Particle Accelerators Test Cosmological Theory.
ERIC Educational Resources Information Center
Schramm, David N.; Steigman, Gary
1988-01-01
Discusses the symbiotic relationship of cosmology and elementary-particle physics. Presents a brief overview of particle physics. Explains how cosmological considerations set limits on the number of types of elementary particles. (RT)
Lattice QCD input for axion cosmology
NASA Astrophysics Data System (ADS)
Berkowitz, Evan; Buchoff, Michael I.; Rinaldi, Enrico
2015-08-01
One intriguing beyond-the-Standard-Model particle is the QCD axion, which could simultaneously provide a solution to the Strong C P Problem and account for some, if not all, of the dark matter density in the Universe. This particle is a pseudo-Nambu-Goldstone boson of the conjectured Peccei-Quinn symmetry of the Standard Model. Its mass and interactions are suppressed by a heavy symmetry-breaking scale, fa, the value of which is roughly greater than 109 GeV (or, conversely, the axion mass, ma, is roughly less than 104 μ eV ). The density of axions in the Universe, which cannot exceed the relic dark matter density and is a quantity of great interest in axion experiments like ADMX, is a result of the early Universe interplay between cosmological evolution and the axion mass as a function of temperature. The latter quantity is proportional to the second derivative of the temperature-dependent QCD free energy with respect to the C P -violating phase, θ . However, this quantity is generically nonperturbative, and previous calculations have only employed instanton models at the high temperatures of interest (roughly 1 GeV). In this and future works, we aim to calculate the temperature-dependent axion mass at small θ from first-principle lattice calculations, with controlled statistical and systematic errors. Once calculated, this temperature-dependent axion mass is input for the classical evolution equations of the axion density of the Universe, which is required to be less than or equal to the dark matter density. Due to a variety of lattice systematic effects at the very high temperatures required, we perform a calculation of the leading small-θ cumulant of the theta vacua on large volume lattices for SU(3) Yang-Mills with high statistics as a first proof of concept, before attempting a full QCD calculation in the future. From these pure glue results, the misalignment mechanism yields the axion mass bound ma≥(14.6 ±0.1 ) μ eV when Peccei-Quinn breaking occurs
Accelerating Cosmological Expansion from Shear and Bulk Viscosity
NASA Astrophysics Data System (ADS)
Floerchinger, Stefan; Tetradis, Nikolaos; Wiedemann, Urs Achim
2015-03-01
The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.
Cosmological consistency tests of gravity theory and cosmic acceleration
NASA Astrophysics Data System (ADS)
Ishak-Boushaki, Mustapha B.
2017-01-01
Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.
Precision cosmology defeats void models for acceleration
Moss, Adam; Zibin, James P.; Scott, Douglas
2011-05-15
The suggestion that we occupy a privileged position near the center of a large, nonlinear, and nearly spherical void has recently attracted much attention as an alternative to dark energy. Putting aside the philosophical problems with this scenario, we perform the most complete and up-to-date comparison with cosmological data. We use supernovae and the full cosmic microwave background spectrum as the basis of our analysis. We also include constraints from radial baryonic acoustic oscillations, the local Hubble rate, age, big bang nucleosynthesis, the Compton y distortion, and for the first time include the local amplitude of matter fluctuations, {sigma}{sub 8}. These all paint a consistent picture in which voids are in severe tension with the data. In particular, void models predict a very low local Hubble rate, suffer from an ''old age problem,'' and predict much less local structure than is observed.
Learn-as-you-go acceleration of cosmological parameter estimates
Aslanyan, Grigor; Easther, Richard; Price, Layne C. E-mail: r.easther@auckland.ac.nz
2015-09-01
Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly.
PyCOOL — A Cosmological Object-Oriented Lattice code written in Python
Sainio, J.
2012-04-01
There are a number of different phenomena in the early universe that have to be studied numerically with lattice simulations. This paper presents a graphics processing unit (GPU) accelerated Python program called PyCOOL that solves the evolution of scalar fields in a lattice with very precise symplectic integrators. The program has been written with the intention to hit a sweet spot of speed, accuracy and user friendliness. This has been achieved by using the Python language with the PyCUDA interface to make a program that is easy to adapt to different scalar field models. In this paper we derive the symplectic dynamics that govern the evolution of the system and then present the implementation of the program in Python and PyCUDA. The functionality of the program is tested in a chaotic inflation preheating model, a single field oscillon case and in a supersymmetric curvaton model which leads to Q-ball production. We have also compared the performance of a consumer graphics card to a professional Tesla compute card in these simulations. We find that the program is not only accurate but also very fast. To further increase the usefulness of the program we have equipped it with numerous post-processing functions that provide useful information about the cosmological model. These include various spectra and statistics of the fields. The program can be additionally used to calculate the generated curvature perturbation. The program is publicly available under GNU General Public License at https://github.com/jtksai/PyCOOL. Some additional information can be found from http://www.physics.utu.fi/tiedostot/theory/particlecosmology/pycool/.
NASA Astrophysics Data System (ADS)
Demianski, Marek; Piedipalumbo, Ester; Sawant, Disha; Amati, Lorenzo
2017-02-01
Context. Explaining the accelerated expansion of the Universe is one of the fundamental challenges in physics today. Cosmography provides information about the evolution of the universe derived from measured distances, assuming only that the space time geometry is described by the Friedman-Lemaitre-Robertson-Walker metric, and adopting an approach that effectively uses only Taylor expansions of basic observables. Aims: We perform a high-redshift analysis to constrain the cosmographic expansion up to the fifth order. It is based on the Union2 type Ia supernovae data set, the gamma-ray burst Hubble diagram, a data set of 28 independent measurements of the Hubble parameter, baryon acoustic oscillations measurements from galaxy clustering and the Lyman-α forest in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and some Gaussian priors on h and ΩM. Methods: We performed a statistical analysis and explored the probability distributions of the cosmographic parameters. By building up their regions of confidence, we maximized our likelihood function using the Markov chain Monte Carlo method. Results: Our high-redshift analysis confirms that the expansion of the Universe currently accelerates; the estimation of the jerk parameter indicates a possible deviation from the standard ΛCDM cosmological model. Moreover, we investigate implications of our results for the reconstruction of the dark energy equation of state (EOS) by comparing the standard technique of cosmography with an alternative approach based on generalized Padé approximations of the same observables. Because these expansions converge better, is possible to improve the constraints on the cosmographic parameters and also on the dark matter EOS. Conclusions: The estimation of the jerk and the DE parameters indicates at 1σ a possible deviation from the ΛCDM cosmological model.
New Low Emittance Lattice for the Super-B Accelerator
Biagini, M.E.; Boscolo, M.; Raimondi, P.; Tomassini, S.; Zobov, M.; Seeman, J.; Sullivan, M.; Wienands, U.; Wittmer, W.; Bettoni, S.; Paoloni, E.; Bogomyagkov, A.; Koop, I.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; /Novosibirsk, IYF
2011-10-21
New low emittance lattices have been designed for the asymmetric SuperB accelerator, aiming at a luminosity of 10{sup 36} cm{sup -2} s{sup -1}. Main optics features are two alternating arc cells with different horizontal phase advance, decreasing beam emittance and allowing at the same time for easy chromaticity correction in the arcs. Emittance can be further reduced by a factor of two for luminosity upgrade. Spin rotation schemes for the e{sup -} beam have been studied to provide longitudinal polarization at the IP, and implementation into the lattice is in progress.
Deformed phase space Kaluza-Klein cosmology and late time acceleration
NASA Astrophysics Data System (ADS)
Sabido, M.; Yee-Romero, C.
2016-06-01
The effects of phase space deformations on Kaluza-Klein cosmology are studied. The deformation is introduced by modifying the symplectic structure of the minisuperspace variables. In the deformed model, we find an accelerating scale factor and therefore infer the existence of an effective cosmological constant from the phase space deformation parameter β.
Some Cosmological Models for Poincare Gauge Gravity and Accelerated Expansion of the Universe
Mebarki, N.
2010-10-31
Two cosmological Models for the Poincare Gauge Gravity theory with a non vanishing torsion are proposed. It is shown that the torsion plays an important role in explaining the accelerated expansion of the universe. Some of the cosmological parameters are also expressed in terms of the redshift and the dark energy scenarios are discussed.
The SuperB Accelerator: Overview and Lattice Studies
Biagini, M.E.; Boni, R.; Boscolo, M.; Drago, A.; Guiducci, S.; Preger, M.; Raimondi, P.; Tomassini, S.; Vaccarezza, C.; Zobov, M.; Cai, Y.; Fisher, A.; Heifets, S.; Novokhatski, A.; Pivi, M.T.; Seeman, J.; Sullivan, M.; Wienands, U.; Paoloni, E.; Marchiori, G.; Koop, I.; /Novosibirsk, IYF /Daresbury /LBL, Berkeley /CERN /Orsay, LAL /KEK, Tsukuba
2011-11-22
SuperB aims at the construction of a very high luminosity (10{sup 36} cm{sup -2} s{sup -1}) asymmetric e{sup +}e{sup -} Flavour Factory, with possible location at the campus of the University of Rome Tor Vergata, near the INFN Frascati National Laboratory. In this paper the basic principles of the design and details on the lattice are given. SuperB is a new machine that can exploit novel very promising design approaches: (1) large Piwinski angle scheme will allow for peak luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1}, well beyond the current state-of-the-art, without a significant increase in beam currents or shorter bunch lengths; (2) 'crab waist' sextupoles will be used for suppression of dangerous resonances; (3) the low beam currents design presents reduced detector and background problems, and affordable operating costs; (4) a polarized electron beam can produce polarized {tau} leptons, opening an entirely new realm of exploration in lepton flavor physics. SuperB studies are already proving useful to the accelerator and particle physics communities. The principle of operation is being tested at DAFNE. The baseline lattice, based on the reuse of all PEP-II hardware, fits in the Tor Vergata University campus site, near Frascati. A CDR is being reviewed by an International Review Committee, chaired by J. Dainton (UK). A Technical Design Report will be prepared to be ready by beginning of 2010.
Supernovae, an accelerating universe and the cosmological constant
Kirshner, Robert P.
1999-01-01
Observations of supernova explosions halfway back to the Big Bang give plausible evidence that the expansion of the universe has been accelerating since that epoch, approximately 8 billion years ago and suggest that energy associated with the vacuum itself may be responsible for the acceleration. PMID:10200242
Supernovae, an accelerating universe and the cosmological constant.
Kirshner, R P
1999-04-13
Observations of supernova explosions halfway back to the Big Bang give plausible evidence that the expansion of the universe has been accelerating since that epoch, approximately 8 billion years ago and suggest that energy associated with the vacuum itself may be responsible for the acceleration.
Farooq, Omer; Ratra, Bharat E-mail: ratra@phys.ksu.edu
2013-03-20
We compile a list of 28 independent measurements of the Hubble parameter between redshifts 0.07 {<=} z {<=} 2.3 and use this to place constraints on model parameters of constant and time-evolving dark energy cosmologies. These H(z) measurements by themselves require a currently accelerating cosmological expansion at about, or better than, 3{sigma} confidence. The mean and standard deviation of the six best-fit model deceleration-acceleration transition redshifts (for the three cosmological models and two Hubble constant priors we consider) are z{sub da} = 0.74 {+-} 0.05, in good agreement with the recent Busca et al. determination of z{sub da} = 0.82 {+-} 0.08 based on 11 H(z) measurements between redshifts 0.2 {<=} z {<=} 2.3, almost entirely from baryon-acoustic-oscillation-like data.
Scalar speed limits and cosmology: Acceleration from D-cceleration
NASA Astrophysics Data System (ADS)
Silverstein, Eva; Tong, David
2004-11-01
Causality on the gravity side of the AdS/CFT correspondence restricts motion on the moduli space of the N=4 super Yang-Mills theory by imposing a speed limit on how fast the scalar field may roll. This effect can be traced to higher-derivative operators arising from integrating out light degrees of freedom near the origin. In the strong coupling limit of the theory, the dynamics is well approximated by the Dirac-Born-Infeld Lagrangian for a probe D3-brane moving toward the horizon of the AdS Poincaré patch, combined with an estimate of the (ultimately suppressed) rate of particle and string production in the system. We analyze the motion of a rolling scalar field explicitly in the strong coupling regime of the field theory and extend the analysis to cosmological systems obtained by coupling this type of field theory to four-dimensional gravity. This leads to a mechanism for slow roll inflation for a massive scalar at sub-Planckian vacuum expectation value without need for a flat potential (realizing a version of k inflation in a microphysical framework). It also leads to a variety of novel Friedman-Roberston-Walker cosmologies, some of which are related to those obtained with tachyon matter.
Observation of Stueckelberg oscillations in accelerated optical lattices
Zenesini, A.; Ciampini, D.; Arimondo, E.; Morsch, O.
2010-12-15
We report the experimental observation of Stueckelberg oscillations of matter waves in optical lattices. Extending previous work on Landau-Zener tunneling of Bose-Einstein condensates in optical lattices, we study the effects of the accumulated phase between two successive crossings of the Brillouin zone edge. Our results agree well with a simple model for multiple Landau-Zener tunneling events taking into account the band structure of the optical lattice.
NASA Astrophysics Data System (ADS)
Harrison, Edward
2000-03-01
Cosmology: The Science of the Universe is a broad introduction to the science of modern cosmology, with emphasis on its historical origins. The first edition of this best-selling book received worldwide acclaim for its lucid style and wide-ranging exploration of the universe. This eagerly awaited second edition updates and greatly extends the first with seven new chapters that explore early scientific cosmology, Cartesian and Newtonian world systems, cosmology after Newton and before Einstein, special relativity, observational cosmology, inflation and creation of the universe. All chapters conclude with a section entitled Reflections containing provocative topics that will foster lively debate. The new Projects section, also at the end of each chapter, raises questions and issues to challenge the reader.
Low-acceleration instability of a Bose-Einstein condensate in an optical lattice.
Zheng, Yi; Kostrun, Marijan; Javanainen, Juha
2004-12-03
We study a Bose-Einstein condensate in a one-dimensional accelerated optical lattice using the mean-field version of the Bose-Hubbard model. Reminiscent of recent experiments [M. Cristiani et al., Opt. Express 12, 4 (2004)], we find a new type of an instability in this system that occurs in the limit when the acceleration is small.
NASA Astrophysics Data System (ADS)
Livio, Mario
2000-12-01
Advance Praise for The Accelerating Universe "The Accelerating Universe is not only an informative book about modern cosmology. It is rich storytelling and, above all, a celebration of the human mind in its quest for beauty in all things." -Alan Lightman, author of Einstein's Dreams "This is a wonderfully lucid account of the extraordinary discoveries that have made the last years a golden period for observational cosmology. But Mario Livio has not only given the reader one clear explanation after another of what astronomers are up to, he has used them to construct a provocative argument for the importance of aesthetics in the development of science and for the inseparability of science, art, and culture." -Lee Smolin, author of The Life of the Cosmos "What a pleasure to read! An exciting, simple account of the universe revealed by modern astronomy. Beautifully written, clearly presented, informed by scientific and philosophical insights." -John Bahcall, Institute for Advanced Study "A book with charm, beauty, elegance, and importance. As authoritative a journey as can be taken through modern cosmology." -Allan Sandage, Observatories of the Carnegie Institution of Washington
Cosmological Relativity: A General-Relativistic Theory for the Accelerating Expanding Universe
NASA Astrophysics Data System (ADS)
Carmeli, M.; Behar, S.
Recent observations of distant supernovae imply, in defiance of expectations, that the universe growth is accelerating, contrary to what has always been assumed that the expansion is slowing down due to gravity. In this paper a general-relativistic cosmological theory that gives a direct relationship between distances and redshifts in an expanding universe is presented. The theory is actually a generalization of Hubble's law taking gravity into account by means of Einstein's theory of general relativity. The theory predicts that the universe can have three phases of expansion, decelerating, constant and accelerating, but it is shown that at present the first two cases are excluded, although in the past it had experienced them. Our theory shows that the universe now is definitely in the stage of accelerating expansion, confirming the recent experimental results.
Implications of an absolute simultaneity theory for cosmology and universe acceleration.
Kipreos, Edward T
2014-01-01
An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.
Implications of an Absolute Simultaneity Theory for Cosmology and Universe Acceleration
Kipreos, Edward T.
2014-01-01
An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift–distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe. PMID:25536116
LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.
WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.
2006-06-23
Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.
Late time acceleration in a non-commutative model of modified cosmology
NASA Astrophysics Data System (ADS)
Malekolkalami, B.; Atazadeh, K.; Vakili, B.
2014-12-01
We investigate the effects of non-commutativity between the position-position, position-momentum and momentum-momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.
Probing lattice dynamics in silicon with laser-wakefield accelerated electrons
NASA Astrophysics Data System (ADS)
Nees, John; He, Z.-H.; Thomas, A. G. R.; Krushelnick, Karl; Scott, S.; Legally, M.; Beaurepaire, B.; Gallé, G.; Faure, J.
2016-10-01
Laser wakefield acceleration is the key technology in a new breed of electron and photon beam sources that operate in the ultrafast domain. We show that the spatial and temporal properties of wakefield-generated electron beams can be manipulated to enable them interrogate ultrafast lattice dynamics in freestanding single-crystal silicon membranes, while maintaining spatial resolution on the atomic scale. In particular, picosecond resolution of Si lattice dynamics is obtained by recording streaked electron diffraction peaks using static magnetic fields. We will also discuss the role of wave front control in establishing optimal beam characteristics and the significance of single-shot measurements. Michigan support from NSF PHY-1535628.
Liang Nan; Wu Puxun; Zhang Shuangnan
2010-04-15
Gamma-ray bursts (GRBs) have been regarded as standard candles at very high redshift for cosmology research. We have proposed a new method to calibrate GRB distance indicators with Type Ia supernova (SNe Ia) data in a completely cosmology-independent way to avoid the circularity problem that had limited the direct use of GRBs to probe cosmology [N. Liang, W. K. Xiao, Y. Liu, and S. N. Zhang, Astrophys. J. 685, 354 (2008).]. In this paper, a simple method is provided to combine GRB data into the joint observational data analysis to constrain cosmological models; in this method those SNe Ia data points used for calibrating the GRB data are not used to avoid any correlation between them. We find that the {Lambda}CDM model is consistent with the joint data in the 1-{sigma} confidence region, using the GRB data at high redshift calibrated with the interpolating method, the Constitution set of SNe Ia, the cosmic microwave background radiation from Wilkinson Microwave Anisotropy Probe five year observation, the baryonic acoustic oscillation from the spectroscopic Sloan Digital Sky Survey Data Release 7 galaxy sample, the x-ray baryon mass fraction in clusters of galaxies, and the observational Hubble parameter versus redshift data. Comparing to the joint constraints with GRBs and without GRBs, we find that the contribution of GRBs to the joint cosmological constraints is a slight shift in the confidence regions of cosmological parameters to better enclose the {Lambda}CDM model. Finally, we reconstruct the acceleration history of the Universe up to z>6 with the distance moduli of SNe Ia and GRBs and find some features that deviate from the {Lambda}CDM model and seem to favor oscillatory cosmology models; however, further investigations are needed to better understand the situation.
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
2016-06-01
We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration-acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration-acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F(R) gravity
Ishak, Mustapha; Peel, Austin; Troxel, M A
2013-12-20
Probes of cosmic expansion constitute the main basis for arguments to support or refute a possible apparent acceleration due to different expansion rates in the Universe as described by inhomogeneous cosmological models. We present in this Letter a separate argument based on results from an analysis of the growth rate of large-scale structure in the Universe as modeled by the inhomogeneous cosmological models of Szekeres. We use the models with no assumptions of spherical or axial symmetries. We find that while the Szekeres models can fit very well the observed expansion history without a Λ, they fail to produce the observed late-time suppression in the growth unless Λ is added to the dynamics. A simultaneous fit to the supernova and growth factor data shows that the cold dark matter model with a cosmological constant (ΛCDM) provides consistency with the data at a confidence level of 99.65%, while the Szekeres model without Λ achieves only a 60.46% level. When the data sets are considered separately, the Szekeres with no Λ fits the supernova data as well as the ΛCDM does, but provides a very poor fit to the growth data with only 31.31% consistency level compared to 99.99% for the ΛCDM. This absence of late-time growth suppression in inhomogeneous models without a Λ is consolidated by a physical explanation.
NASA Astrophysics Data System (ADS)
Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.
2014-11-01
Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.
Tunneling dynamics of superfluid Fermi gases in an accelerating optical lattice
Tie Lu; Xue Jukui
2010-11-15
The nonlinear Landau-Zener tunneling and the nonlinear Rabi oscillations of superfluid Fermi gases between Bloch bands in an accelerating optical lattice are discussed. Within the hydrodynamic theory and a two-level model, the tunneling probability of superfluid Fermi gases between Bloch bands is obtained. We find that, as the system crosses from the Bose-Einstein condensation (BEC) side to the BCS side, the tunneling rate is closely related to the particle density: when the density is smaller (larger) than a critical value, the tunneling rate at unitarity is larger (smaller) than that in the BEC limit. This is well explained in terms of an effective interaction and an effective potential. Furthermore, the nonlinear Rabi oscillations of superfluid Fermi gases between the bands are discussed by imposing a periodic modulation on the level bias and the strength of the lattice. Analytical expressions of the critical density for suppressing or enhancing the Rabi oscillations are obtained. It is shown that, as the system crosses from the BEC side to the BCS side, the critical density strongly depends on the modulation parameters (i.e., the modulation amplitude and the modulation frequency). For a fixed density, a high-frequency or low-frequency modulation can suppress or enhance the Rabi oscillations both at unitarity and in the BEC limit. For an intermediate modulation frequency, the Rabi oscillations are chaotic along the entire BEC-BCS crossover, especially, on the BCS side. Interestingly, we find that the modulation of the lattice strength only with an intermediate modulation frequency has significant effect on the Rabi oscillations both in the BEC limit and at unitarity; that is, an intermediate-frequency modulation can enhance the Rabi oscillations, especially on the BCS side.
Single Particle Dynamics in a Quasi-Integrable Nonlinear Accelerator Lattice
Antipov, Sergey A.; Nagaitsev, Sergei; Valishev, Alexander
2016-04-28
Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to a resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
2016-01-01
We study mimetic F (R ) gravity with a potential and Lagrange multiplier constraint. In the context of these theories, we introduce a reconstruction technique which enables us to realize arbitrary cosmologies, given the Hubble rate and an arbitrarily chosen F (R ) gravity. We exemplify our method by realizing cosmologies that are in concordance with current observations (Planck data) and also well-known bouncing cosmologies. The attribute of our method is that the F (R ) gravity can be arbitrarily chosen, so we can have the appealing features of the mimetic approach combined with the known features of some F (R ) gravities, which unify early-time with late-time acceleration. Moreover, we study the existence and the stability of de Sitter points in the context of mimetic F (R ) gravity. In the case of unstable de Sitter points, it is demonstrated that graceful exit from inflation occurs. We also study the Einstein-frame counterpart theory of the Jordan-frame mimetic F (R ) gravity, and we discuss the general properties of the theory and exemplify our analysis by studying a quite interesting (from a phenomenological point of view) model with two scalar fields. We also calculate the observational indices of the two-scalar-field model, by using the two-scalar-field formalism. Furthermore, we extensively study the dynamical system that corresponds to the mimetic F (R ) gravity, by finding the fixed points and studying their stability. Finally, we modify our reconstruction method to function in the inverse way and thus yield which F (R ) gravity can realize a specific cosmological evolution, given the mimetic potential and the Lagrange multiplier.
Temple, Blake; Smoller, Joel
2009-08-25
We derive a system of three coupled equations that implicitly defines a continuous one-parameter family of expanding wave solutions of the Einstein equations, such that the Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology is embedded as a single point in this family. By approximating solutions near the center to leading order in the Hubble length, the family reduces to an explicit one-parameter family of expanding spacetimes, given in closed form, that represents a perturbation of the Standard Model. By introducing a comoving coordinate system, we calculate the correction to the Hubble constant as well as the exact leading order quadratic correction to the redshift vs. luminosity relation for an observer at the center. The correction to redshift vs. luminosity entails an adjustable free parameter that introduces an anomalous acceleration. We conclude (by continuity) that corrections to the redshift vs. luminosity relation observed after the radiation phase of the Big Bang can be accounted for, at the leading order quadratic level, by adjustment of this free parameter. The next order correction is then a prediction. Since nonlinearities alone could actuate dissipation and decay in the conservation laws associated with the highly nonlinear radiation phase and since noninteracting expanding waves represent possible time-asymptotic wave patterns that could result, we propose to further investigate the possibility that these corrections to the Standard Model might be the source of the anomalous acceleration of the galaxies, an explanation not requiring the cosmological constant or dark energy.
NASA Technical Reports Server (NTRS)
Muller, P. M.
1976-01-01
The theory and numerical analysis of ancient astronomical observations (1374 to 1715) are combined with modern data in a simultaneous solution for: the tidal acceleration of the lunar longitude; the observed apparent acceleration of the earth's rotation; the true nontidal geophysical part of this acceleration; and the rate of change in the gravitational constant. Provided are three independent determinations of a rate of change of G consistent with the Hubble Constant and a near zero nontidal rotational acceleration of the earth. The tidal accelerations are shown to have remained constant during the historical period within uncertainties. Ancient and modern solar system data, and extragalactic observations provided a completely consistent astronomical and cosmological scheme.
Kafka, Gene
2015-05-01
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.
GPU accelerated study of heat transfer and fluid flow by lattice Boltzmann method on CUDA
NASA Astrophysics Data System (ADS)
Ren, Qinlong
Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1
NASA Astrophysics Data System (ADS)
Miniati, Francesco; Ryu, Dongsu; Kang, Hyesung; Jones, T. W.
2001-09-01
We investigate the production of cosmic-ray (CR) protons at cosmological shocks by performing, for the first time, numerical simulations of large-scale structure formation that include directly the acceleration, transport, and energy losses of the high-energy particles. CRs are injected at shocks according to the thermal leakage model and, thereafter, accelerated to a power-law distribution as indicated by the test particle limit of the diffusive shock acceleration theory. The evolution of the CR protons accounts for losses owing to adiabatic expansion/compression, Coulomb collisions, and inelastic p-p scattering. Our results suggest that CR protons produced at shocks formed in association with the process of large-scale structure formation could amount to a substantial fraction of the total pressure in the intracluster medium. Their presence should be easily revealed by GLAST (Gamma-Ray Large-Area Space Telescope) through detection of γ-ray flux from the decay of π0 produced in inelastic p-p collisions of such CR protons with nuclei of the intracluster gas. This measurement will allow a direct determination of the CR pressure contribution in the intracluster medium. We also find that the spatial distribution of CR is typically more irregular than that of the thermal gas because it is more influenced by the underlying distribution of shocks. This feature is reflected in the appearance of our γ-ray synthetic images. Finally, the average CR pressure distribution appears statistically slightly more extended than the thermal pressure.
Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations
NASA Astrophysics Data System (ADS)
Di Staso, G.; Clercx, H. J. H.; Succi, S.; Toschi, F.
2016-11-01
Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
ENTROPY AT THE OUTSKIRTS OF GALAXY CLUSTERS AS IMPLICATIONS FOR COSMOLOGICAL COSMIC-RAY ACCELERATION
Fujita, Yutaka; Ohira, Yutaka; Yamazaki, Ryo
2013-04-10
Recently, gas entropy at the outskirts of galaxy clusters has attracted much attention. We propose that the entropy profiles could be used to study cosmic-ray (CR) acceleration around the clusters. If the CRs are effectively accelerated at the formation of clusters, the kinetic energy of infalling gas is consumed by the acceleration and the gas entropy should decrease. As a result, the entropy profiles become flat at the outskirts. If the acceleration is not efficient, the entropy should continue to increase outward. By comparing model predictions with X-ray observations with Suzaku, which show flat entropy profiles, we find that the CRs have carried {approx}< 7% of the kinetic energy of the gas away from the clusters. Moreover, the CR pressure at the outskirts can be {approx}< 40% of the total pressure. On the other hand, if the entropy profiles are not flat at the outskirts, as indicated by combined Plank and ROSAT observations, the carried energy and the CR pressure should be much smaller than the above estimations.
NASA Astrophysics Data System (ADS)
Chen, P.
2014-05-01
Recent years have witnessed tremendous progress in our understanding of the cosmos, which in turn points to even deeper questions to be further addressed. Concurrently the laser technology has undergone dramatic revolutions, providing exciting opportunity for science applications. History has shown that the symbiosis between direct observations and laboratory investigation is instrumental in the progress of astrophysics. We believe that this remains true in cosmology. Current frontier phenomena related to particle astrophysics and cosmology typically involve one or more of the following conditions: (1) extremely high energy events;(2) very high density, high temperature processes; (3) super strong field environments. Laboratory experiments using high intensity lasers can calibrate astrophysical observations, investigate underlying dynamics of astrophysical phenomena, and probe fundamental physics in extreme limits. In this article we give an overview of the exciting prospect of laser cosmology. In particular, we showcase its unique capability of investigating frontier cosmology issues such as cosmic accelerator and quantum gravity.
Doolin, Ciaran; Neupane, Ishwaree P
2013-04-05
A late epoch cosmic acceleration may be naturally entangled with cosmic coincidence--the observation that at the onset of acceleration the vacuum energy density fraction nearly coincides with the matter density fraction. In this Letter we show that this is indeed the case with the cosmology of a Friedmann-Lamaître-Robertson-Walker (FLRW) 3-brane in a five-dimensional anti-de Sitter spacetime. We derive the four-dimensional effective action on a FLRW 3-brane, from which we obtain a mass-reduction formula, namely, M(P)(2) = ρ(b)/|Λ(5)|, where M(P) is the effective (normalized) Planck mass, Λ(5) is the five-dimensional cosmological constant, and ρ(b) is the sum of the 3-brane tension V and the matter density ρ. Although the range of variation in ρ(b) is strongly constrained, the big bang nucleosynthesis bound on the time variation of the effective Newton constant G(N) = (8πM(P)(2))(-1) is satisfied when the ratio V/ρ ≳ O(10(2)) on cosmological scales. The same bound leads to an effective equation of state close to -1 at late epochs in accordance with astrophysical and cosmological observations.
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2014-01-01
By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t), it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr) of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr) ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr) ≈ 2-4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t). More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose "elastic" parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t) can be preliminarily constrained in a model-independent way down to a κ1 ≤ 2 x 10-13 year-3 level from latest Solar System's planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≤ 10-8 year-3.
NASA Astrophysics Data System (ADS)
Borovský, Michal; Weigel, Martin; Barash, Lev Yu.; Žukovič, Milan
2016-02-01
The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = -1). The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.
Carloni, Sante; Chaichian, Masud; Tureanu, Anca; Nojiri, Shin'ichi; Odintsov, Sergei D.; Oksanen, Markku
2010-09-15
We propose the most general modified first-order Horava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat Friedmann-Robertson-Walker (FRW) space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified Horava-Lifshitz F(R) gravity is introduced. The study of its ultraviolet properties shows that its z=3 version seems to be renormalizable in the same way as the original Horava-Lifshitz proposal. The Hamiltonian analysis of the modified Horava-Lifshitz F(R) gravity shows that it is in general a consistent theory. The F(R) gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for this F(R) gravity is investigated. It is shown that a special choice of parameters for this theory leads to the same equations of motion as in the case of traditional F(R) gravity. Nevertheless, the cosmological structure of the modified Horava-Lifshitz F(R) gravity turns out to be much richer than for its traditional counterpart. The emergence of multiple de Sitter solutions indicates the possibility of unification of early-time inflation with late-time acceleration within the same model. Power-law F(R) theories are also investigated in detail. It is analytically shown that they have a quite rich cosmological structure: early-/late-time cosmic acceleration of quintessence, as well as of phantom types. Also it is demonstrated that all the four known types of finite-time future singularities may occur in the power-law Horava-Lifshitz F(R) gravity. Finally, a covariant proposal for (renormalizable) F(R) gravity within the Horava-Lifshitz spirit is presented.
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.
Precision cosmology, Accuracy cosmology and Statistical cosmology
NASA Astrophysics Data System (ADS)
Verde, Licia
2014-05-01
The avalanche of data over the past 10-20 years has propelled cosmology into the ``precision era''. The next challenge cosmology has to meet is to enter the era of accuracy. Because of the intrinsic nature of studying the Cosmos and the sheer amount of data available now and coming soon, the only way to meet this challenge is by developing suitable and specific statistical techniques. The road from precision Cosmology to accurate Cosmology goes through statistical Cosmology. I will outline some open challenges and discuss some specific examples.
Yagi, Kent; Nishizawa, Atsushi; Yoo, Chul-Moon E-mail: anishi@yukawa.kyoto-u.ac.jp
2012-04-01
One possibility for explaining the apparent accelerating expansion of the universe is that we live in the center of a spherically inhomogeneous universe. Although current observations cannot fully distinguish ΛCDM and these inhomogeneous models, direct measurement of the acceleration of the universe can be a powerful tool in probing them. We have shown that, if ΛCDM is the correct model, DECIGO/BBO would be able to detect the positive redshift drift (which is the time evolution of the source redshift z) in 3–5 year gravitational wave (GW) observations from neutron-star binaries, which enables us to rule out any Lemaître-Tolman-Bondi (LTB) void model with monotonically increasing density profile. We may even be able to rule out any LTB model unless we allow unrealistically steep density profile at z ∼ 0. This test can be performed with GW observations alone, without any reference to electromagnetic observations, and is more powerful than the redshift drift measurement using Lyman α forest.
Testing fractional action cosmology
NASA Astrophysics Data System (ADS)
Shchigolev, V. K.
2016-08-01
The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests, which gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.
Cosmology from start to finish.
Bennett, Charles L
2006-04-27
Cosmology is undergoing a revolution. With recent precise measurements of the cosmic microwave background radiation, large galaxy redshift surveys, better measurements of the expansion rate of the Universe and a host of other astrophysical observations, there is now a standard, highly constrained cosmological model. It is not a cosmology that was predicted. Unidentified dark particles dominate the matter content of our Universe, and mysteries surround the processes responsible for the accelerated expansion at its earliest moments (inflation?) and for its recent acceleration (dark energy?). New measurements must address the fundamental questions: what happened at the birth of the Universe, and what is its ultimate fate?
Lin, Guang; Bao, Jie; Xu, Zhijie
2014-11-01
In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.
NASA Astrophysics Data System (ADS)
Girdhar, Parth; Kobakhidze, Archil
2013-10-01
We describe a new phenomenon of zitterbewegung of a free Dirac particle in cosmological spacetimes. Unlike the similar effect theorized by Schrödinger in 1930, the cosmological zitterbewegung is a real, physically attainable effect, which originates from the mixing of positive and negative frequency modes of a field operator in cosmological spacetimes. We briefly discuss the potential for observing this effect in laboratory experiments with trapped ions.
Cosmology and Particle Physics
NASA Astrophysics Data System (ADS)
Steigman, G.
1982-01-01
The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses. In the last few years we have witnessed the birth and growth to healthy adolescence of a new collaboration between astrophysicists and particle physicists. The most notable success of this cooperative effort has been to provide the framework for understanding, within the context of GUTs and the hot big-bang cosmology, the universal baryon asymmetry. The most exciting new predictions this effort has spawned are that exotic relics may exist in detectable abundances. In particular, we may live in a neutrino-dominated Universe. In the next few years, accummulating laboratory data (for example proton decay, neutrino masses and oscillations) coupled with theoritical work in particle physics and cosmology will ensure the growth to maturity of this joint effort.
Accelerated kinetics of amorphous silicon using an on-the-fly off-lattice kinetic Monte-Carlo method
NASA Astrophysics Data System (ADS)
Joly, Jean-Francois; El-Mellouhi, Fedwa; Beland, Laurent Karim; Mousseau, Normand
2011-03-01
The time evolution of a series of well relaxed amorphous silicon models was simulated using the kinetic Activation-RelaxationTechnique (kART), an on-the-fly off-lattice kinetic Monte Carlo method. This novel algorithm uses the ART nouveau algorithm to generate activated events and links them with local topologies. It was shown to work well for crystals with few defects but this is the first time it is used to study an amorphous material. A parallel implementation allows us to increase the speed of the event generation phase. After each KMC step, new searches are initiated for each new topology encountered. Well relaxed amorphous silicon models of 1000 atoms described by a modified version of the empirical Stillinger-Weber potential were used as a starting point for the simulations. Initial results show that the method is faster by orders of magnitude compared to conventional MD simulations up to temperatures of 500 K. Vacancy-type defects were also introduced in this system and their stability and lifetimes are calculated.
Beyond lensing by the cosmological constant
NASA Astrophysics Data System (ADS)
Faraoni, Valerio; Lapierre-Léonard, Marianne
2017-01-01
The long-standing problem of whether the cosmological constant affects directly the deflection of light caused by a gravitational lens is reconsidered. We use a new approach based on the Hawking quasilocal mass of a sphere grazed by light rays and on its splitting into local and cosmological parts. Previous literature restricted to the cosmological constant is extended to any form of dark energy accelerating the universe in which the gravitational lens is embedded.
NASA Astrophysics Data System (ADS)
Krauss, L. M.
1999-01-01
The long-derided cosmological constant - a contrivance of Albert Einstein's that represents a bizarre form of energy inherent in space itself - is one of two contenders for explaining changes in the expansion rate of the Universe.
NASA Astrophysics Data System (ADS)
Silk, Joseph
2008-11-01
The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most
NASA Astrophysics Data System (ADS)
Blau, S. K.; Guth, A. H.
Contents: 1. Introduction. 2. Summary of the standard cosmological model. 3. Problems of the standard cosmological model. 4. The original inflationary universe. 5. Successes of the original inflationary model. 6. Problems of the original inflationary model. 7. The new inflationary universe. 8. Density perturbations in the new inflationary universe. 9. Quantum theory of the new inflationary universe phase transition. 10. Inflation in the minimal SU(5) grand unified theory. 11. False vacuum bubbles and child universes. 12. Conclusion.
Unstable anisotropic loop quantum cosmology
Nelson, William; Sakellariadou, Mairi
2009-09-15
We study stability conditions of the full Hamiltonian constraint equation describing the quantum dynamics of the diagonal Bianchi I model in the context of loop quantum cosmology. Our analysis has shown robust evidence of an instability in the explicit implementation of the difference equation, implying important consequences for the correspondence between the full loop quantum gravity theory and loop quantum cosmology. As a result, one may question the choice of the quantization approach, the model of lattice refinement, and/or the role of the ambiguity parameters; all these should, in principle, be dictated by the full loop quantum gravity theory.
Cosmological Inflation: A Personal Perspective
NASA Technical Reports Server (NTRS)
Kazanas, Demos
2008-01-01
We present a brief review of Cosmological Inflation from the personal perspective of the speaker who almost 30 years ago proposed a way of resolving the problem of Cosmological Horizon by employing certain notions and developments from the field of High Energy Physics. Along with a brief introduction of the Horizon and Flatness problems of standard cosmology, this lecture concentrates on personal reminiscing of the notions and ideas that prevailed and influenced the author's thinking at the time. The lecture then touches upon some more recent developments related to the subject including exact solutions to conformal gravity that provide a first principles emergence of a characteristic acceleration in the universe and concludes with some personal views concerning the direction that the cosmology field has taken in the past couple of decades and certain speculations some notions that may indicate future directions of research.
Cosmological tests of modified gravity
NASA Astrophysics Data System (ADS)
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
NASA Astrophysics Data System (ADS)
Tsamis, N. C.; Woodard, R. P.
2016-08-01
We study a class of nonlocal, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the Universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense Universe the nonlocal screening terms become constant as the Universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller antiscreening effect that could explain the current phase of acceleration.
