Science.gov

Sample records for accelerated durability test

  1. Accelerated Durability Testing of Electrochromic Windows

    SciTech Connect

    Tracy, C. E.; Zhang, J. G.; Benson, D. K.; Czanderna, A. W.; Deb, S. K.

    1998-12-29

    Prototype electrochromic windows made by several different U.S. companies have been tested in our laboratory for their long-term durability. Samples were subjected to alternate coloring and bleaching voltage cycles while exposed to simulated on 1-sun irradiance in a temperature-controlled environmental chamber with low relative humidity. The samples inside the chamber were tested under a matrix of different conditions. These conditions include: cycling at different temperatures (65 C, 85 C, and 107 C) under the irradiance, cycling versus no-cycling under the same irradiance and temperature, testing with different voltage waveforms and duty cycles with the same irradiance and temperature, cycling under various filtered irradiance intensities, and simple thermal exposure with no irradiance or cycling. The electro-optical characteristics of the samples were measured between 350 and 1,100 nm every 4,000 cycles for up to 20,000 cycles. Photographs of the samples were taken periodically wi th a digital camera to record cosmetic defects, the extent of residual coloration, and overall coloration and bleaching uniformity of the samples. Our results indicate that the most important cause of degradation is the combination of continuous cycling, elevated temperature, and irradiance. The relative importance of these variables, when considered synergistically or separately, depends on the particular device materials and design.

  2. New Accelerated Testing and Lifetime Modeling Methods Promise Faster Development of More Durable MEAs

    SciTech Connect

    Pierpont, D. M.; Hicks, M. T.; Turner, P. L.; Watschke, T. M.

    2005-11-01

    For the successful commercialization of fuel cell technology, it is imperative that membrane electrode assembly (MEA) durability is understood and quantified. MEA lifetimes of 40,000 hours remain a key target for stationary power applications. Since it is impractical to wait 40,000 hours for durability results, it is critical to learn as much information as possible in as short a time period as possible to determine if an MEA sample will survive past its lifetime target. Consequently, 3M has utilized accelerated testing and statistical lifetime modeling tools to develop a methodology for evaluating MEA lifetime. Construction and implementation of a multi-cell test stand have allowed for multiple accelerated tests and stronger statistical data for learning about durability.

  3. Method for the Accelerated Testing of the Durability of a Construction Binder using the Arrhenius Approach

    NASA Astrophysics Data System (ADS)

    Fridrichová, Marcela; Dvořák, Karel; Gazdič, Dominik

    2016-03-01

    The single most reliable indicator of a material's durability is its performance in long-term tests, which cannot always be carried out due to a limited time budget. The second option is to perform some kind of accelerated durability tests. The aim of the work described in this article was to develop a method for the accelerated durability testing of binders. It was decided that the Arrhenius equation approach and the theory of chemical reaction kinetics would be applied in this case. The degradation process has been simplified to a single quantifiable parameter, which became compressive strength. A model hydraulic binder based on fluidised bed combustion ash (FBC ash) was chosen as the test subject for the development of the method. The model binder and its hydration products were tested by high-temperature X-ray diffraction analysis. The main hydration product of this binder was ettringite. Due to the thermodynamic instability of this mineral, it was possible to verify the proposed method via long term testing. In order to accelerate the chemical reactions in the binder, four combinations of two temperatures (65 and 85°C) and two different relative humidities (14 and 100%) were used. The upper temperature limit was chosen because of the results of the high-temperature x-ray testing of the ettringite's decomposition. The calculation formulae for the accelerated durability tests were derived on the basis of data regarding the decrease in compressive strength under the conditions imposed by the four above-mentioned combinations. The mineralogical composition of the binder after degradation was also described. The final degradation product was gypsum under dry conditions and monosulphate under wet conditions. The validity of the method and formula was subsequently verified by means of long-term testing. A very good correspondence between the calculated and real values was achieved. The deviation of these values did not exceed 5 %. The designed and verified method

  4. WOODSTOVE DURABILITY TESTING PROTOCOL

    EPA Science Inventory

    The report discusses the development of an accelerated laboratory test to simulate in-home woodstove aging and degradation. nown as a stress test, the protocol determines the long-term durability of woodstove models in a 1- to 2-week time frame. wo avenues of research have been t...

  5. Duct Tape Durability Testing

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2004-04-01

    Duct leakage is a major source of energy loss in residential buildings. Most duct leakage occurs at the connections to registers, plenums, or branches in the duct system. At each of these connections, a method of sealing the duct system is required. Typical sealing methods include tapes or mastics applied around the joints in the system. Field examinations of duct systems have shown that taped seals tend to fail over extended periods of time. The Lawrence Berkeley National Laboratory (LBNL) has been testing sealant durability for several years using accelerated test methods and found that typical duct tape (i.e., cloth-backed tapes with natural rubber adhesives) fails more rapidly than other duct sealants. This report summarizes the results of duct sealant durability testing over two years for four UL 181B-FX listed duct tapes (two cloth tapes, a foil tape and an Oriented Polypropylene (OPP) tape). One of the cloth tapes was specifically developed in collaboration with a tape manufacturer to perform better in our durability testing. The tests involved the aging of common ''core-to-collar joints'' of flexible duct to sheet metal collars. Periodic air leakage tests and visual inspection were used to document changes in sealant performance. After two years of testing, the flex-to-collar connections showed little change in air leakage, but substantial visual degradation from some products. A surprising experimental result was failure of most of the clamps used to mechanically fasten the connections. This indicates that the durability of clamps also need to be addressed ensure longevity of the duct connection. An accelerated test method developed during this study has been used as the basis for an ASTM standard (E2342-03).

  6. Accelerated corrosion testing, evaluation and durability design of bonded post-tensioned concrete tendons

    NASA Astrophysics Data System (ADS)

    Salas Pereira, Ruben Mario

    2003-06-01

    In the last few years, the effectiveness of cement grout in galvanized or polyethylene ducts, the most widely used corrosion protection system for multistrand bonded post-tensioned concrete tendons, has been under debate, due to significant tendon corrosion damage, several reported failures of individual tendons as well as a few collapses of non-typical structures. While experience in the USA has been generally good, some foreign experience has been less than satisfactory. This dissertation is part of a comprehensive research program started in 1993, which has the objectives to examine the use of post-tensioning in bridge substructures, identify durability concerns and existing technology, develop and carry out an experimental testing program, and conclude with durability design guidelines. Three experimental programs were developed: A long term macrocell corrosion test series, to investigate corrosion protection for internal tendons in precast segmental construction; a long term beam corrosion test series, to examine the effects of post-tensioning on corrosion protection as affected by crack width; and, a long term column corrosion test series, to examine corrosion protection in vertical elements. Preliminary design guidelines were developed previously in the overall study by the initial researchers, after an extensive literature review. This dissertation scope includes continuation of exposure testing of the macrocell, beam and column specimens, performing comprehensive autopsies of selected specimens and updating the durability design guidelines based on the exposure testing and autopsy results. After autopsies were performed, overall findings indicate negative durability effects due to the use of mixed reinforcement, small concrete covers, galvanized steel ducts, and industry standard or heat-shrink galvanized duct splices. The width of cracks was shown to have a direct negative effect on specimen performance. Grout voids were found to be detrimental to the

  7. In vitro evaluation of the bonding durability of self-adhesive resin cement to titanium using highly accelerated life test.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Matinlinna, Jukka Pekka; Shinya, Akiyoshi

    2011-01-01

    The purpose of this in vitro study was to evaluate the bonding durability of three self-adhesive resin cements to titanium using the Highly Accelerated Life Test (HALT). The following self-adhesive resin cements were used to bond pairs of titanium blocks together according to manufacturers' instructions: RelyX Unicem, Breeze, and Clearfil SA Luting. After storage in water at 37°C for 24 h, bonded specimens (n=15) immersed in 37°C water were subjected to cyclic shear load testing regimes of 20, 30, or 40 kg using a fatigue testing machine. Cyclic loading continued until failure occurred, and the number of cycles taken to reach failure was recorded. The bonding durability of a self-adhesive resin cement to titanium was largely influenced by the weight of impact load. HALT showed that Clearfil SA Luting, which contained MDP monomer, yielded the highest median bonding lifetime to titanium.

  8. Application of Rate Theory to Accelerated Durability Testing of Structural Adhesives

    DTIC Science & Technology

    1980-03-01

    comes too late to impact on material selection or design considerations. The analytical approach, coupled with an accelerated 10 testing program, is...estimated range and then evaluating the impact of each parameter on the failure rate and expected service life. The life-limiting components and the...interest of processing economy can be identified. This information can then be fed back into the system design process and the analyses repeated to

  9. Accelerated Testing for Long-Term Durability of Various FRP Laminates for Marine Use

    NASA Astrophysics Data System (ADS)

    Miyano, Yasushi; Nakada, Masayuki

    The prediction of long-term fatigue life of various FRP laminates combined with resins, fibers and fabrics for marine use under temperature and water environments were performed by our developed accelerated testing methodology based on the time-temperature superposition principle (TTSP). The base material of five kinds of FRP laminates employed in this study was plain fabric CFRP laminates T300 carbon fibers/vinylester (T300/VE). The first selection of FRP laminate to T300/VE was the combinations of different fabrics, that is flat yarn plain fabric T700 carbon fibers/vinylester (T700/VE-F) and multi-axial knitted T700 carbon fibers/vinylester (T700/VE-K) for marine use and the second selection of FRP laminates to T300/VE was the combinations with different fibers and matrix resin, that is plain fabric T300 carbon fibers/epoxy (T300/EP) and plain fabric E-glass fibers/vinylester (E-glass/VE). These five kinds of FRP laminates were prepared under three water absorption conditions of Dry, Wet and Wet C Dry after molding. The three-point bending constant strain rate (CSR) tests for these FRP laminates at three conditions of water absorption were carried out at various temperatures and strain rates. Furthermore, the three-point bending fatigue tests for these specimens were carried out at various temperatures and frequencies. The flexural CSR and fatigue strengths of these five kinds of FRP laminates strongly depend on water absorption as well as time and temperature. The mater curves of fatigue strength as well as CSR strength for these FRP laminates at three water absorption conditions are constructed by using the test data based on TTSP. It is possible to predict the long term fatigue life for these FRP laminates under an arbitrary temperature and water absorption conditions by using the master curves.

  10. A preliminary durability study of two types of low-profile pericardial bioprosthetic valves through the use of accelerated fatigue testing and flow characterization.

    PubMed

    Schuster, P R; Wagner, J W

    1989-02-01

    Bioprosthetic heart valves are being used more often because of certain advantages they have over artificial valves. The bioprostheses are less thrombogenic, cause a lower incidence of hemolysis, and usually fail in a slow progressive manner. A combination of flow characterization and accelerated testing was used to assess the durability of two types of pericardial valves, the Ionescu-Shiley Low Profile Mitral and the Carpentier-Edwards Low Profile Aortic valve. The flow characterization work was done in an aortic chamber designed for in vivo simulation. The function of the valve was monitored between different stages of the accelerated testing using laser Doppler anemometry. Accelerated testing was performed at 1300 cardiac cycles per minute, and physiologic conditions both in closing pressures and the ambient temperature were maintained. Results indicated a change in flow characteristics owing to cyclic loading of the leaflet tissue. The flow orifice increased over time leading to a decrease in peak velocity. Future developments in Doppler ultrasound may facilitate non-invasive assessment of these peak velocity variations. Calcification of the tissue was not considered, since this was an in vitro study.

  11. 40 CFR 610.33 - Durability tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing...

  12. 40 CFR 610.33 - Durability tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing...

  13. 40 CFR 610.33 - Durability tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing...

  14. 40 CFR 610.33 - Durability tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing...

  15. Phase VI Glove Durability Testing

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 - 8 hour Extravehicular Activities (EVAs) in a clean, controlled ISS environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 - 8 hour traditional EVAs or 576 - 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of ISS-based tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center Crew and Thermal Systems Division to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected at periodic intervals throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the development of improved cycle model tables. This paper provides a

  16. Phase VI Glove Durability Testing

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2011-01-01

    The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 -- 8 hour Extravehicular Activities (EVAs) in a dust free, manufactured microgravity EVA environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 -- 8 hour traditional EVAs or 576 -- 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of International Space Station (ISS)-based EVA tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD) to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected periodically throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the

  17. The Application of Qualification Testing, Field Testing, and Accelerated Testing for Estimating Long-Term Durability of Composite Materials for Caltrans Applications

    DTIC Science & Technology

    2005-02-25

    Testing Machine having wedge grips. Strain was measured throughout the test using a 2.0-in. (5.1-cm) gage length, clip-on extensometer. Samples were...closing a longitudinal joint at the Tule Canal. The encasement of the concrete columns with composite materials was awarded to the Myers Technologies...of Sacramento that traverses an Estuary at the Tule Canal. It is just over 3 mi. long, a third of which is an earthen berm. The two bridges (22- 0044W

  18. Fast test for the durability of PEM fuel cell catalysts

    SciTech Connect

    Shao, Yuyan; Kou, Rong; Wang, Jun; Kwak, Ja Hun; Viswanathan, Vilayanur V.; Wang, Yong; Liu, Jun; Lin, Yuehe

    2008-10-12

    ETek Pt/C catalyst was used as standard materials to develop a new test protocol for fast screening durable catalyst for PEM fuel cells. Potential step (Pstep) method with the upper potential of 1.4V and the potential-static (Pstat) holding at 1.4 V or 1.2V are used to degrade the catalyst. The degradation in the electrochemical surface area (ESA) for Pt/C under Pstep conditions is greatly accelerated as compared with other conditions. The durability of Pt/Vulcan and Pt/CNT were studied using the new protocol with the electrochemical stressing of Pstep(1.4V/0.6V), which provided the same results as those tested using conventional protocols: Pt/CNT is more durable than Pt/Vulcan. This confirms that the new protocol works well in screening catalyst in terms of durability. The new protocol can differentiate the durability of electrocatalysts by shortening the test time to several hours. It is reliable and time-efficient.

  19. Machine tests crease durability of sheet materials

    NASA Technical Reports Server (NTRS)

    Jones, L. K.; Stanford, H. B.

    1964-01-01

    To test the crease resistance of sheet materials, the mid-section is folded over crease-control blades. One end is clamped to a motor-driven eccentric, the other to a spring, and durability is measured by the cycles required to produce failure.

  20. Durability Testing of Commercial Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Schienle, J. L.

    1996-01-01

    Technical efforts by AlliedSignal Engines in DOE/NASA-funded project from February, 1978 through December, 1995 are reported in the fields ceramic materials for gas turbine engines and cyclic thermal durability testing. A total of 29 materials were evaluated in 40 cyclic oxidation exposure durability tests. Ceramic test bars were cyclically thermally exposed to a hot combustion environment at temperatures up to 1371 C (2500 F) for periods of up to 3500 hours, simulating conditions typically encountered by hot flowpath components in an automotive gas turbine engine. Before and after exposure, quarter-point flexure strength tests were performed on the specimens, and fractography examinations including scanning electron microscopy (SEM) were performed to determine failure origins.

  1. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  2. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    NASA Technical Reports Server (NTRS)

    Meer, Dave; Oriti, Sal

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, NASA?s Glenn Research Center (GRC) has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  3. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Oriti, Salvatore M.

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, GRC has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  4. Durability testing of antireflection coatings for solar applications

    NASA Astrophysics Data System (ADS)

    Jorgensen, Gary J.; Brunold, Stefan; Koehl, Michael; Nostell, Per; Oversloot, Henk; Roos, Arne

    1999-10-01

    Antireflection (AR) coatings can be incorporated into highly transmitting glazings that, depending upon their cost, performance, and durability of optical properties, can be economically viable in solar collectors, agricultural greenhouses, and PV systems. A number of AR-coated glazings have been prepared under the auspices of the International Energy Agency Working Group on Durability of Materials for Solar Thermal Collectors. The AR coatings are of two types, including (1) various sol-gels applied to glass and (2) an embossed treatment of sheet acrylic. Typically, for unweathered glazings, a 4 - 5% increase in solar-weighted transmittance has been achieved. For AR-coated glass, reflectance values as low as 0.5% - 0.7% at selected wavelengths (680 - 720 nm) were obtained. To determine the durability of the hemispherical transmittance, several collaborating countries are testing these materials both outdoors and in accelerated weathering chambers. All materials exposed outdoors are affixed to mini-collector boxes to simulate flat-plate collector conditions. Results for candidate AR coatings weathered at geographically disperse outdoor test sites exhibit changes in spectral transmittance primarily in the high visible range (600 - 700 nm). Accelerated testing at measured levels of simulated solar irradiance, and at different constant levels of temperature and relative humidity have been performed in different countries. Parallel testing with different levels of laboratory-controlled relevant stress factors permits the time-dependent performance of these materials to be compared with measured results from in-service outdoor exposure conditions. Coating adhesion and performance loss resulting from dirt and dust retention are also discussed.

  5. A review of polymer electrolyte membrane fuel cell durability test protocols

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao-Zi; Li, Hui; Zhang, Shengsheng; Martin, Jonathan; Wang, Haijiang

    Durability is one of the major barriers to polymer electrolyte membrane fuel cells (PEMFCs) being accepted as a commercially viable product. It is therefore important to understand their degradation phenomena and analyze degradation mechanisms from the component level to the cell and stack level so that novel component materials can be developed and novel designs for cells/stacks can be achieved to mitigate insufficient fuel cell durability. It is generally impractical and costly to operate a fuel cell under its normal conditions for several thousand hours, so accelerated test methods are preferred to facilitate rapid learning about key durability issues. Based on the US Department of Energy (DOE) and US Fuel Cell Council (USFCC) accelerated test protocols, as well as degradation tests performed by researchers and published in the literature, we review degradation test protocols at both component and cell/stack levels (driving cycles), aiming to gather the available information on accelerated test methods and degradation test protocols for PEMFCs, and thereby provide practitioners with a useful toolbox to study durability issues. These protocols help prevent the prolonged test periods and high costs associated with real lifetime tests, assess the performance and durability of PEMFC components, and ensure that the generated data can be compared.

  6. NREL Determines Better Testing Methods for Photovoltaic Module Durability (Fact Sheet), NREL Highlights, Research & Development

    SciTech Connect

    Not Available

    2011-11-01

    NREL discoveries will enable manufacturers to produce more robust photovoltaic modules. Over the past decade, some photovoltaic (PV) modules have experienced power losses because of the system voltage stress that modules experience in fielded arrays. This is partly because qualification tests and standards do not adequately evaluate the durability of modules that undergo the long-term effects of high voltage. Scientists at the National Renewable Energy Laboratory (NREL) tried various testing methods and stress levels to demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. The results of these accelerated tests, along with outdoor testing, were used to estimate the acceleration factors needed to more accurately evaluate the durability of modules to system voltage stress. NREL was able to determine stress factors, levels, and methods for testing based on the stresses experienced by modules in the field. These results, in combination with those in the literature, suggest that constant stress with humidity and system voltage is more damaging than stress applied intermittently or with periods of recovery comprising hot and dry conditions or alternating bias in between. NREL has determined some module constructions to be extremely durable to PID. These findings will help the manufacturers of PV materials and components produce more durable products that better satisfy their customers. NREL determined that there is rapid degradation of some PV modules under system voltage stress and evaluated degradation rates in the field to develop more accurate accelerated testing methods. PV module manufacturers will be better able to choose robust materials and durable designs and guarantee sturdier, longer-lasting products. As PV modules become more durable, and thus more efficient over the long term, the risks and the cost of PV power will be reduced.

  7. Durability Tests of a Fiber Optic Corrosion Sensor

    PubMed Central

    Wan, Kai Tai; Leung, Christopher K.Y.

    2012-01-01

    Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively. PMID:22737030

  8. Durability tests of a fiber optic corrosion sensor.

    PubMed

    Wan, Kai Tai; Leung, Christopher K Y

    2012-01-01

    Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively.

  9. Accelerated life testing of solar absorber coatings

    NASA Astrophysics Data System (ADS)

    Carlsson, Bo; Moeller, K.; Frei, Ulrich; Koehl, Michael

    1994-09-01

    Results from a comprehensive case study on accelerated life testing of some selective solar collector absorber coatings for DHW systems are reviewed. The study was conducted within Task X `Solar Materials Research and Development' of the IEA Solar Heating and Cooling Program from 1987 to 1992 and is unique due to its quantitative and systematic approach for durability assessment. The work of case study involved the development of both experimental and theoretical tools to aid the assessment of service life or absorber coatings. This entailed performance analysis, failure analysis, microclimate characterization, environmental resistance testing and life date analysis. Predicted in-service degradation of coatings from accelerated life testing was found to be in fairly good agreement both qualitatively and quantitatively with what was actually observed on coatings installed and tested for three years in solar collectors working under typical DHW conditions.

  10. Generator Set Durability Testing Using 25% ATJ Fuel Blend

    DTIC Science & Technology

    2016-02-01

    FMTV – Family of Medium Tactical Vehicles GEP – General Engine Products HC – hydrocarbon HEUI – hydraulically actuated, electronically controlled...loggers: Campbell Scientific model CR3000. Thirty thermocouples were used on each generator , along with five pressure transducers. Voltage, current...UNCLASSIFIED UNCLASSIFIED GENERATOR SET DURABILITY TESTING USING 25% ATJ FUEL BLEND INTERIM REPORT TFLRF No. 476 by Gregory A. T

  11. Application of Kingview and PLC in friction durability test system

    NASA Astrophysics Data System (ADS)

    Gao, Yinhan; Cui, Jing; Yang, Kaiyu; Ke, Hui; Song, Bing

    2013-01-01

    Using PLC and Kingview software, a friction durability test system is designed. The overall program, hardware configuration, software structure and monitoring interface are described in detail. PLC ensures the stability of data acquisition, and the KingView software makes the HMI easy to manipulate. The practical application shows that the proposed system is cheap, economical and highly reliable.

  12. Recommendations for Glass Durability Test Criteria

    SciTech Connect

    Strachan, D.M.

    1999-01-28

    The objective of this short report is to define a set of activities that should lead to a specification for a test that can be used as one of the acceptance criteria and as an indicator of acceptable long-term behavior in contact with water. Since the glass composition is not yet defined and is likely to change as the composition of the waste changes, a strategy for developing criteria for what is acceptable involves a series of tests and modeling activities. The results of these activities lead to a criterion for an acceptable product and the data that are needed to reliably determine the behavior of the glass in the storage environment.

  13. Degradation mechanisms and accelerated testing in PEM fuel cells

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  14. Engine cyclic durability by analysis and material testing

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Halford, G. R.

    1983-01-01

    The problem of calculating turbine engine component durability is addressed. Nonlinear, finite-element structural analyses, cyclic constitutive behavior models, and an advanced creep-fatigue life prediction method called strainrange partitioning were assessed for their applicability to the solution of durability problems in hot-section components of gas turbine engines. Three different component or subcomponent geometries are examined: a stress concentration in a turbine disk; a louver lip of a half-scale combustor liner; and a squealer tip of a first-stage high-pressure turbine blade. Cyclic structural analyses were performed for all three problems. The computed strain-temperature histories at the critical locations of the combustor linear and turbine blade components were imposed on smooth specimens in uniaxial, strain-controlled, thermomechanical fatigue tests of evaluate the structural and life analysis methods.

  15. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The 250 C, 200C and 125C accelerated tests are described. The wear-out distributions from the 250 and 200 C tests were used to estimate the activation energy between the two test temperatures. The duration of the 125 C test was not sufficient to bring the test devices into the wear-out region. It was estimated that, for the most complex of the three devices types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment is assessed. Guidlines for the development of accelerated life-test conditions are proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life-test characteristics of CMOS microcircuits is described.

  16. Evaluating the in situ loading and accelerated durability of barbs located on bifurcated aorto-iliac stent-grafts.

    PubMed

    Conti, J C; Strope, E R

    2000-01-01

    A special three-part protocol has been generated for the isolated durability testing of stent barbs. This triple protocol includes an initial evaluation on a cardiovascular duplicator to determine the loading per barb that occurs during normal flow through the stent-graft. The next stage of this protocol determined the frequency response characteristics of the bending point where the barb attaches to the stent to allow for the determination of the appropriate frequency to carry out the accelerated testing. The final part of the test includes high speed bend testing at frequencies determined in the second part of the methods to determine the long term durability of the isolated barb stent unit. The results of this testing indicated that under normal cardiovascular conditions each barb is experiencing a loading of 20 grams peak during maximum forward flow. Loading the isolated barb/stent segment at 600 beats per minute (bpm) for 400 million cycles indicated no tendency for these barbs to experience a change in physical properties. During this testing there were no barbs that broke.

  17. Thermal cyclic durability testing of ceramic materials for turbine engines

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1986-01-01

    The thermal cyclic durability of commercial ceramic materials for turbine engines was under evaluation since 1978. Ceramic materials are exposed to cyclic diesel-fired burner exhaust at either 1204 or 1371 C (2200 or 2500 F) for up to 3500 hours. The test conditions are selected to simulate the environment experienced by the hot flow path components in an automotive gas turbine engine. The silicon nitride and silicon carbide materials tested are the same ceramic materials currently used on the AGT100 and AGT101 ceramic turbine engine program.

  18. Volvo Penta 4.3 GL E15 Emissions and Durability Test

    SciTech Connect

    Zoubul, G.; Cahoon, M.; Kolb, R.

    2011-10-01

    A new Volvo Penta carbureted 4.3 GL engine underwent emissions and dynamometer durability testing from break-in to expected end of life using an accelerated ICOMIA marine emissions cycle and E15 fuel. Only ethanol content was controlled. All aging used splash-blended E15 fuel. Exhaust emissions, exhaust gas temperature, torque, power, barometric pressure, air temperature, and fuel flow were measured at five intervals using site-blended E15 aging fuel and certification fuel (E0). The durability test cycle showed no noticeable impact on mechanical durability or engine power. Emissions performance degraded beyond the certification limit for this engine family, mostly occurring by 28% of expected life. Such degradation is inconsistent with prior experience. Comparisons showed that E15 resulted in lower CO and HC, but increased NOX, as expected for non-feedback-controlled carbureted engines with increased oxygen in the fuel. Fuel consumption also increased with E15 compared with E0. Throughout testing, poor starting characteristics were exhibited on E15 fuel for hot re-start and cold-start. Cranking time to start and smooth idle was roughly doubled compared with typical E0 operation. The carburetor was factory-set for lean operation to ensure emissions compliance. Test protocols did not include carburetor adjustment to account for increased oxygen in the E15 fuel.

  19. Accelerated testing of space batteries

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  20. Qualification Plus: Performance and Durability Tests Beyond IEC 61215 (Presentation)

    SciTech Connect

    Kurtz, S.; Jordan, J.; Kempe, M.; Miller, D.; Bosco, N.; Silverman, T.; Hacke, P.; Phillips, N.; Earnest, T.; Romero, R.

    2014-03-01

    Qualification Plus is an accelerated test protocol and quality management system that gives higher confidence in field performance of PV modules compared with conventional qualification testing. The test sequences are being developed as consensus standards, but the early publication of these tests enables the community to begin benefiting from them sooner.

  1. NBS solar collector durability/reliability test program

    NASA Astrophysics Data System (ADS)

    Waksman, D.; Thomas, W. C.; Streed, E. R.

    1984-09-01

    Efforts in the development of reliability/durability tests for solar collectors and their materials have been hampered by the lack of real time conditions. Research undertaken at the National Bureau of Standards (NBS) to help generate the data required to develop methods for predicting the long term durability and reliability of flat plate solar collectors and their materials is discussed. Eight different types of flat plate solar collectors were exposed outdoors at four sites located in different climatic regions. Small scale cover and absorbed materials coupon specimens consisting of samples taken from a collector of each of the eight types used and a number of additional materials were exposed concurrently with the full size collectors. Periodic measurements were made of collector and materials performance as a function of outdoor exposure time. Indoor laboratory aging tests were conducted concurrently on specimens of the same materials to provide a basis for comparison with the outdoor exposure tests. The results obtained in this test program are presented.

  2. Accelerated Test Methods

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph

    1995-01-01

    Neural network systems were evaluated for use in predicting wear of mechanical systems. Three different neural network software simulation packages were utilized in order to create models of tribological wear tests. Representative simple, medium, and high complexity simulation packages were selected. Pin-on-disk, rub shoe, and four-ball tribological test data was used for training, testing, and verification of the neural network models. Results showed mixed success. The neural networks were able to predict results with some accuracy if the number of input variables was low or the amount of training data was high. Increased neural network complexity resulted in more accurate results, however there was a point of diminishing return. Medium complexity models were the best trade off between accuracy and computing time requirements. A NASA Technical Memorandum and a Society of Tribologists and Lubrication Engineers paper are being published which detail the work.

  3. Accelerated Stress-Corrosion Testing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  4. Durability of anti-graffiti coatings on stone: natural vs accelerated weathering.

    PubMed

    Carmona-Quiroga, Paula M; Jacobs, Robert M J; Martínez-Ramírez, Sagrario; Viles, Heather A

    2017-01-01

    Extending the use of novel anti-graffiti coatings to built heritage could be of particular interest providing the treatments are efficient enough in facilitating graffiti removal and long-lasting to maintain their protective properties without interfering with the durability of the substrates. However, studies of the durability of these coatings are scarce and have been mainly carried out under accelerated weathering conditions, the most common practice for assessing the durability of materials but one that does not reproduce accurately natural working conditions. The present study aimed to assess the durability of the anti-graffiti protection afforded by two anti-graffiti treatments (a water dispersion of polyurethane with a perfluoropolyether backbone and a water based crystalline micro wax) on Portland limestone and Woodkirk sandstone after 1 year of outdoor exposure in the South of England with periodic painting and cleaning episodes taking place. A parallel study under artificial weathering conditions in a QUV chamber for 2000 hours was also carried out. Changes to the coatings were assessed by measuring colour, gloss, water-repellency, roughness and microstructure, the latter through micro-Raman and optical microscope observations, periodically during the experiments. The results show that both anti-graffiti treatments deteriorated under both artificial and natural weathering conditions. For the polyurethane based anti-graffiti treatment, artificial ageing produced more deterioration than 1 year of outdoor exposure in the south of England due to loss of adhesion from the stones, whereas for micro wax coating there were no substantial differences between the two types of weathering.

  5. Durability of anti-graffiti coatings on stone: natural vs accelerated weathering

    PubMed Central

    Jacobs, Robert M. J.; Martínez-Ramírez, Sagrario; Viles, Heather A.

    2017-01-01

    Extending the use of novel anti-graffiti coatings to built heritage could be of particular interest providing the treatments are efficient enough in facilitating graffiti removal and long-lasting to maintain their protective properties without interfering with the durability of the substrates. However, studies of the durability of these coatings are scarce and have been mainly carried out under accelerated weathering conditions, the most common practice for assessing the durability of materials but one that does not reproduce accurately natural working conditions. The present study aimed to assess the durability of the anti-graffiti protection afforded by two anti-graffiti treatments (a water dispersion of polyurethane with a perfluoropolyether backbone and a water based crystalline micro wax) on Portland limestone and Woodkirk sandstone after 1 year of outdoor exposure in the South of England with periodic painting and cleaning episodes taking place. A parallel study under artificial weathering conditions in a QUV chamber for 2000 hours was also carried out. Changes to the coatings were assessed by measuring colour, gloss, water-repellency, roughness and microstructure, the latter through micro-Raman and optical microscope observations, periodically during the experiments. The results show that both anti-graffiti treatments deteriorated under both artificial and natural weathering conditions. For the polyurethane based anti-graffiti treatment, artificial ageing produced more deterioration than 1 year of outdoor exposure in the south of England due to loss of adhesion from the stones, whereas for micro wax coating there were no substantial differences between the two types of weathering. PMID:28231301

  6. Accelerated Testing Validation

    SciTech Connect

    Mukundan, Rangachary; James, Greg; Davey, John; Langlois, David; Torraco, Dennis; Yoon, Wonseok; Weber, Adam Z; Borup, Rodney L.

    2011-07-01

    The DOE Fuel Cell technical team recommended ASTs were performed on 2 different MEAs (designated P5 and HD6) from Ballard Power Systems. These MEAs were also incorporated into stacks and operated in fuel cell bus modules that were either operated in the field (three P5 buses) in Hamburg, or on an Orange county transit authority drive cycle in the laboratory (HD6 bus module). Qualitative agreement was found in the degradation mechanisms and rates observed in the AST and in the field. The HD6 based MEAs exhibited lower voltage degradation rates (due to catalyst corrosion) and slower membrane degradation rates in the field as reflected by their superior performance in the high potential hold and open-circuit potential AST tests. The quantitative correlation of the degradation rates will have to take into account the various stressors in the field including temperature, relative humidity, start/stops and voltage cycles.

  7. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Takmakov, Pavel; Ruda, Kiersten; Phillips, K. Scott; Isayeva, Irada S.; Krauthamer, Victor; Welle, Cristin G.

    2015-04-01

    Objective. A challenge for implementing high bandwidth cortical brain-machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. Approach. Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 °C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz-1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. Main results. RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies <10 Hz, and smallest at frequencies 1 kHz and above. Though electrode performance is traditionally characterized by impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. Significance. ROS, which are known to be present in vivo, can create

  8. Qualification and durability tests - Applications for thermal collectors and photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Riesch, G.

    Accelerated and abbreviated durability tests for characterizing the long-term reliability of solar thermal and photovoltaic modules are described. The tests have been designed to provoke behaviors which would normally require years to become manifest, thereby allowing lifetime predictions to be made over a short testing period. Increasing the intensity of the potentially damaging agent, e.g., UV radiation, humidity, a combination of both, is one method, and cycling the specimen through exposures and out of them in repetitive rapid succession, such as in thermal cycling, is another. The two techniques can also be combined. Solar flat plate collectors are presently tested for overpressure resistance of the absorber, leak tests, rain penetration, load carrying capacity, resistance to hail impact, and durability under thermal shock. Trials are also run involving exposure to a dry atmosphere, UV radiation, ozone-contaminatead atmosphere, sulfur dioxide, cyclic damp heat, and salt mist. Photovoltaic modules are tested for thermal strength, in mounting twist tests, for insulation integrity, for ice loading, for humidity freezing, temperature cycling, long exposure to high temperatures, in damp heat in long storage, and to the same atmospheric factors as flat plates.

  9. Durability Testing of Fluidized Bed Steam Reforming Products

    SciTech Connect

    JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

    2005-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

  10. Membrane Degradation Accelerated Stress Test

    SciTech Connect

    Mukundan, Rangachary; Borup, Rodney L.

    2015-01-21

    These are a set of slides that deal with membrane degradation accelerated stress test. Specifically, the following topics are covered: membrane degradation FCTT drive cycle; membrane ASTs; current membrane ASTs damage mechanisms; proposed membrane AST, RH cycling in H2/Air; current proposed AST; 2min/2min AST damage mechanism; 30sec/45sec RH cycling at OCV.

  11. Durability tests of a five centimeter diameter ion thruster system

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1972-01-01

    A modified Hughes SIT-5 system is being tested for durability at the Lewis Research Center. As of October 1, 1972, the thruster subsystem has logged over 8000 hours of operation. The initial 2023 hours were run with a translating screen thrust vector grid. The thruster is currently operating with an electrostatic type vector grid. Profiles and maps taken at widely separated intervals show that performance and operating characteristics have remained essentially constant. Overall efficiency is about 32 percent and power to thrust ratio is 170 watts per millipound at a specific impulse of 2500 seconds. Telescopic examination of the vector grid shows some sputtering erosion due to charge exchange and direct impingement ions.

  12. Recommended Minimum Test Requirements and Test Methods for Assessing Durability of Random-Glass-Fiber Composites

    SciTech Connect

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-06-01

    This report provides recommended minimum test requirements are suggested test methods for establishing the durability properties and characteristics of candidate random-glass-fiber polymeric composites for automotive structural applications. The recommendations and suggestions are based on experience and results developed at Oak Ridge National Laboratory (ORNL) under a US Department of Energy Advanced Automotive Materials project entitled ''Durability of Lightweight Composite Structures,'' which is closely coordinated with the Automotive Composites Consortium. The report is intended as an aid to suppliers offering new structural composites for automotive applications and to testing organizations that are called on to characterize the composites.

  13. RDS-21 Face-Gear Surface Durability Tests

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Heath, Gregory F.; Filler, Robert R.; Slaughter, Stephen C.; Fetty, Jason

    2007-01-01

    Experimental fatigue tests were performed to determine the surface durability life of a face gear in mesh with a tapered spur involute pinion. Twenty-four sets of gears were tested at three load levels: 7200, 8185, and 9075 lb-in face gear torque, and 2190 to 3280 rpm face gear speed. The gears were carburized and ground, shot-peened and vibro-honed, and made from VIM-VAR Pyrowear 53 steel per AMS 6308. The tests produced 17 gear tooth spalling failures and 7 suspensions. For all the failed sets, spalling occurred on at least one tooth of all the pinions. In some cases, the spalling initiated a crack in the pinion teeth which progressed to tooth fracture. Also, spalling occurred on some face gear teeth. The AGMA endurance allowable stress for a tapered spur involute pinion in mesh with a face gear was determined to be 275 ksi for the material tested. For the application of a tapered spur involute pinion in mesh with a face gear, proper face gear shim controlled the desired gear tooth contact pattern while proper pinion shim was an effective way of adjusting backlash without severely affecting the contact pattern.

  14. Sequential accelerated tests: Improving the correlation of accelerated tests to module performance in the field

    NASA Astrophysics Data System (ADS)

    Felder, Thomas; Gambogi, William; Stika, Katherine; Yu, Bao-Ling; Bradley, Alex; Hu, Hongjie; Garreau-Iles, Lucie; Trout, T. John

    2016-09-01

    DuPont has been working steadily to develop accelerated backsheet tests that correlate with solar panels observations in the field. This report updates efforts in sequential testing. Single exposure tests are more commonly used and can be completed more quickly, and certain tests provide helpful predictions of certain backsheet failure modes. DuPont recommendations for single exposure tests are based on 25-year exposure levels for UV and humidity/temperature, and form a good basis for sequential test development. We recommend a sequential exposure of damp heat followed by UV then repetitions of thermal cycling and UVA. This sequence preserves 25-year exposure levels for humidity/temperature and UV, and correlates well with a large body of field observations. Measurements can be taken at intervals in the test, although the full test runs 10 months. A second, shorter sequential test based on damp heat and thermal cycling tests mechanical durability and correlates with loss of mechanical properties seen in the field. Ongoing work is directed toward shorter sequential tests that preserve good correlation to field data.

