, Rosario; Iacopino, Domenico Gerardo; Pinto, Antonio

    2015-01-01

    Developing new treatment strategies for acute ischemic stroke in the last twenty years has offered some important successes, but also several failures. Most trials of neuroprotective therapies have been uniformly negative to date. Recent research has reported how excitatory amino acids act as the major excitatory neurotransmitters in the cerebral cortex and hippocampus. Furthermore, other therapeutic targets such as free radical scavenger strategies and the anti-inflammatory neuroprotective strategy have been evaluated with conflicting data in animal models and human subjects with acute ischemic stroke. Whereas promising combinations of neuroprotection and neurorecovery, such as citicoline, albumin and cerebrolysin have been tested with findings worthy of further evaluation in larger randomized clinical trials. Understanding the complexities of the ischemic cascade is essential to developing pharmacological targets for acute ischemic stroke in neuroprotective or flow restoration therapeutic strategies.

  16. Long-term survival and regeneration of neuronal and vasculature cells inside the core region after ischemic stroke in adult mice.

    PubMed

    Jiang, Michael Qize; Zhao, Ying-Ying; Cao, Wenyuan; Wei, Zheng Zachory; Gu, Xiaohuan; Wei, Ling; Yu, Shan Ping

    2016-08-11

    Focal cerebral ischemia results in an ischemic core surrounded by the peri-infarct region (penumbra). Most research attention has been focused on penumbra while the pattern of cell fates inside the ischemic core is poorly defined. In the present investigation, we tested the hypothesis that, inside the ischemic core, some neuronal and vascular cells could survive the initial ischemic insult while regenerative niches might exist many days after stroke in the adult brain. Adult mice were subjected to focal cerebral ischemia induced by permanent occlusion of distal branches of the middle cerebral artery (MCA) plus transient ligations of bilateral common carotid artery (CCA). The ischemic insult uniformly reduced the local cerebral blood flow (LCBF) by 90%. Massive cell death occurred due to multiple mechanisms and a significant infarction was cultivated in the ischemic cortex 24 h later. Nevertheless, normal or even higher levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) persistently remained in the core tissue, some NeuN-positive and Glut-1/College IV-positive cells with intact ultrastructural features resided in the core 7-14 days post stroke. BrdU-positive but TUNEL-negative neuronal and endothelial cells were detected in the core where extensive extracellular matrix infrastructure developed. Meanwhile, GFAP-positive astrocytes accumulated in the penumbra and Iba-1-positive microglial/macrophages invaded the core several days after stroke. The long term survival of neuronal and vascular cells inside the ischemic core was also seen after a severe ischemic stroke induced by permanent embolic occlusion of the MCA. We demonstrate that a therapeutic intervention of pharmacological hypothermia could save neurons/endothelial cells inside the core. These data suggest that the ischemic core is an actively regulated brain region with residual and newly formed viable neuronal and vascular cells acutely and chronically after at

  17. Cerebral palsy.

    PubMed

    Colver, Allan; Fairhurst, Charles; Pharoah, Peter O D

    2014-04-05

    The syndrome of cerebral palsy encompasses a large group of childhood movement and posture disorders. Severity, patterns of motor involvement, and associated impairments such as those of communication, intellectual ability, and epilepsy vary widely. Overall prevalence has remained stable in the past 40 years at 2-3·5 cases per 1000 livebirths, despite changes in antenatal and perinatal care. The few studies available from developing countries suggest prevalence of comparable magnitude. Cerebral palsy is a lifelong disorder; approaches to intervention, whether at an individual or environmental level, should recognise that quality of life and social participation throughout life are what individuals with cerebral palsy seek, not improved physical function for its own sake. In the past few years, the cerebral palsy community has learned that the evidence of benefit for the numerous drugs, surgery, and therapies used over previous decades is weak. Improved understanding of the role of multiple gestation in pathogenesis, of gene environment interaction, and how to influence brain plasticity could yield significant advances in treatment of the disorder. Reduction in the prevalence of post-neonatal cerebral palsy, especially in developing countries, should be possible through improved nutrition, infection control, and accident prevention.

  18. Progress in AQP Research and New Developments in Therapeutic Approaches to Ischemic and Hemorrhagic Stroke

    PubMed Central

    Previch, Lauren E.; Ma, Linlin; Wright, Joshua C.; Singh, Sunpreet; Geng, Xiaokun; Ding, Yuchuan

    2016-01-01

    Cerebral edema often manifests after the development of cerebrovascular disease, particularly in the case of stroke, both ischemic and hemorrhagic. Without clinical intervention, the influx of water into brain tissues leads to increased intracranial pressure, cerebral herniation, and ultimately death. Strategies to manage the development of edema constitute a major unmet therapeutic need. However, despite its major clinical significance, the mechanisms underlying cerebral water transport and edema formation remain elusive. Aquaporins (AQPs) are a class of water channel proteins which have been implicated in the regulation of water homeostasis and cerebral edema formation, and thus represent a promising target for alleviating stroke-induced cerebral edema. This review examines the significance of relevant AQPs in stroke injury and subsequently explores neuroprotective strategies aimed at modulating AQP expression, with a particular focus on AQP4, the most abundant AQP in the central nervous system. PMID:27438832

  19. Perfusion Angiography in Acute Ischemic Stroke

    PubMed Central

    Liebeskind, David S.

    2016-01-01

    Visualization and quantification of blood flow are essential for the diagnosis and treatment evaluation of cerebrovascular diseases. For rapid imaging of the cerebrovasculature, digital subtraction angiography (DSA) remains the gold standard as it offers high spatial resolution. This paper lays out a methodological framework, named perfusion angiography, for the quantitative analysis and visualization of blood flow parameters from DSA images. The parameters, including cerebral blood flow (CBF) and cerebral blood volume (CBV), mean transit time (MTT), time-to-peak (TTP), and Tmax, are computed using a bolus tracking method based on the deconvolution of the time-density curve on a pixel-by-pixel basis. The method is tested on 66 acute ischemic stroke patients treated with thrombectomy and/or tissue plasminogen activator (tPA) and also evaluated on an estimation task with known ground truth. This novel imaging tool provides unique insights into flow mechanisms that cannot be observed directly in DSA sequences and might be used to evaluate the impact of endovascular interventions more precisely. PMID:27446232

  20. Downregulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B.

    PubMed

    Chi, W; Meng, F; Li, Y; Wang, Q; Wang, G; Han, S; Wang, P; Li, J

    2014-09-26

    MicroRNAs (miRNAs) have emerged as a major regulator in neurological diseases, and understanding their molecular mechanism in modulating cerebral ischemic injury may provide potential therapeutic targets for ischemic stroke. However, as one of 19 differentially expressed miRNAs in mouse brain with middle cerebral artery occlusion (MCAO), the role of miR-134 in ischemic injury is not well understood. In this study, the miR-134 expression level was manipulated both in oxygen-glucose deprivation (OGD)-treated N2A neuroblastoma cells in vitro and mouse brain with MCAO-induced ischemic stroke in vivo, and its possible targets of heat shock protein A5 (HSPA5) and HSPA12B were determined by bioinformatics analysis and dual luciferase assay. The results showed that overexpression of miR-134 exacerbated cell death and apoptosis both in vitro and in vivo. Conversely, downregulating miR-134 levels reduced cell death and apoptosis. Furthermore, non-expression of miR-134 enhanced HSPA12B protein levels in OGD-treated N2A cells as well as in the ischemic region. It could attenuate brain infarction size and neural cell damage, and improve neurological outcomes in mice with ischemic stroke, whereas upregulation of miR-134 had the opposite effect. In addition, HSPA12B was validated to be a target of miR-134 and its short interfering RNAs (siRNAs) could block miR-134 inhibitor-induced neuroprotection in OGD-treated N2A cells. In conclusion, downregulation of miR-134 could induce neuroprotection against ischemic injury in vitro and in vivo by negatively upregulating HSPA12B protein expression.

  1. Novel treatment targets for cerebral edema.

    PubMed

    Walcott, Brian P; Kahle, Kristopher T; Simard, J Marc

    2012-01-01

    Cerebral edema is a common finding in a variety of neurological conditions, including ischemic stroke, traumatic brain injury, ruptured cerebral aneurysm, and neoplasia. With the possible exception of neoplasia, most pathological processes leading to edema seem to share similar molecular mechanisms of edema formation. Challenges to brain-cell volume homeostasis can have dramatic consequences, given the fixed volume of the rigid skull and the effect of swelling on secondary neuronal injury. With even small changes in cellular and extracellular volume, cerebral edema can compromise regional or global cerebral blood flow and metabolism or result in compression of vital brain structures. Osmotherapy has been the mainstay of pharmacologic therapy and is typically administered as part of an escalating medical treatment algorithm that can include corticosteroids, diuretics, and pharmacological cerebral metabolic suppression. Novel treatment targets for cerebral edema include the Na(+)-K(+)-2Cl(-) co-transporter (NKCC1) and the SUR1-regulated NC(Ca-ATP) (SUR1/TRPM4) channel. These two ion channels have been demonstrated to be critical mediators of edema formation in brain-injured states. Their specific inhibitors, bumetanide and glibenclamide, respectively, are well-characterized Food and Drug Administration-approved drugs with excellent safety profiles. Directed inhibition of these ion transporters has the potential to reduce the development of cerebral edema and is currently being investigated in human clinical trials. Another class of treatment agents for cerebral edema is vasopressin receptor antagonists. Euvolemic hyponatremia is present in a myriad of neurological conditions resulting in cerebral edema. A specific antagonist of the vasopressin V1A- and V2-receptor, conivaptan, promotes water excretion while sparing electrolytes through a process known as aquaresis.

  2. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    PubMed Central

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  3. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia.

    PubMed

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-09-05

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance.

  4. Transient ischemic attack may present a target for normobaric hyperoxia treatment.

    PubMed

    Hadjiev, Dimiter I; Mineva, Petya P

    2010-07-01

    According to the new revised tissue-based definition, transient ischemic attack is a transient episode of neurological dysfunction caused by a focal brain, spinal cord, or retinal ischemia without acute infarction. This review addresses the pathophysiology of transient ischemic attack and the impact of normobaric hyperoxia on the penumbral tissue. Neuroimaging in transient ischemic attack patients and advances in penumbra imaging allow the transient ischemic attack, from pathophysiological viewpoint, to be defined as an ischemic penumbra of varied duration, which could proceed to a cerebral infarction or reduce to a benign oligemia. Persisting perfusion abnormalities are observed, despite resolution of the neurological symptoms. Preclinical and clinical studies have shown that the normobaric hyperoxia treatment is associated with improvement of hemodynamic and metabolic disturbances, particularly in the penumbral tissue. Transient ischemic attack, considered an ischemic penumbra, may present an ideal target for early normobaric hyperoxia therapy, administered as soon as possible after the onset of the neurological deficit. Follow-up perfusion imaging could guide and individualize the treatment.

  5. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion

    PubMed Central

    Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-01-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease. PMID:24834423

  6. Collateral blood flow in different cerebrovascular hierarchy provides endogenous protection in cerebral ischemia.

    PubMed

    Luo, Chuanming; Liang, Fengyin; Ren, Huixia; Yao, Xiaoli; Liu, Qiang; Li, Mingyue; Qin, Dajiang; Yuan, Ti-Fei; Pei, Zhong; Su, Huanxing

    2016-11-15

    Collateral blood flow as vascular adaptions to focal cerebral ischemia is well recognized. However, few studies directly investigate the dynamics of collateral vessel recruitment in vivo and little is known about the effect of collateral blood flow in different cerebrovascular hierarchy on the neuropathology after focal ischemic stroke. Here, we report that collateral blood flow is critically involved in blood vessel compensations following regional ischemia. We occluded a pial arteriole using femtosecond laser ablating under the intact thinned skull and documented the changes of collateral flow around the surface communication network and between the surface communication network and subsurface microcirculation network using in vivo two photon microscopy imaging. Occlusion of the pial arteriole apparently increased the diameter and collateral blood flow of its leptomeningeal anastomoses, which significantly reduced the cortical infarction size. This result suggests that the collateral flow via surface communicating network connected with leptomeningeal anastomoses could greatly impact on the extent of infarction. We then further occluded the target pial arteriole and all of its leptomeningeal anastomoses. Notably, this type of occlusion led to reversals of blood flow in the penetrating arterioles mainly proximal to the occluded pial arteriole in a direction from the subsurface microcirculation network to surface arterioles. Interesting, the cell death in the area of ischemic penumbra was accelerated when we performed occlusion to cease the reversed blood flow in those penetrating arterioles, suggesting that the collateral blood flow from subsurface microcirculation network exerts protective roles in delaying cell death in the ischemic penumbra. In conclusion, we provide the first experimental evidence that collateral blood vessels at different cerebrovascular hierarchy are endogenously compensatory mechanisms in brain ischemia. This article is protected by

  7. Trypanosomiasis, cardiomyopathy and the risk of ischemic stroke.

    PubMed

    Carod-Artal, Francisco Javier

    2010-05-01

    American (Chagas disease) and African (sleeping sickness) trypanosomiasis are neglected tropical diseases and are a heavy burden in Latin America and Africa, respectively. Chagas disease is an independent risk factor for stroke. Apical aneurysm, heart failure and cardiac arrhythmias are associated with ischemic stroke in chagasic cardiomyopathy. Not all chagasic patients who suffer an ischemic stroke have a severe cardiomyopathy, and stroke may be the first manifestation of Chagas disease. Cardioembolism affecting the middle cerebral artery is the most common stroke subtype. Risk of recurrence is high and careful evaluation of recurrence risk should be addressed. Repolarization changes, low voltage and prolonged QT interval are common electrocardiography alterations in human African trypanosomiasis, and can be found in more than 70% of patients. Epidemiological studies are needed to asses the risk of stroke in African trypanosomiasis perimyocarditis.

  8. Looks like a stroke, acts like a stroke, but it's more than a stroke: a case of cerebral mucormycosis.

    PubMed

    Ermak, David; Kanekar, Sangam; Specht, Charles S; Wojnar, Margaret; Lowden, Max

    2014-09-01

    Mucormycosis is a fungus that exhibits angiocentric growth and can cause a thrombotic arteritis. Infection with this organism is uncommon and cerebral involvement is most often secondary to direct invasion through the paranasal sinuses. Here, we present a case of mucormycosis with cerebral involvement without sinus disease, which resulted in ischemic stroke with rapid progression resulting in death.

  9. [Differential effects of isoflurane and nitrous oxide on cerebral blood flow, metabolism and electrocorticogram after incomplete cerebral ischemia in the rat].

    PubMed

    Ishikawa, T; Maekawa, T; Shinohara, K; Sakabe, T; Takeshita, H

    1989-07-01

    Differential effects of isoflurane (ISOF) and N2O on cerebral blood flow, metabolism and electrocorticogram (ECoG) were examined in rats subjected to 15 min-incomplete cerebral ischemia. In the first study, regional cerebral blood flow (rCBF) and ECoG were measured during and after ischemia. In the second study, local cerebral blood flow (LCBF) and glucose utilization (LCGU) were determined at 60 min after reperfusion. In the N2O group, rCBF in both the cerebral cortex and hippocampus decreased significantly to less than 10% of the pre-ischemic value during ischemia, and it increased to 170% at 10 min after reperfusion. The ECoG became flat during ischemia and reappeared at 21 min after reperfusion. In the ISOF group, rCBF decreased significantly to 25% during ischemia and returned to the preischemic value after reperfusion. The ECoG became flat during ischemia and reappeared at 14 min. In the N2O group, LCBFs decreased significantly to 40-50% of the pre-ischemic values in the forebrain. LCGUs decreased significantly to 30-50% in all structures of the forebrain. In the ISOF group, LCBFs decreased significantly to 60-80% in the forebrain, but were not different in other structures. LCGUs did not differ from pre-ischemic values in all structures except for in the thalamus and habenula. These results may indicate cerebral protective effects of ISOF on incomplete cerebral ischemia in rats.

  10. Ischemic mitral valve prolapse

    PubMed Central

    Cristiano, Spadaccio; Nenna, Antonio; Chello, Massimo

    2016-01-01

    Ischemic mitral prolapse (IMP) is a pathologic entity encountered in about one-third among the patients undergoing surgery for ischemic mitral regurgitation (IMR). IMP is generally the result of a papillary muscle injury consequent to myocardial, but the recent literature is progressively unveiling a more complex pathogenesis. The mechanisms underlying its development regards the impairment of one or more components of the mitral apparatus, which comprises the annulus, the chordae tendineae, the papillary muscle and the left ventricular wall. IMP is not only a disorder of valvular function, but also entails coexistent aspects of a geometric disturbance of the mitral valve configuration and of the left ventricular function and dimension and a correct understanding of all these aspects is crucial to guide and tailor the correct therapeutic strategy to be adopted. Localization of prolapse, anatomic features of the prolapsed leaflets and the subvalvular apparatus should be carefully evaluated as also constituting the major determinants defining patient’s outcomes. This review will summarize our current understanding of the pathophysiology and clinical evidence on IMP with a particular focus on the surgical treatment. PMID:28149574

  11. Cerebral Malaria.

    PubMed

    Marsden, P D; Bruce-Chwatt, L J

    1975-01-01

    Cerebral malaria is an acute diffuse encephalopathy associated only with Plasmodium falciparum. It is probably a consequence of the rapid proliferation of the parasites in the body of man in relation to red cell invasion, and results in stagnation of blood flow in cerebralcapillaries with thromobotic occlusion of large numbers of cerebral capillaries. The subsequent cerebral pathology is cerebral infarction with haemorrhage and cerebral oedema. The wide prevalence of P. falciparum in highly endemic areas results in daily challenges to patients from several infected mosquitoes. It is thus important to understand the characteristics of P. falciparum, since this is one of the most important protozoan parasites of man and severe infection from it constitutes one of the few real clinical emergencies in tropical medicine. One of the more important aspects of the practice of medicine in the tropics is to establish a good understanding of the pattern of medical practice in that area. This applies to malaria as well as to other diseases. The neophyte might be somewhat surprised to learn, for example that an experienced colleague who lives in a holoendemic malarious area such as West Africa, sees no cerebral malaria. But the explanation is simple when the doctor concerned has a practice which involves treating adults only. Cerebral malaria is rare in adults, because in highly endemic areas, by the age of 1 year most of the infants in a group under study have already experienced their first falciparum infection. By the time they reach adult life, they have a solid immunity against severe falciparum infections. In fact, "clinical malaria" could occur in such a group under only two circumstances: 1) in pregnancy, a patent infection with P. falciparum might develop, probably due to an IgG drain across the placenta to the foetus;2) in an individual who has constantly taken antimalarials and who may have an immunity at such a low level that when antimalarial therapy is interrupted

  12. Low-Power 2-MHz Pulsed-Wave Transcranial Ultrasound Reduces Ischemic Brain Damage in Rats.

    PubMed

    Alexandrov, Andrei V; Barlinn, Kristian; Strong, Roger; Alexandrov, Anne W; Aronowski, Jaroslaw

    2011-09-01

    It is largely unknown whether prolonged insonation with ultrasound impacts the ischemic brain tissue by itself. Our goal was to evaluate safety and the effect of high-frequency ultrasound on infarct volume in rats. Thirty-two Long-Evans rats with permanent middle cerebral and carotid artery occlusions received either 2-MHz ultrasound at two levels of insonation power (128 or 10 mW) or no ultrasound (controls). We measured cerebral hemorrhage, indirect and direct infarct volume as well as edema volume at 24 h. No cerebral hemorrhages were detected in all animals. Exposure to low-power (10 mW) ultrasound resulted in a significantly decreased indirect infarct volume (p = 0.0039), direct infarct volume (p = 0.0031), and brain edema volume (p = 0.01) compared with controls. High-power (128 mW) ultrasound had no significant effects. An additional experiment with India ink showed a greater intravascular penetration of dye into ischemic tissues exposed to low-power ultrasound. Insonation with high-frequency, low-power ultrasound reduces ischemic brain damage in rat. Its effect on edema reduction and possible promotion of microcirculation could be used to facilitate drug and nutrient delivery to ischemic areas.

  13. Treatment with Evasin-3 reduces atherosclerotic vulnerability for ischemic stroke, but not brain injury in mice

    PubMed Central

    Copin, Jean-Christophe; da Silva, Rafaela F; Fraga-Silva, Rodrigo A; Capettini, Luciano; Quintao, Silvia; Lenglet, Sébastien; Pelli, Graziano; Galan, Katia; Burger, Fabienne; Braunersreuther, Vincent; Schaller, Karl; Deruaz, Maud; Proudfoot, Amanda E; Dallegri, Franco; Stergiopulos, Nikolaos; Santos, Robson A S; Gasche, Yvan; Mach, François; Montecucco, Fabrizio

    2013-01-01

    Neutrophilic inflammation might have a pathophysiological role in both carotid plaque rupture and ischemic stroke injury. Here, we investigated the potential benefits of the CXC chemokine-binding protein Evasin-3, which potently inhibits chemokine bioactivity and related neutrophilic inflammation in two mouse models of carotid atherosclerosis and ischemic stroke, respectively. In the first model, the chronic treatment with Evasin-3 as compared with Vehicle (phosphate-buffered saline (PBS)) was investigated in apolipoprotein E-deficient mice implanted of a ‘cast' carotid device. In the second model, acute Evasin-3 treatment (5 minutes after cerebral ischemia onset) was assessed in mice subjected to transient left middle cerebral artery occlusion. Although CXCL1 and CXCL2 were upregulated in both atherosclerotic plaques and infarcted brain, only CXCL1 was detectable in serum. In carotid atherosclerosis, treatment with Evasin-3 was associated with reduction in intraplaque neutrophil and matrix metalloproteinase-9 content and weak increase in collagen as compared with Vehicle. In ischemic stroke, treatment with Evasin-3 was associated with reduction in ischemic brain neutrophil infiltration and protective oxidants. No other effects in clinical and histological outcomes were observed. We concluded that Evasin-3 treatment was associated with reduction in neutrophilic inflammation in both mouse models. However, Evasin-3 administration after cerebral ischemia onset failed to improve poststroke outcomes. PMID:23250107

  14. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  15. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia

    PubMed Central

    Shamsaei, Nabi; Khaksari, Mehdi; Erfani, Sohaila; Rajabi, Hamid; Aboutaleb, Nahid

    2015-01-01

    Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral ischemic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction through occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic exercise significantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration. PMID:26487851

  16. Partial aortic occlusion and cerebral venous steal: venous effects of arterial manipulation in acute stroke.

    PubMed

    Pranevicius, Osvaldas; Pranevicius, Mindaugas; Liebeskind, David S

    2011-05-01

    Acute ischemic stroke therapy emphasizes early arterial clot lysis or removal. Partial aortic occlusion has recently emerged as an alternative hemodynamic approach to augment cerebral perfusion in acute ischemic stroke. The exact mechanism of cerebral flow augmentation with partial aortic occlusion remains unclear and may involve more than simple diversion of arterial blood flow from the lower body to cerebral collateral circulation. The cerebral venous steal hypothesis suggests that even a small increase in tissue pressure in the ischemic area will divert blood flow to surrounding regions with lesser tissue pressures. This may cause no-reflow (absence of flow after restoration of arterial patency) in the ischemic core and "luxury perfusion" in the surrounding regions. Such maldistribution may be reversed with increased venous pressure titrated to avoid changes in intracranial pressure. We propose that partial aortic occlusion enhances perfusion in the brain by offsetting cerebral venous steal. Partial aortic occlusion redistributes blood volume into the upper part of the body, manifested by an increase in central venous pressure. Increased venous pressure recruits the collapsed vascular network and, by eliminating cerebral venous steal, corrects perifocal perfusion maldistribution analogous to positive end-expiratory pressure recruitment of collapsed airways to decrease ventilation/perfusion mismatch in the lungs.

  17. Rolipram stimulates angiogenesis and attenuates neuronal apoptosis through the cAMP/cAMP-responsive element binding protein pathway following ischemic stroke in rats.

    PubMed

    Hu, Shouye; Cao, Qingwen; Xu, Peng; Ji, Wenchen; Wang, Gang; Zhang, Yuelin

    2016-03-01

    Rolipram, a phosphodiesterase-4 inhibitor, can activate the cyclic adenosine monophosphate (cAMP)/cAMP-responsive element binding protein (CREB) pathway to facilitate functional recovery following ischemic stroke. However, to date, the effects of rolipram on angiogenesis and cerebral ischemia-induced neuronal apoptosis are yet to be fully elucidated. In this study, the aim was to reveal the effect of rolipram on the angiogenesis and neuronal apoptosis following brain cerebral ischemia. Rat models of ischemic stroke were established following transient middle cerebral artery occlusion and rolipram was administered for three, seven and 14 days. The results were examined using behavioral tests, triphenyl tetrazolium chloride staining, immunostaining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) to evaluate the effects of rolipram therapy on functional outcome, angiogenesis and apoptosis. Western blot analysis was used to show the phosphorylated- (p-)CREB protein level in the ischemic hemisphere. The rolipram treatment group exhibited a marked reduction in infarct size and modified neurological severity score compared with the vehicle group, and rolipram treatment significantly promoted the microvessel density in the ischemic boundary region and increased p-CREB protein levels in the ischemic hemisphere. Furthermore, a significant reduction in the number of TUNEL-positive cells was observed in the rolipram group compared with the vehicle group. These findings suggest that rolipram has the ability to attenuate cerebral ischemic injury, stimulate angiogenesis and reduce neuronal apoptosis though the cAMP/CREB pathway.

  18. The Role of Ghrelin in Neuroprotection after Ischemic Brain Injury

    PubMed Central

    Spencer, Sarah J.; Miller, Alyson A.; Andrews, Zane B.

    2013-01-01

    Ghrelin, a gastrointestinal peptide with a major role in regulating feeding and metabolism, has recently been investigated for its neuroprotective effects. In this review we discuss pre-clinical evidence suggesting ghrelin may be a useful therapeutic in protecting the brain against injury after ischemic stroke. Specifically, we will discuss evidence showing ghrelin administration can improve neuronal cell survival in animal models of focal cerebral ischemia, as well as rescue memory deficits. We will also discuss its proposed mechanisms of action, including anti-apoptotic and anti-inflammatory effects, and suggest ghrelin treatment may be a useful intervention after stroke in the clinic. PMID:24961317

  19. Impact of hyperthermia before and during ischemia-reperfusion on neuronal damage and gliosis in the gerbil hippocampus induced by transient cerebral ischemia.

    PubMed

    Kim, Min Joung; Cho, Jun Hwi; Cho, Jeong-Hwi; Park, Joon Ha; Ahn, Ji Hyeon; Tae, Hyun-Jin; Cho, Geum-Sil; Yan, Bing Chun; Hwang, In Koo; Lee, Choong Hyun; Bae, Eun Joo; Won, Moo-Ho; Lee, Jae-Chul

    2015-01-15

    Hyperthermia can exacerbate the brain damage produced by ischemia. In the present study, we investigated the effects of hyperthermia before and during ischemia-reperfusion on neuronal damage and glial changes in the gerbil hippocampus following transient cerebral ischemia using cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining. The animals were randomly assigned to 4 groups: (1) sham-operated animals with normothermia (normothermia + sham group); (2) ischemia-operated animals with normothermia (normothermia + ischemia group); (3) sham-operated animals with hyperthermia (hyperthermia + sham group); and (4) ischemia-operated animals with hyperthermia (hyperthermia + ischemia group). Hyperthermia (39.5 ± 0.2°C) was induced by exposing the gerbils to a heating pad connected to a rectal thermistor for 30 min before and during ischemia-reperfusion. In the normothermia+ischemia groups, a significant delayed neuronal death was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) 5 days after ischemia-reperfusion. In the hyperthermia+ischemia groups, neuronal death in the SP of the CA1 occurred at 1 day post-ischemia, and neuronal death was observed in the SP of the CA2/3 region at 2 days post-ischemia. In addition, we examined activations of astrocytes and microglia using immunohistochemistry for anti-glial fibrillary acidic protein (GFAP) and anti-ionized calcium-binding adapter molecule 1 (Iba-1). GFAP-positive astrocytes and Iba-1-positive microglia in the ischemic hippocampus were activated much earlier and much more accelerated in the hyperthermia+ischemia groups than those in the normothermia+ischemia groups. Based on our findings, we suggest that an experimentally hyperthermic pre-condition before cerebral ischemic insult produces more extensive neuronal damage and glial activation in the ischemic hippocampus.

  20. Physical exercise training and neurovascular unit in ischemic stroke.

    PubMed

    Wang, X; Zhang, M; Feng, R; Li, W B; Ren, S Q; Zhang, J; Zhang, F

    2014-06-20

    Physical exercise could exert a neuroprotective effect in both clinical studies and animal experiments. A series of related studies have indicated that physical exercise could reduce infarct volume, alleviate neurological deficits, decrease blood-brain barrier dysfunction, promote angiogenesis in cerebral vascular system and increase the survival rate after ischemic stroke. In this review, we summarized the protective effects of physical exercise on neurovascular unit (NVU), including neurons, astrocytes, pericytes and the extracellular matrix. Furthermore, it was demonstrated that exercise training could decrease the blood-brain barrier dysfunction and promote angiogenesis in cerebral vascular system. An awareness of the exercise intervention benefits pre- and post stroke may lead more stroke patients and people with high-risk factors to accept exercise therapy for the prevention and treatment of stroke.