NASA Astrophysics Data System (ADS)
Narimani, Ali; Moss, Adam; Scott, Douglas
2012-10-01
Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant G is entirely dimensionfull. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of both Big Bang Nucleosynthesis and recombination in a dimensionless manner. Rigorously determining how to talk about the model in a way which avoids physical dimensions is a requirement for proceeding with a calculation to constrain time-varying fundamental constants. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any one of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding G to the usual cosmological parameter set.
Multi-dimensional cosmology and GUP
Zeynali, K.; Motavalli, H.; Darabi, F. E-mail: f.darabi@azaruniv.edu
2012-12-01
We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions.
New Cosmological Solutions in Massive Gravity Theory
NASA Astrophysics Data System (ADS)
Pinho, S. S. A.; Pereira, S. H.; Mendonça, E. L.
2017-04-01
In this paper we present some new cosmological solutions in massive gravity theory. Some homogeneous and isotropic solutions correctly describe accelerated evolutions for the universe. The study was realized considering a specific form to the fiducial metric and found different functions and constant parameters of the theory that guarantee the conservation of the energy momentum tensor. Several accelerating cosmologies were found, all of them reproducing a cosmological constant term proportional to the graviton mass, with a de Sitter type solution for the scale factor. We have also verified that when the fiducial metric is close to the physical metric the solutions are absent, except for some specific open cases.
Cosmology with the Square Kilometre Array by SKA-Japan
NASA Astrophysics Data System (ADS)
Yamauchi, Daisuke; Ichiki, Kiyotomo; Kohri, Kazunori; Namikawa, Toshiya; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Shimabukuro, Hayato; Takahashi, Keitaro; Takahashi, Tomo; Yokoyama, Shuichiro; Yoshikawa, Kohji
2016-12-01
In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many fundamental questions in cosmology; such as the physics in the very early universe, the origin of the cosmic acceleration, and the nature of dark matter. The forthcoming radio telescope, the Square Kilometre Array (SKA), which will be the world's largest, will be able to open a new frontier in cosmology and will be one of the most powerful tools for cosmology in the coming decade. The cosmological surveys conducted by the SKA would have the potential not only to answer these fundamental questions but also deliver precision cosmology. In this article we briefly review the role of the SKA from the viewpoint of modern cosmology. The cosmological science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.
NASA Astrophysics Data System (ADS)
Plionis, M.
2004-07-01
The recent scientific efforts in Astrophysics & Cosmology have brought a revolution to our understanding of the Cosmos. Amazing results is the outcome of amazing experiments! The huge scientific, technological & financial effort that has gone into building the 10-m class telescopes as well as many space and balloon observatories, essential to observe the multitude of cosmic phenomena in their manifestations at different wavelengths, from gamma-rays to the millimetre and the radio, has given and is still giving its fruits of knowledge. These recent scientific achievements in Observational and Theoretical Cosmology were presented in the "Multiwavelength Cosmology" conference that took place on beautiful Mykonos island in the Aegean between 17 and 20 June 2003. More than 180 Cosmologists from all over the world gathered for a four-day intense meeting in which recent results from large ground based surveys (AAT/2-df, SLOAN) and space missions (WMAP, Chandra, XMM, ISO, HST) were presented and debated, providing a huge impetus to our knowledge of the Cosmos. The future of the subject (experiments, and directions of research) was also discussed. The conference was devoted mostly on the constraints on Cosmological models and galaxy formation theories that arise from the study of the high redshift Universe, from clusters of galaxies, and their evolution, from the cosmic microwave background, the large-scale structure and star-formation history. Link: Multidimensional cosmology
NASA Astrophysics Data System (ADS)
Alvarez, Enrique
This paper briefly reports on some recent attempts to construct a cosmology consistent with present ideas about the fundamental theories of nature, which generally involve extra dimensions. The decoupling of the extra dimensions from the usual ones is analyzed, as well as the possiblity of phase transitions in a "superstring universe".
The screening Horndeski cosmologies
Starobinsky, Alexei A.; Sushkov, Sergey V.; Volkov, Mikhail S.
2016-06-06
We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing “the emergence of time”. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.
Was Newtonian cosmology really inconsistent?
NASA Astrophysics Data System (ADS)
Vickers, Peter
This paper follows up a debate as to the consistency of Newtonian cosmology. Whereas Malament [(1995). Is Newtonian cosmology really inconsistent? Philosophy of Science 62, 489-510] has shown that Newtonian cosmology is not inconsistent, to date there has been no analysis of Norton's claim [(1995). The force of Newtonian cosmology: Acceleration is relative. Philosophy of Science 62, 511-522.] that Newtonian cosmology was inconsistent prior to certain advances in the 1930s, and in particular prior to Seeliger's seminal paper of Seeliger [(1895). Über das Newton'sche Gravitationsgesetz. Astronomische Nachrichten 137 (3273), 129-136.] In this paper I agree that there are assumptions, Newtonian and cosmological in character, and relevant to the real history of science, which are inconsistent. But there are some important corrections to make to Norton's account. Here I display for the first time the inconsistencies-four in total-in all their detail. Although this extra detail shows there to be several different inconsistencies, it also goes some way towards explaining why they went unnoticed for 200 years.
NASA Astrophysics Data System (ADS)
Bothun, Greg
2011-10-01
Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent
NASA Astrophysics Data System (ADS)
Alvarez, Enrique
1985-01-01
Some cosmological consequences of the assumption that superstrings are more fundamental objects than ordinary local quantum fields are examined. We study, in particular, the dependence of both the string tension and the temperature of the primordial string soup on cosmic time. A particular scenario is proposed in which the universe undergoes a contracting ``string phase'' before the ordinary ``big bang,'' which according to this picture is nothing but the outcome of the transition from nonlocal to local fundamental physics.
NASA Astrophysics Data System (ADS)
Grant, E.; Murdin, P.
2000-11-01
During the early Middle Ages (ca 500 to ca 1130) scholars with an interest in cosmology had little useful and dependable literature. They relied heavily on a partial Latin translation of PLATO's Timaeus by Chalcidius (4th century AD), and on a series of encyclopedic treatises associated with the names of Pliny the Elder (ca AD 23-79), Seneca (4 BC-AD 65), Macrobius (fl 5th century AD), Martianus ...
NASA Astrophysics Data System (ADS)
Kirillov, A. A.; Savelova, E. P.
2016-05-01
We describe in details the procedure how the Lobachevsky space can be factorized to a space of the constant negative curvature filled with a gas of wormholes. We show that such wormholes have throat sections in the form of tori and are traversable and stable in the cosmological context. The relation of such wormholes to the dark matter phenomenon is briefly described. We also discuss the possibility of the existence of analogous factorizations for all types of homogeneous spaces.
Cosmological study in loop quantum cosmology through dark energy model
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Rani, Shamaila; Salako, Ines G.; Gulshan, Faiza
The interacting generalized ghost version of pilgrim dark energy (GGPDE) is discussed in the framework of loop quantum cosmology (LQC). We analyze the behavior of cosmological parameters (Hubble, equation of state (EoS), deceleration) and cosmological planes (ωD ‑ ωD‧ and r-s) in the present scenario (ωD represents the EoS parameter and ωD‧ indicates the evolution of the EoS parameter, r,s are statefinder parameters). It is observed that the deceleration parameter corresponds to the accelerated expansion of the universe. The EoS parameter lies in vacuum and phantom regions for all cases of u (pilgrim dark energy (PDE) parameter). The ωD ‑ ωD‧ plane lies in thawing region for all cases of u. The r ‑ s plane corresponds to Λ cold dark matter (CDM) and Chaplygin gas model. We have also mentioned the constraints on calculated cosmological parameters and found that all the trajectories of cosmological parameters and planes show the consistence behavior with the observational schemes.
The Cosmological Constant in Quantum Cosmology
Wu Zhongchao
2008-10-10
Hawking proposed that the cosmological constant is probably zero in quantum cosmology in 1984. By using the right configuration for the wave function of the universe, a complete proof is found very recently.
Modernized Newtonian Cosmology in Secondary Schools
NASA Astrophysics Data System (ADS)
Sigurdsson, Thorir
2007-08-01
Modern cosmology is founded on general relativity. Therefore, it lies outside the syllabus of classical physics and mathematics in most secondary schools. Nevertheless, it is desirable to introduce its concepts, methods and results to interested students. This is possible by assuming modified principles of homogeneity and isotropy and applying Newtonian dynamics with an extra repulsive force including Einstein's cosmological constant. With suitable simplifications and approximations several cosmological models can be derived with basic calculus from the Friedmann-Lemaitre equation, e.g. today's accelerating universe. The derivation is supplemented by examples of hypothetical universes to illustrate the theory.
NASA Astrophysics Data System (ADS)
Weidner, Carrie; Yu, Hoon; Anderson, Dana
2016-05-01
In this work, we report on progress towards performing interferometry using atoms trapped in an optical lattice. That is, we start with atoms in the ground state of an optical lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , and by a prescribed phase function ϕ(t) , transform from one atomic wavefunction to another. In this way, we implement the standard interferometric sequence of beam splitting, propagation, reflection, reverse propagation, and recombination. Through the use of optimal control techniques, we have computationally demonstrated a scalable accelerometer that provides information on the sign of the applied acceleration. Extension of this idea to a two-dimensional shaken-lattice-based gyroscope is discussed. In addition, we report on the experimental implementation of the shaken lattice system.
Observational constraints on undulant cosmologies
Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab
2005-10-01
In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.
Fate of an accelerating universe
Gu, J.-A.; Hwang, W-Y. P.
2006-01-15
The presently accelerating universe may keep accelerating forever, eventually run into the event horizon problem, and thus be in conflict with the superstring idea. On the other hand, the current accelerating phase as well as the fate of the universe may be swayed by a negative cosmological constant, which dictates a big crunch. Based on the current observational data, in this paper we investigate how large the magnitude of a negative cosmological constant is allowed to be. In addition, for distinguishing the sign of the cosmological constant via observations, we point out that a measure of the evolution of the dark energy equation-of-state may be a good discriminator. Hopefully future observations will provide much more detailed information about dark energy and thereby indicate the sign of the cosmological constant as well as the fate of the presently accelerating universe.
Stability of winding cosmic wall lattices with X type junctions
NASA Astrophysics Data System (ADS)
Carter, Brandon
2008-08-01
This work confirms the stability of a class of domain wall lattice models that can produce accelerated cosmological expansion, with pressure to density ratio w = -1/3 at early times, and with w = -2/3 at late times when the lattice scale becomes large compared to the wall thickness. For walls of tension TI, the relevant X type junctions could be unstable (for a sufficiently acute intersection angle α) against separation into a pair of Y type junctions joined by a compound wall, only if the tension {T}_{{\\bb I}} of the latter were less than 2TI (and for an approximately right-angled intersection if it were less than \\sqrt{2} {T}_I ) which cannot occur in the class considered here. In an extensive category of multicomponent scalar field models of forced harmonic (linear or nonlinear) type it is shown how the relevant tension—which is the same as the surface energy density U of the wall—can be calculated as the minimum (geodesic) distance between the relevant vacuum states as measured on the space of field values Φi using a positive definite (Riemannian) energy metric d{U}^2={\\tilde{{ G}}}_{ij}\\,d{\\Phi}^i\\, d{\\Phi}^j that is obtained from the usual kinetic metric (which is flat for a model with an ordinary linear kinetic part) by application of a conformal factor proportional to the relevant potential function V. For suitably periodic potential functions there will be corresponding periodic configurations—with parallel walls characterized by incrementation of a winding number—in which the condition for stability of large scale bunching modes is shown to be satisfied automatically. It is suggested that such a configuration—with a lattice lengthscale comparable to intergalactic separation distances—might have been produced by a late stage of cosmological inflation.
Braneworld cosmology and noncommutative inflation
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca
2005-03-01
In this work we develop the patch formalism, an approach providing a very simple and compact description of braneworld-motivated cosmologies with nonstandard effective Friedmann equations. In particular, the Hubble parameter is assumed to depend on some power of the brane energy density, H^2 propto rho^q. The high-energy limit of Randall-Sundrum (q=2) and Gauss-Bonnet (q=2/3) braneworlds are considered, during an accelerating era triggered by a single ordinary or tachyonic scalar field. The inflationary dynamics, solutions, and spectra are provided. Using the latest results from WMAP and other experiments for estimates of cosmological observables, it is shown that future data and missions can in principle discriminate between standard four-dimensional and braneworld scenarios. The issue of non-Gaussianity is also studied within nonlinear perturbation theory. The introduction of a fundamental energy scale reinforces these results. Several classes of noncommutative inflationary models are considered and their features analyzed in a number of ways and energy regimes. Finally, we establish dual relations between inflationary, cyclic/ekpyrotic and phantom cosmologies, as well as between scalar-driven and tachyon-driven cosmologies. The exact dualities relating the four-dimensional spectra are broken in favour of their braneworld counterparts. The dual solutions display new interesting features because of the modification of the effective Friedmann equation on the brane.
Koivisto, Tomi; Wills, Danielle; Zavala, Ivonne E-mail: d.e.wills@durham.ac.uk
2014-06-01
Disformally coupled cosmologies arise from Dirac-Born-Infeld actions in Type II string theories, when matter resides on a moving hidden sector D-brane. Since such matter interacts only very weakly with the standard model particles, this scenario can provide a natural origin for the dark sector of the universe with a clear geometrical interpretation: dark energy is identified with the scalar field associated to the D-brane's position as it moves in the internal space, acting as quintessence, while dark matter is identified with the matter living on the D-brane, which can be modelled by a perfect fluid. The coupling functions are determined by the (warped) extra-dimensional geometry, and are thus constrained by the theory. The resulting cosmologies are studied using both dynamical system analysis and numerics. From the dynamical system point of view, one free parameter controls the cosmological dynamics, given by the ratio of the warp factor and the potential energy scales. The disformal coupling allows for new scaling solutions that can describe accelerating cosmologies alleviating the coincidence problem of dark energy. In addition, this scenario may ameliorate the fine-tuning problem of dark energy, whose small value may be attained dynamically, without requiring the mass of the dark energy field to be unnaturally low.
Cosmological constant from the emergent gravity perspective
NASA Astrophysics Data System (ADS)
Padmanabhan, T.; Padmanabhan, Hamsa
2014-05-01
Observations indicate that our universe is characterized by a late-time accelerating phase, possibly driven by a cosmological constant Λ, with the dimensionless parameter Λ {LP2} ˜= 10-122, where LP = (Għ/c3)1/2 is the Planck length. In this review, we describe how the emergent gravity paradigm provides a new insight and a possible solution to the cosmological constant problem. After reviewing the necessary background material, we identify the necessary and sufficient conditions for solving the cosmological constant problem. We show that these conditions are naturally satisfied in the emergent gravity paradigm in which (i) the field equations of gravity are invariant under the addition of a constant to the matter Lagrangian and (ii) the cosmological constant appears as an integration constant in the solution. The numerical value of this integration constant can be related to another dimensionless number (called CosMIn) that counts the number of modes inside a Hubble volume that cross the Hubble radius during the radiation and the matter-dominated epochs of the universe. The emergent gravity paradigm suggests that CosMIn has the numerical value 4π, which, in turn, leads to the correct, observed value of the cosmological constant. Further, the emergent gravity paradigm provides an alternative perspective on cosmology and interprets the expansion of the universe itself as a quest towards holographic equipartition. We discuss the implications of this novel and alternate description of cosmology.
The Age of Precision Cosmology
NASA Technical Reports Server (NTRS)
Chuss, David T.
2012-01-01
In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.
NASA Astrophysics Data System (ADS)
Tipler, Frank J.
1996-09-01
I show that if Newtonian gravity is formulated in geometrical language, then Newtonian cosmology is as rigorous as relativistic cosmology. In homogeneous and isotropic universes, the geodesic deviation equation in Newtonian cosmology is proven to be exactly the same as the geodesic deviation equation in relativistic Friedmann cosmologies. This equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: by generalizing the flat-space Newtonian gravity force law to Riemannian metrics, I show that ever-expanding and recollapsing universes are allowed in any homogeneous and isotropic spatial geometry.
Cosmology with large galaxy redshift surveys
NASA Astrophysics Data System (ADS)
Sodré, Laerte, Jr.
2012-10-01
Galaxy redshift surveys are a major tool to address the most challenging cosmological problems facing cosmology, like the nature of dark energy and properties dark matter. The same observations are useful for a much larger variety of scientific applications, from the study of small bodies in the solar system, to properties of tidal streams in the Milky Way halo, to galaxy formation and evolution. Here I briefly discuss what is a redshift survey and how it can be used to attack astrophysical and cosmological problems. I finish with a brief description of a new survey, the Javalambre Physics of the Accelerating Universe Astrophysical Survey (JPAS), which will use an innovative system of 56 filters to map ~ 8000 square degrees on the sky. JPAS photometric system, besides providing accurate photometric redshifts useful for cosmological parameter estimation, will deliver a low-resolution spectrum at each pixel on the sky, allowing for the first time an almost all-sky IFU science.
Quintessence and Born-Infeld cosmology
NASA Astrophysics Data System (ADS)
Moniz, P. Vargas
2002-11-01
Recent observations suggest that the universe is in a state of accelerated cosmic expansion. Herewith we investigate this scenario within the Born-Infeld theory, which has been employed to describe open strings ending on D-branes. A multidimensional model with a topology R×S3×Sd, a cosmological constant, dust matter, and gauge fields is considered for that purpose. Two situations are subsequently discussed, according to whether string effects are (i) dominant or (ii) induce perturbations in the gauge field sector. Studying the set of equations governing the cosmological dynamics, we find that Born-Infeld cosmology can be compatible with the presently measured acceleration, together with a compactified internal space. This is shown to depend on the gauge field components in the internal dimensions as well as string modifications to the gauge matter sector. Furthermore, we argue regarding situation (i) that quintessence could constitute a transient stage.
Attractor behaviour in ELKO cosmology
Basak, Abhishek; Bhatt, Jitesh R.; Shankaranarayanan, S.; Varma, K.V. Prasantha E-mail: jeet@prl.res.in E-mail: varma@iisertvm.ac.in
2013-04-01
We study the dynamics of ELKO in the context of accelerated phase of our universe. To avoid the fine tuning problem associated with the initial conditions, it is required that the dynamical equations lead to an early-time attractor. In the earlier works, it was shown that the dynamical equations containing ELKO fields do not lead to early-time stable fixed points. In this work, using redefinition of variables, we show that ELKO cosmology admits early-time stable fixed points. More interestingly, we show that ELKO cosmology admit two sets of attractor points corresponding to slow and fast-roll inflation. The fast-roll inflation attractor point is unique for ELKO as it is independent of the form of the potential. We also discuss the plausible choice of interaction terms in these two sets of attractor points and constraints on the coupling constant.
Deser, S; Woodard, R P
2007-09-14
We explore nonlocally modified models of gravity, inspired by quantum loop corrections, as a mechanism for explaining current cosmic acceleration. These theories enjoy two major advantages: they allow a delayed response to cosmic events, here the transition from radiation to matter dominance, and they avoid the usual level of fine-tuning; instead, emulating Dirac's dictum, the required large numbers come from the large time scales involved. Their solar system effects are safely negligible, and they may even prove useful to the black hole information problem.
Duality gives rise to Chaplygin cosmologies with a big rip
NASA Astrophysics Data System (ADS)
Chimento, Luis P.; Lazkoz, Ruth
2006-05-01
We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show that these approaches can be framed within a theory with modified gravity, and we discuss the construction of the duals of the cosmologies generated within that framework. We then investigate the modifications required to generate extended, generalized and modified Chaplygin cosmologies, and then show that their duals belong to a larger family of cosmologies we call enlarged Chaplygin cosmologies. Finally, by letting the parameters of these models take values not earlier considered in the literature we show that some representatives of that family of cosmologies display sudden future singularities. This fact indicates that the behaviour of these spacetimes is rather different from that of generalized or modified Chaplygin gas cosmologies. This reinforces the idea that modifications of gravity can be responsible for unexpected evolutionary features in the universe.
Philosophical Roots of Cosmology
NASA Astrophysics Data System (ADS)
Ivanovic, M.
2008-10-01
We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.
NASA Astrophysics Data System (ADS)
Tipler, Frank J.
1996-10-01
It is generally believed that it is not possible to rigorously analyze a homogeneous and isotropic cosmological model in Newtonian mechanics. I show on the contrary that if Newtonian gravity theory is rewritten in geometrical language in the manner outlined in 1923-1924 by Élie Cartan [Ann. Ecole Norm. Sup. 40, 325-412 (1923); 41, 1-25 (1924)], then Newtonian cosmology is as rigorous as Friedmann cosmology. In particular, I show that the equation of geodesic deviation in Newtonian cosmology is exactly the same as equation of geodesic deviation in the Friedmann universe, and that this equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: Ever-expanding and recollapsing universes are allowed in any noncompact homogeneous and isotropic spatial topology. I shall give a brief history of attempts to do cosmology in the framework of Newtonian mechanics.
Conformal cosmological model and SNe Ia data
NASA Astrophysics Data System (ADS)
Zakharov, A. F.; Pervushin, V. N.
2012-11-01
Now there is a huge scientific activity in astrophysical studies and cosmological ones in particular. Cosmology transforms from a pure theoretical branch of science into an observational one. All the cosmological models have to pass observational tests. The supernovae type Ia (SNe Ia) test is among the most important ones. If one applies the test to determine parameters of the standard Friedmann-Robertson-Walker cosmological model one can conclude that observations lead to the discovery of the dominance of the Λ term and as a result to an acceleration of the Universe. However, there are big mysteries connected with an origin and an essence of dark matter (DM) and the Λ term or dark energy (DE). Alternative theories of gravitation are treated as a possible solution of DM and DE puzzles. The conformal cosmological approach is one of possible alternatives to the standard ΛCDM model. As it was noted several years ago, in the framework of the conformal cosmological approach an introduction of a rigid matter can explain observational data without Λ term (or dark energy). We confirm the claim with much larger set of observational data.
Cosmology of Continuum Creation and Annihilation
NASA Astrophysics Data System (ADS)
Ierokomos, Nikiforos
2011-11-01
An extensive cosmology hypothesis is presented that was developed over decades and is based on the existence and evolution of the universe via Cosmic Symmetry Breaks (CSBs) or phases with our universe (Cosmos) describable by a Cosmology of Continuum Creation and Annihilation, or CCA Cosmology. The CCA cosmology hypothesis does not belong to a Standard Model Big Bang. This hypothesis not only describes the universe but also the realm of elementary particles and forces. It provides plausible answers to a large number of puzzles in Physics and Cosmology. These answers range from those that can be calculated and values checked by observations, such as: How much and what is dark energy? How much and what is dark matter? How much baryonic matter? How much and why is there a time-delay for GRB energetic photons? When (or did?) the universe started to accelerate? Are primordial galaxies smaller? Why are orbits non-Newtonian beyond an acceleration value, and other calculable parameters. Also, answers which are more fundamental in interpretation, such as: What is mass and gravity? How many families of elementary particles exist and why are there only three generations of each? Why did the universe start with such low entropy? Does the Cosmos violate the First or Second Law of Thermodynamics? Why is there an asymmetry of matter over antimatter in the universe and what is antimatter? These and other questions the CCA hypothesis is proposing to answer. This hypothesis requires minimum assumptions and can build a coherent theory that can arrive at today's complex universe with plausible evolutionary steps from one postulate and one particle. cosmogony, non-standard cosmology, dark energy, dark matter, new elementary particles, gravity, antimatter, accelerated universe.
Cosmology from High Redshift Supernovae
NASA Astrophysics Data System (ADS)
Garnavich, Peter
The discovery of a correlation between the light curve shape and intrinsic b rightness has made Type Ia supernovae exceptionally accurate distance indicators out to cosmologically interesting redshifts. Ground-based searches and follow-up as well as Hubble S pace Telescope observations of Type Ia supernovae have produced a significant number of object s with redshifts between 0.3 and 1.0. The distant SNe, when combined with a local samp le analyzed in the same way, provide reliable constraints on the deceleration and age of th e Universe. Early this year, an analysis of a handful of Type Ia events indicated that the deceleration was too small for gravitating matter alone to make a flat Universe. A larger sa mple of supernovae gives the surprising result that the Universe is accelerating, implying the exi stence of a cosmological constant or some other exotic form of energy. The success of this research has depended on the development of algorithms and software to register, scale and subtract CCD images taken weeks apart and to search for var iable objects. A good fraction of the point-sources identified are asteroids, variable stars, or AGN, so spectra are needed to confirm the identification as a Type Ia supernova and obt ain a redshift. The best candidates are followed photometrically to construct light curves. The steps to transform the observed light curves into cosmologically interestin g results will also be described.
Bousso, Raphael
2005-01-25
We study conditions for the existence of asymptotic observables in cosmology. With the exception of de Sitter space, the thermal properties of accelerating universes permit arbitrarily long observations, and guarantee the production of accessible states of arbitrarily large entropy. This suggests that some asymptotic observables may exist, despite the presence of an event horizon. Comparison with decelerating universes shows surprising similarities: Neither type suffers from the limitations encountered in de Sitter space, such as thermalization and boundedness of entropy. However, we argue that no realistic cosmology permits the global observations associated with an S-matrix.
TOPICAL REVIEW The cosmological constant puzzle
NASA Astrophysics Data System (ADS)
Bass, Steven D.
2011-04-01
The accelerating expansion of the Universe points to a small positive vacuum energy density and negative vacuum pressure. A strong candidate is the cosmological constant in Einstein's equations of general relativity. Possible contributions are zero-point energies and the condensates associated with spontaneous symmetry breaking. The vacuum energy density extracted from astrophysics is 1056 times smaller than the value expected from quantum fields and standard model particle physics. Is the vacuum energy density time dependent? We give an introduction to the cosmological constant puzzle and ideas how to solve it.
Cosmology of a covariant Galilean field.
De Felice, Antonio; Tsujikawa, Shinji
2010-09-10
We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.
General very special relativity in Finsler cosmology
Kouretsis, A. P.; Stathakopoulos, M.; Stavrinos, P. C.
2009-05-15
General very special relativity (GVSR) is the curved space-time of very special relativity (VSR) proposed by Cohen and Glashow. The geometry of general very special relativity possesses a line element of Finsler geometry introduced by Bogoslovsky. We calculate the Einstein field equations and derive a modified Friedmann-Robertson-Walker cosmology for an osculating Riemannian space. The Friedmann equation of motion leads to an explanation of the cosmological acceleration in terms of an alternative non-Lorentz invariant theory. A first order approach for a primordial-spurionic vector field introduced into the metric gives back an estimation of the energy evolution and inflation.
Our Universe from the cosmological constant
Barrau, Aurélien; Linsefors, Linda E-mail: linda.linsefors@lpsc.in2p3.fr
2014-12-01
The issue of the origin of the Universe and of its contents is addressed in the framework of bouncing cosmologies, as described for example by loop quantum gravity. If the current acceleration is due to a true cosmological constant, this constant is naturally conserved through the bounce and the Universe should also be in a (contracting) de Sitter phase in the remote past. We investigate here the possibility that the de Sitter temperature in the contracting branch fills the Universe with radiation that causes the bounce and the subsequent inflation and reheating. We also consider the possibility that this gives rise to a cyclic model of the Universe and suggest some possible tests.
NASA Astrophysics Data System (ADS)
Bojowald, Martin
The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge.
NASA Astrophysics Data System (ADS)
Brynjolfsson, Ari
2011-04-01
The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Translational symmetry breaking in field theories and the cosmological constant
NASA Astrophysics Data System (ADS)
Evans, Nick; Morris, Tim R.; Scott, Marc
2016-01-01
We argue, at a very basic effective field theory level, that higher dimension operators in scalar theories that break symmetries at scales close to their ultraviolet completion cutoff include terms that favor the breaking of translation (Lorentz) invariance, potentially resulting in striped, checkerboard or general crystal-like phases. Such descriptions can be thought of as the effective low energy description of QCD-like gauge theories near their strong coupling scale where terms involving higher dimension operators are generated. Our low energy theory consists of scalar fields describing operators such as q ¯q and q ¯F(2 n )q . Such scalars can have kinetic mixing terms that generate effective momentum dependent contributions to the mass matrix. We show that these can destabilize the translationally invariant vacuum. It is possible that in some real gauge theory such operators could become sufficiently dominant to realize such phases, and it would be interesting to look for them in lattice simulations. We present a holographic model of the same phenomena which includes renormalization group running. A key phenomenological motive to look at such states is recent work that shows that the nonlinear response in R2 gravity to such short-range fluctuations can mimic a cosmological constant. Intriguingly in a cosmology with such a Starobinsky inflation term, to generate the observed value of the present day acceleration would require stripes at the electroweak scale. Unfortunately, low energy phenomenological constraints on Lorentz violation in the electron-photon system appear to strongly rule out any such possibility outside of a disconnected dark sector.
Light propagation through black-hole lattices
NASA Astrophysics Data System (ADS)
Bentivegna, Eloisa; Korzyński, Mikołaj; Hinder, Ian; Gerlicher, Daniel
2017-03-01
The apparent properties of distant objects encode information about the way the light they emit propagates to an observer, and therefore about the curvature of the underlying spacetime. Measuring the relationship between the redshift z and the luminosity distance DL of a standard candle, for example, yields information on the Universe's matter content. In practice, however, in order to decode this information the observer needs to make an assumption about the functional form of the DL(z) relation; in other words, a cosmological model needs to be assumed. In this work, we use numerical-relativity simulations, equipped with a new ray-tracing module, to numerically obtain this relation for a few black-hole-lattice cosmologies and compare it to the well-known Friedmann-Lema{ȋtre-Robertson-Walker case, as well as to other relevant cosmologies and to the Empty-Beam Approximation. We find that the latter provides the best estimate of the luminosity distance and formulate a simple argument to account for this agreement. We also find that a Friedmann-Lema{ȋtre-Robertson-Walker model can reproduce this observable exactly, as long as a time-dependent cosmological constant is included in the fit. Finally, the dependence of these results on the lattice mass-to-spacing ratio μ is discussed: we discover that, unlike the expansion rate, the DL(z) relation in a black-hole lattice does not tend to that measured in the corresponding continuum spacetime as 0μ → .
Dark Energy and the Cosmological Constant: A Brief Introduction
ERIC Educational Resources Information Center
Harvey, Alex
2009-01-01
The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…
Normal DGP in varying speed of light cosmology
NASA Astrophysics Data System (ADS)
Ravanpak, Arvin; Farajollahi, Hossein; Farpoor Fadakar, Golnaz
2017-02-01
Varying speed of light (VSL) has been used in cosmological models in which the physical constants vary over time. On the other hand, the Dvali, Gabadadze and Porrati (DGP) brane world model, especially its normal branch, has been extensively discussed to justify the current cosmic acceleration. In this article we show that the normal branch of DGP in VSL cosmology leads to a self-accelerating behavior and therefore can interpret cosmic acceleration. Applying statefinder diagnostics demonstrates that our result slightly deviates from the ΛCDM model.
Wong, Yvonne Y. Y.
2008-01-24
I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.
Induced cosmological constant and other features of asymmetric brane embedding
Shtanov, Yuri; Sahni, Varun; Shafieloo, Arman; Toporensky, Alexey E-mail: varun@iucaa.ernet.in E-mail: lesha@xray.sai.msu.ru
2009-04-15
We investigate the cosmological properties of an 'induced gravity' brane scenario in the absence of mirror symmetry with respect to the brane. We find that brane evolution can proceed along one of four distinct branches. By contrast, when mirror symmetry is imposed, only two branches exist, one of which represents the self-accelerating brane, while the other is the so-called normal branch. This model incorporates many of the well-known possibilities of brane cosmology including phantom acceleration (w < -1), self-acceleration, transient acceleration, quiescent singularities, and cosmic mimicry. Significantly, the absence of mirror symmetry also provides an interesting way of inducing a sufficiently small cosmological constant on the brane. A small (positive) {Lambda}-term in this case is induced by a small asymmetry in the values of bulk fundamental constants on the two sides of the brane.
NASA Astrophysics Data System (ADS)
López-Corredoira, M.
2009-08-01
Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.
Multidimensional integrable models of gravitation and cosmology
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.; Melnikov, V. N.
Review of the motivation and main results in multidimentional gravitation and cosmology is presented. Special attention is devoted to results within the model with scalar fields and fields of forms in the billiard approach for obtaining cosmological solutions with branes and integrable configurations with fluxand black branes. In case of the quantum billiard with branes it is shown that the basis solutions for wave functions vanish in the limit of the formation of billiard walls (i.e., at the singularity) for the D = 11 model which mimics the D = 11 supergravitational cosmology. Another fruitful approach - to multidimensional gravity with higher derivatives is mentioned, which leads to a unified description of inflation and the present accelerated expansion of the Universe. Some of these models explain possible spatial and temporal variations of the fine structure and the gravitational constants.
Effective Friedmann model from multidimensional cosmologies
NASA Astrophysics Data System (ADS)
Zhuk, A.
2006-10-01
We investigate the possibility of the construction of the conventional Friedmann cosmology for our observable Universe if the underlying theory is the multidimensional Kaluza-Klein model. We show that the effective Friedmann model obtained by dynamic compactification of the multidimensional model is faced with too strong variations in the fundamental constants. On the other hand, models with stable compactification of the internal space are free from this problem and also result in conventional four-dimensonal cosmological behaviour for our Universe. We prove a no-go theorem, which shows that stable compactification of the internal spaces is possible only if the equations of state in the external and internal spaces are properly adjusted to each other. With a proper choice of parameters (fine tuning), the effective cosmological constant in this model provides the late-time acceleration of the Universe.
On the Convergence in Effective Loop Quantum Cosmology
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose Antonio
2010-07-12
In Loop Quantum Cosmology (LQC) there is a discreteness parameter {lambda}, that has been heuristically associated to a fundamental granularity of quantum geometry. It is also possible to consider {lambda} as a regulator in the same spirit as that used in lattice field theory, where it specifies a regular lattice in the real line. A particular quantization of the k = 0 FLRW loop cosmological model yields a completely solvable model, known as solvable loop quantum cosmology(sLQC). In this contribution, we consider effective classical theories motivated by sLQC and study their {lambda}-dependence, with a special interest on the limit {lambda}{yields}0 and the role of the evolution parameter in the convergence of such limit.
Scaling FFAG accelerator for muon acceleration
Lagrange, JB.; Planche, T.; Mori, Y.
2011-10-06
Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.
Scaling FFAG accelerator for muon acceleration
NASA Astrophysics Data System (ADS)
Lagrange, JB.; Planche, T.; Mori, Y.
2011-10-01
Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.
Creutz, M.
1984-01-01
After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references.
Brane-world cosmology with black strings
NASA Astrophysics Data System (ADS)
Gergely, László Á.
2006-07-01
We consider the simplest scenario when black strings/cigars penetrate the cosmological brane. As a result, the brane has a Swiss-cheese structure, with Schwarzschild black holes immersed in a Friedmann-Lemaître-Robertson-Walker brane. There is no dark radiation in the model, the cosmological regions of the brane are characterized by a cosmological constant Λ and flat spatial sections. Regardless of the value of Λ, these brane-world universes forever expand and forever decelerate. The totality of source terms in the modified Einstein equation sum up to a dust, establishing a formal equivalence with the general relativistic Einstein-Straus model. However in this brane-world scenario with black strings the evolution of the cosmological fluid strongly depends on Λ. For Λ≤0 it has positive energy density ρ and negative pressure p and at late times it behaves as in the Einstein-Straus model. For (not too high) positive values of Λ the cosmological evolution begins with positive ρ and negative p, but this is followed by an epoch with both ρ and p positive. Eventually, ρ becomes negative, while p stays positive. A similar evolution is present for high positive values of Λ, however in this case the evolution ends in a pressure singularity, accompanied by a regular behavior of the cosmic acceleration. This is a novel type of singularity appearing in brane-worlds.
Dissipative or conservative cosmology with dark energy?
NASA Astrophysics Data System (ADS)
Szydlowski, M.; Hrycyna, O.
2007-12-01
All evolutional paths for all admissible initial conditions of FRW cosmological models with dissipative dust fluid (described by dark matter, baryonic matter and dark energy) are analyzed using dynamical system approach. With that approach, one is able to see how generic the class of solutions leading to the desired property -- acceleration -- is. The theory of dynamical systems also offers a possibility of investigating all possible solutions and their stability with tools of Newtonian mechanics of a particle moving in a 1-dimensional potential which is parameterized by the cosmological scale factor. We demonstrate that flat cosmology with bulk viscosity can be treated as a conservative system with a potential function of the Chaplygin gas type. We also confront viscous models with SNIa observations. The best fitted models are obtained by minimizing the $\\chi^{2}$ function which is illustrated by residuals and $\\chi^{2}$ levels in the space of model independent parameters. The general conclusion is that SNIa data supports the viscous model without the cosmological constant. The obtained values of $\\chi^{2}$ statistic are comparable for both the viscous model and LCDM model. The Bayesian information criteria are used to compare the models with different power law parameterization of viscous effects. Our result of this analysis shows that SNIa data supports viscous cosmology more than the LCDM model if the coefficient in viscosity parameterization is fixed. The Bayes factor is also used to obtain the posterior probability of the model.
Computational Cosmology at the Bleeding Edge
NASA Astrophysics Data System (ADS)
Habib, Salman
2013-04-01
Large-area sky surveys are providing a wealth of cosmological information to address the mysteries of dark energy and dark matter. Observational probes based on tracking the formation of cosmic structure are essential to this effort, and rely crucially on N-body simulations that solve the Vlasov-Poisson equation in an expanding Universe. As statistical errors from survey observations continue to shrink, and cosmological probes increase in number and complexity, simulations are entering a new regime in their use as tools for scientific inference. Changes in supercomputer architectures provide another rationale for developing new parallel simulation and analysis capabilities that can scale to computational concurrency levels measured in the millions to billions. In this talk I will outline the motivations behind the development of the HACC (Hardware/Hybrid Accelerated Cosmology Code) extreme-scale cosmological simulation framework and describe its essential features. By exploiting a novel algorithmic structure that allows flexible tuning across diverse computer architectures, including accelerated and many-core systems, HACC has attained a performance of 14 PFlops on the IBM BG/Q Sequoia system at 69% of peak, using more than 1.5 million cores.
McAllister, Liam P.; Silverstein, Eva
2007-10-22
We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.
Klebanov, I.; Susskind, L.
1988-10-01
We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We find a discouraging result that wormholes much bigger than the Planck size are generated. We also consider the implications of the wormhole theory for cosmology. 7 refs., 2 figs.
Cosmology and particle physics
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1988-01-01
The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.
Carol J. Johnstone and Shane Koscielniak
2002-09-30
When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.
Computing tools for accelerator design
Parsa, Z.
1986-06-01
An algorithm has been developed that calculates and obtains information about nonlinear contributions in accelerators. The comparison of the results obtained from this program ''NONLIN'' and HARMON is discussed and illustrated for the SSC-CDR clustered lattices.
Stability analysis in tachyonic potential chameleon cosmology
Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A. E-mail: a.salehi@guilan.ac.ir E-mail: aravanpak@guilan.ac.ir
2011-05-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.
NASA Technical Reports Server (NTRS)
Wilczek, Frank
1987-01-01
A simple heuristic proof of the Nielsen-Ninomaya theorem is given. A method is proposed whereby the multiplication of fermion species on a lattice is reduced to the minimal doubling, in any dimension, with retention of appropriate chiral symmetries. Also, it is suggested that use of spatially thinned fermion fields is likely to be a useful and appropriate approximation in QCD - in any case, it is a self-checking one.