  15. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This report covers the time period from May 1976 to December 1979 and encompasses the three phases of accelerated testing: Phase 1, the 250 C testing; Phase 2, the 200 C testing; and Phase 3, the 125 C testing. The duration of the test in Phase 1 and Phase 2 was sufficient to take the devices into the wear out region. The wear out distributions were used to estimate the activation energy between the 250 C and the 200 C test temperatures. The duration of the 125 C test, 20,000 hours, was not sufficient to bring the test devices into the wear out region; consequently the third data point at 125 C for determining the consistency of activation energy could not be obtained. It was estimated that, for the most complex of the three device types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment was assessed. Guidelines for the development of accelerated life test conditions were proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life test characteristics of CMOS microcircuits was explored in Phase 4 of this study and is attached as an appendix to this report.

  16. Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC.

    PubMed

    Jung, Juhae; Park, Byungil; Kim, Junbom

    2012-01-05

    In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.

  17. Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC

    NASA Astrophysics Data System (ADS)

    Jung, Juhae; Park, Byungil; Kim, Junbom

    2012-01-01

    In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.

  18. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  19. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  20. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-09-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  1. Post Test Evaluation of HSCT Nozzle Acoustic Liner Subcomponents Subjected to a Hot Acoustic Durability Test

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Lee, Kuan

    2008-01-01

    The acoustic liner system designed for use in the High Speed Civil Transport (HSCT) was tested in a thermal-acoustic environment. Five ceramic matrix composite (CMC) acoustic tile configurations, five bulk acoustic absorbers, and one thermal protection system design were tested. The CMC acoustic tiles were subjected to two 2 3/4 hr ambient temperature acoustic exposures to measure their dynamic response. One exposure was conducted on the tiles alone and the second exposure included the tiles and the T-foam bulk absorber. The measured tile RMS strains were small. With or without the T-foam absorber, the dynamic strains were below strain levels that would cause damage during fatigue loading. After the ambient exposure, a 75-hr durability test of the entire acoustic liner system was conducted using a thermal-acoustic cycle that approximated the anticipated service cycle. Acoustic loads up to 139 dB/Hz and temperatures up to 1670 F (910 C) were employed during this 60 cycle test. During the durability test, the CMC tiles were exposed to temperatures up to 1780 F and a transient through thickness gradient up to 490 F. The TPS peak temperatures on the hot side of the panels ranged from 750 to 1000 F during the 60 cycles. The through thickness delta T ranged from 450 to 650 F, varying with TPS location and cycle number. No damage, such as cracks or chipping, was observed in the CMC tiles after completion of the testing. However, on tile warped during the durability test and was replaced after 43 or 60 cycles. No externally observed damage was found in this tile. No failure of the CMC fasteners occurred, but damage was observed. Cracks and missing material occurred, only in the fastener head region. No indication of damage was observed in the T-foam acoustic absorbers. The SiC foam acoustic absorber experienced damage after about 43 cycles. Cracking in the TPS occurred around the attachment holes and under a vent. In spite of the development of damage, the TPS maintained

  2. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  3. Enhanced long-term strength and durability of shotcrete with high-strength C{sub 12}A{sub 7} mineral-based accelerator

    SciTech Connect

    Won, Jong-Pil Hwang, Un-Jong; Lee, Su-Jin

    2015-10-15

    This study evaluated the performance of shotcrete using high strength C{sub 12}A{sub 7} mineral-based accelerator that has been developed to improve the durability and long-term strength. Rebound, compressive strength and flexural strength were tested in the field. Test result showed that existing C{sub 12}A{sub 7} mineral-based accelerator exhibits better early strength than the high-strength C{sub 12}A{sub 7} mineral-based accelerator until the early age, but high-strength C{sub 12}A{sub 7} mineral-based accelerator shows about 29% higher at the long-term age of 28 days. Microstructural analysis such as scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption method was evaluated to analyze long-term strength development mechanism of high strength C{sub 12}A{sub 7} mineral-based accelerator. As analysis result, it had more dense structure due to the reaction product by adding material that used to enhanced strength. It had better resistance performance in chloride ion penetration, freezing–thawing and carbonation than shotcrete that used existing C{sub 12}A{sub 7} mineral-based accelerator.

  4. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  5. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  6. Building, Testing, and Post Test Analysis of Durability Heat Pipe No.6

    SciTech Connect

    MOSS, TIMOTHY A.

    2002-03-01

    The Solar Thermal Program at Sandia supports work developing dish/Stirling systems to convert solar energy into electricity. Heat pipe technology is ideal for transferring the energy of concentrated sunlight from the parabolic dish concentrators to the Stirling engine heat tubes. Heat pipes can absorb the solar energy at non-uniform flux distributions and release this energy to the Stirling engine heater tubes at a very uniform flux distribution thus decoupling the design of the engine heater head from the solar absorber. The most important part of a heat pipe is the wick, which transports the sodium over the heated surface area. Bench scale heat pipes were designed and built to more economically, both in time and money, test different wicks and cleaning procedures. This report covers the building, testing, and post-test analysis of the sixth in a series of bench scale heat pipes. Durability heat pipe No.6 was built and tested to determine the effects of a high temperature bakeout, 950 C, on wick corrosion during long-term operation. Previous tests showed high levels of corrosion with low temperature bakeouts (650-700 C). Durability heat pipe No.5 had a high temperature bakeout and reflux cleaning and showed low levels of wick corrosion after long-term operation. After testing durability heat pipe No.6 for 5,003 hours at an operating temperature of 750 C, it showed low levels of wick corrosion. This test shows a high temperature bakeout alone will significantly reduce wick corrosion without the need for costly and time consuming reflux cleaning.

  7. Characterization of durable nanostructured thin film catalysts tested under transient conditions using analytical aberration-corrected electron microscopy

    SciTech Connect

    Cullen, David A; More, Karren Leslie; Reeves, Kimberly Shawn; Vernstrom, George; Atanasoska, Liliana; Haugen, Gregory; Atanasoski, Radoslav

    2011-01-01

    The stability of Ru0.1Ir0.9 oxidation evolution reaction (OER) catalysts deposited on Pt-coated nanostructured thin films (NSTFs) has been investigated by aberration-corrected electron microscopy. Accelerated stress tests showed that the OER catalysts significantly improved the durability of the Pt under cell reversal conditions. High-resolution images of the end-of-life NSTFs showed significant Ir loss from the whisker surfaces, while no Pt loss was observed, indicating that the OER catalysts had protected the catalyst coated whisker surfaces from degradation.

  8. Step-Stress Accelerated Degradation Testing for Solar Reflectors: Preprint

    SciTech Connect

    Jones, W.; Elmore, R.; Lee, J.; Kennedy, C.

    2011-09-01

    To meet the challenge to reduce the cost of electricity generated with concentrating solar power (CSP) new low-cost reflector materials are being developed including metalized polymer reflectors and must be tested and validated against appropriate failure mechanisms. We explore the application of testing methods and statistical inference techniques for quantifying estimates and improving lifetimes of concentrating solar power (CSP) reflectors associated with failure mechanisms initiated by exposure to the ultraviolet (UV) part of the solar spectrum. In general, a suite of durability and reliability tests are available for testing a variety of failure mechanisms where the results of a set are required to understand overall lifetime of a CSP reflector. We will focus on the use of the Ultra-Accelerated Weathering System (UAWS) as a testing device for assessing various degradation patterns attributable to accelerated UV exposure. Depending on number of samples, test conditions, degradation and failure patterns, test results may be used to derive insight into failure mechanisms, associated physical parameters, lifetimes and uncertainties. In the most complicated case warranting advanced planning and statistical inference, step-stress accelerated degradation (SSADT) methods may be applied.

  9. Accelerator Test of an Imaging Calorimeter

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.

  10. Dynamic Multivariate Accelerated Corrosion Test Protocol

    DTIC Science & Technology

    2014-10-01

    include the development of a test chamber, modified to include the synergistic effects of UV and ozone and the exposure of bare and coated samples to yield...prediction of performance lifetime based upon a relatively short timeframe accelerated test. 15. SUBJECT TERMS Corrosion, ozone , ultraviolet...modified to include the synergistic effects of UV and ozone and the exposure of bare and coated samples to yield an accelerated corrosion test. This test

  11. Prediction of glass durability as a function of glass composition and test conditions: Thermodynamics and kinetics

    SciTech Connect

    Jantzen, C M

    1988-01-01

    The long-term durability of nuclear waste glasses can be predicted by comparing their performance to natural and ancient glasses. Glass durability is a function of the kinetic and thermodynamic stability of glass in solution. The relationship between the kinetic and thermodynamic aspects of glass durability can be understood when the relative contributions of glass composition and imposed test conditions are delineated. Glass durability has been shown to be a function of the thermodynamic hydration free energy which can be calculated from the glass composition. Hydration thermodynamics also furnishes a quantitative frame of reference to understand how various test parameters affect glass durability. Linear relationships have been determined between the logarithmic extent of hydration and the calculated hydration free energy for several different test geometries. Different test conditions result in different kinetic reactivity parameters such as the exposed glass surface area (SA), the leachant solution volume (V), and the length of time that the glass is in the leachant (t). Leachate concentrations are known to be a function of the kinetic test parameter (SAV)t. The relative durabilities of glasses, including pure silica, obsidians, nuclear waste glasses, medieval window glasses, and frit glasses define a plane in three dimensional ..delta..G/sub hyd/-concentration-(SAV)t space. At constant kinetic conditions, e.g., test geometry and test duration, the three dimensional plane is intersected at constant (SAV)t and the ..delta..G/sub hyd/-concentration plots have similar slopes. The slope represents the natural logarithm of the theoretical slope, (12.303 RT), for the rate of glass dissolution. 53 refs., 4 figs.

  12. 40 CFR 86.1829-01 - Durability and emission testing requirements; waivers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1829-01 Durability and.... (iii) Data submittal waivers. (A) In lieu of testing a methanol-fueled diesel-cycle light truck for... testing an Otto-cycle light-duty vehicle, light-duty truck, or heavy-duty vehicle for...

  13. RHIC sextant test: Accelerator systems and performance

    SciTech Connect

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  14. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.

    1982-01-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  15. Solid oxide materials research accelerated electrochemical testing

    SciTech Connect

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  16. A Statistical Perspective on Highly Accelerated Testing

    SciTech Connect

    Thomas, Edward V.

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning the

  17. Accelerated Testing Of Photothermal Degradation Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  18. 40 CFR 1045.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I determine deterioration factors from exhaust durability testing? 1045.245 Section 1045.245 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  19. 40 CFR 1045.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I determine deterioration factors from exhaust durability testing? 1045.245 Section 1045.245 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  20. 40 CFR 1045.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I determine deterioration factors from exhaust durability testing? 1045.245 Section 1045.245 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  1. 40 CFR 1045.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I determine deterioration factors from exhaust durability testing? 1045.245 Section 1045.245 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  2. The Degradation Mitigation Effect of Cerium Oxide in Polymer Electrolyte Membranes in Extended Fuel Cell Durability Tests

    SciTech Connect

    Pearman, Benjamin P; Mohajeri, Nahid; Brooker, R. Paul; Rodgers, Marianne; Slattery, Darlene; Hampton, Michael; Cullen, David A; Seal, Sudipta

    2013-01-01

    In this work, two formulations of single-crystal cerium oxide nanoparticles of varying particle sizes were incorporated into perfluorosulfonic acid membrane electrode assemblies (MEAs) and their ability to improve the in-situ membrane durability was studied by subjecting them to 94 and 500 hours open-circuit voltage hold accelerated durability tests . In the shorter test the open circuit voltage decay rate was reduced by half and the fluoride emission by at least one order of magnitude, though no effect on hydrogen crossover or performance of the baseline MEAs was measured. The presence of the additive increased the particle size but decreased the number of platinum catalyst particles that were deposited in the membrane. The main Pt band was found at the predicted location; however, the incorporation of ceria caused a broadening with particles reaching further into the membrane. In 500 h tests, ceria-containing MEAs demonstrated a seven-fold decrease in open-circuit voltage decay and three order of magnitude reduction in fluoride emission rates with unchanged performance and hydrogen crossover, remaining effectively pristine whilst the baseline MEA underwent catastrophic failure.

  3. The degradation mitigation effect of cerium oxide in polymer electrolyte membranes in extended fuel cell durability tests

    NASA Astrophysics Data System (ADS)

    Pearman, Benjamin P.; Mohajeri, Nahid; Brooker, R. Paul; Rodgers, Marianne P.; Slattery, Darlene K.; Hampton, Michael D.; Cullen, David A.; Seal, Sudipta

    2013-03-01

    In this work, two formulations of cerium oxide nanoparticles were incorporated into perfluorosulfonic acid membrane electrode assemblies (MEAs) and their ability to improve the in-situ membrane durability was studied by subjecting them to 94 and 500 h open-circuit voltage hold accelerated durability tests. In the shorter test the open circuit voltage decay rate was reduced by half and the fluoride emission by at least one order of magnitude, though no effect on hydrogen crossover or performance on the baseline MEAs was measured. The presence of the additive increased the particle size but decreased the number of platinum catalyst particles that were deposited in the membrane. The main Pt band was found at the predicted location; however, the incorporation of ceria caused a broadening with particles reaching further into the membrane. In 500 h tests, ceria-containing MEAs demonstrated a seven-fold decrease in open-circuit voltage decay and three orders of magnitude reduction in fluoride emission rates with unchanged performance and hydrogen crossover, remaining effectively pristine whilst the baseline MEA underwent catastrophic failure.

  4. Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data

    SciTech Connect

    Patterson, Timothy; Motupally, Sathya

    2012-06-01

    UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

  5. Durability testing at 5 atmospheres of advanced catalysts and catalyst supports for gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Olson, B. A.; Lee, H. C.; Osgerby, I. T.; Heck, R. M.; Hess, H.

    1980-01-01

    The durability of CATCOM catalysts and catalyst supports was experimentally demonstrated in a combustion environment under simulated gas turbine engine combustor operating conditions. A test of 1000 hours duration was completed with one catalyst using no. 2 diesel fuel and operating at catalytically-supported thermal combustion conditions. The performance of the catalyst was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. Tests were performed periodically to determine changes in catalytic activity of the catalyst core. Detailed parametric studies were also run at the beginning and end of the durability test, using no. 2 fuel oil. Initial and final emissions for the 1000 hours test respectively were: unburned hydrocarbons (C3 vppm):0, 146, carbon monoxide (vppm):30, 2420; nitrogen oxides (vppm):5.7, 5.6.

  6. New tests for characterizing the durability of a ceramic catalytic converter package

    SciTech Connect

    Reddy, K.P.; Helfinstine, J.D.; Gulati, S.T.

    1996-09-01

    New test methods were developed to characterize the high temperature durability of intumescent mats that are used to mount ceramic catalyst supports in stainless steel cans. The key attribute of these tests is the use of an electric resistance heating method to maintain a temperature gradient through the thickness of the mat when a cyclic or constant shear stress is applied to the mat interface. These tests are simple to perform and do not require expensive equipment or highly skilled operators. Using these new test methods, the durability of ceramic preconverters mounted with 4,070 gm/m{sup 2} intumescent mat was studied. The results of these tests indicate that a preconverter package with 4070 gm/m{sup 2} intumescent mat can perform satisfactorily in the close-coupled application where temperatures exceed 900 C. The mat performance can be quantified in terms of applied stress and test temperature by utilizing the experimental methods described in the present study.

  7. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  8. The accelerated testing of cements in brines

    SciTech Connect

    Krumhansl, J.L.

    1993-12-31

    Cementitious materials may be employed in settings where they face prolonged exposure to Mg-rich brines. This study evaluated the possibility of using high temperatures to accelerate brine-cement reaction rates. Class-H cement coupons were tested in Mg-K-Na-C1- SO{sub 4} brines to 100{degrees}C. MgC1{sub 2}-NaC1 solutions were also employed in a test sequence that extended to 200{degrees}C. It was found that accelerated testing could be used successfully to evaluate the compatability of cementitious materials with such brines.

  9. Durability Methods Development. Volume 8. Test and Fractography Data

    DTIC Science & Technology

    1982-11-01

    fractography effort for the program. J. W. Norris developed the computer software for storing and analyzing the fractography data acquired and...98 2080. 0.1516 Test Date 2180. 0.1948 2279. 0.3247 Fatizue LiFe 2279. Faiiure ioao: A) ~8) initiation Locationls) Notes; No. of Crack No. of Crak V...8217e TO -Rar# F~oO.T-S NkeCA.dFO. CRAKS ATr /to* - SM~ft#eS S I I- O 14 9 - < No. of Crack No- of Crack Flights* Size Flights* Size Data set ABXHC4 200

  10. RHIC Sextant Test - Accelerator Systems and Performance

    NASA Astrophysics Data System (ADS)

    Pilat, F.; Ahrens, L.; Brown, K.; Connolly, R.; dell, G. F.; Fischer, W.; Kewisch, J.; Mackay, W.; Mane, V.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trbojevic, D.; Tsoupas, N.; Wei, J.

    1997-05-01

    One sextant of the RHIC collider and the full AtR (AGS to RHIC) transfer line have been commissioned in early 1997 with beam. We describe here the design and performance of the accelerator systems during the test, such as the magnet and power supply systems, instrumentation subsystems and application software. After reviewing the main milestones of the commissioning we describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems preformance and their impact on the plannig for RHIC installation and commissioning.

  11. Relationship between borosilicate glass composition, structure, and durability test response (SRS)

    SciTech Connect

    Ramsey, W.G.; Jantzen, C.M.; Taylor, T.D.

    1992-12-31

    The chemical durability of 30 glasses from the Na{sub 2}O {center_dot} B{sub 2}O{sub 3} {center_dot} SiO{sub 2} {center_dot} Al{sub 2}O{sub 3} {center_dot} Fe{sub 2}O{sub 3}{center_dot}CaO system was examined. Two standard leach tests, MCC-1P and PCT, were performed in unbuffered, deionized water. PCT tests were performed for durations up to twenty-four weeks to obtain glass dissolution rate data. Short-term MCC-1P test leachate solutions are determined by the glass composition. Long-term glass dissolution rates, however, are dependent on glass structure in addition to glass composition. The applicability of the free energy of hydration and other dissolution and durability models to this system is discussed.

  12. Relationship between borosilicate glass composition, structure, and durability test response (SRS)

    SciTech Connect

    Ramsey, W.G.; Jantzen, C.M. ); Taylor, T.D. )

    1992-01-01

    The chemical durability of 30 glasses from the Na[sub 2]O [center dot] B[sub 2]O[sub 3] [center dot] SiO[sub 2] [center dot] Al[sub 2]O[sub 3] [center dot] Fe[sub 2]O[sub 3][center dot]CaO system was examined. Two standard leach tests, MCC-1P and PCT, were performed in unbuffered, deionized water. PCT tests were performed for durations up to twenty-four weeks to obtain glass dissolution rate data. Short-term MCC-1P test leachate solutions are determined by the glass composition. Long-term glass dissolution rates, however, are dependent on glass structure in addition to glass composition. The applicability of the free energy of hydration and other dissolution and durability models to this system is discussed.

  13. Atomic Oxygen Durability Testing of an International Space Station Solar Array Validation Coupon

    NASA Technical Reports Server (NTRS)

    Forkapa, Mark J.; Stidham, Curtis; Banks, Bruce A.; Rutledge, Sharon K.; Ma, David H.; Sechkar, Edward A.

    1996-01-01

    An International Space Station solar array validation coupon was exposed in a directed atomic oxygen beam for space environment durability testing at the NASA Lewis Research Center. Exposure to atomic oxygen and intermittent tensioning of the solar array were conducted to verify the solar array#s durability to low Earth orbital atomic oxygen and to the docking threat of plume loading both of which are anticipated over its expected mission life of fifteen years. The validation coupon was mounted on a specially designed rotisserie. The rotisserie mounting enabled the solar and anti-solar facing side of the array to be exposed to directed atomic oxygen in a sweeping arrival process replicating space exposure. The rotisserie mounting also enabled tensioning, in order to examine the durability of the array and its hinge to simulated plume loads. Flash testing to verify electrical performance of the solar array was performed with a solar simulator before and after the exposure to atomic oxygen and tensile loading. Results of the flash testing indicated little or no degradation in the solar array#s performance. Photographs were also taken of the array before and after the durability testing and are included along with comparisons and discussions in this report. The amount of atomic oxygen damage appeared minor with the exception of a very few isolated defects. There were also no indications that the simulated plume loadings had weakened or damaged the array, even though there was some erosion of Kapton due to atomic oxygen attack. Based on the results of this testing, it is apparent that the International Space Station#s solar arrays should survive the low Earth orbital atomic oxygen environment and docking threats which are anticipated over its expected mission life.

  14. Micro-fractures produced in the Cadalso de los Vidrios granite (Madrid) subjected to Freeze-Thaw Durability Testing

    NASA Astrophysics Data System (ADS)

    Freire-Lista, D. M.; Varas-Muriel, M. J.; Fort, R.

    2012-04-01

    A specific leucogranite (fine to medium grain sized) from Cadalso de los Vidrios, Madrid, Spain, from where it takes the name of the stone variety, which is a traditional heritage building material used in Central Spain, was subjected to freezing-thaw durability tests or accelerated artificial ageing tests (according to Spanish standard EN 12371:2001) to assess its durability by means of ultrasonic velocity measurements (a non-destructive technique), and optical and fluorescence petrography using a polarized optical microscope (destructive technique), both techniques used before, during and after laboratory ageing tests, or in other words, what is determined is the improvement or deterioration in some properties. The measurement of the ultrasonic velocity in the leucogranite cubic test specimens along the freezing-thaw cycles shown that the velocity diminishes with the number of cycles, in relation to the decay that the stones were experiencing. This deterioration can be observed by the loss of crystalline minerals in the surface of the analyzed samples and by the micro-fractures appearance up to one centimeter deep, which have been detected by the petrographic techniques previously mentioned. The images taken by means of the fluorescence microscope clearly show the micro-fractures generated during the durability test. These images have been processed and analyzed by the UTHSCSA Image Tool program with the purpose of being able to quantify the degree of decay that this type of crystalline materials undergone, when subjected to a number of freezing-thaw test cycles. It is therefore an effective, reliable and complementary technique to that of the petrography analysis, both optical and fluorescence ones. In the first cycles of the ageing test, the micro-fractures propagate along crystals edges and during the last cycles of the test, intracrystalline micro-fractures are generated, which are developed in different ways depending on the mineralogy of the crystals. Thus

  15. Modeling Reliability Growth in Accelerated Stress Testing

    DTIC Science & Technology

    2013-12-01

    HASS and HASA Explained, Milwaukee, WI: Quality Press, 2009. [13] A. J. Porter, "Failure Mode Verification: Applying Highly Accelerated Life Testing...and Production Conference - Proceedings of the Technical Program, Des Plaines, IL, 1998. [16] M. Silverman, "Summary of HALT and HASS results at

  16. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... closing temperature shall be measured on an increasing temperature change. C. Carburetor Accelerator Pumps.... Reserved for Camshafts N. Reserved for Pistons O. Oxidizing Catalytic Converters 1. Test Procedures...

  17. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... closing temperature shall be measured on an increasing temperature change. C. Carburetor Accelerator Pumps.... Reserved for Camshafts N. Reserved for Pistons O. Oxidizing Catalytic Converters 1. Test Procedures...

  18. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... closing temperature shall be measured on an increasing temperature change. C. Carburetor Accelerator Pumps.... Reserved for Camshafts N. Reserved for Pistons O. Oxidizing Catalytic Converters 1. Test Procedures...

  19. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... closing temperature shall be measured on an increasing temperature change. C. Carburetor Accelerator Pumps.... Reserved for Camshafts N. Reserved for Pistons O. Oxidizing Catalytic Converters 1. Test Procedures...

  20. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... closing temperature shall be measured on an increasing temperature change. C. Carburetor Accelerator Pumps.... Reserved for Camshafts N. Reserved for Pistons O. Oxidizing Catalytic Converters 1. Test Procedures...

  1. Vacuum system for Advanced Test Accelerator

    SciTech Connect

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  2. Accelerated test plan for nickel cadmium spacecraft batteries

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1973-01-01

    An accelerated test matrix is outlined that includes acceptance, baseline and post-cycling tests, chemical and physical analyses, and the data analysis procedures to be used in determining the feasibility of an accelerated test for sealed, nickel cadmium cells.

  3. Beam alignment test for therapy accelerators

    SciTech Connect

    Lutz, W.R.; Larsen, R.D.; Bjarngard, B.D.

    1981-12-01

    Beam spot displacement, collimator asymmetry, and movement of either collimator or gantry rotational axis can cause misalignment of the X ray beam from a therapy accelerator. A test method, sensitive to all the above problems, consists of double-exposing a film, located at the isocenter, for two gantry positions, 180/sup o/ apart. Opposite halves of the field are blocked for each exposure. A lateral shift of one half with respect to the other indicates the presence of one of the problems mentioned above. Additional tests are described, each of which is sensitive to only one of the problems and capable of quantifying the error.

  4. Beam alignment tests for therapy accelerators

    SciTech Connect

    Lutz, W.R.; Larsen, R.D.; Bjarngard, B.E.

    1981-12-01

    Beam spot displacement, collimator asymmetry, and movement of either collimator or gantry rotational axis can cause misalignment of the X ray beam from a therapy accelerator. A test method, sensitive to all the above problems, consists of double-exposing a film, located at the isocenter, for two gantry positions, 180/sup 0/ apart. Opposite halves of the field are blocked for each exposure. A lateral shift of one half with respect to the other indicates the presence of one of the problems mentioned above. Additional tests are described, each of which is sensitive to only one of the problems and capable of quantifying the error.

  5. Fabrication and Testing of Durable Redundant and Fluted-Core Joints for Composite Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Lin, Shih-Yung; Splinter, Scott C.; Tarkenton, Chris; Paddock, David A.; Smeltzer, Stanley S.; Ghose, Sayata; Guzman, Juan C.; Stukus, Donald J.; McCarville, Douglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures is an essential component of future space technologies. While NASA is working toward providing an entirely new capability for human space exploration beyond low Earth orbit, the objective of this project is to design, fabricate, analyze, and test a NASA patented durable redundant joint (DRJ) and a NASA/Boeing co-designed fluted-core joint (FCJ). The potential applications include a wide range of sandwich structures for NASA's future launch vehicles. Three types of joints were studied -- splice joint (SJ, as baseline), DRJ, and FCJ. Tests included tension, after-impact tension, and compression. Teflon strips were used at the joint area to increase failure strength by shifting stress concentration to a less sensitive area. Test results were compared to those of pristine coupons fabricated utilizing the same methods. Tensile test results indicated that the DRJ design was stiffer, stronger, and more impact resistant than other designs. The drawbacks of the DRJ design were extra mass and complex fabrication processes. The FCJ was lighter than the DRJ but less impact resistant. With barely visible but detectable impact damages, all three joints showed no sign of tensile strength reduction. No compression test was conducted on any impact-damaged sample due to limited scope and resource. Failure modes and damage propagation were also studied to support progressive damage modeling of the SJ and the DRJ.

  6. Ultra-accelerated natural sunlight exposure testing

    DOEpatents

    Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  7. Commissioning of the Ground Test Accelerator RFQ

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations.

  8. Commissioning of the Ground Test Accelerator RFQ

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-09-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations.

  9. Using surface plasmon resonances to test the durability of silver-copper films.

    PubMed

    Bussjager, R J; Macleod, H A

    1996-09-01

    Silver has high reflectivity in the visible and infrared but cannot be used fully because of its distressing lack of durability. A technique that uses the surface plasmon resonance phenomenon offers a sensitive method for studying the corrosion of silver and assessing improvements. It has been used in the investigation of the effects of flashing a thin layer, approximately 1 nm thick, of copper over silver in an attempt at cathodic protection. Tests include exposing silver and silver-copper films to air, 94% relative humidity, water, and hydrogen sulfide.

  10. Cerium migration during PEM fuel cell accelerated stress testing

    SciTech Connect

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humidity cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.

  11. Cerium migration during PEM fuel cell accelerated stress testing

    DOE PAGES

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; ...

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less

  12. Accelerated Leach Test(s) Program: Annual report

    SciTech Connect

    Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

    1986-09-01

    A computerized data base of LLW leaching data has been developed. Long-term tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms containing simulated wastes are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms.

  13. Laboratory test of Newton's second law for small accelerations.

    PubMed

    Gundlach, J H; Schlamminger, S; Spitzer, C D; Choi, K-Y; Woodahl, B A; Coy, J J; Fischbach, E

    2007-04-13

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5 x 10(-14) m/s(2).

  14. Laboratory Test of Newton's Second Law for Small Accelerations

    SciTech Connect

    Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E.

    2007-04-13

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5x10{sup -14} m/s{sup 2}.

  15. Laboratory Test of Newton's Second Law for Small Accelerations

    NASA Astrophysics Data System (ADS)

    Woodahl, Brian; Gundlach, Jens; Schlamminger, Stephan; Spitzer, Chris; Choi, Ki; Coy, Jen; Fischbach, Ephraim

    2009-10-01

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5 x 10-14 m/s^2.

  16. Laboratory Test of Newton's Second Law for Small Accelerations

    NASA Astrophysics Data System (ADS)

    Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E.

    2007-04-01

    We have tested the proportionality of force and acceleration in Newton’s second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton’s second law at accelerations as small as 5×10-14m/s2.

  17. Durability testing of an iodate-substituted hydroxyapatite designed for the conditioning of 129I

    NASA Astrophysics Data System (ADS)

    Coulon, Antoine; Grandjean, Agnes; Laurencin, Danielle; Jollivet, Patrick; Rossignol, Sylvie; Campayo, Lionel

    2017-02-01

    The safe management of iodine coming from spent nuclear fuels by storage in deep geological repositories requires durable materials. For this purpose, we have recently developed an iodate-substituted hydroxyapatite (HA-CaI). In the present article, the chemical durability of this material is assessed as a function of leaching media and apatite stoichiometry. First, the maximum rate for iodine release was determined in unsaturated conditions leading to a congruent dissolution of HA-CaI. In these conditions, the forward rate was equal to 2 × 10-2 g m-2 d-1 at 50 °C independently of apatite stoichiometry. During this regime, dissolution was controlled by surface reaction and diffusion phenomena. When concentrations of calcium and phosphate ions in solution increased, the system became saturated towards non-substituted hydroxyapatite Ca10(PO4)6(OH)2 and the rate of iodine release consecutively decreased. Consequently, tests were carried out to determine the behaviour of HA-CaI in such experimental conditions (saturated conditions), which were thought to be time-prevalent given the half-life of 129I (15.7 million years). During this regime, also called residual regime, iodine was released in the solution at a constant rate without being trapped in a secondary phase. The residual rate at 50 °C on the basis of iodine release was of 10-4 g m-2 d-1 in an initially deionized water, and it fell by one order of magnitude (r = 10-5 g m-2 d-1) in a clay-equilibrated groundwater (hereafter called Callovo-oxfordian (COx) groundwater). This singular behaviour was ascribed to the presence of calcium in COx water. These preliminary results on the chemical durability of HA-CaI suggest that this material is a viable candidate as repository iodine waste form.

  18. Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)

    SciTech Connect

    Mark Perna; Anant Upadhyayula; Mark Scotto

    2012-11-05

    Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides, and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.

  19. Test validation of environmental barrier coating (EBC) durability and damage tolerance modeling approach

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Najafi, Ali; Abdi, Frank; Bhatt, Ramakrishna T.; Grady, Joseph E.

    2014-03-01

    Protection of Ceramic Matrix Composites (CMCs) is rather an important element for the engine manufacturers and aerospace companies to help improve the durability of their hot engine components. The CMC's are typically porous materials which permits some desirable infiltration that lead to strength enhancements. However, they experience various durability issues such as degradation due to coating oxidation. These concerns are being addressed by introducing a high temperature protective system, Environmental Barrier Coating (EBC) that can operate at temperature applications1, 3 In this paper, linear elastic progressive failure analyses are performed to evaluate conditions that would cause crack initiation in the EBC. The analysis is to determine the overall failure sequence under tensile loading conditions on different layers of material including the EBC and CMC in an attempt to develop a life/failure model. A 3D finite element model of a dogbone specimen is constructed for the analyses. Damage initiation, propagation and final failure is captured using a progressive failure model considering tensile loading conditions at room temperature. It is expected that this study will establish a process for using a computational approach, validated at a specimen level, to predict reliably in the future component level performance without resorting to extensive testing.

  20. Hurricane Isabel gives accelerators a severe test

    SciTech Connect

    Swapan Chattopadhyay

    2004-01-01

    Hurricane Isabel was at category five--the most violent on the Saffir-Simpson scale of hurricane strength--when it began threatening the central Atlantic seaboard of the US. Over the course of several days, precautions against the extreme weather conditions were taken across the Jefferson Lab site in south-east Virginia. On 18 September 2003, when Isabel struck North Carolina's Outer Banks and moved northward, directly across the region around the laboratory, the storm was still quite destructive, albeit considerably reduced in strength. The flood surge and trees felled by wind substantially damaged or even devastated buildings and homes, including many belonging to Jefferson Lab staff members. For the laboratory itself, Isabel delivered an unplanned and severe challenge in another form: a power outage that lasted nearly three-and-a-half days, and which severely tested the robustness of Jefferson Lab's two superconducting machines, the Continuous Electron Beam Accelerator Facility (CEBAF) and the superconducting radiofrequency ''driver'' accelerator of the laboratory's free-electron laser. Robustness matters greatly for science at a time when microwave superconducting linear accelerators (linacs) are not only being considered, but in some cases already being built for projects such as neutron sources, rare-isotope accelerators, innovative light sources and TeV-scale electron-positron linear colliders. Hurricane Isabel interrupted a several-week-long maintenance shutdown of CEBAF, which serves nuclear and particle physics and represents the world's pioneering large-scale implementation of superconducting radiofrequency (SRF) technology. The racetrack-shaped machine is actually a pair of 500-600 MeV SRF linacs interconnected by recirculation arc beamlines. CEBAF delivers simultaneous beams at up to 6 GeV to three experimental halls. An imminent upgrade will double the energy to 12 GeV and add an extra hall for ''quark confinement'' studies. On a smaller scale

  1. Accelerated Strength Testing of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  2. Testing Planck-scale gravity with accelerators.

    PubMed

    Gharibyan, Vahagn

    2012-10-05

    Quantum or torsion gravity models predict unusual properties of space-time at very short distances. In particular, near the Planck length, around 10(-35)  m, empty space may behave as a crystal, singly or doubly refractive. However, this hypothesis remains uncheckable for any direct measurement, since the smallest distance accessible in experiment is about 10(-19)  m at the LHC. Here I propose a laboratory test to measure the space refractivity and birefringence induced by gravity. A sensitivity from 10(-31)  m down to the Planck length could be reached at existent GeV and future TeV energy lepton accelerators using laser Compton scattering. There are already experimental hints for gravity signature at distances approaching the Planck length by 5-7 orders of magnitude, derived from SLC and HERA data.

  3. Stripline kicker for integrable optics test accelerator

    SciTech Connect

    Antipov, Sergey A.; Didenko, Alexander; Lebedev, Valeri; Valishev, Alexander

    2016-06-30

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an outer size of 70 mm to fit inside existing quadrupole magnets to save space in the ring. Computer simulations using CST Microwave Studio show high field uniformity and wave impedance close to 50 {\\Omega}.

  4. A durability test rig and methodology for erosion-resistant blade coatings in turbomachinery

    NASA Astrophysics Data System (ADS)

    Leithead, Sean Gregory

    A durability test rig for erosion-resistant gas turbine engine compressor blade coatings was designed, completed and commissioned. Bare and coated 17-4PH steel V103-profile blades were rotated at up to 11500 rpm and impacted with Garnet sand for 5 hours at an average concentration of 2.51 gm3of air , at a blade leading edge Mach number of 0.50. The rig was determined to be an acceptable first stage axial compressor representation. Two types of 16 microm-thick coatings were tested: Titanium Nitride (TiN) and Chromium-Aluminum-Titanium Nitride (CrAlTiN), both applied using an Arc Physical Vapour Deposition technique at the National Research Council in Ottawa, Canada. A Leithead-Allan-Zhao (LAZ) score was created to compare the durability performance of uncoated and coated blades based on mass-loss and blade dimension changes. The bare blades' LAZ score was set as a benchmark of 1.00. The TiN-coated and CrAlTiN-coated blades obtained LAZ scores of 0.69 and 0.41, respectively. A lower score meant a more erosion-resistant coating. Major modes of blade wear included: trailing edge, leading edge and the rear suction surface. Trailing edge thickness was reduced, the leading edge became blunt, and the rear suction surface was scrubbed by overtip and recirculation zone vortices. It was found that the erosion effects of vortex flow were significant. Erosion damage due to reflected particles was not present due to the low blade solidity of 0.7. The rig is best suited for studying the performance of erosion-resistant coatings after they are proven effective in ASTM standardized testing. Keywords: erosion, compressor, coatings, turbomachinery, erosion rate, blade, experimental, gas turbine engine

  5. Long-term durability test of axial-flow ventricular assist device under pulsatile flow.

    PubMed

    Nishida, Masahiro; Kosaka, Ryo; Maruyama, Osamu; Yamane, Takashi; Shirasu, Akio; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2017-03-01

    A long-term durability test was conducted on a newly developed axial-flow ventricular assist device (VAD) with hydrodynamic bearings. The mock circulatory loop consisted of a diaphragm pump with a mechanical heart valve, a reservoir, a compliance tank, a resistance valve, and flow paths made of polymer or titanium. The VAD was installed behind the diaphragm pump. The blood analog fluid was a saline solution with added glycerin at a temperature of 37 °C. A pulsatile flow was introduced into the VAD over a range of flow rates to realize a positive flow rate and a positive pressure head at a given impeller rotational speed, yielding a flow rate of 5 L/min and a pressure of 100 mmHg. Pulsatile flow conditions were achieved with the diastolic and systolic flow rates of ~0 and 9.5 L/min, respectively, and an average flow rate of ~5 L/min at a pulse rate of 72 bpm. The VAD operation was judged by not only the rotational speed of the impeller, but also the diastolic, systolic, and average flow rates and the average pressure head of the VAD. The conditions of the mock circulatory loop, including the pulse rate of the diaphragm pump, the fluid temperature, and the fluid viscosity were maintained. Eight VADs were tested with testing periods of 2 years, during which they were continuously in operation. The VAD performance factors, including the power consumption and the vibration characteristics, were kept almost constant. The long-term durability of the developed VAD was successfully demonstrated.