  1. [Changes in the focus of experimental ischemic stroke under the influence of neuroprotective drugs].

    PubMed

    Onishchenko, L S; Gaĭkova, O N; Ianishevskiĭ, S N

    2006-01-01

    The purpose of this study was to compare the morphological changes in the focus of ischemic stroke under the influence of the drugs of neurotrophic group (alpha-GPC, cerebrolysin), drugs possessing the nootropic properties (piracetam) and those with combined effect (vinpocetin). The experiments were performed in 18 rats. Temporary disturbance of cerebral circulation (acute ischemia) in right cerebral hemisphere was induced by clipping the trunk of innominate artery for 40 minutes. Areas of cerebral cortex, brainstem and cerebellar cortex were studied using light and electron microscopy. Treatment with alpha-GPC or cerebrolysin resulted in an increased tolerance of neurons to ischemic damage and in delayed realization of the program of cell death. Some intracellular changes were detected that could be regarded as the signs of adaptation and repair (indentation of nuclear envelope, increased number of ribosomes, hypertrophy of endoplasmic reticulum and Golgi complex). These drugs preserved the structure of the membranes in the nucleus and major organelles. In animals treated with piracetam and vinpocetin, all morphological signs were indicative of insufficient supply of energy-consuming processes of repair in the acute phase of ischemic stroke. This was accompanied by morphological features of functional stress of the neurons of the cerebral cortex, different stages of gliocyte apoptosis, phenomenon of incomplete separation of gliocytes during their proliferation, myelin and unmyelinated nerve fiber pathology, as well as by changes in synapse structure.

  2. Use of susceptibility-weighted imaging in assessing ischemic penumbra

    PubMed Central

    Wu, Xiujuan; Luo, Song; Wang, Ying; Chen, Yang; Liu, Jun; Bai, Jing; Feng, Jiachun; Zhang, Hongliang

    2017-01-01

    Abstract Rationale: The ischemic penumbra assessment is essential for the subsequent therapy and prediction of evolution in patients with acute ischemic infraction. Although controversial as a perfect equivalence to penumbra, perfusion-weighted imaging (PWI)-diffusion-weighted imaging (DWI) mismatch may predict the response to thrombolysis. Due to the reliance of PWI on contrast agents, noninvasive alternatives remain an unmet need. Patient concerns: We reported a 65-year-old man complained of paroxysmal hemiplegia of his right limbs and anepia for 2 days, whereas the symptoms lasted for about 12 hours when he admitted to the hospital. Diagnosis: We diagnosed it as acute ischemic stroke caused by the left middle cerebral artery stenosis. Interventions: Susceptibility-weighted imaging (SWI), multimodal magnetic resonance imaging (MRI) work-up which includes conventional MRI sequences (T1WI, T2WI, and FLAIR), DWI, PWI. Outcomes: His DWI-SWI mismatch was comparable to that of DWI-PWI at admission, suggesting that DWI-SWI could predict ischemic penumbra in patient with acute infarction. He refused the digital subtraction angiography examination or stenting, and he was treated with aspirin, atorvastain, and supportive treatment. The patient received a reexamination of the conventional MRI and SWI 11 days later. Expansion of the infarction in the affected MCA territory resulted from the penumbra indicated by the mismatch between DWI-SWI. Lessons: SWI can be used as a noninvasive alternative to evaluate the ischemic penumbra. Besides, SWI can provide perfusion information comparable to PWI and SWI is sufficient to identify occlusive arteries. PMID:28178170

  3. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury.

    PubMed

    Yan, Xiao-Ge; Cheng, Bao-Hua; Wang, Xin; Ding, Liang-Cai; Liu, Hai-Qing; Chen, Jing; Bai, Bo

    2015-05-01

    Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immunohistochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.

  4. Ischemic stroke as a rare manifestation of aluminum phosphide poisoning: a case report.

    PubMed

    Abedini, Mahmoud; Fatehi, Farzad; Tabrizi, Nasim

    2014-01-01

    Aluminum phosphide (AlP) is a solid fumigant which is widely used for a suicide attempt in Iran. Although neurologic symptoms are commonly reported, cerebrovascular stenosis is rare in AlP poisoning. We described ischemic stroke as a delayed complication of AlP intoxication. A 30-year-old man was admitted because of sudden onset left side hemiplegia, 11 days after intentional ingestion of three rice tablets. Investigations revealed in situ thrombosis in right middle cerebral artery (MCA) while other causes of stroke in young adults were excluded. Ischemic stroke should be considered as a delayed complication of AlP intoxication even after the acute phase of intoxication.

  5. Cranial anatomy and detection of ischemic stroke in the cat by nuclear magnetic resonance imaging

    SciTech Connect

    Buonanno, F.S.; Pykett, I.L.; Kistler, J.P.; Vielma, J.; Brady, T.J.; Hinshaw, W.S.; Goldman, M.R.; Newhouse, J.H.; Pohost, G.M.

    1982-04-01

    Proton nuclear magnetic resonance (NMR) images of cat heads were obtained using a small, experimental imaging system. As a prelude to the study of experimental ischemic brain infarction, the normal cat head was imaged for identification of anatomical features. Images of one cat which had undergone ligation of the middle cerebral artery three weeks previously showed brain changes associated with chronic ischemic stroke and compared favorably with findings on computed tomography (CT). The NMR images have millimetric spatial resolution. NMR parameters inherent in the tissues provide intensity variations and are sufficiently sensitive to yield contrast resolution surpassing that of CT.

  6. [Cerebrolysin for acute ischemic stroke].

    PubMed

    iganshina, L E; Abakumova, T R

    2013-01-01

    The review discusses existing evidence of benefits and risks of cerebrolysin--a mixture of low-molecular-weight peptides and amino acids derived from pigs' brain tissue with proposed neuroprotective and neurotrophic properties, for acute ischemic stroke. The review presents results of systematic search and analysis of randomised clinical trials comparing cerebrolysin with placebo in patients with acute ischemic stroke. Only one trial was selected as meeting quality criteria. No difference in death and adverse events between cerebrolysin and placebo was established. The authors conclude about insufficiency of evidence to evaluate the effect of cerebrolysin on survival and dependency in people with acute ischemic stroke.

  7. Cerebral malaria

    PubMed Central

    Newton, C.; Hien, T. T.; White, N.

    2000-01-01

    Cerebral malaria may be the most common non-traumatic encephalopathy in the world. The pathogenesis is heterogenous and the neurological complications are often part of a multisystem dysfunction. The clinical presentation and pathophysiology differs between adults and children. Recent studies have elucidated the molecular mechanisms of pathogenesis and raised possible interventions. Antimalarial drugs, however, remain the only intervention that unequivocally affects outcome, although increasing resistance to the established antimalarial drugs is of grave concern. Artemisinin derivatives have made an impact on treatment, but other drugs may be required. With appropriate antimalarial drugs, the prognosis of cerebral malaria often depends on the management of other complications—for example, renal failure and acidosis. Neurological sequelae are increasingly recognised, but further research on the pathogenesis of coma and neurological damage is required to develop other ancillary treatments.

 PMID:10990500

  8. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke?

    PubMed Central

    Leng, Tiandong; Shi, Yejie; Xiong, Zhi-Gang; Sun, Dandan

    2014-01-01

    Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na+/H+ exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H+-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca2+, Na+, and Zn2+, and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention. PMID:24467911

  9. Transient cerebral ischemia. Association of apoptosis induction with hypoperfusion.

    PubMed Central

    Vexler, Z S; Roberts, T P; Bollen, A W; Derugin, N; Arieff, A I

    1997-01-01

    Apoptosis is thought to be important in the pathogenesis of cerebral ischemia. The mechanism of apoptosis induction remains unclear but several studies suggest that it is preferentially triggered by mild/moderate microcirculatory disturbances. We examined in cats whether induction of apoptosis after 2.5 h of unilateral middle cerebral artery occlusion plus 10 h of reperfusion is influenced by the degree of cerebral microcirculatory disturbance. Quantitative monitoring over time of the disturbances of cerebral microcirculation in ischemic brain areas and evaluation of cytotoxic edema associated with perfusion deficits was achieved by using two noninvasive magnetic resonance imaging techniques: (a) high-speed echo planar imaging combined with a bolus of magnetic susceptibility contrast agent; and (b) diffusion-weighted imaging. Apoptosis-positive cells were counted in anatomic areas with different severity of ischemic injury characterized by magnetic resonance imaging, triphenyltetrazolium chloride, and hemotoxylin and eosin staining. The number of apoptosis-positive cells was significantly higher in anatomic areas with severe perfusion deficits during occlusion and detectable histologic changes 10 h after reperfusion. In contrast, in areas where perfusion was reduced but maintained during occlusion there were no detectable histological changes and significantly fewer apoptosis-positive cells. A similar number of cells that undergo apoptosis were shown in regions with transient or prolonged subtotal perfusion deficits. These results suggest that the apoptotic process is induced in the ischemic core and contributes significantly in the degeneration of neurons associated with transient ischemia. PMID:9077555

  10. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  11. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  12. Preterm Hypoxic–Ischemic Encephalopathy

    PubMed Central

    Gopagondanahalli, Krishna Revanna; Li, Jingang; Fahey, Michael C.; Hunt, Rod W.; Jenkin, Graham; Miller, Suzanne L.; Malhotra, Atul

    2016-01-01

    Hypoxic–ischemic encephalopathy (HIE) is a recognizable and defined clinical syndrome in term infants that results from a severe or prolonged hypoxic–ischemic episode before or during birth. However, in the preterm infant, defining hypoxic–ischemic injury (HII), its clinical course, monitoring, and outcomes remains complex. Few studies examine preterm HIE, and these are heterogeneous, with variable inclusion criteria and outcomes reported. We examine the available evidence that implies that the incidence of hypoxic–ischemic insult in preterm infants is probably higher than recognized and follows a more complex clinical course, with higher rates of adverse neurological outcomes, compared to term infants. This review aims to elucidate the causes and consequences of preterm hypoxia–ischemia, the subsequent clinical encephalopathy syndrome, diagnostic tools, and outcomes. Finally, we suggest a uniform definition for preterm HIE that may help in identifying infants most at risk of adverse outcomes and amenable to neuroprotective therapies. PMID:27812521

  13. Ischemic ulcers - self-care

    MedlinePlus

    ... that can cause ischemic wounds include: Diseases that cause inflammation, such as lupus High blood pressure High cholesterol levels Chronic kidney disease Blockage of the lymph vessels , which causes fluid ...

  14. [A case of Behçet disease developing recurrent ischemic stroke with fever and scrotal ulcers].

    PubMed

    Koike, Yuka; Sakai, Naoko; Umeda, Yoshitaka; Umeda, Maiko; Oyake, Mutsuo; Fujita, Nobuya

    2015-01-01

    A 30-year-old man, who was diagnosed with Behçet disease at 10 years of age, was hospitalized because of transient right hemiparesis after presenting with high fever and scrotal ulcers. Brain MRI revealed ischemic lesions in the area supplied by the anterior cerebral arteries. Analysis of cerebrospinal fluid (CSF) showed pleocytosis and a high interleukin-6 (IL-6) concentration (668 pg/ml). The patient was diagnosed with acute ischemic stroke associated with exacerbation of Behçet disease. After initiation of corticosteroid therapy, his clinical symptoms improved, and the CSF IL-6 concentration decreased. One year later, the patient developed high fever and scrotal ulcers after the onset of transient left upper limb plegia. Brain MRI showed an acute ischemic lesion in the right putamen, and CSF analysis showed an elevated IL-6 concentration (287 pg/ml). Brain CT angiography revealed stenosis of the left anterior cerebral artery and occlusion of the right anterior cerebral artery, which had been well visualized one year previously. Involvement of the intracranial cerebral arteries in Behçet disease is extremely rare. To the best of our knowledge, this is the first case report of a patient with recurrent symptomatic ischemic stroke associated with high fever and scrotal ulcers, which suggests exacerbation of Behçet disease.

  15. Resveratrol Pretreatment Decreases Ischemic Injury and Improves Neurological Function Via Sonic Hedgehog Signaling After Stroke in Rats.

    PubMed

    Yu, Pingping; Wang, Li; Tang, Fanren; Zeng, Li; Zhou, Luling; Song, Xiaosong; Jia, Wei; Chen, Jixiang; Yang, Qin

    2017-01-01

    Resveratrol has neuroprotective effects for ischemic cerebral stroke. However, its neuroprotective mechanism for stroke is less well understood. Beneficial actions of the activated Sonic hedgehog (Shh) signaling pathway in stroke, such as improving neurological function, promoting neurogenesis, anti-oxidative, anti-apoptotic, and pro-angiogenic effects, have been noted, but relatively little is known about the role of Shh signaling in resveratrol-reduced cerebral ischemic injury after stroke. The present study tests whether the Shh pathway mediates resveratrol to decrease cerebral ischemic injury and improve neurological function after stroke. We observed that resveratrol pretreatment significantly improved neurological function, decreased infarct volume, enhanced vitality, and reduced apoptosis of neurons in vivo and vitro after stroke. Meanwhile, expression levels of Shh, Ptc-1, Smo, and Gli-1 mRNAs were significantly upregulated and Gli-1 was relocated to the nucleus. Intriguingly, in vivo and in vitro inhibition of the Shh signaling pathway with cyclopamine, a Smo inhibitor, completely reversed the above effects of resveratrol. These results suggest that decreased cerebral ischemic injury and improved neurological function by resveratrol may be mediated by the Shh signaling pathway.

  16. Remote ischemic preconditioning enhances fracture healing

    PubMed Central

    Çatma, Mehmet Faruk; Şeşen, Hakan; Aydın, Aytekin; Ünlü, Serhan; Demirkale, İsmail; Altay, Murat

    2015-01-01

    Purpose We hypothesized that RIP accelerates fracture healing. Methods Rats (n = 48) were used for the technique of ischemic preconditioning involved applying 35 min of intermittent pneumatic tourniquet for 7 cycles of 5 min each to the fractured hind limb. Results We observed greater callus maturity in RIP group at first week after fracture when compared to controls (p < 0,0001). The serum MDA levels demonstrated statistically lower values at the RIP group at the first week after fracture; however, there were not significant differences at 3rd and 5th weeks (p = 0.0001, p = 0.725, p = 0.271, respectively). Conclusions Greater callus maturity was obtained in RIP group. PMID:26566314

  17. PACAP38/PAC1 Signaling Induces Bone Marrow-Derived Cells Homing to Ischemic Brain

    PubMed Central

    Lin, Chen-Huan; Chiu, Lian; Lee, Hsu-Tung; Chiang, Chun-Wei; Liu, Shih-Ping; Hsu, Yung-Hsiang; Lin, Shinn-Zong; Hsu, Chung Y; Hsieh, Chia-Hung; Shyu, Woei-Cherng

    2015-01-01

    Understanding stem cell homing, which is governed by environmental signals from the surrounding niche, is important for developing effective stem cell-based repair strategies. The molecular mechanism by which the brain under ischemic stress recruits bone marrow-derived cells (BMDCs) to the vascular niche remains poorly characterized. Here we report that hypoxia-inducible factor-1α (HIF-1α) activation upregulates pituitary adenylate cyclase-activating peptide 38 (PACAP38), which in turn activates PACAP type 1 receptor (PAC1) under hypoxia in vitro and cerebral ischemia in vivo. BMDCs homing to endothelial cells in the ischemic brain are mediated by HIF-1α activation of the PACAP38-PAC1 signaling cascade followed by upregulation of cellular prion protein and α6-integrin to enhance the ability of BMDCs to bind laminin in the vascular niche. Exogenous PACAP38 confers a similar effect in facilitating BMDCs homing into the ischemic brain, resulting in reduction of ischemic brain injury. These findings suggest a novel HIF-1α-activated PACAP38-PAC1 signaling process in initiating BMDCs homing into the ischemic brain for reducing brain injury and enhancing functional recovery after ischemic stroke. Stem Cells 2015;33:1153–1172 PMID:25523790

  18. Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats

    PubMed Central

    Du, Wanlu; Huang, Junbo; Yao, Hailan; Zhou, Kechun; Duan, Bo; Wang, Yizheng

    2010-01-01

    Brain injury after focal cerebral ischemia, the most common cause of stroke, develops from a series of pathological processes, including excitotoxicity, inflammation, and apoptosis. While NMDA receptors have been implicated in excitotoxicity, attempts to prevent ischemic brain damage by blocking NMDA receptors have been disappointing. Disruption of neuroprotective pathways may be another avenue responsible for ischemic damage, and thus preservation of neuronal survival may be important for prevention of ischemic brain injury. Here, we report that suppression of proteolytic degradation of transient receptor potential canonical 6 (TRPC6) prevented ischemic neuronal cell death in a rat model of stroke. The TRPC6 protein level in neurons was greatly reduced in ischemia via NMDA receptor–dependent calpain proteolysis of the N-terminal domain of TRPC6 at Lys16. This downregulation was specific for TRPC6 and preceded neuronal death. In a rat model of ischemia, activating TRPC6 prevented neuronal death, while blocking TRPC6 increased sensitivity to ischemia. A fusion peptide derived from the calpain cleavage site in TRPC6 inhibited degradation of TRPC6, reduced infarct size, and improved behavioral performance measures via the cAMP response element–binding protein (CREB) signaling pathway. Thus, TRPC6 proteolysis contributed to ischemic neuronal cell death, and suppression of its degradation preserved neuronal survival and prevented ischemic brain damage. PMID:20811149

  19. Effect of glutamate on inflammatory responses of intestine and brain after focal cerebral ischemia

    PubMed Central

    Xu, Lei; Sun, Jie; Lu, Ran; Ji, Qing; Xu, Jian-Guo

    2005-01-01

    AIM: To study the modulation of glutamate on post-ischemic intestinal and cerebral inflammatory responses in a ischemic and excitotoxic rat model. METHODS: Adult male rats were subjected to bilateral carotid artery occlusion for 15 min and injection of monosodium glutamate intraperitoneally, to decapitate them at selected time points. Tumor necrosis factor alpha (TNF-α) level and nuclear factor kappa B (NF-κB) activity were determined by enzyme-linked immunosorbant assay (ELISA) and electrophoretic mobility shift assay (EMSA), respectively. Hemodynamic parameters were monitored continuously during the whole process of cerebral ischemia and reperfusion. RESULTS: Monosodium glutamate (MSG) treated rats displayed statistically significant high levels of TNF-α in cerebral and intestinal tissues within the first 6 h of ischemia. The rats with cerebral ischemia showed a minor decrease of TNF-α production in cerebral and intestinal tissues. The rats with cerebral ischemia and treated with MSG displayed statistically significant low levels of TNF-α in cerebral and intestinal tissues. These results correlated significantly with NF-κB production calculated at the same intervals. During experiment, the mean blood pressure and heart rates in all groups were stable. CONCLUSION: Glutamate is involved in the mechanism of intestinal and cerebral inflammation responses. The effects of glutamate on cerebral and intestinal inflammatory responses after ischemia are up-regulated at the transcriptional level, through the NF-κB signal transduction pathway. PMID:15655833

  20. Cerebral Amyloid Angiopathy: Emerging Concepts

    PubMed Central

    2015-01-01

    Cerebral amyloid angiopathy (CAA) involves cerebrovascular amyloid deposition and is classified into several types according to the amyloid protein involved. Of these, sporadic amyloid β-protein (Aβ)-type CAA is most commonly found in older individuals and in patients with Alzheimer's disease (AD). Cerebrovascular Aβ deposits accompany functional and pathological changes in cerebral blood vessels (CAA-associated vasculopathies). CAA-associated vasculopathies lead to development of hemorrhagic lesions [lobar intracerebral macrohemorrhage, cortical microhemorrhage, and cortical superficial siderosis (cSS)/focal convexity subarachnoid hemorrhage (SAH)], ischemic lesions (cortical infarction and ischemic changes of the white matter), and encephalopathies that include subacute leukoencephalopathy caused by CAA-associated inflammation/angiitis. Thus, CAA is related to dementia, stroke, and encephalopathies. Recent advances in diagnostic procedures, particularly neuroimaging, have enabled us to establish a clinical diagnosis of CAA without brain biopsies. Sensitive magnetic resonance imaging (MRI) methods, such as gradient-echo T2* imaging and susceptibility-weighted imaging, are useful for detecting cortical microhemorrhages and cSS. Amyloid imaging with amyloid-binding positron emission tomography (PET) ligands, such as Pittsburgh Compound B, can detect CAA, although they cannot discriminate vascular from parenchymal amyloid deposits. In addition, cerebrospinal fluid markers may be useful, including levels of Aβ40 for CAA and anti-Aβ antibody for CAA-related inflammation. Moreover, cSS is closely associated with transient focal neurological episodes (TFNE). CAA-related inflammation/angiitis shares pathophysiology with amyloid-related imaging abnormalities (ARIA) induced by Aβ immunotherapies in AD patients. This article reviews CAA and CAA-related disorders with respect to their epidemiology, pathology, pathophysiology, clinical features, biomarkers, diagnosis

  1. Pathways to ischemic neuronal cell death: are sex differences relevant?

    PubMed Central

    Lang, Jesse T; McCullough, Louise D

    2008-01-01

    We have known for some time that the epidemiology of human stroke is sexually dimorphic until late in life, well beyond the years of reproductive senescence and menopause. Now, a new concept is emerging: the mechanisms and outcome of cerebral ischemic injury are influenced strongly by biological sex as well as the availability of sex steroids to the brain. The principal mammalian estrogen (17 β estradiol or E2) is neuroprotective in many types of brain injury and has been the major focus of investigation over the past several decades. However, it is becoming increasingly clear that although hormones are a major contributor to sex-specific outcomes, they do not fully account for sex-specific responses to cerebral ischemia. The purpose of this review is to highlight recent studies in cell culture and animal models that suggest that genetic sex determines experimental stroke outcome and that divergent cell death pathways are activated after an ischemic insult. These sex differences need to be identified if we are to develop efficacious neuroprotective agents for use in stroke patients. PMID:18573200

  2. Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials

    PubMed Central

    Liu, Jialing; Wang, Yongting; Akamatsu, Yosuke; Lee, Chih Cheng; Stetler, R Anne; Lawton, Michael T.; Yang, Guo-Yuan

    2014-01-01

    The brain vasculature has been increasingly recognized as a key player that directs brain development, regulates homeostasis, and contributes to pathological processes. Following ischemic stroke, the reduction of blood flow elicits a cascade of changes and leads to vascular remodeling. However, the temporal profile of vascular changes after stroke is not well understood. Growing evidence suggests that the early phase of cerebral blood volume (CBV) increase is likely due to the improvement in collateral flow, also known as arteriogenesis, whereas the late phase of CBV increase is attributed to the surge of angiogenesis. Arteriogenesis is triggered by shear fluid stress followed by activation of endothelium and inflammatory processes, while angiogenesis induces a number of pro-angiogenic factors and circulating endothelial progenitor cells (EPCs). The status of collaterals in acute stroke has been shown to have several prognostic implications, while the causal relationship between angiogenesis and improved functional recovery has yet to be established in patients. A number of interventions aimed at enhancing cerebral blood flow including increasing collateral recruitment are under clinical investigation. Transplantation of EPCs to improve angiogenesis is also underway. Knowledge in the underlying physiological mechanisms for improved arteriogenesis and angiogenesis shall lead to more effective therapies for ischemic stroke. PMID:24291532

  3. Systematic investigation of transcription factors critical in the protection against cerebral ischemia by Danhong injection

    PubMed Central

    Wei, Junying; Zhang, Yanqiong; Jia, Qiang; Liu, Mingwei; Li, Defeng; Zhang, Yi; Song, Lei; Hu, Yanzhen; Xian, Minghua; Yang, Hongjun; Ding, Chen; Huang, Luqi

    2016-01-01

    Systematic investigations of complex pathological cascades during ischemic brain injury help to elucidate novel therapeutic targets against cerebral ischemia. Although some transcription factors (TFs) involved in cerebral ischemia, systematic surveys of their changes during ischemic brain injury have not been reported. Moreover, some multi-target agents effectively protected against ischemic stroke, but their mechanisms, especially the targets of TFs, are still unclear. Therefore, a comprehensive approach by integrating network pharmacology strategy and a new concatenated tandem array of consensus transcription factor response elements method to systematically investigate the target TFs critical in the protection against cerebral ischemia by a medication was first reported, and then applied to a multi-target drug, Danhong injection (DHI). High-throughput nature and depth of coverage, as well as high quantitative accuracy of the developed approach, make it more suitable for analyzing such multi-target agents. Results indicated that pre-B-cell leukemia transcription factor 1 and cyclic AMP-dependent transcription factor 1, along with six other TFs, are putative target TFs for DHI-mediated protection against cerebral ischemia. This study provides, for the first time, a systematic investigation of the target TFs critical to DHI-mediated protection against cerebral ischemia, as well as reveals more potential therapeutic targets for ischemic stroke. PMID:27431009

  4. Diagnosis, treatment, and prevention of cerebral palsy.

    PubMed

    O'Shea, Thomas Michael

    2008-12-01

    Cerebral palsy is the most prevalent cause of persisting motor function impairment with a frequency of about 1/500 births. In developed countries, the prevalence rose after introduction of neonatal intensive care, but in the past decade, this trend has reversed. A recent international workshop defined cerebral palsy as "a group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain." In a majority of cases, the predominant motor abnormality is spasticity; other forms of cerebral palsy include dyskinetic (dystonia or choreo-athetosis) and ataxic cerebral palsy. In preterm infants, about one-half of the cases have neuroimaging abnormalities, such as echolucency in the periventricular white matter or ventricular enlargement on cranial ultrasound. Among children born at or near term, about two-thirds have neuroimaging abnormalities, including focal infarction, brain malformations, and periventricular leukomalacia. In addition to the motor impairment, individuals with cerebral palsy may have sensory impairments, cognitive impairment, and epilepsy. Ambulation status, intelligence quotient, quality of speech, and hand function together are predictive of employment status. Mortality risk increases incrementally with increasing number of impairments, including intellectual, limb function, hearing, and vision. The care of individuals with cerebral palsy should include the provision of a primary care medical home for care coordination and support; diagnostic evaluations to identify brain abnormalities, severity of neurologic and functional abnormalities, and associated impairments; management of spasticity; and care for associated problems such as nutritional deficiencies, pain, dental care, bowel and bladder continence, and orthopedic complications. Current strategies to decrease the risk of cerebral palsy include interventions to

  5. Asymmetric Dimethyarginine as Marker and Mediator in Ischemic Stroke

    PubMed Central

    Chen, Shufen; Li, Na; Deb-Chatterji, Milani; Dong, Qiang; Kielstein, Jan T.; Weissenborn, Karin; Worthmann, Hans

    2012-01-01

    Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase (NOS) inhibitor, is known as mediator of endothelial cell dysfunction and atherosclerosis. Circulating ADMA levels are correlated with cardiovascular risk factors such as hypercholesterolemia, arterial hypertension, diabetes mellitus, hyperhomocysteinemia, age and smoking. Accordingly, clinical studies found evidence that increased ADMA levels are associated with a higher risk of cerebrovascular events. After the acute event of ischemic stroke, levels of ADMA and its analog symmetric dimethylarginine (SDMA) are elevated through augmentation of protein methylation and oxidative stress. Furthermore, cleavage of ADMA through dimethylarginine dimethylaminohydrolases (DDAHs) is reduced. This increase of dimethylarginines might be predictive for adverse clinical outcome. However, the definite role of ADMA after acute ischemic stroke still needs to be clarified. On the one hand, ADMA might contribute to brain injury by reduction of cerebral blood flow. On the other hand, ADMA might be involved in NOS-induced oxidative stress and excitotoxic neuronal death. In the present review, we highlight the current knowledge from clinical and experimental studies on ADMA and its role for stroke risk and ischemic brain injury in the hyperacute stage after stroke. Finally, further studies are warranted to unravel the relevance of the close association of dimethylarginines with stroke. PMID:23443106

  6. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    PubMed

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia.

  7. Disordered cholinergic neurotransmission and dysautoregulation after acute cerebral infarction.

    PubMed

    Ott, E O; Abraham, J; Meyer, J S; Achari, A N; Chee, A N; Mathew, N T

    1975-01-01

    The possible role of displaced neurotransmitter acetylcholine (ACHh) in dysautoregulation was examined after experimental regional cerebral infarction was produced by occluding the middle cerebral artery (MCA) in babons. Regional cerebral blood flow (rCBF) was measured after intracarotid injection of 133Xenon using the gamma camera. Autoregulation was tested with metaraminol or angiotensin infusion and the autoregulation index (A.I.) was calculated. Acetylcholinesterase (ACHhE) was measured in brain tissue of noninfarcted and infarcted hemispheres. Cerebral arteriovenous (A-V) differences for cholinesterase (ChE) were also measured. Regional dysautoregulation was found in infarcted gray matter and correlated with increased AChE levels in the same zones of cortex and basal ganglia. The time course of onset of dysautoregulation correlated with increased ChE uptake by the brain. Intravenous infusion of the cholinergic neurotransmitter blocker, scopolamine, restored autoregulation to the ischemic zones. Autoregulation appears to be a myogenic reflex, influenced by neurogenic and metabolic mechanisms.