NASA Astrophysics Data System (ADS)
Kehagias, A.; Riotto, A.
2016-05-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Newtonian and Relativistic Cosmologies
NASA Astrophysics Data System (ADS)
Green, Stephen; Wald, Robert
2012-03-01
Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the Friedmann equations, and also that a correspondence between Newtonian and relativistic dust cosmologies holds in linearized perturbation theory. Nevertheless, it is not obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology with significant nonlinear dynamical behavior at small scales. We investigate this issue in light of a perturbative framework that we have recently developed. We propose a straightforward dictionary---exact at the linearized level---that maps Newtonian dust cosmologies into GR dust cosmologies, and we use our ordering scheme to determine the degree to which the resulting metric and matter distribution solve Einstein's equation. We then find additional corrections needed to satisfy Einstein's equation to ``order 1'' at small scales and to ``order ɛ'' at large scales. We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations to describe GR cosmologies.
Kehagias, A.; Riotto, A.
2016-05-25
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Bouncing Cosmologies: Progress and Problems
NASA Astrophysics Data System (ADS)
Brandenberger, Robert; Peter, Patrick
2017-02-01
We review the status of bouncing cosmologies as alternatives to cosmological inflation for providing a description of the very early universe, and a source for the cosmological perturbations which are observed today. We focus on the motivation for considering bouncing cosmologies, the origin of fluctuations in these models, and the challenges which various implementations face.
Cosmic inhomogeneities and averaged cosmological dynamics.
Paranjape, Aseem; Singh, T P
2008-10-31
If general relativity (GR) describes the expansion of the Universe, the observed cosmic acceleration implies the existence of a "dark energy." However, while the Universe is on average homogeneous on large scales, it is inhomogeneous on smaller scales. While GR governs the dynamics of the inhomogeneous Universe, the averaged homogeneous Universe obeys modified Einstein equations. Can such modifications alone explain the acceleration? For a simple generic model with realistic initial conditions, we show the answer to be "no." Averaging effects negligibly influence the cosmological dynamics.
Hamiltonian cosmology of bigravity
NASA Astrophysics Data System (ADS)
Soloviev, V. O.
2017-03-01
This article is written as a review of the Hamiltonian formalism for the bigravity with de Rham-Gabadadze-Tolley (dRGT) potential, and also of applications of this formalism to the derivation of the background cosmological equations. It is demonstrated that the cosmological scenarios are close to the standard ΛCDM model, but they also uncover the dynamical behavior of the cosmological term. This term arises in bigravity regardless on the choice of the dRGT potential parameters, and its scale is given by the graviton mass. Various matter couplings are considered.
Vector fields in multidimensional cosmology
NASA Astrophysics Data System (ADS)
Meierovich, Boris E.
2011-09-01
Vector fields in the expanding Universe are considered within the multidimensional theory of general relativity. Vector fields in general relativity form a three-parametric variety. Our consideration includes the fields with a nonzero covariant divergence. Depending on the relations between the particular parameters and the symmetry of a problem, the vector fields can be longitudinal and/or transverse, ultrarelativistic (i.e. massless) or nonrelativistic (massive), and so on. The longitudinal and transverse vector fields are considered separately in detail in the background of the de Sitter cosmological metric. In most cases the field equations reduce to Bessel equations, and their temporal evolution is analyzed analytically. The energy-momentum tensor of the most simple zero-mass longitudinal vector fields enters the Einstein equations as an additive to the cosmological constant. In this case the de Sitter metric is the exact solution of the Einstein equations. Hence, the most simple zero-mass longitudinal vector field pretends to be an adequate tool for macroscopic description of dark energy as a source of the expansion of the Universe at a constant rate. The zero-mass vector field does not vanish in the process of expansion. On the contrary, massive fields vanish with time. Though their amplitude is falling down, the massive fields make the expansion accelerated.
Holographic cosmology from BIonic solutions
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag
2017-02-01
In this paper, we will use a BIonic solution for analyzing the holographic cosmology. A BIonic solution is a configuration of a D3-brane and an anti-D3-brane connected by a wormhole, and holographic cosmology is a recent proposal to explain cosmic expansion by using the holographic principle. In our model, a BIonic configuration will be produced by the transition of fundamental black strings. The formation of a BIonic configuration will cause inflation. As the D3-brane moves away from the anti-D3-brane, the wormhole will get annihilated, and the inflation will end with the annihilation of this wormhole. However, it is possible for a D3-brane to collide with an anti-D3-brane. Such a collision will occur if the distance between the D3-brane and the anti-D3-brane reduces, and this will create tachyonic states. We will demonstrate that these tachyonic states will lead to the formation of a new wormhole, and this will cause acceleration of the universe before such a collision.
On cosmic acceleration without dark energy
Kolb, E.W.; Matarrese, S.; Riotto, A.; /INFN, Padua
2005-06-01
We elaborate on the proposal that the observed acceleration of the Universe is the result of the backreaction of cosmological perturbations, rather than the effect of a negative-pressure dark energy fluid or a modification of general relativity. Through the effective Friedmann equations describing an inhomogeneous Universe after smoothing, we demonstrate that acceleration in our local Hubble patch is possible even if fluid elements do not individually undergo accelerated expansion. This invalidates the no-go theorem that there can be no acceleration in our local Hubble patch if the Universe only contains irrotational dust. We then study perturbatively the time behavior of general-relativistic cosmological perturbations, applying, where possible, the renormalization group to regularize the dynamics. We show that an instability occurs in the perturbative expansion involving sub-Hubble modes, which indicates that acceleration in our Hubble patch may originate from the backreaction of cosmological perturbations on observable scales.
Lindquist-Wheeler formulation of lattice universes
NASA Astrophysics Data System (ADS)
Liu, Rex G.
2015-09-01
This paper examines the properties of "lattice universes" wherein point masses are arranged in a regular lattice on spacelike hypersurfaces; open, flat, and closed universes are considered. The universes are modeled using the Lindquist-Wheeler (LW) approximation scheme, which approximates the space-time in each lattice cell by Schwarzschild geometry. Extending Lindquist and Wheeler's work, we derive cosmological scale factors describing the evolution of all three types of universes, and we use these scale factors to show that the universes' dynamics strongly resemble those of Friedmann-Lemaître-Robertson-Walker (FLRW) universes. In particular, we use the scale factors to make more salient the resemblance between Clifton and Ferreira's Friedmann-like equations for the LW models and the actual Friedmann equations of FLRW space-times. Cosmological redshifts for such universes are then determined numerically, using a modification of Clifton and Ferreira's approach; the redshifts are found to closely resemble their FLRW counterparts, though with certain differences attributable to the "lumpiness" in the underlying matter content. Most notably, the LW redshifts can differ from their FLRW counterparts by as much as 30%, even though they increase linearly with FLRW redshifts, and they exhibit a nonzero integrated Sachs-Wolfe effect, something which would not be possible in matter-dominated FLRW universes without a cosmological constant.
Cosmological Inflation: A Personal Perspective
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
2007-01-01
We present a review of the sequence of events/circumstances that led to the introduction of interplay between the physics associated with phase transitions in the early universe and their effects on its dynamics of expansion with the goal of resolving the horizon problem that it has since become known as Cosmological Inflation. We then provide a brief review of the fundamentals and the solutions of a theory of gravity based on local scale invariance, known as Weyl gravity that have been elaborated by the presenter and his collaborator P. D. Mannheim. We point out that this theory provides from first principles for a characteristic universal acceleration, whose value appears to be in agreement with observations across a vast range of length scales in the universe.
A simple cosmology with a varying fine structure constant.
Sandvik, Håvard Bunes; Barrow, John D; Magueijo, João
2002-01-21
We investigate the cosmological consequences of a theory in which the electric charge e can vary. In this theory the fine structure "constant," alpha, remains almost constant in the radiation era, undergoes a small increase in the matter era, but approaches a constant value when the universe starts accelerating because of a positive cosmological constant. This model satisfies geonuclear, nucleosynthesis, and cosmic microwave background constraints on time variation in alpha, while fitting the observed accelerating Universe and evidence for small alpha variations in quasar spectra. It also places specific restrictions on the nature of the dark matter. Further tests, involving stellar spectra and Eötvös experiments, are proposed.
The cosmological constant problem
Dolgov, A.D.
1989-05-01
A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs.
Baryogenesis and cosmological antimatter
Dolgov, Alexander D.
2009-04-20
Possible mechanisms of baryogenesis are reviewed. Special attention is payed to those which allow for creation of astronomically significant domains or objects consisting of antimatter. Observational manifestations of cosmological antimatter are discussed.
NASA Astrophysics Data System (ADS)
Nelson, William
2014-03-01
I will discuss my transition from Quantum Gravity and Cosmology to the world of consulting and describe the differences and similarities between academia and industry. I will give some dos and don'ts for industry interviews and jobs searches.
NASA Astrophysics Data System (ADS)
Turner, Michael S.
1999-03-01
For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!
Cosmology: A research briefing
NASA Technical Reports Server (NTRS)
1995-01-01
As part of its effort to update topics dealt with in the 1986 decadal physics survey, the Board on Physics and Astronomy of the National Research Council (NRC) formed a Panel on Cosmology. The Panel produced this report, intended to be accessible to science policymakers and nonscientists. The chapters include an overview ('What Is Cosmology?'), a discussion of cosmic microwave background radiation, the large-scale structure of the universe, the distant universe, and physics of the early universe.
Cosmological phase transitions
Kolb, E.W. |
1993-10-01
If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.
Foundations of modern cosmology
NASA Astrophysics Data System (ADS)
Hawley, John F.; Holcomb, Katherine A.
2005-07-01
Recent discoveries in astronomy, especially those made with data collected by satellites such as the Hubble Space Telescope and the Wilkinson Microwave Anisotropy Probe, have revolutionized the science of cosmology. These new observations offer the possibility that some long-standing mysteries in cosmology might be answered, including such fundamental questions as the ultimate fate of the universe. Foundations of modern cosmology provides an accessible, thorough and descriptive introduction to the physical basis for modern cosmological theory, from the big bang to a distant future dominated by dark energy. This second edition includes the latest observational results and provides the detailed background material necessary to understand their implications, with a focus on the specific model supported by these observations, the concordance model. Consistent with the book's title, emphasis is given to the scientific framework for cosmology, particularly the basics concepts of physics that underlie modern theories of relativity and cosmology; the importance of data and observations is stressed throughout. The book sketches the historical background of cosmology, and provides a review of the relevant basic physics and astronomy. After this introduction, both special and general relativity are treated, before proceeding to an in-depth discussion of the big bang theory and physics of the early universe. The book includes current research areas, including dark matter and structure formation, dark energy, the inflationary universe, and quantum cosmology. The authors' website (http://www.astro.virginia.edu/~jh8h/Foundations) offers a wealth of supplemental information, including questions and answers, references to other sources, and updates on the latest discoveries.
Classification of cosmological milestones
Fernandez-Jambrina, L.; Lazkoz, Ruth
2006-09-15
In this paper causal geodesic completeness of Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models is analyzed in terms of generalized power expansions of the scale factor in coordinate time. The strength of the found singularities is discussed following the usual definitions due to Tipler and Krolak. It is shown that while classical cosmological models are both timelike and lightlike geodesically incomplete, certain observationally allowed models which have been proposed recently are lightlike geodesically complete.
Building cosmological frozen stars
NASA Astrophysics Data System (ADS)
Kastor, David; Traschen, Jennie
2017-02-01
Janis–Newman–Winicour (JNW) solutions generalize Schwarzschild to include a massless scalar field. While they share the familiar infinite redshift feature of Schwarzschild, they suffer from the presence of naked singularities. Cosmological versions of JNW spacetimes were discovered some years ago, in the most general case, by Fonarev. Fonarev solutions are also plagued by naked singularities, but have the virtue, unlike e.g. Schwarzschild–deSitter, of being dynamical. Given that exact dynamical cosmological black hole solutions are scarce, Fonarev solutions merit further study. We show how Fonarev solutions can be obtained via generalized dimensional reduction from simpler static vacuum solutions. These results may lead towards constructions of actual dynamical cosmological black holes. In particular, we note that cosmological versions of extremal charged dilaton black holes are known. JNW spacetimes represent a different limiting case of the family of charged dilaton black holes, which have been important in the context of string theory, and better understanding their cosmological versions of JNW spacetimes thus provides a second data point towards finding cosmological versions of the entire family.
Cosmological Models and Stability
NASA Astrophysics Data System (ADS)
Andersson, Lars
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.
The Accelerator Markup Language and the Universal Accelerator Parser
Sagan, David; Forster, M.; Bates, D.; Wolski, A.; Schmidt, F.; Walker, N.J.; Larrieu, Theodore; Roblin, Yves; Pelaia, T.; Tenenbaum, P.; Woodley, M.; Reiche, S.
2006-07-01
A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.
The Accelerator Markup Language and the Universal Accelerator Parser
Sagan, D.; Forster, M.; Bates, D.A.; Wolski, A.; Schmidt, F.; Walker, N.J.; Larrieu, T.; Roblin, Y.; Pelaia, T.; Tenenbaum, P.; Woodley, M.; Reiche, S.; /UCLA
2006-10-06
A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.
BOOK REVIEW: Observational Cosmology Observational Cosmology
NASA Astrophysics Data System (ADS)
Howell, Dale Andrew
2013-04-01
Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations
Cosmology with cosmic shear observations: a review.
Kilbinger, Martin
2015-07-01
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.
The Cosmology Distinction Course in NSW
NASA Astrophysics Data System (ADS)
Hollow, Robert P.; McAdam, W. B.; O'Byrne, J.; White, Graeme L.; Holmes, R.; Webb, J. K.; Allen, L. R.; Zealey, W. J.; Hafner, R.
1994-04-01
The Cosmology Distinction Course is a new one-year course to be introduced for Year 12 candidates in the 1994 Higher School Certificate (HSC) examinations in NSW. It is one of three challenging courses of study that will enrich the HSC for talented students who accelerate and complete part of the HSC one year early. The courses will be taught through distance learning and will include residential seminars. They will be implemented on behalf of the Board of Studies by Charles Sturt University and the University of New England. The Cosmology Course is organized into nine modules of course work covering historical and social aspects of cosmology, observational techniques, key observatons and the various models developed--Newtonian, de Sitter, Friedmann, Lemaitre, steady-state, quasi-steady-state and big bang. Assessment will be through assignments, exams and a major project. As the first Distinction Course in a scientific area, the Cosmology Course represents an exciting and important educational initiative that needs the cooperation of NSW astronomers and, in return, promises to benefit the astronomical and general scientific community in Australia.
Tracking the SSC test lattices
Leemann, B.T.; Douglas, D.R.; Forest, E.
1990-01-01
The dynamic aperture and its determination emerged from the SSC reference design study as the single most important accelerator physics issue pertinent to the SSC. Beside the fundamental need of a finite dynamic aperture for any accelerator, it was considered to be a useful criterion for the magnet selection. An aperture workshop organized in November 1984 at LBL served the purpose to identify the various aspects of the aperture question and to organize the aperture task force accordingly. It was recognized that numerical models had to play an important role and the qualifications of several tracking codes were investigated. None of the existing codes could meet all of the criteria for an ideal tracking code and substantial program development became unavoidable. It was therefore decided to begin tracking SSC test lattices, which were provided by the aperture task force's lattice group and are described in an other paper to this conference, with existing tracking programs. 6 refs., 5 figs., 2 tabs.
Cosmology in time asymmetric extensions of general relativity
Leon, Genly; Saridakis, Emmanuel N. E-mail: Emmanuel_Saridakis@baylor.edu
2015-11-01
We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe.
Multi-scale gravity and cosmology
Calcagni, Gianluca
2013-12-01
The gravitational dynamics and cosmological implications of three classes of recently introduced multi-scale spacetimes (with, respectively, ordinary, weighted and q-derivatives) are discussed. These spacetimes are non-Riemannian: the metric structure is accompanied by an independent measure-differential structure with the characteristics of a multi-fractal, namely, different dimensionality at different scales and, at ultra-short distances, a discrete symmetry known as discrete scale invariance. Under this minimal paradigm, five general features arise: (a) the big-bang singularity can be replaced by a finite bounce, (b) the cosmological constant problem is reinterpreted, since accelerating phases can be mimicked by the change of geometry with the time scale, without invoking a slowly rolling scalar field, (c) the discreteness of geometry at Planckian scales can leave an observable imprint of logarithmic oscillations in cosmological spectra and (d) give rise to an alternative mechanism to inflation or (e) to a fully analytic model of cyclic mild inflation, where near scale invariance of the perturbation spectrum can be produced without strong acceleration. Various properties of the models and exact dynamical solutions are discussed. In particular, the multi-scale geometry with weighted derivatives is shown to be a Weyl integrable spacetime.
Observational constraints on late-time {lambda}(t) cosmology
Carneiro, S.; Pigozzo, C.; Dantas, M. A.; Alcaniz, J. S.
2008-04-15
The cosmological constant {lambda}, i.e., the energy density stored in the true vacuum state of all existing fields in the Universe, is the simplest and the most natural possibility to describe the current cosmic acceleration. However, despite its observational successes, such a possibility exacerbates the well-known {lambda} problem, requiring a natural explanation for its small, but nonzero, value. In this paper we study cosmological consequences of a scenario driven by a varying cosmological term, in which the vacuum energy density decays linearly with the Hubble parameter, {lambda}{proportional_to}H. We test the viability of this scenario and study a possible way to distinguish it from the current standard cosmological model by using recent observations of type Ia supernova (Supernova Legacy Survey Collaboration), measurements of the baryonic acoustic oscillation from the Sloan Digital Sky Survey, and the position of the first peak of the cosmic microwave background angular spectrum from the three-year Wilkinson Microwave Anisotropy Probe.
Implications of the Cosmological Constant for Spherically Symmetric Mass Distributions
NASA Astrophysics Data System (ADS)
Zubairi, Omair; Weber, Fridolin
2013-04-01
In recent years, scientists have made the discovery that the expansion rate of the Universe is increasing rather than decreasing. This acceleration leads to an additional term in Albert Einstein's field equations which describe general relativity and is known as the cosmological constant. This work explores the aftermath of a non-vanishing cosmological constant for relativistic spherically symmetric mass distributions, which are susceptible to change against Einstein's field equations. We introduce a stellar structure equation known as the Tolman-Oppenhiemer-Volkoff (TOV) equation modified for a cosmological constant, which is derived from Einstein's modified field equations. We solve this modified TOV equation for these spherically symmetric mass distributions and obtain stellar properties such as mass and radius and investigate changes that may occur depending on the value of the cosmological constant.
Evolving Lorentzian wormholes supported by phantom matter and cosmological constant
Cataldo, Mauricio; Campo, Sergio del; Minning, Paul; Salgado, Patricio
2009-01-15
In this paper we study the possibility of sustaining an evolving wormhole via exotic matter made of phantom energy in the presence of a cosmological constant. We derive analytical evolving wormhole geometries by supposing that the radial tension of the phantom matter, which is negative to the radial pressure, and the pressure measured in the tangential directions have barotropic equations of state with constant state parameters. In this case the presence of a cosmological constant ensures accelerated expansion of the wormhole configurations. More specifically, for positive cosmological constant we have wormholes which expand forever and, for negative cosmological constant we have wormholes which expand to a maximum value and then recollapse. At spatial infinity the energy density and the pressures of the anisotropic phantom matter threading the wormholes vanish; thus these evolving wormholes are asymptotically vacuum {lambda}-Friedmann models with either open or closed or flat topologies.
Thermal tachyacoustic cosmology
NASA Astrophysics Data System (ADS)
Agarwal, Abhineet; Afshordi, Niayesh
2014-08-01
An intriguing possibility that can address pathologies in both early Universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. nonrenormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early Universe is the tachyacoustic (or speedy sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study thermal tachyacoustic cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early Universe, around the scale of the grand unified theory (GUT scale; T ˜1015 GeV), during which the speed of sound drops by 25 orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of tensor modes (r≳10-3), that are detectable by CMBpol (and might have already been seen by the BICEP-Keck Collaboration).
Physical Foundations of Cosmology
NASA Astrophysics Data System (ADS)
Mukhanov, Viatcheslav
2005-11-01
Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. Taking an original approach, this textbook explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed. Presents detailed derivations of all basic results needed in cosmology, including robust predictions of inflation Contains an analytical treatment of nucleosynthesis, recombination and CMB fluctuations Provides elementary introductions to more advanced topics
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Inhomogeneous anisotropic cosmology
NASA Astrophysics Data System (ADS)
Kleban, Matthew; Senatore, Leonardo
2016-10-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Cosmology Solved? Quite Possibly!
NASA Astrophysics Data System (ADS)
Turner, Michael S.
1999-03-01
The discovery of the cosmic microwave background (CMB) in 1964 by Penzias and Wilson led to the establishment of the hot big bang cosmological model some 10 years later. Discoveries made in 1998 may ultimately have as profound an effect on our understanding of the origin and evolution of the universe. Taken at face value, they confirm the basic tenets of inflation + cold dark matter, a bold and expansive theory that addresses all the fundamental questions left unanswered by the hot big bang model and holds that the universe is flat, slowly moving elementary particles provide the cosmic infrastructure, and quantum fluctuations seeded all the structure seen in the universe today. Just as it took a decade to establish the hot big bang model after the discovery of the CMB, it will likely take another 10 years to establish the latest addition to the standard cosmology and make the answer to ``Cosmology solved?'' ``YES!'' Whether or not 1998 proves to be a cosmic milestone, the coming avalanche of high-quality cosmological data promises to make the next 20 years an extremely exciting period for cosmology.
Entropic Issues in Contemporary Cosmology
NASA Astrophysics Data System (ADS)
Coule, D. H.
Penrose1 has emphasized how the initial big bang singularity requires a special low entropy state. We address how recent brane cosmological schemes address this problem and whether they offer any apparent resolution. Pushing the start time back to t = -∞, or utilizing maximally symmetric AdS spaces, simply exacerbates or transfers the problem. Since the entropy of de Sitter space is S ≤ 1/Λ, using the present acceleration of the universe as a low energy (Λ ~ 10-120) inflationary stage, as in cyclic ekpyrotic models, produces a gravitational heat death after one cycle. Only higher energy driven inflation, together with a suitable, quantum gravity holography style, restriction on ab initio degrees of freedom, gives a suitable low entropy initial state. We question the suggestion that a high energy inflationary stage could be naturally reentered by Poincaré recurrence within a finite causal region of an accelerating universe. We further give a heuristic argument that the so-called eternal inflation is not consistent with the second law of thermodynamics within a causal patch.
Did Cosmology Trigger the Origin of the Solar System?
NASA Technical Reports Server (NTRS)
Blome, H.-J.; Wilson, T. L.
2011-01-01
It is a matter of curious coincidence that the Solar System formed 4.6 billion years ago around the same epoch that the Friedmann-Lemaitre (FL) universe became -dominated or dark-energy-dominated, where is the cosmological constant. This observation was made in the context of known gravitational anomalies that affect spacecraft orbits during planetary flyby's and the Pioneer anomaly, both possibly having connections with cosmology. In addition, it has been known for some time that the Universe is not only expanding but accelerating as well. Hence one must add the onset of cosmological acceleration in the FL universe as having a possible influence on the origin of the Solar System. These connections will now be examined in greater detail.
Is ΛCDM an effective CCDM cosmology?
Lima, J.A.S.; Santos, R.C.; Cunha, J.V. E-mail: cliviars@gmail.com
2016-03-01
We show that a cosmology driven by gravitationally induced particle production of all non-relativistic species existing in the present Universe mimics exactly the observed flat accelerating ΛCDM cosmology with just one dynamical free parameter. This kind of scenario includes the creation cold dark matter (CCDM) model [1] as a particular case and also provides a natural reduction of the dark sector since the vacuum component is not needed to accelerate the Universe. The new cosmic scenario is equivalent to ΛCDM both at the background and perturbative levels and the associated creation process is also in agreement with the universality of the gravitational interaction and equivalence principle. Implicitly, it also suggests that the present day astronomical observations cannot be considered the ultimate proof of cosmic vacuum effects in the evolved Universe because ΛCDM may be only an effective cosmology.
New massive bigravity cosmologies with double matter coupling
Lagos, Macarena; Noller, Johannes E-mail: noller@physics.ox.ac.uk
2016-01-01
We study a previously largely unexplored branch of homogeneous and isotropic background solutions in ghost-free massive bigravity with consistent double matter coupling. For a certain family of parameters we find 'self-inflated' FLRW cosmologies, i.e. solutions with an accelerated early-time period during the radiation-dominated era. In addition, these solutions also display an accelerated late-time period closely mimicking GR with a cosmological constant. Interestingly, within this family, the particular case of β{sub 1}=β{sub 3}=0 gives bouncing cosmologies, where there is an infinite contracting past, a non-zero minimum value of the scale factor at the bounce, and an infinite expanding future.
A cosmological study in massive gravity theory
Pan, Supriya Chakraborty, Subenoy
2015-09-15
A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.
Cosmology of a Lorentz violating Galileon theory
Haghani, Zahra; Shahidi, Shahab; Harko, Tiberiu; Sepangi, Hamid Reza E-mail: t.harko@ucl.ac.uk E-mail: s.shahidi@du.ac.ir
2015-05-01
We modify the scalar Einstein-aether theory by breaking the Lorentz invariance of a gravitational theory coupled to a Galileon type scalar field. This is done by introducing a Lagrange multiplier term into the action, thus ensuring that the gradient of the scalar field is time-like, with unit norm. The theory can also be considered as an extension to the mimetic dark matter theory, by adding some derivative self interactions to the action, which keeps the equation of motion at most second order in time derivatives. The cosmological implications of the model are discussed in detail. In particular, for pressure-less baryonic matter, we show that the universe experiences a late time acceleration. The cosmological implications of a special coupling between the scalar field and the trace of the energy-momentum tensor are also explored.
NASA Astrophysics Data System (ADS)
Folatelli, G.
Supernovae are very relevant astrophysical objects because they indicate the violent end of certain stars and because they alter the interstellar medium. But most importantly, they have become an extremely useful tool for measuring cosmological distances. Based on highly precise distances to type Ia supernovae it was possible to find out that the expansion of the universe is currently accelerated. This led to introducing the concept of ``dark energy'' as a dominant and yet unknown component of the cosmos. In this article we will describe the method of distance measurements that leads to the determination of cosmological parameters. We will briefly review the current status of the field with emphasis on the importance of improving our knowledge about the physical nature of supernovae. FULL TEXT IN SPANISH
Elementary particles and cosmology
NASA Astrophysics Data System (ADS)
Dobrolyubov, M. I.; Ignatev, A. Yu.; Shaposhnikov, M. E.
1988-12-01
A series of lectures is devoted to actual problems which arise at the junction of elementary particle physics and cosmology. A brief review is given to the standard theory of hot universe and scenario of inflationary universe, modern state of the problem of baryon universe asymmetry and possible new mechanisms of this asymmetry formation. The possibility of construction of cosmological models on the basis of supersymmetric theories is considered: qualitative evaluation of the modern density of relic particles, cosmological restrictions for the mass of the lightest particle, astrophysical restrictions for the coupling constant of weakly interacting particles and matter are given. A perspective direction of search for light particles in light hadron decays is mentioned.
The kinematic component of the cosmological redshift
NASA Astrophysics Data System (ADS)
Chodorowski, Michał J.
2011-05-01
It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to solve this problem properly, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant cosmic time. We find that the resulting relation between the transported velocity and the redshift of arriving photons is not given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well-known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational one. We perform such a decomposition for arbitrary large redshifts and derive a formula for the kinematic component of the cosmological redshift, valid for any Friedman-Lemaître-Robertson-Walker (FLRW) cosmology. In particular, in a universe with Ωm= 0.24 and ΩΛ= 0.76, a quasar at a redshift 6, at the time of emission of photons reaching us today had the recession velocity v= 0.997c. This can be contrasted with v= 0.96c, had the redshift been entirely kinematic. Thus, for recession velocities of such high-redshift sources, the effect of deceleration of the early Universe clearly prevails over the effect of its relatively recent acceleration. Last but not the least, we show that the so-called proper recession velocities of galaxies, commonly used in cosmology, are in fact radial components of the galaxies' four-velocity vectors. As such, they can indeed attain superluminal values, but should not be regarded as real velocities.
f(T) teleparallel gravity and cosmology
NASA Astrophysics Data System (ADS)
Cai, Yi-Fu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Saridakis, Emmanuel N.
2016-10-01
Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations—or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more
f(T) teleparallel gravity and cosmology.
Cai, Yi-Fu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Saridakis, Emmanuel N
2016-10-01
Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable
Cosmological simulations of DGP braneworld gravity
NASA Astrophysics Data System (ADS)
Schmidt, Fabian
2009-09-01
We perform cosmological N-body simulations of the Dvali-Gabadadze- Porrati braneworld model, by solving the full non-linear equations of motion for the scalar degree of freedom in this model, the brane bending mode. While coupling universally to matter, the brane-bending mode has self-interactions that become important as soon as the density field becomes non-linear. These self-interactions lead to a suppression of the field in high-density environments, and restore gravity to General Relativity. The code uses a multi- grid relaxation scheme to solve the non-linear field equation in the quasi- static approximation. We perform simulations of a flat self-accelerating DGP model without cosmological constant. However, the type of non-linear interactions of the brane-bending mode, which are the focus of this study, are generic to a wide class of braneworld cosmologies. The results of the DGP simulations are compared with standard gravity simulations assuming the same expansion history, and with DGP simulations using the linearized equation for the brane bending mode. This allows us to isolate the effects of the non-linear self-couplings of the field which are noticeable already on quasi-linear scales. We present results on the matter power spectrum and the halo mass function, and discuss the behavior of the brane bending mode within cosmological structure formation. We find that, independently of CMB constraints, the self-accelerating DGP model is strongly constrained by current weak lensing and cluster abundance measurements.
Midisuperspace supersymmetric quantum cosmology
Macias, Alfredo; Camacho, Abel; Kunz, Jutta; Laemmerzahl, Claus
2008-03-15
We investigate the canonical quantization in the framework of N=1 simple supergravity for the case of a very simple gravitational midisuperspace described by Gowdy T{sup 3} cosmological models. We consider supersymmetric quantum cosmology in the mentioned midisuperspace, where a matrix representation for the gravitino covector-spinor is used. The full Lorentz constraint and its implications for the wave function of the Universe are analyzed in detail. We found that there are indeed physical states in the midisuperspace sector of the theory in contrast to the case of minisuperspace where there exist no physical states.
Planck 2015 Cosmological results
NASA Astrophysics Data System (ADS)
Tristram, Matthieu
2015-08-01
On behalf of the Planck collaboration, I will present the cosmological results from the 2015 release. The new release now include polarization data from both the LFI and the HFI.I will focus on the impact of the polarization on both the standard LCDM model and its basic extensions. I will compare these constraints with other cosmological probes such as BAO, gravitational lensing and redshift space distortions.LCDM is still a very good fit of the Planck CMB data. The scalar fluctuations are consistent with adiabatic modes.
Information entropy in cosmology.
Hosoya, Akio; Buchert, Thomas; Morita, Masaaki
2004-04-09
The effective evolution of an inhomogeneous cosmological model may be described in terms of spatially averaged variables. We point out that in this context, quite naturally, a measure arises which is identical to a fluid model of the Kullback-Leibler relative information entropy, expressing the distinguishability of the local inhomogeneous mass density field from its spatial average on arbitrary compact domains. We discuss the time evolution of "effective information" and explore some implications. We conjecture that the information content of the Universe-measured by relative information entropy of a cosmological model containing dust matter-is increasing.
Cosmology with varying constants.
Martins, Carlos J A P
2002-12-15
The idea of possible time or space variations of the 'fundamental' constants of nature, although not new, is only now beginning to be actively considered by large numbers of researchers in the particle physics, cosmology and astrophysics communities. This revival is mostly due to the claims of possible detection of such variations, in various different contexts and by several groups. I present the current theoretical motivations and expectations for such variations, review the current observational status and discuss the impact of a possible confirmation of these results in our views of cosmology and physics as a whole.
Newtonian and relativistic cosmologies
NASA Astrophysics Data System (ADS)
Green, Stephen R.; Wald, Robert M.
2012-03-01
Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic Friedmann-Lemaître-Robinson-Walker cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed [S. R. Green and R. M. Wald, Phys. Rev. DPRVDAQ1550-7998 83, 084020 (2011).10.1103/PhysRevD.83.084020], which allows for such nonlinearity at small scales. We propose a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our “ordering scheme” to determine the degree to which the resulting metric and matter distribution solve Einstein’s equation. We find that, within our ordering scheme, Einstein’s equation fails to hold at “order 1” at small scales and at “order ɛ” at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein’s equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations
Nonlinear backreaction in cosmology
NASA Astrophysics Data System (ADS)
Green, Stephen Roland
This thesis, based on two papers by Green and Wald, investigates the problem of nonlinear backreaction in cosmology. We first analyze the problem in a general context by developing a new, mathematically precise framework for treating the effects of nonlinear phenomena occurring on small scales in general relativity. Our framework requires the metric to be close to a background metric (not necessarily a cosmological metric), but allows arbitrarily large stress-energy fluctuations on small scales. We prove that, within our framework, if the matter stress-energy tensor satisfies the weak energy condition (i.e., positivity of energy density in all frames), then the only effect that small-scale inhomogeneities can have on the background metric is to provide an effective stress-energy tensor that is traceless and satisfies the weak energy condition itself—corresponding to the presence of gravitational radiation. In particular, nonlinear effects produced by small-scale inhomogeneities cannot mimic the effects of dark energy. We also develop perturbation theory off of the background metric. We derive an equation for the long-wavelength part of the leading order deviation of the metric from the background metric, which contains the usual terms occurring in linearized perturbation theory plus additional contributions from the small-scale inhomogeneities. Next, we apply our framework to the cosmological context, specializing our background metric to be of the Friedmann-Lemaitre-Robertson-Walker form. We demonstrate that, in the case of dust matter, a cosmological constant, and vanishing spatial curvature (i.e., our universe today), Newtonian gravity alone provides a good
The New Era of Precision Cosmology: Testing Gravity at Large Scales
NASA Technical Reports Server (NTRS)
Prescod-Weinstein, Chanda
2011-01-01
Cosmic acceleration may be the biggest phenomenological mystery in cosmology today. Various explanations for its cause have been proposed, including the cosmological constant, dark energy and modified gravities. Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy ore modified gravity implement the Press & Schechter formalism (PGF). However, does the PGF apply in all cosmologies? The search is on for a better understanding of universality in the PGF In this talk, I explore the potential for universality and talk about what dark matter haloes may be able to tell us about cosmology. I will also discuss the implications of this and new cosmological experiments for better understanding our theory of gravity.
BOOK REVIEW: The Oxford Companion to Cosmology
NASA Astrophysics Data System (ADS)
Coles, Peter
2008-10-01
compare the two books as I am clearly biased, but looking at mine again in the course of writing this review it struck me how much the landscape of cosmology has changed in the relatively short time that has elapsed between their publication dates. The past decade has seen the discovery of cosmic acceleration, detailed all-sky maps of the microwave background, the completion of huge galaxy surveys, and the synthesis of these observations into a standard 'concordance' cosmological model. If someone has the time and energy to undertake a project like this in ten years' time, I wonder if the current consensus will have survived.
DESIGN OF THE RCMS LATTICE OPTICS.
CARDONA,J.; KEWISCH,J.; PEGGS,S.
2002-06-02
THE RAPID CYCLING MEDICAL SYNCHROTRON (RCMS) IS DESIGNED TO BE A VERY LIGHT AND INEXPENSIVE ACCELERATOR. THIS IS POSSIBLE DUE TO THE SMALL BEAM SIZE THAT HAS BEEN CHOSEN EARLY DURING THE DESIGN STAGE. THIS CHOICE HAS IMPLICATIONS IN THE DESIGN OF THE LATTICE OPTICS. IN THIS PAPER, WE PRESENT AN OVERVIEW OF THE RCMS OPTICS LATTICE, THE KIND OF MAGNETS TO BE USED AND ALSO A DESCRIPTION OF A SPECIAL OPTIC MODULE THAT MATCHES THE ROTATING GANTRY WITH THE REST OF THE FIXED ACCELERATOR. TECHNIQUESDEVELOPED TO WIN ADDITIONAL SPACE BETWEEN QUADRUPOLES WITHOUT DISTRUBING BETA FUNCTIONS ARE ALSO PRESENTED.
Harko, Tiberiu; Lobo, Francisco S.N.; Otalora, G.; Saridakis, Emmanuel N. E-mail: flobo@cii.fc.ul.pt
2014-12-01
We present an extension of f(T) gravity, allowing for a general coupling of the torsion scalar T with the trace of the matter energy-momentum tensor T. The resulting f(T,T) theory is a new modified gravity, since it is different from all the existing torsion or curvature based constructions. Applied to a cosmological framework, it leads to interesting phenomenology. In particular, one can obtain a unified description of the initial inflationary phase, the subsequent non-accelerating, matter-dominated expansion, and then the transition to a late-time accelerating phase. Additionally, the effective dark energy sector can be quintessence or phantom-like, or exhibit the phantom-divide crossing during the evolution. Moreover, in the far future the universe results either to a de Sitter exponential expansion, or to eternal power-law accelerated expansions. Finally, a detailed study of the scalar perturbations at the linear level reveals that f(T,T) cosmology can be free of ghosts and instabilities for a wide class of ansatzes and model parameters.
Holographic dark energy and late cosmic acceleration
NASA Astrophysics Data System (ADS)
Pavón, Diego
2007-06-01
It has been persuasively argued that the number of effective degrees of freedom of a macroscopic system is proportional to its area rather than to its volume. This entails interesting consequences for cosmology. Here we present a model based on this 'holographic principle' that accounts for the present stage of accelerated expansion of the Universe and significantly alleviates the coincidence problem also for non-spatially flat cosmologies. Likewise, we comment on a recently proposed late transition to a fresh decelerated phase.
An ancient revisits cosmology.
Greenstein, J L
1993-01-01
In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403
Coc, Alain
2014-05-09
There are important aspects of Cosmology, the scientific study of the large scale properties of the universe as a whole, for which nuclear physics can provide insights. Here, we will focus on Standard Big-Bang Nucleosynthesis and we refer to the previous edition of the School [1] for the aspects concerning the variations of constants in nuclear cosmo-physics.
An ancient revisits cosmology.
Greenstein, J L
1993-06-01
In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way.
Culture and Children's Cosmology
ERIC Educational Resources Information Center
Siegal, Michael; Butterworth, George; Newcombe, Peter A.
2004-01-01
In this investigation, we examined children's knowledge of cosmology in relation to the shape of the earth and the day-night cycle. Using explicit questioning involving a choice of alternative answers and 3D models, we carried out a comparison of children aged 4-9 years living in Australia and England. Though Australia and England have a close…
Quantifying concordance in cosmology
NASA Astrophysics Data System (ADS)
Seehars, Sebastian; Grandis, Sebastian; Amara, Adam; Refregier, Alexandre
2016-05-01
Quantifying the concordance between different cosmological experiments is important for testing the validity of theoretical models and systematics in the observations. In earlier work, we thus proposed the Surprise, a concordance measure derived from the relative entropy between posterior distributions. We revisit the properties of the Surprise and describe how it provides a general, versatile, and robust measure for the agreement between data sets. We also compare it to other measures of concordance that have been proposed for cosmology. As an application, we extend our earlier analysis and use the Surprise to quantify the agreement between WMAP 9, Planck 13, and Planck 15 constraints on the Λ CDM model. Using a principle component analysis in parameter space, we find that the large Surprise between WMAP 9 and Planck 13 (S =17.6 bits, implying a deviation from consistency at 99.8% confidence) is due to a shift along a direction that is dominated by the amplitude of the power spectrum. The Planck 15 constraints deviate from the Planck 13 results (S =56.3 bits), primarily due to a shift in the same direction. The Surprise between WMAP and Planck consequently disappears when moving to Planck 15 (S =-5.1 bits). This means that, unlike Planck 13, Planck 15 is not in tension with WMAP 9. These results illustrate the advantages of the relative entropy and the Surprise for quantifying the disagreement between cosmological experiments and more generally as an information metric for cosmology.