  6. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  7. Conclusions and recommendations for the testing of flat-plate solar collector thermal performance and durability

    NASA Astrophysics Data System (ADS)

    Waksman, D.; Thomas, W. C.

    1984-12-01

    The results of studies, by the National Bureau of Standards, of the reliability and durability of eight different types of flat plate solar collectors representative of equipment available in 1977 are reported. The installations were made in four sites believed to typify various U.S. climates. The stability of the thermal performance and material properties was tracked, and measured again after moving the units inside for exposure to artificial sunlight. The stagnation measurement techniques employed to evaluate the collectors were judged adequate, provided the tests are made on-site and out of doors. It is noted that the instrumentation used to gather sufficient data for valid analyses may experience performance decrements due to the necessarily long monitoring intervals, i.e., several years.

  8. VMAT testing for an Elekta accelerator.

    PubMed

    Kaurin, Darryl Gl; Sweeney, Larry E; Marshall, Edward I; Mahendra, Saikanth

    2012-03-08

    Volumetric-modulated arc therapy (VMAT) has been shown to be able to deliver plans equivalent to intensity-modulated radiation therapy (IMRT) in a fraction of the treatment time. This improvement is important for patient immobilization/localization compliance due to comfort and treatment duration, as well as patient throughput. Previous authors have suggested commissioning methods for this modality. Here, we extend the methods reported for the Varian RapidArc system (which tested individual system components) to the Elekta linear accelerator, using custom files built using the Elekta iComCAT software. We also extend the method reported for VMAT commissioning of the Elekta accelerator by verifying maximum values of parameters (gantry speed, multileaf collimator (MLC) speed, and backup jaw speed), investigating: 1) beam profiles as a function of dose rate during an arc, 2) over/under dosing due to MLC reversals, and 3) over/under dosing at changing dose rate junctions. Equations for construction of the iComCAT files are given. Results indicate that the beam profile for lower dose rates varies less than 3% from that of the maximum dose rate, with no difference during an arc. The gantry, MLC, and backup jaw maximum speed are internally consistent. The monitor unit chamber is stable over the MUs and gantry movement conditions expected. MLC movement and position during VMAT delivery are within IMRT tolerances. Dose rate, gantry speed, and MLC speed are accurately controlled. Over/under dosing at junctions of MLC reversals or dose rate changes are within clinical acceptability.

  9. Spin Testing for Durability Began on a Self-Tuning Impact Damper for Turbomachinery Blades

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten; Mehmed, Oral

    2003-01-01

    NASA and Pratt & Whitney will collaborate under a Space Act Agreement to perform spin testing of the impact damper to verify damping effectiveness and durability. Pratt & Whitney will provide the turbine blade and damper hardware for the tests. NASA will provide the facility and perform the tests. Effectiveness and durability will be investigated during and after sustained sweeps of rotor speed through resonance. Tests of a platform wedge damper are also planned to compare its effectiveness with that of the impact damper. Results from baseline tests without dampers will be used to measure damping effectiveness. The self-tuning impact damper combines two damping methods-the tuned mass damper and the impact damper. It consists of a ball located within a cavity in the blade. This ball rolls back and forth on a spherical trough under centrifugal load (tuned mass damper) and can strike the walls of the cavity (impact damper). The ball s rolling natural frequency is proportional to the rotor speed and can be designed to follow an engine-order line (integer multiple of rotor speed). Aerodynamic forcing frequencies typically follow these engineorder lines, and a damper tuned to the engine order will most effectively reduce blade vibrations when the resonant frequency equals the engine-order forcing frequency. This damper has been tested in flat plates and turbine blades in the Dynamic Spin Facility. During testing, a pair of plates or blades rotates in vacuum. Excitation is provided by one of three methods--eddy-current engine-order excitation (ECE), electromechanical shakers, and magnetic bearing excitation. The eddy-current system consists of magnets located circumferentially around the rotor. As a blade passes a magnet, a force is imparted on the blade. The number of magnets used can be varied to change the desired engine order of the excitation. The magnets are remotely raised or lowered to change the magnitude of the force on the blades. The other two methods apply

  10. Durability assessments of concrete using electrical properties and acoustic emission testing

    NASA Astrophysics Data System (ADS)

    Todak, Heather N.

    Premature damage deterioration has been observed in pavement joints throughout the Midwestern region of the United States. Over time, severe joint damage creates a transportation safety concern and the necessary repairs can be an extreme economic burden. The deterioration is due in part to freeze-thaw damage associated with fluid accumulation at the pavement joints. This very preventable problem is an indication that current specifications and construction practices for freeze-thaw durability of concrete are inadequate. This thesis serves to create a better understanding of moisture ingress, freeze-thaw damage mechanisms, and the effect of variations in mixture properties on freeze-thaw behavior of concrete. The concepts of the nick point degree of saturation, sorptivity rates, and critical degree of saturation are discussed. These factors contribute to service life, defined in this study as the duration of time a concrete element remains below levels of critical saturation which are required for damage development to initiate. A theoretical model and a simple experimental procedure are introduced which help determine the nick point for a series of 32 concrete mixtures with unique mixture proportions and air entrainment properties. This simple experimental procedure is also presented as a method to measure important electrical properties in order to establish the formation factor, a valuable measure of concrete transport properties. The results of freeze-thaw testing with acoustic emission monitoring are presented to help understand and quantify damage development in concrete specimens when conditioned to various degrees of saturation. This procedure was used to study the relationship between air entrainment properties and the critical degree of saturation. Applying the concepts of degree of saturation and sorptivity, a performance-based model is proposed as a new approach to specifications for freeze-thaw durability. Finally, a conceptual model is presented to

  11. Preliminary tests of the electrostatic plasma accelerator

    NASA Technical Reports Server (NTRS)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  12. Advances in Thin Film Thermocouple Durability Under High Temperature and Pressure Testing Conditions

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Fralick, Gustave C.; Taylor, Keith F.

    1999-01-01

    Thin film thermocouples for measuring material surface temperature have been previously demonstrated on several material systems and in various hostile test environments. A well-developed thin film fabrication procedure utilizing shadow masking for patterning the sensors elements had produced thin films with sufficient durability for applications in high temperature and pressure environments that exist in air-breathing and hydrogen-fueled burner rig and engine test facilities. However, while shadow masking had been a reliable method for specimens with flat and gently curved surfaces, it had not been consistently reliable for use on test components with sharp contours. This work reports on the feasibility of utilizing photolithography processing for patterning thin film thermocouples. Because this patterning process required changes in the thin film deposition process from that developed for shadow masking, the effect of these changes on thin film adherence during burner rig testing was evaluated. In addition to the results of changing the patterning method, the effects on thin film adherence of other processes used in the thin film fabrication procedure is also presented.

  13. Laboratory Test of Newton's Second Law for Small Accelerations

    NASA Astrophysics Data System (ADS)

    Woodahl, Brian; Gundlach, Jens; Schlamminger, Stephan; Spitzer, Chris; Choi, Ki; Coy, Jennifer; Fischbach, Ephraim

    2007-05-01

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5 x 10-14 m/s^2. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.P1.15

  14. FOLLOW-UP DURABILITY MEASUREMENTS AND MITIGATION PERFORMANCE IMPROVEMENT TESTS IN 38 EASTERN PENNSYL- VANIA HOUSES HAVING INDOOR REDUCTION SYSTEMS

    EPA Science Inventory

    The report gives results of follow-up tests in 38 difficult- to-mitigate Pennsylvania houses where indoor radon reduction systems had been installed 2 to 4 years earlier. bjectives were to assess system durability, methods for improving performance, and methods for reducing insta...

  15. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  16. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  17. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  18. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  19. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  20. Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)

    SciTech Connect

    Lee, J.; Elmore, R.; Kennedy, C.; Gray, M.; Jones, W.

    2011-09-01

    This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solar Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.

  1. Nondestructive test methods for evaluating durability of concrete highway structures: experience of Ontario Ministry of Transportation

    NASA Astrophysics Data System (ADS)

    Ip, Alan; Berszakiewicz, Beata; Pianca, Frank

    1998-03-01

    There is an urgent need for fast, reliable, non-destructive test methods to measure permeability and resistivity of concrete in the field, in order to assess the performance of concrete structures and confirm the benefits of the use of new materials. The application of high performance concrete for rehabilitation of corrosion-damaged highway structures and for new bridge construction has increased in Ontario over the past few years. High performance concrete, containing supplementary cementing materials such as silica fume, typically has lower permeability and higher electrical resistivity than conventional concrete. Since 1993, the R&D staff of the Ontario Ministry of Transportation (MTO) has been evaluating various non-destructive in-situ techniques to measure the permeability and resistivity of concrete. This paper describes two methods used by MTO to measure the permeability of concrete: surface water absorption and air permeability techniques; and presents the methods used to measure the concrete electrical resistivity, chloride movement in the concrete, and corrosion activity of the embedded steel. Many of the tests were performed on both the conventional and high performance concrete. Some of these techniques can be potentially used as quality assurance tools for assessing the quality, performance and durability of concrete in the field.

  2. Results of testing the Grambow rate law for use in HWVP glass durability correlations

    SciTech Connect

    Kuhn, W.L.; Bunnell, L.R.

    1996-03-01

    A theory based on Grambow`s work on hydration of glass as linear function of solution composition was evaluated. Use of Grambow`s linear rate law for correlation of durability with glass composition is not recommended. Dissolution rate of the glass was determined using the rate of release of sodium with an ion selective electrode. This method was tested first applying it to initial dissolution rate of several glasses at several temperatures with zero initial concentration of silicic acid. HW39-2, HW39-4, and SRL-202 from Savannah River were tested; there was significant scatter in the data, with the dissolution rates of HW39 glasses and the SRL glass being comparable within this scatter. The dissolution rate of SRL-202 at 80 C and pH 7 for silicic acid concentrations 0, 25, 50, and 100% saturation, was found to decrease dramatically at only 25% of the saturated silicic acid concentration, which does not conform to the linear theory.

  3. Durability of crystalline phase in concrete microstructure modified by the mineral powders: evaluation by nanoindentation tests

    NASA Astrophysics Data System (ADS)

    Rajczakowska, Magdalena; Łydżba, Dariusz

    2016-03-01

    This paper presents the nanoindentation investigation of the evolution of concrete microstructure modified by the Internal Crystallization Technology mineral powders. The samples under study were retrieved from a fragment of a circular concrete lining of the vertical mine shaft at a depth of approximately 1,000 m. Due to the aggressive environment and exposure to contaminated water, the internal surface of the structure was deteriorated, decreasing its strength significantly. The mineral powders were applied directly on the surface lining. The specimens were investigated one month, three months and one year after the application of the aforementioned substance in order to verify the time dependence of the strengthening processes and durability of the crystalline phase. The microstructural changes of concrete were assessed with the use of nanoindentation technique. The testing procedure involved including the previously cut specimens in the epoxy resin and grinding and polishing in order to reduce the surface roughness. As a result of the nanoindentation tests the hardness as well as Young's modulus of the material were evaluated. The results were then compared and statistically analyzed. As a consequence, the disintegration time of the crystalline network in the pores of concrete was identified.

  4. Test Plans. Lightweight Durable TPS: Tasks 1,2,4,5, and 6

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Tu, Tina

    1994-01-01

    The objective of this task is to develop the fluted core flexible blankets, also referred to as the Tailorable Advanced Blanket Insulation (TABI), to a technology readiness level (TRL) of 6. This task is one of the six tasks under TA 3, Lightweight Durable TPS study, of the Single Stage to Orbit (SSTO) program. The purpose of this task is to develop a durable and low maintenance flexible TPS blanket material to be implemented on the SSTO vehicle.

  5. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2007-03-31

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  6. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2006-12-06

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  7. Microtremor analysis to test the durability of Jumoyo Bridge, Central Java

    NASA Astrophysics Data System (ADS)

    Brahmantyo, Arga; Setiawan, Muhammad Ragil; Wahyudi

    2016-02-01

    Jumoyo Bridge is one of bridges connecting the main highways of Magelang-Yogyakarta, Indonesia. The bridge durability test was conducted to determine self-frequency and motion direction of the bridge's particles. Measurements were performed in two circumstances, namely when the location was crowded and deserted to be passed by vehicles. Measurements points consisted of six points along Jumoyo Bridge, and one point above the ground level near the bridge. Obtaining the movement of particles and HVSR spectrum, the data analysis was conducted by using Geopsy software. The self-frequency values of the bridge were calculated based on HVSR spectrum. The process of selecting signal (windowing) was performed manually on the ambient signals. The self-frequency values of the bridge obtained were in the range of 2.74 to 2.95 Hz, with the amplitude were 0.48 to 1.63 mm. The bridge's particle motion in vertical direction have trending N-S, while in horizontal direction tends to SW-NE. The ground's frequency value around the bridge was 0.79 Hz. Based on these results, it can be said that Jumoyo Bridge has resistance towards the resonance danger of the ground. For the next measurement, it needs to measure the stresses that occur to obtain more complete analysis.

  8. Influence of a C{sub 12}A{sub 7} mineral-based accelerator on the strength and durability of shotcrete

    SciTech Connect

    Park, Hae-Geun; Sung, Sang-Kyoung; Park, Chan-Gi; Won, Jong-Pil

    2008-03-15

    This study analyzed the long-term strength and durability of shotcrete when a C{sub 12}A{sub 7}-based accelerator is added to the mixture. Since an accelerator with a high alkali content causes a remarkable decrease in the long-term strength of shotcrete and is toxic to humans, this study evaluated the setting time, compressive strength, and resistance to permeability and repeated freeze-thaw cycles of an amorphous C{sub 12}A{sub 7}-based accelerator. The results showed that the C{sub 12}A{sub 7} accelerator set quickly by forming a web structure from its initial setting state due to the presence of ettringite. In addition, the ettringite, with its characteristic acicular crystals, proved resistant to permeability and repeated freeze-thaw cycles. Ettringite has a structure that encouraged a smooth hydration reaction, maintaining the voids at the surface of the cement particles and resulting in the observed initial strength and decrease in the reduction of the long-term strength.

  9. International Low-Earth-Orbit Spacecraft Materials Test Program Initiated for Better Prediction of Durability and Performance

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.

    1999-01-01

    Spacecraft in low Earth orbit (LEO) are subjected to many components of the environment, which can cause them to degrade much more rapidly than intended and greatly shorten their functional life. The atomic oxygen, ultraviolet radiation, and cross contamination present in LEO can affect sensitive surfaces such as thermal control paints, multilayer insulation, solar array surfaces, and optical surfaces. The LEO Spacecraft Materials Test (LEO-SMT) program is being conducted to assess the effects of simulated LEO exposure on current spacecraft materials to increase understanding of LEO degradation processes as well as to enable the prediction of in-space performance and durability. Using ground-based simulation facilities to test the durability of materials currently flying in LEO will allow researchers to compare the degradation evidenced in the ground-based facilities with that evidenced on orbit. This will allow refinement of ground laboratory test systems and the development of algorithms to predict the durability and performance of new materials in LEO from ground test results. Accurate predictions based on ground tests could reduce development costs and increase reliability. The wide variety of national and international materials being tested represent materials being functionally used on spacecraft in LEO. The more varied the types of materials tested, the greater the probability that researchers will develop and validate predictive models for spacecraft long-term performance and durability. Organizations that are currently participating in the program are ITT Research Institute (USA), Lockheed Martin (USA), MAP (France), SOREQ Nuclear Research Center (Israel), TNO Institute of Applied Physics (The Netherlands), and UBE Industries, Ltd. (Japan). These represent some of the major suppliers of thermal control and sensor materials currently flying in LEO. The participants provide materials that are exposed to selected levels of atomic oxygen, vacuum ultraviolet

  10. Terrestrial Photovoltaic Module Accelerated Test-To-Failure Protocol

    SciTech Connect

    Osterwald, C. R.

    2008-03-01

    This technical report documents a test-to-failure protocol that may be used to obtain quantitative information about the reliability of photovoltaic modules using accelerated testing in environmental temperature-humidity chambers.

  11. Accelerated Test Method for Corrosion Protective Coatings Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  12. Test of F=ma for small accelerations

    NASA Astrophysics Data System (ADS)

    Schlamminger, Stephan; Spitzer, Chris; Choi, Ki-Young; Gundlach, Jens; Woodahl, Brian; Coy, Jennifer; Fischbach, Ephraim

    2007-04-01

    We have used a torsion balance to test Newton's second law in the limit of small forces and accelerations. We were able to verify the proportionality between force and acceleration down to accelerations of 5 x10-14; m/s^2. This is approximately three orders of magnitude lower than a previous measurement and provides a stringent constraint on theories involving a modification of Newtonian dynamics to explain the flatness of galactic rotation curves.

  13. Testing general relativity with laser accelerated electron beams

    SciTech Connect

    Gergely, L. A.; Harko, T.

    2012-07-09

    Electron accelerations of the order of 10{sup 21} g obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a uniformly accelerated particle.

  14. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  15. A Study on a Prognosis Algorithm for PEMFC Lifetime Prediction based on Durability Tests

    SciTech Connect

    Zhang, Xian; Pisu, Pierluigi; Toops, Todd J

    2010-01-01

    Of the fuel cells being studied, the proton exchange membrane fuel cell (PEMFC) is viewed as the most promising for transportation. Yet until today, the commercialization of the PEMFC has not been widespread in spite of its large expectation. Poor long term performances or durability, and high production and maintenance costs account for the main reasons. For the final commercialization of fuel cell in transportation field, the durability issue must be addressed, while the costs should be further brought down. In the meantime, health-monitoring and prognosis techniques are of great significance in ensuring the normal operation of the fuel cell and preventing or predicting its likely abrupt and catastrophic failure.

  16. Durability testing at one atmosphere of advanced catalysts and catalyst supports for automotive gas turbine engine combustors, part 1

    NASA Technical Reports Server (NTRS)

    Heck, R. M.; Chang, M.; Hess, H.; Carrubba, R.

    1977-01-01

    The durability of catalysts and catalyst supports in a combustion environment was experimentally demonstrated. A test of 1000 hours duration was completed with two catalysts, using diesel fuel and operating at catalytically supported thermal combustion conditions. The performance of the catalysts was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. The test catalysts proved to be capable of low emissions operation after 1000 hours diesel aging, with no apparent physical degradation of the catalyst support.

  17. Miniature penetrator (MinPen) acceleration recorder development test

    SciTech Connect

    Franco, R.J.; Platzbecker, M.R.

    1998-08-01

    The Telemetry Technology Development Department at Sandia National Laboratories actively develops and tests acceleration recorders for penetrating weapons. This new acceleration recorder (MinPen) utilizes a microprocessor-based architecture for operational flexibility while maintaining electronics and packaging techniques developed over years of penetrator testing. MinPen has been demonstrated to function in shock environments up to 20,000 Gs. The MinPen instrumentation development has resulted in a rugged, versatile, miniature acceleration recorder and is a valuable tool for penetrator testing in a wide range of applications.

  18. Novel durable bio-photocatalyst purifiers, a non-heterogeneous mechanism: accelerated entrapped dye degradation into structural polysiloxane-shield nano-reactors.

    PubMed

    Dastjerdi, Roya; Montazer, Majid; Shahsavan, Shadi; Böttcher, Horst; Moghadam, M B; Sarsour, Jamal

    2013-01-01

    This research has designed innovative Ag/TiO(2) polysiloxane-shield nano-reactors on the PET fabric to develop novel durable bio-photocatalyst purifiers. To create these very fine nano-reactors, oppositely surface charged multiple size nanoparticles have been applied accompanied with a crosslinkable amino-functionalized polysiloxane (XPs) emulsion. Investigation of photocatalytic dye decolorization efficiency revealed a non-heterogeneous mechanism including an accelerated degradation of entrapped dye molecules into the structural polysiloxane-shield nano-reactors. In fact, dye molecules can be adsorbed by both Ag and XPs due to their electrostatic interactions and/or even via forming a complex with them especially with silver NPs. The absorbed dye and active oxygen species generated by TiO(2) were entrapped by polysiloxane shelter and the presence of silver nanoparticles further attract the negative oxygen species closer to the adsorbed dye molecules. In this way, the dye molecules are in close contact with concentrated active oxygen species into the created nano-reactors. This provides an accelerated degradation of dye molecules. This non-heterogeneous mechanism has been detected on the sample containing all of the three components. Increasing the concentration of Ag and XPs accelerated the second step beginning with an enhanced rate. Further, the treated samples also showed an excellent antibacterial activity.

  19. Investigation of Dynamic Force/Vibration Transmission Characteristics of Four-Square Type Gear Durability Test Machines

    NASA Technical Reports Server (NTRS)

    Kahraman, Ahmet

    2002-01-01

    In this study, design requirements for a dynamically viable, four-square type gear test machine are investigated. Variations of four-square type gear test machines have been in use for durability and dynamics testing of both parallel- and cross-axis gear set. The basic layout of these machines is illustrated. The test rig is formed by two gear pairs, of the same reduction ratio, a test gear pair and a reaction gear pair, connected to each other through shafts of certain torsional flexibility to form an efficient, closed-loop system. A desired level of constant torque is input to the circuit through mechanical (a split coupling with a torque arm) or hydraulic (a hydraulic actuator) means. The system is then driven at any desired speed by a small DC motor. The main task in hand is the isolation of the test gear pair from the reaction gear pair under dynamic conditions. Any disturbances originated at the reaction gear mesh might potentially travel to the test gearbox, altering the dynamic loading conditions of the test gear mesh, and hence, influencing the outcome of the durability or dynamics test. Therefore, a proper design of connecting structures becomes a major priority. Also, equally important is the issue of how close the operating speed of the machine is to the resonant frequencies of the gear meshes. This study focuses on a detailed analysis of the current NASA Glenn Research Center gear pitting test machine for evaluation of its resonance and vibration isolation characteristics. A number of these machines as the one illustrated has been used over last 30 years to establish an extensive database regarding the influence of the gear materials, processes surface treatments and lubricants on gear durability. This study is intended to guide an optimum design of next generation test machines for the most desirable dynamic characteristics.

  20. Sequential and combined acceleration tests for crystalline Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Yamamoto, Chizuko; Uchiyama, Naomi; Ueno, Kiyoshi; Yamazaki, Toshiharu; Mitsuhashi, Kazunari; Tsutsumida, Akihiro; Watanabe, Jyunichi; Shirataki, Jyunko; Matsuda, Keiko

    2016-04-01

    The sequential combination test for photovoltaic modules is effective for accelerating degradation to shorten the test time and for reproducing degradation phenomena observed in modules exposed outdoors for a long time. The damp-heat (DH) test, thermal-cycle (TC) test, humidity-freeze (HF) test or dynamic mechanical load (DML) test is combined for the test modules. It was confirmed that chemical corrosion degradation or physical mechanical degradation is reproduced by the combination of the above tests. Cracks on the back sheet and delamination, often observed upon outdoor exposure, were well reproduced by the combination of DH and TC tests and TC and HF tests, respectively. Sequential DH and TC tests and DML and TC tests accelerated the degradation. These sequential tests are expected to be effective in reducing the required time of indoor testing for ensuring long-term reliability.

  1. Cosmological consistency tests of gravity theory and cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Ishak-Boushaki, Mustapha B.

    2017-01-01

    Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.

  2. Test particle acceleration in turbulent reconnecting magnetic fields

    NASA Technical Reports Server (NTRS)

    Ambrosiano, John; Matthaeus, William H.; Goldstein, Melvyn L.; Plante, Daniel

    1988-01-01

    The effect of turbulence on particle acceleration in a MHD field was investigated by computing test particle trajectories in turbulent MHD reconnecting fields, including reconnection simulations at different magnetic Reynolds numbers. The dynamics of individual particles were investigated making it possible to examine the acceleration mechanism in great detail. It was found that turbulence influences the acceleration in two ways. It enhances the reconnection electric field while producing a stochastic electric field that gives rise to momentum diffusion; and it produces magnetic 'bubbles' and other irregularities that can temporarily trap test particles in the strong reconnection electric field for times comparable to the magnetofluid characteristic time.

  3. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    PubMed

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  4. Accelerator Tests of the KLEM Prototypes

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J. H.; Bashindzhagyan, P.; Baranova, N.; Christl, M.; Chilingarian, A.; Chupin, I.; Derrickson, J.; Drury, L.; Egorov, N.

    2003-01-01

    The Kinematic Lightweight Energy Meter (KLEM) device is planned for direct measurement of the elemental energy spectra of high-energy (10(exp 11)-10(exp 16) eV) cosmic rays. The first KLEM prototype has been tested at CERN with 180 GeV pion beam in 2001. A modified KLEM prototype will be tested in proton and heavy ion beams to give more experimental data on energy resolution and charge resolution with KLEM method. The first test results are presented and compared with simulations.

  5. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Accelerated life tests were performed on CMOS microcircuits to predict their long term reliability. The consistency of the CMOS microcircuit activation energy between the range of 125 C to 200 C and the range 200 C to 250 C was determined. Results indicate CMOS complexity and the amount of moisture detected inside the devices after testing influences time to failure of tested CMOS devices.

  6. Accelerated Reliability Testing Utilizing Design of Experiments

    DTIC Science & Technology

    1993-12-01

    hat to Measure ............................... 23 b. Identify Stresses ................................ 24 c . Stress Levels...36 c . Test Time ................................... 48 d. Trade Off Analysis .............................. 56 3. A nalysis...79 2. Exam ple 2 . ..................................... 92 3. Exam ple 3 . .................................... 102 C . Conclusion

  7. Rapid chloride permeability test for durability study of carbon nanoreinforced mortar

    NASA Astrophysics Data System (ADS)

    Alafogianni, P.; Dalla, P. T.; Tragazikis, I. K.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The addition of a conductive admixture in a cement-based material could lead to innovative products with multifunctional features. These materials are designed to possess enhanced properties, such as improved mechanical properties, electrical and thermal conductivity, and piezo-electric characteristics. Carbon nanotubes (CNTs) can be used as nano-reinforcement in cement-based materials because of their huge aspect ratio as well as their extremely large specific surface area. For cement-based composites, one of the major types of environmental attack is the chloride ingress, which leads to corrosion of the material and, subsequently, to the reduction of strength and serviceability of the structure. A common method of preventing such deterioration is to avert chlorides from penetrating the structure. The penetration of the concrete by chloride ions is a slow process. It cannot be determined directly in a time frame that would be useful as a quality control measure. Therefore, in order to assess chloride penetration, a test method that accelerates the process is needed, to allow the determination of diffusion values in a reasonable time. In the present research, nanomodified mortars with various concentrations of multi-wall carbon nanotubes (0.2% wt. cement CNTs - 0.6% wt. cement CNTs) were used. The chloride penetration in these materials was monitored according to ASTM C1202 standard. This is known as the Coulomb test or Rapid Chloride Permeability Test (RCPT).

  8. Advanced Durability Analysis. Volume 2. Analytical Predictions, Test Results and Analytical Correlations

    DTIC Science & Technology

    1989-02-27

    used for the back-extrapolation. Recommendations for durability analysis are as follows: (1) define the equivalent initial flaw size distribution ...WAFXHR4 Data Set) for Cumulative Distribution of Service Time to Reach Crack Size x1 -0.59" Based on DCGA- DCGA. xiv List of Figures (Continued) Fiaur. ag ...be used to make predictions for the probability bf crack exceedance at any service time, 7’ , and the cumulative distribution of service time to

  9. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  10. Electric Plasma Arc-Lamp Combustor Liner Durability Test System Developed

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.; Halbig, Michael C.

    2000-01-01

    current. One of the special features of this configuration is the creation of hoop stress states within the cylinder, which up this point have not been obtainable in planar coupon tests. This facility will allow various operational modes, including accelerated tests of thermal transients simulating the effects of repeated engine ignition as well as prescribed thermal and mechanical histories to simulate various duty cycle profiles. Tests can now be performed on thermal-barrier-coated metallic liners and ceramic composite liners that require a combination of high heat flux and controlled mechanical stresses.

  11. Preliminary description of the ground test accelerator cryogenic cooling system

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.

    1988-01-01

    The Ground Test Accelerator (GTA) under construction at the Los Alamos National Laboratory is part of the Neutral Particle Beam Program supported by the Strategic Defense Initiative Office. The GTA is a full-sized test facility to evaluate the feasibility of using a negative ion accelerator to produce a neutral particle beam (NPB). The NPB would ultimately be used outside the earth's atmosphere as a target discriminator or as a directed energy weapon. The operation of the GTA at cryogenic temperature is advantageous for two reasons: first, the decrease of temperature caused a corresponding decrease in the rf heating of the copper in the various units of the accelerator, and second, at the lower temperature the decrease in the thermal expansion coefficient also provides greater thermal stability and consequently, better operating stability for the accelerator. This paper discusses the cryogenic cooling system needed to achieve these advantages. 5 figs., 3 tabs.

  12. Earth Scanner Bearing Accelerated Life Test

    NASA Technical Reports Server (NTRS)

    Dietz, Brian J.; VanDyk, Steven G.; Predmore, Roamer E.

    2000-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) optical instrument for NASA Goddard will measure biological and physical processes on the Earth's surface and in the lower atmosphere. A key component of the instrument is an extremely accurate scan mirror motor/encoder assembly. Of prime concern in the performance and reliability of the scan motor/encoder is bearing selection and lubrication. This paper describes life testing of the bearings and lubrication selected for the program.

  13. Computer modeling of test particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Decker, Robert B.

    1988-01-01

    The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.

  14. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    SciTech Connect

    Piot, Philippe; Harms, Elvin; Henderson, Stuart; Leibfritz, Jerry; Nagaitsev, Sergei; Shiltsev, Vladimir; Valishev, Alexander

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  15. MHD turbulence, reconnection, and test-particle acceleration

    NASA Technical Reports Server (NTRS)

    Gray, Perry C.; Matthaeus, William H.

    1992-01-01

    We examine homogeneous MHD turbulence and turbulent magnetic reconnection as possible mechanisms for accelerating cosmic ray particles. Test particle calculations are performed using fields from MHD simulations, and initially Maxwellian particle distributions are shown to evolve into power-law distributions. Simple estimates for both the maximum energy attainable and the mean energies of the accelerated particles are fairly successful and are consistent with timescales for flares and cosmic rays.

  16. Evaluation of an Accelerated ELDRS Test Using Molecular Hydrogen

    NASA Technical Reports Server (NTRS)

    Pease, Ronald L.; Adell, Philippe C.; Rax, Bernard; McClure, Steven; Barnaby, Hugh J.; Kruckmeyer, Kirby; Triggs, B.

    2011-01-01

    An accelerated total ionizing dose (TID) hardness assurance test for enhanced low dose rate sensitive (ELDRS) bipolar linear circuits, using high dose rate tests on parts that have been exposed to molecular hydrogen, has been proposed and demonstrated on several ELDRS part types. In this study several radiation-hardened "ELDRS-free" part types have been tested using this same approach to see if the test is overly conservative.

  17. Test Operations Procedure (TOP) 01-1-065 Accelerated Corrosion Durability

    DTIC Science & Technology

    2013-10-15

    c. Conductivity meter. d. Dry Film thickness gauge. e. Digital camera. f. Glass bead blaster. g. Large solution mixing tanks. 3...consist of low-pressure, high volume water. If necessary, local areas of heavily caked mud may be removed at any time. g. Maintenance and PMCS...sodium chloride (NaCl) solution, by weight, mixed with water. The vehicle will pass through the trough at different entry speeds such as 56, 40

  18. Verification of Accelerated Testing Methodology for Long-Term Durability of CFRP Laminates for Marine Use

    DTIC Science & Technology

    2012-01-30

    ones and the measured data. 4. ATM-2 for the fatigue life prediction of CFRP laminates was expanded to MMF /ATM method for the fatigue life...TECHNICAL APPROACH 1. The procedure of MMF /ATM method combined with our advanced ATM and the micromechanics of failure ( MMF ) developed by Professor...Sung-Kyu Ha and others is proposed for the fatigue life prediction of the structures made of CFRP laminates. 2. The master curves of MMF /ATM

  19. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    SciTech Connect

    Duffó, Gustavo; Gaillard, Natalia; Mariscotti, Mario; Ruffolo, Marcelo

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.

  20. MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING

    SciTech Connect

    Jantzen, C

    2008-12-26

    The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to

  1. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    NASA Technical Reports Server (NTRS)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  2. Accelerated life testing effects on CMOS microcircuit characteristics, phase 1

    NASA Technical Reports Server (NTRS)

    Maximow, B.

    1976-01-01

    An accelerated life test of sufficient duration to generate a minimum of 50% cumulative failures in lots of CMOS devices was conducted to provide a basis for determining the consistency of activation energy at 250 C. An investigation was made to determine whether any thresholds were exceeded during the high temperature testing, which could trigger failure mechanisms unique to that temperature. The usefulness of the 250 C temperature test as a predictor of long term reliability was evaluated.

  3. TESTING METGLAS FOR USE IN DARHT ACCELERATOR CELLS

    SciTech Connect

    E.A. ROSE; D.A. DALMAS; J.N. DOWNING; R.D. TEMPLE

    2001-06-01

    The Dual Axis Radiographic Hydrotest Facility [DARHT] at Los Alamos will use two induction linacs to produce high-energy electron beams. The electron beams will be used to generate x-rays from bremsstrahlung targets. The x-rays will be used to produce radiographs. The first accelerator is operational now, producing a 60-nanosecond electron beam. The second accelerator is under construction. It will produce a 2-microsecond electron beam. The 78 induction cells of the second axis accelerator require a total Metglas capacity of approximately 40 volt seconds of flux. Four Metglas cores are used in each of the 5-foot diameter accelerator cells. Each Metglas core weighs approximately 3000 pounds. This paper presents the measurement techniques and results of the Metglas tests. Routine automated analysis and archival of the pulse data provided hysteresis curves, energy loss curves and total flux swing in the operating regime. Results of the tests were used to help the manufacturer improve quality control and increase the average flux swing of the cores. Results of the tests were used to match Metglas cores and to assemble accelerator cells with equal volt-second ratings.

  4. Quick setup of unit test for accelerator controls system

    SciTech Connect

    Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

    2011-03-28

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  5. In-situ diagnostics and degradation mapping of a mixed-mode accelerated stress test for proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Lai, Yeh-Hung; Fly, Gerald W.

    2015-01-01

    With increasing availability of more durable membrane materials for proton exchange membrane fuel cells, there is a need for a more stressful test that combines chemical and mechanical stressors to enable accelerated screening of promising membrane candidates. Equally important is the need for in-situ diagnostic methods with sufficient spatial resolution that can provide insights into how membranes degrade to facilitate the development of durable fuel cell systems. In this article, we report an accelerated membrane stress test and a degradation diagnostic method that satisfy both needs. By applying high-amplitude cycles of electrical load to a fuel cell fed with low-RH reactant gases, a wide range of mechanical and chemical stressful conditions can be created within the cell which leads to rapid degradation of a mechanically robust Ion Power™ N111-IP membrane. Using an in-situ shorting/crossover diagnostic method on a segmented fuel cell fixture that provides 100 local current measurements, we are able to monitor the progression and map the degradation modes of shorting, thinning, and crossover leak over the entire membrane. Results from this test method have been validated by conventional metrics of fluoride release rates, physical crossover leak rates, pinhole mapping, and cross-sectional measurements.

  6. Ultrasonic agitation method for accelerating batch leaching tests

    SciTech Connect

    Caldwell, R.J.; Stegemann, J.A.; Chao, C.C.

    1996-12-31

    A method has been developed which uses ultrasonic cavitation to accelerate batch leaching tests. Batch leaching tests, in which attainment of an equilibrium between the solid sample and liquid leachant is desired, usually involve particle size reduction and mixing to hasten mass transfer of soluble compounds. In the study discussed here, mixing in the form of ultrasonic cavitation was used to supply an intense level of agitation. Breaking the liquid boundary layer surrounding individual waste particles ensured a maximum concentration gradient between the solid and liquid phases and accelerated attainment of steady state concentrations. Evaluation of the acceleration technique was made through comparison of leachate quality of stabilized/solidified (S/S) residue samples tested using the Wastewater Technology Centre`s (WTC) equilibrium extraction (EE) and an ultrasonically agitated version of the same test method (UEE). The sample preparation, liquid-to-solid ratio, extraction fluid, etc., specified in the EE method were held constant for the EE and UEE samples, while the duration and method of agitation was altered for the UEE samples. To date, this evaluation has been made using five metal finishing residues, which were selected based on their elevated concentrations of regulated contaminants. The results of the evaluations are presented and suggestions are made as to the applicability of this accelerated test method.

  7. Design of Octupole Channel for Integrable Optics Test Accelerator

    SciTech Connect

    Antipov, Sergey; Carlson, Kermit; Castellotti, Riccardo; Valishev, Alexander; Wesseln, Steven

    2016-06-01

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements on maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.

  8. rf breakdown tests of mm-wave metallic accelerating structures

    NASA Astrophysics Data System (ADS)

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; Clarke, Christine; Hogan, Mark; McCormick, Doug; Novokhatski, Alexander; Spataro, Bruno; Weathersby, Stephen; Tantawi, Sami G.