  8. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    PubMed Central

    Li, Guihong; Yu, Fengbo; Lei, Ting; Gao, Haijun; Li, Peiwen; Sun, Yuxue; Huang, Haiyan; Mu, Qingchun

    2016-01-01

    Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research. PMID:27482235

  9. Endovascular revascularization of symptomatic chronic middle cerebral artery occlusions: Two case reports

    PubMed Central

    Wan, Yue; Lo, Wai-Ting; Liu, Yang-Xia

    2016-01-01

    For patients with chronic middle cerebral artery occlusions who have recurrent ischemic symptoms despite antiplatelet therapy and vascular risk factor control, treatment options are limited. Because of concerns about the safety of endovascular revascularization of these occlusions and the technical skills required, these procedures have not been widely performed. We report on two patients with successful endovascular revascularization of the chronic middle cerebral artery occlusion with impaired cerebral hemodynamics, with vessel patency maintained on follow-up imaging and no recurrence of stroke. A literature review of treatment options for such patients was performed. Revascularization is technically feasible and can be considered an option for carefully selected chronic middle cerebral artery occlusion patients with recurrent ischemic symptoms despite medical therapy. PMID:26647227

  10. Malignant Hemispheric Cerebral Infarction Associated with Idiopathic Systemic Capillary Leak Syndrome

    PubMed Central

    Miyata, Kei; Mikami, Takeshi; Mikuni, Nobuhiro; Aisaka, Wakiko; Irifune, Hideto; Narimatsu, Eichi

    2013-01-01

    Idiopathic systemic capillary leak syndrome (ISCLS) is a rare condition that is characterized by unexplained episodic capillary hyperpermeability due to a shift of fluid and protein from the intravascular to the interstitial space. This results in diffuse general swelling, fetal hypovolemic shock, hypoalbuminemia, and hemoconcentration. Although ISCLS rarely induces cerebral infarction, we experienced a patient who deteriorated and was comatose as a result of massive cerebral infarction associated with ISCLS. In this case, severe hypotensive shock, general edema, hemiparesis, and aphasia appeared after serious antecedent gastrointestinal symptoms. Progressive life-threatening ischemic cerebral edema required decompressive hemicraniectomy. The patient experienced another episode of severe hypotension and limb edema that resulted in multiple extremity compartment syndrome. Treatment entailed forearm and calf fasciotomies. Cerebral edema in the ischemic brain progresses rapidly in patients suffering from ISCLS. Strict control of fluid volume resuscitation and aggressive diuretic therapy may be needed during the post-leak phase of fluid remobilization. PMID:24163674

  11. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain.

    PubMed

    Ryu, Sun; Lee, Seung-Hoon; Kim, Seung U; Yoon, Byung-Woo

    2016-02-01

    Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in the ischemic rat brain after the transplantation of human neural stem cells. Focal cerebral ischemia in the rat brain was induced by middle cerebral artery occlusion. Human neural stem cells were transplanted into the subventricular zone. The behavioral performance of human neural stem cells-treated ischemic rats was significantly improved and cerebral infarct volumes were reduced compared to those in untreated animals. Numerous transplanted human neural stem cells were alive and preferentially localized to the ipsilateral ischemic hemisphere. Furthermore, 5-bromo-2'-deoxyuridine-labeled endogenous neural stem cells were observed in the subventricular zone and hippocampus, where they differentiated into cells immunoreactive for the neural markers doublecortin, neuronal nuclear antigen NeuN, and astrocyte marker glial fibrillary acidic protein in human neural stem cells-treated rats, but not in the untreated ischemic animals. The number of 5-bromo-2'-deoxyuridine-positive ⁄ anti-von Willebrand factor-positive proliferating endothelial cells was higher in the ischemic boundary zone of human neural stem cells-treated rats than in controls. Finally, transplantation of human neural stem cells in the brains of rats with focal cerebral ischemia promoted the proliferation of endogenous neural stem cells and their differentiation into mature neural-like cells, and enhanced angiogenesis. This study provides valuable insights into the effect of human neural stem cell transplantation on focal cerebral ischemia, which can be applied to the development of an effective therapy for stroke.

  12. Successful Escape of Acute Ischemic Stroke Patients from Hospital to Home: Clinical Note

    PubMed Central

    Tei, Hideaki

    2012-01-01

    I describe four patients who successfully escaped from the hospital to their own home during the acute phase of ischemic stroke. This is a very rare phenomenon (seen in 0.35% of 1150 consecutive patients with first ischemic stroke within 24 h after onset), but the patients had rather uniform clinical characteristics. All were male, around 60 years old, had moderate to severe aphasia (Wernicke’s in 2 patients, Broca's in 1, and transcortical motor in 1), and cerebral infarction of the left middle cerebral artery territory. None had significant motor weakness, hemispatial neglect, or hemianopia at the time of escape. Overall functional outcome was good for all but one patient, but aphasia persisted in three. Although none of the four patients sustained serious injury during the escape, patients with such clinical characteristics must be managed cautiously to prevent serious consequences. PMID:22425726

  13. [EEG and ischemic stroke in full-term newborns].

    PubMed

    Selton, D; André, M; Hascoët, J M

    2003-06-01

    The aims of this study were to describe EEG anomalies in unilateral neonatal ischemic stroke without hypoxic-ischemic encephalopathy, and to determine possible links between these abnormalities and long-term outcome. In 6 full-term newborns without severe fetal distress ischemic stroke was confirmed by computed tomography and/or magnetic resonance imaging. Twenty EEGs were recorded during the neonatal period, 5 in acute stage and 15 later. The duration of the follow-up ranged from 3 to 9 years. All newborns developed unilateral clonic seizures, right-sided (5 cases) or left-sided (1 case); seizures began between 14 and 48 h of life. At follow-up, 3 children were normal at 2 and 6 years of age, while the 3 others had sequelae: epilepsy at 9 years of age in one, and unilateral mild cerebral palsy in the 2 others (3 and 4 years of age), with behavioral problems in one of them. Critical EEG discharges, rhythmic sharp waves and/or slow waves were recorded on the injured side. Abnormalities of interictal activity were excess of alpha or theta rhythms, transitory EEG discontinuity or low voltage. The 2 children with cerebral palsy had numerous unilateral post-ictal positive rolandic slow sharp waves (PRSSWs), which were similar to the positive rolandic sharp waves of premature infants; the child with behavioral problems had numerous positive left-sided temporal fast sharp waves. PRSSWs could be associated with contralateral motor sequelae, while positive left temporal fast sharp waves were associated with long term behavioral problems. These findings may be used for future prospective studies aimed at specifying the relation between EEG abnormalities and long-term outcome.

  14. Acute ischemic stroke after cardiac catheterization: the protamine low-dose recombinant tissue plasminogen activator pathway.

    PubMed

    Guevara, Carlos; Quijada, Alonso; Rosas, Carolina; Bulatova, Katya; Lara, Hugo; Nieto, Elena; Morales, Marcelo

    2016-05-20

    Intravenous thrombolysis is the preferred treatment for acute ischemic stroke; however, it remains unestablished in the area of cardiac catheterization. We report three patients with acute ischemic stroke after cardiac catheterization. After reversing the anticoagulant effect of unfractionated heparin with protamine, all of the patients were successfully off-label thrombolyzed with reduced doses of intravenous recombinant tissue plasminogen activator (0.6 mg/kg). This dose was preferred to reduce the risk of symptomatic cerebral or systemic bleeding. The sequential pathway of protamine recombinant tissue plasminogen activator at reduced doses may be safer for reducing intracranial or systemic bleeding events, whereas remaining efficacious for the treatment of acute ischemic stroke after cardiac catheterization.

  15. SLAP/SLAP2 prevent excessive platelet (hem)ITAM signaling in thrombosis and ischemic stroke in mice.

    PubMed

    Cherpokova, Deya; Bender, Markus; Morowski, Martina; Kraft, Peter; Schuhmann, Michael K; Akbar, Sarah M; Sultan, Cheryl S; Hughes, Craig E; Kleinschnitz, Christoph; Stoll, Guido; Dragone, Leonard L; Watson, Steve P; Tomlinson, Michael G; Nieswandt, Bernhard

    2015-01-01

    Glycoprotein VI and C-type lectin-like receptor 2 are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease, which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter proteins (SLAP and SLAP2) are involved in the regulation of immune cell surface expression and signaling, but their function in platelets is unknown. In this study, we show that platelets expressed both SLAP isoforms and that overexpression of either protein in a heterologous cell line almost completely inhibited glycoprotein VI and C-type lectin-like receptor 2 signaling. In mice, single deficiency of SLAP or SLAP2 had only moderate effects on platelet function, whereas double deficiency of both adapters resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity, and thrombin generation in response to (hem)ITAM-coupled, but not G protein-coupled, receptor activation. In vivo, constitutive SLAP/SLAP2 knockout mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. This was attributed to the absence of both adapter proteins in platelets, as demonstrated by adoptive transfer of Slap(-/-)/Slap2(-/-) platelets into wild-type mice. Our results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke.

  16. Cerebral infarction in a 24-year-old pilot.

    PubMed

    Ohashi, Koichiro; Nakanishi, Kuniaki; Miyajima, Daijiro; Fukushima, Koji; Shirotani, Toshiki; Kuwamura, Keiichi; Tong, Andrew

    2003-10-01

    Ischemic stroke is a rare event in young adults. We report on a 24-yr-old pilot with cerebral infarction of undetermined etiology, temporally associated with chain smoking. The patient exhibited dysphasia, stupor (confused consciousness), and right facial-nerve palsy. Computed-tomography revealed a low-density area in the left insular cortex. Cerebroangiography showed severe stenosis in a branch of the left middle cerebral artery. After admission, the patient made a rapid and uneventful recovery within 72 h. MRI showed an area of hyperintensity on T2-weighted images 2 mo after the attack. Based on the hyperintense area on FLAIR (fluid attenuated inversion recovery sequence) images obtained in MRI performed 10 mo after the attack, we diagnosed a cerebral infarction. In the Japan Air Self-Defense Force, cerebral infarction is an aeromedically disqualifying condition. However, in the evaluation 2 mo after the attack, differentiation from reversible ischemic neurological deficit was difficult. We discuss the criteria used for diagnosis and the risk factors for cerebral infarction in young adults, as well as the aeromedical disposition of young pilots.

  17. Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis: nicotiflorin and JAK2/STAT3 pathway

    PubMed Central

    Hu, Guang-qiang; Du, Xi; Li, Yong-jie; Gao, Xiao-qing; Chen, Bi-qiong; Yu, Lu

    2017-01-01

    Nicotiflorin is a flavonoid extracted from Carthamus tinctorius. Previous studies have shown its cerebral protective effect, but the mechanism is undefined. In this study, we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway. The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion. Nicotiflorin (10 mg/kg) was administered by tail vein injection. Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining. Additionally, p-JAK2, p-STAT3, Bcl-2, Bax, and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay. Nicotiflorin altered the shape and structure of injured neurons, decreased the number of apoptotic cells, down-regulates expression of p-JAK2, p-STAT3, caspase-3, and Bax, decreased Bax immunoredactivity, and increased Bcl-2 protein expression and immunoreactivity. These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway. PMID:28250754

  18. Successful Intra-Arterial Thrombolysis for Acute Ischemic Stroke in the Immediate Postpartum Period: Case Report

    SciTech Connect

    Mendez, Jose C. Masjuan, J.; Garcia, N.; Lecinana, M. de

    2008-01-15

    Stroke in pregnancy and the puerperium is a rare but potentially devastating event. We present the case of a previously healthy woman who underwent a cesarean delivery and experienced a middle cerebral artery thrombosis in the immediate postpartum period that was subsequently lysed with intra-arterial urokinase. The patient made a complete neurologic recovery. To the best of our knowledge, this is the first reported case of successful intra-arterial thrombolysis for ischemic stroke in the postpartum period.

  19. Treatment with Isorhamnetin Protects the Brain Against Ischemic Injury in Mice.

    PubMed

    Zhao, Jin-Jing; Song, Jin-Qing; Pan, Shu-Yi; Wang, Kai

    2016-08-01

    Ischemic stroke is a major cause of morbidity and mortality, yet lacks effective neuroprotective treatments. The aim of this work was to investigate whether treatment with isorhamnetin protected the brain against ischemic injury in mice. Experimental stroke mice underwent the filament model of middle cerebral artery occlusion with reperfusion. Treatment with isorhamnetin or vehicle was initiated immediately at the onset of reperfusion. It was found that treatment of experimental stroke mice with isorhamnetin reduced infarct volume and caspase-3 activity (a biomarker of apoptosis), and improved neurological function recovery. Treatment of experimental stroke mice with isorhamnetin attenuated cerebral edema, improved blood-brain barrier function, and upregulated gene expression of tight junction proteins including occludin, ZO-1, and claudin-5. Treatment of experimental stroke mice with isorhamnetin activated Nrf2/HO-1, suppressed iNOS/NO, and led to reduced formation of MDA and 3-NT in ipsilateral cortex. In addition, treatment of experimental stroke mice with isorhamnetin suppressed activity of MPO (a biomarker of neutrophil infiltration) and reduced protein levels of IL-1β, IL-6, and TNF-α in ipsilateral cortex. Furthermore, it was found that treatment of experimental stroke mice with isorhamnetin reduced mRNA and protein expression of NMDA receptor subunit NR1 in ipsilateral cortex. In conclusion, treatment with isorhamnetin protected the brain against ischemic injury in mice. Isorhamnetin could thus be envisaged as a countermeasure for ischemic stroke but remains to be tested in humans.

  20. 3-N-butylphthalide improves neuronal morphology after chronic cerebral ischemia

    PubMed Central

    Zhao, Wanhong; Luo, Chao; Wang, Jue; Gong, Jian; Li, Bin; Gong, Yingxia; Wang, Jun; Wang, Hanqin

    2014-01-01

    3-N-butylphthalide is an effective drug for acute ischemic stroke. However, its effects on chronic cerebral ischemia-induced neuronal injury remain poorly understood. Therefore, this study ligated bilateral carotid arteries in 15-month-old rats to simulate chronic cerebral ischemia in aged humans. Aged rats were then intragastrically administered 3-n-butylphthalide. 3-N-butylphthalide administration improved the neuronal morphology in the cerebral cortex and hippocampus of rats with chronic cerebral ischemia, increased choline acetyltransferase activity, and decreased malondialdehyde and amyloid beta levels, and greatly improved cognitive function. These findings suggest that 3-n-butylphthalide alleviates oxidative stress caused by chronic cerebral ischemia, improves cholinergic function, and inhibits amyloid beta accumulation, thereby improving cerebral neuronal injury and cognitive deficits. PMID:25206879

  1. Classifiers for Ischemic Stroke Lesion Segmentation: A Comparison Study

    PubMed Central

    Maier, Oskar; Schröder, Christoph; Forkert, Nils Daniel; Martinetz, Thomas; Handels, Heinz

    2015-01-01

    Motivation Ischemic stroke, triggered by an obstruction in the cerebral blood supply, leads to infarction of the affected brain tissue. An accurate and reproducible automatic segmentation is of high interest, since the lesion volume is an important end-point for clinical trials. However, various factors, such as the high variance in lesion shape, location and appearance, render it a difficult task. Methods In this article, nine classification methods (e.g. Generalized Linear Models, Random Decision Forests and Convolutional Neural Networks) are evaluated and compared with each other using 37 multiparametric MRI datasets of ischemic stroke patients in the sub-acute phase in terms of their accuracy and reliability for ischemic stroke lesion segmentation. Within this context, a multi-spectral classification approach is compared against mono-spectral classification performance using only FLAIR MRI datasets and two sets of expert segmentations are used for inter-observer agreement evaluation. Results and Conclusion The results of this study reveal that high-level machine learning methods lead to significantly better segmentation results compared to the rather simple classification methods, pointing towards a difficult non-linear problem. The overall best segmentation results were achieved by a Random Decision Forest and a Convolutional Neural Networks classification approach, even outperforming all previously published results. However, none of the methods tested in this work are capable of achieving results in the range of the human observer agreement and the automatic ischemic stroke lesion segmentation remains a complicated problem that needs to be explored in more detail to improve the segmentation results. PMID:26672989

  2. Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction.

    PubMed

    Godínez-Rubí, Marisol; Rojas-Mayorquín, Argelia E; Ortuño-Sahagún, Daniel

    2013-01-01

    Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment.

  3. Blood Occludin Level as a Potential Biomarker for Early Blood Brain Barrier Damage Following Ischemic Stroke

    PubMed Central

    Pan, Rong; Yu, Kewei; Weatherwax, Theodore; Zheng, Handong; Liu, Wenlan; Liu, Ke Jian

    2017-01-01

    Concern about intracerebral hemorrhage (ICH) is the primary reason for withholding tPA therapy from patients with ischemic stroke. Early blood brain barrier (BBB) damage is the major risk factor for fatal post-thrombolysis ICH, but rapidly assessing BBB damage before tPA administration is highly challenging. We recently reported that ischemia induced rapid degradation of tight junction protein occludin in cerebromicrovessels. The present study investigates whether the cleaved occludin is released into the blood stream and how blood occludin levels correlate to the extent of BBB damage using a rat model of ischemic stroke. Cerebral ischemia induced a time-dependent increase of blood occludin with a sharp increase at 4.5-hour post-ischemia onset, which concurrently occurred with the loss of occludin from ischemic cerebral microvessels and a massive BBB leakage at 4.5-hour post-ischemia. Two major occludin fragments were identified in the blood during cerebral ischemia. Furthermore, blood occludin levels remained significantly higher than its basal level within the first 24 hours after ischemia onset. Our findings demonstrate that blood occludin levels correlate well with the extent of BBB damage and thus may serve as a clinically relevant biomarker for evaluating the risk of ICH before tPA administration. PMID:28079139

  4. Photodynamic impact induces ischemic tolerance in models in vivo and in vitro

    NASA Astrophysics Data System (ADS)

    Demyanenko, Svetlana; Sharifulina, Svetlana; Berezhnaya, Elena; Kovaleva, Vera; Neginskaya, Maria; Zhukovskaya, Ludmila

    2016-04-01

    Ischemic tolerance determines resistance to lethal ischemia gained by a prior sublethal stimulus (i.e., preconditioning). We reproduced this effect in two variants. In vitro the preliminary short (5 s) photodynamic treatment (PDT) (photosensitizer Photosens, 10 nM, 30 min preincubation; laser: 670 nm, 100 mW/cm2) significantly reduced the necrosis of neurons and glial cells in the isolated crayfish stretch receptor, which was caused by following 30-min PDT by 66% and 46%, respectively. In vivo PDT of the rat cerebral cortex with hydrophilic photosensitizer Rose Bengal (i.v. administration, laser irradiation: 532 nm, 60 mW/cm2, 3 mm beam diameter, 30 min) caused occlusion of small brain vessels and local photothrombotic infarct (PTI). It is a model of ischemic stroke. Cerebral tissue edema and global necrosis of neurons and glial cells occurred in the infarction core, which was surrounded by a 1.5 mm transition zone, penumbra. The maximal pericellular edema, hypo- and hyperchromia of neurons were observed in penumbra 24 h after PTI. The repeated laser irradiation of the contralateral cerebral cortex also caused PTI but lesser as compared with single PDT. Preliminary unilateral PTI provided ischemic tolerance: at 14 day after second exposure the PTI volume significantly decreased by 24% than in the case of a single exposure. Sensorimotor deficits in PDT-treated rats was registered using the behavioral tests. The preliminary PTI caused the preconditioning effect.

  5. Changes at the focus of experimental ischemic stroke treated with neuroprotective agents.

    PubMed

    Onishchenko, L S; Gaikova, O N; Yanishevskii, S N

    2008-01-01

    The aim of the present work was to compare the morphological changes occurring at the focus of experimental ischemic stroke treated with agents of the neurotrophic group (alpha-GPC, cerebrolysin), an agent with nootropic properties (piracetam), and a mixed-action agent (vinpocetine). Experiments were performed on 18 rats. Transient cerebral circulatory lesions (acute ischemia) were produced in the right hemisphere by clipping the stem of the innominate artery for 40 min. Light microscopic and electron microscopic studies were performed on fragments of cerebral cortex, brainstem, and cerebellum. Use of alpha-GPC and cerebrolysin increased the tolerance of neurons to ischemic damage and slowed the execution of the cell death program. Intracellular changes were seen and were interpreted as adaptive and reparative: these included folding of the nuclear membrane, abundance of polyribosomes, and endoplasmic reticulum and Golgi complex hypertrophy. These agents preserved the structures of the nuclear membranes and major cellular organelles. When piracetam and vinpocetine were used, all morphological measures indicated inadequate energy provision for repair processes in the acute stage of ischemic stroke. Morphological signs of functional tension of cerebral cortex neurons were seen, with gliocytes in different stages of apoptosis, along with the phenomenon of incomplete separation of gliocytes during proliferation, pathological changes to myelin and non-myelinated fibers, and abnormalities in synapse structure.

  6. Nitric Oxide Donors as Neuroprotective Agents after an Ischemic Stroke-Related Inflammatory Reaction

    PubMed Central

    Rojas-Mayorquín, Argelia E.; Ortuño-Sahagún, Daniel

    2013-01-01

    Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment. PMID:23691263

  7. Cerebral circulation in hypoxia and ischemia.

    PubMed

    Kovách, A G

    1988-01-01

    In conclusion our results clearly suggest that vital functions of the brain, in spite of its well developed autoregulation are impaired during prolonged hypovolemic conditions. Regional cerebral blood flow measured by the 133Xe clearance and 14C-antipyrine autoradiographic techniques demonstrated a progressive reduction in CBF, with the development of patchy and circumscribed ischemic areas during hemorrhagic shock which persisted after reinfusion. The regional distribution of the underperfused regions cannot be explained solely in terms of boundary zones between the main distribution fields of major cerebral arteries. Our results suggest the involvement of the sympathetic nervous system in the impairment of cerebral microcirculation during hemorrhagic shock. The patchy focal brain damage could be the background of the functional impairment. The focal appearances suggests that, in addition to generalized (blood borne) changes, local factors play an important role in the production of ischemic areas in the brain. Afferent neural nociceptive input to the brain seems to be elevated during shock. It may be presumed that this leads to increased tissue metabolism and the accumulation of metabolites. The low flow combined with elevated neuronal activity and cellular metabolism produces an imbalance between oxygen delivery and oxygen utilization. The local nature of afferent activation of the CNS can explain the regional impairment in the brain tissue. Nociceptive afferent stimulation increases, while denervation of the carotid sinus or transsection of the vagus or spinal afferent pathways decreases the sensitivity to shock. We have presented further evidence that stimulation of the C-fibres of the sciatic nerve reduced local cerebral blood flow and the tissue PO2 in the n. VPL thalami and VM hypothalami in cardiovascularly restricted (stabilized blood pressure) animals. Concerning the subcellular events that may lead to neuronal death during hemorrhagic shock, we believe

  8. Differential diagnosis of regional cerebral hyperfixation of TC-99m HMPAO on SPECT imaging

    SciTech Connect

    Shirazi, P.; Konopka, L.; Crayton, J.W.

    1994-05-01

    Accurate diagnostic evaluation of patients with neurologic and neuropsychiatric disease is important because early treatment may halt disease progression and prevent impairment or disability. Cerebral hyperfixation of HMPAO has been ascribed to luxury perfusion following ischemic infarction. The present study sought to identify other conditions that also display radiotracer hyperfixation in order to develop a differential diagnosis of this finding on SPECT imaging. Two hundred fifty (n=250) successive cerebral SPECT images were reviewed for evidence of HMPAO hyperfixation. Hyperfixation was defined as enhanced focal perfusion surrounded by a zone of diminished or normal cerebral perfusion. All patients were scanned after intravenous injection of 25 mCi Tc-99m HMPAO. Volume-rendered and oblique images were obtained with a Trionix triple-head SPECT system using ultra high resolution fan beam collimators. Thirteen (13/250; 5%) of the patients exhibited regions of HMPAO hyperfixation. CT or MRI abnormalities were detected in 6/13 cases. Clinical diagnoses in these patients included intractable psychosis, post-traumatic stress disorder, alcohol and narcotic dependence, major depression, acute closed-head trauma, hypothyroidism, as well as subacute ischemic infarction. A wide variety of conditions may be associated with cerebral hyperfixation of HMPAO. These conditions include neurologic and psychiatric diagnoses, and extend the consideration of hyperfixation beyond ischemic infarction. Consequently, a differential diagnosis of HMPAO hyperfixation may be broader than originally considered, and this may suggest a fundamental role for local cerebral hyperperfusion. Elucidation of the fundamental mechanism(s) for cerebral hyperperfusion requires further investigation.

  9. Aqueous extract of Cordyceps alleviates cerebral ischemia-induced short-term memory impairment in gerbils

    PubMed Central

    Lee, Sang-Hak; Ko, Il-Gyu; Kim, Sung-Eun; Hwang, Lakkyong; Jin, Jun-Jang; Choi, Hyun-Hee; Kim, Chang-Ju

    2016-01-01

    Cerebral ischemia is caused by reduced cerebral blood flow due to a transient or permanent cerebral artery occlusion. Ischemic injury in the brain leads to neuronal cell death, and eventually causes neurological impairments. Cordyceps, the name given to the fungi on insects, has abundant useful natural products with various biological activities. Cordyceps is known to have nephroprotective, hepatoprotective, anti-inflammatory, antioxidative, and antiapoptotic effects. We investigated the effects of Cordyceps on short-term memory, neuronal apoptosis, and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils. For this study, a step-down avoidance test, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunohistochemistry for caspase-3 and 5-bromo-2′-de-oxyuridine, and western blot for Bax, Bcl-2, brain-derived neurotrophic factor (BDNF), and tyrosin kinase B were performed. In the present study, Cordyceps alleviated cerebral ischemia-induced short-term memory impairment. Cordyceps showed therapeutic effects through inhibiting cerebral ischemia-induced apoptosis in the hippocampus. Cordyceps suppressed cerebral ischemia-induced cell proliferation in the hippocampal dentate gyrus due to the reduced apoptotic neuronal cell death. Cordyceps treatment also enhanced BDNF and TrkB expressions in the hippocampus of ischemic gerbils. It can be suggested that Cordyceps overcomes cerebral ischemia-induced neuronal apoptosis, thus facilitates recovery following cerebral ischemia injury. PMID:27162767

  10. Aqueous extract of Cordyceps alleviates cerebral ischemia-induced short-term memory impairment in gerbils.

    PubMed

    Lee, Sang-Hak; Ko, Il-Gyu; Kim, Sung-Eun; Hwang, Lakkyong; Jin, Jun-Jang; Choi, Hyun-Hee; Kim, Chang-Ju

    2016-04-01

    Cerebral ischemia is caused by reduced cerebral blood flow due to a transient or permanent cerebral artery occlusion. Ischemic injury in the brain leads to neuronal cell death, and eventually causes neurological impairments. Cordyceps, the name given to the fungi on insects, has abundant useful natural products with various biological activities. Cordyceps is known to have nephroprotective, hepatoprotective, anti-inflammatory, antioxidative, and antiapoptotic effects. We investigated the effects of Cordyceps on short-term memory, neuronal apoptosis, and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils. For this study, a step-down avoidance test, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunohistochemistry for caspase-3 and 5-bromo-2'-de-oxyuridine, and western blot for Bax, Bcl-2, brain-derived neurotrophic factor (BDNF), and tyrosin kinase B were performed. In the present study, Cordyceps alleviated cerebral ischemia-induced short-term memory impairment. Cordyceps showed therapeutic effects through inhibiting cerebral ischemia-induced apoptosis in the hippocampus. Cordyceps suppressed cerebral ischemia-induced cell proliferation in the hippocampal dentate gyrus due to the reduced apoptotic neuronal cell death. Cordyceps treatment also enhanced BDNF and TrkB expressions in the hippocampus of ischemic gerbils. It can be suggested that Cordyceps overcomes cerebral ischemia-induced neuronal apoptosis, thus facilitates recovery following cerebral ischemia injury.

  11. HYPERTENSIVE-ISCHEMIC LEG ULCERS

    PubMed Central

    Farber, Eugene M.; Schmidt, Otto E. L.

    1950-01-01

    Ischemic ulcers of the leg having characteristics different from those of ordinary leg ulcers have been observed in a small number of hypertensive patients, mostly women, during the past few years. Such ulcers are usually located above the ankle. They begin with a small area of purplish discoloration at the site of slight trauma, and progress to acutely tender ulceration. In studies of tissue removed from the margin and the base of an ulcer of this kind, obliterative arteriolar sclerotic changes, ischemic-appearing connective tissue and inflammatory changes were noted. Two additional cases are reported. ImagesFigure 1.Figure 2.Figure 3.Figure 4. PMID:15398887

  12. Combination of early and delayed ischemic postconditioning enhances brain-derived neurotrophic factor production by upregulating the ERK-CREB pathway in rats with focal ischemia.