Sefusatti, Emiliano; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York
2006-04-01
The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.
Bianchi-I cosmology from causal thermodynamics
NASA Astrophysics Data System (ADS)
Bittencourt, Eduardo; Gomes, Leandro G.; Klippert, Renato
2017-02-01
We investigate diagonal Bianchi-I spacetimes in the presence of viscous fluids by using the shear and the anisotropic pressure components as the basic variables, where the viscosity is driven by the (second-order) causal thermodynamics. A few exact solutions are presented, among which we mention the anisotropic versions of de Sitter/anti-de Sitter geometries as well as an asymptotically isotropic spacetime presenting an effectively constant cosmic acceleration without any cosmological constant. The qualitative analysis of the solutions for barotropic fluids with linear equations of state suggests that the behaviour is quite general.
Neutrino masses, neutrino oscillations, and cosmological implications
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1982-01-01
Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.
Some cosmological consequences of Weyl invariance
Alvarez, Enrique; González-Martín, Sergio; Herrero-Valea, Mario
2015-03-19
We examine some Weyl invariant cosmological models in the framework of generalized dilaton gravity, in which the action is made of a set of N conformally coupled scalar fields. It will be shown that when the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the scalar fields EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations.
Some cosmological consequences of Weyl invariance
Alvarez, Enrique; González-Martín, Sergio; Herrero-Valea, Mario E-mail: sergio.gonzalez.martin@csic.es
2015-03-01
We examine some Weyl invariant cosmological models in the framework of generalized dilaton gravity, in which the action is made of a set of N conformally coupled scalar fields. It will be shown that when the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the scalar fields EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations.
Dynamical symmetries in Brans-Dicke cosmology
NASA Astrophysics Data System (ADS)
Papagiannopoulos, G.; Barrow, John D.; Basilakos, S.; Giacomini, A.; Paliathanasis, A.
2017-01-01
In the context of generalized Brans-Dicke cosmology we use the Killing tensors of the minisuperspace in order to determine the unspecified potential of a scalar-tensor gravity theory. Specifically, based on the existence of contact symmetries of the field equations, we find four types of potentials which provide exactly integrable dynamical systems. We investigate the dynamical properties of these potentials by using a critical point analysis and we find solutions which lead to cosmic acceleration and under specific conditions we can have de-Sitter points as stable late-time attractors.
The Future of Theoretical Physics and Cosmology
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.
2009-08-01
Preface; List of contributors; 1. Introduction; Part I. Popular Symposium: 2. Our complex cosmos and its future Martin J. Rees; 3. Theories of everything and Hawking's wave function of the Universe James B. Hartle; 4. The problem of space-time singularities: implications for quantum gravity? Roger Penrose; 5. Warping spacetime Kip Thorne; 6. 60 years in a nutshell Stephen W. Hawking; Part II. Spacetime Singularities: 7. Cosmological perturbations and singularities George F. R. Ellis; 8. The quantum physics of chronology protection Matt Visser; 9. Energy dominance and the Hawking-Ellis vacuum conservation theorem Brandon Carter; 10. On the instability of extra space dimensions Roger Penrose; Part III. Black Holes: 11. Black hole uniqueness and the inner horizon stability problem Werner Israel; 12. Black holes in the real universe and their prospects as probes of relativistic gravity Martin J. Rees; 13. Primordial black holes Bernard Carr; 14. Black hole pair creation Simon F. Ross; 15. Black holes as accelerators Steven Giddings; Part IV. Hawking Radiation: 16. Black holes and string theory Malcolm Perry; 17. M theory and black hole quantum mechanics Joe Polchinski; 18. Playing with black strings Gary Horowitz; 19. Twenty years of debate with Stephen Leonard Susskind; Part V. Quantum Gravity: 20. Euclidean quantum gravity: the view from 2002 Gary Gibbons; 21. Zeta functions, anomalies and stable branes Ian Moss; 22. Some reflections on the status of conventional quantum theory when applied to quantum gravity Chris Isham; 23. Quantum geometry and its ramifications Abhay Ashtekar; 24. Topology change in quantum gravity Fay Dowker; Part VI. M Theory and Beyond: 25. The past and future of string theory Edward Witten; 26. String theory David Gross; 27. A brief description of string theory Michael Green; 28. The story of M Paul Townsend; 29. Gauged supergravity and holographic field theory Nick Warner; 30. 57 varieties in a NUTshell Chris Pope; Part VII. de Sitter Space
NASA Astrophysics Data System (ADS)
Sidorin, Anatoly
2010-01-01
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
Constraining cosmological parameter with SN Ia
NASA Astrophysics Data System (ADS)
Indra Putri, A. N.; Wulandari, H. R. Tri
2016-11-01
A type I supemovae (SN Ia) is an exploding white dwarf, whose mass exceeds Chandrasekar limit (1.44 solar mass). If a white dwarf is in a binary system, it may accrete matter from the companion, resulting in an excess mass that cannot be balanced by the pressure of degenerated electrons in the core. SNe Ia are highly luminous objects, that they are visible from very high distances. After some corrections (stretch (s), colour (c), K-corrections, etc.), the variations in the light curves of SNe Ia can be suppressed to be no more than 10%. Their high luminosity and almost uniform intrinsic brightness at the peak light, i.e. MB ∼ -19, make SNe Ia ideal standard candle. Because of their visibility from large distances, SNe Ia can be employed as a cosmological measuring tool. It was analysis of SNe Ia data that indicated for the first time, that the universe is not only expanding, but also accelerating. This work analyzed a compilation of SNe Ia data to determine several cosmological parameters (H0, Ωm, Ωa, and w). It can be concluded from the analysis, that our universe is a flat, dark energy dominated universe, and that the cosmological constant A is a suitable candidate for dark energy.
Supernova tests of the timescape cosmology
NASA Astrophysics Data System (ADS)
Smale, Peter R.; Wiltshire, David L.
2011-05-01
The timescape cosmology has been proposed as a viable alternative to homogeneous cosmologies with dark energy. It realizes cosmic acceleration as an apparent effect that arises in calibrating average cosmological parameters in the presence of spatial curvature and gravitational energy gradients that grow large with the growth of inhomogeneities at late epochs. Recently Kwan, Francis and Lewis have claimed that the timescape model provides a relatively poor fit to the Union and Constitution supernovae compilations, as compared to the standard Λ cold dark matter (ΛCDM) model. We show this conclusion is a result of systematic issues in supernova light-curve fitting, and of failing to exclude data below the scale of statistical homogeneity, z≲ 0.033. Using all currently available supernova data sets (Gold07, Union, Constitution, MLCS17, MLCS31, SDSS-II, CSP, Union2), and making cuts at the statistical homogeneity scale, we show that data reduced by the SALT/SALT-II (Spectral Adaptive Light curve Template) fitters provide Bayesian evidence that favours the spatially flat ΛCDM model over the timescape model, whereas data reduced with MLCS2k2 fitters give Bayesian evidence which favours the timescape model over the ΛCDM model. We discuss the questions of extinction and reddening by dust, and of intrinsic colour variations in supernovae which do not correlate with the decay time, and the likely impact these systematics would have in a scenario consistent with the timescape model.
The Directedness of Time in Classical Cosmology
NASA Astrophysics Data System (ADS)
Bartels, Andreas; Wohlfarth, Daniel
2014-03-01
The aim of this paper is to show that a new understanding of fundamentality can be applied successfully in classical cosmology based on General Relativity. We are thereby able to achieve an account of cosmological time asymmetry as an intrinsic and fun-damental property of the universe. First, we consider Price's arguments against the fundamental status of time-asymmetry (Price (1996, 2002, 2011)). We show that these arguments have some force, but their force depends on understanding fundamentality as law-likeness. Second, we show that alternative approaches attempting to explain time directedness either by applying an anthropic strategy based on a multiverse approach, or by using the empirical fact of accelerated expansion of the universe, equally fail to provide a fundamental explanation of time directedness. In the third part, we present our own new concept of fundamentality based on properties of the solution space of fundamental laws. We demonstrate how this new concept of fundamentality is effective in understanding the cosmological asymmetry.
C-field cosmological models: revisited
NASA Astrophysics Data System (ADS)
Yadav, Anil Kumar; Tawfiq Ali, Ahmad; Ray, Saibal; Rahaman, Farook; Hossain Sardar, Iftikar
2016-12-01
We investigate plane symmetric spacetime filled with perfect fluid in the C-field cosmology of Hoyle and Narlikar. A new class of exact solutions has been obtained by considering the creation field C as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing C-field energy density. Several physical aspects and geometrical properties of the models are discussed in detail, especially showing that some of our solutions of C-field cosmology are free from singularity in contrast to the Big Bang cosmology. A comparative study has been carried out between two models, one singular and the other nonsingular, by contrasting the behaviour of the physical parameters. We note that the model in a unique way represents both the features of the accelerating as well as decelerating universe depending on the parameters and thus seems to provide glimpses of the oscillating or cyclic model of the universe without invoking any other agent or theory in allowing cyclicity.
Minimally coupled scalar field cosmology in anisotropic cosmological model
NASA Astrophysics Data System (ADS)
Singh, C. P.; Srivastava, Milan
2017-02-01
We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar fields with a zero rest mass and an exponential potential are studied, respectively. We find that both assumptions of potential along with the average scale factor as an exponential function of scalar field lead to the logarithmic form of scalar field in each case which further gives power-law form of the average scale factor. Using these forms of the average scale factor, exact solutions of the field equations are obtained to the metric functions which represent a power-law and a hybrid expansion, respectively. We find that the zero-rest-mass model expands with decelerated rate and behaves like a stiff matter. In the case of exponential potential function, the model decelerates, accelerates or shows the transition depending on the parameters. The isotropization is observed at late-time evolution of the Universe in the exponential potential model.
Constraining Cosmological Models with Different Observations
NASA Astrophysics Data System (ADS)
Wei, J. J.
2016-07-01
With the observations of Type Ia supernovae (SNe Ia), scientists discovered that the Universe is experiencing an accelerated expansion, and then revealed the existence of dark energy in 1998. Since the amazing discovery, cosmology has became a hot topic in the physical research field. Cosmology is a subject that strongly depends on the astronomical observations. Therefore, constraining different cosmological models with all kinds of observations is one of the most important research works in the modern cosmology. The goal of this thesis is to investigate cosmology using the latest observations. The observations include SNe Ia, Type Ic Super Luminous supernovae (SLSN Ic), Gamma-ray bursts (GRBs), angular diameter distance of galaxy cluster, strong gravitational lensing, and age measurements of old passive galaxies, etc. In Chapter 1, we briefly review the research background of cosmology, and introduce some cosmological models. Then we summarize the progress on cosmology from all kinds of observations in more details. In Chapter 2, we present the results of our studies on the supernova cosmology. The main difficulty with the use of SNe Ia as standard candles is that one must optimize three or four nuisance parameters characterizing SN luminosities simultaneously with the parameters of an expansion model of the Universe. We have confirmed that one should optimize all of the parameters by carrying out the method of maximum likelihood estimation in any situation where the parameters include an unknown intrinsic dispersion. The commonly used method, which estimates the dispersion by requiring the reduced χ^{2} to equal unity, does not take into account all possible variances among the parameters. We carry out such a comparison of the standard ΛCDM cosmology and the R_{h}=ct Universe using the SN Legacy Survey sample of 252 SN events, and show that each model fits its individually reduced data very well. Moreover, it is quite evident that SLSNe Ic may be useful
NASA Astrophysics Data System (ADS)
Bouchet, François R.
2015-08-01
Sketched out in 1992, selected by ESA in 1996, launched in 2009, Planck delivered a "definitive" map of the anisotropies of the Cosmic Microwave Background (CMB) as well as information on their polarisation. The CMB anisotropies, of rms ~100 microK in temperature, reveal the imprint of the primordial fluctuations which initiate the growth of the large scale structures of the Universe, as transformed by their evolution, in particular during the first 370 000 years. This evolution is governed by the Universe content at this early epoch. I will confront what temperature and polarisation anisotropies teach us, both in terms of content of the universe and of characteristics of the primordial fluctuations. I will also discuss the extent of the agreement of Planck cosmology with lower redshift cosmological probes like BAO, Weak Lensing or redshift space distortions. Submitted on behalf of the Planck Collaboration.
NASA Astrophysics Data System (ADS)
Kadota, Kenji; Stewart, Ewan D.
2003-07-01
We present a modular cosmology scenario where the difficulties encountered in conventional modular cosmology are solved in a self-consistent manner, with definite predictions to be tested by observation. Notably, the difficulty of the dilaton finding its way to a precarious weak coupling minimum is made irrelevant by having eternal modular inflation at the vacuum supersymmetry breaking scale after the dilaton is stabilised. Neither this eternal inflation nor the subsequent non-slow-roll modular inflation destabilise the dilaton from its precarious minimum due to the low energy scale of the inflation and consequent small back reaction on the dilaton potential. The observed flat CMB spectrum is obtained from fluctuations in the angular component of a modulus near a symmetric point, which are hugely magnified by the roll down of the modulus to Planckian values, allowing them to dominate the final curvature perturbation. We also give precise calculations of the spectral index and its running.
NASA Astrophysics Data System (ADS)
Merritt, David
2017-02-01
I argue that some important elements of the current cosmological model are 'conventionalist' in the sense defined by Karl Popper. These elements include dark matter and dark energy; both are auxiliary hypotheses that were invoked in response to observations that falsified the standard model as it existed at the time. The use of conventionalist stratagems in response to unexpected observations implies that the field of cosmology is in a state of 'degenerating problemshift' in the language of Imre Lakatos. I show that the 'concordance' argument, often put forward by cosmologists in support of the current paradigm, is weaker than the convergence arguments that were made in the past in support of the atomic theory of matter or the quantization of energy.
NASA Astrophysics Data System (ADS)
Hobson, Michael P.; Jaffe, Andrew H.; Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David
2009-12-01
Preface; Part I. Methods: 1. Foundations and algorithms John Skilling; 2. Simple applications of Bayesian methods D. S. Sivia and Steve Rawlings; 3. Parameter estimation using Monte Carlo sampling Antony Lewis and Sarah Bridle; 4. Model selection and multi-model interference Andrew R. Liddle, Pia Mukherjee and David Parkinson; 5. Bayesian experimental design and model selection forecasting Roberto Trotta, Martin Kunz, Pia Mukherjee and David Parkinson; 6. Signal separation in cosmology M. P. Hobson, M. A. J. Ashdown and V. Stolyarov; Part II. Applications: 7. Bayesian source extraction M. P. Hobson, Graça Rocha and R. Savage; 8. Flux measurement Daniel Mortlock; 9. Gravitational wave astronomy Neil Cornish; 10. Bayesian analysis of cosmic microwave background data Andrew H. Jaffe; 11. Bayesian multilevel modelling of cosmological populations Thomas J. Loredo and Martin A. Hendry; 12. A Bayesian approach to galaxy evolution studies Stefano Andreon; 13. Photometric redshift estimation: methods and applications Ofer Lahav, Filipe B. Abdalla and Manda Banerji; Index.
Gravitomagnetic amplification in cosmology
Tsagas, Christos G.
2010-02-15
Magnetic fields interact with gravitational waves in various ways. We consider the coupling between the Weyl and the Maxwell fields in cosmology and study the effects of the former on the latter. The approach is fully analytical and the results are gauge invariant. We show that the nature and the outcome of the gravitomagnetic interaction depends on the electric properties of the cosmic medium. When the conductivity is high, gravitational waves reduce the standard (adiabatic) decay rate of the B field, leading to its superadiabatic amplification. In poorly conductive environments, on the other hand, Weyl-curvature distortions can result into the resonant amplification of large-scale cosmological magnetic fields. Driven by the gravitational waves, these B fields oscillate with an amplitude that is found to diverge when the wavelengths of the two sources coincide. We present technical and physical aspects of the gravitomagnetic interaction and discuss its potential implications.
Bojowald, Martin
2015-02-01
In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity. De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting 'microscopic' degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.
NASA Astrophysics Data System (ADS)
Hobson, Michael P.; Jaffe, Andrew H.; Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David
2014-02-01
Preface; Part I. Methods: 1. Foundations and algorithms John Skilling; 2. Simple applications of Bayesian methods D. S. Sivia and Steve Rawlings; 3. Parameter estimation using Monte Carlo sampling Antony Lewis and Sarah Bridle; 4. Model selection and multi-model interference Andrew R. Liddle, Pia Mukherjee and David Parkinson; 5. Bayesian experimental design and model selection forecasting Roberto Trotta, Martin Kunz, Pia Mukherjee and David Parkinson; 6. Signal separation in cosmology M. P. Hobson, M. A. J. Ashdown and V. Stolyarov; Part II. Applications: 7. Bayesian source extraction M. P. Hobson, Graça Rocha and R. Savage; 8. Flux measurement Daniel Mortlock; 9. Gravitational wave astronomy Neil Cornish; 10. Bayesian analysis of cosmic microwave background data Andrew H. Jaffe; 11. Bayesian multilevel modelling of cosmological populations Thomas J. Loredo and Martin A. Hendry; 12. A Bayesian approach to galaxy evolution studies Stefano Andreon; 13. Photometric redshift estimation: methods and applications Ofer Lahav, Filipe B. Abdalla and Manda Banerji; Index.
Culture and children's cosmology.
Siegal, Michael; Butterworth, George; Newcombe, Peter A
2004-06-01
In this investigation, we examined children's knowledge of cosmology in relation to the shape of the earth and the day-night cycle. Using explicit questioning involving a choice of alternative answers and 3D models, we carried out a comparison of children aged 4-9 years living in Australia and England Though Australia and England have a close cultural affinity, there are differences in children's early exposure to cosmological concepts. Australian children who have early instruction in this domain were nearly always significantly in advance of their English counterparts. In general, they most often produced responses compatible with a conception of a round earth on which people can live all over without falling off. We consider coherence and fragmentation in children's knowledge in terms of the timing of culturally transmitted information, and in relation to questioning methods used in previous research that may have underestimated children's competence.
NASA Astrophysics Data System (ADS)
Tolish, Alexander; Wald, Robert M.
2016-08-01
The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of (1 +z ).
Cosmology with hypervelocity stars
Loeb, Abraham
2011-04-01
In the standard cosmological model, the merger remnant of the Milky Way and Andromeda (Milkomeda) will be the only galaxy remaining within our event horizon once the Universe has aged by another factor of ten, ∼ 10{sup 11} years after the Big Bang. After that time, the only extragalactic sources of light in the observable cosmic volume will be hypervelocity stars being ejected continuously from Milkomeda. Spectroscopic detection of the velocity-distance relation or the evolution in the Doppler shifts of these stars will allow a precise measurement of the vacuum mass density as well as the local matter distribution. Already in the near future, the next generation of large telescopes will allow photometric detection of individual stars out to the edge of the Local Group, and may target the ∼ 10{sup 5±1} hypervelocity stars that originated in it as cosmological tracers.
A transitionless lattice for the Fermilab Main Injector
Ng, K.Y.; Trbojevic, D. ); Lee, S.Y. . Dept. of Physics)
1991-05-01
Medium energy (1 to 30 GeV) accelerators are often confronted with transition crossing during acceleration. A lattice without transition is presented, which is a design for the Fermilab Main Injector. The main properties of this lattice are that the {gamma}{sub t} is an imaginary number, the maxima of the dispersion function are small, and two long-straight section with zero dispersion. 7 refs., 5 figs.
Brans-Dicke cosmology with time-dependent cosmological term
NASA Astrophysics Data System (ADS)
Berman, Marcelo Samuel
1990-12-01
Berman and Som's solution for a Brans-Dicke cosmology with time-dependent cosmological term, Robertson-Walker metric, perfect fluid, and perfect gas law of state solves the horizon, homogeneity, and isotropy problems without requiring any unnatural fine tuning in the very early universe, thus being an alternative model to inflation. The model also does not need recourse to quantum cosmology, and solves the flatness and magnetic monopole problems.
Topics in inflationary cosmologies
Mahajan, S.
1986-04-01
Several aspects of inflationary cosmologies are discussed. An introduction to the standard hot big bang cosmological model is reviewed, and some of the problems associated with it are presented. A short review of the proposals for solving the cosmological conundrums of the big bang model is presented. Old and the new inflationary scenarios are discussed and shown to be unacceptable. Some alternative scenarios especially those using supersymmetry are reviewed briefly. A study is given of inflationary models where the same set of fields that breaks supersymmetry is also responsible for inflation. In these models, the scale of supersymmetry breaking is related to the slope of the potential near the origin and can thus be kept low. It is found that a supersymmetry breaking scale of the order of the weak breaking scale. The cosmology obtained from the simplest of such models is discussed in detail and it is shown that there are no particular problems except a low reheating temperature and a violation of the thermal constraint. A possible solution to the thermal constraint problem is given by introducing a second field, and the role played by this second field in the scenario is discussed. An alternative mechanism for the generation of baryon number within the framework of supergravity inflationary models is studied using the gravitational couplings of the heavy fields with the hidden sector (the sector which breaks supersymmetry). This mechanism is applied to two specific models - one with and one without supersymmetry breaking. The baryon to entropy ratio is found to be dependent on parameters which are model dependent. Finally, the effect of direct coupling between the two sectors on results is related, 88 refs., 6 figs.
NASA Astrophysics Data System (ADS)
Jones, Alexander
The structure, composition, and long-term history of the cosmos were prominent topics in many ancient Greek philosophical systems. Philosophers and philosophically informed astronomers differed over whether the cosmos was finite or infinite, eternal or transient, and composed of discrete particles or continuous, homogeneous elements. The Aristotelian cosmology preferred by astronomers following Ptolemy assumed a finite, spherical shell of eternally unalterable matter enclosing a terrestrial globe composed of earth, water, air, and fire.
Cosmology, Clusters and Calorimeters
NASA Technical Reports Server (NTRS)
Figueroa-Feliciano, Enectali
2005-01-01
I will review the current state of Cosmology with Clusters and discuss the application of microcalorimeter arrays to this field. With the launch of Astro-E2 this summer and a slew of new missions being developed, microcalorimeters are the next big thing in x-ray astronomy. I will cover the basics and not-so-basic concepts of microcalorimeter designs and look at the future to see where this technology will go.
Statistical Methods in Cosmology
NASA Astrophysics Data System (ADS)
Verde, L.
2010-03-01
The advent of large data-set in cosmology has meant that in the past 10 or 20 years our knowledge and understanding of the Universe has changed not only quantitatively but also, and most importantly, qualitatively. Cosmologists rely on data where a host of useful information is enclosed, but is encoded in a non-trivial way. The challenges in extracting this information must be overcome to make the most of a large experimental effort. Even after having converged to a standard cosmological model (the LCDM model) we should keep in mind that this model is described by 10 or more physical parameters and if we want to study deviations from it, the number of parameters is even larger. Dealing with such a high dimensional parameter space and finding parameters constraints is a challenge on itself. Cosmologists want to be able to compare and combine different data sets both for testing for possible disagreements (which could indicate new physics) and for improving parameter determinations. Finally, cosmologists in many cases want to find out, before actually doing the experiment, how much one would be able to learn from it. For all these reasons, sophisiticated statistical techniques are being employed in cosmology, and it has become crucial to know some statistical background to understand recent literature in the field. I will introduce some statistical tools that any cosmologist should know about in order to be able to understand recently published results from the analysis of cosmological data sets. I will not present a complete and rigorous introduction to statistics as there are several good books which are reported in the references. The reader should refer to those.
NASA Astrophysics Data System (ADS)
Ryden, Barbara
2016-11-01
Preface to second edition; Preface to first edition; 1. Introduction; 2. Fundamental observations; 3. Newton versus Einstein; 4. Cosmic dynamics; 5. Model universes; 6. Measuring cosmological parameters; 7. Dark matter; 8. The cosmic microwave background; 9. Nucleosynthesis and the early Universe; 10. Inflation and the very early Universe; 11. Structure formation: gravitational instability; 12. Structure formation: baryons and photons; Epilogue; Bibliography; Table of useful constants; Index.
Quantum Vacuum Structure and Cosmology
Rafelski, Johann; Labun, Lance; Hadad, Yaron; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC
2011-12-05
Contemporary physics faces three great riddles that lie at the intersection of quantum theory, particle physics and cosmology. They are: (1) The expansion of the universe is accelerating - an extra factor of two appears in the size; (2) Zero-point fluctuations do not gravitate - a matter of 120 orders of magnitude; and (3) The 'True' quantum vacuum state does not gravitate. The latter two are explicitly problems related to the interpretation and the physical role and relation of the quantum vacuum with and in general relativity. Their resolution may require a major advance in our formulation and understanding of a common unified approach to quantum physics and gravity. To achieve this goal we must develop an experimental basis and much of the discussion we present is devoted to this task. In the following, we examine the observations and the theory contributing to the current framework comprising these riddles. We consider an interpretation of the first riddle within the context of the universe's quantum vacuum state, and propose an experimental concept to probe the vacuum state of the universe.
Cosmology in generalized Proca theories
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-06-01
We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable parameter spaces in which the no-ghost and stability conditions are satisfied during the cosmic expansion history.
Backreaction mechanism in multifluid and extended cosmologies
Jiménez, Jose Beltrán; Cruz-Dombriz, Álvaro de la; Dunsby, Peter K.S.; Sáez-Gómez, Diego E-mail: dombriz@fis.ucm.es E-mail: diego.saezgomez@uct.ac.za
2014-05-01
One possible explanation for the present observed acceleration of the Universe is the breakdown of homogeneity and isotropy due to the formation of non-linear structures. How inhomogeneities affect the averaged cosmological expansion rate and lead to late-time acceleration is generally considered to be due to some backreaction mechanism. In the recent literature most averaging calculations have focused their attention on General Relativity together with pressure-free matter. In this communication we focus our attention on more general scenarios, including imperfect fluids as well as alternative theories of gravity, and apply an averaging procedure to them in order to determine possible backreaction effects. For illustrative purposes, we present our results for dark energy models, quintessence and Brans-Dicke theories. We also provide a discussion about the limitations of frame choices in the averaging procedure.
Cosmological perturbations in antigravity
NASA Astrophysics Data System (ADS)
Oltean, Marius; Brandenberger, Robert
2014-10-01
We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.
NASA Astrophysics Data System (ADS)
Magueijo, João; Zlosnik, T. G.; Kibble, T. W. B.
2013-03-01
Using the chiral representation for spinors we present a particularly transparent way to generate the most general spinor dynamics in a theory where gravity is ruled by the Einstein-Cartan-Holst action. In such theories torsion need not vanish, but it can be reinterpreted as a four-fermion self-interaction within a torsion-free theory. The self-interaction may or may not break parity invariance, and may contribute positively or negatively to the energy density, depending on the couplings considered. We then examine cosmological models ruled by a spinorial field within this theory. We find that while there are cases for which no significant cosmological novelties emerge, the self-interaction can also turn a mass potential into an upside-down Mexican hat potential. Then, as a general rule, the model leads to cosmologies with a bounce, for which there is a maximal energy density, and where the cosmic singularity has been removed. These solutions are stable, and range from the very simple to the very complex.
NASA Astrophysics Data System (ADS)
Hoyle, Fred
The worrying situation at that time in cosmology, as it seemed, turned out to be a relatively minor matter, namely the choice of suitable coordinates. Even the best-known cosmologists - de Sitter, Eddington and Lemaitre - had chosen coordinates appropriate to localities in the universe rather than the whole. This produced a sense of mystery that was more apparent than real as to what happened at the boundary of a locality. It is one of the features of Einstein's general relativity that when you choose coordinate systems with special properties you can mistakenly come to think of the properties as physical instead of as mathematical artefacts. Early workers on gravitational waves thought they were investigating physical waves when in fact the waves were in their coordinate system, and a similar situation existed in cosmology. It was also in 1935-36 that this situation was put right, by H.P. Robertson in the United States and A.E. Walker in Britain and the resulting choice of coordinates later became known as the Robertson-Walker line element. Then in 1937 Robertson published an important article on cosmology in the Reviews of Modern Physics, which unfortunately I didn't read at that time because my research interests were in quantum mechanics and nuclear physics.
Ekpyrotic loop quantum cosmology
Wilson-Ewing, Edward
2013-08-01
We consider the ekpyrotic paradigm in the context of loop quantum cosmology. In loop quantum cosmology the classical big-bang singularity is resolved due to quantum gravity effects, and so the contracting ekpyrotic branch of the universe and its later expanding phase are connected by a smooth bounce. Thus, it is possible to explicitly determine the evolution of scalar perturbations, from the contracting ekpyrotic phase through the bounce and to the post-bounce expanding epoch. The possibilities of having either one or two scalar fields have been suggested for the ekpyrotic universe, and both cases will be considered here. In the case of a single scalar field, the constant mode of the curvature perturbations after the bounce is found to have a blue spectrum. On the other hand, for the two scalar field ekpyrotic model where scale-invariant entropy perturbations source additional terms in the curvature perturbations, the power spectrum in the post-bounce expanding cosmology is shown to be nearly scale-invariant and so agrees with observations.
NASA Astrophysics Data System (ADS)
Benoit-Lévy, Aurélien; Chardin, Gabriel
2014-05-01
We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.
Cosmology for high energy physicists
Albrecht, A.
1987-11-01
The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs.
Cosmological relativity: A special relativity for cosmology
NASA Astrophysics Data System (ADS)
Carmeli, M.
1995-07-01
Under the assumption that Hubble's constant H0 is constant in cosmic time, there is an analogy between the equation of propagation of light and that of expansion of the universe. Using this analogy, and assuming that the laws of physics are the same at all cosmic times, a new special relativity, a cosmological relativity, is developed. As a result, a transformation is obtained that relates physical quantities at different cosmic times. In a one-dimensional motion, the new transformation is given by 10701_2005_Article_BF02059524_TeX2GIFE1.gif x' = {x - Tv}/{(1 - T^2 /T_0^2 )^{{1 / 2}}v' = {v - xT/T_0^2 }/{(1 - T^2 /T_0^2 )^{{1 /2 }} where x and v are the coordinate and velocity, T is the cosmic time measured backward with respect to our present time T=0, tand T0 is Hubble's time. Some consequences of this transformation are given, and its applicability limitation is pointed out.
Can Accelerators Accelerate Learning?
NASA Astrophysics Data System (ADS)
Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.
2009-03-01
The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.
Inflation from supersymmetric quantum cosmology
Socorro, J.; D'Oleire, Marco
2010-08-15
We derive a special scalar field potential using the anisotropic Bianchi type I cosmological model from canonical quantum cosmology under determined conditions in the evolution to anisotropic variables {beta}{sub {+-}}. In the process, we obtain a family of potentials that has been introduced by hand in the literature to explain cosmological data. Considering supersymmetric quantum cosmology, this family is scanned, fixing the exponential potential as more viable in the inflation scenario V({phi})=V{sub 0}e{sup -{radical}(3){phi}}.
Philosophical aspects of modern cosmology
NASA Astrophysics Data System (ADS)
Zinkernagel, Henrik
2014-05-01
Cosmology is the attempt to understand in scientific terms the structure and evolution of the universe as a whole. This ambition has been with us since the ancient Greeks, even if the developments in modern cosmology have provided a picture of the universe dramatically different from that of Pythagoras, Plato and Aristotle. The cosmological thinking of these figures, e.g. the belief in uniform circular motion of the heavens, was closely related to their philosophical ideas, and it shaped the field of cosmology at least up to the times of Copernicus and Kepler.
Cosmological and astrophysical constraints on tachyon dark energy models
NASA Astrophysics Data System (ADS)
Martins, C. J. A. P.; Moucherek, F. M. O.
2016-06-01
Rolling tachyon field models are among the candidates suggested as explanations for the recent acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to variations of the fine-structure constant α . Here we take advantage of recent observational progress and use a combination of background cosmological observations of type Ia supernovas and astrophysical and local measurements of α to improve constraints on this class of models. We show that the constraints on α imply that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy equation of state (1 +w0)<2.4 ×10-7 at the 99.7% confidence level. Therefore current and forthcoming standard background cosmology observational probes cannot distinguish this class of models from a cosmological constant, while detections of α variations could possibly do so since they would have a characteristic redshift dependence.
Singular cosmological evolution using canonical and ghost scalar fields
Nojiri, Shin'ichi; Odintsov, S.D.; Oikonomou, V.K.; Saridakis, Emmanuel N. E-mail: odintsov@ieec.uab.es E-mail: Emmanuel_Saridakis@baylor.edu
2015-09-01
We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of a Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.
Dynamics of anisotropic power-law f( R) cosmology
NASA Astrophysics Data System (ADS)
Shamir, M. F.
2016-12-01
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f( R) theory has been investigated extensively due to important f( R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f( R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f( R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f( R) gravity supports the crucial issue of accelerated expansion of the universe.
Teng, L.C.
1960-01-19
ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.
FFAG lattice without opposite bends
NASA Astrophysics Data System (ADS)
Trbojevic, Dejan; Courant, Ernest D.; Garren, Al
2000-08-01
A future "neutrino factory" or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).
Tracking the SSC test lattices
Leemann, B.T.; Douglas, D.R.; Forest, E.
1985-10-01
The dynamic aperture and its determination emerged from the SSC reference design study as the single most important accelerator physics issue pertinent to the SSC. Beside the fundamental need of a finite dynamic aperture for any accelerator, it was considered to be a useful criterion for the magnet selection. An aperture workshop organized in November 1984 at LBL served the purpose to identify the various aspects of the aperture question and to organize the aperture task force accordingly. It was recognized that numerical models had to play an important role and the qualifications of several tracking codes were investigated. None of the existing codes could meet all of the criteria for an ideal tracking code and substantial program development became unavoidable. It was therefore decided to begin tracking SSC test lattices.
Palmer, R.B.
1987-05-01
This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.
Precision cosmological parameter estimation
NASA Astrophysics Data System (ADS)
Fendt, William Ashton, Jr.
2009-09-01
Experimental efforts of the last few decades have brought. a golden age to mankind's endeavor to understand tine physical properties of the Universe throughout its history. Recent measurements of the cosmic microwave background (CMB) provide strong confirmation of the standard big bang paradigm, as well as introducing new mysteries, to unexplained by current physical models. In the following decades. even more ambitious scientific endeavours will begin to shed light on the new physics by looking at the detailed structure of the Universe both at very early and recent times. Modern data has allowed us to begins to test inflationary models of the early Universe, and the near future will bring higher precision data and much stronger tests. Cracking the codes hidden in these cosmological observables is a difficult and computationally intensive problem. The challenges will continue to increase as future experiments bring larger and more precise data sets. Because of the complexity of the problem, we are forced to use approximate techniques and make simplifying assumptions to ease the computational workload. While this has been reasonably sufficient until now, hints of the limitations of our techniques have begun to come to light. For example, the likelihood approximation used for analysis of CMB data from the Wilkinson Microwave Anistropy Probe (WMAP) satellite was shown to have short falls, leading to pre-emptive conclusions drawn about current cosmological theories. Also it can he shown that an approximate method used by all current analysis codes to describe the recombination history of the Universe will not be sufficiently accurate for future experiments. With a new CMB satellite scheduled for launch in the coming months, it is vital that we develop techniques to improve the analysis of cosmological data. This work develops a novel technique of both avoiding the use of approximate computational codes as well as allowing the application of new, more precise analysis
Gravitation and modern cosmology - The cosmological constant problem
NASA Astrophysics Data System (ADS)
Zichichi, Antonino; de Sabbata, Venzo; Sanchez, Norma
An updated version of different approaches to the cosmological constant problem discussed at a symposium in honor of Peter Gabriel Bergmann's 75th birthday, that took place in Erice on 17-20 September 1990, is presented. Topics addressed include an effective action model for the cosmological constant revisited; torsion, quantum effects, and the problem of cosmological constant; variations of constants and exact solutions in multidimensional gravity; null surface canonical formalism; qualitative cosmology; and the gravitational field of an arbitrary axisymmetric mass with a magnetic dipole moment. Attention is also given to a simple model of the universe without singularities; string theory and quantization of gravity; and velocity of propagation of gravitational radiation, mass of the gravitation, range of the gravitational force, and the cosmological constant.
Bojowald, Martin
2005-01-01
Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.
Bojowald, Martin
2008-01-01
Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.
Cosmology with a stiff matter era
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2015-11-01
bouncing like in loop quantum cosmology. At t =0 , the scale factor is finite and the energy density is equal to zero. The universe first has a phantom behavior where the energy density increases with the scale factor, then a normal behavior where the energy density decreases with the scale factor. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the Universe asymptotically reaches a de Sitter regime where the scale factor increases exponentially rapidly with time. This can account for the accelerating expansion of the Universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the Universe is cyclic. Therefore, depending on the sign of the internal energy of the dark fluid and on the sign of the cosmological constant, we obtain analytical solutions of the Friedmann equations describing singular and nonsingular expanding, bouncing, or cyclic universes.
Cosmology with the WFIRST High Latitude Survey
NASA Astrophysics Data System (ADS)
Dore, Olivier
Cosmic acceleration is the most surprising cosmological discovery in many decades. Testing and distinguishing among possible explanations requires cosmological measurements of extremely high precision that probe the full history of cosmic expansion and structure growth. The WFIRST-AFTA mission, as described in the Science Definition Team (SDT) reports (Spergel 2013, 2015), has the ability to improve these measurements by 1-2 orders of magnitude compared to the current state of the art, while simultaneously extending their redshift grasp, greatly improving control of systematic effects, and taking a unified approach to multiple probes that provide complementary physical information and cross-checks of cosmological results. We have assembled a team with the expertise and commitment needed to address the stringent challenges of the WFIRST dark energy program through the Project's formulation phase. After careful consideration, we have elected to address investigations A (Galaxy Redshift Survey) and C (Weak Lensing and Cluster Growth) of the WFIRST SIT NRA with a unified team, because the two investigations are tightly linked at both the technical level and the theoretical modeling level. The imaging and spectroscopic elements of the High Latitude Survey (HLS) will be realized as an integrated observing program, and they jointly impose requirements on instrument and telescope performance, operations, and data transfer. The methods for simulating and interpreting weak lensing and galaxy clustering observations largely overlap, and many members of our team have expertise in both areas. The team PI, Olivier Dore, is a cosmologist with a broad expertise in cosmic microwave background and large scale structures. Yun Wang and Chris Hirata will serve as Lead Co-Investigators for topics A and C, respectively. Many members of our team have been involved with the design and requirements of a dark energy space mission for a decade or more, including the Co-Chair and three
NASA Astrophysics Data System (ADS)
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-04-01
Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.
DOE R&D Accomplishments Database
Wilczek, Frank; Turner, Michael S.
1990-09-01
If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.
Supersymmetric quantum cosmology
Macias, Alfredo; Camacho, Abel
2009-05-01
We address the canonical quantization in the framework of N = 1 simple supergravity for the case of Gowdy T{sup 3} cosmological models. It will be proved that there exist physical states in the minisuperspace sector of the theory. Our result will be confronted against the so-called no-physical states conjecture and in this way it will be proved that this conjecture is based upon an assumption involving the constraint equations and initial-value hypersurface which, in general, is not valid.