    2016-01-01

    We are exploring the physics and frequency-scaling of vacuum rf breakdowns at sub-THz frequencies. We present the experimental results of rf tests performed in metallic mm-wave accelerating structures. These experiments were carried out at the facility for advanced accelerator experimental tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. We compared the performances of metal structures made with copper and stainless steel. The rf frequency of the fundamental accelerating mode, propagating in the structures at the speed of light, varies from 115 to 140 GHz. The traveling wave structures are 0.1 m long and composed of 125 coupled cavities each. We determined the peak electric field and pulse length where the structures were not damaged by rf breakdowns. We calculated the electric and magnetic field correlated with the rf breakdowns using the FACET bunch parameters. The wakefields were calculated by a frequency domain method using periodic eigensolutions. Such a method takes into account wall losses and is applicable to a large variety of geometries. The maximum achieved accelerating gradient is 0.3 GV /m with a peak surface electric field of 1.5 GV /m and a pulse length of about 2.4 ns.

  9. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    NASA Astrophysics Data System (ADS)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110-watt Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  10. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  11. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    SciTech Connect

    Krause, David L.; Kantzos, Pete T.

    2006-01-20

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110-watt Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  12. Acceleration tests of a 3 GHz proton linear accelerator (LIBO) for hadrontherapy

    NASA Astrophysics Data System (ADS)

    De Martinis, C.; Giove, D.; Amaldi, U.; Berra, P.; Crandall, K.; Mauri, M.; Weiss, M.; Zennaro, R.; Rosso, E.; Szeless, B.; Vretenar, M.; Masullo, M. R.; Vaccaro, V.; Calabretta, L.; Rovelli, A.

    2012-07-01

    This paper describes the acceleration tests performed at the Catania LNS Laboratory on a 3 GHz linac module of the side coupled type, which boosts the proton energy of a beam extracted from a cyclotron from 62 to 72 MeV. The output proton energy was measured with two devices: a NaI(Tl) crystal and a bending magnet. The experimental spectra are in good agreement with the calculated ones. From their shape it is obtained that (18±3.0)% of the transmitted protons fall in a ±2 MeV interval centered around 72 MeV. This result is in good agreement with the 20% value derived from the simulation of the acceleration process. The measured energy of the accelerated protons was used to check that the shunt impedance of the structure is equal to the computed one within 3%. This was the first time that a 3 GHz structure has been used to accelerate protons, and the results of the tests have demonstrated that a high frequency linac can be used as a cyclotron booster.

  13. Cryogenic cooling system for the Ground Test Accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1994-12-31

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  14. Cryogenic cooling system for the ground test accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F. ); Spulgis, I. )

    1993-01-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH[sub 2]) storage Dewar with a transfer line to an LH[sub 2] run tank containing an LH[sub 2]/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  15. Cryogenic cooling system for the ground test accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1993-06-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  16. High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Yu-Seok

    2015-10-01

    The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  17. Effects of biodiesel on emissions of regulated air pollutants and polycyclic aromatic hydrocarbons under engine durability testing

    NASA Astrophysics Data System (ADS)

    Yang, Hsi-Hsien; Chien, Shu-Mei; Lo, Mei-Yu; Lan, John Chi-Wei; Lu, Wen-Chang; Ku, Yong-Yuan

    An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NO x, particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 μg bhp h -1 for B20 and diesel, respectively. For B20, the benzo[ a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 μg bhp h -1 for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency.

  18. 40 CFR 86.1829-01 - Durability and emission testing requirements; waivers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Exhaust Testing—(i) Testing at low altitude. One EDV shall be tested in each test group for exhaust...) Testing at low altitude. One EDV in each evaporative/refueling family and evaporative/refueling emission... evaporative certification test for gasoline- and ethanol-fueled vehicles. In lieu of testing...

  19. Preloading To Accelerate Slow-Crack-Growth Testing

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.; Choi, Sung R.; Pawlik, Ralph J.

    2004-01-01

    An accelerated-testing methodology has been developed for measuring the slow-crack-growth (SCG) behavior of brittle materials. Like the prior methodology, the accelerated-testing methodology involves dynamic fatigue ( constant stress-rate) testing, in which a load or a displacement is applied to a specimen at a constant rate. SCG parameters or life prediction parameters needed for designing components made of the same material as that of the specimen are calculated from the relationship between (1) the strength of the material as measured in the test and (2) the applied stress rate used in the test. Despite its simplicity and convenience, dynamic fatigue testing as practiced heretofore has one major drawback: it is extremely time-consuming, especially at low stress rates. The present accelerated methodology reduces the time needed to test a specimen at a given rate of applied load, stress, or displacement. Instead of starting the test from zero applied load or displacement as in the prior methodology, one preloads the specimen and increases the applied load at the specified rate (see Figure 1). One might expect the preload to alter the results of the test and indeed it does, but fortunately, it is possible to account for the effect of the preload in interpreting the results. The accounting is done by calculating the normalized strength (defined as the strength in the presence of preload the strength in the absence of preload) as a function of (1) the preloading factor (defined as the preload stress the strength in the absence of preload) and (2) a SCG parameter, denoted n, that is used in a power-law crack-speed formulation. Figure 2 presents numerical results from this theoretical calculation.

  20. Reproduction of natural corrosion by accelerated laboratory testing methods

    SciTech Connect

    Luo, J.S.; Wronkiewicz, D.J.; Mazer, J.J.; Bates, J.K.

    1996-05-01

    Various laboratory corrosion tests have been developed to study the behavior of glass waste forms under conditions similar to those expected in an engineered repository. The data generated by laboratory experiments are useful for understanding corrosion mechanisms and for developing chemical models to predict the long-term behavior of glass. However, it is challenging to demonstrate that these test methods produce results that can be directly related to projecting the behavior of glass waste forms over time periods of thousands of years. One method to build confidence in the applicability of the test methods is to study the natural processes that have been taking place over very long periods in environments similar to those of the repository. In this paper, we discuss whether accelerated testing methods alter the fundamental mechanisms of glass corrosion by comparing the alteration patterns that occur in naturally altered glasses with those that occur in accelerated laboratory environments. This comparison is done by (1) describing the alteration of glasses reacted in nature over long periods of time and in accelerated laboratory environments and (2) establishing the reaction kinetics of naturally altered glass and laboratory reacted glass waste forms.

  1. Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab

    SciTech Connect

    McGee, Mike; Andrews, Richard; Carlson, Kermit; Leibfritz, Jerry; Nobrega, Lucy; Valishev, Alexander

    2016-07-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  2. Evaluation and improvement of frost durability of clay bricks

    NASA Astrophysics Data System (ADS)

    Koroth, Surej Raghavan

    In cold regions like Canada, frost action was reported to be the major cause of disintegration of brick veneer. Two approaches to ensure frost durability of clay bricks were studied in this research. One involved the evaluation of durability, while the other studied the improvement of durability through impregnation. In order to carry out these studies, three major objectives were set out for this research. They were: (1) to develop an index to evaluate frost durability, (2) to investigate the feasibility of using nondestructive methods to evaluate durability, and (3) to study the effect of impregnation with different materials on improving durability. It was intended in this research to develop a general durability index for clay bricks, irrespective of the manufacturing process adopted. The performance of the brick was studied using laboratory freeze-thaw test. As the time and facility requirements necessary for the unidirectional freezing test were beyond the constraints which existed in this research, an accelerated omnidirectional freeze-thaw test was used. This fact must be considered while interpreting the results from the freeze-thaw test. The study carried out to compare the performance of existing durability indices showed that they had limitations in reliably assessing durability. Therefore new durability indices were developed based on water absorption properties of bricks. These indices were found to overcome the limitations of existing indices. The feasibility study on nondestructive evaluation of durability was carried out using ultrasonic pulse velocity. New durability provisions were derived based on pulse velocity, using ASTM C216 specifications. At this stage it can be used only along with the ASTM method but it can avoid the time consuming ASTM procedure in many cases. Studies on impregnated bricks showed that there was a general shifting of pore sizes towards lower diameter region. Paraffin impregnated brick showed excellent freeze

  3. Surface strength and durability assessment of stones by using non-destructive tests, such as Schmidt hammer and Duroskop

    NASA Astrophysics Data System (ADS)

    Török, Á.

    2012-04-01

    Wide-ranges of surface testing methods are used under laboratory conditions and on site to assess the strength and durability of construction materials. The paper brings examples of the use of two types of techniques: Schmidt hammer and Duroscope. Both techniques were firstly used for testing artificial materials. The Schmidt hammer was developed for concrete testing, while Duroskop was first applied on metal surfaces. These non-destructive techniques are now increasingly applied for stone testing at historical monuments, at construction sites or even in quarries. The paper gives an overview of four different types of Schmidt hammer from which three analogous (L-9, N-34, PT-Schmidt) and one digital (Digi-Schmidt). It compares rebound values of various stones and provides information on the relationship between these values and weathering grades. Another less commonly applied technique the Duroskop was also tested. Relationship between Schmidt and Duroskop rebound values are also given. Tested stone types included porous limestone, cemented limestone, travertine and sandstone. For comparison, basalt and andesite tuff ashlars were also measured. The use of these techniques in assessing surface strength of stones, the advantages and limitations of their applications are also discussed.

  4. An accelerated exposure and testing apparatus for building joint sealants

    NASA Astrophysics Data System (ADS)

    White, C. C.; Hunston, D. L.; Tan, K. T.; Hettenhouser, J.; Garver, J. D.

    2013-09-01

    The design, fabrication, and implementation of a computer-controlled exposure and testing apparatus for building joint sealants are described in this paper. This apparatus is unique in its ability to independently control and monitor temperature, relative humidity, ultraviolet (UV) radiation, and mechanical deformation. Each of these environmental factors can be controlled precisely over a wide range of conditions during periods of a month or more. Moreover, as controlled mechanical deformations can be generated, in situ mechanical characterization tests can be performed without removing specimens from the chamber. Temperature and humidity were controlled during our experiments via a precision temperature regulator and proportional mixing of dry and moisture-saturated air; while highly uniform UV radiation was attained by attaching the chamber to an integrating sphere-based radiation source. A computer-controlled stepper motor and a transmission system were used to provide precise movement control. The reliability and effectiveness of the apparatus were demonstrated on a model sealant material. The results clearly show that this apparatus provides an excellent platform to study the long-term durability of building joint sealants.

  5. Accelerated testing of an optimized closing system for automotive fuel tank

    NASA Astrophysics Data System (ADS)

    Gligor, A.; Ilie, S.; Nicolae, V.; Mitran, G.

    2015-11-01

    Taking into account the legal prescriptions which are in force and the new regulatory requirements that will be mandatory to implement in the near future regarding testing characteristics of automotive fuel tanks, resulted the necessity to develop a new testing methodology which allows to estimate the behaviour of the closing system of automotive fuel tank over a long period of time (10-15 years). Thus, were designed and conducted accelerated tests under extreme assembling and testing conditions (high values for initial tightening torques, extreme values of temperature and pressure). In this paper are presented two of durability tests which were performed on an optimized closing system of fuel tank: (i) the test of exposure to temperature with cyclical variation and (ii) the test of continuous exposure to elevated temperature. In these experimental tests have been used main components of the closing system manufactured of two materials variants, both based on the polyoxymethylene, material that provides higher mechanical stiffness and strength in a wide temperature range, as well as showing increased resistance to the action of chemical agents and fuels. The tested sample included a total of 16 optimized locking systems, 8 of each of 2 versions of material. Over deploying the experiments were determined various parameters such as: the initial tightening torque, the tightening torque at different time points during measurements, the residual tightening torque, defects occurred in the system components (fissures, cracks, ruptures), the sealing conditions of system at the beginning and at the end of test. Based on obtained data were plotted the time evolution diagrams of considered parameter (the residual tightening torque of the system consisting of locking nut and threaded ring), in different temperature conditions, becoming possible to make pertinent assessments on the choice between the two types of materials. By conducting these tests and interpreting the

  6. Accelerated aging test results for aerospace wire insulation constructions

    NASA Technical Reports Server (NTRS)

    Dunbar, William G.

    1995-01-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  7. Accelerated Creep Testing of High Strength Aramid Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  8. Degradation Mechanisms and Accelerated Testing in PEM Fuel Cells

    SciTech Connect

    Borup, Rodney L.

    2011-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel or oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability.

  9. Test Sequence for Superconducting XFEL Cavities in the Accelerator Module Test Facility (AMTF) at DESY

    NASA Astrophysics Data System (ADS)

    Schaffran, J.; Petersen, B.; Reschke, D.; Swierblewski, J.

    The European XFEL is a new research facility currently under construction at DESY in the Hamburg area in Germany. From 2016 onwards, it will generate extremely intense X-ray flashes that will be used by researchers from all over the world. The main part of the superconducting European XFEL linear accelerator consists of 100 accelerator modules with 800 RF-cavities inside. The accelerator modules, superconducting magnets and cavities will be tested in the accelerator module test facility (AMTF) at DESY. This paper gives an overview of the test sequences for the superconducting cavities, applied in the preparation area and at the two cryostats (XATC) of the AMTF-hall, and describes the complete area. In addition it summarizes the tests and lessons learnt until the middle of 2014.

  10. GTA (ground test accelerator) Phase 1: Baseline design report

    SciTech Connect

    Not Available

    1986-08-01

    The national Neutral Particle Beam (NPB) program has two objectives: to provide the necessary basis for a discriminator/weapon decision by 1992, and to develop the technology in stages that lead ultimately to a neutral particle beam weapon. The ground test accelerator (GTA) is the test bed that permits the advancement of the state-of-the-art under experimental conditions in an integrated automated system mode. An intermediate goal of the GTA program is to support the Integrated Space Experiments, while the ultimate goal is to support the 1992 decision. The GTA system and each of its major subsystems are described, and project schedules and resource requirements are provided. (LEW)

  11. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Andrei Seryi

    2016-07-12

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  12. Non linear viscoelasticity applied for the study of durability of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Cardon, A.; Brinson, H. F.; Hiel, C. C.

    1989-01-01

    A methodology is described for the durability analysis of polymer matrix composites, based on nonlinear viscoelasticity theory. The durability analysis is performed on the basis of a certain number of tests carried out on limited and, if possible, short time scale by the use of accelerating factors. The method was applied to thermomatrix composites under uniaxial and biaxial loadings, showing satisfactory agreement between the life-time predictions and the published data on real-time behavior.

  13. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests

    NASA Astrophysics Data System (ADS)

    Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.

    2016-09-01

    The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.

  14. The Accelerator Production of Tritium Materials Test Program

    SciTech Connect

    Maloy, Stuart A.; Sommer, Walter F.; James, Michael R.; Romero, Tobias J.; Lopez, Manuel R.; Zimmermann, Eugene; Ledbetter, James M.

    2000-10-15

    A materials qualification program has been developed to irradiate and test candidate materials (alloy 718, Type 316L, and Type 304L stainless steel, modified Fe9Cr-1Mo(T91), Al-6061-T6, and Al-5052-O) for use in the Accelerator Production of Tritium (APT) target and blanket. The irradiations were performed in prototypic proton and neutron spectra at prototypic temperatures (50 to 160 deg. C). The study used the 800-MeV, 1.0-mA proton accelerator at the Los Alamos Neutron Science Center, which produces a Gaussian beam with 2 sigma = 3 cm. The experiment geometry is arranged to contain near-prototypic modules of the tungsten neutron source and the lead and aluminum blanket as well as mechanical test specimens of candidate APT materials. The particle spectrum varies throughout the irradiation volume; specimens are exposed to protons and a variety of mixed proton and neutron spectra, depending on the specimen's position relative to the beam center. These specimens have been irradiated for >3600 h to a maximum proton fluence of 4 x 10{sup 21} p/cm{sup 2} in the center of the proton beam. Specimens will yield data on the effect of proton irradiation, to high dose, on material properties from tensile tests, three-point bend tests, fracture toughness tests, pressurized tubes, U-bend stress corrosion cracking specimens, corrosion measurements, and microstructural characterization using transmission electron microscopy specimens. Results from these studies are applicable to all spallation neutron sources now in operation and under consideration, including the Spallation Neutron Source, the European Spallation Source, and The Accelerator Transmutation of Waste project.

  15. 40 CFR 86.1829-01 - Durability and emission testing requirements; waivers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufacturer's engineering evaluation of appropriate high-altitude emission testing, all light-duty vehicles... appropriate information. (G) For the 2012 through 2014 model years only, in lieu of testing a vehicle for N2O..., development tests, or other appropriate information and good engineering judgment. (2)...

  16. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  17. Ultra-accelerated natural sunlight exposure testing facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  18. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    SciTech Connect

    McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

    2011-03-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  19. Commissioning of the Ground Test Accelerator Intertank Matching Section

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Little, C.; Lohsen, R.A.; Lysenko, W.P.; Mottershead, C.T.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-09-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 keV H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the IMS beam experiments will be presented.

  20. Commissioning of the Ground Test Accelerator Intertank Matching Section

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Little, C.; Lohsen, R.A.; Lysenko, W.P.; Mottershead, C.T.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 keV H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the IMS beam experiments will be presented.

  1. 40 CFR Appendix Xiv to Part 86 - Determination of Acceptable Durability Test Schedule for Light-Duty Vehicles and Light Light-Duty...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Determination of Acceptable Durability Test Schedule for Light-Duty Vehicles and Light Light-Duty Trucks Certifying to the Provisions of Part... Light-Duty Vehicles and Light Light-Duty Trucks Certifying to the Provisions of Part 86, Subpart R...

  2. Instrumentation for accelerated life tests of concentrator solar cells.

    PubMed

    Núñez, N; Vázquez, M; González, J R; Jiménez, F J; Bautista, J

    2011-02-01

    Concentrator photovoltaic is an emergent technology that may be a good economical and efficient alternative for the generation of electricity at a competitive cost. However, the reliability of these new solar cells and systems is still an open issue due to the high-irradiation level they are subjected to as well as the electrical and thermal stresses that they are expected to endure. To evaluate the reliability in a short period of time, accelerated aging tests are essential. Thermal aging tests for concentrator photovoltaic solar cells and systems under illumination are not available because no technical solution to the problem of reaching the working concentration inside a climatic chamber has been available. This work presents an automatic instrumentation system that overcomes the aforementioned limitation. Working conditions have been simulated by forward biasing the solar cells to the current they would handle at the working concentration (in this case, 700 and 1050 times the irradiance at one standard sun). The instrumentation system has been deployed for more than 10 000 h in a thermal aging test for III-V concentrator solar cells, in which the generated power evolution at different temperatures has been monitored. As a result of this test, the acceleration factor has been calculated, thus allowing for the degradation evolution at any temperature in addition to normal working conditions to be obtained.

  3. Instrumentation for accelerated life tests of concentrator solar cells

    NASA Astrophysics Data System (ADS)

    Núñez, N.; Vázquez, M.; González, J. R.; Jiménez, F. J.; Bautista, J.

    2011-02-01

    Concentrator photovoltaic is an emergent technology that may be a good economical and efficient alternative for the generation of electricity at a competitive cost. However, the reliability of these new solar cells and systems is still an open issue due to the high-irradiation level they are subjected to as well as the electrical and thermal stresses that they are expected to endure. To evaluate the reliability in a short period of time, accelerated aging tests are essential. Thermal aging tests for concentrator photovoltaic solar cells and systems under illumination are not available because no technical solution to the problem of reaching the working concentration inside a climatic chamber has been available. This work presents an automatic instrumentation system that overcomes the aforementioned limitation. Working conditions have been simulated by forward biasing the solar cells to the current they would handle at the working concentration (in this case, 700 and 1050 times the irradiance at one standard sun). The instrumentation system has been deployed for more than 10 000 h in a thermal aging test for III-V concentrator solar cells, in which the generated power evolution at different temperatures has been monitored. As a result of this test, the acceleration factor has been calculated, thus allowing for the degradation evolution at any temperature in addition to normal working conditions to be obtained.

  4. A testing platform for durability studies of polymers and fiber-reinforced polymer composites under concurrent hygrothermo-mechanical stimuli.

    PubMed

    Gomez, Antonio; Pires, Robert; Yambao, Alyssa; La Saponara, Valeria

    2014-12-11

    The durability of polymers and fiber-reinforced polymer composites under service condition is a critical aspect to be addressed for their robust designs and condition-based maintenance. These materials are adopted in a wide range of engineering applications, from aircraft and ship structures, to bridges, wind turbine blades, biomaterials and biomedical implants. Polymers are viscoelastic materials, and their response may be highly nonlinear and thus make it challenging to predict and monitor their in-service performance. The laboratory-scale testing platform presented herein assists the investigation of the influence of concurrent mechanical loadings and environmental conditions on these materials. The platform was designed to be low-cost and user-friendly. Its chemically resistant materials make the platform adaptable to studies of chemical degradation due to in-service exposure to fluids. An example of experiment was conducted at RT on closed-cell polyurethane foam samples loaded with a weight corresponding to ~50% of their ultimate static and dry load. Results show that the testing apparatus is appropriate for these studies. Results also highlight the larger vulnerability of the polymer under concurrent loading, based on the higher mid-point displacements and lower residual failure loads. Recommendations are made for additional improvements to the testing apparatus.

  5. A Testing Platform for Durability Studies of Polymers and Fiber-reinforced Polymer Composites under Concurrent Hygrothermo-mechanical Stimuli

    PubMed Central

    Gomez, Antonio; Pires, Robert; Yambao, Alyssa; La Saponara, Valeria

    2014-01-01

    The durability of polymers and fiber-reinforced polymer composites under service condition is a critical aspect to be addressed for their robust designs and condition-based maintenance. These materials are adopted in a wide range of engineering applications, from aircraft and ship structures, to bridges, wind turbine blades, biomaterials and biomedical implants. Polymers are viscoelastic materials, and their response may be highly nonlinear and thus make it challenging to predict and monitor their in-service performance. The laboratory-scale testing platform presented herein assists the investigation of the influence of concurrent mechanical loadings and environmental conditions on these materials. The platform was designed to be low-cost and user-friendly. Its chemically resistant materials make the platform adaptable to studies of chemical degradation due to in-service exposure to fluids. An example of experiment was conducted at RT on closed-cell polyurethane foam samples loaded with a weight corresponding to ~50% of their ultimate static and dry load. Results show that the testing apparatus is appropriate for these studies. Results also highlight the larger vulnerability of the polymer under concurrent loading, based on the higher mid-point displacements and lower residual failure loads. Recommendations are made for additional improvements to the testing apparatus. PMID:25548950

  6. Fuel Cell Stack Testing and Durability in Support of Ion Tiger UAV

    DTIC Science & Technology

    2010-06-02

    This report covers efforts by the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii under the ONR-funded Ion Tiger UAV award that included testing of Ion Tiger fuel cell stacks in HNEI’s Hawaii Fuel Cell Test Facility located in Honolulu, Hawaii. Work was focused on steady-state stack characteristics of Protonex fuel cell stacks under various operating conditions. In addition, Hardware-in-the-Loop testing was performed to characterize dynamic

  7. Second test campaign of a pilot scale latent heat thermal energy storage - Durability and operational strategies

    NASA Astrophysics Data System (ADS)

    Garcia, Pierre; Rougé, Sylvie; Nivelon, Pierre

    2016-05-01

    A Phase Change Material (PCM) thermal energy storage module was tested in the framework of the Alsolen Sup project. Test results prove not only that the equivalent thermal resistance deduced from the first test campaign does not vary after several months and tens of melting and solidification cycles, but also that our modelling approach is valid both for design and non-nominal power rates, even if the model has to be improved to take into account varying water level and temperature stratification.

  8. 40 CFR 86.1829-15 - Durability and emission testing requirements; waivers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...). (f) For electric vehicles and fuel cell vehicles, manufacturers may provide a statement in the...) Manufacturers may omit PM measurements for fuel economy and GHG testing conducted in addition to the testing... the application for certification that vehicles comply with the fuel dispensing spitback...

  9. 40 CFR 1045.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurements on which you base the deterioration factor. (2) If you do testing to determine deterioration... with pre-existing test data or with new emission measurements. (a) You may ask us to approve deterioration factors for an engine family based on emission measurements from similar engines if you...

  10. 40 CFR 1054.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... factor using a linear least-squares fit of your test data, but treat the low-hour test point as occurring... the engine over a representative duty cycle for a period at least as long as the useful life (in hours... occurred after at least 80 percent of the useful life. (8) If your useful life is 1,000 hours or...

  11. 40 CFR 1054.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... factor using a linear least-squares fit of your test data, but treat the low-hour test point as occurring... the engine over a representative duty cycle for a period at least as long as the useful life (in hours... occurred after at least 80 percent of the useful life. (8) If your useful life is 1,000 hours or...

  12. 40 CFR 1054.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... factor using a linear least-squares fit of your test data, but treat the low-hour test point as occurring... the engine over a representative duty cycle for a period at least as long as the useful life (in hours... occurred after at least 80 percent of the useful life. (8) If your useful life is 1,000 hours or...

  13. 40 CFR 1054.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... factor using a linear least-squares fit of your test data, but treat the low-hour test point as occurring... the engine over a representative duty cycle for a period at least as long as the useful life (in hours... occurred after at least 80 percent of the useful life. (8) If your useful life is 1,000 hours or...

  14. Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)

    SciTech Connect

    Prebys, Eric; Antipov, Sergey; Piekarz, Henryk; Valishev, A.

    2015-06-01

    The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimate plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.

  15. Testing Gravity and Cosmic Acceleration with Galaxy Clustering

    NASA Astrophysics Data System (ADS)

    Kazin, Eyal; Tinker, J.; Sanchez, A. G.; Blanton, M.

    2012-01-01

    The large-scale structure contains vast amounts of cosmological information that can help understand the accelerating nature of the Universe and test gravity on large scales. Ongoing and future sky surveys are designed to test these using various techniques applied on clustering measurements of galaxies. We present redshift distortion measurements of the Sloan Digital Sky Survey II Luminous Red Galaxy sample. We find that when combining the normalized quadrupole Q with the projected correlation function wp(rp) along with cluster counts (Rapetti et al. 2010), results are consistent with General Relativity. The advantage of combining Q and wp is the addition of the bias information, when using the Halo Occupation Distribution framework. We also present improvements to the standard technique of measuring Hubble expansion rates H(z) and angular diameter distances DA(z) when using the baryonic acoustic feature as a standard ruler. We introduce clustering wedges as an alternative basis to the multipole expansion and show that it yields similar constraints. This alternative basis serves as a useful technique to test for systematics, and ultimately improve measurements of the cosmic acceleration.

  16. Metal and elastomer seal tests for accelerator applications

    SciTech Connect

    Welch, K.M.; McIntyre, G.T.; Tuozzolo, J.E.; Skelton, R.; Pate, D.J.; Gill, S.M.

    1989-01-01

    The vacuum system of the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory has more than a thousand metal vacuum seals. Also, numerous elastomer seals are used throughout the AGS to seal large beam component chambers. An accelerator upgrade program is being implemented to reduce the AGS operating pressure by x100 and improve the reliability of the vacuum system. This paper describes work in progress on metal and elastomer vacuum seals to help meet those two objectives. Tests are reported on the sealing properties of a variety of metal seals used on different sealing surfaces. Results are also given on reversible sorption properties of certain elastomers. 16 refs., 6 figs., 4 tabs.

  17. 40 CFR 1051.243 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measure emissions at three or more points, use a linear least-squares fit of your test data for each... points. (2) Operate the vehicle or engine over a representative duty cycle for a period at least as...

  18. 40 CFR 1051.243 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measure emissions at three or more points, use a linear least-squares fit of your test data for each... points. (2) Operate the vehicle or engine over a representative duty cycle for a period at least as...

  19. 40 CFR 1051.243 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... measure emissions at three or more points, use a linear least-squares fit of your test data for each... points. (2) Operate the vehicle or engine over a representative duty cycle for a period at least as...

  20. 40 CFR 1051.243 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measure emissions at three or more points, use a linear least-squares fit of your test data for each... points. (2) Operate the vehicle or engine over a representative duty cycle for a period at least as...

  1. Durability of oxygen sensors

    NASA Astrophysics Data System (ADS)

    Snapp, L.

    1985-03-01

    This report describes the results of dynamometer and vehicle durability testing from a variety of sources, as well as common causes of failure for oxygen sensors. The data indicates that oxygen sensors show low failure rates, even at mileages of 80,000 miles and beyond.

  2. 40 CFR 1051.243 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., explain why this is appropriate and include all the emission measurements on which you base the... test data or with new emission measurements. (a) You may ask us to approve deterioration factors for an engine family based on emission measurements from similar vehicles or engines if you have already...

  3. 40 CFR 1054.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., either with pre-existing test data or with new emission measurements. (a) You may ask us to approve deterioration factors for an emission family based on emission measurements from similar engines if you have.... Collect emission data using measurements to one more decimal place than the emission standard. (2)...

  4. 40 CFR 1039.245 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with an engineering analysis, with pre-existing test data, or with new emission measurements. Apply... measurements from similar highway or nonroad engines if you have already given us these data for certifying the... two engines are similar. We will approve your request if you show us that the emission...

  5. 40 CFR 86.1829-01 - Durability and emission testing requirements; waivers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacturer's engineering evaluation of appropriate high-altitude emission testing, all light-duty vehicles... statement in its application for certification that, based on the manufacturer's engineering evaluation of... application for certification that, based on the manufacturer's engineering evaluation of such...

  6. Experimental Durability Testing of 4H SiC JFET Integrated Circuit Technology at 727 C

    NASA Technical Reports Server (NTRS)

    Spry, David; Neudeck, Phil; Chen, Liangyu; Chang, Carl; Lukco, Dorothy; Beheim, Glenn M

    2016-01-01

    We have reported SiC integrated circuits (IC's) with two levels of metal interconnect that have demonstrated prolonged operation for thousands of hours at their intended peak ambient operational temperature of 500 C [1, 2]. However, it is recognized that testing of semiconductor microelectronics at temperatures above their designed operating envelope is vital to qualification. Towards this end, we previously reported operation of a 4H-SiC JFET IC ring oscillator on an initial fast thermal ramp test through 727 C [3]. However, this thermal ramp was not ended until a peak temperature of 880 C (well beyond failure) was attained. Further experiments are necessary to better understand failure mechanisms and upper temperature limit of this extreme-temperature capable 4H-SiC IC technology. Here we report on additional experimental testing of custom-packaged 4H-SiC JFET IC devices at temperatures above 500 C. In one test, the temperature was ramped and then held at 727 C, and the devices were periodically measured until electrical failure was observed. A 4H-SiC JFET on this chip electrically functioned with little change for around 25 hours at 727 C before rapid increases in device resistance caused failure. In a second test, devices from our next generation 4H-SiC JFET ICs were ramped up and then held at 700 C (which is below the maximum deposition temperature of the dielectrics). Three ring oscillators functioned for 8 hours at this temperature before degradation. In a third experiment, an alternative die attach of gold paste and package lid was used, and logic circuit operation was demonstrated for 143.5 hours at 700 C.

  7. Accelerated Neutron Testing of Semiconductor Devices at the LANSCE

    NASA Astrophysics Data System (ADS)

    Wender, S. A.; Bateman, F. B.; Haight, R. C.; Ullmann, J. L.

    1998-04-01

    The high-energy neutron source at the Los Alamos Neutron Science Center (LANSCE) produces beams of neutrons for accelerated testing of integrated circuit devices. Neutrons produced in the atmosphere by cosmic-rays are thought to be a significant threat to integrated circuits both at aircraft altitudes as well as at lower elevations. Neutrons have been shown to cause single event upsets, multiple event upsets, latchup and burnout in semiconductor devices. Neutrons are produced at LANSCE via spallation reactions with the 800 MeV pulsed proton beam. Proton beam currents of about 2 microamperes strike a tungsten target and produce a spectrum of neutrons whose energy and intensity can be precisely measured by time-of-flight techniques. The neutron spectrum produced in this manner has energies up to approximately 600 MeV and is very similar in shape to the atmospheric neutron spectrum at 40,000 ft. A flight path located at 20 m from the neutron production target is dedicated to accelerated testing of semiconductor devices. The integrated neutron flux above 1 MeV is about 10^6 n/cm^2/sec over an area about 10 cm in diameter. This intensity is about 10^5 (10^7) times greater than the cosmic-ray neutron flux at 40,000 ft (sea level).

  8. Results of initial testing of the four stage RHEPP accelerator

    SciTech Connect

    Johnson, D.L.; Reed, K.W.; Harjes, H.C.

    1993-08-01

    The low power checkout of the Repetitive High Energy Pulsed Power (RHEPP) pulse forming line (PFL) and linear induction voltage adder (LIVA) is complete. The accelerator has four LIVA cavities driven via coaxial cables from the PFL that utilizes magnetic switching to provide a 250-kV, 60-ns output pulse. The PFL is repetitively charged by a ten stage Marx generator to operate from single shot to five Hz. Results from these tests of the initial four stage RHEPP accelerator are presented and compared with design simulations. Data from a resistive cavity load and from preliminary electron diode experiments are included. While core temperatures remain low during five Hz operation, they are monitored and compared to extrapolated predictions from the design modeling. Performance of the Metglas magnetic switches and blocking cores, the voltage addition in the four LIVA cavities, and system efficiencies are discussed. Sources of discrepancies from the original design models are identified, and improved models that account for the discrepancies are presented. Improved performance potential based on these models is discussed. Plans for future testing of the 1-MV system up to 120 kW at 120 Hz and for the full system with ten LIVA cavities are presented.

  9. Accelerated stress testing of thin film solar cells: Development of test methods and preliminary results

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1985-01-01

    If thin film cells are to be considered a viable option for terrestrial power generation their reliability attributes will need to be explored and confidence in their stability obtained through accelerated testing. Development of a thin film accelerated test program will be more difficult than was the case for crystalline cells because of the monolithic construction nature of the cells. Specially constructed test samples will need to be fabricated, requiring committment to the concept of accelerated testing by the manufacturers. A new test schedule appropriate to thin film cells will need to be developed which will be different from that used in connection with crystalline cells. Preliminary work has been started to seek thin film schedule variations to two of the simplest tests: unbiased temperature and unbiased temperature humidity. Still to be examined are tests which involve the passage of current during temperature and/or humidity stress, either by biasing in the forward (or reverse) directions or by the application of light during stress. Investigation of these current (voltage) accelerated tests will involve development of methods of reliably contacting the thin conductive films during stress.

  10. Test Methodology Development for Experimental Structural Assessment of ASC Planar Spring Material for Long-Term Durability

    NASA Technical Reports Server (NTRS)

    Yun, Gunjin; Abdullah, A. B. M.; Binienda, Wieslaw; Krause, David L.; Kalluri, Sreeramesh

    2014-01-01

    A vibration-based testing methodology has been developed that will assess fatigue behavior of the metallic material of construction for the Advanced Stirling Convertor displacer (planar) spring component. To minimize the testing duration, the test setup is designed for base-excitation of a multiplespecimen arrangement, driven in a high-frequency resonant mode; this allows completion of fatigue testing in an accelerated period. A high performance electro-dynamic exciter (shaker) is used to generate harmonic oscillation of cantilever beam specimens, which are clasped on the shaker armature with specially-designed clamp fixtures. The shaker operates in closed-loop control with dynamic specimen response feedback provided by a scanning laser vibrometer. A test coordinator function synchronizes the shaker controller and the laser vibrometer to complete the closed-loop scheme. The test coordinator also monitors structural health of the test specimens throughout the test period, recognizing any change in specimen dynamic behavior. As this may be due to fatigue crack initiation, the test coordinator terminates test progression and then acquires test data in an orderly manner. Design of the specimen and fixture geometry was completed by finite element analysis such that peak stress does not occur at the clamping fixture attachment points. Experimental stress evaluation was conducted to verify the specimen stress predictions. A successful application of the experimental methodology was demonstrated by validation tests with carbon steel specimens subjected to fully-reversed bending stress; high-cycle fatigue failures were induced in such specimens using higher-than-prototypical stresses

  11. Induction furnace testing of the durability of prototype crucibles in a molten metal environment

    SciTech Connect

    Jablonski, Paul D.

    2005-09-01

    Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off the heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.

  12. Hot dynamic test rig for measuring hypersonic engine seal flow and durability

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.

    1994-01-01

    A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts was developed. The test fixture was developed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C and air pressure differentials of to 0.7 MPa. Performance of the seals can be measured while sealing against flat or engine-simulated distorted walls. In the fixture, two seals are preloaded against the sides of a 0.3 m long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. The capabilities of this text fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling are covered.

  13. Using Uncertainty Analysis to Guide the Development of Accelerated Stress Tests (Presentation)

    SciTech Connect

    Kempe, M.

    2014-03-01

    Extrapolation of accelerated testing to the long-term results expected in the field has uncertainty associated with the acceleration factors and the range of possible stresses in the field. When multiple stresses (such as temperature and humidity) can be used to increase the acceleration, the uncertainty may be reduced according to which stress factors are used to accelerate the degradation.

  14. Accelerated Leach Testing of GLASS: ALTGLASS Version 3.0

    SciTech Connect

    Trivelpiece, Cory L.; Jantzen, Carol M.; Crawford, Charles L.

    2016-12-31

    The Accelerated Leach Testing of GLASS (ALTGLASS) database is a collection of data from short- and long-term product consistency tests (PCT, ASTM C1285 A and B) on high level waste (HLW) as well as low activity waste (LAW) glasses. The database provides both U.S. and international researchers with an archive of experimental data for the purpose of studying, modeling, or validating existing models of nuclear waste glass corrosion. The ALTGLASS database is maintained and updated by researchers at the Savannah River National Laboratory (SRNL). This newest version, ALTGLASS Version 3.0, has been updated with an additional 503 rows of data representing PCT results from corrosion experiments conducted in the United States by the Savannah River National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and the Vitreous State Laboratory (SRNL, PNNL, ANL, VSL, respectively) as well as the National Nuclear Laboratory (NNL) in the United Kingdom.

  15. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  16. Using Accelerated Testing To Predict Module Reliability: Preprint

    SciTech Connect

    Wohlgemuth, J. H.; Kurtz, S.