    PubMed

    Wu, Hui; Yang, Shao-Feng; Dai, Jiong; Qiu, Yong-Ming; Miao, Yi-Feng; Zhang, Xiao-Hua

    2015-11-01

    Ischemic postconditioning, including early and delayed ischemic postconditioning, has been recognized as a simple and promising strategy in the treatment of stroke. However, the effects of the combination of early and delayed ischemic postconditioning, and the mechanisms underlying these effects, remain unclear. The aim of the present study was to determine whether the combination of early and delayed ischemic postconditioning offers greater protection against stroke, and enhances the production of brain‑derived neurotrophic factor (BDNF). A combination of early and delayed ischemic postconditioning was established by repeated, transient occlusion and reperfusion of the ipsilateral common carotid artery in a rat model of middle cerebral artery occlusion. Infarct size, motor function, cerebral blood flow and brain edema were then evaluated, in order to confirm the effects of combinative ischemic postconditioning. TUNEL staining was used to analyze the rate of apoptosis of cells in the penumbral area. BDNF, extracellular signal‑regulated kinases 1/2 (ERK1/2) and cAMP response element‑binding protein (CREB) expression was detected using immunofluorescence staining and western blot analysis. The results of the present study indicated that the combination of early and delayed ischemic postconditioning further reduced the infarct volume, stabilized cerebral blood disturbance and attenuated neuronal apoptosis, compared with either alone. However, combinative postconditioning exerted the same effect on neurological function and brain edema, compared with early or delayed ischemic postconditioning alone. Further investigation indicated that combinative ischemic postconditioning increased the expression of BDNF, and a significantly higher number of BDNF‑positive cells was observed in neurons and astrocytes from the combined group than in the early or delayed groups. Combinative ischemic postconditioning also induced the phosphorylation of ERK1/2 and CREB in the

  13. Cerebral monitoring during carotid endarterectomy by transcranial Doppler ultrasonography

    PubMed Central

    2017-01-01

    Purpose To evaluate the efficacy and safety of cerebral monitoring by transcranial Doppler ultrasonography (TCD) for the detection of cerebral ischemia during carotid endarterectomy (CEA). Methods From August 2004 to December 2013, 159 CEAs were performed in a tertiary hospital. All procedures were performed under general anesthesia. Intraoperative TCD was routinely used to detect cerebral ischemia. Of the 159 patients, 102 patients were included in this study, excluding 27 patients who had a poor transtemporal isonation window and 30 patients who used additional cerebral monitoring systems such as electroencephalography or somatosensory evoked potentials. When mean flow velocity in the ipsilateral middle cerebral artery decreased by >50% versus baseline during carotid clamping carotid shunting was selectively performed. The carotid shunt rate and incidence of perioperative (<30 days) stroke or death were investigated by reviewing medical records. Results Carotid shunting was performed in 31 of the 102 patients (30%). Perioperative stroke occurred in 2 patients (2%); a minor ischemic stroke caused by embolism in one and an intracerebral hemorrhage in the other. Perioperative death developed in the latter patient. Conclusion TCD is a safe cerebral monitoring tool to detect cerebral ischemia during CEA. It can reduce use of carotid shunt. PMID:28203558

  14. Emergency EC-IC bypass for symptomatic atherosclerotic ischemic stroke.

    PubMed

    Horiuchi, Tetsuyoshi; Nitta, Junpei; Ishizaka, Shigetoshi; Kanaya, Kohei; Yanagawa, Takao; Hongo, Kazuhiro

    2013-10-01

    Previous studies have shown that extracranial-intracranial (EC-IC) bypass surgery has no preventive effect on subsequent ipsilateral ischemic stroke in patients with symptomatic atherosclerotic internal carotid occlusion and hemodynamic cerebral ischemia. A few studies have assessed whether an urgent EC-IC bypass surgery is an effective treatment for main trunk stenosis or occlusion in acute stage. The authors retrospectively reviewed 58 consecutive patients who underwent urgent EC-IC bypass for symptomatic internal carotid artery or the middle cerebral artery stenosis or occlusion between January 2003 and December 2011. Clinical characteristics and neuroimagings were evaluated and analyzed. Based on preoperative angiogram, responsible lesions were the internal carotid artery in 19 (32.8%) patients and the middle cerebral artery in 39 (67.2%). No hemorrhagic complication occurred. Sixty-nine percent of patients showed improvement of neurological function after surgery, and 74.1% of patients had favorable outcome. Unfavorable outcome was associated with insufficient collateral flow and new infarction after bypass surgery.

  15. Effect of pregnancy and nitric oxide on the myogenic vasodilation of posterior cerebral arteries and the lower limit of cerebral blood flow autoregulation.

    PubMed

    Chapman, Abbie C; Cipolla, Marilyn J; Chan, Siu-Lung

    2013-09-01

    Hemorrhage during parturition can lower blood pressure beyond the lower limit of cerebral blood flow (CBF) autoregulation that can cause ischemic brain injury. However, the impact of pregnancy on the lower limit of CBF autoregulation is unknown. We measured myogenic vasodilation, a major contributor of CBF autoregulation, in isolated posterior cerebral arteries (PCAs) from nonpregnant and late-pregnant rats (n = 10/group) while the effect of pregnancy on the lower limit of CBF autoregulation was studied in the posterior cerebral cortex during controlled hemorrhage (n = 8). Pregnancy enhanced myogenic vasodilation in PCA and shifted the lower limit of CBF autoregulation to lower pressures. Inhibition of nitric oxide synthase (NOS) prevented the enhanced myogenic vasodilation during pregnancy but did not affect the lower limit of CBF autoregulation. The shift in the autoregulatory curve to lower pressures during pregnancy is likely protective of ischemic injury during hemorrhage and appears to be independent of NOS.

  16. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Luo, Weihua; Zhou, Fangyuan; Li, Pengcheng; Luo, Qingming

    2012-12-01

    Cerebral blood flow (CBF) is critical for the maintenance of cerebral function by guaranteed constant oxygen and glucose supply to brain. Collateral channels (CCs) are recruited to provide alternatives to CBF to ischemic regions once the primary vessel is occluded during ischemic stroke. However, the knowledge of the relationship between dynamic evolution of collateral flow and the distribution of regional blood flow remains limited. In this study, laser speckle imaging was used to assess dynamic changes of CCs and regional blood flow in a rat cortex with permanent middle cerebral artery occlusion (MCAo). We found that CCs immediately provided blood flow to ischemic territories after MCAo. More importantly, there were three kinds of dynamic changes of CCs during acute stroke: persistent CC, impermanent CC, and transient CC, respectively, related to different distributions of regional blood flow. Although there was the possible occurrence of peri-infarct depolarization (PID) during ischemia, there was no obvious significance about the onset time and duration of CCs between rats with and without PID. These results suggest that the initial arising of CCs does not ensure their persistence, and that collateral flow could be varied with distribution of regional blood flow in acute ischemic stroke, which may facilitate the understanding of collateral recruitment and promote the development of collateral therapeutics in the future.

  17. Cerebral Hypoperfusion Precedes Nausea During Centrifugation

    NASA Technical Reports Server (NTRS)

    Serrador, Jorge M.; Schlegel, Todd T.; Black, F. Owen; Wood, Scott J.

    2004-01-01

    Nausea and motion sickness are important operational concerns for aviators and astronauts. Understanding underlying mechanisms associated with motion sickness may lead to new treatments. The goal of this work was to determine if cerebral blood flow changes precede the development of nausea in motion sick susceptible subjects. Cerebral flow velocity in the middle cerebral artery (transcranial Doppler), blood pressure (Finapres) and end-tidal CO2 were measured while subjects were rotated on a centrifuge (250 degrees/sec). Following 5 min of rotation, subjects were translated 0.504 m off-center, creating a +lGx centripetal acceleration in the nasal-occipital plane. Ten subjects completed the protocol without symptoms while 5 developed nausea (4 while 6ff-center and 1 while rotating on-center). Prior to nausea, subjects had significant increases in blood pressure (+13plus or minus 3 mmHg, P less than 0.05) and cerebrovascular resistance (+46 plus or minus 17%, P less than 0.05) and decreases in cerebral flow velocity both in the second (-13 plus or minus 4%) and last minute (-22 plus or minus 5%) before symptoms (P less than 0.05). In comparison, controls demonstrated no change in blood pressure or cerebrovascular resistance in the last minute of off-center rotation and only a 7 plus or minus 2% decrease in cerebral flow velocity. All subjects had significant hypocapnia (-3.8 plus or minus 0.4 mmHg, P less than 0.05), however this hypocapnia could not fully explain the cerebral hypoperfusion associated with the development of nausea. These data indicate that reductions in cerebral blood flow precede the development of nausea. Further work is necessary to determine what role cerebral hypoperfusion plays in motion sickness and whether cerebral hypoperfusion can be used to predict the development of nausea in susceptible individuals.

  18. 3H-1,2-Dithiole-3-thione as a novel therapeutic agent for the treatment of ischemic stroke through Nrf2 defense pathway.

    PubMed

    Kuo, Ping-Chang; Yu, I-Chen; Scofield, Barbara A; Brown, Dennis A; Curfman, Eric T; Paraiso, Hallel C; Chang, Fen-Lei; Yen, Jui-Hung

    2017-05-01

    Cerebral ischemic stroke accounts for more than 80% of all stroke cases. During cerebral ischemia, reactive oxygen species produced in brain tissue induce oxidative stress and inflammatory responses. D3T, the simplest compound of the cyclic, sulfur-containing dithiolethiones, is found in cruciferous vegetables and has been reported to induce antioxidant genes and glutathione biosynthesis through activation of Nrf2. In addition to antioxidant activity, D3T was also reported to possess anti-inflammatory effects. In this study, we evaluated the therapeutic potential of D3T for the treatment of ischemic stroke and investigated the mechanisms underlying the protective effects of D3T in ischemic stroke. Mice subjected to transient middle cerebral artery occlusion/reperfusion (tMCAO/R) were administered with vehicle or D3T to evaluate the effect of D3T in cerebral brain injury. We observed D3T reduced infarct size, decreased brain edema, lessened blood-brain barrier disruption, and ameliorated neurological deficits. Further investigation revealed D3T suppressed microglia (MG) activation and inhibited peripheral inflammatory immune cell infiltration of CNS in the ischemic brain. The protective effect of D3T in ischemic stroke is mediated through Nrf2 induction as D3T-attenuated brain injury was abolished in Nrf2 deficient mice subjected to tMCAO/R. In addition, in vitro results indicate the induction of Nrf2 by D3T is required for its suppressive effect on MG activation and cytokine production. In summary, we demonstrate for the first time that D3T confers protection against ischemic stroke, which is mediated through suppression of MG activation and inhibition of CNS peripheral cell infiltration, and that the protective effect of D3T in ischemic stroke is dependent on the activation of Nrf2.

  19. Brain hemorrhage after endovascular reperfusion therapy of ischemic stroke: a threshold-finding whole-brain perfusion CT study.

    PubMed

    Renú, Arturo; Laredo, Carlos; Tudela, Raúl; Urra, Xabier; Lopez-Rueda, Antonio; Llull, Laura; Oleaga, Laura; Amaro, Sergio; Chamorro, Ángel

    2017-01-01

    Endovascular reperfusion therapy is increasingly used for acute ischemic stroke treatment. The occurrence of parenchymal hemorrhage is clinically relevant and increases with reperfusion therapies. Herein we aimed to examine the optimal perfusion CT-derived parameters and the impact of the duration of brain ischemia for the prediction of parenchymal hemorrhage after endovascular therapy. A cohort of 146 consecutive patients with anterior circulation occlusions and treated with endovascular reperfusion therapy was analyzed. Recanalization was assessed at the end of reperfusion treatment, and the rate of parenchymal hemorrhage at follow-up neuroimaging. In regression analyses, cerebral blood volume and cerebral blood flow performed better than Delay Time maps for the prediction of parenchymal hemorrhage. The most informative thresholds (receiver operating curves) for relative cerebral blood volume and relative cerebral blood flow were values lower than 2.5% of normal brain. In binary regression analyses, the volume of regions with reduced relative cerebral blood volume and/or relative cerebral blood flow was significantly associated with an increased risk of parenchymal hemorrhage, as well as delayed vessel recanalization. These results highlight the relevance of the severity and duration of ischemia as drivers of blood-brain barrier disruption in acute ischemic stroke and support the role of perfusion CT for the prediction of parenchymal hemorrhage.

  20. Angiogenesis in Ischemic Stroke and Angiogenic Effects of Chinese Herbal Medicine

    PubMed Central

    Seto, Sai-Wang; Chang, Dennis; Jenkins, Anita; Bensoussan, Alan; Kiat, Hosen

    2016-01-01

    Stroke is one of the major causes of death and adult disability worldwide. The underlying pathophysiology of stroke is highly complicated, consisting of impairments of multiple signalling pathways, and numerous pathological processes such as acidosis, glutamate excitotoxicity, calcium overload, cerebral inflammation and reactive oxygen species (ROS) generation. The current treatment for ischemic stroke is limited to thromolytics such as recombinant tissue plasminogen activator (tPA). tPA has a very narrow therapeutic window, making it suitable to only a minority of stroke patients. Hence, there is great urgency to develop new therapies that can protect brain tissue from ischemic damage. Recent studies have shown that new vessel formation after stroke not only replenishes blood flow to the ischemic area of the brain, but also promotes neurogenesis and improves neurological functions in both animal models and patients. Therefore, drugs that can promote angiogenesis after ischemic stroke can provide therapeutic benefits in stroke management. In this regard, Chinese herbal medicine (CHM) has a long history in treating stroke and the associated diseases. A number of studies have demonstrated the pro-angiogenic effects of various Chinese herbs and herbal formulations in both in vitro and in vivo settings. In this article, we present a comprehensive review of the current knowledge on angiogenesis in the context of ischemic stroke and discuss the potential use of CHM in stroke management through modulation of angiogenesis. PMID:27275837

  1. Global profiling of influence of intra-ischemic brain temperature on gene expression in rat brain.

    PubMed

    Kobayashi, Megumi Sugahara; Asai, Satoshi; Ishikawa, Koichi; Nishida, Yayoi; Nagata, Toshihito; Takahashi, Yasuo

    2008-06-01

    Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level. Using a high-density oligonucleotide microarray, we screened 24000 genes in the hippocampus under hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (39 degrees C) conditions in a rat ischemia-reperfusion model. When the ischemic group at each intra-ischemic brain temperature was compared to a sham-operated control group, genes whose expression levels changed more than three-fold with statistical significance could be detected. In our screening condition, thirty-three genes (some of them novel) were obtained after screening, and extensive functional surveys and literature reviews were subsequently performed. In the hypothermic condition, many neuroprotective factor genes were obtained, whereas cell death- and cell damage-associated genes were detected as the brain temperature increased. At all intra-ischemic brain temperatures, multiple molecular chaperone genes were obtained. The finding that intra-ischemic brain temperature affects the expression level of many genes related to neuroprotection or neurotoxicity coincides with the different pathological outcomes at different brain temperatures, demonstrating the utility of the genetic approach.

  2. Hypophosphorylation of Ribosomal Protein S6 is a Molecular Mechanism Underlying Ischemic Tolerance Induced by either Hibernation or Preconditioning

    PubMed Central

    Miyake, Shin-ichi; Wakita, Hideaki; Bernstock, Joshua D.; Castri, Paola; Ruetzler, Christl; Miyake, Junko; Lee, Yang-ja; Hallenbeck, John M.

    2015-01-01

    Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) have an extraordinary capacity to withstand prolonged and profound reductions of blood flow and oxygen delivery to brain without incurring any cellular damage. As such, the hibernation torpor of I. tridecemlineatus provides a valuable model of tolerance to ischemic stress. Herein, we report that during hibernation torpor, a marked reduction in the phosphorylation of the ribosomal protein S6 (rpS6) occurs within the brains of I. tridecemlineatus. Of note, rpS6 phosphorylation was shown to increase in the brains of rats that underwent an occlusion of the middle cerebral artery. However, such an increase was attenuated after the implementation of an ischemic preconditioning paradigm. In addition, cultured cortical neurons treated with the rpS6 kinase (S6K) inhibitors, D-glucosamine or PF4708671, displayed a decrease in rpS6 phosphorylation and a subsequent increase in tolerance to oxygen/glucose deprivation, an in vitro model of ischemic stroke. Collectively, such evidence suggests that the down regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning. Further identification and characterization of the mechanisms used by hibernating species to increase ischemic tolerance may eventually clarify how the loss of homeostatic control that occurs during and after cerebral ischemia in the clinic can ultimately be minimized and/or prevented. PMID:26375300

  3. Long-term window of ischemic tolerance: An evolutionarily conserved form of metabolic plasticity regulated by epigenetic modifications?

    PubMed Central

    Khoury, Nathalie; Koronowski, Kevin B.; Perez-Pinzon, Miguel A.

    2016-01-01

    In the absence of effective neuroprotective agents in the clinic, ischemic and pharmacological preconditioning are gaining increased interest in the field of cerebral ischemia. Our lab recently reported that resveratrol preconditioning affords tolerance against a focal cerebral ischemic insult in mice that can last for at least 14 days in vivo making it the longest window of ischemic tolerance discovered to date by a single administration of a pharmacological agent. The mechanism behind this novel extended window of ischemic tolerance remains elusive. In the below commentary we discuss potential mechanisms that could explain this novel extended window of ischemic tolerance in the context of previously identified windows and the known mechanisms behind them. We also draw parallels from the fields of hibernation and hypoxia-tolerance, which are chronic adaptations to severe conditions of hypoxia and ischemia known to be mediated by a form of metabolic depression. We also briefly discuss the importance of epigenetic modifications in maintaining this depressed state of metabolism. PMID:27796011

  4. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  5. Duplication of the Posterior Cerebral Artery and the ‘True Fetal’ Variant

    PubMed Central

    Masoud, Hesham; Nguyen, Thanh N.; Thatcher, Joshua; Barest, Glenn; Norbash, Alexander M.

    2015-01-01

    We present a rare case of bilateral posterior cerebral artery variant anatomy seen in a patient presenting with acute ischemic stroke. An embryological explanation of the variant configuration is discussed along with demonstrative radiologic images and a display of the vascular territory supplied. PMID:26600800

  6. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, ...

  7. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke

    PubMed Central

    Vani, Javad Rasouli; Mohammadi, Mohammad Taghi; Foroshani, Mahsa Sarami; Jafari, Mahvash

    2016-01-01

    Oxidative stress is the common underlying mechanism of damage in ischemic stroke. Therefore, we aimed to evaluate the possible protective effects of polyhydroxylated fullerene derivatives on brain infarction and oxidative/nitrosative stress in a rat model of ischemic stroke. The experiment was performed by four groups of rats (each; n=12); Sham, Control ischemia, and ischemic treatment groups (Pretreatment and Posttreatment). Brain ischemia was induced by 90 min middle cerebral artery occlusion (MCAO) followed by 24 hours reperfusion. Rats received fullerene nanoparticles at dose of 1 mg/kg 30 min before MCAO and immediately after beginning of reperfusion. Infarct volume, contents of malondialdehyde (MDA), glutathione (GSH) and nitrate as well as superoxide dismutase (SOD) activity were assessed 24 hours after termination of MCAO. Brain infarct volume was 310 ± 21 mm3 in control group. Administration of fullerene nanoparticles before and after MCAO significantly decreased the infarct volume by 53 % (145 ± 45 mm3) and 81 % (59 ± 13 mm3), respectively. Ischemia also enhanced MDA and nitrate contents of ischemic hemispheres by 45 % and 25 % , respectively. Fullerene nanoparticles considerably reduced the MDA and nitrate contents of ischemic hemispheres before MCAO by 58 % and 17 % , respectively, and after MCAO by 38 % and 21 % , respectively. Induction of MCAO significantly decreased GSH content (19 % ) and SOD activity (52 % ) of ischemic hemispheres, whereas fullerene nanoparticles increased the GSH content and SOD activity of ischemic hemispheres by 19 % and 52 % before MCAO, respectively, and 21 % and 55 % after MCAO, respectively. Our findings indicate that fullerene nanoparticles, as a potent scavenger of free radicals, protect the brain cells against ischemia/reperfusion injury and inhibit brain oxidative/nitrosative damage. PMID:27540350

  8. Hyperpolarized 129Xe magnetic resonance imaging of a rat model of transient Ischemic Stroke

    NASA Astrophysics Data System (ADS)

    Walvick, Ronn P.; Bastan, Birgul; Reno, Austin; Mansour, Joey; Sun, Yanping; Zhou, Xin; Mazzani, Mary; Fisher, Marc; Sotak, Christopher H.; Albert, Mitchell S.

    2009-02-01

    Ischemic stroke accounts for nearly 80% of all stroke cases. Although proton diffusion and perfusion magnetic resonance imaging (MRI) are the gold standards in ischemic stroke diagnostics, the use of hyperpolarized 129Xe MRI has a potential role to contribute to the diagnostic picture. The highly lipophilic hyperpolarized 129Xe can be non-invasively delivered via inhalation into the lungs where it is dissolved into the blood and delivered to other organs such as the brain. As such, we expect hyperpolarized 129Xe to act as a perfusion tracer which will result in a signal deficit in areas of blood deprived tissue. In this work, we present imaging results from an animal model of transient ischemic stroke characterized through 129Xe MRI. In this model, a suture is used to occlude the middle cerebral artery (MCA) in the rat brain, thus causing an ischemic event. After a period of MCA occlusion, the suture can then be removed to reperfuse the ischemic area. During the ischemic phase of the stroke, a signal void was observed in the MCA territory; which was subsequently restored by normal 129Xe MRI signal once perfusion was reinstated. Further, a higher resolution one-dimensional chemical shift image shows a sharp signal drop in the area of ischemia. Validation of ischemic damage was shown through both proton diffusion-weighted MRI (DWI) and by 2,3,5-triphenyltetrazoliumchloride (TTC) staining. The results show the potential of 129Xe to act as a perfusion tracer; information that may add to the diagnostic and prognostic utility of the clinical picture of stroke.

  9. Stroke from Vasospasm due to Marijuana Use: Can Cannabis Synergistically with Other Medications Trigger Cerebral Vasospasm?

    PubMed Central

    Zafar, Atif; Adeel Faizi, Syed; Zawar, Ifrah

    2016-01-01

    We present a case of imaging proven cerebral vasospasm causing ischemic stroke in a young patient chronically on buprenorphine-naloxone for heroin remission who started smoking cannabis on a daily basis. With cannabis legalization spreading across the states in the USA, it is important for physicians not only to be aware of cannabis reported association with cerebral vasospasm in some patients but also to be on the lookout for possible interacting medications that can synergistically affect cerebral vessels causing debilitating strokes. PMID:27833768

  10. MEG Frequency Analysis Depicts the Impaired Neurophysiological Condition of Ischemic Brain

    PubMed Central

    Ikeda, Hidetoshi; Tsuyuguchi, Naohiro; Uda, Takehiro; Okumura, Eiichi; Asakawa, Takashi; Haruta, Yasuhiro; Nishiyama, Hideki; Okada, Toyoji; Kamada, Hajime; Ohata, Kenji; Miki, Yukio

    2016-01-01

    Purpose Quantitative imaging of neuromagnetic fields based on automated region of interest (ROI) setting was analyzed to determine the characteristics of cerebral neural activity in ischemic areas. Methods Magnetoencephalography (MEG) was used to evaluate spontaneous neuromagnetic fields in the ischemic areas of 37 patients with unilateral internal carotid artery (ICA) occlusive disease. Voxel-based time-averaged intensity of slow waves was obtained in two frequency bands (0.3–4 Hz and 4–8 Hz) using standardized low-resolution brain electromagnetic tomography (sLORETA) modified for a quantifiable method (sLORETA-qm). ROIs were automatically applied to the anterior cerebral artery (ACA), anterior middle cerebral artery (MCAa), posterior middle cerebral artery (MCAp), and posterior cerebral artery (PCA) using statistical parametric mapping (SPM). Positron emission tomography with 15O-gas inhalation (15O-PET) was also performed to evaluate cerebral blood flow (CBF) and oxygen extraction fraction (OEF). Statistical analyses were performed using laterality index of MEG and 15O-PET in each ROI with respect to distribution and intensity. Results MEG revealed statistically significant laterality in affected MCA regions, including 4–8 Hz waves in MCAa, and 0.3–4 Hz and 4–8 Hz waves in MCAp (95% confidence interval: 0.020–0.190, 0.030–0.207, and 0.034–0.213), respectively. We found that 0.3–4 Hz waves in MCAp were highly correlated with CBF in MCAa and MCAp (r = 0.74, r = 0.68, respectively), whereas 4–8 Hz waves were moderately correlated with CBF in both the MCAa and MCAp (r = 0.60, r = 0.63, respectively). We also found that 4–8 Hz waves in MCAp were statistically significant for misery perfusion identified on 15O-PET (p<0.05). Conclusions Quantitatively imaged spontaneous neuromagnetic fields using the automated ROI setting enabled clear depiction of cerebral ischemic areas. Frequency analysis may reveal unique neural activity that is distributed in

  11. 'Luxury perfusion syndrome' in a patient with reversible ischemic neurological deficits.

    PubMed

    Banzo, J; Morales, F; Abós, M D; Pascual, L F; Prats, E; Teijeiro, J

    1983-01-01

    A 28-year-old man was admitted to the hospital with difficulty in speech and motor weakness of the right arm of sudden onset. Twelve years previously a grade I oligodendroglioma had been removed. The CT scan showed a low density area without enhancement in the left frontal region that appeared to communicate with the left lateral ventricle. An increased flow through the left middle cerebral-artery and a focal avascular area in the left hemisphere was noted during a dynamic study by angioscintigraphy. A radionuclide cerebral control study showed reduced flow through the left middle cerebral artery. The patient was discharged 25 days after admission with the diagnosis of (1) reversible ischemic neurological deficits associated a hyperperfusion and (2) porencephaly.

  12. Positron emission tomography in minor ischemic stroke using oxygen-15 steady-state technique

    SciTech Connect

    Pozzilli, C.; Itoh, M.; Matsuzawa, T.; Fukuda, H.; Abe, Y.; Sato, T.; Takeda, S.; Ido, T.

    1987-04-01

    A study with positron emission tomography (PET) was performed on 10 patients with ischemic stroke and mild disability. The patients underwent cerebral angiography, x-ray computed tomography (CT) scan and regional cerebral measurements of CBF, CMRO2, oxygen extraction ratio (OER), and cerebral blood volume (CBV). Only minor arterial involvement was detected by angiography. In all patients, PET images of functional defects were more extensive than the corresponding CT hypodensity, and there were statistically significant reductions in CBF, CMRO2, and CBF/CBV ratio as compared with control subjects. Half of the regions analyzed in the affected hemisphere demonstrated a disruption of the normal coupling between CBF and CMRO2 as reflected by OER values significantly higher or lower than those of the corresponding region of the contralateral hemisphere. The pathophysiological pattern of high OER combined with a reduction in CBF proportionally greater than the reduction in CMRO2 was particularly indicative of regional chronic hemodynamic compromise in these patients.

  13. [Use of cerebrolysin in the treatment of ischemic stroke].

    PubMed

    Koppi, S; Barolin, G S

    1998-01-01

    Comparative analysis was performed of results of the treatment of patients with ischemic stroke, including 140 ones treated by means of hemodilution method (control group) and 40 patients treated with cerebrolysin (test group). Barolin's scale of the neurorehabilitation was used for the analysis of the results. Statistically significant results of rehabilitation were better in the test group. Improvement of the parameters characterizing social contacts, working activity and behaviour was more pronounced than an improvement of motor functions. Cerebrolysin had accelerating effect on restoration of damaged functions, by creating more stable basis for rehabilitation.

  14. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report.

    PubMed

    Clavo, Bernardino; Catalá, Luis; Pérez, Juan L; Rodríguez, Victor; Robaina, Francisco

    2004-12-01

    Ozone therapy is currently being used in the treatment of ischemic disorders, but the underlying mechanisms that result in successful treatment are not well known. This study assesses the effect of ozone therapy on the blood flow in the middle cerebral and common carotid arteries. Seven subjects were recruited for the therapy that was performed by transfusing ozone-enriched autologous blood on 3 alternate days over 1 week. Blood flow quantification in the common carotid artery (n = 14) was performed using color Doppler. Systolic and diastolic velocities in the middle cerebral artery (n = 14) were estimated using transcranial Doppler. Ultrasound assessments were conducted at the following three time points: 1) basal (before ozone therapy), 2) after session #3 and 3) 1 week after session #3. The common carotid blood flow had increased by 75% in relation to the baseline after session #3 (P < 0.001) and by 29% 1 week later (P = 0.039). In the middle cerebral artery, the systolic velocity had increased by 22% after session #3 (P = 0.001) and by 15% 1 week later (P = 0.035), whereas the diastolic velocity had increased by 33% after session #3 (P < 0.001) and by 18% 1 week later (P = 0.023). This preliminary Doppler study supports the clinical experience of achieving improvement by using ozone therapy in peripheral ischemic syndromes. Its potential use as a complementary treatment in cerebral low perfusion syndromes merits further clinical evaluation.