NASA Astrophysics Data System (ADS)
Gill, Stuart P. D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.
2003-04-01
An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological "market" today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.
Cosmological special relativity
NASA Astrophysics Data System (ADS)
Carmeli, M.
1996-03-01
Recently we presented a new special relativity theory for cosmology in which it was assumed that gravitation can be neglected and thus the bubble constant can be taken as a constant. The theory was presented in a six-dimensional hvperspace. three for the ordinary space and three for the velocities. In this paper we reduce our hyperspace to four dimensions by assuming that the three-dimensional space expands only radially, thus one is left with the three dimensions of ordinary space and one dimension of the radial velocity.
Anisotropic spinfoam cosmology
NASA Astrophysics Data System (ADS)
Rennert, Julian; Sloan, David
2014-01-01
The dynamics of a homogeneous, anisotropic universe are investigated within the context of spinfoam cosmology. Transition amplitudes are calculated for a graph consisting of a single node and three links—the ‘Daisy graph’—probing the behaviour a classical Bianchi I spacetime. It is shown further how the use of such single node graphs gives rise to a simplification of states such that all orders in the spin expansion can be calculated, indicating that it is the vertex expansion that contains information about quantum dynamics.
Cosmology of bifundamental fields
Vachaspati, Tanmay
2009-01-15
If a field theory contains gauged, non-Abelian, bifundamental fields, i.e. fields that are charged under two separate non-Abelian gauge groups, the transition from a deconfined phase to a hadronic phase may be frustrated. Similar frustration may occur in non-Abelian gauge models containing matter only in higher dimensional representations, e.g. models with pure glue, or if ordinary quarks are confined by two flux tubes, as implied in the triangular configuration of baryons within QCD. In a cosmological setting, such models can lead to the formation of a web of confining electric flux tubes that can potentially have observational signatures.
NASA Technical Reports Server (NTRS)
Gregory, Ruth
1988-01-01
The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.
Galileons on cosmological backgrounds
Goon, Garrett; Hinterbichler, Kurt; Trodden, Mark E-mail: kurthi@physics.upenn.edu
2011-12-01
We construct four-dimensional effective field theories of a generalized DBI galileon field, the dynamics of which naturally take place on a Friedmann-Robertson-Walker spacetime. The theories are invariant under non-linear symmetry transformations, which can be thought of as being inherited from five-dimensional bulk Killing symmetries via the probe brane technique through which they are constructed. The resulting model provides a framework in which to explore the cosmological role that galileons may play as the universe evolves.
Stochastic processes in cosmology
NASA Astrophysics Data System (ADS)
Cáceres, Manuel O.; Diaz, Mario C.; Pullin, Jorge A.
1987-08-01
The behavior of a radiation filled de Sitter universe in which the equation of state is perturbed by a stochastic term is studied. The corresponding two-dimensional Fokker-Planck equation is solved. The finiteness of the cosmological constant appears to be a necessary condition for the stability of the model which undergoes an exponentially expanding state. Present address: Facultad de Matemática Astronomía y Física, Universidad Nacional de Córdoba, Laprida 854, 5000 Códoba, Argentina.
NASA Astrophysics Data System (ADS)
Rasanen, Syksy
The thesis consists of three research papers and an introduction which provides background and also contains some new observations not included in the papers. In the thesis I consider certain questions in the new field of brane cosmology. The basic idea of brane cosmology is that the visible universe is a four- dimensional slice in higher-dimensional spacetime. I give a self-contained introduction to the field, starting from the Randall-Sundrum model and proceeding to the general case of brane gravity and cosmology in the case of one extra dimension. I emphasise the main result of studies of brane gravity: it is possible to obtain approximately four-dimensional gravity independent of the size of the extra dimension, in contrast to set-ups where the observers are not localised in the extra dimension. I proceed to examine a new and promising brave cosmology set-up, the ekpyrotic scenario, in detail. The ekpyrotic scenario aims to be a comprehensive model of the primordial universe and has been presented as an alternative to the prominent scenarios, inflation and pre-big bang. I give an overview of these three scenarios of the primordial universe. I then present the starting point of the ekpyrotic scenario and the construction of the four-dimensional effective theory. After briefly discussing the internal problems of the four-dimensional effective theory, I proceed to the far more serious problems of the four- dimensional construction itself. I conclude that the four-dimensional effective theory does not give a correct description even at a qualitative level. I then discuss some problems faced by the five-dimensional approach, and comment on the spin-off known as the “cyclic model of the universe”. I conclude that the ekpyrotic scenario is a welcome new idea but that most work done thus far is not solid. Careful analysis in the five-dimensional setting is needed to promote the scenario from an interesting concept to a working model with testable predictions.
Non-minimal derivative coupling gravity in cosmology
NASA Astrophysics Data System (ADS)
Gumjudpai, Burin; Rangdee, Phongsaphat
2015-11-01
We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + H_0) dataset, the PLANCK + WP dataset, and the PLANCK TT, TE, EE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the Λ CDM model, since at late times the NMDC effect is tiny due to small curvature.
Rolling Tachyon in Nonlocal Cosmology
Joukovskaya, L.
2007-11-20
Nonlocal cosmological models derived from String Field Theory are considered. A new method for constructing rolling tachyon solutions in the FRW metric in two field configuration is proposed and solutions of the Friedman equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed.
More problems for Newtonian cosmology
NASA Astrophysics Data System (ADS)
Wallace, David
2017-02-01
I point out a radical indeterminism in potential-based formulations of Newtonian gravity once we drop the condition that the potential vanishes at infinity (as is necessary, and indeed celebrated, in cosmological applications). This indeterminism, which is well known in theoretical cosmology but has received little attention in foundational discussions, can be removed only by specifying boundary conditions at all instants of time, which undermines the theory's claim to be fully cosmological, i.e., to apply to the Universe as a whole. A recent alternative formulation of Newtonian gravity due to Saunders (Philosophy of Science 80 (2013) pp. 22-48) provides a conceptually satisfactory cosmology but fails to reproduce the Newtonian limit of general relativity in homogenous but anisotropic universes. I conclude that Newtonian gravity lacks a fully satisfactory cosmological formulation.
Higher dimensional loop quantum cosmology
NASA Astrophysics Data System (ADS)
Zhang, Xiangdong
2016-07-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.
Lee, Y.Y.; Barton, D.S.; Claus, J.; Cottingham, J.G.; Courant, E.D.; Danby, G.T.; Dell, G.F.; Forsyth, E.B.; Gupta, R.C.; Kats, J.
1987-01-01
The AGS Booster has three objectives. They are to increase the space charge limit of the AGS, to increase the intensity of the polarized proton beam by accumulating many linac pulses (since the intensity is limited by the polarized ion source), and to reaccelerate heavy ions from the BNL Tandem Van de Graaff before injection into the AGS. The machine is capable of accelerating protons at 7.5 Hertz from 200 MeV to 1.5 GeV or to lower final energies at faster repetition rates. The machine will also be able to accelerate heavy ions from as low as 1 MeV/nucleon to a magnetic rigidity as high as 17.6 Tesla-meters with a one second repetition rate. As an accumulator for polarized protons, the Booster should be able to store the protons at 200 MeV for several seconds. We expect that the Booster will increase the AGS proton intensity by a factor of four, polarized proton intensity by a factor of twenty to thirty, and will also enable the AGS to accelerate all species of heavy ions (at present the AGS heavy ion program is limited to the elements lighter than sulfur because it can only accelerate fully stripped ions). The construction project started in FY 1985 and is expected to be completed in 1989. The purpose of this paper is to provide a future reference for the AGS Booster lattice.
The standard cosmological model
NASA Astrophysics Data System (ADS)
Scott, D.
2006-06-01
The Standard Model of Particle Physics (SMPP) is an enormously successful description of high-energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire three-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realization of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas that might explain the values of its parameters. Although it is natural to see analogies between the two Standard Models, some intrinsic differences also exist, which are discussed here. Nevertheless, a truly fundamental theory will have to explain both the SMPP and SMC, and this must include an appreciation of which elements are deterministic and which are accidental. Considering different levels of stochasticity within cosmology may make it easier to accept that physical parameters in general might have a nondeterministic aspect.
Aspects of cosmological relativity.
NASA Astrophysics Data System (ADS)
Carmeli, M.
1999-07-01
The author reviews cosmological relativity, a new special theory of relativity that was recently developed for cosmology, and discusses in detail some of its aspects. He recalls that in this theory it is assumed that gravitation is negligible. Under this assumption, the receding velocities of galaxies and the distances between them in the Hubble expansion are united into a four-dimensional pseudo-Euclidean manifold, similarly to space and time in ordinary special relativity. The Hubble law is assumed and is written in an invariant way that enables one to derive a four-dimensional transformation which is similar to the Lorentz transformation. The parameter in the new transformation is the ratio between the cosmic time to the Hubble time. Accordingly, the new transformation relates physical quantities at different cosmic times in the limit of weak or negligible gravitation. The transformation is then applied to the problem of the expansion of the universe at the very early stage when gravity was negligible and thus the transformation is applicable. New applications of the theory are presented. The author shows that there is no need to assume the existence of galaxy dark matter; the Tully-Fisher law is derived from the theory. A completely new picture of the expanding universe is thus obtained and compared to the FRW one.
Cosmology with matter diffusion
Calogero, Simone; Velten, Hermano E-mail: velten@cce.ufes.br
2013-11-01
We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field φ which we identify with the dark energy component of the universe. The model is characterized by only one new degree of freedom, the diffusion parameter σ. The standard ΛCDM model can be recovered by setting σ = 0. If diffusion takes place (σ > 0) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the universe may serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integrated Sachs-Wolfe signal, and on the matter power spectrum P(k). The latter analysis places strong constraints on the magnitude of the diffusion mechanism but does not rule out the model.
Peculiar cosmological velocities
Lewis, C.M.
1990-01-01
In the first section a gauge-invariant, variations formalism for investigating vector perturbations is set up, suitable for showing that there is no natural way that the usual scalar inflation field could give rise to vorticities. In the last two sections, a vector field A{sub {mu}} is coupled to the Einstein equations with a linearly perturbed Friedmann-Robertson-Walker (FRW) metric, constructed to generate first order vector perturbations. A working classical chaotic vector inflation is demonstrated and then quantum fluctuations of the field are used to constrain the cosmological perturbations. In particular, the vector momentum flux, T{sub 0i}, is tracked to the epoch where a radiation-dominated matter exists. Matching conditions using observational constraints of the cosmic microwave background radiation (CMBR) gives rise to a peculiar cosmological velocity of the order of 10{sup {minus}100}c. Amplification of this number, e.g., by breaking the conformal invariance of the field, could be used to generate cosmic magnetic fields using a dynamo mechanism.
Investigations in theoretical cosmology
NASA Astrophysics Data System (ADS)
Barnard, Michael James
This report is a compilation of research I have done in the field of cosmology while at the University of California, Davis. The topics are all closely linked to the physics of scalar fields in General Relativity. This thesis contains the text of two papers, both of which deal with the goals and motivations of future projects in observational cosmology. The first is an evaluation of the effect of future observations on constraints on the parameter space of the Albrecht- Skordis model of dark energy. These future data sets were found to be able of constraining the scalar field model parameters in ways consistent with the constraints on the phenomenological equation of state parameters used by the Dark Energy Task Force. The second paper used principle component analysis of the equation of state parameter on simulated future data sets to construct parameter spaces. Distributions of dark energy quintessence models were then projected into these parameter spaces; it was found that there is structure in the separation of these models that is marginally detectable by so called "Stage 4" experiments. Also included are a review of the derivation of the scale invariant primordial power spectrum and an evaluation of a model of open inflation as the cause of the low CMB quadrupole.
Particle physics and cosmology
Kolb, E.W.
1986-10-01
This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.
NASA Astrophysics Data System (ADS)
Mahootian, F.
2009-12-01
The rapid convergence of advancing sensor technology, computational power, and knowledge discovery techniques over the past decade has brought unprecedented volumes of astronomical data together with unprecedented capabilities of data assimilation and analysis. A key result is that a new, data-driven "observational-inductive'' framework for scientific inquiry is taking shape and proving viable. The anticipated rise in data flow and processing power will have profound effects, e.g., confirmations and disconfirmations of existing theoretical claims both for and against the big bang model. But beyond enabling new discoveries can new data-driven frameworks of scientific inquiry reshape the epistemic ideals of science? The history of physics offers a comparison. The Bohr-Einstein debate over the "completeness'' of quantum mechanics centered on a question of ideals: what counts as science? We briefly examine lessons from that episode and pose questions about their applicability to cosmology. If the history of 20th century physics is any indication, the abandonment of absolutes (e.g., space, time, simultaneity, continuity, determinacy) can produce fundamental changes in understanding. The classical ideal of science, operative in both physics and cosmology, descends from the European Enlightenment. This ideal has for over 200 years guided science to seek the ultimate order of nature, to pursue the absolute theory, the "theory of everything.'' But now that we have new models of scientific inquiry powered by new technologies and driven more by data than by theory, it is time, finally, to relinquish dreams of a "final'' theory.
Dark Energy and Dark Matter as Components of Cosmological Term Stand for Vorticity and Shear
NASA Astrophysics Data System (ADS)
Nurgaliev, Ildus S.
2015-01-01
This report brings attention to the ignored components of the kinetic energy related to vorticity and shear in the standard cosmological dynamics. It is concluded that averaged term of squared vorticity is term attributed as an accelerated expansion caused by negative energy of an enigmatic repulsive factor. Cosmological singularity has been a consequence of the unrealistically excessive cosmological principle (too detailed symmetry of flow) such as "Hubble law". Appropriate realistic one is suggested, which is also linear function of space coordinates (because of homogeneity principle) but has tensor character. Cosmological principle is applied to irregularities - they are homogeneous and isotropic in average to some extend within the corresponding Megagalactic scales. The "Big Bang" is nothing but the local bounce of the Meta-galaxy which is typical among myriads others. Exact solutions are presented (dynamic, steady and static) of the cosmologic dynamics. "Negative radiation" equation of state p =∈/3 with p≤0, ∈≤0 is generated by vorticity which is dynamic carrier of the dark energy. This fact dismisses the need in any other artificial cosmologic term, the need in any other modifications of the gravity theory or in an exotic matter as a cause for cosmological accelerated expansion. New conception of material point established. Social and educational aspects of the findings touched slightly.
NASA Astrophysics Data System (ADS)
Chaubey, R.; Shukla, A. K.; Raushan, Rakesh
2017-04-01
The general class of Bianchi cosmological models with dark energy in the form of modified Chaplygin gas with variable Λ and G and bulk viscosity have been considered. We discuss three types of average scale factor by using a special law for deceleration parameter which is linear in time with negative slope. The exact solutions to the corresponding field equations are obtained. We obtain the solution of bulk viscosity ( ξ), cosmological constant (Λ), gravitational parameter ( G) and deceleration parameter ( q) for different equations of state. The model describes an accelerating Universe for large value of time t, wherein the effective negative pressure induced by Chaplygin gas and bulk viscous pressure are driving the acceleration.
Weightless bubble lattices: A case of froth wicking
NASA Technical Reports Server (NTRS)
Noever, David A.; Cronise, Raymond J.
1994-01-01
In the absence of gravity drainage, froth wicking draws excess fluid onto a bubble lattice. Capillary forces only cause fluid transport; a moving front moves stably and without fluid fingering along a constant velocity bubble-fluid contact line. This percolation of fluid crawling up the lattice shows fluid coverage on lattice borders varies linearly with available surface area (proportional to lattice perimeter) and fluid accelerates through regions or nests of high bubble density (number of bubbles/sq cm). The development of nearly two-dimensional bubble lattices in variable gravity (step function between 0.01 and 1.8 times earthly gravity) are examined experimentally and a zeroth-order model for froth wetting is presented, which captures many of the principal observations. Possible applications for bubble lattices include adhesion casting of metals and separation of biological cells, bacteria, and particles.
Anisotropic cosmological solutions in massive vector theories
NASA Astrophysics Data System (ADS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-11-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/H decreases with the decrease of v. As long as the conditions |Σ| ll H and v2 ll phi2 are satisfied around the onset of late-time cosmic acceleration, where phi is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state wDE in the radiation era is different from that in the isotropic case, but the approach to the isotropic value wDE(iso) typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.
Quantum Cosmology of f( R, T) gravity
NASA Astrophysics Data System (ADS)
Xu, Min-Xing; Harko, Tiberiu; Liang, Shi-Dong
2016-08-01
Modified gravity theories have the potential of explaining the recent acceleration of the Universe without resorting to the mysterious concept of dark energy. In particular, it has been pointed out that matter-geometry coupling may be responsible for the recent cosmological dynamics of the Universe, and matter itself may play a more fundamental role in the description of the gravitational processes that usually assumed. In the present paper we study the quantum cosmology of the f( R, T) theory of gravity, in which the effective Lagrangian of the gravitational field is given by an arbitrary function of the Ricci scalar, and the trace of the matter energy-momentum tensor, respectively. For the background geometry we adopt the Friedmann-Robertson-Walker metric, and we assume that matter content of the Universe consists of a perfect fluid. In this framework we obtain the general form of the gravitational Hamiltonian, of the quantum potential, and of the canonical momenta, respectively. This allows us to formulate the full Wheeler-de Witt equation describing the quantum properties of this modified gravity model. As a specific application we consider in detail the quantum cosmology of the f(R,T)=F^0(R)+θ RT model, in which F^0(R) is an arbitrary function of the Ricci scalar, and θ is a function of the scale factor only. The Hamiltonian form of the equations of motion, and the Wheeler-de Witt equations are obtained, and a time parameter for the corresponding dynamical system is identified, which allows one to formulate the Schrödinger-Wheeler-de Witt equation for the quantum-mechanical description of the model under consideration. A perturbative approach for the study of this equation is developed, and the energy levels of the Universe are obtained by using a twofold degenerate perturbation approach. A second quantization approach for the description of quantum time is also proposed and briefly discussed.
NASA Astrophysics Data System (ADS)
Davydov, E. A.
2012-06-01
Vector fields can arise in the cosmological context in different ways, and we discuss both abelian and nonabelian sector. In the abelian sector vector fields of the geometrical origin (from dimensional reduction and Einstein-Eddington modification of gravity) can provide a very non-trivial dynamics, which can be expressed in terms of the effective dilaton-scalar gravity with the specific potential. In the non-abelian sector we investigate the Yang-Mills SU(2) theory which admits isotropic and homogeneous configuration. Provided the non-linear dependence of the lagrangian on the invariant FμνF~μν, one can obtain the inflationary regime with the exponential growth of the scale factor. The effective amplitudes of the `electric' and `magnetic' components behave like slowly varying scalars at this regime, what allows the consideration of some realistic models with non-linear terms in the Yang-Mills lagrangian.
Cosmological structure formation
NASA Technical Reports Server (NTRS)
Schramm, David N.
1991-01-01
A summary of the current forefront problem of physical cosmology, the formation of structures (galaxies, clusters, great walls, etc.) in the universe is presented. Solutions require two key ingredients: (1) matter; and (2) seeds. Regarding the matter, it now seems clear that both baryonic and non-baryonic matter are required. Whether the non-baryonic matter is hot or cold depends on the choice of seeds. Regarding the seeds, both density fluctuations and topological defects are discussed. The combination of isotropy of the microwave background and the recent observations indicating more power on large scales have severly constrained, if not eliminated, Gaussian fluctuations with equal power on all scales, regardless of the eventual resolution of both the matter and seed questions. It is important to note that all current structure formation ideas require new physics beyond SU(3) x SU(2) x U(1).
NASA Astrophysics Data System (ADS)
Kunze, Kerstin E.
2013-12-01
Magnetic fields are observed on nearly all scales in the Universe, from stars and galaxies up to galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early Universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early Universe and might therefore be able to tell us whether cosmic magnetic fields are of a primordial cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large-scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.
Cosmological disformal invariance
Domènech, Guillem; Sasaki, Misao; Naruko, Atsushi E-mail: naruko@th.phys.titech.ac.jp
2015-10-01
The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a disformal transformation is made.
Supersymmetric classical cosmology
Escamilla-Rivera, Celia; Obregón, Octavio; Ureña-López, L. Arturo E-mail: octavio@fisica.ugto.mx
2010-12-01
In this work a supersymmetric cosmological model is analyzed in which we consider a general superfield action of a homogeneous scalar field supermultiplet interacting with the scale factor in a supersymmetric FRW model. There appear fermionic superpartners associated with both the scale factor and the scalar field, and classical equations of motion are obtained from the super-Wheeler-DeWitt equation through the usual WKB method. The resulting supersymmetric Einstein-Klein-Gordon equations contain extra radiation and stiff matter terms, and we study their solutions in flat space for different scalar field potentials. The solutions are compared to the standard case, in particular those corresponding to the exponential potential, and their implications for the dynamics of the early Universe are discussed in turn.
A presocratic cosmological proposal
NASA Astrophysics Data System (ADS)
Danezis, E.; Theodossiou, E.; Stathopoulou, M.; Grammenos, Th.
1999-12-01
Alcman is known as one of the greatest lyric poets of the ancient world. However, the publication of the Oxyrhynchus papyrus No. 2390 in 1957 caused a great deal of excitement. This papyrus, from the second century AD, contains parts of a comment written in prose, which implies that in one of his poems Alcman deals with a kind of a god-created cosmogony. That cosmogonical view, formulated by Alcman in the middle of the seventh century BC, describes much older considerations that resemble certain modern cosmological conjectures. In terms of the latter, the observable universe emerged out of a point singularity interior to a white hole which, due to the time symmetry of Einstein's field equations, can be considered as a time-reversed black hole.
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Montobbio, Michele; Nardelli, Giuseppe
2007-12-01
An analytic approach to phenomenological models inspired by cubic string field theory is introduced and applied to some examples. We study a class of actions for a minimally coupled, homogeneous scalar field whose energy density contains infinitely many time derivatives. These nonlocal systems are systematically localized and an algorithm to find cosmological solutions of the dynamical equations is provided. Our formalism is able to define the nonlocal field in regions of the parameter space which are inaccessible by standard methods. Also, problems related to nonlocality are reinterpreted under a novel perspective and naturally overcome. We consider phenomenological models living on a Friedmann-Robertson-Walker background with power-law scale factor, both in four dimensions and on a high-energy braneworld. The quest for solutions unravels general features of nonlocal dynamics indicating several future directions of investigation.
Cosmological and supernova neutrinos
Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.
2014-06-24
The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.
Cosmological and supernova neutrinos
NASA Astrophysics Data System (ADS)
Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.
2014-06-01
The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.
Initial conditions and quantum cosmology
NASA Technical Reports Server (NTRS)
Hartle, James B.
1987-01-01
A theory of initial conditions is necessary for a complete explanation of the presently observed large scale structural features of the universe, and a quantum theory of cosmology is probably needed for its formulation. The kinematics of quantum cosmology are reviewed, and some candidates for a law of initial conditions are discussed. The proposal that the quantum state of a closed universe is the natural analog of the ground state for closed cosmologies and is specified by a Euclidean sum over histories is sketched. When implemented in simple models, this proposal is consistent with the most important large-scale observations.
Ψ-epistemic quantum cosmology?
NASA Astrophysics Data System (ADS)
Evans, Peter W.; Gryb, Sean; Thébault, Karim P. Y.
2016-11-01
This paper provides a prospectus for a new way of thinking about the wavefunction of the universe: a Ψ-epistemic quantum cosmology. We present a proposal that, if successfully implemented, would resolve the cosmological measurement problem and simultaneously allow us to think sensibly about probability and evolution in quantum cosmology. Our analysis draws upon recent work on the problem of time in quantum gravity and causally symmetric local hidden variable theories. Our conclusion weighs the strengths and weaknesses of the approach and points towards paths for future development.
Cosmology and the weak interaction
Schramm, D.N. ):)
1989-12-01
The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.
Bianchi Type V Cosmological Models with Varying Cosmological Term
NASA Astrophysics Data System (ADS)
Tiwari, R. K.; Singh, Rameshwar
2015-05-01
We have analyzed a new class of spatially homogeneous and anisotropic Bianchi type-V cosmological models with perfect fluid distribution in presence of time varying cosmological and gravitational constants in the framework of general relativity. Exact solutions of Einstein's field equations are obtained for two types of cosmologies viz. m ≠ 3 and m = 3 respectively. We propose an alternate variation law in which the anisotropy ( σ/ 𝜃) per unit expansion scalar ( 𝜃) is proportional to a function of scale factor R i.e. (where σ is a shear scalar) Tiwari (The African Review of Physics, 8, 437-447 2013). Physical properties of the models are discussed in detail. The models isotropize at late times. Some cosmological distance parameters for both the models have also been presented. We also discussed state finder parameters and observe that our solutions favor Λ C D M model.
High Energy Astrophysics and Cosmology from Space
NASA Astrophysics Data System (ADS)
Hornschemeier, Ann
2014-03-01
While much can be learned from physics experiments on and astronomical observations from the ground, certain questions require space-based investigations. Sometimes the scale of the measurement, such as the baseline of approximately 106 km necessary for the observation of gravitational waves in the frequency range expected for high-redshift supermassive black hole mergers, causes us to leave behind the limitations of the earth. From space we measure the X-ray emission from the final stages of accretion onto black holes and critical energy ranges of cosmic rays and gamma ray photons resulting from particle acceleration in e.g., star forming environments, that otherwise we could not measure due to the atmosphere. Space-borne experiments may also measure all of the cosmological information available in the polarization of the cosmic microwave background to probe the physical conditions that caused the process of inflation in the early universe, moments after the big bang. This presentation will cover the NASA high energy astrophysics and cosmology science portfolio, embodied in its Physics of the Cosmos program, including updates on technology development and programmatic matters.
Cosmological evolution of a D-brane
Li Huiquan
2011-03-15
We study the cosmological evolution of a single BPS D-brane coupled to gravity in the absence of potential. When such a D-brane moves in the bulk with nonvanishing velocity, it tends to slow down to zero velocity via mechanisms like gravitational wave leakage to the bulk, losing its kinetic energy to fuel the expansion of the Universe on the D-brane. If the initial velocity of the D-brane is high enough, the Universe on the D-brane undergoes a dustlike stage at early times and an acceleration stage at late times, realizing the original Chaplygin gas model. When the D-brane velocity is initially zero, the D-brane will always remain fixed at some position in the bulk, with the brane tension over the Plank mass squared as a cosmological constant. It is further shown that this kind of fixed brane universe can arise as defects from tachyon inflation on a non-Bogomol'nyi-Prasad-Sommerfeld D-brane with one dimension higher.
A Large number of fast cosmological simulations
NASA Astrophysics Data System (ADS)
Koda, Jun; Kazin, E.; Blake, C.
2014-01-01
Mock galaxy catalogs are essential tools to analyze large-scale structure data. Many independent realizations of mock catalogs are necessary to evaluate the uncertainties in the measurements. We perform 3600 cosmological simulations for the WiggleZ Dark Energy Survey to obtain the new improved Baron Acoustic Oscillation (BAO) cosmic distance measurements using the density field "reconstruction" technique. We use 1296^3 particles in a periodic box of 600/h Mpc on a side, which is the minimum requirement from the survey volume and observed galaxies. In order to perform such large number of simulations, we developed a parallel code using the COmoving Lagrangian Acceleration (COLA) method, which can simulate cosmological large-scale structure reasonably well with only 10 time steps. Our simulation is more than 100 times faster than conventional N-body simulations; one COLA simulation takes only 15 minutes with 216 computing cores. We have completed the 3600 simulations with a reasonable computation time of 200k core hours. We also present the results of the revised WiggleZ BAO distance measurement, which are significantly improved by the reconstruction technique.
Scale factor duality for conformal cyclic cosmologies
NASA Astrophysics Data System (ADS)
Camara da Silva, U.; Alves Lima, A. L.; Sotkov, G. M.
2016-11-01
The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose's Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.
NASA Astrophysics Data System (ADS)
Pradhan, A.; Saha, B.; Rikhvitsky, V.
2015-05-01
The Einstein's field equations with variable gravitational and cosmological "constants" for a spatially homogeneous and anisotropic Bianchi type-I space-time are obtained in present study. To study the transit behaviour of Universe, we consider a law of variation of scale factor a(t) = ( tk et) ^{1/n}, which yields a time dependent deceleration parameter q = -1 + nk/(k + t)2, comprising a class of models that depicts a transition of the universe from the early decelerated phase to the recent accelerating phase. We find that the time dependent deceleration parameter is reasonable for the present day Universe and gives an appropriate description of the evolution of the universe. For n = 0.27k, we obtain q0 = -0.73, which is similar to observed value of deceleration parameter at present epoch. It is also observed that for n ≥ 2 and k = 1, we obtain a class of transit models of the universe from early decelerating to present accelerating phase. For k = 0, the universe has non-singular origin. In these models, we arrive at the decision that, from the structure of the field equations, the behaviour of cosmological and gravitational constants and are related. Taking into consideration the observational data, we conclude that the cosmological constant behaves as a positive decreasing function of time, whereas gravitational constant is increasing and tends to a constant value at late time. H(z)/(1+z) data (32 points) and model prediction as a function of redshift for different k and n are successfully presented by using recent data. Some physical and geometric properties of the models are also discussed.
Fundamental Approach to the Cosmological Constant Issue
NASA Astrophysics Data System (ADS)
Carmeli, Moshe
We use a Riemannian four-dimensional presentation for gravitation in which the coordinates are distances and velocity rather than the traditional space and time. We solve the field equations and show that there are three possibilities for the Universe to expand. The theory describes the Universe as having a three-phase evolution with a decelerating expansion, followed by a constant and an accelerating expansion, and it predicts that the Universe is now in the latter phase. It is shown, assuming Ωm = 0.245, that the time at which the Universe goes over from a decelerating to an accelerating expansion, occurs at 8.5 Gyr ago, at which time the cosmic radiation temperature was 146K. Recent observations show that the Universe's growth is accelerating. Our theory confirms these recent experimental results. The theory predicts also that now there is a positive pressure in the Universe. Although the theory has no cosmological constant, we extract from it its equivalence and show that Λ = 1.934 × 10-35 s-2. This value of Λ is in excellent agreement with measurements. It is also shown that the three-dimensional space of the Universe is Euclidean, as the Boomerang experiment shows.
One model of modified gravity with dynamical torsion and its cosmological consequences
NASA Astrophysics Data System (ADS)
Nikiforova, Vasilisa
2016-10-01
We consider a model belonging to the class of Poincarè gauge gravities. The model is free of ghosts, tachyons and gradient instabilities about Minkowski and torsionless Einstein backgrounds of sufficiently small curvature. At zero cosmological constant, the model admits a self-accelerating solution with non-Riemannian connection. We study scalar perturbations about the self-accelerating solution and find that the number of scalar modes is the same as in Minkow ski background; moreover, in the limit of small effective cosmological constant and below the UV cutoff of the low energy effective theory, the scalar sector does not have pathologies like ghosts or rapid gradient instabilities.
Precision cosmology and the landscape
Bousso, Raphael; Bousso, Raphael
2006-10-01
After reviewing the cosmological constant problem -- why is Lambda not huge? -- I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments.
Introduction. Cosmology meets condensed matter.
Kibble, T W B; Pickett, G R
2008-08-28
At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.
Semiclassical cosmology with polymer matter
NASA Astrophysics Data System (ADS)
Moeez Hassan, Syed; Husain, Viqar
2017-04-01
In loop quantum cosmology, polymer quantization is applied to gravity and Schrödinger quantization to matter. This approach misses interesting cosmological dynamics coming from the polymer quantization of matter. We demonstrate this in semiclassical cosmology with a scalar field and pressureless dust: gravity is kept classical, dust is used to fix the time gauge, and polymer quantization effects are isolated in the scalar field. The resulting dynamics shows a period of inflation, both with and without a scalar potential, and the emergence of a classical universe at late times. Since gravity is not quantized, the cosmological singularity is not resolved, but our results suggest that polymer quantization of both gravity and matter are important for a complete picture.
Evolution in bouncing quantum cosmology
NASA Astrophysics Data System (ADS)
Mielczarek, Jakub; Piechocki, Włodzimierz
2012-03-01
We present the method of describing an evolution in quantum cosmology in the framework of the reduced phase space quantization of loop cosmology. We apply our method to the flat Friedmann-Robertson-Walker model coupled to a massless scalar field. We identify the physical quantum Hamiltonian that is positive-definite and generates globally a unitary evolution of the considered quantum system. We examine the properties of expectation values of physical observables in the process of the quantum big bounce transition. The dispersion of evolved observables is studied for the Gaussian state. Calculated relative fluctuations enable an examination of the semi-classicality conditions and possible occurrence of the cosmic forgetfulness. Preliminary estimations based on the cosmological data suggest that there was no cosmic amnesia. Presented results are analytical, and numerical computations are only used for the visualization purposes. Our method may be generalized to sophisticated cosmological models including the Bianchi-type universes.
Newtonian cosmology Newton would understand
Lemons, D.S.
1988-06-01
Isaac Newton envisioned a static, infinite, and initially uniform, zero field universe that was gravitationally unstable to local condensations of matter. By postulating the existence of such a universe and using it as a boundary condition on Newtonian gravity, a new field equation for gravity is derived, which differs from the classical one by a time-dependent cosmological term proportional to the average mass density of the universe. The new field equation not only makes Jeans' analysis of the gravitational instability of a Newtonian universe consistent, but also gives rise to a family of Newtonian evolutionary cosmologies parametrized by a time-invariant expansion velocity. This Newtonian cosmology contrasts with both 19th-century ones and with post general relativity Newtonian cosmology.
Cosmological calculations on the GPU
NASA Astrophysics Data System (ADS)
Bard, D.; Bellis, M.; Allen, M. T.; Yepremyan, H.; Kratochvil, J. M.
2013-02-01
Cosmological measurements require the calculation of nontrivial quantities over large datasets. The next generation of survey telescopes will yield measurements of billions of galaxies. The scale of these datasets, and the nature of the calculations involved, make cosmological calculations ideal models for implementation on graphics processing units (GPUs). We consider two cosmological calculations, the two-point angular correlation function and the aperture mass statistic, and aim to improve the calculation time by constructing code for calculating them on the GPU. Using CUDA, we implement the two algorithms on the GPU and compare the calculation speeds to comparable code run on the CPU. We obtain a code speed-up of between 10 and 180× faster, compared to performing the same calculation on the CPU. The code has been made publicly available. GPUs are a useful tool for cosmological calculations, even for datasets the size of current surveys, allowing calculations to be made one or two orders of magnitude faster.
Heavy ion collisions and cosmology
NASA Astrophysics Data System (ADS)
Floerchinger, Stefan
2016-12-01
There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.
Physical and Relativistic Numerical Cosmology.
Anninos, Peter
1998-01-01
In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.
To theory of asymptotically stable accelerating Universe in Riemann-Cartan spacetime
Garkun, A.S.; Kudin, V.I.; Minkevich, A.V. E-mail: kudzin_w@tut.by
2014-12-01
Homogeneous isotropic cosmological models built in the framework of the Poincar'e gauge theory of gravity based on general expression of gravitational Lagrangian with indefinite parameters are analyzed. Special points of cosmological solutions for flat cosmological models at asymptotics and conditions of their stability in dependence of indefinite parameters are found. Procedure of numerical integration of the system of gravitational equations at asymptotics is considered. Numerical solution for accelerating Universe without dark energy is obtained.
The topological susceptibility in finite temperature QCD and axion cosmology
NASA Astrophysics Data System (ADS)
Petreczky, Peter; Schadler, Hans-Peter; Sharma, Sayantan
2016-11-01
We study the topological susceptibility in 2 + 1 flavor QCD above the chiral crossover transition temperature using Highly Improved Staggered Quark action and several lattice spacings corresponding to temporal extent of the lattice, Nτ = 6 , 8 , 10 and 12. We observe very distinct temperature dependences of the topological susceptibility in the ranges above and below 250 MeV. While for temperatures above 250 MeV, the dependence is found to be consistent with dilute instanton gas approximation, at lower temperatures the fall-off of topological susceptibility is milder. We discuss the consequence of our results for cosmology wherein we estimate the bounds on the axion decay constant and the oscillation temperature if indeed the QCD axion is a possible dark matter candidate.
Noncommutativity and scalar field cosmology
Guzman, W.; Sabido, M.; Socorro, J.
2007-10-15
In this work we extend and apply a previous proposal to study noncommutative cosmology to the Friedmann-Robertson-Walker cosmological background coupled to a scalar field. This is done in classical and quantum scenarios. In both cases noncommutativity is introduced in the gravitational field as well as in the scalar field through a deformation of minisuperspace, and we are able to find exact solutions. Finally, the effects of noncommutativity on the classical evolution are analyzed.
John Womersley
2003-08-21
I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.
Lattice Design for the LHEC Recirculating Linac
Sun, Yipeng; Eide, Anders; Zimmermann, Frank; Adolphsen, Chris; /SLAC
2011-05-20
In this paper, we present a lattice design for the Large Hadron Electron Collider (LHeC) recirculating linac. The recirculating linac consists of one roughly 3-km long linac hosting superconducting RF (SRF) accelerating cavities, two arcs and one transfer line for the recirculation. In two passes through a pulsed SRF linac the electron beam can get a maximum energy of 140 GeV. Alternatively, in the Energy Recovery Linac (ERL) option the beam passes through a CW linac four times (two passes for acceleration and two for deceleration) for a maximum energy of 60 GeV.
Geometry and symmetries in lattice spinor gravity
Wetterich, C.
2012-09-15
Lattice spinor gravity is a proposal for regularized quantum gravity based on fermionic degrees of freedom. In our lattice model the local Lorentz symmetry is generalized to complex transformation parameters. The difference between space and time is not put in a priori, and the euclidean and the Minkowski quantum field theory are unified in one functional integral. The metric and its signature arise as a result of the dynamics, corresponding to a given ground state or cosmological solution. Geometrical objects as the vierbein, spin connection or the metric are expectation values of collective fields built from an even number of fermions. The quantum effective action for the metric is invariant under general coordinate transformations in the continuum limit. The action of our model is found to be also invariant under gauge transformations. We observe a 'geometrical entanglement' of gauge- and Lorentz-transformations due to geometrical objects transforming non-trivially under both types of symmetry transformations. - Highlights: Black-Right-Pointing-Pointer We formulate the geometrical aspects of a proposal for a lattice regularized model of quantum gravity. Black-Right-Pointing-Pointer The vierbein shows an entanglement between Lorentz symmetry and gauge symmetry. Black-Right-Pointing-Pointer Euclidean and Minkowski signatures of the collective metric and the vierbein are described within the same functional integral.
Parameterized post-Newtonian cosmology
NASA Astrophysics Data System (ADS)
Sanghai, Viraj A. A.; Clifton, Timothy
2017-03-01
Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).
Loop quantum cosmology gravitational baryogenesis
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
2016-11-01
Loop quantum cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer a remedy for or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of loop quantum cosmology. As we demonstrate, when loop quantum cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation-dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of loop quantum cosmology and we investigate under which circumstances the baryon-to-entropy ratio can be compatible with the observational constraints.
NASA Astrophysics Data System (ADS)
Roberts, Alex
2016-08-01
Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. We elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein. We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, gX, is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1)X. This induces an irreducible rate, sigmaBR, for pp → X → ll relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, (sigmaBR, mX), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent 'litmus test' for this broad
Calculating Buckling And Vibrations Of Lattice Structures
NASA Technical Reports Server (NTRS)
Anderson, M. S.; Durling, B. J.; Herstrom, C. L.; Williams, F. W.; Banerjee, J. R.; Kennedy, D.; Warnaar, D. B.