    2011-07-01

    Long-term reliability is critical to the cost effectiveness and commercial success of photovoltaic (PV) products. Today most PV modules are warranted for 25 years, but there is no accepted test protocol to validate a 25-year lifetime. The qualification tests do an excellent job of identifying design, materials, and process flaws that are likely to lead to premature failure (infant mortality), but they are not designed to test for wear-out mechanisms that limit lifetime. This paper presents a method for evaluating the ability of a new PV module technology to survive long-term exposure to specific stresses. The authors propose the use of baseline technologies with proven long-term field performance as controls in the accelerated stress tests. The performance of new-technology modules can then be evaluated versus that of proven-technology modules. If the new-technology demonstrates equivalent or superior performance to the proven one, there is a high likelihood that they will survive versus the tested stress in the real world.

  17. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  18. Cosmic acceleration without dark energy: background tests and thermodynamic analysis

    SciTech Connect

    Lima, J.A.S.; Graef, L.L.; Pavón, D.; Basilakos, Spyros E-mail: leilagraef@usp.br E-mail: svasil@academyofathens.gr

    2014-10-01

    A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the Gibbons–Hawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current 'quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests.

  19. Power-conditioning system for the Advanced Test Accelerator

    SciTech Connect

    Newton, M.A.; Smith, M.E.; Birx, D.L.; Branum, D.R.; Cook, E.G.; Copp, R.L.; Lee, F.D.; Reginato, L.L.; Rogers, D.; Speckert, G.C.

    1982-06-01

    The Advanced Test Accelerator (ATA) is a pulsed, linear induction, electron accelerator currently under construction and nearing completion at Lawrence Livermore National Laboratory's Site 300 near Livermore, California. The ATA is a 50 MeV, 10 kA machine capable of generating electron beam pulses at a 1 kHz rate in a 10 pulse burst, 5 pps average, with a pulse width of 70 ns FWHM. Ten 18 kV power supplies are used to charge 25 capacitor banks with a total energy storage of 8 megajoules. Energy is transferred from the capacitor banks in 500 microsecond pulses through 25 Command Resonant Charge units (CRC) to 233 Thyratron Switch Chassis. Each Thyratron Switch Chassis contains a 2.5 microfarad capacitor and is charged to 25 kV (780 joules) with voltage regulation of +- .05%. These capacitors are switched into 10:1 step-up resonant transformers to charge 233 Blumleins to 250 kV in 20 microseconds. A magnetic modulator is used instead of a Blumlein to drive the grid of the injector.

  20. Lessons learned on the Ground Test Accelerator control system

    SciTech Connect

    Kozubal, A.J.; Weiss, R.E.

    1994-09-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers` toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks to deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ``Experimental Physics and Industrial Control System`` (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects.

  1. Durability Evaluation of Superconducting Magnets

    NASA Astrophysics Data System (ADS)

    Inoue, Akihiko; Ogata, Masafumi; Nakauchi, Masahiko; Asahara, Tetsuo; Herai, Toshiki; Nishikawa, Yoichi

    2006-06-01

    It is one of the most essential things to verify the durability of devices and components of JR-Maglev system to realize the system into the future inauguration. Since the load requirements were insufficient in terms of the durability under vibrations under mere running tests carried out on Yamanashi Maglev Test Line hereinafter referred to YMTL, we have developed supplemental method with bench tests. Superconducting magnets hereinafter referred to SCM as used in the experimental running for the last seven years on the YMTL were brought to Kunitachi Technical Research Institute; we conducted tests to evaluate the durability of SCM up to a period of the service life in commercial use. The test results have indicated that no irregularity in each part of SCM proving that SCM are sufficiently durable for the practical application.

  2. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  3. A flexible and configurable system to test accelerator magnets

    SciTech Connect

    Jerzy M. Nogiec et al.

    2001-07-20

    Fermilab's accelerator magnet R and D programs, including production of superconducting high gradient quadrupoles for the LHC insertion regions, require rigorous yet flexible magnetic measurement systems. Measurement systems must be capable of handling various types of hardware and extensible to all measurement technologies and analysis algorithms. A tailorable software system that satisfies these requirements is discussed. This single system, capable of distributed parallel signal processing, is built on top of a flexible component-based framework that allows for easy reconfiguration and run-time modification. Both core and domain-specific components can be assembled into various magnet test or analysis systems. The system configured to comprise a rotating coil harmonics measurement is presented. Technologies as Java, OODB, XML, JavaBeans, software bus and component-based architectures are used.

  4. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    SciTech Connect

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  5. Salt-Fog Accelerated Testing of Glass Fiber Reinforced Polymer Composites

    DTIC Science & Technology

    2007-11-02

    materials , such as steel and aluminum . However, in order to evaluate the true cost of a specific type of composite , its durability must also be...longer lasting testing would be necessary. Suggestions were made on how to introduce these findings in the design of composite material structures. U...of composite material structures. vii TABLE OF CONTENTS 1. INTRODUCTION

  6. Evaluation of accelerated stability test conditions for medicated chewing gums.

    PubMed

    Maggi, Lauretta; Conte, Ubaldo; Nhamias, Alain; Grenier, Pascal; Vergnault, Guy

    2013-10-01

    The overall stability of medicated chewing gums is investigated under different storage conditions. Active substances with different chemical stabilities in solid state are chosen as model drugs. The dosage form is a three layer tablet obtained by direct compression. The gum core contains the active ingredient while the external layers are formulated to prevent gum adhesion to the punches of the tableting machine. Two accelerated test conditions (40°C/75% RH and 30°C/65% RH) are performed for 6 months. Furthermore, a long-term stability test at room conditions is conducted to verify the predictability of the results obtained from the stress tests. Some drugs are stable in all the conditions tested, but other drugs, generally considered stable in solid dosage forms, have shown relevant stability problems particularly when stress test conditions are applied to this particular semi-solid dosage forms. For less stable drugs, the stress conditions of 40°C/75% RH are not always predictable of chewing gum stability at room temperature and may produce false negative; intermediate conditions, 30°C/65% RH, are more predictive for this purpose, the results of drug content found after 6 months at intermediate stress conditions and 12 months at room conditions are generally comparable. But the results obtained show that only long-term conditions stability tests gave consistent results. During aging, the semi solid nature of the gum base itself, may also influence the drug delivery rate during chewing and great attention should be given also to the dissolution stability.

  7. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  8. NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis

    SciTech Connect

    Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.; Moreno, J.B.; Moss, T.A.; Jones, S.A.

    1994-06-01

    Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system has been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.

  9. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  10. Accelerated atmospheric corrosion testing of electroplated gold mirror coatings

    NASA Astrophysics Data System (ADS)

    Chu, C.-T.; Alaan, D. R.; Taylor, D. P.

    2010-08-01

    Gold-coated mirrors are widely used in infrared optics for industrial, space, and military applications. These mirrors are often made of aluminum or beryllium substrates with polished nickel plating. Gold is deposited on the nickel layer by either electroplating or vacuum deposition processes. Atmospheric corrosion of gold-coated electrical connectors and contacts was a well-known problem in the electronic industry and studied extensively. However, there is limited literature data that correlates atmospheric corrosion to the optical properties of gold mirror coatings. In this paper, the atmospheric corrosion of different electroplated gold mirror coatings were investigated with an accelerated mixed flowing gas (MFG) test for up to 50 days. The MFG test utilizes a combination of low-level air pollutants, humidity, and temperatures to achieve a simulated indoor environment. Depending on the gold coating thickness, pore corrosion started to appear on samples after about 10 days of the MFG exposure. The corrosion behavior of the gold mirror coatings demonstrated the porous nature of the electroplated gold coatings as well as the variation of porosity to the coating thickness. The changes of optical properties of the gold mirrors were correlated to the morphology of corrosion features on the mirror surface.

  11. Preliminary analysis of accelerated space flight ionizing radiation testing

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  12. Voltage stress effects on microcircuit accelerated life test failure rates

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.

  13. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER WASTE FORMS FOR SODIUM BEARING WASTE AT IDAHO NATIONAL LABORATORY

    SciTech Connect

    Crawford, C; Carol Jantzen, C

    2007-08-27

    Fluidized Bed Steam Reforming (FBSR) processing of Sodium Bearing Waste simulants was performed in December 2006 by THOR{sup sm} Treatment Technologies LLC (TTT) The testing was performed at the Hazen Research Inc. (HRI) pilot plant facilities in Golden, CO. FBSR products from these pilot tests on simulated waste representative of the SBW at the Idaho Nuclear Technology and Engineering Center (INTEC) were subsequently transferred to the Savannah River National Laboratory (SRNL) for characterization and leach testing. Four as-received Denitration and Mineralization Reformer (DMR) granular/powder samples and four High Temperature Filter (HTF) powder samples were received by SRNL. FBSR DMR samples had been taken from the ''active'' bed, while the HTF samples were the fines collected as carryover from the DMR. The process operated at high fluidizing velocities during the mineralization test such that nearly all of the product collected was from the HTF. Active bed samples were collected from the DMR to monitor bed particle size distribution. Characterization of these crystalline powder samples shows that they are primarily Al, Na and Si, with > 1 wt% Ca, Fe and K. The DMR samples contained less than 1 wt% carbon and the HTF samples ranged from 13 to 26 wt% carbon. X-ray diffraction analyses show that the DMR samples contained significant quantities of the Al{sub 2}O{sub 3} startup bed. The DMR samples became progressively lower in starting bed alumina with major Na/Al/Si crystalline phases (nepheline and sodium aluminosilicate) present as cumulative bed turnover occurred but 100% bed turnover was not achieved. The HTF samples also contained these major crystalline phases. Durability testing of the DMR and HTF samples using the ASTM C1285 Product Consistency Test (PCT) 7-day leach test at 90 C was performed along with several reference glass samples. Comparison of the normalized leach rates for the various DMR and HTF components was made with the reference glasses and

  14. Development of testing and analysis methodology to assess the long term durability of polymeric composites at high temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven

    1990-01-01

    A workshop was held to help assess the state-of-the-art in evaluating the long term durability of polymeric matrix composites (PMCs) and to recommend future activities. Design and evaluation of PMCs at elevated temperatures were discussed. The workshop presentations, the findings of the workshop sessions are briefly summarized.

  15. Digital temperature and velocity control of mach 0.3 atmospheric pressure durability testing burner rigs in long time, unattended cyclic testing

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.

    1985-01-01

    Hardware and software were developed to implement the hybrid digital control of two Jet A-1 fueled Mach 0.3 burners from startup to completion of a preset number of hot corrosion flame durability cycle tests of materials at 1652 F. This was accomplished by use of a basic language programmable microcomputer and data aquisition and control unit connected together by the IEEE-488 Bus. The absolute specimen temperature was controlled to + or - 3 F by use of digital adjustment of the fuel flow using a P-I-D (Proportional-Integral-Derivative) control algorithm. The specimen temperature was within + or - 2 F of the set point more than 90 percent of the time. Pressure control was achieved by digital adjustment of the combustion air flow using a proportional control algorithm. The burner pressure was controlled at 1.0 + or - 0.02 psig. Logic schemes were incorporated into the system to protect the test specimen from abnormal test conditions in the event of a hardware of software malfunction.

  16. Demonstration recommendations for accelerated testing of concrete decontamination methods

    SciTech Connect

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are {sup 137}Cs, {sup 238}U (and its daughters), {sup 60}Co, {sup 90}Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 {times} 10{sup 8} ft{sup 2}or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling.

  17. Durability of Expedient Repair Materials

    DTIC Science & Technology

    1993-03-01

    by the Flofida Department of Transportation. I&. SUWIUET" TERMS 󈧓. NUMBER OF 1A1ES Expedient Repair Materials 21PAGE Shotcrete Air Force Base...produced by CTS Cemem Company. A dry process shotcrete standard, MicrosilR, and a State of Florida corrosion - resistant concrete system, referred to as...34 durability of the rapid repair materials tested by conventional methods for determining durability. E. CONCLUSIONS The blended Rapid-SetR shotcrete system

  18. Roller Testing to Mimic Damage of the ISS SARJ Ring and Durability Test to Simulate Fifteen Years of SARJ Operation Using the Damaged Surface

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Elchert, Justin P.; DellaCorte, Christopher; Dube, Michael J.

    2016-01-01

    The International Space Station's starboard Solar Alpha Rotary Joint (SARJ) experienced a breakdown of the joint's race ring surface. The starboard SARJ mechanism was cleaned and lubricated with grease. To provide some guidance on the expected behavior of the damaged SARJ ring with continued operations, experiments were conducted using rollers and a vacuum roller test rig. The approach of the experimental work involved three main steps: (1) initiate damage using conditions representative of the SARJ with inadequate lubrication; (2) propagate the damage by operating the test rollers without lubrication; and (3) assess the durability of the roller by testing to simulate the equivalent of 15 years of SARJ operation on the damaged surface assuming adequate grease lubrication. During the rig testing, additional and/or replacement grease was introduced at regular intervals to maintain good lubrication in the rig. The damage to the nitride layer continued even after application of grease. The grease lubrication proved to be effective for limiting the value of the axial force that can be developed. Limiting the axial force on the SARJ mechanism is important since the larger the axial force the more concentrated the load pressure becomes on the blend-radius location on the SARJ roller. After the testing simulating 15 years of SARJ operations, the wear depths were the order of 0.2 mm for the nitrided 15-5 roller and the order of 0.06 mm for the mating 440C roller. Metallographic inspections were done to search for indications of impending fatigue or other fracture indications that might eventually propagate and cause structural failure. There were no indications or features found that could eventually compromise structural integrity.

  19. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    SciTech Connect

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  20. Chemical durability and structural analysis of PbO-B2O3 glasses and testing for simulated radioactive wastes

    NASA Astrophysics Data System (ADS)

    Erdogan, Cem; Bengisu, Murat; Erenturk, Sema Akyil

    2014-02-01

    Lead borate based glass formulations with high chemical durability and lower melting temperatures compared to the currently used glasses were developed as candidates for the vitrification of radioactive waste. Properties including chemical durability, glass transformation temperature, and melting temperature were analyzed. The chemical durability of PbO-B2O3 glasses with PbO contents ranging from 30 to 80 mol% was determined. An average dissolution rate of 0.2 g m-2 day-1 was obtained for the composition 80PbOṡ20B2O3. These glasses were studied under simulation conditions and showed good potential as a vitrification matrix for radioactive waste management. Clear vitrified waste products containing up to 30 mol% SrO and 25 mol% Cs2O could be obtained. Leaching rates are about hundred times higher in low PbO glasses compared to high PbO glasses. These results are encouraging since they open up new horizons in the development of low melting temperature lead borate glass for waste immobilization applications.

  1. Hypersonic aerodynamics test facility using the external propulsion accelerator

    NASA Technical Reports Server (NTRS)

    Rom, J.; Lewis, M.; Gupta, A.; Sabean, J.

    1995-01-01

    The use of the External propulsion Accelerator (EPA) for launching models of hypersonic aerodynamic configurations into an instrumented ballistic range is discussed. The aerodynamic model is encased inside an axisymmetric projectile designed to be accelerated to high speed in the EPA. Accelerator lengths required to achieve hypersonic speeds are estimated to vary from 10 meters for Mach 7, 40 meters for Mach 10, 150 meters for Mach 15, and 700 meters for Mach 30, assuming a limit of 50,000 g's acceleration. For a model span of 10 cm to 25 cm, the launch tube diameters are 40 cm and 100 cm, respectively. Using this EPA launcher will enable exact simulation of hypersonic flight in ground facilities where both the gas composition and pressure can be controlled in the ballistic range.

  2. Optical system for measurement of pyrotechnic test accelerations

    NASA Astrophysics Data System (ADS)

    Lieberman, Paul; Czajkowski, John; Rehard, John

    1992-12-01

    This effort was directed at comparing the response of several different accelerometer and amplifier combinations to the pyrotechnic pulse simulating the ordnance separation of stages of multistage missiles. These pyrotechnic events can contain peak accelerations in excess of 100,000 G and a frequency content exceeding 100,000 Hz. The main thrust of this work was to compare the several accelerometer systems with each other and with a very accurate laser Doppler displacement meter in order to establish the frequency bands and acceleration amplitudes where the accelerometer systems are in error. The comparisons were made in simple sine-wave and low-acceleration amplitude environments, as well as in very severe pyroshock environments. An optical laser Doppler displacement meter (LDDM) was used to obtain the displacement velocity and acceleration histories, as well as the corresponding shock spectrum.

  3. Easy-to-clean property and durability of superhydrophobic flaky γ-alumina coating on stainless steel in field test at a paper machine

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxue; Liu, Xuwen; Laakso, Jarmo; Levänen, Erkki; Mäntylä, Tapio

    2012-01-01

    Superhydrophobic flaky γ-alumina coating was prepared on AISI 316 2B stainless steel and was field-tested near size roll at a paper machine in a paper mill for 6 weeks consisting of two running periods of machine to check the easy-to-clean property and durability, as compared to an uncoated reference stainless steel. In the end of the field test, both the superhydrophobic and the reference stainless steel were fully covered with substances from the testing environment. Major part of the collected substances on the superhydrophobic stainless steel can be washed away by pressurized water; however, the collected substances remained on the reference stainless steel after washing. The field-tested samples were characterized visually and by stereomicroscopy, field emission scanning electron microscopy, laser profilometry and contact angle tester. The field test revealed the easy-to-clean property of the superhydrophobic surface and the superhydrophobic coating survived rather well after the first running period of 16 days in the field test. The resistance and durability of the superhydrophobic surface still needs to be further improved for longer term application in paper industry. Nanoindentation was used to further study the mechanical properties of the γ-alumina coating. It was found that the γ-alumina coating became much softer after transforming from flat to flaky form. In addition, the flaky γ-alumina coating demonstrated a phenomenon of time-dependent plasticity and some flexibility.

  4. Evaluation of oxidative behavior of polyolefin geosynthetics utilizing accelerated aging tests based on temperature and pressure

    NASA Astrophysics Data System (ADS)

    Li, Mengjia

    Polyolefin geosynthetics are susceptible to oxidation, which eventually leads to the reduction in their engineering properties. In the application of polyolefin geosynthetics, a major issue is an estimate of the materials durability (i.e. service lifetime) under various aging conditions. Antioxidant packages are added to the polyolefin products to extend the induction time, during which antioxidants are gradually depleted and polymer oxidation reactions are prevented. In this PhD study, an improved laboratory accelerating aging method under elevated and high pressure environments was applied to evaluate the combined effect of temperature and pressure on the depletion of the antioxidants and the oxidation of polymers. Four types of commercial polyolefn geosynthetic materials selected for aging tests included HDPE geogrid, polypropylene woven and nonwoven geotextiles. A total of 33 different temperature/pressure aging conditions were used, with the incubation duration up to 24 months. The applied oven temperature ranged from 35°C to 105°C and the partial oxygen pressure ranged from 0.005 MPa to 6.3 MPa. Using the Oxidative Induction Time (OIT) test, the antioxidant depletion, which is correlated to the decrease of the OIT value, was found to follow apparent first-order decay. The OIT data also showed that, the antioxidant depletion rate increased with temperature according to the Arrhenius equation, while under constant temperatures, the rate increased exponentially with the partial pressure of oxygen. A modified Arrhenius model was developed to fit the antioxidant depletion rate as a function of temperature and pressure and to predict the antioxidant lifetime under various field conditions. This study has developed new temperature/pressure incubation aging test method with lifetime prediction models. Using this new technique, the antioxidant lifetime prediction results are close to regular temperature aging data while the aging duration can be reduced considerably

  5. Framework for a Comparative Accelerated Testing Standard for PV Modules: Preprint

    SciTech Connect

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.; Miller, D.; Meakin, D.; Monokroussos, C.; TamizhMani, M.; Kempe, M.; Jordan, D.; Bosco, N.; Hacke, P.; Bermudez, V.; Kondo, M.

    2013-08-01

    As the photovoltaic industry has grown, the interest in comparative accelerated testing has also grown. Private test labs offer testing services that apply greater stress than the standard qualification tests as tools for differentiating products and for gaining increased confidence in long-term PV investments. While the value of a single international standard for comparative accelerated testing is widely acknowledged, the development of a consensus is difficult. This paper strives to identify a technical basis for a comparative standard.

  6. Follow-up durability measurements and mitigation-performance improvement tests in 38 Eastern Pennsylvania houses having indoor radon-reduction systems. Final report, Oct 89-Feb 90

    SciTech Connect

    Findlay, W.O.; Robertson, A.; Scott, A.G.

    1991-03-01

    The report gives results of follow-up tests in 38 difficult-to-mitigate Pennsylvania houses where indoor radon reduction systems had been installed 2 to 4 years earlier. Objectives were to assess system durability, methods for improving performance, and methods for reducing installation and operating costs. The durability tests indicated that the 38 systems have not experienced any significant degradation in indoor radon levels or in system flows/suctions, except in 6 houses where system fans failed, and in houses where homeowners turned off the systems. Tests to improve performance indicated that nearly all of the elevated residual radon levels are due to re-entrainment back into the house of very-high-radon exhaust gas from the soil depressurization systems, and to radon release from well water. Tests to reduce system costs showed that premitigation sub-slab suction field measurements can help prevent installation of too many suction pipes when communication is good, but suggest a need for too many pipes when communication is poor. Soil depressurization fans could not be turned down to the extent expected in some systems that were over-designed. Between 6 and 42% of the exhausted air was withdrawn from the house.

  7. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  8. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  9. Experimental test accelerator: description and results of initial experiments

    SciTech Connect

    Fessenden, T.; Birx, D.; Briggs, R.

    1980-06-02

    The ETA is a high current (10,000 Amp) linear induction accelerator that produces short (30 ns) pulses of electrons at 5 MeV twice per second or in bursts of 5 pulses separated by as little as one millisecond. At this time the machine has operated at 65% of its design current and 90% of the design voltage. This report contains a description of the accelerator and its diagnostics; the results of the initial year of operation; a comparison of design codes with experiments on beam transport; and a discussion of some of the special problems and their status.

  10. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-08-01

    Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). The PAMS proposal identifier number is 0000219731. The proposed new type of superconducting cavity, the Elliptical Twin Cavity, is capable of accelerating or decelerating beams in two separate beam pipes. This configuration is particularly effective for high-current, low energy electron beams that will be used for bunched beam cooling of high-energy protons or ions. Having the accelerated beam physically separated from the decelerated beam, but interacting with the same RF mode, means that the low energy beam from the gun can be injected into to the superconducting cavity without bends enabling a small beam emittance to be maintained. A staff engineer who has been working with non-standard complicated cavity structures replaces the senior engineer (in the original budget) who is moving on to be a project leader. This is reflected in a slightly increased engineer time and in reduced costs. The Indirect costs for FY16 are lower than the previous projection. As a result, there is no scope reduction.

  11. Design and Simulation of IOTA - a Novel Concept of Integrable Optics Test Accelerator

    SciTech Connect

    Nagaitsev, S.; Valishev, A.; Danilov, V.V.; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01

    The use of nonlinear lattices with large betatron tune spreads can increase instability and space charge thresholds due to improved Landau damping. Unfortunately, the majority of nonlinear accelerator lattices turn out to be nonintegrable, producing chaotic motion and a complex network of stable and unstable resonances. Recent advances in finding the integrable nonlinear accelerator lattices have led to a proposal to construct at Fermilab a test accelerator with strong nonlinear focusing which avoids resonances and chaotic particle motion. This presentation will outline the main challenges, theoretical design solutions and construction status of the Integrable Optics Test Accelerator (IOTA) underway at Fermilab.

  12. Experimental evaluation of the Battelle accelerated test design for the solar array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Frickland, P. O.; Repar, J.

    1982-01-01

    A previously developed test design for accelerated aging of photovoltaic modules was experimentally evaluated. The studies included a review of relevant field experience, environmental chamber cycling of full size modules, and electrical and physical evaluation of the effects of accelerated aging during and after the tests. The test results indicated that thermally induced fatigue of the interconnects was the primary mode of module failure as measured by normalized power output. No chemical change in the silicone encapsulant was detectable after 360 test cycles.

  13. Reliability, Availability, Maintainability, Durability (RAMD) testing and control system development. Final report for period July 1, 1998 - December 31, 1999

    SciTech Connect

    Kinney, Troy; Reppen, Dag; Yee, David; Schlatter, Jim

    2002-03-01

    Catalytica Energy Systems Inc. (CESI) is developing a novel catalytic combustion system (called Xonon{reg_sign}) that produces ultra-low emissions for natural gas fired turbine engines. In this project, the Xonon{reg_sign} system was installed on a Kawasaki M1A-13A 1.4 kW engine connected to the Silicon Valley Power electrical grid. The purpose of the project was to demonstrate the ultra-low emission levels of the Xonon{reg_sign} system and to determine the system Reliability, Availability, Maintainability and Durability (RAMD). The engine accumulated 8,128 hours of on-grid operation while exhibiting average NOx levels of 1.3 ppm, CO of 0.9 ppm and unburned hydrocarbons of 1.3 ppm (all values corrected to 15% O{sub 2}). The Xonon{reg_sign} system reliability and availability were 99.2% and 91.2% respectively. Maintainability and durability values were not quantified due to the redesign of some key system components over the course of the program. The RAMD program also included control system development activities to improve the stability of the fuel control system to various levels of load application and shedding. Other control system modifications improved the ability of the system to re-synchronize with the grid after full load rejection.

  14. Development of an accelerated leach test(s) for low-level waste forms

    SciTech Connect

    Dougherty, D.R.; Fuhrmann, M.; Colombo, P.

    1985-01-01

    An accelerated leach test(s) is being developed to predict long-term leaching behavior of low-level radioactive waste (LLW) forms in their disposal environments. As necessary background, a literature survey of reported leaching mechanisms, available mathematical models and factors that affect leaching of LLW forms has been compiled. Mechanisms which have been identified include diffusion, dissolution, ion exchange, corrosion and surface effects. A computerized data base of LLW leaching data and mathematical models is being developed. The data is being used for model evaluation by curve fitting and statistical analysis according to standard procedures of statistical quality control. Long-term leach tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms. Initial results on the effect of temperature on leachability indicate that the leach rates of cement and VES waste forms increase with increasing temperature, whereas, the leach rate of bitumen is little affected. 10 refs., 5 figs.

  15. Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanliang; Chen, Siguo; Wang, Yao; Ding, Wei; Wu, Rui; Li, Li; Qi, Xueqiang; Wei, Zidong

    2015-01-01

    A combination method based on three different accelerated stress test (AST) protocols along with the monitoring of electrochemical surface area (ECSA), oxygen reduction reaction (ORR) activities, X-Ray photoelectron spectrometer (XPS), transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS) response is introduced to investigate the degradation mechanisms of carbon-supported platinum (Pt/C) catalyst. By comparing the ECSA and ORR activity loss under different AST protocols, we revealed that the activity loss in AST can be divided into recoverable activity loss and unrecoverable activity loss. The recoverable activity loss is attributed to the reduction of Pt oxide or partially due to the removal of CO formed during carbon corrosion. The unrecoverable activity loss is ascribed to the Pt dissolution/re-deposition, agglomeration, detachment and carbon corrosion. XPS results show that the Pt dissolution/re-deposition in AST can be detected by using a more negative potential window. TEM images and analysis confirmed that the Pt growth mode in this study is mainly due to the Pt agglomeration rather than dissolution/re-deposition. EIS analysis reveals that the alternative decomposition/formation of oxygen containing groups over time is the main corrosion pathway of carbon support. These findings are very important for understanding Pt/C catalyst degradation and are also useful for developing fast test protocol for screening new durable catalyst materials.

  16. Applications of the ram accelerator to hypervelocity aerothermodynamic testing

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Hertzberg, A.

    1992-01-01

    A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.

  17. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  18. Design, fabrication and first beam tests of the C-band RF acceleration unit at SINAP

    NASA Astrophysics Data System (ADS)

    Fang, Wencheng; Gu, Qiang; Sheng, Xing; Wang, Chaopeng; Tong, Dechun; Chen, Lifang; Zhong, Shaopeng; Tan, Jianhao; Lin, Guoqiang; Chen, Zhihao; Zhao, Zhentang

    2016-07-01

    C-band RF acceleration is a crucial technology for the compact Free Electron Laser (FEL) facility at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences. A project focusing on C-band RF acceleration technology was launched in 2008, based on high-gradient accelerating structures powered by klystron and pulse compressor units. The target accelerating gradient is 40 MV/m or higher. Recently one prototype of C-band RF unit, consisting of a 1.8 m accelerating structure and a klystron with a TE0115 mode pulse compressor, has been tested with high-power and electron beam. Stable operation at 40 MV/m was demonstrated and, 50 MV/m approached by the end of the test. This paper introduces the C-band R&D program at SINAP and presents the experiment results of high-power and beam tests.

  19. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    SciTech Connect

    Gold, S.H.; Kinkead, A.K.; Gai, W.; Power, J.G.; Konecny, R.; Jing, C.; Long, J.; Tantawi, S.G.; Nantista, C.D.; Fliflet, A.W.; Lombardi, M.; Lewis, D.; Bruce, R.W.; /Unlisted

    2007-04-13

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  20. Testing Cosmic-Ray Acceleration in Young, Embedded Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Nukri, Komin; Marcowith, Alexandre; Lamanna, Giovanni; Maurin, Gilles; Krayzel, Fabien

    2016-07-01

    Most of the massive stars appear grouped in clusters located in giant molecular clouds. Their strong wind activity generates large structures known as stellar wind bubbles and induces collective effects which could accelerate particles up to high energy and produce gamma-rays. The best objects to observe these effects are young massive star clusters in which no supernova explosion has occurred yet. We model these star clusters as a spherical leaky box (the molecular cloud) surrounding a central cosmic ray source (the stellar cluster). We developed a phenomenological model to estimate the cosmic and gamma-ray production for a set of 8 selected clusters. We compare the predicted gamma-ray emission with data obtained with the Fermi-LAT telescope. No significant emission has been detected from any of the selected cluster. Comparing the upper limit on the gamma-ray flux with the prediction from our phenomenological model indicates that not more than 10% of the stellar wind luminosity of the stellar clusters is converted into cosmic rays. If all O-type stars do not contribute more than 10% of their stellar wind luminosity to cosmic-ray acceleration they do not contribute to more than on percent of the total cosmic-ray luminosity.

  1. Accelerated and environmental module stress testing at NREL

    SciTech Connect

    Osterwald, C.R.; Basso, T.S.; del Cueto, J.A.; McMahon, T.J.; Pruett, J.; Trudell, D.

    1999-03-01

    This paper presents an overview of the Module Testing and Technology Validation task at the National Renewable Energy Laboratory. The extensive module testing capabilities at the Outdoor Test Facility are outlined, emphasizing the test facilities, equipment, and analytical services available. Highlights and results of several recent testing efforts are then presented, followed by a list of the external programs supported by the task. The paper concludes with a brief description of the new testing programs that are planned for the near future. {copyright} {ital 1999 American Institute of Physics.}

  2. Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.

    2004-01-01

    The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.

  3. History of Accelerated and Qualification Testing of Terrestrial Photovoltaic Modules: A Literature Review

    SciTech Connect

    Osterwald, C. R.; McMahon, T. J.

    2009-01-01

    We review published literature from 1975 to the present for accelerated stress testing of flat-plate terrestrial photovoltaic (PV) modules. An important facet of this subject is the standard module test sequences that have been adopted by national and international standards organizations, especially those of the International Electrotechnical Commission (IEC). The intent and history of these qualification tests, provided in this review, shows that standard module qualification test results cannot be used to obtain or infer a product lifetime. Closely related subjects also discussed include: other limitations of qualification testing, definitions of module lifetime, module product certification, and accelerated life testing.

  4. Development of a Compact Dielectric-Loaded Test Accelerator at 11.4 GHz

    SciTech Connect

    Gold, S. H.; Fliflet, A. W.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.

    2009-01-22

    This paper presents a progress report on the development of a dielectric-loaded test accelerator in the Magnicon Facility at the Naval Research Laboratory (NRL). The accelerator will be powered by an 11.4-GHz magnicon amplifier that provides up to 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator includes a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate dielectric-loaded accelerating (DLA) structures of up to 0.5 m in length. The DLA structures are being developed by Argonne National Laboratory and Euclid Techlabs, and shorter test structures fabricated from a variety of dielectric materials have undergone rf testing at NRL at accelerating gradients up to 15 MV/m. The first stage of the accelerator, including the 5-MeV injector, has recently begun operation, and initial operation of the complete dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  5. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    PubMed

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  6. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability

    PubMed Central

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-01-01

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for “real world” application. PMID:24658614

  7. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-01

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for ``real world'' application.

  8. Environmental Durability of Electroplated Black Chromium

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1983-01-01

    Report describes tests of durability of electroplated black chromium coatings on solar-collector panels in rural, industrial, and seacoast environments for 60, 36, and 13 months, respectively. Black-chromium coating showed exceptionally-good optical durability in all three environments.

  9. First High power test results for 2.1 GHz superconducting photonic band gap accelerator cavities.

    PubMed

    Simakov, Evgenya I; Haynes, W Brian; Madrid, Michael A; Romero, Frank P; Tajima, Tsuyoshi; Tuzel, Walter M; Boulware, Chase H; Grimm, Terry L

    2012-10-19

    We report the results of the recent high power testing of superconducting radio frequency photonic band gap (PBG) accelerator cells. Tests of the two single-cell 2.1 GHz cavities were performed at both 4 and 2 K. An accelerating gradient of 15 MV/m and an unloaded quality factor Q(0) of 4×10(9) were achieved. It has been long realized that PBG structures have great potential in reducing long-range wakefields in accelerators. A PBG structure confines the fundamental TM(01)-like accelerating mode, but does not support higher order modes. Employing PBG cavities to filter out higher order modes in superconducting particle accelerators will allow suppression of dangerous beam instabilities caused by wakefields and thus operation at higher frequencies and significantly higher beam luminosities. This may lead towards a completely new generation of colliders for high energy physics and energy recovery linacs for the free-electron lasers.

  10. 40 CFR 1065.415 - Durability demonstration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 1065.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.415 Durability.... Perform emission tests to determine deterioration factors consistent with good engineering...

  11. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    NASA Technical Reports Server (NTRS)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  12. Analysis of Transmitted Optical Spectrum Enabling Accelerated Testing of CPV Designs: Preprint

    SciTech Connect

    Miller, D. C.; Kempe, M. D.; Kennedy, C. E.; Kurtz, S. R.

    2009-07-01

    Reliability of CPV systems' materials is not well known; methods for accelerated UV testing have not been developed. UV and IR spectra transmitted through representative optical systems are evaluated.

  13. The Corrosion of PEM Fuel Cell Catalyst Supports and Its Implications for Developing Durable Catalysts

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Kou, Rong; Engelhard, Mark H.; Liu, Jun; Wang, Yong; Lin, Yuehe

    2009-01-03

    Studying the corrosion behavior of catalyst support materials is of great significance for understanding the degradation of PEM fuel cell performance and developing durable catalysts. The oxidation of Vulcan carbon black (the most widely-used catalyst support for PEM fuel cells) was investigated using various electrochemical stressing methods (fixed-potential holding vs. potential step cycling), among which the potential step cycling was considered to mimic more closely the real drive cycle operation of vehicle PEM fuel cells. The oxidation of carbon was accelerated under potential step conditions as compared with the fixed-potential holding condition. Increasing potential step frequency or decreasing the lower potential limit in the potential step can further accelerate the corrosion of carbon. The accelerated corrosion of carbon black was attributed to the cycle of consumption/regeneration of some easily oxidized species. These findings are being employed to develop a test protocol for fast screening durable catalyst support.

  14. Highly durable Pt/graphene oxide and Pt/C hybrid catalyst for polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Jung, Ju Hae; Park, Hyang Jin; Kim, Junbom; Hur, Seung Hyun

    2014-02-01

    We report a highly durable hybrid catalyst composed of Pt/graphene oxide (GO) and Pt/C catalyst for polymer electrolyte membrane fuel cell (PEMFC). The accelerated durability tests in half-cell and full cell systems shows that the addition of small amount of Pt/GO catalyst significantly enhances the durability of commercial Pt/C catalyst without sacrificing initial electrochemical active surface area (ECSA). The XRD and TEM analysis reveal that the GO not only exhibits the high resistance to Pt agglomeration but also prevents the Pt agglomeration in Pt/C catalyst by providing the anchoring sites of eluted metal ions. We believe that this simple and effective approach can open a new way to fabricate highly durable electrocatalyst for the commercialization of fuel cell vehicles.

  15. Accelerated thermal and mechanical testing of CSP assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    2000-01-01

    Chip Scale Packages (CSP) are now widely used for many electronic applications including portable and telecommunication products. A test vehicle (TV-1) with eleven package types and pitches was built and tested by the JPL MicrotypeBGA Consortium during 1997 to 1999. Lessons learned by the team were published as a guidelines document for industry use. The finer pitch CSP packages which recently became available were indluded in the next test vehicle of the JPL CSP Consortium.

  16. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    SciTech Connect

    Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

    2012-05-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  17. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 1; Start-up

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. They are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the first part of the experimental study, i.e. the effects of a centrifugal force on the LHP start-up. Tests were conducted by varying the heat load to the evaporator, sink temperature, magnitude and frequency of centrifugal force, and LHP orientation relative to the direction of the accelerating force. The accelerating force seems to have little effect on the loop start-up in terms of temperature overshoot and superheat at boiling incipience. Changes in these parameters seem to be stochastic with or without centrifugal accelerating forces. The LHP started successfully in all tests.

  18. Development and testing of the improved focusing quadrupole for heavy ion fusion accelerators

    SciTech Connect

    Manahan, R R; Martovetsky, N N; Meinke, R B; Chiesa, L; Lietzke, A F; Sabbi, G L; Seidl, P A

    2003-10-23

    An improved version of the focusing magnet for a Heavy Ion Fusion (HIF) accelerator was designed, built and tested in 2002-2003. This quadrupole has higher focusing power and lower error field than the previous version of the focusing quadrupoles successfully built and tested in 2001. We discuss the features of the new design, selected fabrication issues and test results.