  15. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report

    PubMed Central

    2004-01-01

    Ozone therapy is currently being used in the treatment of ischemic disorders, but the underlying mechanisms that result in successful treatment are not well known. This study assesses the effect of ozone therapy on the blood flow in the middle cerebral and common carotid arteries. Seven subjects were recruited for the therapy that was performed by transfusing ozone-enriched autologous blood on 3 alternate days over 1 week. Blood flow quantification in the common carotid artery (n = 14) was performed using color Doppler. Systolic and diastolic velocities in the middle cerebral artery (n = 14) were estimated using transcranial Doppler. Ultrasound assessments were conducted at the following three time points: 1) basal (before ozone therapy), 2) after session #3 and 3) 1 week after session #3. The common carotid blood flow had increased by 75% in relation to the baseline after session #3 (P < 0.001) and by 29% 1 week later (P = 0.039). In the middle cerebral artery, the systolic velocity had increased by 22% after session #3 (P = 0.001) and by 15% 1 week later (P = 0.035), whereas the diastolic velocity had increased by 33% after session #3 (P < 0.001) and by 18% 1 week later (P = 0.023). This preliminary Doppler study supports the clinical experience of achieving improvement by using ozone therapy in peripheral ischemic syndromes. Its potential use as a complementary treatment in cerebral low perfusion syndromes merits further clinical evaluation. PMID:15841265

  16. X-Chromosome Dosage and the Response to Cerebral Ischemia

    PubMed Central

    Turtzo, L. Christine; Siegel, Chad; McCullough, Louise D.

    2011-01-01

    Gonadal hormones contribute to ischemic neuroprotection, but cannot fully explain the observed sexual dimorphism in stroke outcomes seen during life stages with low sex steroid hormones. Sex chromosomal complement (XX in females; XY in males) may also contribute to ischemic sexual dimorphism. A transient middle cerebral artery occlusion model was used to investigate the role of X chromosome dosage in female XX and XO littermates of two mouse strains (Paf and EdaTa). Cohorts of XX and XO gonadally intact, ovariectomized, and ovariectomized females supplemented with estrogen were examined. Infarct sizes were equivalent between ovariectomized XX and XO mice, between intact XX and XO mice, and between estrogen-supplemented ovariectomized XX and XO mice. This is the first study to investigate the role of sex chromosome dosage in the response to cerebral ischemia. Neither the number of X chromosomes, nor the parent of origin of the remaining X chromosome, had a significant effect on the degree of cerebral infarction after experimental stroke in adult female mice. Estrogen was protective against cerebral ischemia in both XX and XO mice. PMID:21917808

  17. Periodic Estrogen Receptor-Beta Activation: A Novel Approach to Prevent Ischemic Brain Damage.

    PubMed

    Cue, Lauren; Diaz, Francisca; Briegel, Karoline J; Patel, Hersila H; Raval, Ami P

    2015-10-01

    In women, the risk for cerebral ischemia climbs rapidly after menopause. At menopause, production of ovarian hormones; i.e., progesterone and estrogen, slowly diminishes. Estrogen has been suggested to confer natural protection to premenopausal women from ischemic stroke and some of its debilitating consequences. This notion is also strongly supported by laboratory studies showing that a continuous chronic 17β-estradiol (E2; a potent estrogen) regimen protects brain from ischemic injury. However, concerns regarding the safety of the continuous intake of E2 were raised by the failed translation to the clinic. Recent studies demonstrated that repetitive periodic E2 pretreatments, in contrast to continuous E2 treatment, provided neuroprotection against cerebral ischemia in ovariectomized rats. Periodic E2 pretreatment protects hippocampal neurons through activation of estrogen receptor subtype beta (ER-β). Apart from neuroprotection, periodic activation of ER-β in ovariectomized rats significantly improves hippocampus-dependent learning and memory. Difficulties in learning and memory loss are the major consequence of ischemic brain damage. Periodic ER-β agonist pretreatment may provide pharmacological access to a protective state against ischemic stroke and its debilitating consequences. The use of ER-β-selective agonists constitutes a safer target for future research than ER-α agonist or E2, inasmuch as it lacks the ability to stimulate the proliferation of breast or endometrial tissue. In this review, we highlight ER-β signaling as a guide for future translational research to reduce cognitive decline and cerebral ischemia incidents/impact in post-menopausal women, while avoiding the side effects produced by chronic E2 treatment.

  18. Cerebral Palsy (For Kids)

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy Print A A ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  19. Cerebral Palsy (For Kids)

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Cerebral Palsy KidsHealth > For Kids > Cerebral Palsy A A A ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  20. Effects of CD11b/18 monoclonal antibody on rats with permanent middle cerebral artery occlusion.

    PubMed Central

    Garcia, J. H.; Liu, K. F.; Bree, M. P.

    1996-01-01

    The progression of a lesion from ischemic injury to infarct, after the permanent occlusion of a middle cerebral artery, may be influenced by the influx of leukocytes into the ischemic territory. We aimed to evaluate the effectiveness of treating rats that had permanent middle cerebral artery occlusion with a single dose of an anti-CD11b/18 monoclonal antibody injected 1 hour after the arterial occlusion. To mimic the clinical situation of patients with ischemic strokes who may be treated within 1 hour of the ischemic event, the artery remained occluded. Forty-one adult Wistar rats had permanent middle cerebral artery occlusion, and one was subjected to a sham operation. One hour later, 22 rats received CD11b/18 monoclonal antibody and an additional 20 were injected either with a nonspecific antibody (n = 10) or a buffer solution (n = 10). Experiments were terminated at intervals ranging 12 to 96 hours after the arterial occlusion. Endpoints included neurological testing, daily evaluation of body weight, counts of white blood cells in the peripheral blood, measurement of the area of pallor in the ischemic hemisphere, counts of necrotic neurons, and counts of leukocytes sequestered in the ischemic hemisphere. In experiments terminated 12 hours after the arterial occlusion (n = 4), there were fewer necrotic neurons in the group treated with the CD11b/18 monoclonal antibody compared with the two controls (P < .05), but this difference was not reflected in the neurological scores. Numbers of necrotic neurons in experiments terminated > 12 hours later were not different among the three subgroups. White blood cell counts in peripheral blood were lower in animals with arterial occlusion injected with the monoclonal antibody CD11b/18 (P < .05); numbers of leukocytes sequestered in the ischemic hemisphere were not different in the three groups. Neither changes in body weight nor in the volume of the area of pallor were significantly different among the three groups. Images

  1. Discovery of 3-n-butyl-2,3-dihydro-1H-isoindol-1-one as a potential anti-ischemic stroke agent

    PubMed Central

    Lan, Zujian; Xu, Xiaoyu; Xu, Wenkai; Li, Jin; Liang, Zengrong; Zhang, Xuefei; Lei, Ming; Zhao, Chunshun

    2015-01-01

    To develop novel anti-ischemic stroke agents with better therapeutic efficacy and bioavailability, we designed and synthesized a series of 3-alkyl-2,3-dihydro-1H-isoindol-1-ones compounds (3a–i) derivatives, one of which (3d) exhibited the strongest inhibitory activity for the adenosine diphosphate-induced and arachidonic acid-induced platelet aggregation. This activity is superior to that of 3-n-butylphthalide and comparable with aspirin and edaravone. Meanwhile, 3d not only exhibited a potent activity in scavenging free radicals and improving the survival of HT22 cells against the reactive oxygen species-mediated cytotoxicity in vitro but also significantly attenuated the ischemia/reperfusion-induced oxidative stress in ischemic rat brains. Results from transient middle cerebral artery occlusion and permanent middle cerebral artery occlusion model, indicated that 3d could significantly reduce infarct size, improve neurobehavioral deficits, and prominently decrease attenuation of cerebral damage. Most importantly, 3d possessed a very high absolute bioavailability and was rapidly distributed in brain tissue to keep high plasma drug concentration for the treatment of ischemic strokes. In conclusion, our findings suggest that 3-alkyl-2,3-dihydro-1H-isoindol-1-ones, a novel series of compounds, might be candidate drugs for the treatment of acute ischemic strokes, and 3d may be a promising therapeutic agent for the primary and secondary prevention of ischemic stroke. PMID:26170623

  2. Whole-brain CT perfusion combined with CT angiography for ischemic complications following microsurgical clipping and endovascular coiling of ruptured intracranial aneurysms.

    PubMed

    Cheng, Xiao Qing; Chen, Qian; Zhou, Chang Sheng; Li, Jian Rui; Zhang, Zong Jun; Zhang, Long Jiang; Huang, Wei; Lu, Guang Ming

    2016-04-01

    Ischemic complications associated with microsurgical clipping and endovascular coiling affects the outcome of patients with intracranial aneurysms. We prospectively evaluated 58 intracranial aneurysm patients who had neurological deterioration or presented with poor grade (Hunt-Hess grades III and IV), aneurysm size >13 mm and multiple aneurysms after clipping or coiling. Thirty patients had ischemic complications (52%) as demonstrated by whole-brain CT perfusion (WB-CTP) combined with CT angiography (CTA). Half of these 30 patients had treatment-associated reduction in the diameter of the parent vessels (n=6), ligation of the parent vessels or perforating arteries (n=2), and unexplained or indistinguishable vascular injury (n=7); seven of these 15 (73%) patients suffered infarction. The remaining 15 patients had disease-associated cerebral ischemia caused by generalized vasospasm (n=6) and focal vessel vasospasm (n=9); six of these 15 (40%) patients developed infarction. Three hemodynamic patterns of ischemic complications were found on WB-CTP, of which increased time to peak, time to delay and mean transit time associated with decreased cerebral blood flow and cerebral blood volume were the main predictors of irreversible ischemic lesions. In conclusion, WB-CTP combined with CTA can accurately determine the cause of neurological deterioration and classify ischemic complications. This combined approach may be helpful in assessing hemodynamic patterns and monitoring operative outcomes.

  3. Intraperitoneal administration of thioredoxin decreases brain damage from ischemic stroke.

    PubMed

    Wang, Bin; Tian, Shilai; Wang, Jiayi; Han, Feng; Zhao, Lei; Wang, Rencong; Ning, Weidong; Chen, Wei; Qu, Yan

    2015-07-30

    Recent studies demonstrate that Thioredixin (Trx) possesses a neuronal protective effect and closely relates to oxidative stress and apoptosis of cerebral ischemia injury. The present study was conducted to validate the neuroprotective effect of recombinant human Trx-1 (rhTrx-1) and its potential mechanisms against ischemia injury at middle cerebral artery occlusion (MCAO) in mice. rhTrx-1 was administrated intraperitoneally at a dose of 5, 10 and 20mg/kg 30 min before MCAO in mice, and its neuronal protective effect was evaluated by neurological deficit score, brain dry-wet weight, 2,3,5-triphenyltetrazolium chloride (TTC) staining. The protein carbonyl content and HO-1 were detected to investigate its potential anti-oxidative and anti-inflammatory property, and the anti-apoptotic ability of rhTrx-1 was assessed by casepase-3 and TUNEL staining. The results demonstrated that rhTrx-1 significantly improved neurological functions and reduced cerebral infarction and apoptotic cell death at 24h after MCAO. Moreover, rhTrx-1 resulted in a significant decrease in carbonyl contents and HO-1 against oxidative stress, which turned to be fast reduction during the first 24h and tended to be stable from 24h to 72h after MCAO. The study shows that rhTrx-1 exerts an neuroprotective effect in cerebral ischemia injury. The anti-oxidative, anti-apoptotic and anti-inflammatory properties of rhTrx-1 are more likely to succeed as a therapeutic approach to diminish oxidative stress-induced neuronal apoptotic cell death in acute ischemic stroke.

  4. Comparison of the glycopattern alterations of mitochondrial proteins in cerebral cortex between rat Alzheimer’s disease and the cerebral ischemia model

    PubMed Central

    Yu, Houyou; Yang, Changwei; Chen, Shi; Huang, Yang; Liu, Chuanming; Liu, Jian; Yin, Wen

    2017-01-01

    Alzheimer’s disease (AD) and ischemic brain injury are two major neurodegenerative diseases. Mitochondrial dysfunction commonly occurs in AD and ischemic brain injury. Currently, little attention has been paid to the glycans on mitochondrial glycoproteins, which may play vital roles during the process of mitochondrial dysfunction. The aim of this study was to illustrate and compare the glycopattern alterations of mitochondrial glycoproteins extracted from the cerebral cortex of the rat models of these two diseases using High-throughput lectin microarrays. The results shown that the number of lectins with significant differences compared to normal brains was nine for the rat sporadic Alzheimer’s disease (SAD) model and eighteen for the rat middle cerebral artery occlusion (MCAO) model. Interestingly, five lectins showed opposite expression patterns between the SAD and MCAO rat models. We conclude that glycopattern alterations of mitochondrial glycoproteins in the cerebral cortex may provide vital information to help understand mitochondrial dysfunction in AD and ischemic brain injury. In addition, glycans recognized by diverse lectins with opposite expression patterns between these two diseases hints at the different pathomechanisms of mitochondrial dysfunction in AD and ischemic brain injury. PMID:28071664

  5. Dietary Sutherlandia and Elderberry Mitigate Cerebral Ischemia-Induced Neuronal Damage and Attenuate p47phox and Phospho-ERK1/2 Expression in Microglial Cells

    PubMed Central

    Chuang, Dennis Y.; Cui, Jiankun; Simonyi, Agnes; Engel, Victoria A.; Chen, Shanyan; Fritsche, Kevin L.; Thomas, Andrew L.; Applequist, Wendy L.; Folk, William R.; Lubahn, Dennis B.; Sun, Albert Y.; Sun, Grace Y.

    2014-01-01

    Sutherlandia (Sutherlandia frutescens) and elderberry (Sambucus spp.) are used to promote health and for treatment of a number of ailments. Although studies with cultured cells have demonstrated antioxidative and anti-inflammatory properties of these botanicals, little is known about their ability to mitigate brain injury. In this study, C57BL/6 J male mice were fed AIN93G diets without or with Sutherlandia or American elderberry for 2 months prior to a 30-min global cerebral ischemia induced by occlusion of the bilateral common carotid arteries (BCCAs), followed by reperfusion for 3 days. Accelerating rotarod assessment at 24 h after BCCA occlusion showed amelioration of sensorimotor impairment in the mice fed the supplemented diets as compared with the ischemic mice fed the control diet. Quantitative digital pathology assessment of brain slides stained with cresyl violet at 3 days after ischemia/reperfusion (I/R) revealed significant reduction in neuronal cell death in both dietary groups. Immunohistochemical staining for ionized calcium-binding adapter molecule-1 demonstrated pronounced activation of microglia in the hippocampus and striatum in the ischemic brains 3 days after I/R, and microglial activation was significantly reduced in animals fed supplemented diets. Mitigation of microglial activation by the supplements was further supported by the decrease in expression of p47phox, a cytosolic subunit of NADPH oxidase, and phospho-ERK1/2, a mitogen-activated protein kinase known to mediate a number of cytoplasmic processes including oxidative stress and neuroinflammatory responses. These results demonstrate neuroprotective effect of Sutherlandia and American elderberry botanicals against oxidative and inflammatory responses to cerebral I/R. PMID:25324465

  6. [Tomographic analysis of CBF in cerebral infarction].

    PubMed

    Segawa, H; Kimura, K; Ueda, Y; Nagai, M; Yoshimasu, N; Nakagomi, T; Tamura, A; Sano, K; Takakura, K

    1983-06-01

    Cerebral perfusion was examined in various types of occlusive disease by computed tomographic CBF method. The method utilized has several advantages over conventional studies using isotope, providing high resolution images in a direct relation to CT anatomy. Ten representative cases were presented from 25 consecutive cases of occlusive disease studied by this method. The method included inhalation of 40 to 60% xenon with serial CT scanning for 25 min. K (build-up rate), lambda (partition coefficient) and CBF values were calculated from HU for each pixel and Xe in expired air, based on Fick's principle, and displayed on CRT as K-, lambda- and CBF-map separately. CBF for gray matter of normal control was 82 +/- 11 ml/100 gm/min and that for white matter was 24 +/- 5 ml/100 gm/min. The ischemic threshold for gray matter appeared to be approximately 20 ml/100 gm/min, as blood flow in focus of complete infarction was below this level. Blood flow between 20-30 ml/100 gm/min caused some change on CT, such as localized atrophy, cortical thinning, loss of distinction between gray and white matter and decreased or increased density, which were considered to be compatible with pathological changes of laminar necrosis or gliosis with neuronal loss. In a case with occlusion of middle cerebral artery with subsequent recanalization, causing hemorrhagic infarct, hyperemia was observed in the infarcted cortex that was enhanced by iodine. Periventricular lucency observed in two cases, where blood flow was decreased below threshold, could be classified as "watershed infarction" mainly involving white matter. In moyamoya disease, blood flow in the anterior circulation was decreased near ischemic level, whereas that in basal ganglia and territory of posterior cerebral artery was fairly preserved, which was compatible with general angiographic finding of this disease.

  7. ORTHO-LBNP: A new apparatus for assessing autocontrol mechanisms of the heart-vessel system in pilots undergoing training in conditions of ischemic hypoxia and orthostatic stress

    NASA Astrophysics Data System (ADS)

    Truszczynski, Olaf; Skibniewski, Franciszek; Dziuda, Lukasz; Gacek, Adam; Krej, Mariusz; Sobotnicki, Aleksander; Rajchel, Jan; Bylinka, Marek; Burek, Michal

    The authors present a new system for examining the behaviour of the human body and cerebral circulation in conditions of ischemic hypoxia and orthostatic stress that can cause orthostatic hypotension. Ischemic hypoxia affects mainly pilots of highly manoeuvrable aircraft, where long-lasting G forces not seldom reach 6-8 +Gz and can exceed the gravitational acceleration by ten times or more. Additionally, pilots are subjected to orthostatic hypotension in which abnormally low blood pressure is caused by pressure adjustment disorder and decreased stroke volume when changing body position rapidly. For several decades, these effects have been deeply investigated using human centrifuges or lower body negative pressure (LBNP) chambers. The latter method involves significantly less financial resources to carry out experiments and training, whereas the effects exerted on pilots, and the results of the training can be comparable. A group of researchers from the Military Institute of Aviation Medicine, Warszawa, Poland, and the Institute of Medical Technology and Equipment ITAM, Zabrze, Poland, are developing the innovative ORTHO-LBNP device based on the cradle principle and the LBNP method. The system will be implemented in a modern programme for training cadets of the Polish Air Force Academy, Dęblin, Poland. Together with other equipment such as a high-G centrifuge, pressure chambers, flight and spatial disorientation simulators as well as gymnastic training equipment for pilots (GTEP), the ORTHO-LBNP apparatus will be an element of the selection system of candidates for aviation. It is expected that the experimental studies will result in developing new indicators providing an objective assessment, whether examined persons possess the traits necessary for performing tasks related to the job of a pilot. It is highly probable that those indicators can be incorporated into routine checks for pilots, which in turn, can lead to improving the safety of flight operations and

  8. Inhalational Anesthetics as Preconditioning Agents in Ischemic Brain

    PubMed Central

    Wang, Lan; Traystman, Richard J.; Murphy, Stephanie J.

    2008-01-01

    SUMMARY While many pharmacological agents have been shown to protect the brain from cerebral ischemia in animal models, none have translated successfully to human patients. One potential clinical neuroprotective strategy in humans may involve increasing the brain’s tolerance to ischemia by pre-ischemic conditioning (preconditioning). There are many methods to induce tolerance via preconditioning such as: ischemia itself, pharmacological, hypoxia, endotoxin, and others. Inhalational anesthetic agents have also been shown to result in brain preconditioning. Mechanisms responsible for brain preconditioning are many, complex, and unclear and may involve Akt activation, ATP-sensitive potassium channels, and nitric oxide, amongst many others. Anesthetics, however, may play an important and unique role as preconditioning agents, particularly during the perioperative period. PMID:17962069

  9. Ischemic Stroke Injury Is Mediated by Aberrant Cdk5

    PubMed Central

    Meyer, Douglas A.; Torres-Altoro, Melissa I.; Tan, Zhenjun; Tozzi, Alessandro; Di Filippo, Massimiliano; DiNapoli, Vincent; Plattner, Florian; Kansy, Janice W.; Benkovic, Stanley A.; Huber, Jason D.; Miller, Diane B.; Greengard, Paul; Calabresi, Paolo; Rosen, Charles L.

    2014-01-01

    Ischemic stroke is one of the leading causes of morbidity and mortality. Treatment options are limited and only a minority of patients receive acute interventions. Understanding the mechanisms that mediate neuronal injury and death may identify targets for neuroprotective treatments. Here we show that the aberrant activity of the protein kinase Cdk5 is a principal cause of neuronal death in rodents during stroke. Ischemia induced either by embolic middle cerebral artery occlusion (MCAO) in vivo or by oxygen and glucose deprivation in brain slices caused calpain-dependent conversion of the Cdk5-activating cofactor p35 to p25. Inhibition of aberrant Cdk5 during ischemia protected dopamine neurotransmission, maintained field potentials, and blocked excitotoxicity. Furthermore, pharmacological inhibition or conditional knock-out (CKO) of Cdk5 prevented neuronal death in response to ischemia. Moreover, Cdk5 CKO dramatically reduced infarctions following MCAO. Thus, targeting aberrant Cdk5 activity may serve as an effective treatment for stroke. PMID:24920629

  10. Aging and Cerebral Palsy.

    ERIC Educational Resources Information Center

    Networker, 1993

    1993-01-01

    This special edition of "The Networker" contains several articles focusing on aging and cerebral palsy (CP). "Aging and Cerebral Palsy: Pathways to Successful Aging" (Jenny C. Overeynder) reports on the National Invitational Colloquium on Aging and Cerebral Palsy held in April 1993. "Observations from an Observer" (Kathleen K. Barrett) describes…

  11. Heart Failure in Acute Ischemic Stroke

    PubMed Central

    Cuadrado-Godia, Elisa; Ois, Angel; Roquer, Jaume

    2010-01-01

    Heart failure (HF) is a complex clinical syndrome that can result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood. Due to the aging of the population it has become a growing public health problem in recent decades. Diagnosis of HF is clinical and there is no diagnostic test, although some basic complementary testing should be performed in all patients. Depending on the ejection fraction (EF), the syndrome is classified as HF with low EF or HF with normal EF (HFNEF). Although prognosis in HF is poor, HFNEF seems to be more benign. HF and ischemic stroke (IS) share vascular risk factors such as age, hypertension, diabetes mellitus, coronary artery disease and atrial fibrillation. Persons with HF have higher incidence of IS, varying from 1.7% to 10.4% per year across various cohort studies. The stroke rate increases with length of follow-up. Reduced EF, independent of severity, is associated with higher risk of stroke. Left ventricular mass and geometry are also related with stroke incidence, with concentric hypertrophy carrying the greatest risk. In HF with low EF, the stroke mechanism may be embolism, cerebral hypoperfusion or both, whereas in HFNEF the mechanism is more typically associated with chronic endothelial damage of the small vessels. Stroke in patients with HF is more severe and is associated with a higher rate of recurrence, dependency, and short term and long term mortality. Cardiac morbidity and mortality is also high in these patients. Acute stroke treatment in HF includes all the current therapeutic options to more carefully control blood pressure. For secondary prevention, optimal control of all vascular risk factors is essential. Antithrombotic therapy is mandatory, although the choice of a platelet inhibitor or anticoagulant drug depends on the cardiac disease. Trials are ongoing to evaluate anticoagulant therapy for prevention of embolism in patients with low EF who are at

  12. Mildronate treatment improves functional recovery following middle cerebral artery occlusion in rats.

    PubMed

    Svalbe, Baiba; Zvejniece, Liga; Vavers, Edijs; Pugovics, Osvalds; Muceniece, Ruta; Liepinsh, Edgars; Dambrova, Maija

    2011-09-12

    Mildronate (3-(2,2,2-trimethylhydrazinium) propionate) is an inhibitor of l-carnitine biosynthesis and an anti-ischemic drug. In the present study, we investigated the effects of mildronate in rats following focal cerebral ischemia. Male Wistar rats were subjected to transient occlusion of the middle cerebral artery (MCAO) for 90min, followed by the intraperitoneal administration of mildronate at doses of 100 and 200mg/kg 2h after reperfusion and then daily for an additional 14days. The beam-walking, rota-rod and cylinder tests were used to assess sensorimotor function, and vibrissae-evoked forelimb-placing and limb-placing tests examined responses to tactile and proprioceptive stimulation. Following behavioural testing, the infarct volume was measured. The cerebellar concentrations of l-carnitine, γ-butyrobetaine (GBB) and mildronate were also measured. The results showed that saline-treated MCAO rats had minor or no spontaneous recovery in sensorimotor and proprioceptive function up to 14days post-stroke. Treatment with mildronate at a dose of 200mg/kg was found to accelerate recovery of motor and proprioceptive deficits in limb-placing, cylinder and beam-walking tests. Analysis of rat cerebellar tissue extracts revealed that l-carnitine and GBB concentrations changed with mildronate treatment; the concentration of l-carnitine was significantly decreased by mildronate treatment, whereas the concentration of GBB was significantly increased. Cerebellar concentrations of mildronate also increased in a dose-dependent manner following systemic administration. Infarct size did not differ among the experimental groups on post-stroke day 14. The present study suggests that mildronate treatment improves the functional outcome in MCAO rats without influencing infarct size.

  13. Cerebral vascular regulation and brain injury in preterm infants.

    PubMed

    Brew, Nadine; Walker, David; Wong, Flora Y

    2014-06-01

    Cerebrovascular lesions, mainly germinal matrix hemorrhage and ischemic injury to the periventricular white matter, are major causes of adverse neurodevelopmental outcome in preterm infants. Cerebrovascular lesions and neuromorbidity increase with decreasing gestational age, with the white matter predominantly affected. Developmental immaturity in the cerebral circulation, including ongoing angiogenesis and vasoregulatory immaturity, plays a major role in the severity and pattern of preterm brain injury. Prevention of this injury requires insight into pathogenesis. Cerebral blood flow (CBF) is low in the preterm white matter, which also has blunted vasoreactivity compared with other brain regions. Vasoreactivity in the preterm brain to cerebral perfusion pressure, oxygen, carbon dioxide, and neuronal metabolism is also immature. This could be related to immaturity of both the vasculature and vasoactive signaling. Other pathologies arising from preterm birth and the neonatal intensive care environment itself may contribute to impaired vasoreactivity and ineffective CBF regulation, resulting in the marked variations in cerebral hemodynamics reported both within and between infants depending on their clinical condition. Many gaps exist in our understanding of how neonatal treatment procedures and medications have an impact on cerebral hemodynamics and preterm brain injury. Future research directions for neuroprotective strategies include establishing cotside, real-time clinical reference values for cerebral hemodynamics and vasoregulatory capacity and to demonstrate that these thresholds improve long-term outcomes for the preterm infant. In addition, stimulation of vascular development and repair with growth factor and cell-based therapies also hold promise.

  14. Neuroprotective effects of rutaecarpine on cerebral ischemia reperfusion injury

    PubMed Central

    Yan, Chunlin; Zhang, Ji; Wang, Shu; Xue, Guiping; Hou, Yong

    2013-01-01

    Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia reperfusion injury. Because both cardiovascular and cerebrovascular diseases are forms of ischemic vascular disease, they are closely related. We hypothesized that rutaecarpine also has neuroprotective effects on cerebral ischemia reperfusion injury. A cerebral ischemia reperfusion model was established after 84, 252 and 504 μg/kg carpine were given to mice via intraperitoneal injection, daily for 7 days. Results of the step through test, 2,3,5-triphenyl tetrazolium chloride dyeing and oxidative stress indicators showed that rutaecarpine could improve learning and memory ability, neurological symptoms and reduce infarction volume and cerebral water content in mice with cerebral ischemia reperfusion injury. Rutaecarpine could significantly decrease the malondialdehyde content and increase the activities of superoxide dismutase and glutathione peroxidase in mouse brain. Therefore, rutaecarpine could improve neurological function following injury induced by cerebral ischemia reperfusion, and the mechanism of this improvement may be associated with oxidative stress. These results verify that rutaecarpine has neuroprotective effects on cerebral ischemia reperfusion in mice. PMID:25206511

  15. Role of Histamine and Its Receptors in Cerebral Ischemia

    PubMed Central

    2012-01-01

    Histamine is recognized as a neurotransmitter or neuromodulator in the brain, and it plays a major role in the pathogenic progression after cerebral ischemia. Extracellular histamine increases gradually after ischemia, and this may come from histaminergic neurons or mast cells. Histamine alleviates neuronal damage and infarct volume, and it promotes recovery of neurological function after ischemia; the H1, H2, and H3 receptors are all involved. Further studies suggest that histamine alleviates excitotoxicity, suppresses the release of glutamate and dopamine, and inhibits inflammation and glial scar formation. Histamine may also affect cerebral blood flow by targeting to vascular smooth muscle cells, and promote neurogenesis. Moreover, endogenous histamine is an essential mediator in the cerebral ischemic tolerance. Due to its multiple actions, affecting neurons, glia, vascular cells, and inflammatory cells, histamine is likely to be an important target in cerebral ischemia. But due to its low penetration of the blood-brain barrier and its wide actions in the periphery, histamine-related agents, like H3 antagonists and carnosine, show potential for cerebral ischemia therapy. However, important questions about the molecular aspects and pathophysiology of histamine and related agents in cerebral ischemia remain to be answered to form a solid scientific basis for therapeutic application. PMID:22860191

  16. [Two Cases of Ruptured Cerebral Aneurysm Complicated with Delayed Coil Protrusion after Coil Embolization].