1989-01-01
BUNVIS-RG computer program designed to calculate vibration frequencies or buckling loads of prestressed lattice structures used in outer space. For buckling and vibration problems, BUNVIS-RG calculates deadload axial forces caused in members by any combination of externally-applied static point forces and moments at nodes, axial preload or prestrain in members, and such acceleration loads as those due to gravity. BUNVIS-RG is FORTRAN 77 computer program implemented on CDC CYBER and VAX computer.
Probing gravitation, dark energy, and acceleration
Linder, Eric V.
2004-02-20
The acceleration of the expansion of the universe arises from unknown physical processes involving either new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to characterize the properties of the dark energy or gravity through cosmological observations and compare and distinguish between them. In fact, close consistencies exist between a dark energy equation of state function w(z) and changes to the framework of the Friedmann cosmological equations as well as direct spacetime geometry quantities involving the acceleration, such as ''geometric dark energy'' from the Ricci scalar. We investigate these interrelationships, including for the case of super acceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.
Shafi, Qaisar; Barr, Steven; Gaisser, Thomas; Stanev, Todor
2015-03-31
1. Executive Summary (April 1, 2012 - March 31, 2015) Title: Particle Theory, Particle Astrophysics and Cosmology Qaisar Shafi University of Delaware (Principal Investigator) Stephen M. Barr, University of Delaware (Co-Principal Investigator) Thomas K. Gaisser, University of Delaware (Co-Principal Investigator) Todor Stanev, University of Delaware (Co-Principal Investigator) The proposed research was carried out at the Bartol Research included Professors Qaisar Shafi Stephen Barr, Thomas K. Gaisser, and Todor Stanev, two postdoctoral fellows (Ilia Gogoladze and Liucheng Wang), and several graduate students. Five students of Qaisar Shafi completed their PhD during the period August 2011 - August 2014. Measures of the group’s high caliber performance during the 2012-2015 funding cycle included pub- lications in excellent refereed journals, contributions to working groups as well as white papers, and conference activities, which together provide an exceptional record of both individual performance as well as overall strength. Another important indicator of success is the outstanding quality of the past and current cohort of graduate students. The PhD students under our supervision regularly win the top departmental and university awards, and their publications records show excellence both in terms of quality and quantity. The topics covered under this grant cover the frontline research areas in today’s High Energy Theory & Phenomenology. For Professors Shafi and Barr they include LHC related topics including supersymmetry, collider physics, fl vor physics, dark matter physics, Higgs boson and seesaw physics, grand unifi and neutrino physics. The LHC two years ago discovered the Standard Model Higgs boson, thereby at least partially unlocking the secrets behind electroweak symmetry breaking. We remain optimistic that new and exciting physics will be found at LHC 14, which explain our focus on physics beyond the Standard Model. Professors Shafi continued his
Dissipative photonic lattice solitons.
Ultanir, Erdem A; Stegeman, George I; Christodoulides, Demetrios N
2004-04-15
We show that discrete dissipative optical lattice solitons are possible in waveguide array configurations that involve periodically patterned semiconductor optical amplifiers and saturable absorbers. The characteristics of these low-power soliton states are investigated, and their propagation constant eigenvalues are mapped on Floquet-Bloch band diagrams. The prospect of observing such low-power dissipative lattice solitons is discussed in detail.
Cosmic acceleration and the helicity-0 graviton
Rham, Claudia de; Heisenberg, Lavinia; Gabadadze, Gregory; Pirtskhalava, David
2011-05-15
We explore cosmology in the decoupling limit of a nonlinear covariant extension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is indistinguishable from the {Lambda}CDM model. Fluctuations about the self-accelerated background are stable for a certain range of parameters involved. Most surprisingly, the fluctuation of the helicity-0 field above its background decouples from an arbitrary source in the linearized theory. We also show how massive gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while evading issues with ghosts. The obtained static solution is stable against small perturbations, suggesting that the degravitation of the vacuum energy is possible in the full theory. Interestingly, however, this mechanism postpones the Vainshtein effect to shorter distance scales. Hence, fifth force measurements severely constrain the value of the cosmological constant that can be neutralized, making this scheme phenomenologically not viable for solving the old cosmological constant problem. We briefly speculate on a possible way out of this issue.
Design of a nonscaling fixed field alternating gradient accelerator
NASA Astrophysics Data System (ADS)
Trbojevic, D.; Courant, E. D.; Blaskiewicz, M.
2005-05-01
We present a design of nonscaling fixed field alternating gradient accelerators (FFAG) minimizing the dispersion action function H. The design is considered both analytically and via computer modeling. We present the basic principles of a nonscaling FFAG lattice and discuss optimization strategies so that one can accelerate over a broad range of momentum with reasonable apertures. Acceleration schemes for muons are discussed.
Theory Challenges of the Accelerating Universe
Linder, Eric V.
2007-03-05
The accelerating expansion of the universe presents an exciting, fundamental challenge to the standard models of particle physics and cosmology. I highlight some of the outstanding challenges in both developing theoretical models and interpreting without bias the observational results from precision cosmology experiments in the next decade that will return data to help reveal the nature of the new physics. Examples given focus on distinguishing a new component of energy from a new law of gravity, and the effect of early dark energy on baryon acoustic oscillations.
Axion cold dark matter in nonstandard cosmologies
Visinelli, Luca; Gondolo, Paolo
2010-03-15
We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.
Born-Infeld cosmology with scalar Born-Infeld matter
NASA Astrophysics Data System (ADS)
Jana, Soumya; Kar, Sayan
2016-09-01
Cosmology in Eddington-inspired Born-Infeld gravity is investigated using a scalar Born-Infeld field (e.g. tachyon condensate) as matter. In this way, both in the gravity and matter sectors we have Born-Infeld-like structures characterized by their actions and via two separate constants, κ and αT2 , respectively. With a particular choice of the form of ϕ ˙ (the time derivative of the Born-Infeld scalar), analytical cosmological solutions are found. Thereafter, we explore some of the unique features of the corresponding cosmological spacetimes. For κ >0 , our solution has a de Sitter-like expansion both at early and late times, with an intermediate deceleration sandwiched between the accelerating phases. On the other hand, when κ <0 , the initial de Sitter phase is replaced by a bounce. Our solutions, at late time, fit well with available supernova data—a fact we demonstrate explicitly. The estimated properties of the Universe obtained from the fitting of the κ >0 solution are as good as in Λ CDM cosmology. However, the κ <0 solution has to be discarded due to the occurrence of a bounce at an unacceptably low redshift.
Nonlinear tunneling in two-dimensional lattices
Brazhnyi, V. A.; Konotop, V. V.; Kuzmiak, V.; Shchesnovich, V. S.
2007-08-15
We present a thorough analysis of the nonlinear tunneling of Bose-Einstein condensates in static and accelerating two-dimensional lattices within the framework of the mean-field approximation. We deal with nonseparable lattices, considering different initial atomic distributions in highly symmetric states. For an analytical description of the condensate before instabilities develop, we derive several few-mode models, analyzing essentially both nonlinear and quasilinear regimes of tunneling. By direct numerical simulations, we show that two-mode models provide an accurate description of tunneling when either initially two states are populated or tunneling occurs between two stable states. Otherwise, a two-mode model may give only useful qualitative hints for understanding tunneling, but does not reproduce many features of the phenomenon. This reflects the crucial role of instabilities developed due to two-body interactions resulting in a non-negligible population of the higher bands. This effect becomes even more pronounced in the case of accelerating lattices. In the latter case we show that the direction of the acceleration is a relevant physical parameter which affects the tunneling by changing the atomic rates at different symmetric states and by changing the numbers of bands involved in the atomic transfer.
Resource Letter DEAU-1: Dark energy and the accelerating universe
NASA Astrophysics Data System (ADS)
Linder, Eric V.
2008-03-01
This Resource Letter provides a guide to the literature on dark energy and the accelerating universe. It is intended to be of use to researchers, teachers, and students at several levels. Journal articles, books, and websites are cited for the following topics: Einstein's cosmological constant, quintessence or dynamical scalar fields, modified cosmic gravity, relations to high-energy physics, cosmological probes and observations, terrestrial probes, calculational tools and parameter estimation, teaching strategies and educational resources, and the fate of the universe.
Self-accelerating universe in modified gravity with dynamical torsion
NASA Astrophysics Data System (ADS)
Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.
2017-01-01
We consider a model belonging to the class of gravities with dynamical torsion. The model is free of ghosts and gradient instabilities about Minkowski and torsionless Einstein backgrounds. We find that at zero cosmological constant, the model admits a self-accelerating solution with a non-Riemannian connection. Small value of the effective cosmological constant is obtained at the expense of the hierarchy between the dimensionless couplings.
Multiverses and physical cosmology
NASA Astrophysics Data System (ADS)
Ellis, G. F. R.; Kirchner, U.; Stoeger, W. R.
2004-01-01
The idea of a multiverse - an ensemble of universes - has received increasing attention in cosmology, both as the outcome of the originating process that generated our own Universe, and as an explanation for why our Universe appears to be fine-tuned for life and consciousness. Here we carefully consider how multiverses should be defined, stressing the distinction between the collection of all possible universes, and ensembles of really existing universes that are essential for an anthropic argument. We show that such realized multiverses are by no means unique. A proper measure on the space of all really existing universes or universe domains is needed, so that probabilities can be calculated, and major problems arise in terms of realized infinities. As an illustration we examine these issues in the case of the set of Friedmann-Lemaître-Robertson-Walker universes. Then we briefly summarize scenarios such as chaotic inflation, which suggest how ensembles of universe domains may be generated, and we point out that the regularities which must underlie any systematic description of truly disjoint multiverses must imply some kind of common generating mechanism. Finally, we discuss the issue of testability, which underlies the question of whether multiverse proposals are really scientific propositions.
Not Available
1990-01-01
The overall objective of the research supported by this contract is to further our understanding of the basic building blocks of matter as well as the role fundamental interactions play in cosmology and astrophysics. Astrophysical data, such as from high energy cosmic rays and large scale structure of the universe, are employed to constrain particle physics theories. Particle collisions at Tevatron and higher (SSC) energies are also under investigation. During the past year a systematic reanalysis of the correlation between solar activity and the solar neutrino flux was undertaken. The conclusion seems to be that the Homestake experimental data show a correlation at a significant level, supporting the hypothesis that the neutrino possesses a magnetic moment. A separate, but related, theoretical investigation of electromagnetic properties of elementary particles has led to the discovery of a class of models in which the neutrino is endowed with an appreciable magnetic moment while its remains small. Altogether members of the group have been co-authors of 28 papers during the grant year on topics ranging from fermion masses to the role of ultra-high energy hadronic interactions in cosmic ray physics.
Entropy, matter, and cosmology
Prigogine, I.; Géhéniau, J.
1986-01-01
The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary “C” field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747
NASA Astrophysics Data System (ADS)
Ferrara, S.; Kehagias, A.; Sagnotti, A.
2016-09-01
Abdus Salam was a true master of 20th Century Theoretical Physics. Not only was he a pioneer of the Standard Model (for which he shared the Nobel Prize with S. Glashow and S. Weinberg), but he also (co)authored many other outstanding contributions to the field of Fundamental Interactions and their unification. In particular, he was a major contributor to the development of supersymmetric theories, where he also coined the word “Supersymmetry” (replacing the earlier “Supergauges” drawn from String Theory). He also introduced the basic concept of “Superspace” and the notion of “Goldstone Fermion” (Goldstino). These concepts proved instrumental for the exploration of the ultraviolet properties and for the study of spontaneously broken phases of super Yang-Mills theories and Supergravity. They continue to play a key role in current developments in Early-Universe Cosmology. In this contribution we review models of inflation based on Supergravity with spontaneously broken local supersymmetry, with emphasis on the role of nilpotent superfields to describe a de Sitter phase of our Universe.
NASA Technical Reports Server (NTRS)
Schramm, David N.
1989-01-01
Nuclear physics has provided one of two critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. The standard Big Bang Nucleosynthesis arguments are reviewed. The primordial He abundance is inferred from He-C and He-N and He-O correlations. The strengthened Li constraint as well as D-2 plus He-3 are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N(nu), is delineated using the new neutron lifetime value of tau(n) = 890 + or - 4s (tau(1/2) = 10.3 min). The formal statistical result is N(nu) = 2.6 + or - 0.3 (1 sigma), providing a reasonable fit (1.3 sigma) to three families but making a fourth light (m(nu) less than or equal to 10 MeV) neutrino family exceedly unlikely (approx. greater than 4.7 sigma). It is also shown that uncertainties induced by postulating a first-order quark-baryon phase transition do not seriously affect the conclusions.
Cosmological perturbations without inflation
NASA Astrophysics Data System (ADS)
Melia, Fulvio
2017-01-01
A particularly attractive feature of inflation is that quantum fluctuations in the inflaton field may have seeded inhomogeneities in the cosmic microwave background (CMB) and the formation of large-scale structure. In this paper, we demonstrate that a scalar field with zero active mass, i.e. with an equation of state ρ +3p=0 , where ρ and p are its energy density and pressure, respectively, could also have produced an essentially scale-free fluctuation spectrum, though without inflation. This alternative mechanism is based on the Hollands–Wald concept of a minimum wavelength for the emergence of quantum fluctuations into the semi-classical universe. A cosmology with zero active mass does not have a horizon problem, so it does not need inflation to solve this particular (non) issue. In this picture, the {{1}\\circ}{ {--}}{{10}\\circ} fluctuations in the CMB correspond almost exactly to the Planck length at the Planck time, firmly supporting the view that CMB observations may already be probing trans-Planckian physics.
NASA Astrophysics Data System (ADS)
Bennett, C. L.
A prodigious burst of high-energy radiation was generated during the Big Bang. Today, this radiation is seen as a nearly uniform faint glow across the sky, now as low-energy microwaves due to the expansion of the universe over billions of years. Tiny temperature variations of the radiation across the sky were first discovered by NASA's Cosmic Background Explorer (COBE) space mission in 1992. The Wilkinson Microwave Anisotropy Probe (WMAP) space mission, launched in 2001, has now mapped the temperature variations (anisotropy) of the cosmic microwave background radiation over the full sky with unprecedented accuracy and precision. The WMAP observations provide definitive answers to cosmological questions and open the door to new investigations. For example, the WMAP has determined that the content of the universe, dominated by dark matter and dark energy. The large-scale geometry of the universe is flat, in that the sum of the interior angles of a triangle adds up to 180 degrees even over vast distances. New limits are set on the mass of neutrinos and the nature (equation of state) of the dark energy. The WMAP results also place new limits on the physics of the very early universe, usually described in terms of Inflation theory: a rapid exponential expansion of the universe within a fraction of a second. Observations are on-going and will improve our understanding of the physics of the universe.
NASA Technical Reports Server (NTRS)
Canuto, V. M.
1978-01-01
A review of big-bang cosmology is presented, emphasizing the big-bang model, hypotheses on the origin of galaxies, observational tests of the big-bang model that may be possible with the Large Space Telescope, and the scale-covariant theory of gravitation. Detailed attention is given to the equations of general relativity, the redshift-distance relation for extragalactic objects, expansion of the universe, the initial singularity, the discovery of the 3-K blackbody radiation, and measurements of the amount of deuterium in the universe. The curvature of the expanding universe is examined along with the magnitude-redshift relation for quasars and galaxies. Several models for the origin of galaxies are evaluated, and it is suggested that a model of galaxy formation via the formation of black holes is consistent with the model of an expanding universe. Scale covariance is discussed, a scale-covariant theory is developed which contains invariance under scale transformation, and it is shown that Dirac's (1937) large-numbers hypothesis finds a natural role in this theory by relating the atomic and Einstein units.
Buchbinder, Evgeny I.; Khoury, Justin; Ovrut, Burt A.
2007-12-15
In this paper, we present a new scenario of the early universe that contains a pre-big bang ekpyrotic phase. By combining this with a ghost condensate, the theory explicitly violates the null energy condition without developing any ghostlike instabilities. Thus the contracting universe goes through a nonsingular bounce and evolves smoothly into the expanding post-big bang phase. The curvature perturbation acquires a scale-invariant spectrum well before the bounce in this scenario. It is sourced by the scale-invariant entropy perturbation engendered by two ekpyrotic scalar fields, a mechanism recently proposed by Lehners et al. Since the background geometry is nonsingular at all times, the curvature perturbation remains nearly constant on superhorizon scales. It emerges from the bounce unscathed and imprints a scale-invariant spectrum of density fluctuations in the matter-radiation fluid at the onset of the hot big bang phase. The ekpyrotic potential can be chosen so that the spectrum has a red tilt, in accordance with the recent data from WMAP. As in the original ekpyrotic scenario, the model predicts a negligible gravity wave signal on all observable scales. As such ''new ekpyrotic cosmology'' provides a consistent and distinguishable alternative to inflation to account for the origin of the seeds of large-scale structure.
Milgrom's revision of Newton's laws - Dynamical and cosmological consequences
NASA Technical Reports Server (NTRS)
Felten, J. E.
1984-01-01
Milgrom's (1983) recent revision of Newtonian dynamics was introduced to eliminate the inference that large quantities of invisible mass exist in galaxies. It is shown by simple examples that a Milgrom acceleration, in the form presented so far, implies other far-reaching changes in dynamics. The momentum of an isolated system is not conserved, and the usual theorem for center-of-mass motion of any system does not hold. Naive applications require extreme caution. The model fails to provide a complete description of particle dynamics and should be thought of as a revision of Kepler's laws rather than Newton's. The Milgrom acceleration also implies fundamental changes in cosmology. A quasi-Newtonian calculation adapted from Newtonian cosmology suggests that a 'Milgrom universe' will recollapse even if the classical closure parameter Omega is much less than unity. The solution, however, fails to satisfy the cosmological principle. Reasons for the breakdown of this calculation are examined. A new theory of gravitation will be needed before the behavior of a Milgrom universe can be predicted.
Cosmological stability bound in massive gravity and bigravity
Fasiello, Matteo; Tolley, Andrew J. E-mail: andrew.j.tolley@case.edu
2013-12-01
We give a simple derivation of a cosmological bound on the graviton mass for spatially flat FRW solutions in massive gravity with an FRW reference metric and for bigravity theories. This bound comes from the requirement that the kinetic term of the helicity zero mode of the graviton is positive definite. The bound is dependent only on the parameters in the massive gravity potential and the Hubble expansion rate for the two metrics. We derive the decoupling limit of bigravity and FRW massive gravity, and use this to give an independent derivation of the cosmological bound. We recover our previous results that the tension between satisfying the Friedmann equation and the cosmological bound is sufficient to rule out all observationally relevant FRW solutions for massive gravity with an FRW reference metric. In contrast, in bigravity this tension is resolved due to different nature of the Vainshtein mechanism. We find that in bigravity theories there exists an FRW solution with late-time self-acceleration for which the kinetic terms for the helicity-2, helicity-1 and helicity-0 are generically nonzero and positive making this a compelling candidate for a model of cosmic acceleration. We confirm that the generalized bound is saturated for the candidate partially massless (bi)gravity theories but the existence of helicity-1/helicity-0 interactions implies the absence of the conjectured partially massless symmetry for both massive gravity and bigravity.
The bouncing cosmology with F(R) gravity and its reconstructing
NASA Astrophysics Data System (ADS)
Amani, Ali R.
2016-04-01
In this paper, we study F(R) gravity by Hu-Sawicki model in Friedmann-Lemaître-Robertson-Walker (FLRW) background. The Friedmann equations are calculated by modified gravity action, and then the obtained Friedmann equations are written in terms of standard Friedmann equations. Next, the behavior of bouncing cosmology is investigated in the modified gravity model, i.e. this behavior can solve the problem of nonsingularity in standard big bang cosmology. We plot the cosmological parameters in terms of cosmic time and then the bouncing condition is investigated. In what follows, we reconstruct the modified gravity by redshift parameter, and also graphs of cosmological parameters are plotted in terms of redshift, in which the figures show us an accelerated expansion of universe. Finally, the stability of the scenario is investigated by a function as sound speed, and the graph of sound speed versus redshift shows us that there is the stability in late-time.
Courant, E.D.; Garren, A.A.
1985-10-01
A realistic, distributed interaction region (IR) lattice has been designed that includes new components discussed in the June 1985 lattice workshop. Unlike the test lattices, the lattice presented here includes utility straights and the mechanism for crossing the beams in the experimental straights. Moreover, both the phase trombones and the dispersion suppressors contain the same bending as the normal cells. Vertically separated beams and 6 Tesla, 1-in-1 magnets are assumed. Since the cells are 200 meters long, and have 60 degree phase advance, this lattice has been named RLD1, in analogy with the corresponding test lattice, TLD1. The quadrupole gradient is 136 tesla/meter in the cells, and has similar values in other quadrupoles except in those in the IR`s, where the maximum gradient is 245 tesla/meter. RLD1 has distributed IR`s; however, clustered realistic lattices can easily be assembled from the same components, as was recently done in a version that utilizes the same type of experimental and utility straights as those of RLD1.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Nathal, M. V.; Hebsur, M. G.; Kraus, D. L.
2003-01-01
In their simplest form, lattice block panels are produced by direct casting and result in lightweight, fully triangulated truss-like configurations which provide strength and stiffness [2]. The earliest realizations of lattice block were made from A1 and steels, primarily under funding from the US Navy [3]. This work also showed that the mechanical efficiency (eg., specific stiffness) of lattice block structures approached that of honeycomb structures [2]. The lattice architectures are also less anisotropic, and the investment casting route should provide a large advantage in cost and temperature capability over honeycombs which are limited to alloys that can be processed into foils. Based on this early work, a program was initiated to determine the feasibility of extending the high temperature superalloy lattice block [3]. The objective of this effort was to provide an alternative to intermetallics and composites in achieving a lightweight high temperature structure without sacrificing the damage tolerance and moderate cost inherent in superalloys. To establish the feasibility of the superalloy lattice block concept, work was performed in conjunction with JAMCORP, Inc. Billerica, MA, to produce a number of lattice block panels from both IN71 8 and Mar-M247.
Quasicrystallography from Bn lattices
NASA Astrophysics Data System (ADS)
Koca, M.; Koca, N. O.; Al-Mukhaini, A.; Al-Qanabi, A.
2014-11-01
We present a group theoretical analysis of the hypercubic lattice described by the affine Coxeter-Weyl group Wa (Bn). An h-fold symmetric quasicrystal structure follows from the hyperqubic lattice whose point group is described by the Coxeter-Weyl group W (Bn) with the Coxeter number h=2n. Higher dimensional cubic lattices are explicitly constructed for n = 4,5,6 by identifying their rank-3 Coxeter subgroups and maximal dihedral subgroups. Decomposition of their Voronoi cells under the respective rank-3 subgroups W (A3), W (H2)×W (A1) and W (H3)lead to the rhombic dodecahedron, rhombic icosahedron and rhombic triacontahedron respectively. Projection of the lattice B4 describes a quasicrystal structure with 8-fold symmetry. The B5 lattice leads to quasicrystals with both 5fold and 10 fold symmetries. The lattice B6 projects on a 12-fold symmetric quasicrystal as well as a 3D icosahedral quasicrystal depending on the choice of subspace of projections. The projected sets of lattice points are compatible with the available experimental data.
The Development of Euclidean and Non-Euclidean Cosmologies
ERIC Educational Resources Information Center
Norman, P. D.
1975-01-01
Discusses early Euclidean cosmologies, inadequacies in classical Euclidean cosmology, and the development of non-Euclidean cosmologies. Explains the present state of the theory of cosmology including the work of Dirac, Sandage, and Gott. (CP)
Evidence for maximal acceleration and singularity resolution in covariant loop quantum gravity.
Rovelli, Carlo; Vidotto, Francesca
2013-08-30
A simple argument indicates that covariant loop gravity (spin foam theory) predicts a maximal acceleration and hence forbids the development of curvature singularities. This supports the results obtained for cosmology and black holes using canonical methods.
NASA Astrophysics Data System (ADS)
Zucker, M. H.
This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own
Jammed lattice sphere packings
NASA Astrophysics Data System (ADS)
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
Aspects of braneworld cosmology
NASA Astrophysics Data System (ADS)
Vinet, Jeremie
What is essential is invisible to the eye. Antoine de Saint-Exupery Of course, Saint-Exupery didn't have extra dimensions in mind when he wrote this famous line. Nevertheless, the recent realisation that standard model degrees of freedom can naturally be restricted to a submanifold embedded in a higher dimensional Universe means that an ingredient essential to our description of nature might quite literally be "invisible to the eye". Exploring the consequences of such braneworld scenarios has occupied a large part of the theoretical physics community over the last seven years, and this thesis is a collection of contributions to this endeavour. After reviewing the motivations for and early successes of braneworld scenarios, we examine rho2 corrections to the Hubble rate in the stabilized Randall-Sundrum I model, where the hierarchy problem is solved in a natural way, in order to ascertain whether such corrections might be of help in addressing some issues with inflation and baryogenesis. The three following chapters are concerned with six-dimensional models that have been advertised as possibly leading to a self-tuning solution to the cosmological constant problem. We examine this claim thoroughly, through the study of thick codimension-two braneworlds. This allows us to provide a generalization of the relationship between the deficit angle and the brane matter content. We also present the first derivation of the Friedmann equations on a codimension-two brane containing matter with an arbitrary equation of state, first in the context of Einstein-Hilbert gravity and then in six dimensional supergravity.
Schramm, D.N. ):)
1989-12-01
Nuclear physics has provided one of the 2 critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. This paper reviews the standard Big Bang Nucleosynthesis arguments. The primordial He abundance is inferred from He--C and He--N and He--O correlations. The strengthened Li constraint as well as {sup 2}D plus {sup 3}He are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N{sub {nu}}, is delineated using the new neutron lifetime value of {tau}{sub n} = 890 {plus minus} 4s ({tau}{sub {1/2}} = 10.3 min). The formal statistical result is N{sub {nu}} = 2.6 {plus minus} 0.3 (1{sigma}) providing a reasonable fit (1.3{sigma}) to 3 families but making a fourth light (m{sub {nu}} {approx lt}10 MeV) neutrino family exceedingly unlikely ({approx gt}4.7{sigma}) (barring significant systematic errors either in D + {sup 3}He, and Li and/or {sup 4}He and/or {tau}{sub n}). It is also shown that uncertainties induced by postulating a first-order quark-hadron phase transition do not seriously affect the conclusions. 21 refs., 3 figs.
Cosmology with Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Borgani, Stefano
I reviewed in my talk recent results on the cosmological constraints that can be obtained by following the evolution of the population of galaxy clusters. Using extended samples of X-ray selected clusters, I have shown how they can be used to trace this evolution out to redshift z ~ 1. This evolution can be compared to model predictions and, therefore, to constrain cosmological parameters, such as the density parameter Omega_m and the shape and amplitude of the power spectrum of density perturbations. I have emphasized that the robustness of such constraints is quite sensitive to the relation between cluster collapsed mass and X-ray luminosity and temperature. This demonstrates that our ability to place significant constraints on cosmology using clusters of galaxies relies on our capability to understand the physical processes, which determine the properties of the intra-cluster medium (ICM). In this context, I have discussed how numerical simulations of cluster formation in cosmological context can play an important role in uderstanding the ICM physics. I have presented results from a very large cosmological simulation, which also includes the hydrodynamical description of the cosmic baryons, the processes of star formation and feedback from the stellar populations. The results from this simulation represent a unique baseline to describe the processes of formation and evolution of clusters of galaxies.
Cosmology in Mr. Tompkins' Lifetime
NASA Astrophysics Data System (ADS)
Lindner, Rudi Paul
2016-01-01
Mr. Tompkins, the hero of George Gamow's most famous book, was born in the first decade of the twentieth century and lived until its end. A bank clerk by day, Mr. Tompkins had wide-ranging interests, and his curiosity led him to popular scientific presentations, and these in turn brought him a long and happy marriage to Maud, the daughter of a professor of physics. His lifetime offers an appropriate framework for a meditation on the history of cosmology during the century in which cosmology became a scientific enterprise. As it happens, Mr. Tompkins' first exposure to cosmology, in which he observed both the expansion and contraction of an oscillating universe in 1939, happened during the long night of relativity, the generation in which relativity specialists became few and, like the galaxies, far between. This talk will consider the heyday of early relativistic cosmology from 1917 to 1935, the causes and consequences of the "long night" from 1935 until 1963, and the renaissance of cosmology, which, occurring as it did upon the retirement of Mr. Tompkins, afforded him great pleasure in his later years.
Cosmological tests of coupled Galileons
Brax, Philippe; Davis, Anne-Christine; Gubitosi, Giulia E-mail: Clare.Burrage@nottingham.ac.uk E-mail: g.gubitosi@imperial.ac.uk
2015-03-01
We investigate the cosmological properties of Galileon models which admit Minkowski space as a stable solution in vacuum. This is motivated by stable, positive tension brane world constructions that give rise to Galileons. We include both conformal and disformal couplings to matter and focus on constraints on the theory that arise because of these couplings. The disformal coupling to baryonic matter is extremely constrained by astrophysical and particle physics effects. The disformal coupling to photons induces a cosmological variation of the speed of light and therefore distorsions of the Cosmic Microwave Background spectrum which are known to be very small. The conformal coupling to baryons leads to a variation of particle masses since Big Bang Nucleosynthesis which is also tightly constrained. We consider the background cosmology of Galileon models coupled to Cold Dark Matter (CDM), photons and baryons and impose that the speed of light and particle masses respect the observational bounds on cosmological time scales. We find that requiring that the equation of state for the Galileon models must be close to -1 now restricts severely their parameter space and can only be achieved with a combination of the conformal and disformal couplings. This leads to large variations of particle masses and the speed of light which are not compatible with observations. As a result, we find that cosmological Galileon models are viable dark energy theories coupled to dark matter but their couplings, both disformal and conformal, to baryons and photons must be heavily suppressed making them only sensitive to CDM.
Gamma-ray bursts as cosmological probes: ΛCDM vs. conformal gravity
Diaferio, Antonaldo; Ostorero, Luisa; Cardone, Vincenzo E-mail: ostorero@ph.unito.it
2011-10-01
ΛCDM, for the currently preferred cosmological density Ω{sub 0} and cosmological constant Ω{sub Λ}, predicts that the Universe expansion decelerates from early times to redshift z ≈ 0.9 and accelerates at later times. On the contrary, the cosmological model based on conformal gravity predicts that the cosmic expansion has always been accelerating. To distinguish between these two very different cosmologies, we resort to gamma-ray bursts (GRBs), which have been suggested to probe the Universe expansion history at z > 1, where identified type Ia supernovae (SNe) are rare. We use the full Bayesian approach to infer the cosmological parameters and the additional parameters required to describe the GRB data available in the literature. For the first time, we use GRBs as cosmological probes without any prior information from other data. In addition, when we combine the GRB samples with SNe, our approach neatly avoids all the inconsistencies of most numerous previous methods that are plagued by the so-called circularity problem. In fact, when analyzed properly, current data are consistent with distance moduli of GRBs and SNe that can respectively be, in a variant of conformal gravity, ∼ 15 and ∼ 3 magnitudes fainter than in ΛCDM. Our results indicate that the currently available SN and GRB samples are accommodated equally well by both ΛCDM and conformal gravity and do not exclude a continuous accelerated expansion. We conclude that GRBs are currently far from being effective cosmological probes, as they are unable to distinguish between these two very different expansion histories.
Quantum vacuum noise in physics and cosmology.
Davies, P. C. W.
2001-09-01
The concept of the vacuum in quantum field theory is a subtle one. Vacuum states have a rich and complex set of properties that produce distinctive, though usually exceedingly small, physical effects. Quantum vacuum noise is familiar in optical and electronic devices, but in this paper I wish to consider extending the discussion to systems in which gravitation, or large accelerations, are important. This leads to the prediction of vacuum friction: The quantum vacuum can act in a manner reminiscent of a viscous fluid. One result is that rapidly changing gravitational fields can create particles from the vacuum, and in turn the backreaction on the gravitational dynamics operates like a damping force. I consider such effects in early universe cosmology and the theory of quantum black holes, including the possibility that the large-scale structure of the universe might be produced by quantum vacuum noise in an early inflationary phase. I also discuss the curious phenomenon that an observer who accelerates through a quantum vacuum perceives a bath of thermal radiation closely analogous to Hawking radiation from black holes, even though an inertial observer registers no particles. The effects predicted raise very deep and unresolved issues about the nature of quantum particles, the role of the observer, and the relationship between the quantum vacuum and the concepts of information and entropy. (c) 2001 American Institute of Physics.
A new parameter space study of cosmological microlensing
NASA Astrophysics Data System (ADS)
Vernardos, G.; Fluke, C. J.
2013-09-01
Cosmological gravitational microlensing is a useful technique for understanding the structure of the inner parts of a quasar, especially the accretion disc and the central supermassive black hole. So far, most of the cosmological microlensing studies have focused on single objects from ˜90 currently known lensed quasars. However, present and planned all-sky surveys are expected to discover thousands of new lensed systems. Using a graphics processing unit (GPU) accelerated ray-shooting code, we have generated 2550 magnification maps uniformly across the convergence (κ) and shear (γ) parameter space of interest to microlensing. We examine the effect of random realizations of the microlens positions on map properties such as the magnification probability distribution (MPD). It is shown that for most of the parameter space a single map is representative of an average behaviour. All of the simulations have been carried out on the GPU Supercomputer for Theoretical Astrophysics Research.
Testing the cosmological constant as a candidate for dark energy
Kratochvil, Jan; Linde, Andrei; Linder, Eric V.; Shmakova, Marina
2003-12-03
It may be difficult to single out the best model of dark energy on the basis of the existing and planned cosmological observations, because many different models can lead to similar observational consequences. However, each particular model can be studied and either found consistent with observations or ruled out. In this paper, we concentrate on the possibility to test and rule out the simplest and by far the most popular of the models of dark energy, the theory described by general relativity with positive vacuum energy (the cosmological constant). We evaluate the conditions under which this model could be ruled out by the future observations made by the Supernova/Acceleration Probe SNAP (both for supernovae and weak lensing) and by the Planck Surveyor cosmic microwave background satellite.
Transition redshift in f (T ) cosmology and observational constraints
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Luongo, Orlando; Saridakis, Emmanuel N.
2015-06-01
We extract constraints on the transition redshift ztr , determining the onset of cosmic acceleration, predicted by an effective cosmographic construction, in the framework of f (T ) gravity. In particular, employing cosmography we obtain bounds on the viable f (T ) forms and their derivatives. Since this procedure is model independent, as long as the scalar curvature is fixed, we are able to determine intervals for ztr . In this way we guarantee that the Solar-System constraints are preserved and, moreover, we extract bounds on the transition time and the free parameters of the scenario. We find that the transition redshifts predicted by f (T ) cosmology, although compatible with the standard Λ CDM predictions, are slightly smaller. Finally, in order to obtain observational constraints on f (T ) cosmology, we perform a Monte Carlo fitting using supernova data, involving the most recent Union 2.1 data set.
Cosmological dynamics of brane f(R) gravity
Haghani, Zahra; Sepangi, Hamid Reza; Shahidi, Shahab E-mail: hr-sepangi@sbu.ac.ir
2012-02-01
The cosmological dynamics of a brane world scenario where the bulk action is taken as a generic function of the Ricci scalar is considered in a framework where the use of the Z{sub 2} symmetry and Israel junction conditions are relaxed. The corresponding cosmological solutions for some specific forms of f(R) are obtained and shown to be in the form of exponential as well as power law for a vacuum brane space-time. It is shown that the existence of matter dominated epoch for a bulk action in the form of a power law for R can only be obtained in the presence of ordinary matter. Using phase space analysis, we show that the universe must start from an unstable matter dominated epoch and eventually falls into a stable accelerated expanding phase.
Evolution of a simple inhomogeneous anisotropic cosmological model with diffusion
Shogin, Dmitry; Hervik, Sigbjørn E-mail: sigbjorn.hervik@uis.no
2013-10-01
We investigate a simple inhomogeneous anisotropic cosmology (plane symmetric G{sub 2} model) filled with a tilted perfect fluid undergoing velocity diffusion on a scalar field. Considered are two types of fluid: dust and radiation. We solve the system of Einstein field equations and diffusion equations numerically and demonstrate how the universe evolves towards its future asymptotic state. Also, typical time scales of characteristic processes are determined. The obtained results for dust- and radiation-filled cosmologies are compared to each other and to those in the diffusionless case, giving a hint on which effects can be the result of including diffusion in more complicated models. For example, diffusion causes the accelerated expansion stage to arrive at later times.
Detecting dark energy in orbit: The cosmological chameleon
Brax, Philippe; Davis, Anne-Christine; Khoury, Justin; Weltman, Amanda
2004-12-15
We show that the chameleon scalar field can drive the current phase of cosmic acceleration for a large class of scalar potentials that are also consistent with local tests of gravity. These provide explicit realizations of a quintessence model where the quintessence scalar field couples directly to baryons and dark matter with gravitational strength. We analyze the cosmological evolution of the chameleon field and show the existence of an attractor solution with the chameleon following the minimum of its effective potential. For a wide range of initial conditions, spanning many orders of magnitude in initial chameleon energy density, the attractor is reached before nucleosynthesis. Surprisingly, the range of allowed initial conditions leading to a successful cosmology is wider than in normal quintessence. We discuss applications to the cyclic model of the universe and show how the chameleon mechanism weakens some of the constraints on cyclic potentials.
Cosmic Rays and Their Radiative Processes in Numerical Cosmology
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Miniati, Francesco; Jones, Tom W.; Kang, Hyesung
2000-01-01
A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive, acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 128 (exp 3) cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.
Dynamics of Brans-Dicke cosmology with varying mass fermions
Liu Daojun
2010-09-15
In this paper, the cosmological dynamics of Brans-Dicke (BD) theory in which there are fermions with a coupling to BD scalar field as well as a self-interaction potential is investigated. The conditions that there exists a solution which is stable and represents a late-time accelerated expansion of the Universe are found. The variable mass of fermions cannot vanish exactly during the evolution of the Universe once it exists initially. It is shown that the late-time acceleration depends completely on the self-interaction of the fermion field if our investigation is restricted to the theory with positive BD parameter {omega}. Provided a negative {omega} is allowed, there will be another two classes of stable solutions describing the late-time accelerated expansion of the Universe.
A philosophy for big-bang cosmology.
McCrea, W H
1970-10-03
According to recent developments in cosmology we seem bound to find a model universe like the observed universe, almost independently of how we suppose it started. Such ideas, if valid, provide fresh justification for the procedures of current cosmological theory.
Gravitational waves from the cosmological QCD transition
NASA Astrophysics Data System (ADS)
Mourão Roque, V. R. C.; Roque, G. Lugones o.; Lugones, G.
2014-09-01
We determine the minimum fluctuations in the cosmological QCD phase transition that could be detectable by the eLISA/NGO gravitational wave observatory. To this end, we performed several hydrodynamical simulations using a state-of-the-art equation of state derived from lattice QCD simulations. Based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the RHIC and the LHC is extremely small, we considered a non-viscous fluid in our simulations. Several previous works about this transition considered a first order transition that generates turbulence which follows a Kolmogorov power law. We show that for the QCD crossover transition the turbulent spectrum must be very different because there is no viscosity and no source of continuous energy injection. As a consequence, a large amount of kinetic energy accumulates at the smallest scales. From the hydrodynamic simulations, we have obtained the spectrum of the gravitational radiation emitted by the motion of the fluid, finding that, if typical velocity and temperature fluctuations have an amplitude Δ v /c ≳ 10-2 and/or Δ T/T_c ≳ 10-3, they would be detected by eLISA/NGO at frequencies larger than ˜ 10-4 Hz.