  19. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 2; Temperature Stability

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Taril; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. LHP's are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that in stationary tests the LHP operating temperature is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled. Results of this test program indicate that any change in the accelerating force will result in a chance in the LHP operating temperature through its influence on the fluid distribution in the evaporator, condenser and compensation chamber. However, the effect is not universal, rather it is a function of other test conditions. A steady, constant acceleration may result in an increase or decrease of the operating temperature, while a periodic spin will lead to a quasi-steady operating temperature over a sufficient time interval. In addition, an accelerating force may lead to temperature hysteresis and changes in the temperature oscillation. In spite of all these effects, the LHP continued to operate without any problems in all tests.

  20. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Poster)

    SciTech Connect

    Miller, D. C.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2011-02-01

    Polymeric encapsulation materials are typically used in concentrating photovoltaic (CPV) modules to protect the cell from the field environment. Because it is physically located adjacent to the cell, the encapsulation is exposed to a high optical flux, often including light in the ultraviolet (UV) and infrared (IR) wavelengths. The durability of encapsulants used in CPV modules is critical to the technology, but is presently not well understood. This work seeks to identify the appropriate material types, field-induced failure mechanisms, and factors of influence (if possible) of polymeric encapsulation. These results will ultimately be weighed against those of future qualification and accelerated life test procedures.

  1. Accelerated in vitro release testing methods for extended release parenteral dosage forms

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2012-01-01

    Objectives This review highlights current methods and strategies for accelerated in vitro drug release testing of extended release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in situ depot-forming systems, and implants. Key findings Extended release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, “real-time” in vitro release tests for these dosage forms are often run over a long time period. Accelerated in vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in vitro release methods using United States Pharmacopoeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended release parenteral dosage forms, along with the accelerated in vitro release testing methods currently employed are discussed. Conclusions Accelerated in vitro release testing methods with good discriminatory ability are critical for quality control of extended release parenteral products. Methods that can be used in the development of in vitro-in vivo correlation (IVIVC) are desirable, however for complex parenteral products this may not always be achievable. PMID:22686344

  2. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  3. Investigating the feasibility of temperature-controlled accelerated drug release testing for an intravaginal ring.

    PubMed

    Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra

    2013-11-01

    The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non

  4. Mixed hydrocarbon/fluoropolymer membrane/ionomer MEAs for durability studies

    SciTech Connect

    Li, Bo; Kim, Yu Seung; Mukundan, Rangachary; Borup, Rodney L; Wilson, Mahlon S; Welch, Cynthia; Fenton, James

    2010-01-01

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the fuel cell components to increase the system reliability. The aim of this work is to separate ionomer degradation from membrane degradation via mixed membrane/ionomer MEA experiments. The challenges of mixed MEA fabrication due to the incompatibility of the membrane and the electrode are addressed. OCV accelerated testing experiment (AST) were performed. Development of in situ diagnostics and unique experiments to characterize the performance and properties of the ionomer in the electrode as a function of time is reported. These measurements, along with extensive ex situ and post-mortem characterization, can delineate the degradation mechanisms in order to develop more durable fuel cells and fuel cell components.

  5. Designing durable icephobic surfaces

    PubMed Central

    Golovin, Kevin; Kobaku, Sai P. R.; Lee, Duck Hyun; DiLoreto, Edward T.; Mabry, Joseph M.; Tuteja, Anish

    2016-01-01

    Ice accretion has a negative impact on critical infrastructure, as well as a range of commercial and residential activities. Icephobic surfaces are defined by an ice adhesion strength τice < 100 kPa. However, the passive removal of ice requires much lower values of τice, such as on airplane wings or power lines (τice < 20 kPa). Such low τice values are scarcely reported, and robust coatings that maintain these low values have not been reported previously. We show that, irrespective of material chemistry, by tailoring the cross-link density of different elastomeric coatings and by enabling interfacial slippage, it is possible to systematically design coatings with extremely low ice adhesion (τice < 0.2 kPa). These newfound mechanisms allow for the rational design of icephobic coatings with virtually any desired ice adhesion strength. By using these mechanisms, we fabricate extremely durable coatings that maintain τice < 10 kPa after severe mechanical abrasion, acid/base exposure, 100 icing/deicing cycles, thermal cycling, accelerated corrosion, and exposure to Michigan wintery conditions over several months. PMID:26998520

  6. Designing durable icephobic surfaces.

    PubMed

    Golovin, Kevin; Kobaku, Sai P R; Lee, Duck Hyun; DiLoreto, Edward T; Mabry, Joseph M; Tuteja, Anish

    2016-03-01

    Ice accretion has a negative impact on critical infrastructure, as well as a range of commercial and residential activities. Icephobic surfaces are defined by an ice adhesion strength τice < 100 kPa. However, the passive removal of ice requires much lower values of τice, such as on airplane wings or power lines (τice < 20 kPa). Such low τice values are scarcely reported, and robust coatings that maintain these low values have not been reported previously. We show that, irrespective of material chemistry, by tailoring the cross-link density of different elastomeric coatings and by enabling interfacial slippage, it is possible to systematically design coatings with extremely low ice adhesion (τice < 0.2 kPa). These newfound mechanisms allow for the rational design of icephobic coatings with virtually any desired ice adhesion strength. By using these mechanisms, we fabricate extremely durable coatings that maintain τice < 10 kPa after severe mechanical abrasion, acid/base exposure, 100 icing/deicing cycles, thermal cycling, accelerated corrosion, and exposure to Michigan wintery conditions over several months.

  7. Design and Factory Test of the E /E- Frascati Linear Accelerator for DAFNE

    SciTech Connect

    Anamkath, H.; Lyons, S.; Nett, D.; Treas, P.; Whitham, K.; Zante, T.; Miller, R.; Boni, R.; Hsieh, H.; Sannibale, F.; Vescovi, M.; Vignola, G.; /Frascati

    2011-11-28

    The electron-positron accelerator for the DAFNE project has been built and is in test at Titan Beta in Dublin, CA. This S-Band RF linac system utilizes four 45 MW sledded klystrons and 16-3 m accelerating structures to achieve the required performance. It delivers a 4 ampere electron beam to the positron converter and accelerates the resulting positrons to 550 MeV. The converter design uses a 4.3T pulsed tapered flux compressor along with a pseudo-adiabatic tapered field to a 5 KG solenoid over the first two positron accelerating sections. Quadrupole focusing is used after 100 MeV. The system performance is given in Table 1. This paper briefly describes the design and development of the various subassemblies in this system and gives the initial factory test data.

  8. Composite-Unit Accelerated Life Testing (CUALT) of Sonar Transducers

    DTIC Science & Technology

    1979-09-01

    testing were identified and corrected. 2, Resolution of the current -runaway problem on the TR-316 was largely based on the CUALT experimental and...Kinnison - Suggested the use of in-air impedance NOSC experiments on individual resonators to understand the current -runaway problem. Homer Ding...2-1 2.2 Use of Current -Buy Transducers .................... 2-2 2.3 Use of Both Projector and Receiver Transducers .... 2-2 2.4 Hands-on ALT

  9. Investigation of hypersonic ramjet propulsion cycles using a ram accelerator test facility

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Chew, G.; De Turenne, J. A.; Dunmire, B.

    1991-01-01

    Experimental research on hypersonic propulsion using a ram accelerator test facility is presented. The gasdynamics of the ram accelerator has been studied experimentally in a 38-mm bore facility over the Mach number range of 2.5 to 8.5, using methane- and ethylene-based propellant mixtures. Three different propulsive modes, centered on the Chapman-Jouguet (C-J) detonation speed of the combustible gas, have been experimentally observed. Projectiles have been accelerated smoothly from velocities below to above the C-J speed within a single propellant mixture.

  10. Hydraulic testing of accelerator-production-of-tritium rod bundles

    SciTech Connect

    Spatz, T.L.; Siebe, D.A.

    1999-01-01

    Hydraulic tests have been performed on small pitch-to-diameter-ratio rod bundles using light water (1.7 < P/D < 1.17, and d = 3.175 mm). Flows cover the range from greater-than-nominal Reynolds numbers (fully turbulent) to low-speed laminar flows. Differential pressure measurements were made across the support plates holding the rod bundles, across the rod bundles, and across the entire assembly. Flow rates, temperatures, and gauge pressures also were measured. The data from these hydraulic tests have been compared to correlating literature for tightly pitched rod bundles. The prototypic geometry of these tests did not compare directly to any geometry found in the literature because of the variety of subchannels along the outer wall of the rod bundle. Under that constraint, there was excellent comparison of the rod-bundle friction factor with those factors given in the literature. The results show a large range of the Reynolds number over which the flow is in transition from laminar to turbulent (e.g., 580 < Re{sub Tr} < 13,000). Also presented is the comparison of the overall rung pressure drop to a solution based on hydraulic-resistance handbook calculations.

  11. Isolation of a piezoresistive accelerometer used in high acceleration tests

    NASA Astrophysics Data System (ADS)

    Bateman, V. I.; Brown, F. A.; Davie, N. T.

    Both uniaxial and triaxial shock isolation techniques for a piezoresistive accelerometer have been developed for pyroshock and impact tests. The uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of -50 to +186 F and a frequency bandwidth of DC to 10 kHz. The triaxial shock isolation technique has demonstrated acceptable results for a temperature range of -50 to 70 F and a frequency bandwidth of DC to 10 kHz. These temperature ranges, that are beyond the accelerometer manufacturer's operational limits of -30 and +150 F, required the calibration of accelerometers at high shock levels and at the temperature extremes of -50 and +160 F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000 - 15,000 g for the temperature extremes of -50 and +160 F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST-traceable accuracy for the standard accelerometer in shock is +\\-5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%.

  12. Durable solar mirror films

    DOEpatents

    O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  13. Technological issues and high gradient test results on X-band molybdenum accelerating structures

    NASA Astrophysics Data System (ADS)

    Spataro, B.; Alesini, D.; Chimenti, V.; Dolgashev, V.; Haase, A.; Tantawi, S. G.; Higashi, Y.; Marrelli, C.; Mostacci, A.; Parodi, R.; Yeremian, A. D.

    2011-11-01

    Two 11.424 GHz single cell standing wave accelerating structures have been fabricated for high gradient RF breakdown studies. Both are brazed structures: one made from copper and the other from sintered molybdenum bulk. The tests results are presented and compared to those of similar devices constructed at SLAC ( Stanford Linear Accelerator Center) and KEK ( Kō Enerugī Kasokuki Kenkyū Kikō). The technological issues to build both sections are discussed.

  14. Technological Issues and High Gradient Test Results on X-Band Molybdenum Accelerating Structures

    SciTech Connect

    Spataro, B.; Alesini, D.; Chimenti, V.; Dolgashev, V.; Haase, A.; Tantawi, S.G.; Higashi, Y.; Marrelli, C.; Mostacci, A.; Parodi, R.; Yeremian, A.D.; /SLAC

    2012-04-24

    Two 11.424 GHz single cell standing wave accelerating structures have been fabricated for high gradient RF breakdown studies. Both are brazed structures: one made from copper and the other from sintered molybdenum bulk. The tests results are presented and compared to those of similar devices constructed at SLAC (Stanford Linear Accelerator Center) and KEK (Ko Enerugi Kasokuki Kenkyu Kiko). The technological issues to build both sections are discussed.

  15. Isolation of a piezoresistive accelerometer used in high acceleration tests

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1992-12-31

    Both uniaxial and triaxial shock isolation techniques for a piezoresistive accelerometer have been developed for pyroshock and impact tests. The uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of {minus}50{degree}F to +186{degree}F and a frequency bandwidth of DC to 10 kHz. The triaxial shock isolation technique has demonstrated acceptable results for a temperature range of {minus}50{degree}F to 70{degree}F and a frequency bandwidth of DC to 10 kHz. These temperature ranges, that are beyond the accelerometer manufacturer`s operational limits of {minus}30{degree}F and +150{degree}F, required the calibration of accelerometers at high shock levels and at the temperature extremes of {minus}50{degree}F and +160{degree}F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000 g - 15,000 g for the temperature extremes of {minus}50{degree}F and +160{degree}F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST-traceable accuracy for the standard accelerometer in shock is {plus_minus}5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%.

  16. Low-acceleration dwarf galaxies as tests of quantised inertia

    NASA Astrophysics Data System (ADS)

    McCulloch, M. E.

    2017-03-01

    Dwarf satellite galaxies of the Milky Way appear to be gravitationally bound, but their stars' orbital motion seems too fast to allow this given their visible mass. This is akin to the larger-scale galaxy rotation problem. In this paper, a modification of inertia called quantised inertia or MiHsC (Modified inertia due to a Hubble-scale Casimir effect) which correctly predicts larger galaxy rotations without dark matter is tested on eleven dwarf satellite galaxies of the Milky Way, for which mass and velocity data are available. Quantised inertia slightly outperforms MoND (Modified Newtonian Dynamics) in predicting the velocity dispersion of these systems, and has the fundamental advantage over MoND that it does not need an adjustable parameter.

  17. Accelerated test program for sealed nickel-cadmium spacecraft batteries/cells

    NASA Technical Reports Server (NTRS)

    Goodman, L. A.

    1976-01-01

    The feasibility was examined of inducing an accelerated test on sealed Nickel-Cadmium batteries or cells as a tool for spacecraft projects and battery users to determine: (1) the prediction of life capability; (2) a method of evaluating the effect of design and component changes in cells; and (3) a means of reducing time and cost of cell testing.

  18. Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report

    SciTech Connect

    J. Francfort; J. Argueta; M. Wehrey; D. Karner; L. Tyree

    1999-07-01

    This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

  19. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    SciTech Connect

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-29

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  20. An Evaluation of High Frequency Acceleration Test at XLPE Cable’s Insulator

    NASA Astrophysics Data System (ADS)

    Iwasaki, Kimihiro; Nakade, Masahiko; Tanaka, Atsushi; Tanimoto, Mihoko; Okashita, Minoru; Ito, Kazumi

    We investigated whether a high frequency acceleration method has validity at the degradation of XLPE in case of no influence of water for realizing a lifetime test at near the operating electric field. The tests was carried out at 50Hz, 1000Hz, and 3000Hz frequency using Recessed specimen and the specimen under Needle-plane electrode system, time-to-breakdown was measured. A clear property of frequency acceleration was checked in both results of tests, and the validity of the frequency acceleration technique was shown. And we realize that frequency acceleration factor is lower than the frequency ratio at both tests of specimens. We think the reason is that the amount of accumulation of the space charge per cycle at a defect or a tree tip at high frequency is less than the accumulation at 50Hz. Moreover, tree growth time effects at the time to breakdown of Needle-plane system specimen, but it effects a little at Recessed specimen, so there is difference of acceleration rate between both specimens. The lifetime exponent of V-t characteristic, n, increases at a 3000Hz examination, so it is suggested that n has a frequency dependence.

  1. 3.9 GHz superconducting accelerating 9-cell cavity vertical test results

    SciTech Connect

    Khabiboulline, Timergali; Cooper, Charles; Dhanaraj, Nandhini; Edwards, Helen; Foley, Mike; Harms, Elvin; Mitchell, Donald; Rowe, Allan; Solyak, Nikolay; Moeller, Wolf-Dietrich; /DESY

    2007-06-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve the beam performance of the FLASH (TTF/DESY) facility [1]. In the frame of a collaborative agreement, Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. The first 9-cell Nb cavities were tested in a vertical setup and they didn't reach the designed accelerating gradient [2]. The main problem was a multipactor in the HOM couplers, which lead to overheating and quenching of the HOM couplers. New HOM couplers with improved design are integrated in the next 9-cell cavities. In this paper we present all results of the vertical tests.

  2. An accelerated stress testing program for determining the reliability sensitivity of silicon solar cells to encapsulation and metallization systems

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Davis, C. W.; Royal, E.

    1982-01-01

    The use of accelerated testing methods in a program to determine the reliability attributes of terrestrial silicon solar cells is discussed. Different failure modes are to be expected when cells with and without encapsulation are subjected to accelerated testing and separate test schedules for each are described. Unencapsulated test cells having slight variations in metallization are used to illustrate how accelerated testing can highlight different diffusion related failure mechanisms. The usefulness of accelerated testing when applied to encapsulated cells is illustrated by results showing that moisture related degradation may be many times worse with some forms of encapsulation than with no encapsulation at all.

  3. UV-accelerated test based on analysis of field-exposed PV modules

    NASA Astrophysics Data System (ADS)

    Shioda, T.

    2011-09-01

    We proposed an UV accelerated test condition for an EVA encapsulant, based on analysis of long term field exposed PV modules. We found that strong UV irradiation into EVA encapsulant test sample led to the fast decomposition of UV absorber formulated in EVA encapsulant, which has never seen in the field exposed PV modules. Thus, the integrating UV intensity of 60 W/m2 and black panel temperature of 110°C using a xenon weather-o-meter were suitable as an UV accelerated test condition. With this proposed test condition, which shows that 1 week exposure by xenon light corresponds to 1 year field exposure, we can predict discoloration rate of EVA encapsulant. In addition, we evaluated change in peel strength to glass for Mitsui's and the other commercially available EVA encapsulants during UV accelerated test with the proposed condition. There was no large change in peel strength for our EVA encapsulant during the UV accelerated test. On the other hand, we observed that the competitor's EVA encapsulant showed the large decrease of peel strength to glass at early stage, even no change in yellowness index (YI). This result indicates not only YI change but also peel strength change should be evaluated for design of reliable PV module and encapsulant.

  4. Vertical and horizontal test results of 3.9-GHz accelerating cavities at FNAL

    SciTech Connect

    Khabiboulline, T.; Edwards, H.; Foley, M.; Harms, E.; Hocker, James Andrew; Mitchell, D.; Rowe, A.; Solyak, N.; /Fermilab

    2008-06-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve the beam performance of the VUV FEL, FLASH. In the frame of a collaborative agreement, Fermilab will provide DESY with a cryomodule containing a string of four cavities. Seven 9-cell Nb cavities were tested and six of them did reach accelerating gradient up to 24 MV/m almost twice more than design value of 14 MV/m. Two of these cavities are with new HOM couplers with improved design. In this paper we present all results of the vertical and horizontal tests.

  5. Production and test results of SC 3.9-GHz accelerating cavity at Fermilab

    SciTech Connect

    Khabiboulline, Timergali; Cooper, Charlie; Edwards, Helen; Foley, Mike; Gonin, Ivan; Mitchell, Donald; Olis, D.; Rowe, Allan; Salman, Tariq; Solyak, Nikolay; /Fermilab

    2006-08-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve beam performances for TTF-FEL facility. In the frame of collaboration Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. In this paper we discuss the status of the cavity and coupler production and the first result of cavity tests. It is hoped that this project will be completed during the first half of 2007 and the cryomodule delivered to DESY in this time span.

  6. The 3,600 Mile Durability Test on tbe M1061A1 5-Ton Flatbed Trailer.

    DTIC Science & Technology

    1996-03-01

    analysis conducted on one of the broken bolts found that they were not manufactured to surface hardness standards ( SAE J429 ) for a grade 5 bolt. A locally...conducted a chemical analysis, tensile test, and hardness test and found that the bolts conformed to the SAE J429 specification for Grade 5 bolts...bolt. The surface hardness was, however, found to be too low (approx. 20 Rc, SAE J429 requires a minimum of 25). After examining the microstructure a

  7. Analysis of a PEMFC durability test under low humidity conditions and stack behaviour modelling using experimental design techniques

    NASA Astrophysics Data System (ADS)

    Wahdame, Bouchra; Candusso, Denis; Harel, Fabien; François, Xavier; Péra, Marie-Cécile; Hissel, Daniel; Kauffmann, Jean-Marie

    A polymer electrolyte membrane fuel cell (PEMFC) stack has been operated under low humidity conditions during 1000 h. The fuel cell characterisation is based both on polarisation curves and electrochemical impedance spectra recorded for various stoichiometry rates, performed regularly throughout the ageing process. Some design of experiment (DoE) techniques, and in particular the response surface methodology (RSM), are employed to analyse the results of the ageing test and to propose some numerical/statistical laws for the modelling of the stack performance degradation. These mathematical relations are used to optimise the fuel cell operating conditions versus ageing time and to get a deeper understanding of the ageing mechanisms. The test results are compared with those obtained from another stack operated in stationary regime at roughly nominal conditions during 1000 h (reference test). The final objective is to ensure for the next fuel cell systems proper operating conditions leading to extended lifetimes.

  8. Experimental Testing of a Micron-Scale Laser-Powered Accelerator

    SciTech Connect

    Travish, G.; Arab, E.; Lacroix, U. H.; Rosenzweig, J. B.; Vartanian, N.; Yoder, R. B.

    2009-01-22

    An experimental program to develop, perfect, and demonstrate a micron-scale dielectric-based slab-symmetric accelerator is underway at UCLA. The effort includes parallel development of a particle source to be integrated with the accelerator, forming a monolithic radiation source. We present results from first-round cold tests of the structure resonance on a simplified metal-walled device, containing >100 structure periods in an area of 100x20 {mu}m. The resonance frequency and strength can be observed via reflection and transmission measurements on the drive laser. Initial measurements may be consistent with simulation. We also report on the status of the electron source development and on work toward an acceleration test in an all-dielectric structure.

  9. A self-injection acceleration test experiment for the FLAME laser

    NASA Astrophysics Data System (ADS)

    Labate, L.; Anelli, F.; Bacci, A.; Batani, D.; Bellaveglia, M.; Benedetti, C.; Benocci, R.; Cacciotti, L.; Cecchetti, C. A.; Ciricosta, O.; Clozza, A.; Cultrera, L.; Di Pirro, G.; Drenska, N.; Faccini, R.; Ferrario, M.; Filippetto, D.; Gallo, S.; Fioravanti, S.; Gamucci, A.; Gatti, G.; Ghigo, A.; Giulietti, A.; Giulietti, D.; Köster, P.; Levato, T.; Lollo, V.; Pace, E.; Pathak, N.; Rossi, A.; Serafini, L.; Turchetti, G.; Vaccarezza, C.; Valente, P.; Vicario, C.; Gizzi, L. A.

    2010-10-01

    A 250-TW laser system (FLAME - Frascati laser for acceleration and multidisciplinary experiments) is now in its commissioning phase in a new laboratory at LNF-INFN in the framework of the PLASMONX (Plasma acceleration and monochromatic X-ray generation) project. The laser will deliver<25 fs duration pulses with an energy up to 6 J, at a 10 Hz repetition rate. An ad hoc target area has also been designed and is currently being set up, allowing the first test experiments of electron laser wakefield acceleration to be carried out over the next few months in a safe, radiation-protected environment. An overview of the main features of the laser system and target area is given, along with a survey of the design and set-up of the self-injection test experiment, which is expected to reach the production of sub-GeV electron bunches.

  10. Accelerated life time testing of fused silica for DUV laser applications revised

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon

    2013-11-01

    We report on the continuation of a comparative study of different fused silica materials for ArF laser applications. After selecting potentially suited fused silica materials from their laser induced absorption and compaction obtained by a short time testing procedure, accelerated life time tests have been undertaken by sample irradiating at liquid nitrogen temperature and subsequent direct absorption measurements using the laser induced deflection (LID) technique. The obtained degradation acceleration strongly differs between fused silica materials showing high and low OH contents, respectively. As a result, a difference in the absorption degradation mechanism between high and low OH containing fused silica is proposed. Consequently two different scenarios for an acceleration of the absorption degradation are derived.

  11. Environmental Durability Testing of Structural Adhesives. Part I. AF- 143-2/EC-3917; PL-729-3/PL-728

    DTIC Science & Technology

    1978-12-01

    ten analytical wipes with methanol . The last three specimens contained two faces as a result of the lap shear test. One face was yellow (adhesive...8217I;. I I. .. .... . 1.;; 11 !1;: V3M: !M M: H .. .... 11 ... M; 7. -11 Ili: N it -if N .. ....l! itK it :1,:: nrM .. .... ... .. ::ij .. -I is

  12. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 1: overview

    NASA Astrophysics Data System (ADS)

    Billing, M. G.

    2015-07-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CESRTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CESRTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CESRTA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions. This paper contains the outline and the basis for a set of papers documenting the reconfiguration of the storage ring and the associated instrumentation required for the studies described above. Further details may be found in these papers.

  13. Test-particle acceleration in a hierarchical three-dimensional turbulence model

    SciTech Connect

    Dalena, S.; Rappazzo, A. F.; Matthaeus, W. H.; Dmitruk, P.; Greco, A.

    2014-03-10

    The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares. Nevertheless, acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multiscale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely, from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 km (1/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length, and energy scales.

  14. Real-time and accelerated outdoor endurance testing of solar cells

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1977-01-01

    Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  15. Experimental Durability Testing of 4H SiC JFET Integrated Circuit Technology at 727 Degrees Centigrade

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Chang, Carl W.; Lukco, Dorothy; Beheim, Glenn M.

    2016-01-01

    We have reported SiC integrated circuits (ICs) with two levels of metal interconnect that have demonstrated prolonged operation for thousands of hours at their intended peak ambient operational temperature of 500 degrees Centigrade. However, it is recognized that testing of semiconductor microelectronics at temperatures above their designed operating envelope is vital to qualification. Towards this end, we previously reported operation of a 4H-SiC JFET IC ring oscillator on an initial fast thermal ramp test through 727 degrees Centigrade. However, this thermal ramp was not ended until a peak temperature of 880 degrees Centigrade (well beyond failure) was attained. Further experiments are necessary to better understand failure mechanisms and upper temperature limit of this extreme-temperature capable 4H-SiC IC technology.Here we report on additional experimental testing of custom-packaged 4H-SiC JFET IC devices at temperatures above 500 degrees Centigrade. In one test, the temperature was ramped and then held at 727 degrees Centigrade, and the devices were periodically measured until electrical failure was observed. A 4H-SiC JFET on this chip electrically functioned with little change for around 25 hours at 727 degrees Centigrade before rapid increases in device resistance caused failure. In a second test, devices from our next generation 4H-SiC JFET ICs were ramped up and then held at 700 degrees Centigrade (which is below the maximum deposition temperature of the dielectrics). Three ring oscillators functioned for 8 hours at this temperature before degradation. In a third experiment, an alternative die attach of gold paste and package lid was used, and logic circuit operation was demonstrated for 143.5 hours at 700 degrees Centigrade.

  16. Experimental Durability Testing of 4H SiC JFET Integrated Circuit Technology at 727 °C

    NASA Astrophysics Data System (ADS)

    Spry, David; Neudeck, Phil; Chen, Liangyu; Chang, Carl; Lukco, Dorothy; Beheim, Glenn

    2016-05-01

    We have reported SiC integrated circuits (IC's) with two levels of metal interconnect that have demonstrated prolonged operation for thousands of hours at their intended peak ambient operational temperature of 500 °C [1, 2]. However, it is recognized that testing of semiconductor microelectronics at temperatures above their designed operating envelope is vital to qualification. Towards this end, we previously reported operation of a 4H-SiC JFET IC ring oscillator on an initial fast thermal ramp test through 727 °C [3]. However, this thermal ramp was not ended until a peak temperature of 880 °C (well beyond failure) was attained. Further experiments are necessary to better understand failure mechanisms and upper temperature limit of this extreme-temperature capable 4H-SiC IC technology. Here we report on additional experimental testing of custom-packaged 4H-SiC JFET IC devices at temperatures above 500 °C. In one test, the temperature was ramped and then held at 727 °C, and the devices were periodically measured until electrical failure was observed. A 4H-SiC JFET on this chip electrically functioned with little change for around 25 hours at 727 °C before rapid increases in device resistance caused failure. In a second test, devices from our next generation 4H-SiC JFET ICs were ramped up and then held at 700 °C (which is below the maximum deposition temperature of the dielectrics). Three ring oscillators functioned for 8 hours at this temperature before degradation. In a third experiment, an alternative die attach of gold paste and package lid were used, and logic circuit operation was demonstrated for 143.5 hours at 700 °C.

  17. Durability and Behavior of Prestressed Concrete Beams. Report 6. Posttensioned Concrete Beam Investigation, Supplemental Laboratory Tests of Beams Exposed from 1961 to 1982.

    DTIC Science & Technology

    1984-10-01

    rD-Ai4. 82. DURABILITY AND BEHAVIOR OF PRESTRESSED CONCRETE BEAMS i/i REPORT 6 POSTTENSIO..(U) ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG... REPORT NO. 6-570 US A.my Cc. DURABILITY AND BEHAVIOR OF of Engineers PRESTRESSED CONCRETE BEAMS Report 6 " POSTTENSIONED CONCRETE BEAM 00...PERIOD COVERED DURAB ILITY AND BEHAVIOR OF PRESTRESSED CONCRETE BEAMS; Report 6: Posttensioned Concrete Beam Report 6 of a series Investigation

  18. Do sediment type and test durations affect results of laboratory-based, accelerated testing studies of permeable pavement clogging?

    PubMed

    Nichols, Peter W B; White, Richard; Lucke, Terry

    2015-04-01

    Previous studies have attempted to quantify the clogging processes of Permeable Interlocking Concrete Pavers (PICPs) using accelerated testing methods. However, the results have been variable. This study investigated the effects that three different sediment types (natural and silica), and different simulated rainfall intensities, and testing durations had on the observed clogging processes (and measured surface infiltration rates) of laboratory-based, accelerated PICP testing studies. Results showed that accelerated simulated laboratory testing results are highly dependent on the type, and size of sediment used in the experiments. For example, when using real stormwater sediment up to 1.18 mm in size, the results showed that neither testing duration, nor stormwater application rate had any significant effect on PICP clogging. However, the study clearly showed that shorter testing durations generally increased clogging and reduced the surface infiltration rates of the models when artificial silica sediment was used. Longer testing durations also generally increased clogging of the models when using fine sediment (<300 μm). Results from this study will help researchers and designers better anticipate when and why PICPs are susceptible to clogging, reduce maintenance and extend the useful life of these increasingly common stormwater best management practices.

  19. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    DOE PAGES

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; ...

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing

  20. The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies

    SciTech Connect

    Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; Park, Jiyeon; Jeters, Robert T.; Bonheyo, George T.; Pan, Horng -Bin; Wai, Chien; Khangaonkar, Tarang P.; Bianucci, Laura; Wood, Jordana R.; Warner, Marvin G.; Peterson, Sonja; Abrecht, David G.; Mayes, Richard T.; Tsouris, Costas; Oyola, Yatsandra; Strivens, Jonathan E.; Schlafer, Nicholas J.; Addleman, Shane R.; Chouyyok, Wilaiwan; Das, Sadananda; Kim, Jungseung; Buesseler, Ken; Breier, Crystal; D'Alessandro, Evan

    2016-02-07

    The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods

  1. Accelerated cycle-life testing of small sealed lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Kim, I.; Oh, S. H.; Kang, H. Y.

    An attempt has been made to devise methods for reducing the cycle-testing time of long-life sealed lead/acid batteries. In order for the accelerated test results to equate to the actual field operations, it is assumed that the failure modes under both normal and accelerated conditions must be the same. As a first step in the search for a reliable accelerated test, observations of the battery ageing process have been made under different daily duty cycles, viz., 1 (normal), 8 and 16 cycles/day at ambient temperature and 80% depth-of-discharge. It has been found that the main cause of failure is different for a given duty cycle. This complicates the task of applying accelerated test results to field operations. For the 8 cycles/day schedule, the main cause of failure is degradation of the positive active material. Positive grid corrosion is the main factor in the 16 cycles/day case. Under normal conditions, both grid corrosion and PbO 2 degradation appear to be equally significant.

  2. TERA high gradient test program of RF cavities for medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Degiovanni, A.; Amaldi, U.; Bonomi, R.; Garlasché, M.; Garonna, A.; Verdú-Andrés, S.; Wegner, R.

    2011-11-01

    The scientific community and the medical industries are putting a considerable effort into the design of compact, reliable and cheap accelerators for hadrontherapy. Up to now only circular accelerators are used to deliver beams with energies suitable for the treatment of deep seated tumors. The TERA Foundation has proposed and designed a hadrontherapy facility based on the cyclinac concept: a high gradient linear accelerator placed downstream of a cyclotron used as an injector. The overall length of the linac, and therefore its final cost, is almost inversely proportional to the average accelerating gradient achieved in the linac. TERA, in collaboration with the CLIC RF group, has started a high gradient test program. The main goal is to study the high gradient behavior of prototype cavities and to determine the appropriate linac operating frequency considering important issues such as machine reliability and availability of distributed power sources. A preliminary test of a 3 GHz cavity has been carried out at the beginning of 2010, giving encouraging results. Further investigations are planned before the end of 2011. A set of 5.7 GHz cavities is under production and will be tested in a near future. The construction and test of a multi-cell structure is also foreseen.

  3. First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab

    SciTech Connect

    Crawford, Darren; et al.

    2015-06-01

    The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.

  4. Accelerated testing of module-level power electronics for long-term reliability

    SciTech Connect

    Flicker, Jack David; Tamizhmani, Govindasamy; Moorthy, Mathan Kumar; Thiagarajan, Ramanathan; Ayyanar, Raja

    2016-11-10

    This work has applied a suite of long-term-reliability accelerated tests to a variety of module-level power electronics (MLPE) devices (such as microinverters and optimizers) from five different manufacturers. This dataset is one of the first (only the paper by Parker et al. entitled “Dominant factors affecting reliability of alternating current photovoltaic modules,” in Proc. 42nd IEEE Photovoltaic Spec. Conf., 2015, is reported for reliability testing in the literature), as well as the largest, experimental sets in public literature, both in the sample size (five manufacturers including both dc/dc and dc/ac units and 20 units for each test) and the number of experiments (six different experimental test conditions) for MLPE devices. The accelerated stress tests (thermal cycling test per IEC 61215 profile, damp heat test per IEC 61215 profile, and static temperature tests at 100 and 125 °C) were performed under powered and unpowered conditions. The first independent long-term experimental data regarding damp heat and grid transient testing, as well as the longest term (>9 month) testing of MLPE units reported in the literature for thermal cycling and high-temperature operating life, are included in these experiments. Additionally, this work is the first to show in situ power measurements, as well as periodic efficiency measurements over a series of experimental tests, demonstrating whether certain tests result in long-term degradation or immediate catastrophic failures. Lastly, the result of this testing highlights the performance of MLPE units under the application of several accelerated environmental stressors.

  5. Accelerated testing of module-level power electronics for long-term reliability

    DOE PAGES

    Flicker, Jack David; Tamizhmani, Govindasamy; Moorthy, Mathan Kumar; ...

    2016-11-10

    This work has applied a suite of long-term-reliability accelerated tests to a variety of module-level power electronics (MLPE) devices (such as microinverters and optimizers) from five different manufacturers. This dataset is one of the first (only the paper by Parker et al. entitled “Dominant factors affecting reliability of alternating current photovoltaic modules,” in Proc. 42nd IEEE Photovoltaic Spec. Conf., 2015, is reported for reliability testing in the literature), as well as the largest, experimental sets in public literature, both in the sample size (five manufacturers including both dc/dc and dc/ac units and 20 units for each test) and the numbermore » of experiments (six different experimental test conditions) for MLPE devices. The accelerated stress tests (thermal cycling test per IEC 61215 profile, damp heat test per IEC 61215 profile, and static temperature tests at 100 and 125 °C) were performed under powered and unpowered conditions. The first independent long-term experimental data regarding damp heat and grid transient testing, as well as the longest term (>9 month) testing of MLPE units reported in the literature for thermal cycling and high-temperature operating life, are included in these experiments. Additionally, this work is the first to show in situ power measurements, as well as periodic efficiency measurements over a series of experimental tests, demonstrating whether certain tests result in long-term degradation or immediate catastrophic failures. Lastly, the result of this testing highlights the performance of MLPE units under the application of several accelerated environmental stressors.« less

  6. The first picosecond terawatt CO{sub 2} laser at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Pogorelsky, I.V.; Ben-Zvi, I.; Babzien, M.

    1998-02-01

    The first terawatt picosecond CO{sub 2} laser will be brought to operation at the Brookhaven Accelerator Test Facility in 1998. System consists of a single-mode TEA oscillator, picosecond semiconductor optical switch, multi-atmosphere. The authors report on design, simulation, and performance tests of the 10 atm final amplifier that allows for direct multi-joule energy extraction in a picosecond laser pulse.

  7. Status and specifications of a Project X front-end accelerator test facility at Fermilab

    SciTech Connect

    Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

    2011-03-01

    This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

  8. Technology evaluation of man-rated acceleration test equipment for vestibular research

    NASA Technical Reports Server (NTRS)

    Taback, I.; Kenimer, R. L.; Butterfield, A. J.

    1983-01-01

    The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables.

  9. Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC and its Radiological Considerations

    SciTech Connect

    Mao, X.S.; Leitner, M.Santana; Vollaire, J.

    2011-08-22

    Facility for Advanced Accelerator Experimental Tests (FACET) in SLAC will be used to study plasma wakefield acceleration. FLUKA Monte Carlo code was used to design a maze wall to separate FACET project and LCLS project to allow persons working in FACET side during LCLS operation. Also FLUKA Monte Carlo code was used to design the shielding for FACET dump to get optimum design for shielding both prompt and residual doses, as well as reducing environmental impact. FACET will be an experimental facility that provides short, intense pulses of electrons and positrons to excite plasma wakefields and study a variety of critical issues associated with plasma wakefield acceleration [1]. This paper describes the FACET beam parameters, the lay-out and its radiological issues.

  10. Ground Test of the Urine Processing Assembly for Accelerations and Transfer Functions

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Almond, Deborah F. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the ground test of the urine processing assembly for accelerations and transfer functions. Details are given on the test setup, test data, data analysis, analytical results, and microgravity assessment. The conclusions of the tests include the following: (1) the single input/multiple output method is useful if the data is acquired by tri-axial accelerometers and inputs can be considered uncorrelated; (2) tying coherence with the matrix yields higher confidence in results; (3) the WRS#2 rack ORUs need to be isolated; (4) and future work includes a plan for characterizing performance of isolation materials.