    PubMed

    Furukawa, Takashi; Ogata, Atsushi; Ebashi, Ryo; Takase, Yukinori; Masuoka, Jun; Kawashima, Masatou; Abe, Tatsuya

    2016-07-01

    We report two cases of delayed coil protrusion after coil embolization for ruptured cerebral aneurysms. Case 1:An 82-year-old woman with a subarachnoid hemorrhage due to a ruptured small anterior communicating artery aneurysm underwent successful coil embolization. Eighteen days after the procedure, coil protrusion from the aneurysm into the right anterior cerebral artery was observed without any symptoms. Further coil protrusion did not develop after 28 days. Case 2:A 78-year-old woman with a subarachnoid hemorrhage due to a ruptured small left middle cerebral artery aneurysm underwent successful coil embolization. Twenty days after the procedure, coil protrusion from the aneurysm into the left middle cerebral artery was observed, with a transient ischemic attack. Further coil protrusion did not develop. Both patients recovered with antithrombotic treatment. Even though delayed coil protrusion after coil embolization is rare, it should be recognized as a long-term complication of coil embolization for cerebral aneurysms.

  17. Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack: a guideline for healthcare professionals from the american heart association/american stroke association.

    PubMed

    Furie, Karen L; Kasner, Scott E; Adams, Robert J; Albers, Gregory W; Bush, Ruth L; Fagan, Susan C; Halperin, Jonathan L; Johnston, S Claiborne; Katzan, Irene; Kernan, Walter N; Mitchell, Pamela H; Ovbiagele, Bruce; Palesch, Yuko Y; Sacco, Ralph L; Schwamm, Lee H; Wassertheil-Smoller, Sylvia; Turan, Tanya N; Wentworth, Deidre

    2011-01-01

    The aim of this updated statement is to provide comprehensive and timely evidence-based recommendations on the prevention of ischemic stroke among survivors of ischemic stroke or transient ischemic attack. Evidence-based recommendations are included for the control of risk factors, interventional approaches for atherosclerotic disease, antithrombotic treatments for cardioembolism, and the use of antiplatelet agents for noncardioembolic stroke. Further recommendations are provided for the prevention of recurrent stroke in a variety of other specific circumstances, including arterial dissections; patent foramen ovale; hyperhomocysteinemia; hypercoagulable states; sickle cell disease; cerebral venous sinus thrombosis; stroke among women, particularly with regard to pregnancy and the use of postmenopausal hormones; the use of anticoagulation after cerebral hemorrhage; and special approaches to the implementation of guidelines and their use in high-risk populations.

  18. Arterial ischemic stroke in HIV

    PubMed Central

    Bryer, Alan; Lucas, Sebastian; Stanley, Alan; Allain, Theresa J.; Joekes, Elizabeth; Emsley, Hedley; Turnbull, Ian; Downey, Colin; Toh, Cheng-Hock; Brown, Kevin; Brown, David; Ison, Catherine; Smith, Colin; Corbett, Elizabeth L.; Nath, Avindra; Heyderman, Robert S.; Connor, Myles D.; Solomon, Tom

    2016-01-01

    HIV infection, and potentially its treatment, increases the risk of an arterial ischemic stroke. Multiple etiologies and lack of clear case definitions inhibit progress in this field. Several etiologies, many treatable, are relevant to HIV-related stroke. To fully understand the mechanisms and the terminology used, a robust classification algorithm to help ascribe the various etiologies is needed. This consensus paper considers the strengths and limitations of current case definitions in the context of HIV infection. The case definitions for the major etiologies in HIV-related strokes were refined (e.g., varicella zoster vasculopathy and antiphospholipid syndrome) and in some instances new case definitions were described (e.g., HIV-associated vasculopathy). These case definitions provided a framework for an algorithm to help assign a final diagnosis, and help classify the subtypes of HIV etiology in ischemic stroke. PMID:27386505

  19. Intravenous administration of pravastatin immediately after middle cerebral artery occlusion reduces cerebral oedema in spontaneously hypertensive rats.

    PubMed

    Mariucci, Giuseppina; Taha, Elena; Tantucci, Michela; Spaccatini, Cristiano; Tozzi, Alessandro; Ambrosini, Maria Vittoria

    2011-06-25

    3-hydroxy-3-methyl-glutaryl-coenzyme-A (HMG-CoA) reductase inhibitors (statins) have been shown to protect against ischemic stroke by mechanisms that are independent of lowering serum cholesterol levels. In this study we investigated the potential neuroprotective effect of a single i.v. treatment with four increasing doses of pravastatin on permanent occlusion of middle cerebral artery (MCAo) in spontaneously hypertensive rats. Pravastatin was given 10 min after MCAo and its effect was determined 24 h later. Treatment results were evaluated in terms of infarct volume, homolateral hemisphere oedema, glial fibrillary acid (GFAP), vimentin (Vim) and endothelial NO synthase (eNOS) immunoreactivity and TUNEL positivity. Cerebral levels of eNOS were measured by western blot analysis. Pravastatin did not reduce cerebral infarct while it mitigated homolateral hemisphere oedema in a dose-dependent manner with respect to controls. No differences among groups were found regarding GFAP and Vim immunoreactivity and TUNEL positivity. Instead, pravastatin-treated animals presented a more marked cerebral eNOS immunoreactivity as compared with controls. In agreement with immunohistochemistry, immunoblot revealed dose-dependent increases in cerebral levels of eNOS in pravastatin rats. Our data confirm statin neuroprotection in cerebral ischemia. In particular, it is of great interest that a single i.v. Pravastatin administration reduced cerebral oedema by upregulating eNOS expression/activity. This, by increasing vascular NO bioavailability, could have produced proximal vasodilation and contributed to reducing perfusional deficit. It is worthy stressing how important the anti-oedema action is that pravastatin seems to exert. Indeed, cerebral oedema, when widespread and beyond limits of physiological compensation, causes endocranic hypertension and additional cerebral damage over time.

  20. [Comparative evaluation of the neuroprotective activity of phenibut and piracetam under experimental cerebral ischemia conditions in rats].

    PubMed

    Tiurenkov, I N; Bagmetov, M N; Epishina, V V; Borodkina, L E; Voronkov, A V

    2006-01-01

    The neuroprotective properties of phenibut and piracetam were studied in rats with cerebral ischemia caused by bilateral irreversible simultaneous occlusion of carotid arteries and gravitational overload in craniocaudal vector. In addition, the effects of both drugs on microcirculation in brain cortex under ischemic injury conditions were studied. Phenibut and (to a lower extent) piracetam reduced a neuralgic deficiency, amnesia, and the degree of cerebral circulation drop, and improved the spontaneous movement and research activity deteriorated by brain ischemia.

  1. Stem Cells for Ischemic Brain Injury: A Critical Review

    PubMed Central

    Burns, Terry C.; Verfaillie, Catherine M.; Low, Walter C.

    2014-01-01

    No effective therapy is currently available to promote recovery following ischemic stroke. Stem cells have been proposed as a potential source of new cells to replace those lost due to central nervous system injury, as well as a source of trophic molecules to minimize damage and promote recovery. We undertook a detailed review of data from recent basic science and preclinical studies to investigate the potential application of endogenous and exogenous stem cell therapies for treatment of cerebral ischemia. To date, spontaneous endogenous neurogenesis has been observed in response to ischemic injury, and can be enhanced via infusion of appropriate cytokines. Exogenous stem cells from multiple sources can generate neural cells that survive and form synaptic connections after transplantation in the stroke-injured brain. Stem cells from multiple sources cells also exhibit neuroprotective properties that may ameliorate stroke deficits. In many cases, functional benefits observed are likely independent of neural differentiation, though exact mechanisms remain poorly understood. Future studies of neuroregeneration will require the demonstration of function in endogenously born neurons following focal ischemia. Further, methods are currently lacking to definitively demonstrate the therapeutic effect of newly introduced neural cells. Increased plasticity following stroke may facilitate the functional integration of new neurons, but the loss of appropriate guidance cues and supporting architecture in the infarct cavity will likely impede the restoration of lost circuitry. As such careful investigation of the mechanisms underlying trophic benefits will be essential. Evidence to date suggest that continued development of stem cell therapies may ultimately lead to viable treatment options for ischemic brain injury. PMID:19399885

  2. Sex Stratified Neuronal Cultures to Study Ischemic Cell Death Pathways

    PubMed Central

    Verma, Saurabh; Traystman, Richard J.; Herson, Paco S.

    2013-01-01

    Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome. PMID:24378980

  3. Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation

    PubMed Central

    Cho, Kyu Suk; Jeon, Se Jin; Kwon, Oh Wook; Jang, Dae Sik; Kim, Sun Yeou; Ryu, Jong Hoon; Choi, Ji Woong

    2017-01-01

    Microglial activation and its-driven neuroinflammation are characteristic pathogenetic features of neurodiseases, including focal cerebral ischemia. The Artemisia asiatica (Asteraceae) extract and its active component, eupatilin, are well-known to reduce inflammatory responses. But the therapeutic potential of eupatilin against focal cerebral ischemia is not known, along with its anti-inflammatory activities on activated microglia. In this study, we investigated the neuroprotective effect of eupatilin on focal cerebral ischemia through its anti-inflammation, particularly on activated microglia, employing a transient middle cerebral artery occlusion/reperfusion (tMCAO), combined with lipopolysaccharide-stimulated BV2 microglia. Eupatilin exerted anti-inflammatory responses in activated BV2 microglia, in which it reduced secretion of well-known inflammatory markers, including nitrite, IL-6, TNF-α, and PGE2, in a concentration-dependent manner. These observed in vitro effects of eupatilin led to in vivo neuroprotection against focal cerebral ischemia. Oral administration of eupatilin (10 mg/kg) in a therapeutic paradigm significantly reduced brain infarction and improved neurological functions in tMCAO-challenged mice. The same benefit was also observed when eupatilin was given even within 5 hours after MCAO induction. In addition, the neuroprotective effects of a single administration of eupatilin (10 mg/kg) immediately after tMCAO challenge persisted up to 3 days after tMCAO. Eupatilin administration reduced the number of Iba1-immunopositive cells across ischemic brain and induced their morphological changes from amoeboid into ramified in the ischemic core, which was accompanied with reduced microglial proliferation in ischemic brain. Eupatilin suppressed NF-κB signaling activities in ischemic brain by reducing IKKα/β phosphorylation, IκBα phosphorylation, and IκBα degradation. Overall, these data indicate that eupatilin is a neuroprotective agent against

  4. MicroRNA in ischemic stroke etiology and pathology

    PubMed Central

    Rink, Cameron

    2011-01-01

    Small, noncoding, microRNAs (miRNAs) have emerged as key mediators of posttranscriptional gene silencing in both pathogenic and pathological aspects of ischemic stroke biology. In stroke etiology, miRNA have distinct expression patterns that modulate pathogenic processes including atherosclerosis (miR-21, miR-126), hyperlipidemia (miR-33, miR-125a-5p), hypertension (miR-155), and plaque rupture (miR-222, miR-210). Following focal cerebral ischemia, significant changes in the miRNA transcriptome, independent of an effect on expression of miRNA machinery, implicate miRNA in the pathological cascade of events that include blood brain barrier disruption (miR-15a) and caspase mediated cell death signaling (miR-497). Early activation of miR-200 family members improves neural cell survival via prolyl hydroxylase mRNA silencing and subsequent HIF-1α stabilization. Pro- (miR-125b) and anti-inflammatory (miR-26a, -34a, -145, and let-7b) miRNA may also be manipulated to positively influence stroke outcomes. Recent examples of successfully implemented miRNA-therapeutics direct the future of gene therapy and offer new therapeutic strategies by regulating large sets of genes in related pathways of the ischemic stroke cascade. PMID:20841499

  5. Renalase protects against ischemic AKI.

    PubMed

    Lee, H Thomas; Kim, Joo Yun; Kim, Mihwa; Wang, Peili; Tang, Lieqi; Baroni, Sara; D'Agati, Vivette D; Desir, Gary V

    2013-02-01

    Elevated levels of plasma catecholamines accompany ischemic AKI, possibly contributing the inflammatory response. Renalase, an amine oxidase secreted by the proximal tubule, degrades circulating catecholamines and reduces myocardial necrosis, suggesting that it may protect against renal ischemia reperfusion injury. Here, mice subjected to renal ischemia reperfusion injury had significantly lower levels of renalase in the plasma and kidney compared with sham-operated mice. Consistent with this, plasma NE levels increased significantly after renal ischemia reperfusion injury. Furthermore, renal tubular inflammation, necrosis, and apoptosis were more severe and plasma catecholamine levels were higher in renalase-deficient mice subjected to renal ischemia reperfusion compared with wild-type mice. Administration of recombinant human renalase reduced plasma catecholamine levels and ameliorated ischemic AKI in wild-type mice. Taken together, these data suggest that renalase protects against ischemic AKI by reducing renal tubular necrosis, apoptosis, and inflammation, and that plasma renalase might be a biomarker for AKI. Recombinant renalase therapy may have potential for the prevention and treatment of AKI.

  6. Multivariate Analysis of Risk Factors of Cerebral Infarction in 439 Patients Undergoing Thoracic Endovascular Aneurysm Repair

    PubMed Central

    Kanaoka, Yuji; Ohki, Takao; Maeda, Koji; Baba, Takeshi; Fujita, Tetsuji

    2016-01-01

    Abstract The aim of the study is to identify the potential risk factors of cerebral infarction associated with thoracic endovascular aneurysm repair (TEVAR). TEVAR was developed as a less invasive surgical alternative to conventional open repair for thoracic aortic aneurysm treatment. However, outcomes following TEVAR of aortic and distal arch aneurysms remain suboptimal. Cerebral infarction is a major concern during the perioperative period. We included 439 patients who underwent TEVAR of aortic aneurysms at a high-volume teaching hospital between July 2006 and June 2013. Univariate and multivariate logistic regression analyses were performed to identify perioperative cerebral infarction risk factors. Four patients (0.9%) died within 30 days of TEVAR; 17 (3.9%) developed cerebral infarction. In univariate analysis, history of ischemic heart disease and cerebral infarction and concomitant cerebrovascular disease were significantly associated with cerebral infarction. “Shaggy aorta” presence, left subclavian artery coverage, carotid artery debranching, and pull-through wire use were identified as independent risk factors of cerebral infarction. In multivariate analysis, history of ischemic heart disease (odds ratio [OR] 6.49, P = 0.046) and cerebral infarction (OR 43.74, P = 0.031), “shaggy aorta” (OR 30.32, P < 0.001), pull-through wire use during surgery (OR 7.196, P = 0.014), and intraoperative blood loss ≥800 mL (OR 24.31, P = 0.017) were found to be independent risk factors of cerebral infarction. This study identified patient- and procedure-related risk factors of cerebral infarction following TEVAR. These results indicate that patient outcomes could be improved through the identification and management of procedure-related risk factors. PMID:27082585

  7. Dynamic imaging of cerebral blood flow in rat reperfused mini-stroke model using laser speckle temporal contrast analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Luo, Weihua; Li, Pengcheng; Zeng, Shaoqun; Luo, Qingming

    2007-05-01

    Laser speckle temporal contrast analysis (LSTCA) was used to image the cerebral blood flow (CBF) of ischemic area in reperfused mini-stroke model in rats. Focal cortical ischemia in male Sprague-Dawley rats (n=20) was induced by deliberate ligation of multiple branches of the middle cerebral artery (MCA) together with a nylon ring and the dura. LSTCA was used to monitor the spatio-temporal characteristics of cerebral blood flow dynamics in the rat somatosensory cortex in the ischemic and reperfused stages. The infarction volume was measured by 2, 3, 5- triphenyltetrazolium chloride (TTC) staining 24 hours after reperfusion. The distribution of changes in cerebral blood flow which outlined by the laser speckle imaging represented the relative CBF gradient (21.98+/-1.96%, 67.2+/-1.67 %, 107.24+/-4.71 % of the baseline) from ischemic core, penumbra zone to normal tissue immediately after cortical ischemia, in which a central ischemic core had little or no perfusion surrounded by a penumbral region with reduced perfusion, in addition, we had shown the existence of a surrounding region of hyperemic tissue; Thereafter a postrecanalization hyperperfusion occurred in the same infarct core since 24 hours after reperfusion (242.62+/-18.52% of the baseline). Histology of the ischemic regions at 24 hours after reperfusion revealed small focal infarcts that were typically 3~4 mm in diameter, approximately equal to the nylon ring in size and position and essentially accordant with the spatial distribution of the ischemic cortex with below 30% residual CBF of the pre-ischemic baseline. It was demonstrated that this technique of LSTCA was easy to implement and availably used to image the spatial and temporal evolution of CBF changes with high resolution in rat reperfused mini-stroke model.

  8. Monitoring of cerebral blood flow and ischemia in the critically ill.

    PubMed

    Miller, Chad; Armonda, Rocco

    2014-12-01

    Secondary ischemic injury is common after acute brain injury and can be evaluated with the use of neuromonitoring devices. This manuscript provides guidelines for the use of devices to monitor cerebral blood flow (CBF) in critically ill patients. A Medline search was conducted to address essential pre-specified questions related to the utility of CBF monitoring. Peer-reviewed recommendations were constructed according to the GRADE criteria based upon the available supporting literature. Transcranial Doppler ultrasonography (TCD) and transcranial color-coded duplex sonography (TCCS) are predictive of angiographic vasospasm and delayed ischemic neurological deficits after aneurysmal subarachnoid hemorrhage. TCD and TCCS may be beneficial in identifying vasospasm after traumatic brain injury. TCD and TCCS have shortcomings in identifying some secondary ischemic risks. Implantable thermal diffusion flowmetry (TDF) probes may provide real-time continuous quantitative assessment of ischemic risks. Data are lacking regarding ischemic thresholds for TDF or their correlation with ischemic injury and clinical outcomes.TCD and TCCS can be used to monitor CBF in the neurocritical care unit. Better and more developed methods of continuous CBF monitoring are needed to limit secondary ischemic injury in the neurocritical care unit.

  9. Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats.

    PubMed

    Vakili, Abedin; Mojarrad, Somye; Akhavan, Maziar Mohammad; Rashidy-Pour, Ali

    2011-03-04

    Cerebral edema is the most common cause of neurological deterioration and mortality during acute ischemic stroke. Despite the clinical importance of cerebral ischemia, the underlying mechanisms remain poorly understood. Recent studies suggest a role for TNF-α in the brain edema formation. To further investigate whether TNF-α would play a role in brain edema formation, we examined the effects of pentoxifylline (PTX, an inhibitor of TNF-α synthesis) on the brain edema and TNF-α levels in a model of transient focal cerebral ischemia. The right middle cerebral artery (MCA) of rats was occluded for 60 min using the intraluminal filament method. The animals received PTX (60 mg/kg) immediately, 1, 3, or 6h post-ischemic induction. Twenty-four hours after induction of ischemic injury, permeability of the blood-brain barrier (BBB) and brain edema were determined by in situ brain perfusion of Evans Blue (EB) and wet-to-dry weight ratio, respectively. TNF-α protein levels in ischemic cortex were also measured at 1, 4, and 24h after the beginning of an ischemic stroke by using an enzyme-linked immunosorbent assay method. The administration of PTX up to 6h after occlusion of the MCA significantly reduced the brain edema. Moreover, PTX significantly reduced the concentration of TNF-α in ischemic brain cortex up to 4h post-transient focal stroke (P<0.002). Finally, treatment by PTX led to a significant decrease in EB extravasations (P<0.001). Our data demonstrate that PTX administration up to 6h after ischemia can reduce brain edema in a model of transient focal cerebral ischemia. The beneficial effects of PTX may be mediated, at least in part, through a decline in TNF-α production and BBB breakdown.

  10. Focal embolic cerebral ischemia in the rat

    PubMed Central

    Zhang, Li; Zhang, Rui Lan; Jiang, Quan; Ding, Guangliang; Chopp, Michael; Zhang, Zheng Gang

    2015-01-01

    Animal models of focal cerebral ischemia are well accepted for investigating the pathogenesis and potential treatment strategies for human stroke. Occlusion of the middle cerebral artery (MCA) with an endovascular filament is a widely used model to induce focal cerebral ischemia. However, this model is not amenable to thrombolytic therapies. As thrombolysis with recombinant tissue plasminogen activator (rtPA) is a standard of care within 4.5 hours of human stroke onset, suitable animal models that mimic cellular and molecular mechanisms of thrombosis and thrombolysis of stroke are required. By occluding the MCA with a fibrin-rich allogeneic clot, we have developed an embolic model of MCA occlusion in the rat, which recapitulates the key components of thrombotic development and of thrombolytic therapy of rtPA observed from human ischemic stroke. The surgical procedures of our model can be typically completed within approximately 30 min and are highly adaptable to other strains of rats as well as mice for both genders. Thus, this model provides a powerful tool for translational stroke research. PMID:25741989

  11. Memory deficit associated with increased brain proinflammatory cytokine levels and neurodegeneration in acute ischemic stroke.

    PubMed

    Silva, Bruno; Sousa, Larissa; Miranda, Aline; Vasconcelos, Anilton; Reis, Helton; Barcelos, Lucíola; Arantes, Rosa; Teixeira, Antonio; Rachid, Milene Alvarenga

    2015-08-01

    The present study aimed to investigate behavioral changes and neuroinflammatory process following left unilateral common carotid artery occlusion (UCCAO), a model of cerebral ischemia. Post-ischemic behavioral changes following 15 min UCCAO were recorded 24 hours after reperfusion. The novel object recognition task was used to assess learning and memory. After behavioral test, brains from sham and ischemic mice were removed and processed to evaluate central nervous system pathology by TTC and H&E techniques as well as inflammatory mediators by ELISA. UCCAO promoted long-term memory impairment after reperfusion. Infarct areas were observed in the cerebrum by TTC stain. Moreover, the histopathological analysis revealed cerebral necrotic cavities surrounded by ischemic neurons and hippocampal neurodegeneration. In parallel with memory dysfunction, brain levels of TNF-a, IL-1b and CXCL1 were increased post ischemia compared with sham-operated group. These findings suggest an involvement of central nervous system inflammatory mediators and brain damage in cognitive impairment following unilateral acute ischemia.

  12. Atorvastatin attenuates cognitive deficits through Akt1/caspase-3 signaling pathway in ischemic stroke.

    PubMed

    Yang, Jie; Pan, Ying; Li, Xuejing; Wang, Xianying

    2015-12-10

    Neuronal damage in the hippocampal formation is more sensitive to ischemic stimulation and easily injured, causing severe learning and memory impairment. Therefore, protection of hippocampal neuronal damage is the main contributor for learning and memory impairment during cerebral ischemia. Atorvastatin has been reported to ameliorate ischemic brain damage after ischemia reperfusion (I/R). However, its molecular mechanism has not been elucidated clearly. In this study, we established four-vessel occlusion model in rats with cerebral ischemia. Here, we demonstrated that atorvastatin significantly improves the behavior of I/R-rat in open field tasks. We also found that atorvastatin significantly shortens the distance and time of loading onto the hidden platform in the positioning navigation process, decreases the latency in the space exploration process when cognitive testing with Morris water maze was performed during ischemic stroke in rats. Furthermore, the survival rate of neurons in the CA1 area of the hippocampus and the phosphorylation of Akt (Ser473) in the neurons are increased, whereas the expression of caspase-3 are inhibited by atorvastatin. However, after an intracerebroventricular injection of LY294002 (an inhibitor of Akt1), the above neuroprotective effects of atorvastatin are attenuated. In summary, our results imply atorvastatin may improve the survival rate of hippocampal neurons and reduce the impairment of learning and memory by downregulating the activation of the caspase-3 via increasing the phosphorylation of Akt1 during ischemia/reperfusion.

  13. Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder

    PubMed Central

    Moises, H W; Wollschläger, D; Binder, H

    2015-01-01

    In search for the elusive schizophrenia pathway, candidate genes for the disorder from a discovery sample were localized within the energy-delivering and ischemia protection pathway. To test the adult vascular-ischemic (AVIH) and the competing neurodevelopmental hypothesis (NDH), functional genomic analyses of practically all available schizophrenia-associated genes from candidate gene, genome-wide association and postmortem expression studies were performed. Our results indicate a significant overrepresentation of genes involved in vascular function (P<0.001), vasoregulation (that is, perivascular (P<0.001) and shear stress (P<0.01), cerebral ischemia (P<0.001), neurodevelopment (P<0.001) and postischemic repair (P<0.001) among schizophrenia-associated genes from genetic association studies. These findings support both the NDH and the AVIH. The genes from postmortem studies showed an upregulation of vascular-ischemic genes (P=0.020) combined with downregulated synaptic (P=0.005) genes, and ND/repair (P=0.003) genes. Evidence for the AVIH and the NDH is critically discussed. We conclude that schizophrenia is probably a mild adult vascular-ischemic and postischemic repair disorder. Adult postischemic repair involves ND genes for adult neurogenesis, synaptic plasticity, glutamate and increased long-term potentiation of excitatory neurotransmission (i-LTP). Schizophrenia might be caused by the cerebral analog of microvascular angina. PMID:26261884

  14. Protective role for type 4 metabotropic glutamate receptors against ischemic brain damage.

    PubMed

    Moyanova, Slavianka G; Mastroiacovo, Federica; Kortenska, Lidia V; Mitreva, Rumiana G; Fardone, Erminia; Santolini, Ines; Sobrado, Mónica; Battaglia, Giuseppe; Bruno, Valeria; Nicoletti, Ferdinando; Ngomba, Richard T

    2011-04-01

    We examined the influence of type 4 metabotropic glutamate (mGlu4) receptors on ischemic brain damage using the permanent middle cerebral artery occlusion (MCAO) model in mice and the endothelin-1 (Et-1) model of transient focal ischemia in rats. Mice lacking mGlu4 receptors showed a 25% to 30% increase in infarct volume after MCAO as compared with wild-type littermates. In normal mice, systemic injection of the selective mGlu4 receptor enhancer, N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-caboxamide (PHCCC; 10  mg/kg, subcutaneous, administered once 30  minutes before MCAO), reduced the extent of ischemic brain damage by 35% to 45%. The drug was inactive in mGlu4 receptor knockout mice. In the Et-1 model, PHCCC administered only once 20  minutes after ischemia reduced the infarct volume to a larger extent in the caudate/putamen than in the cerebral cortex. Ischemic rats treated with PHCCC showed a faster recovery of neuronal function, as shown by electrocorticographic recording and by a battery of specific tests, which assess sensorimotor deficits. These data indicate that activation of mGlu4 receptors limit the development of brain damage after permanent or transient focal ischemia. These findings are promising because selective mGlu4 receptor enhancers are under clinical development for the treatment of Parkinson's disease and other central nervous system disorders.

  15. Ischemic postconditioning as a novel avenue to protect against brain injury after stroke

    PubMed Central

    Zhao, Heng

    2009-01-01

    Ischemic postconditioning initially referred to a stuttering reperfusion performed immediately after reperfusion, for preventing ischemia/reperfusion injury in both myocardial and cerebral infarction. It has evolved into a concept that can be induced by a broad range of stimuli or triggers, and may even be performed as late as 6 h after focal ischemia and 2 days after transient global ischemia. The concept is thought to be derived from ischemic preconditioning or partial/gradual reperfusion, but in fact the first experiment for postconditioning was carried out much earlier than that of preconditioning or partial/gradual reperfusion, in the research on myocardial ischemia. This review first examines the protective effects and parameters of postconditioning in various cerebral ischemic models. Thereafter, it provides insights into the protective mechanisms of postconditioning associated with reperfusion injury and the Akt, mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and ATP-sensitive K+ (KATP) channel cell signaling pathways. Finally, some open issues and future challenges regarding clinical translation of postconditioning are discussed. PMID:19240739

  16. Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder.