Smooth cosmological phase transition in the Hořava-Lifshitz gravity
Son, Edwin J.; Kim, Wontae E-mail: wtkim@sogang.ac.kr
2010-06-01
We show that the cosmological phase transition from the first accelerated expansion in the early universe to the second accelerated expansion over the intermediate decelerated expansion is possible in the HL gravity without the ''detailed balance'' condition if the dark scalar energy density is assumed to be negative. Moreover, we obtain various evolutions depending on the scale factor and the expansion rate. Finally, we discuss the existence of the minimum scale in connection with the singularity free condition.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.
2004-01-01
Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.
Root lattices and quasicrystals
NASA Astrophysics Data System (ADS)
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.
Root lattices and quasicrystals
NASA Astrophysics Data System (ADS)
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown how root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All non-periodic symmetries observed so far are covered in minimal embedding with maximal symmetry.
ORGINOS,K.
2003-01-07
I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.
Niedermann, Florian; Schneider, Robert E-mail: robert.bob.schneider@physik.uni-muenchen.de
2015-03-01
We derive the modified Friedmann equations for a generalization of the Dvali-Gabadadze-Porrati (DGP) model in which the brane has one additional compact dimension. The main new feature is the emission of gravitational waves into the bulk. We study two classes of solutions: first, if the compact dimension is stabilized, the waves vanish and one exactly recovers DGP cosmology. However, a stabilization by means of physical matter is not possible for a tension-dominated brane, thus implying a late time modification of 4D cosmology different from DGP. Second, for a freely expanding compact direction, we find exact attractor solutions with zero 4D Hubble parameter despite the presence of a 4D cosmological constant. The model hence constitutes an explicit example of dynamical degravitation at the full nonlinear level. Without stabilization, however, there is no 4D regime and the model is ruled out observationally, as we demonstrate explicitly by comparing to supernova data.
Classically Stable Nonsingular Cosmological Bounces
NASA Astrophysics Data System (ADS)
Ijjas, Anna; Steinhardt, Paul J.
2016-09-01
One of the fundamental questions of theoretical cosmology is whether the Universe can undergo a nonsingular bounce, i.e., smoothly transit from a period of contraction to a period of expansion through violation of the null energy condition (NEC) at energies well below the Planck scale and at finite values of the scale factor such that the entire evolution remains classical. A common claim has been that a nonsingular bounce either leads to ghost or gradient instabilities or a cosmological singularity. In this Letter, we consider a well-motivated class of theories based on the cubic Galileon action and present a procedure for explicitly constructing examples of a nonsingular cosmological bounce without encountering any pathologies and maintaining a subluminal sound speed for comoving curvature modes throughout the NEC violating phase. We also discuss the relation between our procedure and earlier work.
Classically Stable Nonsingular Cosmological Bounces.
Ijjas, Anna; Steinhardt, Paul J
2016-09-16
One of the fundamental questions of theoretical cosmology is whether the Universe can undergo a nonsingular bounce, i.e., smoothly transit from a period of contraction to a period of expansion through violation of the null energy condition (NEC) at energies well below the Planck scale and at finite values of the scale factor such that the entire evolution remains classical. A common claim has been that a nonsingular bounce either leads to ghost or gradient instabilities or a cosmological singularity. In this Letter, we consider a well-motivated class of theories based on the cubic Galileon action and present a procedure for explicitly constructing examples of a nonsingular cosmological bounce without encountering any pathologies and maintaining a subluminal sound speed for comoving curvature modes throughout the NEC violating phase. We also discuss the relation between our procedure and earlier work.
WMAP normalization of inflationary cosmologies
Liddle, Andrew R.; Parkinson, David; Mukherjee, Pia; Leach, Samuel M.
2006-10-15
We use the three-year WMAP observations to determine the normalization of the matter power spectrum in inflationary cosmologies. In this context, the quantity of interest is not the normalization marginalized over all parameters, but rather the normalization as a function of the inflationary parameters n{sub S} and r with marginalization over the remaining cosmological parameters. We compute this normalization and provide an accurate fitting function. The statistical uncertainty in the normalization is 3%, roughly half that achieved by COBE. We use the k-l relation for the standard cosmological model to identify the pivot scale for the WMAP normalization. We also quote the inflationary energy scale corresponding to the WMAP normalization.
Cosmological AMR MHD with Enzo
Xu, Hao; Li, Hui; Li, Shengtai
2009-01-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.
Cosmological implications of unimodular gravity
Jain, Pankaj; Jaiswal, Atul; Karmakar, Purnendu; Kashyap, Gopal; Singh, Naveen K. E-mail: atijazz@iitk.ac.in E-mail: gopal@iitk.ac.in
2012-11-01
We consider a model of gravity and matter fields which is invariant only under unimodular general coordinate transformations (GCT). The determinant of the metric is treated as a separate field which transforms as a scalar under unimodular GCT. Furthermore we also demand that the theory is invariant under a new global symmetry which we call generalized conformal invariance. We study the cosmological implications of the resulting theory. We show that this theory gives a fit to the high-z supernova data which is identical to the standard Big Bang model. Hence we require some other cosmological observations to test the validity of this model. We also consider some models which do not obey the generalized conformal invariance. In these models we can fit the supernova data without introducing the standard cosmological constant term. Furthermore these models introduce only one dark component and hence solve the coincidence problem of dark matter and dark energy.
Double field theory inspired cosmology
Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn
2014-07-01
Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.
Self-Consistent Cosmological Simulations of DGP Braneworld Gravity
Schmidt, Fabian
2009-09-01
We perform cosmological N-body simulations of the Dvali-Gabadadze-Porrati braneworld model, by solving the full non-linear equations of motion for the scalar degree of freedom in this model, the brane bending mode. While coupling universally to matter, the brane-bending mode has self-interactions that become important as soon as the density field becomes non-linear. These self-interactions lead to a suppression of the field in high-density environments, and restore gravity to General Relativity. The code uses a multi-grid relaxation scheme to solve the non-linear field equation in the quasi-static approximation. We perform simulations of a flat self-accelerating DGP model without cosmological constant. However, the type of non-linear interactions of the brane-bending mode, which are the focus of this study, are generic to a wide class of braneworld cosmologies. The results of the DGP simulations are compared with standard gravity simulations assuming the same expansion history, and with DGP simulations using the linearized equation for the brane bending mode. This allows us to isolate the effects of the non-linear self-couplings of the field which are noticeable already on quasi-linear scales. We present results on the matter power spectrum and the halo mass function, and discuss the behavior of the brane bending mode within cosmological structure formation. We find that, independently of CMB constraints, the self-accelerating DGP model is strongly constrained by current weak lensing and cluster abundance measurements.
NASA Astrophysics Data System (ADS)
Tipler, Frank J.
2003-04-01
I shall present three arguments for the proposition that intelligent life is very rare in the universe. First, I shall summarize the consensus opinion of the founders of the modern synthesis (Simpson, Dobzhanski and Mayr) that the evolution of intelligent life is exceedingly improbable. Secondly, I shall develop the Fermi paradox: if they existed, they would be here. Thirdly, I shall show that if intelligent life were too common, it would use up all available resources and die out. But I shall show that the quantum mechanical principle of unitarity (actually a form of teleology!) requires intelligent life to survive to the end of time. Finally, I shall argue that, if the universe is indeed accelerating, then survival to the end of time requires that intelligent life, though rare, to have evolved several times in the visible universe. I shall argue that the acceleration is a consequence of the excess of matter over antimatter in the universe. I shall suggest experiments to test these claims.
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Cosmology based on f(R) gravity admits 1 eV sterile neutrinos.
Motohashi, Hayato; Starobinsky, Alexei A; Yokoyama, Jun'ichi
2013-03-22
It is shown that the tension between recent neutrino oscillation experiments, favoring sterile neutrinos with masses of the order of 1 eV, and cosmological data which impose stringent constraints on neutrino masses from the free streaming suppression of density fluctuations, can be resolved in models of the present accelerated expansion of the Universe based on f(R) gravity.
ΛCDM is Consistent with SPARC Radial Acceleration Relation
NASA Astrophysics Data System (ADS)
Keller, B. W.; Wadsley, J. W.
2017-01-01
Recent analysis of the Spitzer Photometry and Accurate Rotation Curve (SPARC) galaxy sample found a surprisingly tight relation between the radial acceleration inferred from the rotation curves and the acceleration due to the baryonic components of the disk. It has been suggested that this relation may be evidence for new physics, beyond ΛCDM. In this Letter, we show that 32 galaxies from the MUGS2 match the SPARC acceleration relation. These cosmological simulations of star-forming, rotationally supported disks were simulated with a WMAP3 ΛCDM cosmology, and match the SPARC acceleration relation with less scatter than the observational data. These results show that this acceleration relation is a consequence of dissipative collapse of baryons, rather than being evidence for exotic dark-sector physics or new dynamical laws.
Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D
2016-09-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.
Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.
2016-01-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes. PMID:27679822
The Higgs Portal and Cosmology
Assamagan, Ketevi; Chien-Yi Chen; Chou, John Paul; Curtin, David; Fedderke, Michael A.; Gershtein, Yuri; He, Xiao-Gang; Klute, Markus; Kozaczuk, Jonathon; Kotwal, Ashutosh; Lowette, Steven; No, Jose Miguel; Plehn, Tilman; Qian, Jianming; Ramsey-Musolf, Michael; Safonov, Alexei; Shelton, Jessie; Spannowsky, Michael; Su, Shufang; Walker, Devin G. E.; Willocq, Stephane; Winslow, Peter
2016-04-18
Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first-order electroweak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.
Quantum cosmology with nontrivial topologies
Vargas, T.
2008-10-10
Quantum creation of a universe with a nontrivial spatial topology is considered. Using the Euclidean functional integral prescription, we calculate the wave function of such a universe with cosmological constant and without matter. The minisuperspace path integral is calculated in the semiclassical approximation, and it is shown that in order to include the nontrivial topologies in the path integral approach to quantum cosmology, it is necessary to generalize the sum over compact and smooth 4-manifolds to sum over finite-volume compact 4-orbifolds.
Cosmology and the weak interaction
NASA Technical Reports Server (NTRS)
Schramm, David N.
1989-01-01
The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.
Cosmological constant from quantum spacetime
NASA Astrophysics Data System (ADS)
Majid, Shahn; Tao, Wen-Qing
2015-06-01
We show that a hypothesis that spacetime is quantum with coordinate algebra [xi,t ]=λPxi , and spherical symmetry under rotations of the xi, essentially requires in the classical limit that the spacetime metric is the Bertotti-Robinson metric, i.e., a solution of Einstein's equations with a cosmological constant and a non-null electromagnetic field. Our arguments do not give the value of the cosmological constant or the Maxwell field strength, but they cannot both be zero. We also describe the quantum geometry and the full moduli space of metrics that can emerge as classical limits from this algebra.
Singularities in loop quantum cosmology.
Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David
2008-12-19
We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.
Cosmological dynamics of extended chameleons
NASA Astrophysics Data System (ADS)
Tamanini, Nicola; Wright, Matthew
2016-04-01
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
Cosmologies with variable gravitational constant
Narkikar, J.V.
1983-03-01
In 1937 Dirac presented an argument, based on the socalled large dimensionless numbers, which led him to the conclusion that the Newtonian gravitational constant G changes with epoch. Towards the end of the last century Ernst Mach had given plausible arguments to link the property of inertia of matter to the large scale structure of the universe. Mach's principle also leads to cosmological models with a variable gravitational constant. Three cosmologies which predict a variable G are discussed in this paper both from theoretical and observational points of view.
Galaxy cosmological mass function
NASA Astrophysics Data System (ADS)
Lopes, Amanda R.; Iribarrem, Alvaro; Ribeiro, Marcelo B.; Stoeger, William R.
2014-12-01
Aims: This paper studies the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach that uses observational data provided by recent galaxy redshift surveys. Methods: Starting from a previously presented relation between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity L, and the average galactic mass ℳg were computed in terms of the redshift. ℳg was also alternatively estimated by means of a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allowed us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range 0.5
Regularizing cosmological singularities by varying physical constants
Dąbrowski, Mariusz P.; Marosek, Konrad E-mail: k.marosek@wmf.univ.szczecin.pl
2013-02-01
Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.
Stringy Model of Cosmological Dark Energy
Aref'eva, Irina Ya.
2007-11-20
A string field theory (SFT) nonlocal model of the cosmological dark energy providing w<-1 is briefly surveyed. We summarize recent developments and open problems, as well as point out some theoretical issues related with others applications of the SFT nonlocal models in cosmology, in particular, in inflation and cosmological singularity.
The Case for a Hierarchical Cosmology
ERIC Educational Resources Information Center
Vaucouleurs, G. de
1970-01-01
The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)
Cosmological perturbations and classical change of signature
NASA Astrophysics Data System (ADS)
Martin, Jérôme
1995-12-01
Cosmological perturbations on a manifold admitting signature change are studied. The background solution consists in a Friedmann-Lemaître-Robertson-Walker universe filled by a constant scalar field playing the role of a cosmological constant. It is shown that no regular solution exists satisfying the junction conditions at the surface of change. The comparison with similar studies in quantum cosmology is made.
Constraints on cosmological parameters in power-law cosmology
NASA Astrophysics Data System (ADS)
Rani, Sarita; Altaibayeva, A.; Shahalam, M.; Singh, J. K.; Myrzakulov, R.
2015-03-01
In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H0 (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not with H(z) data. However, the constraints obtained on i.e. H0 average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → -1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details.
Cosmological constant, violation of cosmological isotropy and CMB
Urban, Federico R.; Zhitnitsky, Ariel R. E-mail: arz@physics.ubc.ca
2009-09-01
We suggest that the solution to the cosmological vacuum energy puzzle does not require any new field beyond the standard model, but rather can be explained as a result of the interaction of the infrared sector of the effective theory of gravity with standard model fields. The cosmological constant in this framework can be presented in terms of QCD parameters and the Hubble constant H as follows, ε{sub vac} ≅ H⋅m{sub q}( q-bar q)/m{sub η'} ≅ (4.3⋅10{sup −3}eV){sup 4}, which is amazingly close to the observed value today. In this work we explain how this proposal can be tested by analyzing CMB data. In particular, knowing the value of the observed cosmological constant fixes univocally the smallest size of the spatially flat, constant time 3d hypersurface which, for instance in the case of an effective 1-torus, is predicted to be around 74 Gpc. We also comment on another important prediction of this framework which is a violation of cosmological isotropy. Such anisotropy is indeed apparently observed by WMAP, and will be confirmed (or ruled out) by future PLANCK data.
Constraints on cosmological parameters in power-law cosmology
Rani, Sarita; Singh, J.K.; Altaibayeva, A.; Myrzakulov, R.; Shahalam, M. E-mail: aziza.bibol@mail.ru E-mail: jainendrrakumar@rediffmail.com
2015-03-01
In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H{sub 0} (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not with H(z) data. However, the constraints obtained on i.e. H{sub 0} average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → −1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details.
Experimentally testing the standard cosmological model
Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )
1990-11-01
The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.
Thermonuclear supernova light curves: Progenitors and cosmology
NASA Astrophysics Data System (ADS)
Rodney, Steven A.
Thermonuclear Supernovae (TN SNe) are an extremely important tool in modern astronomy. In their role as cosmological distance probes, they have revealed the accelerated expansion of the universe and have begun to constrain the nature of the dark energy that may be driving that expansion. The next decade will see a succession of wide-field surveys producing thousands of TNSN detections each year. Traditional methods of SN analysis, rooted in time-intensive spectroscopic follow-up, will become completely impractical. To realize the potential of this coming tide of massive data sets, we will need to extract cosmographic parameters (redshift and luminosity distance) from SN photometry without any spectroscopic support. In this dissertation, I present the Supernova Ontology with Fuzzy Templates (SOFT) method, an innovative new approach to the analysis of SN light curves. SOFT uses the framework of fuzzy set theory to perform direct comparisons of SN candidates against template light curves, simultaneously producing both classifications and cosmological parameter estimates. The SOFT method allows us to shed new light on two rich archival data sets. I revisit the IfA Deep Survey and HST GOODS to extract new and improved measurements of the TNSN rate from z=0.2 out to z=1.6. Our new analysis shows a steady increase in the TNSN rate out to z˜1, and adds support for a decrease in the rate at z=1.5. Comparing these rate measurements to theoretical models, I conclude that the progenitor scenario most favored by the collective observational data is a single degenerate model, regulated by a strong wind from the accreting white dwarf. Using a compilation of SN light curves from five recent surveys, I demonstrate that SOFT is able to derive useful constraints on cosmological models from a data set with no spectroscopic information at all. Looking ahead to the near future, I find that photometric analysis of data sets containing 2,000 SNe will be able to improve our constraints on
f(T,Script T) gravity and cosmology
NASA Astrophysics Data System (ADS)
Harko, Tiberiu; Lobo, Francisco S. N.; Otalora, G.; Saridakis, Emmanuel N.
2014-12-01
We present an extension of f(T) gravity, allowing for a general coupling of the torsion scalar T with the trace of the matter energy-momentum tensor Script T. The resulting f(T,Script T) theory is a new modified gravity, since it is different from all the existing torsion or curvature based constructions. Applied to a cosmological framework, it leads to interesting phenomenology. In particular, one can obtain a unified description of the initial inflationary phase, the subsequent non-accelerating, matter-dominated expansion, and then the transition to a late-time accelerating phase. Additionally, the effective dark energy sector can be quintessence or phantom-like, or exhibit the phantom-divide crossing during the evolution. Moreover, in the far future the universe results either to a de Sitter exponential expansion, or to eternal power-law accelerated expansions. Finally, a detailed study of the scalar perturbations at the linear level reveals that f(T,Script T) cosmology can be free of ghosts and instabilities for a wide class of ansatzes and model parameters.
Modified f( R, T) gravity theory and scalar field cosmology
NASA Astrophysics Data System (ADS)
Singh, Vijay; Singh, C. P.
2015-03-01
In this paper, we explore the behaviors of scalar field in modified f( R, T) gravity theory within the framework of a flat Friedmann-Robertson-Walker cosmological model. The universe is assumed to be filled with two non-interacting matter sources, scalar field (normal or phantom) with scalar potential and matter contribution due to f( R, T) action. We first explore a model where the potential is a constant, and the universe evolves as a de Sitter type. This model is compatible with phantom scalar field only which gives fine tuning with the recent observations. The model exhibits a wide variety of early time physical phenomena that eventually behaves like a cosmological constant at late times. The model shows transition from decelerated to accelerated expansion of the universe. We also explore a model where the scalar field potential and the scale factor evolve exponentially as a scalar field. This model is compatible with normal scalar field only and describes transition from inflationary to the decelerated phase at early times and quintessence to phantom phase at late times. We constraint our results with the recent observational data and find that some values of parameters are consistent with SNe Ia and H( z)+SNe Ia data to describe accelerated expansion only whereas some one give decelerated and accelerated expansions with H( z), WMAP7 and WMAP7+BAO+ H( z) observational data.
How Cosmology Became a Science.
ERIC Educational Resources Information Center
Brush, Stephen G.
1992-01-01
Describes the origin of the science of cosmology and the competing theories to explain the beginning of the universe. The big bang theory for the creation of the universe is contrasted with the steady state theory. The author details discoveries that led to the demise of the steady state theory. (PR)
Shaposhnikov, Mikhail
2015-01-01
I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.
Random potentials and cosmological attractors
NASA Astrophysics Data System (ADS)
Linde, Andrei
2017-02-01
I show that the problem of realizing inflation in theories with random potentials of a limited number of fields can be solved, and agreement with the observational data can be naturally achieved if at least one of these fields has a non-minimal kinetic term of the type used in the theory of cosmological α-attractors.
Cosmology in the Bucharest Observatory
NASA Astrophysics Data System (ADS)
Suran, Marian Doru
2008-09-01
At the Bucharest Observatory cosmology started in the early'80s as a theoretical branch directly related to the computational facilities available in our Observatory. With the help of our instruments, from a small Z8080 computer (early'80s) to a superscalar supercomputer of 44 processors (now), our cosmology team has developed models, methods and techniques related to: the investigation of 2D and 3D catalogues of galaxies, clusters and superclusters; investigation of the log tails of the 2-points correlation functions; cosmological simulations (N-body+SPH) of the Large Scale Structure of the Universe (LSS) investigation of environmental effects in clusters of galaxies; application of neural methods in cosmology. The use of such models and techniques has permitted us to study problems concerning: correlated signals in the long tail of the correlation functions for galaxies, clusters and superclusters (due to baryon oscillations) HD simulations of the LSS and of the evolution of the first and secondary Web structures; studies of the epochs of the formation of DM halos in a LCDM scenario (earlier than z 15) studies of the evolution of halos and galaxies due to the parental merging phenomena; detection of the Butcher-Oemler and Oemler-Butcher effects in far or close clusters; studies of E+A galaxies; study of the synthetic spectra of galaxies and of the chemo-spectro-photometrical evolution of galaxies (for z<30) photometric redshift determination (for z<10).
The Higgs boson and cosmology.
Shaposhnikov, Mikhail
2015-01-13
I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.
Towards Noncommutative Supersymmetric Quantum Cosmology
Sabido, M.; Socorro, J.; Guzman, W.
2010-12-07
In this work a construction of supersymmetric noncommutative cosmology is presented. We start with a ''noncommutative'' deformation of the minisuperspace variables, and by using the time reparametrization invariance of the noncommutative bosonic model we proceed to construct a super field description of the model.
Particle cosmology comes of age
Turner, M.S.
1987-12-01
The application of modern ideas in particle physics to astrophysical and cosmological settings is a continuation of a fruitful tradition in astrophysics which began with the application of atomic physics, and then nuclear physics. In the past decade particle cosmology and particle astrophysics have been recognized as 'legitimate activities' by both particle physicists and astrophysicists and astronomers. During this time there has been a high level of theoretical activity producing much speculation about the earliest history of the Universe, as well as important and interesting astrophysical and cosmological constraints to particle physics theories. This period of intense theoretical activity has produced a number of ideas most worthy of careful consideration and scrutiny, and even more importantly, amenable to experimental/observational test. Among the ideas which are likely to be tested in the next decade are: the cosmological bound to the number of neutrino flavors, inflation, relic WIMPs as the dark matter, and MSW neutrino oscillations as a solution to the solar neutrino problems. 94 refs.
Noncommutative Quantum Scalar Field Cosmology
Diaz Barron, L. R.; Lopez-Dominguez, J. C.; Sabido, M.; Yee, C.
2010-07-12
In this work we study noncommutative Friedmann-Robertson-Walker (FRW) cosmology coupled to a scalar field endowed with an exponential potential. The quantum scenario is analyzed in the Bohmian formalism of quantum trajectories to investigate the effects of noncommutativity in the evolution of the universe.
Asymmetric cyclic evolution in polymerised cosmology
Hrycyna, Orest; Mielczarek, Jakub; Szydłowski, Marek E-mail: jakub.mielczarek@uj.edu.pl
2009-12-01
The dynamical systems methods are used to study evolution of the polymerised scalar field cosmologies with the cosmological constant. We have found all evolutional paths admissible for all initial conditions on the two-dimensional phase space. We have shown that the cyclic solutions are generic. The exact solution for polymerised cosmology is also obtained. Two basic cases are investigated, the polymerised scalar field and the polymerised gravitational and scalar field part. In the former the division on the cyclic and non-cyclic behaviour is established following the sign of the cosmological constant. The value of the cosmological constant is upper bounded purely from the dynamical setting.
Superheavy magnetic monopoles and the standard cosmology
NASA Astrophysics Data System (ADS)
Turner, M. S.
1984-10-01
The superheavy magnetic monopoles predicted to exist in grand unified theories (GUTs) are for particle physics, astrophysics and cosmology. Astrophysical and cosmological considerations are invaluable in the study of the properties of GUT monopoles. Because of the glut of monopoles predicted in the standard cosmology for the simplest GUTs. The simplest GUTs and the standard cosmology are not compatible. This is a very important piece of information about physics at unification energies and about the earliest movements of the Universe. The cosmological consequences of GUT monopoles within the context of the standard hot big bang model are reviewed.
Cosmological model favored by the holographic principle
NASA Astrophysics Data System (ADS)
Dymnikova, Irina; Dobosz, Anna; Sołtysek, Bożena
2016-03-01
We present a regular spherically symmetric cosmological model of the Lemaitre class distinguished by the holographic principle as the thermodynamically stable end-point of quantum evaporation of the cosmological horizon. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. Global structure of space-time is the same as for the de Sitter space-time. Cosmological evolution goes from a big initial value of the cosmological constant towards its presently observed value.
The cosmological constant and cold dark matter
NASA Astrophysics Data System (ADS)
Efstathiou, G.; Sutherland, W. J.; Maddox, S. J.
1990-12-01
It is argued here that the success of the cosmological cold dark matter (CDM) model can be retained and the new observations of very large scale cosmological structures can be accommodated in a spatially flat cosmology in which as much as 80 percent of the critical density is provided by a positive cosmological constant. In such a universe, expansion was dominated by CDM until a recent epoch, but is now governed by the cosmological constant. This constant can also account for the lack of fluctuations in the microwave background and the large number of certain kinds of objects found at high redshift.
Thermodynamics of cosmological matter creation
Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P.
1988-01-01
A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the
Cosmological gravitomagnetism and Mach's principle
Schmid, Christoph
2006-08-15
The spin axes of gyroscopes experimentally define local nonrotating frames, i.e. the time evolution of axes of inertial frames. But what physical cause governs the time evolution of gyroscope axes? We consider linear perturbations of Friedmann-Robertson-Walker (FRW) cosmologies with k=0, i.e. spatially flat. We ask the following question: Will cosmological vector perturbations (i.e. vorticity or rotational perturbations) exactly drag the spin axes of gyroscopes relative to the directions of geodesics to quasars in the asymptotic unperturbed FRW space? Using Cartan's formalism with local orthonormal bases, we cast the laws of linear cosmological gravitomagnetism into a form showing the close correspondence with the laws of ordinary magnetism. Our results, valid for any equation of state and any form of the energy-momentum tensor for cosmological matter, are as follows: (1) the dragging of a gyroscope axis by rotational perturbations of matter beyond the H-dot radius from the gyroscope is exponentially suppressed, where H is the Hubble rate, and the dot is the derivative with respect to cosmic time. (2) If the perturbation of matter is a homogeneous rotation inside some radius around a gyroscope, then exact dragging of the gyroscope axis by the rotational perturbation is reached exponentially fast as the rotation radius gets larger than the H-dot radius. (3) For the most general linear cosmological perturbations, the time evolution of all gyroscope spin axes and the axis directions of all local inertial frames exactly follow a weighted average of the rotational motion of cosmological matter, i.e. there is exact frame-dragging everywhere. The weight function is the density of measured angular momentum of matter times (1/r) times the Yukawa force (-d/dr)[(1/r)exp(-{mu}r)], where r is the geodesic distance from the source to the gyroscope. The exponential cutoff is given by {mu}{sup 2}=-4(dH/dt). Except for the Yukawa cutoff the weight function is the same as in the
Thermodynamics of cosmological matter creation.
Prigogine, I; Geheniau, J; Gunzig, E; Nardone, P
1988-10-01
A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the
Recycler lattice for Project X at Fermilab
Xiao, Meiqin; Johnson, David E.; /Fermilab
2009-09-01
Project X is an intense proton source that provides beam for various physics programs. The source consists of an 8 GeV H- superconducting linac that injects into the Fermilab Recycler where H- are converted to protons. Protons are provided to the Main Injector and accelerated to desired energy (in the range 60-120 GeV) or extracted from the Recycler for the 8 GeV program. A long drift space is needed to accommodate the injection chicane with stripping foils. The Recycler is a fixed 8 GeV kinetic energy storage ring using permanent gradient magnets. A phase trombone straight section is used to control the tunes. In this paper, the existing FODO lattice in RR10 straight section being converted into doublet will be described. Due to this change, the phase trombone straight section has to be modified to bring the tunes to the nominal working point. A toy lattice of recycler ring is designed to simulate the end-shim effects of each permanent gradient magnet to add the flexibility to handle the tune shift to the lattice during the operation of 1.6E14 with KV distribution of the proton beam to give {approx}0.05 of space charge tune shift. The comparison or the combinations of the two modification ways for the Recycler ring lattice will be presented also in this paper.
NASA Astrophysics Data System (ADS)
Knuth, Kevin H.
2009-12-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.
Alcock-paczynski cosmological test
López-Corredoira, M.
2014-02-01
In order to test the expansion of the universe and its geometry, we carry out an Alcock-Paczyński cosmological test, that is, an evaluation of the ratio of observed angular size to radial/redshift size. The main advantage of this test is that it does not depend on the evolution of the galaxies but only on the geometry of the universe. However, the redshift distortions produced by the peculiar velocities of the gravitational infall also have an influence, which should be separated from the cosmological effect. We derive the anisotropic correlation function of sources in three surveys within the Sloan Digital Sky Survey (SDSS): galaxies from SDSS-III/Baryon Oscillation Spectroscopic Survey Data Release 10 (BOSS-DR10) and QSOs from SDSS-II and SDSS-III/BOSS-DR10. From these, we are able to disentangle the dynamic and geometric distortions and thus derive the ratio of observed angular size to radial/redshift size at different redshifts. We also add some other values available in the literature. Then we use the data to evaluate which cosmological model fits them. We used six different models: concordance ΛCDM, Einstein-de Sitter, open-Friedman cosmology without dark energy, flat quasi-steady state cosmology, a static universe with a linear Hubble law, and a static universe with tired-light redshift. Only two of the six models above fit the data of the Alcock-Paczyński test: concordance ΛCDM and static universe with tired-light redshift, whereas the rest of them are excluded at a >95% confidence level. If we assume that ΛCDM is the correct one, the best fit with a free Ω {sub m} is produced for Ω{sub m}=0.24{sub −0.07}{sup +0.10}.
iCosmo: an interactive cosmology package
NASA Astrophysics Data System (ADS)
Refregier, A.; Amara, A.; Kitching, T. D.; Rassat, A.
2011-04-01
Aims: The interactive software package iCosmo, designed to perform cosmological calculations is described. Methods: iCosmo is a software package to perfom interactive cosmological calculations for the low-redshift universe. Computing distance measures, the matter power spectrum, and the growth factor is supported for any values of the cosmological parameters. It also computes derived observed quantities for several cosmological probes such as cosmic shear, baryon acoustic oscillations, and type Ia supernovae. The associated errors for these observable quantities can be derived for customised surveys, or for pre-set values corresponding to current or planned instruments. The code also allows for calculation of cosmological forecasts with Fisher matrices, which can be manipulated to combine different surveys and cosmological probes. The code is written in the IDL language and thus benefits from the convenient interactive features and scientific libraries available in this language. iCosmo can also be used as an engine to perform cosmological calculations in batch mode, and forms a convenient adaptive platform for the development of further cosmological modules. With its extensive documentation, it may also serve as a useful resource for teaching and for newcomers to the field of cosmology. Results: The iCosmo package is described with a number of examples and command sequences. The code is freely available with documentation at http://www.icosmo.org, along with an interactive web interface and is part of the Initiative for Cosmology, a common archive for cosmological resources.
Colgate, S.A.
1958-05-27
An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.
Cosmology with the Cosmic Microwave Background
NASA Astrophysics Data System (ADS)
Souradeep, Tarun
The standard model of cosmology must not only explain the dynamics of the homogeneous background universe, but also satisfactorily describe the perturbed universe - the generation, evolution and finally, the formation of large-scale structures in the universe. Cosmic microwave background (CMB) has been by far the most influential cosmological observation driving advances in current cosmology. Exquisite measurements from CMB experiments have seen the emergence of a concordant cosmological model. Besides precise determination of various parameters of the standard cosmological model, observations have also established some important basic tenets that underlie models of cosmology and structure formation in the universe. The article reviews this aspect of recent progress in cosmology for a general science reader.
Testing coupled dark energy models with their cosmological background evolution
NASA Astrophysics Data System (ADS)
van de Bruck, Carsten; Mifsud, Jurgen; Morrice, Jack
2017-02-01
We consider a cosmology in which dark matter and a quintessence scalar field responsible for the acceleration of the Universe are allowed to interact. Allowing for both conformal and disformal couplings, we perform a global analysis of the constraints on our model using Hubble parameter measurements, baryon acoustic oscillation distance measurements, and a Supernovae Type Ia data set. We find that the additional disformal coupling relaxes the conformal coupling constraints. Moreover, we show that, at the background level, a disformal interaction within the dark sector is preferred to both Λ CDM and uncoupled quintessence, hence favoring interacting dark energy.
Realistic cosmological measurement of distances in the Friedmann universe
NASA Astrophysics Data System (ADS)
Nikolaev, Aleksei; Chervon, Sergey
2016-01-01
We consider application of our development of Zeldovich’s ideas, presented in Ref. 1, for measurement of the cosmological angular diameter distance (ADD) in the Friedmann Universe. To make a comparison with ΛCDM we analyze ADD measurement in ϕCDM model responsible for the later inflation (present accelerated expansion of the Universe). We also analyze a small deviation from equality in the distance duality relation induced by the fullness (by matter) of the cone of light rays (CLR) which is used for the ADD measurement method.
Integrable Cosmological Models in DD and Variations of Fundamental Constants
NASA Astrophysics Data System (ADS)
Melnikov, V. N.
Discovery of present acceleration of the Universe, dark matter and dark energy problems are great challenges to modern physics, which may bring to a new revolution. Integrable multidimensional models of gravitation and cosmology make up one of the proper approaches to study basic issues and, in particular, strong field objects, the Early and present Universe and black hole physics 1,2. Problems of the absolute G measurements and its possible time and range variations, which are reflections of the unification problem are discussed. A need for further measurements of G and its possible variations (also in space) is pointed out.
Effective cosmological constant induced by stochastic fluctuations of Newton's constant
NASA Astrophysics Data System (ADS)
de Cesare, Marco; Lizzi, Fedele; Sakellariadou, Mairi
2016-09-01
We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.
NASA Astrophysics Data System (ADS)
Quercellini, Claudia; Amendola, Luca; Balbi, Amedeo; Cabella, Paolo; Quartin, Miguel
2012-12-01
In recent years, improved astrometric and spectroscopic techniques have opened the possibility of measuring the temporal change of radial and transverse position of sources in the sky over relatively short time intervals. This has made at least conceivable to establish a novel research domain, which we dub “real-time cosmology”. We review for the first time most of the work already done in this field, analysing the theoretical framework as well as some foreseeable observational strategies and their capability to constrain models. We first focus on real-time measurements of the overall redshift drift and angular separation shift in distant sources, which allows the observer to trace the background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper accelerations in clustered systems, and therefore their gravitational potential. The last two sections are devoted to the future change of the cosmic microwave background on “short” time scales, as well as to the temporal shift of the temperature anisotropy power spectrum and maps. We conclude revisiting in this context the usefulness of upcoming experiments (like CODEX and Gaia) for real-time observations.
Astroparticle physics and cosmology.
Mitton, Simon
2006-05-20
Astroparticle physics is an interdisciplinary field that explores the connections between the physics of elementary particles and the large-scale properties of the universe. Particle physicists have developed a standard model to describe the properties of matter in the quantum world. This model explains the bewildering array of particles in terms of constructs made from two or three quarks. Quarks, leptons, and three of the fundamental forces of physics are the main components of this standard model. Cosmologists have also developed a standard model to describe the bulk properties of the universe. In this new framework, ordinary matter, such as stars and galaxies, makes up only around 4% of the material universe. The bulk of the universe is dark matter (roughly 23%) and dark energy (about 73%). This dark energy drives an acceleration that means that the expanding universe will grow ever larger. String theory, in which the universe has several invisible dimensions, might offer an opportunity to unite the quantum description of the particle world with the gravitational properties of the large-scale universe.
Jain, Bhuvnesh; Khoury, Justin
2010-07-15
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher-dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from {approx} kpc (galaxy scales) to {approx} Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages - we summarize these tests and discuss the interesting prospects for new tests in the coming decade.
Crossing on hyperbolic lattices
NASA Astrophysics Data System (ADS)
Gu, Hang; Ziff, Robert M.
2012-05-01
We divide the circular boundary of a hyperbolic lattice into four equal intervals and study the probability of a percolation crossing between an opposite pair as a function of the bond occupation probability p. We consider the {7,3} (heptagonal), enhanced or extended binary tree (EBT), the EBT-dual, and the {5,5} (pentagonal) lattices. We find that the crossing probability increases gradually from 0 to 1 as p increases from the lower pl to the upper pu critical values. We find bounds and estimates for the values of pl and pu for these lattices and identify the self-duality point p* corresponding to where the crossing probability equals 1/2. Comparison is made with recent numerical and theoretical results.
NASA Astrophysics Data System (ADS)
Weisz, Peter; Majumdar, Pushan
2012-03-01
Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.
David Richards
2004-10-01
This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances, and describe how such calculations provide insight into the structure of the hadrons. Finally, I discuss direct probes of the quark and gluon structure of baryons through the lattice measurement of the moments of quark distributions and of Generalized Parton Distributions.
Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.
1982-08-17
The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.
Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.
1979-08-29
The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.
Bell, J.S.
1959-09-15
An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.
Acceleration schedules for a recirculating heavy-ion accelerator
Sharp, W.M.; Grote, D.P.
2002-05-01
Recent advances in solid-state switches have made it feasible to design programmable, high-repetition-rate pulsers for induction accelerators. These switches could lower the cost of recirculating induction accelerators, such as the ''small recirculator'' at Lawrence Livermore National Laboratory (LLNL), by substantially reducing the number of induction modules. Numerical work is reported here to determine what effects the use of fewer pulsers at higher voltage would have on the beam quality of the LLNL small recirculator. Lattices with different numbers of pulsers are examined using the fluid/envelope code CIRCE, and several schedules for acceleration and compression are compared for each configuration. For selected schedules, the phase-space dynamics is also studied using the particle-in-cell code WARP3d.
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
NASA Astrophysics Data System (ADS)
Oates, Chris
2012-06-01
Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths << 1 Hz). To suppress the effects of atomic motion/recoil, the atoms in the sample (˜10^4 atoms) are confined tightly in the potential wells of an optical standing wave (lattice). The wavelength of the lattice light is tuned to its ``magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates
TOPICAL REVIEW: String cosmology versus standard and inflationary cosmology
NASA Astrophysics Data System (ADS)
Gasperini, M.
2000-06-01
This paper presents a review of the basic, model-independent differences between the pre-big-bang scenario, arising naturally in a string cosmology context, and the standard inflationary scenario. We use an unconventional approach in which the introduction of technical details is avoided as much as possible, trying to focus the reader's attention on the main conceptual aspects of both scenarios. The aim of the paper is not to conclude either in favour of one or other of the scenarios, but to raise questions that are left to the reader's meditation. Warning: the paper does not contain equations, and is not intended as a complete review of all aspects of string cosmology.
Bi-scalar modified gravity and cosmology with conformal invariance
Saridakis, Emmanuel N.; Tsoukalas, Minas E-mail: minasts@central.ntua.gr
2016-04-01
We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sector we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to 'mimetic dark matter' or to 'dark radiation' respectively. In the case where an explicit matter sector is included we obtain a cosmological evolution in agreement with observations, that is a transition from matter to dark energy era, with the onset of cosmic acceleration. Furthermore, for particular parameter regions, the effective dark-energy equation of state can transit to the phantom regime at late times. These behaviors reveal the capabilities of the theory, since they arise purely from the novel, bi-scalar construction and the involved couplings between the two fields.