  11. Evaluation of the Durability of Flexible Barrier Materials

    SciTech Connect

    Kempe, Michael D.; Nobles, Dylan L.; Weigel, Mark D.; Nachtigal, Alan K.; Roehrig, Mark A.; Berniard, Tracie J.; Spagnola, Joseph C.; Schubert, Charlene M.

    2015-06-14

    To enable the production of lightweight photovoltaic modules, it is desired to use thin film absorbers on metal substrates in a flexible package. To do this with a polymer based frontsheet, it is estimated that a water vapor transmission rate (WVTR) less than 10-4 g/m2/day must be achieved and maintained through the expected life of the module. Barrier-frontsheet films have been developed at 3M with very low permeation rates and evaluated for their long term durability with respect to WVTR and optical transmittance. After exposure to 2500 h of 10 UV suns at 105 degrees C, one design was found which experienced negligible loss in optical transmission while maintaining a WVTR well below the required 10-4 g/m2/day. Further accelerated tests were conducted at different stress levels. For some less durable designs we were able to obtain degradation acceleration factors suggesting the highest exposure was equal to between 4.4 and 10 y on a roof.

  12. Testing cosmic ray acceleration with radio relics: a high-resolution study using MHD and tracers

    NASA Astrophysics Data System (ADS)

    Wittor, D.; Vazza, F.; Brüggen, M.

    2017-02-01

    Weak shocks in the intracluster medium may accelerate cosmic-ray protons and cosmic-ray electrons differently depending on the angle between the upstream magnetic field and the shock normal. In this work, we investigate how shock obliquity affects the production of cosmic rays in high-resolution simulations of galaxy clusters. For this purpose, we performed a magnetohydrodynamical simulation of a galaxy cluster using the mesh refinement code ENZO. We use Lagrangian tracers to follow the properties of the thermal gas, the cosmic rays and the magnetic fields over time. We tested a number of different acceleration scenarios by varying the obliquity-dependent acceleration efficiencies of protons and electrons, and by examining the resulting hadronic γ-ray and radio emission. We find that the radio emission does not change significantly if only quasi-perpendicular shocks are able to accelerate cosmic-ray electrons. Our analysis suggests that radio-emitting electrons found in relics have been typically shocked many times before z = 0. On the other hand, the hadronic γ-ray emission from clusters is found to decrease significantly if only quasi-parallel shocks are allowed to accelerate cosmic ray protons. This might reduce the tension with the low upper limits on γ-ray emission from clusters set by the Fermi satellite.

  13. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  14. Bayesian Analysis of Step-Stress Accelerated Life Test with Exponential Distribution

    SciTech Connect

    Lee, J.; Pan, R.

    2012-04-01

    In this article, we propose a general Bayesian inference approach to the step-stress accelerated life test with type II censoring. We assume that the failure times at each stress level are exponentially distributed and the test units are tested in an increasing order of stress levels. We formulate the prior distribution of the parameters of life-stress function and integrate the engineering knowledge of product failure rate and acceleration factor into the prior. The posterior distribution and the point estimates for the parameters of interest are provided. Through the Markov chain Monte Carlo technique, we demonstrate a nonconjugate prior case using an industrial example. It is shown that with the Bayesian approach, the statistical precision of parameter estimation is improved and, consequently, the required number of failures could be reduced.

  15. Cycle life estimation of lithium secondary battery by extrapolation method and accelerated aging test

    NASA Astrophysics Data System (ADS)

    Takei, K.; Kumai, K.; Kobayashi, Y.; Miyashiro, H.; Terada, N.; Iwahori, T.; Tanaka, T.

    The testing methods to estimate the life cycles of lithium ion batteries for a short period, have been developed using a commercialized cell with LiCoO 2/hard carbon cell system. The degradation reactions with increasing cycles were suggested to occur predominantly above 4 V from the results of operating voltage range divided tests. In the case of the extrapolation method using limited cycle data, the straight line approximation was useful as the cycle performance has the linearity, but the error is at most 40% in using the initial short cycle data. In the case of the accelerated aging tests using the following stress factors, the charge and/or discharge rate, large accelerated coefficients were obtained in the high charge rate and the high temperature thermal stress.

  16. Chemical durability of simulated nuclear glasses containing water

    SciTech Connect

    Li, H.; Tomozawa, M.

    1995-04-01

    The chemical durability of simulated nuclear waste glasses having different water contents was studied. Results from the product consistency test (PCT) showed that glass dissolution increased with water content in the glass. This trend was not observed during MCC-1 testing. This difference was attributed to the differences in reactions between glass and water. In the PCT, the glass network dissolution controlled the elemental releases, and water in the glass accelerated the reaction rate. On the other hand, alkali ion exchange with hydronium played an important role in the MCC-1. For the latter, the amount of water introduced into a leached layer from ion-exchange was found to be much greater than that of initially incorporated water in the glass. Hence, the initial water content has no effect on glass dissolution as measured by the MCC-1 test.

  17. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    PubMed

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures).

  18. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies

    NASA Astrophysics Data System (ADS)

    Wu, Jinfeng; Yuan, Xiao Zi; Martin, Jonathan J.; Wang, Haijiang; Zhang, Jiujun; Shen, Jun; Wu, Shaohong; Merida, Walter

    This paper reviews publications in the literature on performance degradation of and mitigation strategies for polymer electrolyte membrane (PEM) fuel cells. Durability is one of the characteristics most necessary for PEM fuel cells to be accepted as a viable product. In this paper, a literature-based analysis has been carried out in an attempt to achieve a unified definition of PEM fuel cell lifetime for cells operated either at a steady state or at various accelerated conditions. Additionally, the dependence of PEM fuel cell durability on different operating conditions is analyzed. Durability studies of the individual components of a PEM fuel cell are introduced, and various degradation mechanisms are examined. Following this analysis, the emphasis of this review shifts to applicable strategies for alleviating the degradation rate of each component. The lifetime of a PEM fuel cell as a function of operating conditions, component materials, and degradation mechanisms is then established. Lastly, this paper summarizes accelerated stress testing methods and protocols for various components, in an attempt to prevent the prolonged test periods and high costs associated with real lifetime tests.

  19. ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS

    SciTech Connect

    Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

    2010-05-12

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  20. Advanced X-Band Test Accelerator for High Brightness Electron and Gamma Ray Beams

    SciTech Connect

    Marsh, Roark; Anderson, Scott; Barty, Christopher; Chu, Tak Sum; Ebbers, Chris; Gibson, David; Hartemann, Fred; Adolphsen, Chris; Jongewaard, Erik; Raubenheimer, Tor; Tantawi, Sami; Vlieks, Arnold; Wang, Juwen; /SLAC

    2012-07-03

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  1. LLRF and timing system for the SCSS test accelerator at SPring-8

    NASA Astrophysics Data System (ADS)

    Otake, Yuji; Ohshima, Takashi; Hosoda, Naoyasu; Maesaka, Hirokazu; Fukui, Toru; Kitamura, Masanobu; Shintake, Tsumoru

    2012-12-01

    The 250 MeV SCSS test accelerator as an extreme-ultra violet (EUV) laser source has been built at SPring-8. The accelerator comprises a 500 kV thermionic gun, a velocity bunching system using multi-sub-harmonic bunchers (SHB) in an injector and a magnetic bunch compressor using a chicane of 4 bending magnets, a 5712 MHz main accelerator to accelerate an electron beam up to 250 MeV, and undulators to radiate the EUV laser. These bunch compression processes make short bunched electrons with a 300 A peak current and a 300 fs pulse width. The pulse width and peak current of an electron beam, which strongly affect the pulse width and intensity of the laser light, are mainly decided by the pulse compression ratio of the velocity bunching and the magnetic bunch compressing processes. The compression ratio is also determined due to an energy chirp along the beam bunch generated by an off-crest rf field at the SHB and cavities before the chicane. To constantly keep the beam pulse-width conducted by rf and timing signals, which are temporally controlled within subpicoseconds of the designed value, the low-level rf and timing system of the test accelerator has been developed. The system comprises a very low-noise and temporally stable reference signal source, in-phase and quadrature (IQ) modulators and demodulators, as well as VME type 12 bits analog-to-digital and digital-to-analog converter modules to manipulate an rf phase and amplitude by IQ functions for the cavity. We achieved that the SSB noise of the 5712 MHz reference signal source was less than -120 dBc/Hz at 1 kHz offset from the reference frequency; the phase setting and detecting resolution of the IQ-modulators and demodulators were within +/-0.5° at 5712 MHz. A master trigger VME module and a trigger delay VME module were also developed to activate the components of the test accelerator. The time jitter of the delay module was less than 0.7 ps, sufficient for our present requirement. As a result, a beam energy

  2. The durability dependence of Pt/CNT electrocatalysts on the nanostructures of carbon nanotubes: hollow- and bamboo-CNTs

    SciTech Connect

    Shao, Yuyan; Kou, Rong; Wang, Jun; Wang, Chong M.; Vishwanathan, Vilanyur V.; Liu, Jun; Wang, Yong; Lin, Yuehe

    2009-07-01

    The electrochemical durability of Pt/CNT with hollow- and bamboo-structured carbon nanotubes as the support for PEM fuel cells was investigated using cyclic voltammetry (CV, 0.6-1.1V) accelerated degradation test method. Pt/CNT catalysts were characterized with cyclic voltammograms, rotating disk electrodes, and TEM images. The changes in the electrochemical surface area of Pt and the activity toward oxygen reduction reaction (ORR) before and after the degradation indicate that bamboo-structured carbon nanotubes supported Pt (Pt/B-CNT) catalyst exhibited much higher durability. TEM images indicate that the sintering of Pt nanoparticles was much less for Pt/B-CNT. These are attributed to the specific bamboo-like nanostructures which provide more “bamboo-knot” defects and edge plane-like defects. Pt-support interaction was therefore enhanced and the durability was improved.

  3. Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications. Option 2 Program: Development and testing of zinc titanate sorbents

    SciTech Connect

    Ayala, R.E.

    1993-04-01

    One of the most advantageous configurations of the integrated gasification combined cycle (IGCC) power system is coupling it with a hot gas cleanup for the more efficient production of electric power in an environmentally acceptable manner. In conventional gasification cleanup systems, closely heat exchangers are necessary to cool down the fuel gases for cleaning, sometimes as low as 200--300{degree}F, and to reheat the gases prior to injection into the turbine. The result is significant losses in efficiency for the overall power cycle. High-temperature coal gas cleanup in the IGCC system can be operated near 1000{degree}F or higher, i.e., at conditions compatible with the gasifier and turbine components, resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for IGCC power systems in which mixed-metal oxides are currently being used as desulfurization sorbents. The objective of this contract is to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical durability of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Zinc ferrite was studied under the base program of this contract. In the next phase of this program novel sorbents, particularly zinc titanate-based sorbents, are being studied under the remaining optional programs. This topical report summarizes only the work performed under the Option 2 program. In the course of carrying out the program, more than 25 zinc titanate formulations have been prepared and characterized to identify formulations exhibiting enhanced properties over the baseline zinc titanate formulation selected by the US Department of Energy.

  4. Acceleration Testing: A Better, Faster, Cheaper Alternative for Strength Qualification Testing

    NASA Technical Reports Server (NTRS)

    Mattiello, Carmine F.

    1997-01-01

    This paper addresses the advantages of utilizing a centrifuge test over the conventional static load test methods to structurally qualify aerospace structures. Three recent test cases are reviewed and used as examples to highlight these benefits. In addition, the overall capability of Goddard's High Capacity Centrifuge (HCC) is outlined along with some unique features that were designed specifically to reduce costs, test turn around time, and increase test item safety.

  5. Structural correlations: Design levers for performance and durability of catalyst layers

    NASA Astrophysics Data System (ADS)

    Artyushkova, Kateryna; Atanassov, Plamen; Dutta, Monica; Wessel, Silvia; Colbow, Vesna

    2015-06-01

    Durability of the catalyst layer (CL) is of vital importance in the large-scale deployment of PEMFCs. It is necessary to determine parameters that represent properties of catalysts layer and other cathode components for optimization of fuel cell performance and durability. The structure, morphology and surface chemistry of the catalyst powder affects the ionomer and catalyst interaction, ionomer dispersion in the catalyst layer and, for this reason, its morphology and chemistry. These, in turn, affect the catalyst layer effective properties such as thickness, porosity, tortuosity, diffusivity, conductivity and others, directly influencing electrode performance and durability. In this study, X-ray Photoelectron Spectroscopy and SEM are used to quantify surface species and morphology of membrane electrode assemblies (MEAs) tested under different accelerated stress test (AST) conditions. Correlations between composition, structure and morphological properties of cathode components and the catalyst layer have been developed and linked to catalyst layer performance losses. The key relationships between the catalyst layer effective properties and performance and durability provide design and optimization levers for making MEAs for different operating regimes.

  6. Accelerated Testing of UH-60 Viscous Bearings for Degraded Grease Fault

    NASA Technical Reports Server (NTRS)

    Dykas, Brian; Hood, Adrian; Krantz, Timothy; Klemmer, Marko

    2015-01-01

    An accelerated aging investigation of critical aviation bearings lubricated with MIL-PRF- 81322 grease was conducted to derive an understanding of the mechanisms of grease degradation and loss of lubrication over time. The current study focuses on UH-60 Black Hawk viscous damper bearings supporting the tail rotor driveshaft, which were subjected to more than 5800 hours of testing in a heated environment to accelerate the deterioration of the grease. The mechanism of grease degradation is a reduction in the oil/thickener ratio rather than the expected chemical degradation of grease constituents. Over the course of testing, vibration and temperature monitoring of bearings was conducted and trends for failing bearings are presented.

  7. Study on constant-step stress accelerated life tests in white organic light-emitting diodes.

    PubMed

    Zhang, J P; Liu, C; Chen, X; Cheng, G L; Zhou, A X

    2014-11-01

    In order to obtain reliability information for a white organic light-emitting diode (OLED), two constant and one step stress tests were conducted with its working current increased. The Weibull function was applied to describe the OLED life distribution, and the maximum likelihood estimation (MLE) and its iterative flow chart were used to calculate shape and scale parameters. Furthermore, the accelerated life equation was determined using the least squares method, a Kolmogorov-Smirnov test was performed to assess if the white OLED life follows a Weibull distribution, and self-developed software was used to predict the average and the median lifetimes of the OLED. The numerical results indicate that white OLED life conforms to a Weibull distribution, and that the accelerated life equation completely satisfies the inverse power law. The estimated life of a white OLED may provide significant guidelines for its manufacturers and customers.

  8. Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab

    SciTech Connect

    McGee, Mike; Carlson, Kermit; Nobrega, Lucy; Stancari, Giulio; Valishev, Alexander

    2016-06-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII) gun and collector under ultra-high vacuum (UHV) conditions.

  9. Characterization of wear debris generated in accelerated rolling-element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1978-01-01

    A ferrographic analysis was used to determine the types and quantities of wear debris generated during accelerated rolling contact fatigue tests. The five-ball rolling contact fatigue tester was used. Ball specimens were made of a corrosion resistant, high-temperature bearing steel. The lubricant was a superrefined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear debris were observed: (1) normal rubbing wear particles, (2) fatigue microspall particles, (3) spheres, and (4) friction polymer deposits. The characterization of wear debris as a function of time was of limited use in predicting fatigue failures in these accelerated tests.

  10. Comparison of Accelerated Testing with Modeling to Predict Lifetime of CPV Solder Layers (Presentation)

    SciTech Connect

    Silverman, T. J.; Bosco, N.; Kurtz, S.

    2012-03-01

    Concentrating photovoltaic (CPV) cell assemblies can fail due to thermomechanical fatigue in the die-attach layer. In this presentation, we show the latest results from our computational model of thermomechanical fatigue. The model is used to estimate the relative lifetime of cell assemblies exposed to various temperature histories consistent with service and with accelerated testing. We also present early results from thermal cycling experiments designed to help validate the computational model.

  11. Measurements and simulations of wakefields at the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Snuverink, J.; Ainsworth, R.; Boogert, S. T.; Cullinan, F. J.; Lyapin, A.; Kim, Y. I.; Kubo, K.; Kuroda, S.; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; White, G. R.

    2016-09-01

    Wakefields are an important factor in accelerator design, and are a real concern when preserving the low beam emittance in modern machines. Charge dependent beam size growth has been observed at the Accelerator Test Facility (ATF2), a test accelerator for future linear collider beam delivery systems. Part of the explanation of this beam size growth is wakefields. In this paper we present numerical calculations of the wakefields produced by several types of geometrical discontinuities in the beam line as well as tracking simulations to estimate the induced effects. We also discuss precision beam kick measurements performed with the ATF2 cavity beam position monitor system for a test wakefield source in a movable section of the vacuum chamber. Using an improved model independent method we measured a wakefield kick for this movable section of about 0.49 V /pC /mm , which, compared to the calculated value from electromagnetic simulations of 0.41 V /pC /mm , is within the systematic error.

  12. Comparison of test particle acceleration in torsional spine and fan reconnection regimes

    SciTech Connect

    Hosseinpour, M. Mehdizade, M.; Mohammadi, M. A.

    2014-10-15

    Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100 MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

  13. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  14. Closeout Report for the Refractory Metal Accelerated Heat Pipe Life Test Activity

    NASA Technical Reports Server (NTRS)

    Martin, J.; Reid, R.; Stewart, E.; Hickman, R.; Mireles, O.

    2013-01-01

    With the selection of a gas-cooled reactor, this heat pipe accelerated life test activity was closed out and its resources redirected. The scope of this project was to establish the long-term aging effects on Mo-44.5%Re sodium heat pipes when subjected to space reactor temperature and mass fluences. To date, investigators have demonstrated heat pipe life tests of alkali metal systems up to .50,000 hours. Unfortunately, resources have not been available to examine the effect of temperature, mass fluence, or impurity level on corrosion or to conduct post-test forensic examination of heat pipes. The key objective of this effort was to establish a cost/time effective method to systematically test alkali metal heat pipes with both practical and theoretical benefits. During execution of the project, a heat pipe design was established, a majority of the laboratory test equipment systems specified, and operating and test procedures developed. Procurements for the heat pipe units and all major test components were underway at the time the stop work order was issued. An extremely important outcome was the successful fabrication of an annular wick from Mo-5%Re screen (the single, most difficult component to manufacture) using a hot isostatic pressing technique. This Technical Publication (TP) includes specifics regarding the heat pipe calorimeter water-cooling system, vendor design for the radio frequency heating system, possible alternative calorimeter designs, and progress on the vanadium equilibration technique. The methods provided in this TP and preceding project documentation would serve as a good starting point to rapidly implement an accelerated life test. Relevant test data can become available within months, not years, and destructive examination of the first life test heat pipe might begin within 6 months of test initiation. Final conclusions could be drawn in less than a quarter of the mission duration for a long-lived, fission-powered, deep space probe.

  15. Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing.

    PubMed

    Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James

    2015-01-01

    Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials.

  16. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    NASA Astrophysics Data System (ADS)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, Al

  17. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    NASA Technical Reports Server (NTRS)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  18. Seismic-fragility tests of new and accelerated-aged Class 1E battery cells

    SciTech Connect

    Bonzon, L.L.; Janis, W.J.; Black, D.A.; Paulsen, G.A.

    1987-01-01

    The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components.

  19. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    NASA Astrophysics Data System (ADS)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-12-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge from testing at constant conditions to dynamic operation. 7.5 times more cycles than required for 80,000 h lifetime as micro CHP are achieved on one-cell-stack level. The results also suggest that degradation mechanisms that proceed on a longer time-scale, such as creep, might have a more dominating effect for long life-times than regular short time changes of operation. In order to address lifetime testing it is suggested to build a testing program consisting of defined modules that represent different application profiles, such as one module at constant conditions, followed by modules at one set of dynamic conditions etc.

  20. Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS

    NASA Astrophysics Data System (ADS)

    Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.

    2010-07-01

    The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.

  1. Highly efficient and durable TiN nanofiber electrocatalyst supports.

    PubMed

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, EunAe; Lee, Kwan-Young; Kim, Jin Young

    2015-11-28

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.

  2. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests

    PubMed Central

    Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10−3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  3. Prediction of reliability on thermoelectric module through accelerated life test and Physics-of-failure

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung-Seuk; Seo, Won-Seon; Choi, Duck-Kyun

    2011-09-01

    Thermoelectric cooling module (TEM) which is electric device has a mechanical stress because of temperature gradient in itself. It means that structure of TEM is vulnerable in an aspect of reliability but research on reliability of TEM was not performed a lot. Recently, the more the utilization of thermoelectric cooling devices grows, the more the needs for life prediction and improvement are increasing. In this paper, we investigated life distribution, shape parameter of the TEM through accelerated life test (ALT). And we discussed about how to enhance life of TEM through the Physics-of-failure. Experimental results of ALT showed that the thermoelectric cooling module follows the Weibull distribution, shape parameter of which is 3.6. The acceleration model is coffin Coffin-Manson and material constant is 1.8.

  4. Preliminary results of accelerated exposure testing of solar cell system components

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples and solar cell sub modules were exposed to an accelerated outdoor environment in Arizona and an accelerated simulated environment in a cyclic ultraviolet exposure tester which included humidity exposure. These tests were for preliminary screening of materials suitable for use in the manufacture of solar cell modules which are to have a 20-year lifetime. The samples were exposed for various times up to six months, equivalent to a real time exposure of four years. Suitable materials were found to be FEP-A, FEP-C, PFA, acrylic, silicone compounds and adhesives and possibly parylene. The method of packaging the sub modules was also found to be important to their performance.

  5. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  6. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  7. Commissioning of the first drift tube linac module in the Ground Test Accelerator

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Cole, R.; Connolly, R.; Denney, P.; Erickson, J.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Kraus, R.; Lysenko, W.P.; McMurry, D.; Mottershead, C.T.; Power, J.; Rose, C.; Rusthoi, D.P.; Sandoval, D.P.; Schneider, J.D.; Smith, M.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1993-06-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam-dynamics design of each major accelerator component as it is brought on-line. The major components are the 35-keV H{sup {minus}} injector, the 2.5-MeV radio-frequency quadrupole (RFQ), the intertank matching section (IMS), the 3.2 MeV first 2{beta}{lambda} drift tube linac (DTL-1) module, and the 24-MeV GTA with 10 DTL modules. Results from the DTL-1 beam experiments will be presented.

  8. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  9. WindoWorks: A flexible program for computerized testing of accelerator control system electronic circuit boards

    SciTech Connect

    Utterback, J.

    1993-09-01

    Since most accelerator control system circuit boards reside in a commercial bus architecture, such as CAMAC or VMEbus, a computerized test station is needed for exercising the boards. This test station is needed for the development of newly designed prototypes, for commissioning newly manufactured boards, for diagnosing boards which have failed in service, and for long term testing of boards with intermittent failure problems. WindoWorks was created to address these needs. It is a flexible program which runs on a PC compatible computer and uses a PC to bus crate interface. WindoWorks was designed to give the user a flexible way to test circuit boards. Each test is incapsulated into a window. By bringing up several different windows the user can run several different tests simultaneously. The windows are sizable, and moveable. They have data entry boxes so that the test can be customized to the users preference. The windows can be used in conjunction with each other in order to create supertests. There are several windows which are generic. They can be used to test basic functions on any VME (or CAMAC) board. There are other windows which have been created to test specific boards. New windows for testing specific boards can be easily created by a Pascal programmer using the WindoWorks framework.

  10. Methodology to improve design of accelerated life tests in civil engineering projects.

    PubMed

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  11. Accelerated life test of sputtering and anode deposit spalling in a small mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1975-01-01

    Tantalum and molybdenum sputtered from discharge chamber components during operation of a 5 centimeter diameter mercury ion thruster adhered much more strongly to coarsely grit blasted anode surfaces than to standard surfaces. Spalling of the sputtered coating did occur from a coarse screen anode surface but only in flakes less than a mesh unit long. The results were obtained in a 200 hour accelerated life test conducted at an elevated discharge potential of 64.6 volts. The test approximately reproduced the major sputter erosion and deposition effects that occur under normal operation but at approximately 75 times the normal rate. No discharge chamber component suffered sufficient erosion in the test to threaten its structural integrity or further serviceability. The test indicated that the use of tantalum-surfaced discharge chamber components in conjunction with a fine wire screen anode surface should cure the problems of sputter erosion and sputtered deposits spalling in long term operation of small mercury ion thrusters.

  12. Methodology to Improve Design of Accelerated Life Tests in Civil Engineering Projects

    PubMed Central

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods. PMID:25111800

  13. An activated energy approach for accelerated testing of the deformation of UHMWPE in artificial joints.

    PubMed

    Galetz, Mathias Christian; Glatzel, Uwe

    2010-05-01

    The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints.

  14. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  15. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  16. Assessment of Accelerated Tests Compared to Beachfront Test and Proposed Evaluation Method

    DTIC Science & Technology

    2009-09-03

    corrosion tests to beachfront test NCAP Data Assessment Data set includes: – 4 aluminum alloys: 2024, 7075, 2219 , 5083 – 9 conversion coatings...2024-T3 Alodine 1600 2024-T3 TCP-IC 7075- T6 Alodine 1600 7075- T6 TCP-IC 18 Months Exposure at KSC 20X view of surface As is Cleaned Unpainted Corrosion ...Certification Program (ESTCP) funded project entitled “Non-Chromate Aluminum Pretreatments” (NCAP) – Funding began in 2000, ended 2004 for Phase I

  17. Method of determining glass durability

    DOEpatents

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  18. Method of determining glass durability

    DOEpatents

    Jantzen, Carol Maryanne; Pickett, John Butler; Brown, Kevin George; Edwards, Thomas Barry

    1998-01-01

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  19. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    NASA Astrophysics Data System (ADS)

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  20. Test results of a Nb3Al/Nb3Sn subscale magnet for accelerator application

    DOE PAGES

    Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; ...

    2015-01-28

    The High Energy Accelerator Research Organization (KEK) has been developing a Nb3Al and Nb3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb3Al cable and the technology acquisition of magnet fabrication with Nb3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in a minimum-gap common-coil configuration with twomore » Nb3Al coils sandwiched between two Nb3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb3Sn coil and 8.2 T in the Nb3Al coil. The quench characteristics of the magnet were studied.« less

  1. Research of the optical properties of solar-reflective materials subjected to accelerated and nonaccelerated exposure tests. Final report

    SciTech Connect

    Rausch, R A

    1980-10-01

    Research on candidate reflective materials for use in solar thermal power applications is reported. The candidate materials have been subjected to exposure tests conducted previously at the Phoenix, Arizona test site. The samples have been exposed to each of three test conditions - one non-accelerated and two different accelerated tests (nominally 8 suns). Post-exposure optical measurements of spectral reflectance were then conducted for the exposure test samples. Reflectance specularity data for the subject materials are obtained from optical measurements performed by Battelle-PNL. Summarized is an investigation of the accumulated reflectance data for correlations using three of the various materials included in the exposure test sample set. (LEW)

  2. Development and beam test of a continuous wave radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Mustapha, B.; Barcikowski, A.; Dickerson, C.; Kolomiets, A. A.; Kondrashev, S. A.; Luo, Y.; Paskvan, D.; Perry, A.; Schrage, D.; Sharamentov, S. I.; Sommer, R.; Toter, W.; Zinkann, G.

    2012-11-01

    The front end of any modern ion accelerator includes a radio frequency quadrupole (RFQ). While many pulsed ion linacs successfully operate RFQs, several ion accelerators worldwide have significant difficulties operating continuous wave (CW) RFQs to design specifications. In this paper we describe the development and results of the beam commissioning of a CW RFQ designed and built for the National User Facility: Argonne Tandem Linac Accelerator System (ATLAS). Several innovative ideas were implemented in this CW RFQ. By selecting a multisegment split-coaxial structure, we reached moderate transverse dimensions for a 60.625-MHz resonator and provided a highly stabilized electromagnetic field distribution. The accelerating section of the RFQ occupies approximately 50% of the total length and is based on a trapezoidal vane tip modulation that increased the resonator shunt impedance by 60% in this section as compared to conventional sinusoidal modulation. To form an axially symmetric beam exiting the RFQ, a very short output radial matcher with a length of 0.75βλ was developed. The RFQ is designed as a 100% oxygen-free electronic (OFE) copper structure and fabricated with a two-step furnace brazing process. The radio frequency (rf) measurements show excellent rf properties for the resonator, with a measured intrinsic Q equal to 94% of the simulated value for OFE copper. An O5+ ion beam extracted from an electron cyclotron resonance ion source was used for the RFQ commissioning. In off-line beam testing, we found excellent coincidence of the measured beam parameters with the results of beam dynamics simulations performed using the beam dynamics code TRACK, which was developed at Argonne. These results demonstrate the great success of the RFQ design and fabrication technology developed here, which can be applied to future CW RFQs.

  3. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. The second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected conference

  4. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  5. Accelerated cable life testing of EPR-insulated medium voltage distribution cables

    SciTech Connect

    Walton, M.D. ); Bernstein, B.S. ); Smith, J.T. III ); Thue, W.A. , Stuart, FL ); Groeger, J.H. )

    1994-07-01

    This paper presents results aimed at developing a reliable accelerated aging tank test for EPR-insulated cables. Aging was performed at 2 to 4 times rated voltage on load cycling to temperatures of 45 C, 60 C, 75 C, and 90 C at the conductor with water in the conductor strands and outside the cable. Results show that cable failure is more rapid at the highest electrical stress and lowest conductor load cycle temperature. Cables aged at higher temperatures and various levels of electrical stress rarely failed and retained in excess of 40% of their original breakdown strength after 1,500+ days of aging. Aging performed at 90 C load cycle temperature and 4 times rated voltage with air on the outside and water at the conductor of the cable showed more rapid loss of life than with water outside. Results indicate the optimum aging conditions for EPR-insulated cables in the accelerated cable life test (ACLT) differ significantly from those previously observed for XLPE-insulated cables, and that the appropriate test methodology for EPR-insulated cables requires additional study.

  6. ACCELERATED TESTING OF NEUTRON-ABSORBING ALLOYS FOR NUCLEAR CRITICALITY CONTROL

    SciTech Connect

    Ronald E. Mizia

    2011-10-01

    The US Department of Energy requires nuclear criticality control materials be used for storage of highly enriched spent nuclear fuel used in government programs and the storage of commercial spent nuclear fuel at the proposed High-Level Nuclear Waste Geological Repository located at Yucca Mountain, Nevada. Two different metallic alloys (Ni-Cr-Mo-Gd and borated stainless steel) have been chosen for this service. An accelerated corrosion test program to validate these materials for this application is described and a performance comparison is made.

  7. Upgrade of the A0 photoinjector laser system for NML accelerator test facility at Fermilab

    SciTech Connect

    Ruan, J.; Edwards, H.; Fliller, R.P., III; Santucci, J.K.; /Fermilab

    2007-06-01

    The current Fermilab A0 Photoinjector laser system includes a seed laser, a flashlamp pumped multipass amplifier cavity, a flashlamp pumped 2-pass amplifier system followed by an Infra-Red (IR) to Ultra-Violet (UV) conversion stage. However the current system can only deliver up to 800 pulses due to the low efficiency of Nd:Glass used inside multi-pass cavity. In this paper we will report the effort to develop a new multi pass cavity based on Nd:YLF crystal end-pumped by diode laser. We will also discuss the foreseen design of the laser system for the NML accelerator test facility at Fermilab.

  8. Testing the Newton second law in the regime of small accelerations

    NASA Astrophysics Data System (ADS)

    de Lorenci, V. A.; Faúndez-Abans, M.; Pereira, J. P.

    2009-08-01

    It has been pointed out that the Newtonian second law can be tested in the very small acceleration regime by using the combined movement of the Earth and Sun around the Galactic center of mass. It has been shown that there are only two brief intervals during the year in which the experiment can be completed, which correspond to only two specific spots on the Earth surface. An alternative experimental setup is presented to allow the measurement to be made on Earth at any location and at any time.

  9. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    The types and quantities of wear particles generated during accelerated ball rolling contact fatigue tests were determined. Ball specimens were made of AMS 5749, a corrosion resistant, high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.215 times 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed; normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  10. Test simulation of neutron damage to electronic components using accelerator facilities

    NASA Astrophysics Data System (ADS)

    King, D. B.; Fleming, R. M.; Bielejec, E. S.; McDonald, J. K.; Vizkelethy, G.

    2015-12-01

    The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III-V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported.

  11. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    Ferrographic analysis was used to determine the types and quantities of wear particles generated during accelerated rolling contact fatigue tests. The NASA five-ball rolling contact fatigue tester was used. Ball specimens were made of AMS 5749, a corrosion-resistant high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 billion Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed: normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  12. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    PubMed

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days.

  13. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    SciTech Connect

    Baxter, Van D.; Murphy, Richard W.; Rice, C. Keith; Linkous, Randall Lee

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  14. Durability of Membrane Electrode Assemblies (MEAs) in PEM Fuel Cells Operated on Pure Hydrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stanic, Vesna; Braun, James; Hoberecht, Mark

    2003-01-01

    Proton exchange membrane (PEM) fuel cells are energy sources that have the potential to replace alkaline fuel cells for space programs. Broad power ranges, high peak-to-nominal power capabilities, low maintenance costs, and the promise of increased life are the major advantages of PEM technology in comparison to alkaline technology. The probability of PEM fuel cells replacing alkaline fuel cells for space applications will increase if the promise of increased life is verified by achieving a minimum of 10,000 hours of operating life. Durability plays an important role in the process of evaluation and selection of MEAs for Teledyne s Phase I contract with the NASA Glenn Research Center entitled Proton Exchange Membrane Fuel cell (PEMFC) Power Plant Technology Development for 2nd Generation Reusable Launch Vehicles (RLVs). For this contract, MEAs that are typically used for H2/air operation were selected as potential candidates for H2/O2 PEM fuel cells because their catalysts have properties suitable for O2 operation. They were purchased from several well-established MEA manufacturers who are world leaders in the manufacturing of diverse products and have committed extensive resources in an attempt to develop and fully commercialize MEA technology. A total of twelve MEAs used in H2/air operation were initially identified from these manufacturers. Based on the manufacturers specifications, nine of these were selected for evaluation. Since 10,000 hours is almost equivalent to 14 months, it was not possible to perform continuous testing with each MEA selected during Phase I of the contract. Because of the lack of time, a screening test on each MEA was performed for 400 hours under accelerated test conditions. The major criterion for an MEA pass or fail of the screening test was the gas crossover rate. If the gas crossover rate was higher than the membrane intrinsic permeability after 400 hours of testing, it was considered that the MEA had failed the test. Three types of

  15. An accelerated step test to assess dancer pre-season aerobic fitness.

    PubMed

    Bronner, Shaw; Rakov, Sara

    2014-03-01

    As the technical performance demands of dance increase, professional companies and pre-professional schools are implementing pre-season screenings that require an efficient, cost effective way to measure dancer aerobic fitness. The aim of this study was to assess an accelerated 3-minute step test (112 beats·min(-1)) by comparing it to the well-studied YMCA step test (96 beats·min(-1)) and a benchmark standard, an incremental treadmill test, using heart rate (HR) and oxygen consumption (VO2) as variables. Twenty-six professional and pre- professional dancers (age 20 ± 2.02 years) were fitted with a telemetric gas analysis system and HR monitor. They were tested in the following order: 96 step, 112 step, and treadmill test, with rest to return to baseline heart rate between each test. The step and treadmill tests were compared using Intra-class Correlation Coefficients [ICC (3, k)] calculated with analysis of variance (p < 0.05). To determine whether there was a relationship between peak and recovery HR (HRpeak, HRrecov) and VO2(VO2peak, VO2recov) variables, Pearson product moment correlations were used. Differences due to gender or group (pre- professionals versus professionals) were explored with MANOVAs for HRpeak, VO2peak, HRrecov, VO2recov, and fitness category. The 112 step test produced higher HRpeak and VO2peak values than the 96 step test, reflecting a greater workload (p < 0.001). For HRpeak, there were high correlations (r = 0.71) and for HRrecov, moderate correlations (r = 0.60) between the 112 step test and treadmill test. For VO2peak and VO2recov, there were moderate correlations between the 112 step test and treadmill test (r = 0.65 and 0.73). No differences between genders for VO2peak values were found for either step test, but males displayed lower HRpeak values for both step tests and higher VO2peak values during the treadmill test (p < 0.001). Recovery HR was lower in males for the 96 and 112 step tests (p < 0.05). This was reflected in higher

  16. HIV self-testing practices among Health Care Workers: feasibility and options for accelerating HIV testing services in Ethiopia

    PubMed Central

    Kebede, Bekana; Abate, Tatek; Mekonnen, Desalew

    2013-01-01

    Introduction HIV is still an enormous global burden and it is also causing loss of huge health care workers (HCWs) on the already limited human resource capacity in health care services in Sub-Saharan Africa. Variety of methods of accelerating HIV testing is required to increase the rate of HIV testing and expand treatment services. Therefore, this study was aimed to find out the prevalence, feasibility and options of HIV self-testing practices in Ethiopia. Methods A cross-sectional study design triangulated with qualitative method was conducted from February to May, 2012. The data was collected using a semi-structured pretested questionnaire and in-depth interview, at government and private health centers or clinics and hospitals. During the data collection all the available healthcare workers (HCWs) which encompass the internship students including: Medical, Health Officer, Nurses, Midwives and Laboratory students, and health professionals working in the selected health institutions were involved. Results A total of 307 HCWs were included in the analysis and we found that 288(94.4%) of them were ever tested for HIV, of which majority 203 (70.5%) were tested by themselves though 244(80%) of the HCWs had motivation or interest to be tested by themselves. Generally, of the ever tested only 85(29.5%) were tested by the help of health care providers/counselors other than self. Regarding the place where the HCWs had the test, majority 136 (69.4%) tested by themselves at the health facility and the rest were tested at their home, office, market and church. The main reason stated for self-testing was the need for confidentiality for the test result, which was mentioned by 205(82%). Moreover, 35(14.0%) claims lack of time to access the ordinary counseling and testing services. Conclusion This study depicts high rate of HIV self-testing practice among HCWs. This shows that HIV self-testing can be considered as one pillar to increase the HIV-testing services and a means for

  17. In Situ, Time-Resolved Accelerator Grid Erosion Measurements in the NSTAR 8000 Hour Ion Engine Wear Test

    NASA Technical Reports Server (NTRS)

    Sovey, J.