    PubMed

    Moises, H W; Wollschläger, D; Binder, H

    2015-08-11

    In search for the elusive schizophrenia pathway, candidate genes for the disorder from a discovery sample were localized within the energy-delivering and ischemia protection pathway. To test the adult vascular-ischemic (AVIH) and the competing neurodevelopmental hypothesis (NDH), functional genomic analyses of practically all available schizophrenia-associated genes from candidate gene, genome-wide association and postmortem expression studies were performed. Our results indicate a significant overrepresentation of genes involved in vascular function (P < 0.001), vasoregulation (that is, perivascular (P < 0.001) and shear stress (P < 0.01), cerebral ischemia (P < 0.001), neurodevelopment (P < 0.001) and postischemic repair (P < 0.001) among schizophrenia-associated genes from genetic association studies. These findings support both the NDH and the AVIH. The genes from postmortem studies showed an upregulation of vascular-ischemic genes (P = 0.020) combined with downregulated synaptic (P = 0.005) genes, and ND/repair (P = 0.003) genes. Evidence for the AVIH and the NDH is critically discussed. We conclude that schizophrenia is probably a mild adult vascular-ischemic and postischemic repair disorder. Adult postischemic repair involves ND genes for adult neurogenesis, synaptic plasticity, glutamate and increased long-term potentiation of excitatory neurotransmission (i-LTP). Schizophrenia might be caused by the cerebral analog of microvascular angina.

  17. Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Dong-Fang; Qian, Cheng; An, Yan-Li; Chang, Di; Ju, Sheng-Hong; Teng, Gao-Jun

    2014-11-01

    Blood-brain barrier (BBB) damage during ischemia may induce devastating consequences like cerebral edema and hemorrhagic transformation. This study presents a novel strategy for dynamically imaging of BBB damage with PEGylated supermagnetic iron oxide nanoparticles (SPIONs) as contrast agents. The employment of SPIONs as contrast agents made it possible to dynamically image the BBB permeability alterations and ischemic lesions simultaneously with T2-weighted MRI, and the monitoring could last up to 24 h with a single administration of PEGylated SPIONs in vivo. The ability of the PEGylated SPIONs to highlight BBB damage by MRI was demonstrated by the colocalization of PEGylated SPIONs with Gd-DTPA after intravenous injection of SPION-PEG/Gd-DTPA into a mouse. The immunohistochemical staining also confirmed the leakage of SPION-PEG from cerebral vessels into parenchyma. This study provides a novel and convenient route for imaging BBB alteration in the experimental ischemic stroke model.

  18. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke.

    PubMed

    Woodruff, Trent M; Thundyil, John; Tang, Sung-Chun; Sobey, Christopher G; Taylor, Stephen M; Arumugam, Thiruma V

    2011-01-25

    Stroke is the world's second leading cause of mortality, with a high incidence of severe morbidity in surviving victims. There are currently relatively few treatment options available to minimize tissue death following a stroke. As such, there is a pressing need to explore, at a molecular, cellular, tissue, and whole body level, the mechanisms leading to damage and death of CNS tissue following an ischemic brain event. This review explores the etiology and pathogenesis of ischemic stroke, and provides a general model of such. The pathophysiology of cerebral ischemic injury is explained, and experimental animal models of global and focal ischemic stroke, and in vitro cellular stroke models, are described in detail along with experimental strategies to analyze the injuries. In particular, the technical aspects of these stroke models are assessed and critically evaluated, along with detailed descriptions of the current best-practice murine models of ischemic stroke. Finally, we review preclinical studies using different strategies in experimental models, followed by an evaluation of results of recent, and failed attempts of neuroprotection in human clinical trials. We also explore new and emerging approaches for the prevention and treatment of stroke. In this regard, we note that single-target drug therapies for stroke therapy, have thus far universally failed in clinical trials. The need to investigate new targets for stroke treatments, which have pleiotropic therapeutic effects in the brain, is explored as an alternate strategy, and some such possible targets are elaborated. Developing therapeutic treatments for ischemic stroke is an intrinsically difficult endeavour. The heterogeneity of the causes, the anatomical complexity of the brain, and the practicalities of the victim receiving both timely and effective treatment, conspire against developing effective drug therapies. This should in no way be a disincentive to research, but instead, a clarion call to

  19. Engineering triiodothyronine (T3) nanoparticle for use in ischemic brain stroke.

    PubMed

    Mdzinarishvili, Alexander; Sutariya, Vijaykumar; Talasila, Phani K; Geldenhuys, Werner J; Sadana, Prabodh

    2013-08-01

    A potential means of pharmacological management of ischemic stroke is rapid intervention using potent neuroprotective agents. Thyroid hormone (T3) has been shown to protect against ischemic damage in middle cerebral artery occlusion (MCAO) model of ischemic brain stroke. While thyroid hormone is permeable across the blood-brain barrier, we hypothesized that efficacy of thyroid hormone in ischemic brain stroke can be enhanced by encapsulation in nanoparticulate delivery vehicles. We tested our hypothesis by generating poly-(lactide-co-glycolide)-polyethyleneglycol (PLGA-b-PEG) nanoparticles that are either coated with glutathione or are not coated. We have previously reported that glutathione coating of PLGA-PEG nanoparticles is an efficient means of brain targeted drug delivery. Encapsulation of T3 in PLGA-PEG delivery vehicle resulted in particles that were in the nano range and exhibited a zeta potential of -6.51 mV (uncoated) or -1.70 mV (coated). We observed that both glutathione-coated and uncoated nanoparticles are taken up in cells wherein they stimulated the expression of thyroid hormone response element driven reporter robustly. In MCAO model of ischemic stroke, significant benefit of administering T3 in nanoparticulate form was observed over injection of a T3 solution. A 34 % decrease in tissue infarction and a 59 % decrease in brain edema were seen upon administration of T3 solution in MCAO stroke model. Corresponding measurements for uncoated T3 nanoparticles were 51 % and 68 %, whereas for the glutathione coated were 58 % and 75 %. Our study demonstrates that using nanoparticle formulations can significantly improve the efficacy of neuroprotective drugs in ischemic brain stroke.

  20. Magnetic Resonance Imaging of Plaque Burden in Vascular Walls of the Middle Cerebral Artery Correlates with Cerebral Infarction.

    PubMed

    Li, Fei; Chen, Qian-Xue; Chen, Zhi-Biao; Tian, Dao-Feng; Cai, Qiang

    2016-01-01

    Intracranial atherosclerosis may be related to the risk of ischemic stroke. High-resolution magnetic resonance imaging (H-R MRI) makes it possible to measure the intracranial atheroma in vivo. The aim of this study was to evaluate the plaque burden of the middle cerebral artery (MCA) using H-R MRI, and to determine its relationship with both cerebral infarction size and plaque burden in the carotid artery (CA). 54 patients with MCA territory infarction were enrolled and HR-MRI was performed within 7 days following stroke onset. The lumen area (LA), wall area (WA), total vessel area (TVA), and the normalized wall index (NWI) of MCA and CA were measured. We analyzed the status of MCA and CA atheroma, and the size of cerebral infarction, in the corresponding vascular territory. We observed a significant positive correlation between the NWI of the index artery and the volume of the ipsilateral ischemic lesions. In addition, the mean NWI of MCA was significantly correlated with that of the ipsilateral CA (left, r = 0.88, P.0.001; right, r = 0.79, P.0.001), and the plaque burden of the M1 segment of MCA was significantly higher than that of the ipsilateral CA (P < 0.05). There was no significant correlation between the TVA and WA of MCA and that of CA. Our findings suggest that MCA atherosclerosis is significantly correlated with cerebral infarction. In ischemic stroke patients, the plaque burden of M1 segment of MCA is more significant than that of CA.

  1. N-acetylaspartate decrease in acute stage of ischemic stroke: a perspective from experimental and clinical studies.

    PubMed

    Igarashi, Hironaka; Suzuki, Yuji; Huber, Vincent J; Ida, Masahiro; Nakada, Tsutomu

    2015-01-01

    N-acetylaspartate (NAA) appears in a prominent peak in proton magnetic resonance spectroscopy ((1)H-MRS) of the brain. Exhibition by NAA of time-dependent attenuation that reflects energy metabolism during the acute stage of cerebral ischemia makes this metabolite a unique biomarker for assessing ischemic stroke. Although magnetic resonance (MR) imaging is a powerful technique for inspecting the pathological changes that occur during ischemic stroke, biomarkers that directly reflect the drastic metabolic changes associated with acute-stage ischemia are strongly warranted for appropriate therapeutic decision-making in daily clinical settings. In this review, we provide a brief overview of NAA metabolism and focus on the use of attenuation in NAA as a means for assessing the pathophysiological changes that occur during the acute stage of ischemic stroke.

  2. Niche astrocytes promote the survival, proliferation and neuronal differentiation of co-transplanted neural stem cells following ischemic stroke in rats

    PubMed Central

    Luo, Li; Guo, Kaihua; Fan, Wenguo; Lu, Yinghong; Chen, Lizhi; Wang, Yang; Shao, Yijia; Wu, Gongxiong; Xu, Jie; Lü, Lanhai

    2017-01-01

    Niche astrocytes have been reported to promote neuronal differentiation through juxtacrine signaling. However, the effects of astrocytes on neuronal differentiation following ischemic stroke are not fully understood. In the present study, transplanted astrocytes and neural stem cells (NSCs) were transplanted into the ischemic striatum of transient middle cerebral artery occlusion (MCAO) model rats 48 h following surgery. It was observed that the co-transplantation of astrocytes and NSCs resulted in a higher ratio of survival and proliferation of the transplanted NSCs, and neuronal differentiation, in MCAO rats compared with NSC transplantation alone. These results demonstrate that the co-administration of astrocytes promotes the survival and neuronal differentiation of NSCs in the ischemic brain. These results suggest that the co-transplantation of astrocytes and NSCs is more effective than NSCs alone in the production of neurons following ischemic stroke in rats. PMID:28352345

  3. The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice

    SciTech Connect

    Hua, Fang; Wang, Jun; Sayeed, Iqbal; Ishrat, Tauheed; Atif, Fahim; Stein, Donald G.

    2009-12-18

    TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-{kappa}B). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF's role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-{kappa}B and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-{kappa}B activity and phosphorylation of the inhibitor of kappa B (I{kappa}B{alpha}) increased in ischemic brains, but IRF3, inhibitor of {kappa}B kinase complex-{epsilon} (IKK{epsilon}), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-{kappa}B activity or p-I{kappa}B{alpha} induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-{kappa}B signaling and brain injury after acute cerebral I/R.

  4. OLIGODENDROCYTE DEGENERATION AND RECOVERY AFTER FOCAL CEREBRAL ISCHEMIA

    PubMed Central

    McIver, Sally R.; Muccigrosso, Megan; Gonzales, Ernesto R.; Lee, Jin-Moo; Roberts, Marie S.; Sands, Mark S.; Goldberg, Mark P.

    2013-01-01

    The vulnerability of oligodendrocytes to ischemic injury may contribute to functional loss in diseases of central white matter. Immunocytochemical methods to identify oligodendrocyte injury in experimental models rely on epitope availability, and fail to discriminate structural changes in oligodendrocyte morphology. We previously described the use of a lentiviral vector (LV) carrying eGFP under the myelin basic protein (MBP) promoter for selective visualization of oligodendrocyte cell bodies and processes. In this study, we used LV-MBP-eGFP to label oligodendrocytes in rat cerebral white matter prior to transient focal cerebral ischemia, and examined oligodendrocyte injury 24 hours, 48 hours and one week post-reperfusion by quantifying cell survival and assaying the integrity of myelin processes. There was progressive loss of GFP+ oligodendrocytes in ischemic white matter at 24 and 48 hrs. Surviving GFP+ cells had non-pyknotic nuclear morphology and were TUNEL-negative, but there was marked fragmentation of myelin processes as early as 24 hours after stroke. One week after stroke, we observed a restoration of GFP+ oligodendrocytes in ischemic white matter, reflected both by cell counts and by structural integrity of myelin processes. Proliferating cells were not the main source of GFP+ oligodendrocytes, as revealed by BrdU incorporation. These observations identify novel transient structural changes in oligodendrocyte cell bodies and myelinating processes, which may have consequences for white matter function after stroke. PMID:20621643

  5. Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils

    PubMed Central

    Lee, Jae-Chul

    2014-01-01

    Experimentally transient global cerebral ischemia using animal models have been thoroughly studied and numerous reports suggest the involvement of oxidative stress in the pathogenesis of neuronal death in ischemic lesions. In animal models, during the reperfusion period after ischemia, increased oxygen supply results in the overproduction of reactive oxygen species (ROS), which are involved in the process of cell death. ROS, such as superoxide anions, hydroxyl free radicals, hydrogen peroxide and nitric oxide are produced as a consequence of metabolic reactions and central nervous system activity. These reactive species are directly involved in the oxidative damage of cellular macromolecules such as nucleic acids, lipids and proteins in ischemic tissues, which can lead to cell death. Antioxidant enzymes are believed to be among the major mechanisms by which cells counteract the deleterious effect of ROS after cerebral ischemia. Consequently, antioxidant strategies have been long suggested as a therapy for experimental ischemic stroke; however, clinical trials have not yet been able to promote the translation of this concept into patient treatment regimens. This article focuses on the contribution of oxidative stress or antioxidants to the post-ischemic neuronal death following transient global cerebral ischemia by using a gerbil model. PMID:25276473

  6. Experimental models of perinatal hypoxic-ischemic brain damage.

    PubMed

    Vannucci, R C

    1993-01-01

    Animal research has provided important information on the pathogenesis of and neuropathologic responses to perinatal cerebral hypoxia-ischemia. In experimental animals, structural brain damage from hypoxia-ischemia has been produced in immature rats, rabbits, guinea pigs, sheep and monkeys (18, 20, 24, 25, 38). Of the several available animal models, the fetal and newborn rhesus monkey and immature rat have been studied most extensively because of their similarities to humans in respect to the physiology of reproduction and their neuroanatomy at or shortly following birth. Given the frequency of occurrence of human perinatal hypoxic-ischemic brain damage and the multiple, often severe neurologic handicaps which ensue in infants and children, it is not surprising that the above described animal models have been developed. These models have provided the basis for investigations to clarify not only physiologic and biochemical mechanisms of tissue injury but also the efficacy of specific management strategies. Hopefully, such animal research will continue to provide important information regarding how best to prevent or minimize the devastating consequences of perinatal cerebral hypoxia-ischemia.

  7. Tetramethylpyrazine nitrone, a multifunctional neuroprotective agent for ischemic stroke therapy.

    PubMed

    Zhang, Zaijun; Zhang, Gaoxiao; Sun, Yewei; Szeto, Samuel S W; Law, Henry C H; Quan, Quan; Li, Guohui; Yu, Pei; Sho, Eiketsu; Siu, Michael K W; Lee, Simon M Y; Chu, Ivan K; Wang, Yuqiang

    2016-11-14

    TBN, a novel tetramethylpyrazine derivative armed with a powerful free radical-scavenging nitrone moiety, has been reported to reduce cerebral infarction in rats through multi-functional mechanisms of action. Here we study the therapeutic effects of TBN on non-human primate model of stroke. Thirty male Cynomolgus macaques were subjected to stroke with 4 hours ischemia and then reperfusion. TBN were injected intravenously at 3 or 6 hours after the onset of ischemia. Cerebral infarction was examined by magnetic resonance imaging at 1 and 4 weeks post ischemia. Neurological severity scores were evaluated during 4 weeks observation. At the end of experiment, protein markers associated with the stroke injury and TBN treatment were screened by quantitative proteomics. We found that TBN readily penetrated the blood brain barrier and reached effective therapeutic concentration after intravenous administration. It significantly reduced brain infarction and modestly preserved the neurological function of stroke-affected arm. TBN suppressed over-expression of neuroinflammatory marker vimentin and decreased the numbers of GFAP-positive cells, while reversed down-regulation of myelination-associated protein 2', 3'-cyclic-nucleotide 3'-phosphodiesterase and increased the numbers of NeuN-positive cells in the ipsilateral peri-infarct area. TBN may serve as a promising new clinical candidate for the treatment of ischemic stroke.

  8. Ischemic stroke assessment with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Li, Pengcheng; Zeng, Shaoqun; Luo, Qingming; Hu, Bo

    1999-09-01

    Many authors have elucidated the theory about oxygenated hemoglobin, deoxygenated hemoglobin absorption in near-infrared spectrum. And the theory has opened a window to measure the hemodynamic changes caused by stroke. However, no proper animal model still has established to confirm the theory. The aim of this study was to validate near-infrared cerebral topography (NCT) as a practical tool and to try to trace the focal hemodynamic changes of ischemic stroke. In the present study, middle cerebral artery occlusion model and the photosensitizer induced intracranial infarct model had been established. NCT and functional magnetic resonance image (fMRI) were obtained during pre- and post-operation. The geometric shape and infarct area of NCT image was compared with the fMRI images and anatomical samples of each rat. The results of two occlusion models in different intervene factors showed the NCT for infarct focus matched well with fMRI and anatomic sample of each rats. The instrument might become a practical tool for short-term prediction of stroke and predicting the rehabilitation after stroke in real time.

  9. Tetramethylpyrazine nitrone, a multifunctional neuroprotective agent for ischemic stroke therapy

    PubMed Central

    Zhang, Zaijun; Zhang, Gaoxiao; Sun, Yewei; Szeto, Samuel S. W.; Law, Henry C. H.; Quan, Quan; Li, Guohui; Yu, Pei; Sho, Eiketsu; Siu, Michael K. W.; Lee, Simon M. Y.; Chu, Ivan K.; Wang, Yuqiang

    2016-01-01

    TBN, a novel tetramethylpyrazine derivative armed with a powerful free radical-scavenging nitrone moiety, has been reported to reduce cerebral infarction in rats through multi-functional mechanisms of action. Here we study the therapeutic effects of TBN on non-human primate model of stroke. Thirty male Cynomolgus macaques were subjected to stroke with 4 hours ischemia and then reperfusion. TBN were injected intravenously at 3 or 6 hours after the onset of ischemia. Cerebral infarction was examined by magnetic resonance imaging at 1 and 4 weeks post ischemia. Neurological severity scores were evaluated during 4 weeks observation. At the end of experiment, protein markers associated with the stroke injury and TBN treatment were screened by quantitative proteomics. We found that TBN readily penetrated the blood brain barrier and reached effective therapeutic concentration after intravenous administration. It significantly reduced brain infarction and modestly preserved the neurological function of stroke-affected arm. TBN suppressed over-expression of neuroinflammatory marker vimentin and decreased the numbers of GFAP-positive cells, while reversed down-regulation of myelination-associated protein 2′, 3′-cyclic-nucleotide 3′-phosphodiesterase and increased the numbers of NeuN-positive cells in the ipsilateral peri-infarct area. TBN may serve as a promising new clinical candidate for the treatment of ischemic stroke. PMID:27841332

  10. Perinatal ischemic stroke: a five-year retrospective study in a level-III maternity

    PubMed Central

    Machado, Virgínia; Pimentel, Sónia; Pinto, Filomena; Nona, José

    2015-01-01

    Objective To study the incidence, clinical presentation, risk factors, imaging diagnosis, and clinical outcome of perinatal stroke. Methods Data was retrospectively collected from full-term newborns admitted to the neonatal unit of a level III maternity in Lisbon with cerebral stroke, from January 2007 to December 2011. Results There were 11 cases of stroke: nine were arterial ischemic stroke and two were cerebral venous sinus thrombosis. We estimated an incidence of arterial ischemic stroke of 1.6/5,000 births and of cerebral venous sinus thrombosis of 7.2/100,000 births. There were two cases of recurrent stroke. Eight patients presented with symptoms while the remaining three were asymptomatic and incidentally diagnosed. The most frequently registered symptoms (8/11) were seizures; in that, generalized clonic (3/8) and focal clonic (5/8). Strokes were more commonly left-sided (9/11), and the most affected artery was the left middle cerebral artery (8/11). Transfontanelle ultrasound was positive in most of the patients (10/11), and stroke was confirmed by cerebral magnetic resonance in all patients. Electroencephalographic recordings were carried out in five patients and were abnormal in three (focal abnormalities n=2, burst-suppression pattern n=1). Eight patients had previously identified risk factors for neonatal stroke which included obstetric and neonatal causes. Ten patients were followed up at outpatients setting; four patients developed motor deficits and one presented with epilepsy. Conclusions Although a modest and heterogeneous sample, this study emphasizes the need for a high level of suspicion when it comes to neonatal stroke, primarily in the presence of risk factors. The prevalence of neurological sequelae in our series supports the need of long-term follow-up and early intervention strategies. PMID:25993071

  11. Serum Levels of Substance P and Mortality in Patients with a Severe Acute Ischemic Stroke

    PubMed Central

    Lorente, Leonardo; Martín, María M.; Almeida, Teresa; Pérez-Cejas, Antonia; Ramos, Luis; Argueso, Mónica; Riaño-Ruiz, Marta; Solé-Violán, Jordi; Hernández, Mariano

    2016-01-01

    Substance P (SP), a member of tachykinin family, is involved in the inflammation of the central nervous system and in the appearance of cerebral edema. Higher serum levels of SP have been found in 18 patients with cerebral ischemia compared with healthy controls. The aim of our multi-center study was to analyze the possible association between serum levels of SP and mortality in ischemic stroke patients. We included patients with malignant middle cerebral artery infarction (MMCAI) and a Glasgow Coma Scale (GCS) lower than 9. Non-surviving patients at 30 days (n = 31) had higher serum concentrations of SP levels at diagnosis of severe MMCAI than survivors (n = 30) (p < 0.001). We found in multiple regression an association between serum concentrations of SP higher than 362 pg/mL and mortality at 30 days (Odds Ratio = 5.33; 95% confidence interval = 1.541–18.470; p = 0.008) after controlling for age and GCS. Thus, the major novel finding of our study was the association between serum levels of SP and mortality in patients suffering from severe acute ischemic stroke. PMID:27338372

  12. Effects of Tannic Acid on the Ischemic Brain Tissue of Rats.

    PubMed

    Sen, Halil Murat; Ozkan, Adile; Guven, Mustafa; Akman, Tarık; Aras, Adem Bozkurt; Sehitoglu, Ibrahim; Alacam, Hasan; Silan, Coskun; Cosar, Murat; Ozisik Karaman, Handan Isın

    2015-08-01

    Many studies of brain ischemia have shown the role played by massive ischemia-induced production of reactive oxygen species, the main mechanism of neuronal death. However, currently, there is no treatment choice to prevent cell death triggered by reactive oxygen species. In our study, we researched the effects of tannic acid, an antioxidant, on the ischemic tissue of rats with induced middle cerebral artery occlusion. The animals were divided into three groups of eight animals. The sham group were only administered 10 % ethanol intraperitoneally, the second group had middle cerebral artery occlusion induced and were given 10 % ethanol intraperitoneally, while the third group had middle cerebral artery occlusion with 10 mg/kg dose tannic acid dissolved in 10 % ethanol administered within half an hour intraperitoneally. The rats were sacrificed 24 h later, and brain tissue was examined biochemically and histopathologically. Biochemical evaluation of brain tissue found that comparing the ischemic group with no treatment with the tannic acid-treated ischemia group; the superoxide dismutase (SOD) levels were higher, malondialdehyde (MDA) levels were lower, and nuclear respiratory factor-1 (NRF-1) was higher in the tannic acid-treated group. Histopathological examination showed that the histopathological results of the tannic acid group were better than the group not given tannic acid. Biochemical and histopathological results showed that tannic acid administration had an antioxidant effect on the negative effects of ischemia in brain tissue.

  13. Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature.

    PubMed

    Li, Qing-Quan; Qiao, Guan-Qun; Ma, Jun; Fan, Hong-Wei; Li, Ying-Bin

    2015-02-01

    The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial fibrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identified using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromodeoxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial fibrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our findings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  14. Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury

    PubMed Central

    Wang, Jiayin; Xia, Jinchao; Zhang, Feng; Shi, Yejie; Wu, Yun; Pu, Hongjian; Liou, Anthony K. F.; Leak, Rehana K.; Yu, Xinguang; Chen, Ling; Chen, Jun

    2015-01-01

    Galectin-1 (gal-1), a special lectin with high affinity to β-galactosides, is implicated in protection against ischemic brain injury. The present study investigated transplantation of gal-1-secreting neural stem cell (s-NSC) into ischemic brains and identified the mechanisms underlying protection. To accomplish this goal, secretory gal-1 was stably overexpressed in NE-4C neural stem cells. Transient cerebral ischemia was induced in mice by middle cerebral artery occlusion for 60 minutes and s-NSCs were injected into the striatum and cortex within 2 hours post-ischemia. Brain infarct volume and neurological performance were assessed up to 28 days post-ischemia. s-NSC transplantation reduced infarct volume, improved sensorimotor and cognitive functions, and provided more robust neuroprotection than non-engineered NSCs or gal-1-overexpressing (but non-secreting) NSCs. White matter injury was also ameliorated in s-NSC-treated stroke mice. Gal-1 modulated microglial function in vitro, by attenuating secretion of pro-inflammatory cytokines (TNF-α and nitric oxide) in response to LPS stimulation and enhancing production of anti-inflammatory cytokines (IL-10 and TGF-β). Gal-1 also shifted microglia/macrophage polarization toward the beneficial M2 phenotype in vivo by reducing CD16 expression and increasing CD206 expression. In sum, s-NSC transplantation confers robust neuroprotection against cerebral ischemia, probably by alleviating white matter injury and modulating microglial/macrophage function. PMID:25858671

  15. Microglia preconditioned by oxygen-glucose deprivation promote functional recovery in ischemic rats

    PubMed Central

    Kanazawa, Masato; Miura, Minami; Toriyabe, Masafumi; Koyama, Misaki; Hatakeyama, Masahiro; Ishikawa, Masanori; Nakajima, Takashi; Onodera, Osamu; Takahashi, Tetsuya; Nishizawa, Masatoyo; Shimohata, Takayoshi

    2017-01-01

    Cell-therapies that invoke pleiotropic mechanisms may facilitate functional recovery in stroke patients. We hypothesized that a cell therapy using microglia preconditioned by optimal oxygen-glucose deprivation (OGD) is a therapeutic strategy for ischemic stroke because optimal ischemia induces anti-inflammatory M2 microglia. We first delineated changes in angiogenesis and axonal outgrowth in the ischemic cortex using rats. We found that slight angiogenesis without axonal outgrowth were activated at the border area within the ischemic core from 7 to 14 days after ischemia. Next, we demonstrated that administration of primary microglia preconditioned by 18 hours of OGD at 7 days prompted functional recovery at 28 days after focal cerebral ischemia compared to control therapies by marked secretion of remodelling factors such as vascular endothelial growth factor, matrix metalloproteinase-9, and transforming growth factor-β polarized to M2 microglia in vitro/vivo. In conclusion, intravascular administration of M2 microglia preconditioned by optimal OGD may be a novel therapeutic strategy against ischemic stroke. PMID:28195185

  16. Intracranial transplantation of monocyte-derived multipotential cells enhances recovery after ischemic stroke in rats.

    PubMed

    Hattori, Hidenori; Suzuki, Shigeaki; Okazaki, Yuka; Suzuki, Norihiro; Kuwana, Masataka

    2012-02-01

    Cell transplantation has emerged as a potential therapy to reduce the neurological deficits caused by ischemic stroke. We previously reported a primitive cell population, monocyte-derived multipotential cells (MOMCs), which can differentiate into mesenchymal, neuronal, and endothelial lineages. In this study, MOMCs and macrophages were prepared from rat peripheral blood and transplanted intracranially into the ischemic core of syngeneic rats that had undergone a left middle cerebral artery occlusion procedure. Neurological deficits, as evaluated by the corner test, were less severe in the MOMC-transplanted rats than in macrophage-transplanted or mock-treated rats. Histological evaluations revealed that the number of microvessels that had formed in the ischemic boundary area by 4 weeks after transplantation was significantly greater in the MOMC-transplanted rats than in the control groups. The blood vessel formation was preceded by the appearance of round CD31(+) cells, which we confirmed were derived from the transplanted MOMCs. Small numbers of bloodvessels incorporating MOMC-derived endothelial cells expressing a mature endothelial marker RECA-1 were detected at 4 weeks after transplantation. In addition, MOMCs expressed a series of angiogenic factors, including vascular endothelial growth factor, angiopoetin-1, and placenta growth factor (PlGF). These findings provide evidence that the intracranial delivery of MOMCs enhances functional recovery by promoting neovascularization in a rat model for ischemic stroke.