TASI Lectures on Cosmological Observables and String Theory
NASA Astrophysics Data System (ADS)
Silverstein, Eva
These lectures provide an updated pedagogical treatment of the theoretical structure and phenomenology of some basic mechanisms for inflation, along with an overview of the structure of cosmological uplifts of holographic duality. A full treatment of the problem requires `ultraviolet completion' because of the sensitivity of inflation to quantum gravity effects, including back reaction and non-adiabatic production of heavy degrees of freedom. Cosmological observations imply accelerated expansion of the late universe, and provide increasingly precise constraints and discovery potential on the amplitude and shape of primordial tensor and scalar perturbations, and some of their correlation functions. Most backgrounds of string theory have positive potential energy, with a rich but still highly constrained landscape of solutions. The theory contains novel mechanisms for inflation, some subject to significant observational tests, with highly UV-sensitive tensor mode measurements being a prime example along with certain shapes of primordial correlation functions. Although the detailed ultraviolet completion is not accessible experimentally, some of these mechanisms directly stimulate a more systematic analysis of the space of low energy theories and signatures relevant for analysis of data, which is sensitive to physics orders of magnitude above the energy scale of inflation as a result of long time evolution (dangerous irrelevance) and the substantial amount of data (allowing constraints on quantities with signal/noise. Portions of these lectures appeared previously in Les Houches 2013, "Post-Planck Cosmology".
Tachyon field in loop quantum cosmology: Inflation and evolution picture
Xiong Huaui; Zhu Jianyang
2007-04-15
Loop quantum cosmology (LQC) predicts a nonsingular evolution of the universne through a bounce in the high energy region. We show that this is always true in tachyon matter LQC. Differing from the classical Friedman-Robertson-Walker (FRW) cosmology, the super inflation can appear in the tachyon matter LQC; furthermore, the inflation can be extended to the region where classical inflation stops. Using the numerical method, we give an evolution picture of the tachyon field with an exponential potential in the context of LQC. It indicates that the quantum dynamical solutions have the same attractive behavior as the classical solutions do. The whole evolution of the tachyon field is that in the distant past, the tachyon field--being in the contracting cosmology--accelerates to climb up the potential hill with a negative velocity; then at the boundary the tachyon field is bounced into an expanding universe with positive velocity rolling down to the bottom of the potential. In the slow roll limit, we compare the quantum inflation with the classical case in both an analytic and a numerical way.
Accelerated universes from type IIA compactifications
Blåbäck, Johan; Danielsson, Ulf; Dibitetto, Giuseppe E-mail: ulf.danielsson@physics.uu.se
2014-03-01
We study slow-roll accelerating cosmologies arising from geometric compactifications of type IIA string theory on T{sup 6}/(Z{sub 2} × Z{sub 2}). With the aid of a genetic algorithm, we are able to find quasi-de Sitter backgrounds with both slow-roll parameters of order 0.1. Furthermore, we study their evolution by numerically solving the corresponding time-dependent equations of motion, and we show that they actually display a few e-folds of accelerated expansion. Finally, we comment on their perturbative reliability.
How does pressure gravitate? Cosmological constant problem confronts observational cosmology
Narimani, Ali; Scott, Douglas; Afshordi, Niayesh E-mail: nafshordi@pitp.ca
2014-08-01
An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (''highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ{sub 4} = 0.105 ± 0.049 (+highL CMB), or ζ{sub 4} = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ{sub 4}=), and also among different data sets.
Particle Pair Production in Cosmological General Relativity
NASA Astrophysics Data System (ADS)
Oliveira, Firmin J.
2012-12-01
The Cosmological General Relativity (CGR) of Carmeli, a 5-dimensional (5-D) theory of time, space and velocity, predicts the existence of an acceleration a 0= c/ τ due to the expansion of the universe, where c is the speed of light in vacuum, τ=1/ h is the Hubble-Carmeli time constant, where h is the Hubble constant at zero distance and no gravity. The Carmeli force on a particle of mass m is F c = ma 0, a fifth force in nature. In CGR, the effective mass density ρ eff = ρ- ρ c , where ρ is the matter density and ρ c is the critical mass density which we identify with the vacuum mass density ρ vac =- ρ c . The fields resulting from the weak field solution of the Einstein field equations in 5-D CGR and the Carmeli force are used to hypothesize the production of a pair of particles. The mass of each particle is found to be m= τc 3/4 G, where G is Newton's constant. The vacuum mass density derived from the physics is ρ vac =- ρ c =-3/8 πGτ 2. We make a connection between the cosmological constant of the Friedmann-Robertson-Walker model and the vacuum mass density of CGR by the relation Λ=-8 πGρ vac =3/ τ 2. Each black hole particle defines its own volume of space enclosed by the event horizon, forming a sub-universe. The cosmic microwave background (CMB) black body radiation at the temperature T o =2.72548 K which fills that volume is found to have a relationship to the ionization energy of the Hydrogen atom. Define the radiation energy ɛ γ =(1- g) mc 2/ N γ , where (1- g) is the fraction of the initial energy mc 2 which converts to photons, g is a function of the baryon density parameter Ω b and N γ is the total number of photons in the CMB radiation field. We make the connection with the ionization energy of the first quantum level of the Hydrogen atom by the hypothesis ɛ_{γ} = ( 1 - g ) m c^2 / N_{γ } = α^2 μ c^2/2, where α is the fine-structure constant and μ= m p f/(1+ f), where f= m e / m p with m e the electron mass and m p the
Cosmology in Scalar-Tensor Theory and Asymptotically de Sitter Universe
NASA Astrophysics Data System (ADS)
Sen, A. A.; Sen, S.
We have investigated the cosmological scenarios with a four-dimensional effective action which is connected with multidimensional, supergravity and string theories. The solution for the scale factor is such that initially universe undergoes a decelerated expansion but in late times it enters into the accelerated expansion phase. In fact, it asymptotically becomes a de Sitter universe. The dilaton field in our model is a decreasing function of time and it becomes a constant in late time resulting the exit from the scalar-tensor theory to the standard Einstein's gravity. Also the dilaton field results in the existence of a positive cosmological constant in late times.
Attracted to de Sitter II: cosmology of the shift-symmetric Horndeski models
Martín-Moruno, Prado; Nunes, Nelson J. E-mail: njnunes@fc.ul.pt
2015-09-01
Horndeski models with a de Sitter critical point for any kind of material content may provide a mechanism to alleviate the cosmological constant problem. Moreover, they could allow us to understand the current accelerated expansion of the universe as the result of the dynamical approach to the critical point when it is an attractor. We show that this critical point is indeed an attractor for the shift-symmetric subfamily of models with these characteristics. We study the cosmological scenario that results when considering radiation and matter content, and conclude that their background dynamics is compatible with the latest observational data.
Spectral and structural stability properties of charged particle dynamics in coupled lattices
Qin, Hong; Chung, Moses; Davidson, Ronald C.; Burby, Joshua W.
2015-05-15
It has been realized in recent years that coupled focusing lattices in accelerators and storage rings have significant advantages over conventional uncoupled focusing lattices, especially for high-intensity charged particle beams. A theoretical framework and associated tools for analyzing the spectral and structural stability properties of coupled lattices are formulated in this paper, based on the recently developed generalized Courant-Snyder theory for coupled lattices. It is shown that for periodic coupled lattices that are spectrally and structurally stable, the matrix envelope equation must admit matched solutions. Using the technique of normal form and pre-Iwasawa decomposition, a new method is developed to replace the (inefficient) shooting method for finding matched solutions for the matrix envelope equation. Stability properties of a continuously rotating quadrupole lattice are investigated. The Krein collision process for destabilization of the lattice is demonstrated.
Strong evidence for an accelerating Universe
NASA Astrophysics Data System (ADS)
Haridasu, Balakrishna S.; Luković, Vladimir V.; D'Agostino, Rocco; Vittorio, Nicola
2017-03-01
A recent analysis of supernova Ia (SN Ia) data claims a "marginal" ( 3σ) evidence for a cosmic acceleration. This result has been complemented with a non-accelerating Rh = ct cosmology, which was presented as a valid alternative to the ΛCDM model. In this paper we use the same analysis to show that non-marginal evidence for acceleration is truly found. We compare the standard Friedmann models to the Rh = ct cosmology by complementing SN Ia data with baryon acoustic oscillations, gamma ray bursts, and observational Hubble datasets. We also study the power-law model, which is a functional generalisation of Rh = ct. We find that the evidence for late-time acceleration cannot be refuted at a 4.56σ confidence level from SN Ia data alone, and at an even stronger confidence level (5.38σ) from our joint analysis. In addition, the non-accelerating Rh = ct model fails to statistically compare with the ΛCDM, having a Δ(AIC) 30.
Design and Simulation of IOTA - a Novel Concept of Integrable Optics Test Accelerator
Nagaitsev, S.; Valishev, A.; Danilov, V.V.; Shatilov, D.N.; /Novosibirsk, IYF
2012-05-01
The use of nonlinear lattices with large betatron tune spreads can increase instability and space charge thresholds due to improved Landau damping. Unfortunately, the majority of nonlinear accelerator lattices turn out to be nonintegrable, producing chaotic motion and a complex network of stable and unstable resonances. Recent advances in finding the integrable nonlinear accelerator lattices have led to a proposal to construct at Fermilab a test accelerator with strong nonlinear focusing which avoids resonances and chaotic particle motion. This presentation will outline the main challenges, theoretical design solutions and construction status of the Integrable Optics Test Accelerator (IOTA) underway at Fermilab.
Moving embedded lattice solitons.
Malomed, B A; Fujioka, J; Espinosa-Cerón, A; Rodríguez, R F; González, S
2006-03-01
It was recently proved that solitons embedded in the spectrum of linear waves may exist in discrete systems, and explicit solutions for isolated unstable embedded lattice solitons (ELS) of a differential-difference version of a higher-order nonlinear Schrodinger equation were found [Gonzalez-Perez-Sandi, Fujioka, and Malomed, Physica D 197, 86 (2004)]. The discovery of these ELS gives rise to relevant questions such as the following: (1) Are there continuous families of ELS? (2) Can ELS be stable? (3) Is it possible for ELS to move along the lattice? (4) How do ELS interact? The present work addresses these questions by showing that a novel equation (a discrete version of a complex modified Korteweg-de Vries equation that includes next-nearest-neighbor couplings) has a two-parameter continuous family of exact ELS. These solitons can move with arbitrary velocities across the lattice, and the numerical simulations demonstrate that these ELS are completely stable. Moreover, the numerical tests show that these ELS are robust enough to withstand collisions, and the result of a collision is only a shift in the positions of the solitons. The model may apply to the description of a Bose-Einstein condensate with dipole-dipole interactions between the atoms, trapped in a deep optical-lattice potential.
Generalizing Word Lattice Translation
2008-02-01
demonstrate substantial gains for Chinese -English and Arabic -English translation. Keywords: word lattice translation, phrase-based and hierarchical...introduce in reordering models. Our experiments evaluating the approach demonstrate substantial gains for Chinese -English and Arabic -English translation. 15...Section 4 presents two applications of the noisier channel paradigm, demonstrating substantial performance gains in Arabic -English and Chinese -English
NASA Astrophysics Data System (ADS)
Schaich, David
2016-03-01
Lattice field theory provides a non-perturbative regularization of strongly interacting systems, which has proven crucial to the study of quantum chromodynamics among many other theories. Supersymmetry plays prominent roles in the study of physics beyond the standard model, both as an ingredient in model building and as a tool to improve our understanding of quantum field theory. Attempts to apply lattice techniques to supersymmetric field theories have a long history, but until recently these efforts have generally encountered insurmountable difficulties related to the interplay of supersymmetry with the lattice discretization of spacetime. In recent years these difficulties have been overcome for a class of theories that includes the particularly interesting case of maximally supersymmetric Yang-Mills (N = 4 SYM) in four dimensions, which is a cornerstone of AdS/CFT duality. In combination with computational advances this progress enables practical numerical investigations of N = 4 SYM on the lattice, which can address questions that are difficult or impossible to handle through perturbation theory, AdS/CFT duality, or the conformal bootstrap program. I will briefly review some of the new ideas underlying this recent progress, and present some results from ongoing large-scale numerical calculations, including comparisons with analytic predictions.
Feng Haidong; Siegel, Warren
2006-08-15
We propose some new simplifying ingredients for Feynman diagrams that seem necessary for random lattice formulations of superstrings. In particular, half the fermionic variables appear only in particle loops (similarly to loop momenta), reducing the supersymmetry of the constituents of the type IIB superstring to N=1, as expected from their interpretation in the 1/N expansion as super Yang-Mills.
Andreas S. Kronfeld
2002-09-30
After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.
Phenomenology Using Lattice QCD
NASA Astrophysics Data System (ADS)
Gupta, R.
2005-08-01
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
Phenomenology Using Lattice QCD
NASA Astrophysics Data System (ADS)
Gupta, R.
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
NASA Technical Reports Server (NTRS)
Savelyev, V. A.
1979-01-01
The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.
A simple method of accelerating monotonic sequences
NASA Astrophysics Data System (ADS)
Sarkar, B.; Bhattacharyya, K.
1993-03-01
A converse of the well known Cesaro method has been demonstrated to accelerate successfully various monotonic sequences of practical concern. The method is simple, regular and particular apt for low-order data. Pilot calculations highlighting the workability in varying practical contexts involve atomic lattice constants (cubic), typical nuclear attraction integrals in molecular calculations and critical parameters in phase transitions.
Accelerating Universes from Compactification on a Warped Conifold
Neupane, Ishwaree P.
2007-02-09
We find a cosmological solution corresponding to the compactification of 10D supergravity on a warped conifold that easily circumvents the ''no-go'' theorem given for a warped or flux compactification, providing new perspectives for the study of supergravity or superstring theory in cosmological backgrounds. With fixed volume moduli of the internal space, the model can explain a physical Universe undergoing an accelerated expansion in the 4D Einstein frame, for a sufficiently long time. The solution found in the limit that the warp factor dependent on the radial coordinate y is extremized (giving a constant warping) is smooth and it supports a flat four-dimensional Friedmann-Robertson-Walker cosmology undergoing a period of accelerated expansion with slowly rolling or stabilized volume moduli.
Inhomogeneous cosmology with numerical relativity
NASA Astrophysics Data System (ADS)
Macpherson, Hayley J.; Lasky, Paul D.; Price, Daniel J.
2017-03-01
We perform three-dimensional numerical relativity simulations of homogeneous and inhomogeneous expanding spacetimes, with a view toward quantifying nonlinear effects from cosmological inhomogeneities. We demonstrate fourth-order convergence with errors less than one part in 1 06 in evolving a flat, dust Friedmann-Lemaître-Roberston-Walker spacetime using the Einstein Toolkit within the Cactus framework. We also demonstrate agreement to within one part in 1 03 between the numerical relativity solution and the linear solution for density, velocity and metric perturbations in the Hubble flow over a factor of ˜350 change in scale factor (redshift). We simulate the growth of linear perturbations into the nonlinear regime, where effects such as gravitational slip and tensor perturbations appear. We therefore show that numerical relativity is a viable tool for investigating nonlinear effects in cosmology.
Effective perfect fluids in cosmology
Ballesteros, Guillermo; Bellazzini, Brando E-mail: brando.bellazzini@pd.infn.it
2013-04-01
We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.
Thermodynamic volume of cosmological solitons
NASA Astrophysics Data System (ADS)
Mbarek, Saoussen; Mann, Robert B.
2017-02-01
We present explicit expressions of the thermodynamic volume inside and outside the cosmological horizon of Eguchi-Hanson solitons in general odd dimensions. These quantities are calculable and well-defined regardless of whether or not the regularity condition for the soliton is imposed. For the inner case, we show that the reverse isoperimetric inequality is not satisfied for general values of the soliton parameter a, though a narrow range exists for which the inequality does hold. For the outer case, we find that the mass Mout satisfies the maximal mass conjecture and the volume is positive. We also show that, by requiring Mout to yield the mass of dS spacetime when the soliton parameter vanishes, the associated cosmological volume is always positive.
Inflationary nonsingular quantum cosmological model
Falciano, Felipe T.; Pinto-Neto, Nelson; Santini, E. Sergio
2007-10-15
A stiff matter-dominated universe modeled by a free massless scalar field minimally coupled to gravity in a Friedmann-Lemaitre-Robertson-Walker (FLRW) geometry is quantized. Generalized complex-width Gaussian superpositions of the solutions of the Wheeler-DeWitt equation are constructed and the Bohm-de Broglie interpretation of quantum cosmology is applied. A planar dynamical system is found in which a diversity of quantum Bohmian trajectories are obtained and discussed. One class of solutions represents nonsingular inflationary models starting at infinity past from flat space-time with Planckian size spacelike hypersurfaces, which inflates without inflaton but due to a quantum cosmological effect, until it makes an analytical graceful exit from this inflationary epoch to a decelerated classical stiff matter expansion phase.
Cosmology with negative absolute temperatures
NASA Astrophysics Data System (ADS)
Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony
2016-08-01
Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.
Fluctuation energies in quantum cosmology
NASA Astrophysics Data System (ADS)
Bojowald, Martin
2014-06-01
Quantum fluctuations or other moments of a state contribute to energy expectation values and can imply interesting physical effects. In quantum cosmology, they turn out to be important for a discussion of density bounds and instabilities of initial-value problems in the presence of signature change in loop-quantized models. This paper provides an effective description of these issues, accompanied by a comparison with existing numerical results and an extension to squeezed states. The comparison confirms that canonical effective methods are well suited for computations of properties of physical states. As a side product, an example is found for a simple state in which quantum fluctuations can cancel holonomy modifications of loop quantum cosmology.
Galaxies in the Cosmological Context
NASA Astrophysics Data System (ADS)
Lucia, Gabriella De
In the last decades, a number of observational experiments have converged to establish the cold dark matter model as the "de facto" standard model for structure formation. While the cosmological paradigm appears to be firmly established, a theory of galaxy formation remains elusive, and our understanding of the physical processes that determine the observed variety of galaxy properties and their evolution as a function of cosmic time and environment is far from complete. Although much progress has been made, both on the theoretical and observational side, understanding how galaxies form and evolve remains one of the most outstanding questions of modern astrophysics. This chapter provides an introduction to ideas and concepts that underpin modern models of galaxy formation and evolution, in the currently favoured cosmological context.
Cosmological perturbations in unimodular gravity
Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu
2014-09-01
We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.
A cosmological interpretation of duality
NASA Astrophysics Data System (ADS)
Osorio, M. A. R.; Vázquez-Mozo, M. A.
1994-01-01
We study the cosmological meaning of duality symmetry by considering a two dimensional model of string cosmology. We find that as seen by an internal observer in this universe, the scale factor rebounds at the self-dual length. This rebound is a consequence of the adiabatic expansion. Furthermore, in this situation there are four mathematically different scenarios which describe physically equivalent universes which are in fact undistinguishable. We also stress that R-duality suffices to prove that all the possible evolutions present a maximum temperature. On leave of absence from Dept. Física Teórica C-XI, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Causal compensated perturbations in cosmology
NASA Technical Reports Server (NTRS)
Veeraraghavan, Shoba; Stebbins, Albert
1990-01-01
A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.
Cosmological solution moduli of bigravity
Yılmaz, Nejat Tevfik
2015-09-01
We construct the complete set of metric-configuration solutions of the ghost-free massive bigravity for the scenario in which the g−metric is the Friedmann-Lemaitre-Robertson-Walker (FLRW) one, and the interaction Lagrangian between the two metrics contributes an effective ideal fluid energy-momentum tensor to the g-metric equations. This set corresponds to the exact background cosmological solution space of the theory.
Cosmological solution moduli of bigravity
Yılmaz, Nejat Tevfik
2015-09-29
We construct the complete set of metric-configuration solutions of the ghost-free massive bigravity for the scenario in which the g−metric is the Friedmann-Lemaitre-Robertson-Walker (FLRW) one, and the interaction Lagrangian between the two metrics contributes an effective ideal fluid energy-momentum tensor to the g-metric equations. This set corresponds to the exact background cosmological solution space of the theory.
Cosmological models of galaxy formation
NASA Astrophysics Data System (ADS)
Menci, N.
I review the present status of galaxy formation models within a cosmological framework. I focus on semi-analytic models based on the Cold Dark Matter scenario, discussing the role of the different physical process involving dark matter and baryons in determining the observed statistical properties of galaxies and their dependence on cosmic time and on environment evolution. I will highlight some present problems and briefly present the main effects of assuming a Warm Dark Matter scenario.
Nonstationary de Sitter Cosmological Models
NASA Astrophysics Data System (ADS)
Ibohal, Ng
This paper proposes a class of nonstationary de Sitter, rotating and nonrotating, solutions to Einstein's field equations with a cosmological term of variable function Λ*(u). It is found that the space-time of the rotating nonstationary de Sitter model is algebraically special in the Petrov classification of the gravitational field with a null vector, which is a geodesic, shear-free, expanding as well as nonzero twist. However, that of the nonrotating nonstationary model is conformally flat, with nonempty space.
Information gains from cosmological probes
NASA Astrophysics Data System (ADS)
Grandis, S.; Seehars, S.; Refregier, A.; Amara, A.; Nicola, A.
2016-05-01
In light of the growing number of cosmological observations, it is important to develop versatile tools to quantify the constraining power and consistency of cosmological probes. Originally motivated from information theory, we use the relative entropy to compute the information gained by Bayesian updates in units of bits. This measure quantifies both the improvement in precision and the `surprise', i.e. the tension arising from shifts in central values. Our starting point is a WMAP9 prior which we update with observations of the distance ladder, supernovae (SNe), baryon acoustic oscillations (BAO), and weak lensing as well as the 2015 Planck release. We consider the parameters of the flat ΛCDM concordance model and some of its extensions which include curvature and Dark Energy equation of state parameter w. We find that, relative to WMAP9 and within these model spaces, the probes that have provided the greatest gains are Planck (10 bits), followed by BAO surveys (5.1 bits) and SNe experiments (3.1 bits). The other cosmological probes, including weak lensing (1.7 bits) and {H0} measures (1.7 bits), have contributed information but at a lower level. Furthermore, we do not find any significant surprise when updating the constraints of WMAP9 with any of the other experiments, meaning that they are consistent with WMAP9. However, when we choose Planck15 as the prior, we find that, accounting for the full multi-dimensionality of the parameter space, the weak lensing measurements of CFHTLenS produce a large surprise of 4.4 bits which is statistically significant at the 8 σ level. We discuss how the relative entropy provides a versatile and robust framework to compare cosmological probes in the context of current and future surveys.
Nontrivial Pfaffian forms in cosmology.
NASA Astrophysics Data System (ADS)
Lukács, B.; Paál, G.
The compatibility of possible continuous cosmological particle creation with thermodynamics is studied. It is found that with the usual K = 2 Pfaffian (dQ = TdS) is compatible only in very special cases. K ≤ 3 Pfaffians can easily be reconciled with continuous creation. Since then the full thermodynamic state space is accessible by quasistatic adiabatic processes, such systems show local rather than global irreversibility. This property may prevent heat death even with indefinitely old model universes.
Cosmological Effects in Planetary Science
NASA Technical Reports Server (NTRS)
Blume, H. J.; Wilson, T. L.
2010-01-01
In an earlier discussion of the planetary flyby anomaly, a preliminary assessment of cosmological effects upon planetary orbits exhibiting the flyby anomaly was made. A more comprehensive investigation has since been published, although it was directed at the Pioneer anomaly and possible effects of universal rotation. The general subject of Solar System anomalies will be examined here from the point of view of planetary science.
Optimizing cosmological surveys in a crowded market
NASA Astrophysics Data System (ADS)
Bassett, Bruce A.
2005-04-01
Optimizing the major next-generation cosmological surveys (such as SNAP, KAOS, etc.) is a key problem given our ignorance of the physics underlying cosmic acceleration and the plethora of surveys planned. We propose a Bayesian design framework which (1) maximizes the discrimination power of a survey without assuming any underlying dark-energy model, (2) finds the best niche survey geometry given current data and future competing experiments, (3) maximizes the cross section for serendipitous discoveries and (4) can be adapted to answer specific questions (such as “is dark energy dynamical?”). Integrated parameter-space optimization (IPSO) is a design framework that integrates projected parameter errors over an entire dark energy parameter space and then extremizes a figure of merit (such as Shannon entropy gain which we show is stable to off-diagonal covariance matrix perturbations) as a function of survey parameters using analytical, grid or MCMC techniques. We discuss examples where the optimization can be performed analytically. IPSO is thus a general, model-independent and scalable framework that allows us to appropriately use prior information to design the best possible surveys.
Large classical universes emerging from quantum cosmology
Pinto-Neto, Nelson
2009-04-15
It is generally believed that one cannot obtain a large universe from quantum cosmological models without an inflationary phase in the classical expanding era because the typical size of the universe after leaving the quantum regime should be around the Planck length, and the standard decelerated classical expansion after that is not sufficient to enlarge the universe in the time available. For instance, in many quantum minisuperspace bouncing models studied in the literature, solutions where the universe leaves the quantum regime in the expanding phase with appropriate size have negligible probability amplitude with respect to solutions leaving this regime around the Planck length. In this paper, I present a general class of moving Gaussian solutions of the Wheeler-DeWitt equation where the velocity of the wave in minisuperspace along the scale factor axis, which is the new large parameter introduced in order to circumvent the above-mentioned problem, induces a large acceleration around the quantum bounce, forcing the universe to leave the quantum regime sufficiently big to increase afterwards to the present size, without needing any classical inflationary phase in between, and with reasonable relative probability amplitudes with respect to models leaving the quantum regime around the Planck scale. Furthermore, linear perturbations around this background model are free of any trans-Planckian problem.
Cosmological implications of different baryon acoustic oscillation data
NASA Astrophysics Data System (ADS)
Wang, Shuang; Hu, YaZhou; Li, Miao
2017-04-01
In this work, we explore the cosmological implications of different baryon acoustic oscillation (BAO) data, including the BAO data extracted by using the spherically averaged one-dimensional galaxy clustering (GC) statistics (hereafter BAO1) and the BAO data obtained by using the anisotropic two-dimensional GC statistics (hereafter BAO2). To make a comparison, we also take into account the case without BAO data (hereafter NO BAO). Firstly, making use of these BAO data, as well as the SNLS3 type Ia supernovae sample and the Planck distance priors data, we give the cosmological constraints of the ΛCDM, the wCDM, and the Chevallier-Polarski-Linder (CPL) model. Then, we discuss the impacts of different BAO data on cosmological consquences, including its effects on parameter space, equation of state (EoS), figure of merit (FoM), deceleration-acceleration transition redshift, Hubble parameter H( z), deceleration parameter q( z), statefinder hierarchy S 3 (1)( z), S 4 (1)( z) and cosmic age t( z). We find that: (1) NO BAO data always give a smallest fractional matter density Ω m0, a largest fractional curvature density Ωk0 and a largest Hubble constant h; in contrast, BAO1 data always give a largest Ω m0, a smallest Ω k0 and a smallest h. (2) For the wCDM and the CPL model, NO BAO data always give a largest EoS w; in contrast, BAO2 data always give a smallest w. (3) Compared with the case of BAO1, BAO2 data always give a slightly larger FoM, and thus can give a cosmological constraint with a slightly better accuracy. (4) The impacts of different BAO data on the cosmic evolution and the comic age are very small, and cannot be distinguished by using various dark energy diagnoses and the cosmic age data.
Cosmological implications of modified gravity induced by quantum metric fluctuations
NASA Astrophysics Data System (ADS)
Liu, Xing; Harko, Tiberiu; Liang, Shi-Dong
2016-08-01
We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors.
Structure of Ensemble of Cosmological Models with Dark Energy
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Krawiec, Adam
2006-06-01
We show that all cosmological models which offer the explanation of the present acceleration of the Universe can be represented in terms of a fictitious particle moving in a one-dimensional potential parameterized by the scale factor or redshift. On the other hand this potential function can be reconstructed from SNIa data. From the potential function we can reconstruct the phase portraits and find that only models which are topologically equivalent to the ΛCDM model seems to be realistic models of the accelerating universe. We define the ensemble of dark energy models as a subspace of planar dynamical systems. We demonstrate that the ensemble can be structuralized by introducing the Sobolev metric. Then we obtain the Banach space structure of the ensemble. We investigate this ensemble in the context of the generic universe.
Cosmological constraints on the modified entropic force model
NASA Astrophysics Data System (ADS)
Wei, Hao
2010-08-01
Very recently, Verlinde considered a theory in which space is emergent through a holographic scenario, and proposed that gravity can be explained as an entropic force caused by changes in the information associated with the positions of material bodies. Then, motivated by the Debye model in thermodynamics which is very successful in very low temperatures, Gao modified the entropic force scenario. The modified entropic force (MEF) model is in fact a modified gravity model, and the universe can be accelerated without dark energy. In the present work, we consider the cosmological constraints on the MEF model, and successfully constrain the model parameters to a narrow range. We also discuss many other issues of the MEF model. In particular, we clearly reveal the implicit root to accelerate the universe in the MEF model.
Confusion in Cosmology and Gravitation
NASA Astrophysics Data System (ADS)
Corda, C.; Katebi, R.; Schmidt, N. O.
2016-10-01
In a series of papers, Santilli and collaborators released various strong statements against the general theory of relativity (GTR) and the standard ΛCDM model of cosmology. In this paper we show that such claims are due to misunderstandings of basic concepts of gravitation and cosmology. In particular, we show that Santilli and collaborators demonstrated neither that the GTR is wrong, nor that the Universe is not expanding. We also show that the so-called iso-gravitation theory (IGT) of Santilli is in macroscopic contrast with geodesic motion and, in turn, with the Equivalence Principle (EP) and must therefore be ultimately rejected. Finally, we show that, although the so called iso-redshift could represent an interesting alternative (similar to the tired light theory historically proposed by Zwicky) to the Universe expansion from a qualitative point of view, it must be rejected from a quantitative point of view because the effect of iso-redshift is 10-6 smaller than the effect requested to achieve the cosmological redshift.
Statistical properties of cosmological billiards
NASA Astrophysics Data System (ADS)
Damour, Thibault; Lecian, Orchidea Maria
2011-02-01
Belinski, Khalatnikov, and Lifshitz pioneered the study of the statistical properties of the never-ending oscillatory behavior (among successive Kasner epochs) of the geometry near a spacelike singularity. We show how the use of a “cosmological billiard” description allows one to refine and deepen the understanding of these statistical properties. Contrary to previous treatments, we do not quotient the dynamics by its discrete symmetry group (of order 6), thereby uncovering new phenomena, such as correlations between the successive billiard corners in which the oscillations take place. Starting from the general integral invariants of Hamiltonian systems, we show how to construct invariant measures for various projections of the cosmological-billiard dynamics. In particular, we exhibit, for the first time, a (non-normalizable) invariant measure on the “Kasner circle” which parametrizes the exponents of successive Kasner epochs. Finally, we discuss the relation between: (i) the unquotiented dynamics of the Bianchi-IX (a, b, c or mixmaster) model; (ii) its quotienting by the group of permutations of (a, b, c); and (iii) the billiard dynamics that arose in recent studies suggesting the hidden presence of Kac-Moody symmetries in cosmological billiards.
Cosmological aspects of spontaneous baryogenesis
Simone, Andrea De; Kobayashi, Takeshi
2016-08-24
We investigate cosmological aspects of spontaneous baryogenesis driven by a scalar field, and present general constraints that are independent of the particle physics model. The relevant constraints are obtained by studying the backreaction of the produced baryons on the scalar field, the cosmological expansion history after baryogenesis, and the baryon isocurvature perturbations. We show that cosmological considerations alone provide powerful constraints, especially for the minimal scenario with a quadratic scalar potential. Intriguingly, we find that for a given inflation scale, the other parameters including the reheat temperature, decoupling temperature of the baryon violating interactions, and the mass and decay constant of the scalar are restricted to lie within ranges of at most a few orders of magnitude. We also discuss possible extensions to the minimal setup, and propose two ideas for evading constraints on isocurvature perturbations: one is to suppress the baryon isocurvature with nonquadratic scalar potentials, another is to compensate the baryon isocurvature with cold dark matter isocurvature by making the scalar survive until the present.
Voids in massive neutrino cosmologies
Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo; Sutter, P.M. E-mail: villaescusa@oats.inaf.it E-mail: sutter@oats.inaf.it
2015-11-01
Cosmic voids are a promising environment to characterize neutrino-induced effects on the large-scale distribution of matter in the universe. We perform a comprehensive numerical study of the statistical properties of voids, identified both in the matter and galaxy distributions, in massive and massless neutrino cosmologies. The matter density field is obtained by running several independent N-body simulations with cold dark matter and neutrino particles, while the galaxy catalogs are modeled by populating the dark matter halos in simulations via a halo occupation distribution (HOD) model to reproduce the clustering properties observed by the Sloan Digital Sky Survey (SDSS) II Data Release 7. We focus on the impact of massive neutrinos on the following void statistical properties: number density, ellipticities, two-point statistics, density and velocity profiles. Considering the matter density field, we find that voids in massive neutrino cosmologies are less evolved than those in the corresponding massless neutrinos case: there is a larger number of small voids and a smaller number of large ones, their profiles are less evacuated, and they present a lower wall at the edge. Moreover, the degeneracy between σ{sub 8} and Ω{sub ν} is broken when looking at void properties. In terms of the galaxy density field, we find that differences among cosmologies are difficult to detect because of the small number of galaxy voids in the simulations. Differences are instead present when looking at the matter density and velocity profiles around these voids.
Multiverse understanding of cosmological coincidences
Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori
2009-09-15
There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant, the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.
Quantum inflationary minisuperspace cosmological models
Kim Sangpyo.
1991-01-01
The Wheeler-DeWitt equations for the Friedmann-Robertson-Walker cosmology conformally and minimally coupled to scalar fields with power-lay potential are expanded in the eigenstates of the scalar field parts. The gravitational parts become a diagonal matrix-valued differential equation for a conformal scalar field, and a coupled matrix-valued differential equation for a minimally coupled scalar field. The Cauchy initial value problem is defined with respect to the intrinsic timelike coordinate, and the wavefunctions incorporating initial data are constructed using the product integral formulation. The packetlike wavefunctions around classical turning points are shown possible in the product integral formulation, and the returning wavepackets near the returning point of the classical Friedmann-Robertson-Walker cosmology are constructed. The wavefunctions to the Wheeler-DeWitt equation minimally coupled to the scaler field are constructed by two differential methods, the master equation and the enlarged matrix equation. The spectrum for the wavefunctions regular at the infinite size of universe is found, and these are interpreted as the Hawking-Page spectrum of wormholes connecting two asymptotically Euclidean regions. The quantum Friedmann-Robertson-Walker cosmology is extended to the minimal scalar field with the inflationary potential having a first order phase transition. The Wheeler-DeWitt equation is expanded in the eigenstates of the scalar field, and the gravitational part becomes a coupled matrix-valued differential equation.
Cosmology of a charged universe
NASA Technical Reports Server (NTRS)
Barnes, A.
1979-01-01
The Proca generalization of electrodynamics admits the possibility that the universe could possess a net electric charge uniformly distributed throughout space, while possessing no electric field. A general-relativistic model of cosmological expansion dominated by such a charged background has been calculated, and is consistent with present observational limits on the Hubble constant, the deceleration parameter, and the age of the universe. However, if this cosmology applied at the present epoch, the very early expansion of the universe would have been too rapid for cosmological nucleosynthesis or thermalization of the background radiation to have occurred. Hence, domination of the present expansion by background charge appears to be incompatible with the 3-K background and big-bang production of light elements. If the present background charge density were sufficiently small (but not strictly zero), expansion from the epoch of nucleosynthesis would proceed according to the conventional scenario, but the energy due to the background charge would have dominated at some earlier epoch. This last possibility leads to equality of pressure and energy density in the primordial universe.
Localization oscillation in antidot lattices
NASA Astrophysics Data System (ADS)
Uryu, S.; Ando, T.
1998-06-01
The Anderson localization in square and hexagonal antidot lattices is numerically studied with the use of a Thouless number method. It is revealed that localization is very sensitive to the aspect ratio between the antidot diameter and the lattice constant. In a hexagonal lattice, both the Thouless number and the localization length oscillate with the period equal to the Al’tshuler-Aronov-Spivak oscillation. The oscillation is quite weak in a square lattice.
Construction of 'resonant' magneto-optical lattices with controlled momentum compaction factor
Senichev, Yu. V. Chechenin, A. N.
2007-12-15
On the basis of the theory of 'resonant' magneto-optical lattices for synchrotrons with complex transition energy developed in [1], methods for construction of such lattices with application to various accelerators are proposed. Apart from allowing elimination of transition energy crossing by accelerated particles, these lattices should meet a number of important requirements. In particular, they must have dispersion-free straight sections intended for accommodation of RF cavities, Siberian snakes and detectors, and a large enough dynamic aperture for minimizing the effect of magnetic optics nonlinearity on the beam parameters after chromaticity correction by sextupoles.
Emergent cosmological constant from colliding electromagnetic waves
Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr
2014-11-01
In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.
1993-01-01
Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.
Is the Expansion of the Universe Accelerating? All Signs Point to Yes
NASA Astrophysics Data System (ADS)
Rubin, D.; Hayden, B.
2016-12-01
The accelerating expansion of the universe is one of the most profound discoveries in modern cosmology, suggesting a universe in which 70% of the mass-energy density has an unknown form spread uniformly across the universe. This result has been well established using a combination of cosmological probes, resulting in a “standard model” of modern cosmology that is a combination of a cosmological constant with cold dark matter and baryons. The first compelling evidence for the acceleration came in the late 1990s, when two independent teams studying Type Ia supernovae discovered that distant SNe Ia were dimmer than expected. The combined analysis of modern cosmology experiments, including SNe Ia, the Hubble constant, baryon acoustic oscillations, and the cosmic microwave background, has now measured the contributions of matter and the cosmological constant to the energy density of the universe to better than 0.01, providing a secure measurement of acceleration. A recent study has claimed that the evidence for acceleration from SNe Ia is “marginal.” Here we demonstrate errors in that analysis that reduce the acceleration significance from SNe Ia, and further demonstrate that conservative constraints on the curvature or matter density of the universe increase the significance even more. Analyzing the Joint Light-curve Analysis supernova sample, we find 4.2σ evidence for acceleration with SNe Ia alone, and 11.2σ in a flat universe. With our improved supernova analysis and not rejecting all other cosmological constraints, we find that acceleration is quite secure.
Cosmological equivalence principle and the weak-field limit
Wiltshire, David L.
2008-10-15
The strong equivalence principle is extended in application to averaged dynamical fields in cosmology to include the role of the average density in the determination of inertial frames. The resulting cosmological equivalence principle is applied to the problem of synchronization of clocks in the observed universe. Once density perturbations grow to give density contrasts of order 1 on scales of tens of megaparsecs, the integrated deceleration of the local background regions of voids relative to galaxies must be accounted for in the relative synchronization of clocks of ideal observers who measure an isotropic cosmic microwave background. The relative deceleration of the background can be expected to represent a scale in which weak-field Newtonian dynamics should be modified to account for dynamical gradients in the Ricci scalar curvature of space. This acceleration scale is estimated using the best-fit nonlinear bubble model of the universe with backreaction. At redshifts z < or approx. 0.25 the scale is found to coincide with the empirical acceleration scale of modified Newtonian dynamics. At larger redshifts the scale varies in a manner which is likely to be important for understanding dynamics of galaxy clusters, and structure formation. Although the relative deceleration, typically of order 10{sup -10} ms{sup -2}, is small, when integrated over the lifetime of the universe it amounts to an accumulated relative difference of 38% in the rate of average clocks in galaxies as compared to volume-average clocks in the emptiness of voids. A number of foundational aspects of the cosmological equivalence principle are also discussed, including its relation to Mach's principle, the Weyl curvature hypothesis, and the initial conditions of the universe.