  17. Vagus Nerve Stimulation in Ischemic Stroke: Old Wine in a New Bottle

    PubMed Central

    Cai, Peter Y.; Bodhit, Aakash; Derequito, Roselle; Ansari, Saeed; Abukhalil, Fawzi; Thenkabail, Spandana; Ganji, Sarah; Saravanapavan, Pradeepan; Shekar, Chandana C.; Bidari, Sharatchandra; Waters, Michael F.; Hedna, Vishnumurthy Shushrutha

    2014-01-01

    Vagus nerve stimulation (VNS) is currently Food and Drug Administration-approved for treatment of both medically refractory partial-onset seizures and severe, recurrent refractory depression, which has failed to respond to medical interventions. Because of its ability to regulate mechanisms well-studied in neuroscience, such as norepinephrine and serotonin release, the vagus nerve may play an important role in regulating cerebral blood flow, edema, inflammation, glutamate excitotoxicity, and neurotrophic processes. There is strong evidence that these same processes are important in stroke pathophysiology. We reviewed the literature for the role of VNS in improving ischemic stroke outcomes by performing a systematic search for publications in Medline (1966–2014) with keywords “VNS AND stroke” in subject headings and key words with no language restrictions. Of the 73 publications retrieved, we identified 7 studies from 3 different research groups that met our final inclusion criteria of research studies addressing the role of VNS in ischemic stroke. Results from these studies suggest that VNS has promising efficacy in reducing stroke volume and attenuating neurological deficits in ischemic stroke models. Given the lack of success in Phase III trials for stroke neuroprotection, it is important to develop new therapies targeting different neuroprotective pathways. Further studies of the possible role of VNS, through normally physiologically active mechanisms, in ischemic stroke therapeutics should be conducted in both animal models and clinical studies. In addition, recent advent of a non-invasive, transcutaneous VNS could provide the potential for easier clinical translation. PMID:25009531

  18. Association of reduced folate carrier-1 (RFC-1) polymorphisms with ischemic stroke and silent brain infarction.

    PubMed

    Cho, Yunkyung; Kim, Jung O; Lee, Jeong Han; Park, Hye Mi; Jeon, Young Joo; Oh, Seung Hun; Bae, Jinkun; Park, Young Seok; Kim, Ok Joon; Kim, Nam Keun

    2015-01-01

    Stroke is the second leading cause of death in the world and in South Korea. Ischemic stroke and silent brain infarction (SBI) are complex, multifactorial diseases influenced by multiple genetic and environmental factors. Moderately elevated plasma homocysteine levels are a major risk factor for vascular diseases, including stroke and SBI. Folate and vitamin B12 are important regulators of homocysteine metabolism. Reduced folate carrier (RFC), a bidirectional anion exchanger, mediates folate delivery to a variety of cells. We selected three known RFC-1 polymorphisms (-43C>T, 80A>G, 696T>C) and investigated their relationship to cerebral infarction in the Korean population. We used the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to analyze associations between the three RFC-1 polymorphisms, disease status, and folate and homocysteine levels in 584 ischemic stroke patients, 353 SBI patients, and 505 control subjects. The frequencies of the RFC-1 -43TT, 80GG, and 696CC genotypes differed significantly between the stroke and control groups. The RFC-1 80A>G substitution was also associated with small artery occlusion and SBI. In a gene-environment analysis, the RFC-1 -43C>T, 80A>G, and 696T>C polymorphisms in the ischemic stroke group had combined effects with all environmental factors. In summary, we found that the RFC-1 -43C>T, 80A>G, and 696T>C polymorphisms may be risk factors for ischemic stroke.

  19. Non-Invasive Respiratory Impedance Enhances Cerebral Perfusion in Healthy Adults

    PubMed Central

    Favilla, Christopher G.; Parthasarathy, Ashwin B.; Detre, John A.; Yodh, Arjun G.; Mullen, Michael T.; Kasner, Scott E.; Gannon, Kimberly; Messé, Steven R.

    2017-01-01

    Optimization of cerebral blood flow (CBF) is the cornerstone of clinical management in a number of neurologic diseases, most notably ischemic stroke. Intrathoracic pressure influences cardiac output and has the potential to impact CBF. Here, we aim to quantify cerebral hemodynamic changes in response to increased respiratory impedance (RI) using a non-invasive respiratory device. We measured cerebral perfusion under varying levels of RI (6 cm H2O, 9 cm H2O, and 12 cm H2O) in 20 healthy volunteers. Simultaneous measurements of microvascular CBF and middle cerebral artery mean flow velocity (MFV), respectively, were performed with optical diffuse correlation spectroscopy and transcranial Doppler ultrasound. At a high level of RI, MFV increased by 6.4% compared to baseline (p = 0.004), but changes in cortical CBF were non-significant. In a multivariable linear regression model accounting for end-tidal CO2, RI was associated with increases in both MFV (coefficient: 0.49, p < 0.001) and cortical CBF (coefficient: 0.13, p < 0.001), although the magnitude of the effect was small. Manipulating intrathoracic pressure via non-invasive RI was well tolerated and produced a small but measurable increase in cerebral perfusion in healthy individuals. Future studies in acute ischemic stroke patients with impaired cerebral autoregulation are warranted in order to assess whether RI is feasible as a novel non-invasive therapy for stroke. PMID:28261153

  20. MiRNAs: potential diagnostic and therapeutic targets for cerebral ischaemia.

    PubMed

    Zhu, Ruixia; Liu, Xu; Zhu, Ying; He, Zhiyi

    2016-01-01

    MiRNAs are short single-stranded non-coding RNAs that cause degradation or repression of target mRNAs by base pairing with their 3'-untranslated regions. Recent studies have shown that miRNAs play an important role in the occurrence and development of cerebral ischaemia, as well as exerting regulatory effects. Additionally, circulating miRNAs in peripheral blood, which are dysregulated following cerebral ischaemia, have recently been identified as useful biomarkers in diagnosis and prognosis of cerebral ischaemia. Single-nucleotide polymorphisms (SNPs) located in miRNA genes or target sites are likely to cause complex functional consequences by affecting miRNA biogenesis or target selection. Research on miRNA-SNPs is rapidly growing, and recent studies have identified a significant relationship between miRNAs and ischemic disease. We also address the latest advances in miRNA-based therapeutic approaches for ischemic disease. In conclusion, our review summarizes current research regarding miRNAs and cerebral ischaemia, focusing on the regulatory role of miRNAs in cerebral ischaemia, as well as the potential of miRNAs as biomarkers and therapeutic targets in cerebral ischaemia.

  1. Evaluation of cerebral ischemia using near-infrared spectroscopy with oxygen inhalation

    NASA Astrophysics Data System (ADS)

    Ebihara, Akira; Tanaka, Yuichi; Konno, Takehiko; Kawasaki, Shingo; Fujiwara, Michiyuki; Watanabe, Eiju

    2012-09-01

    Conventional methods presently used to evaluate cerebral hemodynamics are invasive, require physical restraint, and employ equipment that is not easily transportable. Therefore, it is difficult to take repeated measurements at the patient's bedside. An alternative method to evaluate cerebral hemodynamics was developed using near-infrared spectroscopy (NIRS) with oxygen inhalation. The bilateral fronto-temporal areas of 30 normal volunteers and 33 patients with cerebral ischemia were evaluated with the NIRS system. The subjects inhaled oxygen through a mask for 2 min at a flow rate of 8 L/min. Principal component analysis (PCA) was applied to the data, and a topogram was drawn using the calculated weights. NIRS findings were compared with those of single-photon-emission computed tomography (SPECT). In normal volunteers, no laterality of the PCA weights was observed in 25 of 30 cases (83%). In patients with cerebral ischemia, PCA weights in ischemic regions were lower than in normal regions. In 28 of 33 patients (85%) with cerebral ischemia, NIRS findings agreed with those of SPECT. The results suggest that transmission of the changes in systemic SpO2 were attenuated in ischemic regions. The method discussed here should be clinically useful because it can be used to measure cerebral ischemia easily, repeatedly, and noninvasively.

  2. Pre-treatment with LCZ696, an orally active angiotensin receptor neprilysin inhibitor, prevents ischemic brain damage.

    PubMed

    Bai, Hui-Yu; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Kukida, Masayoshi; Shan, Bao-Shuai; Yamauchi, Toshifumi; Higaki, Akinori; Iwanami, Jun; Horiuchi, Masatsugu

    2015-09-05

    Angiotensin II receptor blockers (ARBs) are known to prevent ischemic brain damage after stroke. Natriuretic peptides, which are increased by a neprilysin inhibitor, are also reported to protect against brain damage. Therefore, we investigated the possible protective effect of valsartan (VAL) compared with LCZ696 (VAL+ neprilysin inhibitor; 1:1) after middle cerebral artery (MCA) occlusion. Eight-week-old male C57BL/6J mice were treated with VAL (3mg/kg per day) or LCZ696 (6mg/kg per day) for 2 weeks before MCA occlusion. Blood pressure and heart rate were measured by telemetry. Cerebral blood flow (CBF) was determined by laser-Doppler flowmetry. Ischemic area was evaluated by triphenytetrasodium chloride staining, and oxidative stress was determined by dihydroethidium staining. Blood pressure and heart rate were not significantly different before and after treatment. Pre-treatment with LCZ696 or VAL reduced the ischemic area, and this effect of LCZ696 was more marked than that of VAL pre-treatment. The decrease in CBF in the peripheral region of the ischemic area was significantly attenuated by pre-treatment with LCZ696 or VAL, without any significant effect on CBF in the core region. VAL or LCZ696 pre-treatment significantly decreased the increase of superoxide anion production in the cortex on the ischemic side. However, no significant difference in CBF and superoxide anion production was observed between VAL and LCZ696 pre-treatment. The preventive effect of LCZ696 on ischemic brain damage after stroke was more marked than that of VAL. LCZ696 could be used as a new approach to prevent brain damage after stroke. (246 words).

  3. Radix Ilicis Pubescentis total flavonoids ameliorates neuronal damage and reduces lesion extent in a mouse model of transient ischemic attack.

    PubMed

    Miao, Ming-San; Guo, Lin; Li, Rui-Qi; Zhang, Xiao-Lei

    2016-03-01

    Flavonoids are a major component in the traditional Chinese medicine Radix Ilicis Pubescentis. Previous studies have shown that the administration of Radix Ilicis Pubescentis total flavonoids is protective in cerebral ischemia. However, to our knowledge, no studies have examined whether the total flavonoids extracted from Radix Ilicis Pubescentis prevent or ameliorate neuronal damage following transient ischemic attacks. Therefore, Radix Ilicis Pubescentis total flavonoids question and the potential underlying mechanisms. Thus, beginning 3 days before the induction of a mouse model of transient ischemic attack using tert-butyl hydroperoxide injections, mice were intragastrically administered 0.3, 0.15, or 0.075 g/kg of Radix Ilicis Pubescentis total flavonoids daily for 10 days. The results of spectrophotometric analyses demonstrated that Radix Ilicis Pubescentis total flavonoids enhanced oxygen free radical scavenging and reduced pathological alterations in the brain. Hematoxylin-eosin staining results showed that Radix Ilicis Pubescentis total flavonoids reduced hippocampal neuronal damage and cerebral vascular injury in this mouse model of transient ischemic attack. These results suggest that the antioxidant effects of Radix Ilicis Pubescentis total flavonoids alleviate the damage to brain tissue caused by transient ischemic attack.

  4. Neuroprotective Effect of a New Synthetic Aspirin-decursinol Adduct in Experimental Animal Models of Ischemic Stroke

    PubMed Central

    Shin, Bich Na; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Choi, Jung Hoon; Park, Jeong Ho; Lee, Yun Lyul; Suh, Hong-Won; Jun, Jong-Gab; Kwon, Young-Guen; Kim, Young-Myeong; Kwon, Seung-Hae; Her, Song; Kim, Jin Su; Hyun, Byung-Hwa; Kim, Chul-Kyu; Cho, Jun Hwi; Lee, Choong Hyun; Won, Moo-Ho

    2013-01-01

    Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants. PMID:24073226

  5. Protective effect of naringenin in experimental ischemic stroke: down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression.

    PubMed

    Bai, Xue; Zhang, Xiangjian; Chen, Linyu; Zhang, Jian; Zhang, Lan; Zhao, Xumeng; Zhao, Ting; Zhao, Yuan

    2014-08-01

    Inflammatory damage plays a pivotal, mainly detrimental role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Naringenin (NG) has gained growing appreciation for its beneficial biological effects through its anti-inflammatory property. Whether this protective effect applies to cerebral ischemic injury, we therefore investigate the potential neuroprotective role of NG and the underlying mechanisms. Focal cerebral ischemia in male Sprague-Dawley rats was induced by permanent middle cerebral artery occlusion (pMCAO) and NG was pre-administered intragastrically once daily for four consecutive days before surgery. Neurological deficit, brain water content and infarct volume were measured at 24 h after stroke. Immunohistochemistry, Western blot and RT-qPCR were used to explore the anti-inflammatory potential of NG in the regulation of NOD2, RIP2 and NF-κB in ischemic cerebral cortex. Additionally, the activities of MMP-9 and claudin-5 were analyzed to detect NG's influence on blood-brain barrier. Compared with pMCAO and Vehicle groups, NG noticeably improved neurological deficit, decreased infarct volume and edema at 24 h after ischemic insult. Consistent with these results, our data also indicated that NG significantly downregulated the expression of NOD2, RIP2, NF-κB and MMP-9, and upregulated the expression of claudin-5 (P < 0.05). The results provided a neuroprotective profile of NG in cerebral ischemia, this effect was likely exerted by down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression.

  6. Intravascular Perfusion of Carbon Black Ink Allows Reliable Visualization of Cerebral Vessels

    PubMed Central

    Hasan, Mohammad R.; Herz, Josephine; Hermann, Dirk M.; Doeppner, Thorsten R.

    2013-01-01

    The anatomical structure of cerebral vessels is a key determinant for brain hemodynamics as well as the severity of injury following ischemic insults. The cerebral vasculature dynamically responds to various pathophysiological states and it exhibits considerable differences between strains and under conditions of genetic manipulations. Essentially, a reliable technique for intracranial vessel staining is essential in order to study the pathogenesis of ischemic stroke. Until recently, a set of different techniques has been employed to visualize the cerebral vasculature including injection of low viscosity resin, araldite F, gelatin mixed with various dyes1 (i.e. carmine red, India ink) or latex with2 or without3 carbon black. Perfusion of white latex compound through the ascending aorta has been first reported by Coyle and Jokelainen3. Maeda et al.2 have modified the protocol by adding carbon black ink to the latex compound for improved contrast visualization of the vessels after saline perfusion of the brain. However, inefficient perfusion and inadequate filling of the vessels are frequently experienced due to high viscosity of the latex compound4. Therefore, we have described a simple and cost-effective technique using a mixture of two commercially available carbon black inks (CB1 and CB2) to visualize the cerebral vasculature in a reproducible manner5. We have shown that perfusion with CB1+CB2 in mice results in staining of significantly smaller cerebral vessels at a higher density in comparison to latex perfusion5. Here, we describe our protocol to identify the anastomotic points between the anterior (ACA) and middle cerebral arteries (MCA) to study vessel variations in mice with different genetic backgrounds. Finally, we demonstrate the feasibility of our technique in a transient focal cerebral ischemia model in mice by combining CB1+CB2-mediated vessel staining with TTC staining in various degrees of ischemic injuries. PMID:23328838

  7. Intravascular perfusion of carbon black ink allows reliable visualization of cerebral vessels.

    PubMed

    Hasan, Mohammad R; Herz, Josephine; Hermann, Dirk M; Doeppner, Thorsten R

    2013-01-04

    The anatomical structure of cerebral vessels is a key determinant for brain hemodynamics as well as the severity of injury following ischemic insults. The cerebral vasculature dynamically responds to various pathophysiological states and it exhibits considerable differences between strains and under conditions of genetic manipulations. Essentially, a reliable technique for intracranial vessel staining is essential in order to study the pathogenesis of ischemic stroke. Until recently, a set of different techniques has been employed to visualize the cerebral vasculature including injection of low viscosity resin, araldite F, gelatin mixed with various dyes (i.e. carmine red, India ink) or latex with or without carbon black. Perfusion of white latex compound through the ascending aorta has been first reported by Coyle and Jokelainen. Maeda et al. have modified the protocol by adding carbon black ink to the latex compound for improved contrast visualization of the vessels after saline perfusion of the brain. However, inefficient perfusion and inadequate filling of the vessels are frequently experienced due to high viscosity of the latex compound. Therefore, we have described a simple and cost-effective technique using a mixture of two commercially available carbon black inks (CB1 and CB2) to visualize the cerebral vasculature in a reproducible manner. We have shown that perfusion with CB1+CB2 in mice results in staining of significantly smaller cerebral vessels at a higher density in comparison to latex perfusion. Here, we describe our protocol to identify the anastomotic points between the anterior (ACA) and middle cerebral arteries (MCA) to study vessel variations in mice with different genetic backgrounds. Finally, we demonstrate the feasibility of our technique in a transient focal cerebral ischemia model in mice by combining CB1+CB2-mediated vessel staining with TTC staining in various degrees of ischemic injuries.

  8. Neuroprotection and reduced gliosis by atomoxetine pretreatment in a gerbil model of transient cerebral ischemia.

    PubMed

    Park, Joon Ha; Shin, Bich Na; Chen, Bai Hui; Kim, In Hye; Ahn, Ji Hyeon; Cho, Jeong-Hwi; Tae, Hyun-Jin; Lee, Jae-Chul; Lee, Choong-Hyun; Kim, Young-Myeong; Lee, Yun Lyul; Kim, Sung Koo; Won, Moo-Ho

    2015-12-15

    Atomoxetine (ATX) is a non-stimulant selective norepinephrine reuptake inhibitor that is widely used for the treatment of attention-deficit/hyperactivity disorder (ADHD). In this study, we firstly examined neuroprotective effects of pre- or post-treatment with 15 and 30 mg/kg ATX against ischemic damage in the gerbil hippocampal cornus ammonis 1 (CA1) region subjected to 5 min of transient cerebral ischemia using cresyl violet staining, neuronal nuclei immunohistochemistry and Fluoro-J B histofluorescence staining. We found that only pre-treatment with 30 mg/kg ATX protected CA1 pyramidal neurons from ischemic insult. In addition, pre-treatment with 30 mg/kg ATX, which had neuroprotective effect against ischemic damage, distinctly attenuated the activation of astrocytes and microglia in the ischemic CA1 region compared with the vehicle-treated ischemia group by glial fibrillary acidic protein (for astrocytes) and ionized calcium-binding adapter molecule 1 (for microglia) immunohistochemistry. In brief, our present results indicate that ATX has neuroprotective effect against transient cerebral ischemic insult and that the neuroprotective effect of ATX may be closely associated with attenuated glial activation.

  9. Therapeutic time window of cannabidiol treatment on delayed ischemic damage via high-mobility group box1-inhibiting mechanism.

    PubMed

    Hayakawa, Kazuhide; Irie, Keiichi; Sano, Kazunori; Watanabe, Takuya; Higuchi, Sei; Enoki, Makiko; Nakano, Takafumi; Harada, Kazuhiko; Ishikane, Shin; Ikeda, Tomoaki; Fujioka, Masayuki; Orito, Kensuke; Iwasaki, Katsunori; Mishima, Kenichi; Fujiwara, Michihiro

    2009-09-01

    Cannabidiol decreases cerebral infarction and high-mobility group box1 (HMGB1) in plasma in ischemic early phase. However, plasma HMGB1 levels in ischemic delayed phase reach higher concentration with the progressing brain injury. In this study, we investigated the therapeutic time window of cannabidiol on functional deficits, glial HMGB1 and plasma HMGB1 levels in a 4 h mouse middle cerebral artery (MCA) occlusion model. Cannabidiol-treated mice were divided into 3 groups as follows: group (a) treated from day 1, group (b) treated from day 3, group (c) treated from day 5 after MCA occlusion. Moreover, minocycline, microglia inhibitor, and fluorocitrate, an inhibitor of astroglial metabolism, were used to compare with cannabidiol-treated group. Repeated treatment with cannabidiol from 1 and 3 d at the latest after cerebral ischemia improved functional deficits and survival rates. However, cannabidiol from 5 d could not improve the ischemic damage as well as fluorocitrate-treated group. Moreover, both group (a), group (b) and minocycline but not group (c) and fluorocitrate-treated group had a decrease in the number of Iba1 expressing HMGB1 positive cells and HMGB1 levels in plasma. Cannabidiol may provide therapeutic possibilities for the progressing brain injury via HMGB1-inhibiting mechanism.

  10. Electroacupuncture-induced neuroprotection against focal cerebral ischemia in the rat is mediated by adenosine A1 receptors

    PubMed Central

    Dai, Qin-xue; Geng, Wu-jun; Zhuang, Xiu-xiu; Wang, Hong-fa; Mo, Yun-chang; Xin, He; Chen, Jiang-fan; Wang, Jun-lu

    2017-01-01

    The activation of adenosine A1 receptors is important for protecting against ischemic brain injury and pretreatment with electroacupuncture has been shown to mitigate ischemic brain insult. The aim of this study was to test whether the adenosine A1 receptor mediates electroacupuncture pretreatment-induced neuroprotection against ischemic brain injury. We first performed 30 minutes of electroacupuncture pretreatment at the Baihui acupoint (GV20), delivered with a current of 1 mA, a frequency of 2/15 Hz, and a depth of 1 mm. High-performance liquid chromatography found that adenosine triphosphate and adenosine levels peaked in the cerebral cortex at 15 minutes and 120 minutes after electroacupuncture pretreatment, respectively. We further examined the effect of 15 or 120 minutes electroacupuncture treatment on ischemic brain injury in a rat middle cerebral artery-occlusion model. We found that at 24 hours reperfusion,120 minutes after electroacupuncture pretreatment, but not for 15 minutes, significantly reduced behavioral deficits and infarct volumes. Last, we demonstrated that the protective effect gained by 120 minutes after electroacupuncture treatment before ischemic injury was abolished by pretreatment with the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (1 mg/kg, intraperitoneally). Our results suggest that pretreatment with electroacupuncture at the Baihui acupoint elicits protection against transient cerebral ischemia via action at adenosine A1 receptors.

  11. Parameters of diffusional kurtosis imaging for the diagnosis of acute cerebral infarction in different brain regions.

    PubMed

    Guo, Yue-Lin; Li, Su-Juan; Zhang, Zhong-Ping; Shen, Zhi-Wei; Zhang, Gui-Shan; Yan, Gen; Wang, Yan-Ting; Rao, Hai-Bing; Zheng, Wen-Bin; Wu, Ren-Hua

    2016-08-01

    Diffusional kurtosis imaging (DKI) is a new type diffusion-weighted sequence which measures the non-Gaussianity of water diffusion. The present study aimed to investigate whether the parameters of DKI could distinguish between differences in water molecule diffusion in various brain regions under the conditions of acute infarction and to identify the optimal DKI parameter for locating ischemic lesions in each brain region. A total of 28 patients with acute ischemic stroke in different brain regions were recruited for the present study. The relative values of DKI parameters were selected as major assessment indices, and the homogeneity of background image and contrast of adjacent structures were used as minor assessment indices. According to the brain region involved in three DKI parametric maps, including mean kurtosis (MK), axial kurtosis (Ka) and radial kurtosis (Kr), 112 groups of regions of interest were outlined in the following regions: Corpus callosum (n=17); corona radiata (n=26); thalamus (n=21); subcortical white matter (n=24); and cerebral cortex (n=24). For ischemic lesions in the corpus callosum and corona radiata, significant increases in relative Ka were detected, as compared with the other parameters (P<0.05). For ischemic lesions in the thalamus, subcortical white matter and cerebral cortices, an increase in the three parameters was detected, however this difference was not significant. Minor assessment indices demonstrated that Ka lacked tissue contrast and the background of Kr was heterogeneous; thus, MK was the superior assessment parameter for ischemic lesions in these regions. In conclusion, Ka is better suited for the diagnosis of acute ischemic lesions in highly anisotropic brain regions, such as the corpus callosum and corona radiate. MK may be appropriate for the lesions in low anisotropic or isotropic brain regions, such as the thalamus, subcortical white matter and cerebral cortices.

  12. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  13. Mild Sensory Stimulation Completely Protects the Adult Rodent Cortex from Ischemic Stroke

    PubMed Central

    Chen-Bee, Cynthia H.; Frostig, Ron D.

    2010-01-01

    Despite progress in reducing ischemic stroke damage, complete protection remains elusive. Here we demonstrate that, after permanent occlusion of a major cortical artery (middle cerebral artery; MCA), single whisker stimulation can induce complete protection of the adult rat cortex, but only if administered within a critical time window. Animals that receive early treatment are histologically and behaviorally equivalent to healthy controls and have normal neuronal function. Protection of the cortex clearly requires reperfusion to the ischemic area despite permanent occlusion. Using blood flow imaging and other techniques we found evidence of reversed blood flow into MCA branches from an alternate arterial source via collateral vessels (inter-arterial connections), a potential mechanism for reperfusion. These findings suggest that the cortex is capable of extensive blood flow reorganization and more importantly that mild sensory stimulation can provide complete protection from impending stroke given early intervention. Such non-invasive, non-pharmacological intervention has clear translational potential. PMID:20585659

  14. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia.

    PubMed

    Panickar, Kiran S; Jang, Saebyeol

    2013-08-01

    Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, energy failure, free radical production, excitotoxicity, altered calcium homeostasis, and activation of proteases all of which affect brain functioning and also contribute to longterm disabilities including cognitive decline. Inflammation, mitochondrial dysfunction, increased oxidative/nitrosative stress, and intracellular calcium overload contribute to brain injury including cell death and brain edema. However, there is a paucity of agents that can effectively reduce cerebral damage and hence considerable attention has focused on developing newer agents with more efficacy and fewer side-effects. Polyphenols are natural compounds with variable phenolic structures and are rich in vegetables, fruits, grains, bark, roots, tea, and wine. Most polyphenols have antioxidant, anti-inflammatory, and anti-apoptotic properties and their protective effects on mitochondrial functioning, glutamate uptake, and regulating intracellular calcium levels in ischemic injury in vitro have been demonstrated. This review will assess the current status of the potential effects of polyphenols in reducing cerebral injury and improving cognitive function in ischemia in animal and human studies. In addition, the review will also examine available patents in nutrition and agriculture that relates to cerebral ischemic injury with an emphasis on plant polyphenols.

  15. The effects of hypertension on the cerebral circulation

    PubMed Central

    Pires, Paulo W.; Dams Ramos, Carla M.; Matin, Nusrat

    2013-01-01

    Maintenance of brain function depends on a constant blood supply. Deficits in cerebral blood flow are linked to cognitive decline, and they have detrimental effects on the outcome of ischemia. Hypertension causes alterations in cerebral artery structure and function that can impair blood flow, particularly during an ischemic insult or during periods of low arterial pressure. This review will focus on the historical discoveries, novel developments, and knowledge gaps in 1) hypertensive cerebral artery remodeling, 2) vascular function with emphasis on myogenic reactivity and endothelium-dependent dilation, and 3) blood-brain barrier function. Hypertensive artery remodeling results in reduction in the lumen diameter and an increase in the wall-to-lumen ratio in most cerebral arteries; this is linked to reduced blood flow postischemia and increased ischemic damage. Many factors that are increased in hypertension stimulate remodeling; these include the renin-angiotensin-aldosterone system and reactive oxygen species levels. Endothelial function, vital for endothelium-mediated dilation and regulation of myogenic reactivity, is impaired in hypertension. This is a consequence of alterations in vasodilator mechanisms involving nitric oxide, epoxyeicosatrienoic acids, and ion channels, including calcium-activated potassium channels and transient receptor potential vanilloid channel 4. Hypertension causes blood-brain barrier breakdown by mechanisms involving inflammation, oxidative stress, and vasoactive circulating molecules. This exposes neurons to cytotoxic molecules, leading to neuronal loss, cognitive decline, and impaired recovery from ischemia. As the population ages and the incidence of hypertension, stroke, and dementia increases, it is imperative that we gain a better understanding of the control of cerebral artery function in health and disease. PMID:23585139

  16. Tetramethylpyrazine inhibits neutrophil activation following permanent cerebral ischemia in rats.

    PubMed

    Chang, Cheng-Yi; Kao, Tsung-Kuei; Chen, Wen-Ying; Ou, Yen-Chuan; Li, Jian-Ri; Liao, Su-Lan; Raung, Shue-Ling; Chen, Chun-Jung

    2015-07-31

    Experimental studies have demonstrated the beneficial effects of tetramethylpyrazine (TMP) against ischemic stroke and highlighted its crucial role in anti-inflammatory activity. This study provides evidence of an alternative target for TMP and sheds light on the mechanism of its anti-inflammatory action against ischemic brain injury. We report a global inhibitory effect of TMP on inflammatory cell intracerebral activation and infiltration in a rat model of permanent cerebral ischemia. The results of immunohistochemistry, enzymatic assay, flow cytometric analysis, and cytological analysis revealed that intraperitoneal TMP administration reduced neuronal loss, macrophage/microglia activation, brain parenchyma infiltrative neutrophils, and circulating neutrophils after cerebral ischemia. Biochemical studies of cultured neutrophils further demonstrated that TMP attenuated neutrophil migration, endothelium adhesion, spontaneous nitric oxide (NO) production, and stimuli-activated NO production after cerebral ischemia. In parallel with these anti-neutrophil phenomena, TMP also attenuated the activities of ischemia-induced inflammation-associated signaling molecules, including plasma high-mobility group box-1 protein (HMGB1) and neutrophil toll-like receptor-4 (TLR4), Akt, extracellular signal-regulated kinase (ERK), and inducible nitric oxide synthase. Another finding in this study was that the anti-neutrophil effect of TMP was accompanied by a further elevated expression of NF-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in neutrophils after cerebral ischemia. Taken together, our results suggest that both the promotion of endogenous anti-inflammatory defense capacity and the attenuation of pro-inflammatory responses via targeting of circulating neutrophils by elevating Nrf2/HO-1 expression and inhibiting HMGB1/TLR4, Akt, and ERK signaling might actively contribute to TMP-mediated neuroprotection against cerebral ischemia.

  17. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  18. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by