    1997-01-01

    Time-resolved, in situ measurements of the charge exchange ion erosion pattern on the downstream face of the accelerator grid have been made during an ongoin wear test of the NSTAR 30 cm ion thruster.

  18. Durability of carbon fiber reinforced shape memory polymer composites in space

    NASA Astrophysics Data System (ADS)

    Jang, Joon Hyeok; Hong, Seok Bin; Ahn, Yong San; Kim, Jin-Gyun; Nam, Yong-Youn; Lee, Geun Ho; Yu, Woong-Ryeol

    2016-04-01

    Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Recently, shape memory polymer composites (SMPCs) have been considered for space structure instead of shape memory alloys due to their deformability, lightweight and large recovery ratio, requiring characterization of their mechanical properties against harsh space environment and further prediction of the durability of SMPCs in space. As such, the durability of carbon fiber reinforced shape memory polymer composites (CF-SMPCs) was investigated using accelerated testing method based on short-term testing of CF-SMPCs in harsh condition. CF-SMPCs were prepared using woven carbon fabrics and a thermoset SMP via vacuum assisted resin transfer molding process. Bending tests with constant strain rate of CF-SMPCs were conducted using universal tensile machine (UTM) and Storage modulus test were conducted using dynamic mechanical thermal analysis (DMTA). Using the results, a master curve based on time-temperature superposition principle was then constructed, through which the mechanical properties of CF-SMPCs at harsh temperature were predicted. CF-SMPCs would be exposed to simulated space environments under ultra-violet radiations at various temperatures. The mechanical properties including flexural and tensile strength and shape memory properties of SMPCs would be measured using UTM before and after such exposures for comparison. Finally, the durability of SMPCs in space would be assessed by developing a degradation model of SMPC.

  19. Fatigue behaviour analysis for the durability prequalification of strengthening mortars

    NASA Astrophysics Data System (ADS)

    Bocca, P.; Grazzini, A.; Masera, D.

    2011-07-01

    An innovative laboratory procedure used as a preliminary design stage for the pre-qualification of strengthening mortars applied to historical masonry buildings is described. In the analysis of the behaviour of masonry structures and their constituent materials, increasing importance has been assumed by the study of the long-term evolution of deformation and mechanical characteristics, which may be affected by both loading and environmental conditions. Through static and fatigue tests on mixed specimens historical brick-reinforced mortar it has been possible to investigate the durability of strengthening materials, in order to select, from a range of alternatives, the most suitable for the historical masonry. Cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of the historical brick-strengthening mortar system under static long-time loading. This methodology has proved useful in avoiding the errors associated with materials that are not mechanically compatible and guarantees the durability of strengthening work. The experimental procedure has been used effectively in the biggest restoration building site in Europe, the Royal Palace of Venaria, and it is in progress of carrying out at the Special Natural Reserve of the Sacro Monte di Varallo, in Piedmont (Italy).

  20. Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command

    NASA Technical Reports Server (NTRS)

    McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.

    1961-01-01

    An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.

  1. Full-scale accelerated pavement testing of Texas Mobile Load Simulator

    SciTech Connect

    Chen, D.H.; Hugo, F.

    1998-09-01

    This paper presents the test results from full-scale accelerated pavement testing with the Texas Mobile Load Simulator. Data from in-situ instrumentation and nondestructive testing were collected and analyzed at different loading stages to assess material property changes under accelerated loading. Forensic studies were made to study material characteristics in the longitudinal and transverse directions. It was found that at the early stage of trafficking the test pad responded to falling weight deflectometer (FWD) load linearly, not only over the whole pavement system but also within individual layers. Before mobile load simulator testing, FWD data indicated the weakest area exists at the left wheel path (LWP) of 7.5-m line (7.5L). Later, this weak area was confirmed to have the highest rutting and the most intensive cracking. The dynamic cone penetration results showed that the base at this location was at its weakest. Also, at 7.5L the dry density was lowest, {approximately}7% lower with a moisture content {approximately}8% higher than the adjacent area. The LWP had higher FWD deflections than the right wheel path (RWP), and consequently the LWP manifested more rutting. This proved to be primarily due to differences in moisture content. This was probably because more water infiltrated in the area during rain due to manifestation of more extensive cracking during early phases of trafficking. The maximum surface deflection values increased as trafficking increased in the left and right wheel paths due to pavement deterioration, while deflection for the center remained constant because of the lack of traffic loading. The LWP had more rutting than the RWP and this correlated with the measured FWL deflections prior to trafficking. The WI values increased as trafficking increased for the LWP and RWP due to pavement deterioration. The majority (>60%) of rutting was from the 300-mm uncrushed river gravel base.

  2. Accelerated Aging of Polymer Composite Bridge Materials

    SciTech Connect

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  3. Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Lim, C.; Ghassemzadeh, L.; Van Hove, F.; Lauritzen, M.; Kolodziej, J.; Wang, G. G.; Holdcroft, S.; Kjeang, E.

    2014-07-01

    A cyclic open circuit voltage (COCV) accelerated stress test (AST) is designed to screen the simultaneous effect of chemical and mechanical membrane degradation in polymer electrolyte fuel cells. The AST consists of a steady state OCV phase to accelerate chemical degradation and periodic wet/dry cycles to provide mechanical degradation. The membrane degradation process induced by COCV AST operation is analyzed using a standard MEA with PFSA ionomer membrane. The OCV shows an initially mild decay rate followed by a higher decay rate in the later stages of the experiment. Membrane failure, defined by a threshold convective hydrogen leak rate, is obtained after 160 h of operation. Uniform membrane thinning is observed with pinhole formation being the primary cause of failure. Mechanical tensile tests reveal that the membrane becomes stiffer and more brittle during AST operation, which contributes to mechanical failure upon cyclic humidity induced stress. Solid state 19F NMR spectroscopy and fluoride emission measurements demonstrate fluorine loss from both side chain and main chain upon membrane exposure to high temperature and low humidity OCV condition.

  4. Lessons from two field tests on pipeline damage detection using acceleration measurement

    NASA Astrophysics Data System (ADS)

    Shinozuka, Masanobu; Lee, Sungchil; Kim, Sehwan; Chou, Pai H.

    2011-04-01

    Early detection of pipeline damages has been highlighted in water supply industry. Water pressure change in pipeline due to a sudden rupture causes pipe to vibrate and the pressure change propagates through the pipeline. From the measurement of pipe vibration the rupture can be detected. In this paper, the field test results and observations are provided for implementing next generation of SCADA system for pipeline rupture detection. Two field tests were performed on real buried plastic and metal pipelines for rupture detection. The rupture was simulated by introducing sudden water pressure drop caused by water blow-off and valve control. The measured acceleration data at the pipe surfaces were analyzed in both time and frequency domain. In time domain, the sudden narrow increase of acceleration amplitude was used as an indication of rupture event. For the frequency domain analysis, correlation function and the short time Fourier Transform technique were adopted to trace the dominant frequency shift. The success of rupture detection was found to be dependent on several factors. From the frequency analysis, the dominant frequency of metal water pipe was shifted by the water pressure drop, however, it was hard to identify from the plastic pipeline. Also the influence of existing facility such as airvac on pipe vibrations was observed. Finally, several critical lessons learned in the viewpoint of field measurement are discussed in this paper.

  5. The influence of mock circulation input impedance on valve acceleration during in vitro cardiac device testing.

    PubMed

    Sharp, M Keith; Richards, Christopher M; Gillars, Kevin J; Giridharan, Guruprasad; Pantalos, George M

    2008-01-01

    For a mechanical heart valve, a strong spike in pressure during closing is associated with valve wear and erythrocyte damage; thus, for valid in vitro testing, the mock circulation system should replicate the conditions, including pressure spikes, expected in vivo. To address this issue, a study was performed to investigate how mock circulation input impedance affects valve closure dynamics. A left ventricular model with polyurethane trileaflet inflow valve and tilting disc outflow valve was connected to a Louisville mock circulation system, which incorporates 2 adjustable flow resistors and 2 compliances. In the study, 116 cases matched zero frequency modulus well (982-1147 dyn x s/cm), but higher harmonics were purposely varied. Acceleration measured at the outflow valve ring (42.4-89.4 milli-Gs) was uncorrelated with impedance error (74.1-237 dyn x s/cm relative to target impedance), but was correlated with end-systolic impedance (1082-1319 dyn x s/cm) for cases with high zero frequency modulus, which exhibited just less than full ejection. These differences demonstrate that mock circulation response affects the magnitude of the closing spike, indicating that control of this parameter is necessary for authentic testing of valves. Correlation of acceleration to end-systolic impedance was weak for low zero frequency modulus, which tended toward full or hyperejection, reinforcing common laboratory observations that valve closing also depends on ventricular operating conditions.

  6. Combustor liner durability analysis

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1981-01-01

    An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed.

  7. Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Acworth, R. I.

    2016-01-01

    Evaluating the possibility of leakage through low-permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from coal and other strata, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and realistic vertical hydraulic conductivity (Kv) measurements of aquitard cores using accelerated gravity can constrain and compliment larger-scale assessments of hydraulic connectivity. Steady-state fluid velocity through a low-K porous sample is linearly related to accelerated gravity (g level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. A CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions up to 100 mm diameter and 200 mm length, and a total stress of ˜ 2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink-swell phenomena, which may alter the permeability. Kv results from CP testing of minimally disturbed cores from three sites within a clayey-silt formation varied from 10-10 to 10-7 m s-1 (number of samples, n = 18). Additional tests were focussed on the Cattle Lane (CL) site, where Kv within the 99 % confidence interval (n = 9) was 1.1 × 10-9 to 2.0 × 10-9 m s-1. These Kv results were very similar to an independent in situ Kv method based on pore pressure propagation though the sequence. However, there was less certainty at two other core sites due to limited and variable Kv data. Blind standard 1 g column tests underestimated Kv compared to CP and in situ Kv data, possibly due to deionised water interactions with clay, and were more time-consuming than CP tests. Our Kv results were compared with the set-up of a flow model for the region, and considered in the context of heterogeneity and preferential flow paths at site and

  8. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue

    SciTech Connect

    Bosco, Nick; Silverman, Timothy J.; Wohlgemuth, John; Kurtz, Sarah; Inoue, Masanao; Sakurai, Keiichiro; Shioda, Tsuyoshi; Zenkoh, Hirofumi; Hirota, Kusato; Miyashita, Masanori; Tadanori, Tanahashi; Suzuki, Soh; Chen, Yifeng; Verlinden, Pierre J.

    2014-12-31

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours of testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  9. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue: Preprint

    SciTech Connect

    Bosco, N.; Silverman, T. J.; Wohlgemuth, J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shinoda, T.; Zenkoh, H.; Hirota, K.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2015-04-07

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours o testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  10. Service Lifetime Estimation of EPDM Rubber Based on Accelerated Aging Tests

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Li, Xiangbo; Xu, Likun; He, Tao

    2017-02-01

    Service lifetime of ethylene propylene diene monomer (EPDM) rubber at room temperature (25 °C) was estimated based on accelerated aging tests. The study followed sealing stress loss on compressed cylinder samples by compression stress relaxation methods. The results showed that the cylinder samples of EPDM can quickly reach the physical relaxation equilibrium by using the over-compression method. The non-Arrhenius behavior occurred at the lowest aging temperature. A significant linear relationship was observed between compression set values and normalized stress decay results, and the relationship was not related to the ambient temperature of aging. It was estimated that the sealing stress loss in view of practical application would occur after around 86.8 years at 25 °C. The estimations at 25 °C based on the non-Arrhenius behavior were in agreement with compression set data from storage aging tests in natural environment.

  11. Effects of UV on power degradation of photovoltaic modules in combined acceleration tests

    NASA Astrophysics Data System (ADS)

    Ngo, Trang; Heta, Yushi; Doi, Takuya; Masuda, Atsushi

    2016-05-01

    UV exposure and other factors such as high/low temperature, humidity and mechanical stress have been reported to degrade photovoltaic (PV) module materials. By focusing on the combined effects of UV stress and moisture on PV modules, two new acceleration tests of light irradiation and damp heat (DH) were designed and conducted. The effects of UV exposure were validated through a change in irradiation time (UV dosage) and a change of the light irradiation side (glass side vs backsheet side) in the UV-preconditioned DH and cyclic sequential tests, respectively. The chemical corrosion of finger electrodes in the presence of acetic acid generated from ethylene vinyl acetate used as an encapsulant was considered to be the main origin of degradation. The module performance characterized by electroluminescence images was confirmed to correlate with the measured acetic acid concentration and Ag finger electrode resistance.

  12. Development of a synchrotron radiation beam monitor for the Integrable Optics Test Accelerator

    SciTech Connect

    Scarpelli, Andrea

    2016-01-01

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation, able to measure intensity, position and transverse cross-section beam.

  13. Development of an Accelerated Test Design for Predicting the Service Life of the Solar Array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.

    1979-01-01

    An accelerated life test is described which was developed to predict the life of the 25 kW photovoltaic array installed near Mead, Nebraska. A quantitative model for accelerating testing using multiple environmental stresses was used to develop the test design. The model accounts for the effects of thermal stress by a relation of the Arrhenius form. This relation was then corrected for the effects of nonthermal environmental stresses, such as relative humidity, atmospheric pollutants, and ultraviolet radiation. The correction factors for the nonthermal stresses included temperature-dependent exponents to account for the effects of interactions between thermal and nonthermal stresses on the rate of degradation of power output. The test conditions, measurements, and data analyses for the accelerated tests are presented. Constant-temperature, cyclic-temperature, and UV types of tests are specified, incorporating selected levels of relative humidity and chemical contamination and an imposed forward-bias current and static electric field.

  14. ASSESSMENT OF THE PCFBC-EXPOSED AND ACCELERATED LIFE-TESTED CANDLE FILTERS

    SciTech Connect

    M.A. Alvin

    1999-09-30

    Development of the hot gas filtration technology has been the focus of DOE/FETC and Siemens Westinghouse Power Corporation during the past twenty years. Systems development during this time has successfully lead to the generation and implementation of high temperature Siemens Westinghouse particulate filtration systems that are currently installed and are operational at Demonstration Plant sites, and which are ready for installation at commercial plant sites. Concurrently, materials development has advanced the use of commercially available oxide- and nonoxide-based monoliths, and has fostered the manufacture and use of second generation, oxide-based, continuous fiber reinforced ceramic composites and filament wound materials. This report summarizes the material characterization results for commercially available and second generation filter materials tested in Siemens Westinghouse's advanced, high temperature, particulate removal system at the Foster Wheeler, pressurized circulating fluidized-bed combustion, pilot-scale test facility in Karhula, Finland, and subsequent extended accelerated life testing of aged elements in Siemens Westinghouse pressurized fluidized-bed combustion simulator test facility in Pittsburgh, PA. The viability of operating candle filters successfully for over 1 year of service life has been shown in these efforts. Continued testing to demonstrate the feasibility of acquiring three years of service operation on aged filter elements is recommended.

  15. Long-Term Reliability of SiGe/Si HBTs From Accelerated Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Pallab

    2001-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si(0.7)Ge(0.3)/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175 C-275 C. The transistors (with 5x20 sq micron emitter area) have DC current gains approx. 40-50 and f(sub T) and f(sub max) of up to 22 GHz and 25 GHz, respectively. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REED has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of these devices at room temperature under 1.35 x 10(exp 4) A/sq cm current density operation is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation.

  16. a Development of Accelerated Life Test Method for Blower Motor for Automobile Using Inverse Power Law Model

    NASA Astrophysics Data System (ADS)

    Shin, Wae-Gyeong; Lee, Soo-Hong

    Reliability of automotive parts has been one of the most interesting fields in the automotive industry. Especially small DC motor was issued because of the increasing adoption for passengers' safety and convenience. This study was performed to develop the accelerated life test method using Inverse power law model for small DC motors. The failure mode of small DC motor includes brush wear-out. Inverse power law model is applied effectively the electronic components to reduce the testing time and to achieve the accelerating test conditions. Accelerated life testing method was induced to bring on the brush wear-out as increasing voltage of motor. Life distribution of the small DC motor was supposed to follow Weibull distribution and life test time was calculated under the conditions of B10 life and 90% confidence level.

  17. Temperature and current accelerated lifetime conditions and testing of laser diodes for ESA BepiColombo space mission

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Cohen, Shalom; Rech, Markus; Weidlich, Kai

    2011-03-01

    System designers and end users of diode pumped solid state lasers often require knowledge of the operability limits of QCW laser diode pump sources and their predicted reliability performance as a function of operating conditions. Accelerated ageing at elevated temperatures, duty cycles and/or currents allows extended lifetime testing of diode stacks to be executed on compressed timescales with high confidence. We present a novel, time-efficient technique for the determination of accelerated lifetime test conditions using degradation rate data, rather than the traditionally used failures against time data. To assess the effect of thermally accelerated ageing, 4 groups of 4 stacks each were operated for 60 million pulses at different temperature stress levels by varying the pulse repetition rate from 100Hz to 250Hz. The measured power degradation rates fitted to an Arrhenius type model, result in activation energy of 0.47- 0.74eV, apparently indicating two thermally activated degradation modes with different activation energies. Similarly, for current accelerated ageing, another 4 groups of 4 stacks were tested at operation currents from 120A to 150A. The optical power degradation rates due to current stress follow a power law behavior with a current acceleration factor of 1.7. The obtained acceleration parameters allowed considerable reduction of the lifetime test duration, which would have otherwise taken an unacceptably long time under nominal operating conditions. The successful results of the accelerated lifetime have been a major milestone enabling qualification of SCD stacks as pump sources for the laser altimeter in ESA Bepi-Colombo space mission. The presented reliability analysis allows life test qualification programs to be accelerated for generic QCW stacks and their lifetime to be predicted in various operating environments.

  18. Electron Lenses and Cooling for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Stancari, G.; Burov, A.; Lebedev, V.; Nagaitsev, S.; Prebys, E.; Valishev, A.

    2015-11-05

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whether nonlinear integrable optics allows electron coolers to exceed limitations set by both coherent or incoherent instabilities excited by space charge.

  19. Performance report on the ground test accelerator radio-frequency quadrupole

    SciTech Connect

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.

    1994-09-01

    The Ground Test Accelerator (GTA) uses a radio-frequency quadrupole (RFQ) to bunch and accelerate a 35 keV input beam to a final energy of 2.5 MeV. Most measured parameters of the GTA RFQ agreed with simulated predictions. The relative shape of the transmission versus the vane-voltage relationship and the Courant-Snyder (CS) parameters of the output beam`s transverse and longitudinal phase spaces agreed well with predictions. However, the transmission of the RFQ was significantly lower than expected. Improved simulation studies included image charges and multipole effects in the RFQ. Most of the predicted properties of the RFQ, such as input matched-beam conditions and output-beam shapes were unaffected by these additional effects. However, the comparison of measured with predicted absolute values of transmitted beam was much improved by the inclusion of these effects in the simulations. The comparison implied a value for the input emittance that is consistent with measurements.

  20. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    SciTech Connect

    Kafka, Gene

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  1. High power breakdown testing of a photonic band-gap accelerator structure with elliptical rods

    NASA Astrophysics Data System (ADS)

    Munroe, Brian J.; Cook, Alan M.; Shapiro, Michael A.; Temkin, Richard J.; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A. Dian; Tantawi, Sami G.; Marsh, Roark A.

    2013-01-01

    An improved single-cell photonic band-gap (PBG) structure with an inner row of elliptical rods (PBG-E) was tested with high power at a 60 Hz repetition rate at X-band (11.424 GHz), achieving a gradient of 128MV/m at a breakdown probability of 3.6×10-3 per pulse per meter at a pulse length of 150 ns. The tested standing-wave structure was a single high-gradient cell with an inner row of elliptical rods and an outer row of round rods; the elliptical rods reduce the peak surface magnetic field by 20% and reduce the temperature rise of the rods during the pulse by several tens of degrees, while maintaining good damping and suppression of high order modes. When compared with a single-cell standing-wave undamped disk-loaded waveguide structure with the same iris geometry under test at the same conditions, the PBG-E structure yielded the same breakdown rate within measurement error. The PBG-E structure showed a greatly reduced breakdown rate compared with earlier tests of a PBG structure with round rods, presumably due to the reduced magnetic fields at the elliptical rods vs the fields at the round rods, as well as use of an improved testing methodology. A post-testing autopsy of the PBG-E structure showed some damage on the surfaces exposed to the highest surface magnetic and electric fields. Despite these changes in surface appearance, no significant change in the breakdown rate was observed in testing. These results demonstrate that PBG structures, when designed with reduced surface magnetic fields and operated to avoid extremely high pulsed heating, can operate at breakdown probabilities comparable to undamped disk-loaded waveguide structures and are thus viable for high-gradient accelerator applications.

  2. Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ruf, Joe

    2007-01-01

    As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.

  3. Multi-factor Effects on the Durability of Recycle Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Ma, Huan; Cui, Yu-Li; Zhu, Wen-Yu; Xie, Xian-Jie

    2016-05-01

    Recycled Aggregate Concrete (RAC) was prepared with different recycled aggregate replacement ratio, 0, 30%, 70% and 100% respectively. The performances of RAC were examined by the freeze-thaw cycle, carbonization and sulfate attack to assess the durability. Results show that test sequence has different effects on the durability of RAC; the durability is poorer when carbonation experiment was carried out firstly, and then other experiment was carried out again; the durability is better when recycled aggregate replacement ratio is 70%.

  4. Run-time environment and application tools for the ground test accelerator control system

    NASA Astrophysics Data System (ADS)

    Kozubal, A. J.; Kerstiens, D. M.; Hill, J. O.; Dalesio, L. R.

    1990-08-01

    The control system for the ground test accelerator (GTA) at Los Alamos provides capabilities and tools that considerably reduce the amount of programming required to perform many applications. These qualities have proved to be valuable on early GTA experiments, where rapid prototy[ing has paid off. For instance, the initial controls for a 1 MW rf power supply provided supervisory control with no application-dependent programming. These same qualities will enable us to automate the start-up, operation and shutdown of the GTA. The run-time environment makes effective use of the distributed, nonhierarchical control-system architecture by providing a standard interface to the distributed data base. This paper gives an overview of the run-time software environment and the tools that simplify building the run-time data base, the operator interface screens, and application-specific control operations — sequential and continuous.

  5. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  6. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    SciTech Connect

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.

  7. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    SciTech Connect

    1994-10-01

    This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report

  8. 600 kV modulator design for the SLAC Next Linear Collider Test Accelerator

    SciTech Connect

    Harris, K.; de Lamare, J.; Nesterov, V.; Cassel, R.

    1992-07-01

    Preliminary design for the SLAC Next Linear Collider Test Accelerator (NLCTA) requires a pulse power source to produce a 600 kV, 600 A, 1.4 {mu}s, 0.1% flat top pulse with rise and fall times of approximately 100 ns to power an X-Band klystron with a microperveance of 1.25 at {approx} 100 MW peak RF power. The design goals for the modulator, including those previously listed, are peak modulator pulse power of 340 MW operating at 120 Hz. A three-stage darlington pulse-forming network, which produces a >100 kV, 1.4 {mu}s pulse, is coupled to the klystron load through a 6:1 pulse transformer. Careful consideration of the transformer leakage inductance, klystron capacitance, system layout, and component choice is necessary to produce the very fast rise and fall times at 600 kV operating continuously at 120 Hz.

  9. Geometry of the q-exponential distribution with dependent competing risks and accelerated life testing

    NASA Astrophysics Data System (ADS)

    Zhang, Fode; Shi, Yimin; Wang, Ruibing

    2017-02-01

    In the information geometry suggested by Amari (1985) and Amari et al. (1987), a parametric statistical model can be regarded as a differentiable manifold with the parameter space as a coordinate system. Note that the q-exponential distribution plays an important role in Tsallis statistics (see Tsallis, 2009), this paper investigates the geometry of the q-exponential distribution with dependent competing risks and accelerated life testing (ALT). A copula function based on the q-exponential function, which can be considered as the generalized Gumbel copula, is discussed to illustrate the structure of the dependent random variable. Employing two iterative algorithms, simulation results are given to compare the performance of estimations and levels of association under different hybrid progressively censoring schemes (HPCSs).

  10. Low Cost, Durable Seal

    SciTech Connect

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  11. Durability of Waste Glass Flax Fiber Reinforced Mortar

    NASA Astrophysics Data System (ADS)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.

    2011-01-01

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  12. Durability of waste glass flax fiber reinforced mortar

    SciTech Connect

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.

    2011-01-17

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  13. Prototype 1.75 MV X-band linear accelerator testing for medical CT and industrial nondestructive testing applications

    NASA Astrophysics Data System (ADS)

    Clayton, James; Shedlock, Daniel; Vanderet, Steven; Zentai, George; Star-Lack, Josh; LaFave, Richard; Virshup, Gary

    2015-03-01

    Flat panel imagers based on amorphous silicon technology (a-Si) for digital radiography are accepted by the medical and industrial community as having several advantages over radiographic film-based systems. Use of Mega-voltage x-rays with these flat panel systems is applicable to both portal imaging for radiotherapy and for nondestructive testing (NDT) and security applications. In the medical field, one potential application that has not been greatly explored is to radiotherapy treatment planning. Currently, such conventional computed tomographic (CT) data acquired at kV energies is used to help delineate tumor targets and normal structures that are to be spared during treatment. CT number accuracy is crucial for radiotherapy dose calculations. Conventional CT scanners operating at kV X-ray energies typically exhibit significant image reconstruction artifacts in the presence of metal implants in human body. Using the X-ray treatment beams, having energies typically >=6MV, to acquire the CT data may not be practical if it is desired to maintain contrast sensitivity at a sufficiently low dose. Nondestructive testing imaging systems can expand their application space with the development of the higher energy accelerator for use in pipeline, and casting inspection as well as certain cargo screening applications that require more penetration. A new prototype x-band BCL designed to operate up to 1.75 MV has been designed built and tested. The BCL was tested with a prototype portal imager and medical phantoms to determine artifact reductions and a PaxScan 2530HE industrial imager to demonstrate resolution is maintained and penetration is improved.

  14. The conversion of CESR to operate as the test accelerator, CesrTA, Part 4: superconducting wiggler diagnostics

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Greenwald, S.; Liu, X.; Li, Y.; Sabol, D.; Smith, E. N.; Strohman, C. R.; Palmer, M. A.; Munson, D. V.; Suetsugu, Y.

    2016-10-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it appropriate for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper, the last in a series of four, describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of electron cloud (EC) behavior within wigglers. Earlier papers provided an overview of the accelerator physics program, the general modifications of CESR, the modifications of the vacuum system necessary for the conversion of CESR to the test accelerator, CESRTA, enhanced to study such subjects as low emittance tuning methods, EC effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CESRTA focussed on questions related to the International Linear Collider damping ring design, CESR is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.

  15. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: electron cloud diagnostics

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.; Greenwald, S.; Li, Y.; Meller, R. E.; Strohman, C. R.; Sikora, J. P.; Calvey, J. R.; Palmer, M. A.

    2016-04-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to the test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focusses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. While the initial studies of CESRTA focussed on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.

  16. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: Electron cloud diagnostics

    DOE PAGES

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.; ...

    2016-04-28

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to themore » test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.« less

  17. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: Electron cloud diagnostics

    SciTech Connect

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.; Greenwald, S.; Li, Y.; Meller, R. E.; Strohman, C. R.; Sikora, J. P.; Calvey, J. R.; Palmer, M. A.

    2016-04-28

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to the test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.

  18. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  19. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  20. Investigating the Variable Durability of Malta's Lower Globigerina Limestone to Soluble-Salt Damage.

    NASA Astrophysics Data System (ADS)

    Zammit, Tano; Cassar, JoAnn

    2014-05-01

    durability being discussed here, , focuses on accelerated crystallization-damage test results vis-à-vis measureable micro-porosity variations and minute yet quantifiable fluctuations of the minor geochemical constituents of the stone. This is being achieved by systematic sampling and rigorous testing involving retrieved core and other samples extracted from several dimension-stone quarrying areas in Malta. Experimental analyses being carried out include Salt Crystallization, Acid Insoluble Residue, Helium Pycnometry, Mercury Intrusion Porosimetry and Micro-CT Imaging. These data will also lead to the detailed characterisation of the stone, within which programme the durability factor is being studied. Down-column tabulations and plots of these test results should help establish correlations between the varying durability of LGL to salt-damage, its porosity and pore-size distribution and minor geochemical components.

  1. Facile preparation of super durable superhydrophobic materials.

    PubMed

    Wu, Lei; Zhang, Junping; Li, Bucheng; Fan, Ling; Li, Lingxiao; Wang, Aiqin

    2014-10-15

    The low stability, complicated and expensive fabrication procedures seriously hinder practical applications of superhydrophobic materials. Here we report an extremely simple method for preparing super durable superhydrophobic materials, e.g., textiles and sponges, by dip coating in fluoropolymers (FPs). The morphology, surface chemical composition, mechanical, chemical and environmental stabilities of the superhydrophobic textiles were investigated. The results show how simple the preparation of super durable superhydrophobic textiles can be! The superhydrophobic textiles outperform their natural counterparts and most of the state-of-the-art synthetic superhydrophobic materials in stability. The intensive mechanical abrasion, long time immersion in various liquids and repeated washing have no obvious influence on the superhydrophobicity. Water drops are spherical in shape on the samples and could easily roll off after these harsh stability tests. In addition, this simple dip coating approach is applicable to various synthetic and natural textiles and can be easily scaled up. Furthermore, the results prove that a two-tier roughness is helpful but not essential with regard to the creation of super durable superhydrophobic textiles. The combination of microscale roughness of textiles and materials with very low surface tension is enough to form super durable superhydrophobic textiles. According to the same procedure, superhydrophobic polyurethane sponges can be prepared, which show high oil absorbency, oil/water separation efficiency and stability.

  2. VMAT linear accelerator commissioning and quality assurance: dose control and gantry speed tests.

    PubMed

    Barnes, Michael P; Rowshanfarzad, Pejman; Greer, Peter B

    2016-05-01

    In VMAT treatment delivery the ability of the linear accelerator (linac) to accurately control dose versus gantry angle is critical to delivering the plan correctly. A new VMAT test delivery was developed to specifically test the dose versus gantry angle with the full range of allowed gantry speeds and dose rates. The gantry-mounted IBA MatriXX with attached inclinometer was used in movie mode to measure the instantaneous relative dose versus gantry angle during the plan every 0.54 s. The results were compared to the expected relative dose at each gantry angle calculated from the plan. The same dataset was also used to compare the instantaneous gantry speeds throughout the delivery compared to the expected gantry speeds from the plan. Measurements performed across four linacs generally show agreement between measurement and plan to within 1.5% in the constant dose rate regions and dose rate modulation within 0.1 s of the plan. Instantaneous gantry speed was measured to be within 0.11∘/s of the plan (1 SD). An error in one linac was detected in that the nominal gantry speed was incorrectly calibrated. This test provides a practical method to quality-assure critical aspects of VMAT delivery including dose versus gantry angle and gantry speed control. The method can be performed with any detector that can acquire time-resolved dosimetric information that can be synchronized with a measurement of gantry angle. The test fulfils several of the aims of the recent Netherlands Commission on Radiation Dosimetry (NCS) Report 24, which provides recommendations for comprehensive VMAT quality assurance. PACS number(s): 87.55.Qr.

  3. VMAT linear accelerator commissioning and quality assurance: dose control and gantry speed tests.

    PubMed

    Barnes, Michael P; Rowshanfarzad, Pejman; Greer, Peter B

    2016-05-08

    In VMAT treatment delivery the ability of the linear accelerator (linac) to accurately control dose versus gantry angle is critical to delivering the plan correctly. A new VMAT test delivery was developed to specifically test the dose versus gantry angle with the full range of allowed gantry speeds and dose rates. The gantry-mounted IBA MatriXX with attached inclinometer was used in movie mode to measure the instantaneous relative dose versus gantry angle during the plan every 0.54 s. The results were compared to the expected relative dose at each gantry angle calculated from the plan. The same dataset was also used to compare the instantaneous gan-try speeds throughout the delivery compared to the expected gantry speeds from the plan. Measurements performed across four linacs generally show agreement between measurement and plan to within 1.5% in the constant dose rate regions and dose rate modulation within 0.1 s of the plan. Instantaneous gantry speed was measured to be within 0.11°/s of the plan (1 SD). An error in one linac was detected in that the nominal gantry speed was incorrectly calibrated. This test provides a practical method to quality-assure critical aspects of VMAT delivery including dose versus gantry angle and gantry speed control. The method can be performed with any detector that can acquire time-resolved dosimetric information that can be synchronized with a measurement of gantry angle. The test fulfils several of the aims of the recent Netherlands Commission on Radiation Dosimetry (NCS) Report 24, which provides recommendations for comprehensive VMAT quality assurance.

  4. Estimating service lifetimes of a polymer encapsulant for photovoltaic modules from accelerated testing

    SciTech Connect

    Czanderna, A.W.; Pern, F.J.

    1996-05-01

    In this paper, most of the emphasis is on A9918 ethylene vinyl acetate (EVA) used commercially as the pottant for encapsulating photovoltaic (PV) modules, in which the efficiencies in field-deployed modules have been reduced by 10-70% in 4-12 years. Yet, projections were made by several different research groups in the 1980s that the EVA lifetime could range from 2-100 years. The authors (1) elucidate the complexity of the encapsulation problem, (2) indicate the performance losses reported for PV systems deployed since 1981, (3) critically assess the service lifetime predictions for EVA as a PV pottant based on studies by others for which they review the inherent errors in their assumptions about the Arrhenius relation, (4) show how degradation of minimodules in laboratory experiments that simulate reality can produce efficiency losses comparable to those in field-degraded PV modules reported in the literature, and (5) outline an acceptable methodology for making a service lifetime prediction of the polymer encapsulant, including the essential need for relating accelerated lifetime testing to real-time testing with a sufficient number of samples.

  5. Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests

    NASA Astrophysics Data System (ADS)

    Guan, Ting; Zuo, Pengjian; Sun, Shun; Du, Chunyu; Zhang, Lingling; Cui, Yingzhi; Yang, Lijie; Gao, Yunzhi; Yin, Geping; Wang, Fuping

    2014-12-01

    A series of LiCoO2/mesocarbon microbeads (MCMB) commercial cells cycled at different rates (0.6C, 1.2C, 1.5C, 1.8C, 2.4C and 3.0C) are disassembled and the capacity fade mechanism is proposed by analyzing the structure, morphology and electrochemical performance evolution at the capacity retention of 95%, 90%, 85%, 80%. The capacity deterioration of the commercial cell is mainly caused by the decay of the reversible capacity of LiCoO2 cathode, the irreversible loss of active lithium and the lithium remaining in anode. The proportions of effects by the above three factors are calculated accurately. The consumption of the active lithium leads to a cell imbalance between the anode and the cathode. The electrochemical test results indicate that the capacity fade of the active materials at the low rate is more obvious than that at the high rate. The influence of the active lithium is gradually increscent with the increasing rate. The rate of 1.5C is the optimal value to accelerate the aging of the full cell by comparing the testing results at different capacity retentions in the specific condition of low charge/discharge rate and shallow depth of discharge.

  6. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    SciTech Connect

    Wright, R.M.; Zander, M.E.; Brown, S.K.; Sandoval, D.P.; Gilpatrick, J.D.; Gibson, H.E.

    1992-09-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development of both software and hardware for imagetool and its integration with the GTA control system (GTACS) will be discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. The current status of the system will be illustrated by samples of experimental data.

  7. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    SciTech Connect

    Wright, R.M.; Zander, M.E.; Brown, S.K.; Sandoval, D.P.; Gilpatrick, J.D.; Gibson, H.E.

    1992-01-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development of both software and hardware for imagetool and its integration with the GTA control system (GTACS) will be discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. The current status of the system will be illustrated by samples of experimental data.

  8. Urban Decline and Durable Housing.

    ERIC Educational Resources Information Center

    Glaeser, Edward L.; Gyourko, Joseph

    2005-01-01

    Urban decline is not the mirror image of growth, and durable housing is the primary reason the nature of decline is so different. This paper presents a model of urban decline with durable housing and verifies these implications of the model: (1) city growth rates are skewed so that cities grow more quickly than they decline; (2) urban decline is…

  9. Highly efficient and durable TiN nanofiber electrocatalyst supports

    NASA Astrophysics Data System (ADS)

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, Eunae; Lee, Kwan-Young; Kim, Jin Young

    2015-11-01

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via

  10. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  11. Tested by Fire - How two recent Wildfires affected Accelerator Operations at LANL

    SciTech Connect

    Spickermann, Thomas

    2012-08-01

    In a little more than a decade two large wild fires threatened Los Alamos and impacted accelerator operations at LANL. In 2000 the Cerro Grande Fire destroyed hundreds of homes, as well as structures and equipment at the DARHT facility. The DARHT accelerators were safe in a fire-proof building. In 2011 the Las Conchas Fire burned about 630 square kilometers (250 square miles) and came dangerously close to Los Alamos/LANL. LANSCE accelerator operations Lessons Learned during Las Conchas fire: (1) Develop a plan to efficiently shut down the accelerator on short notice; (2) Establish clear lines of communication in emergency situations; and (3) Plan recovery and keep squirrels out.

  12. Durability of Bricks Coated with Red mud Based Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Singh, Smita; Basavanagowda, S. N.; Aswath, M. U.; Ranganath, R. V.

    2016-09-01

    The present study is undertaken to assess the durability of concrete blocks coated with red mud - fly ash based geopolymer paste. Concrete blocks of size 200 x 200 x 100mm were coated with geopolymer paste synthesized by varying the percentages of red mud and fly ash. Uncoated concrete blocks were also tested for the durability for comparison. In thermal resistance test, the blocks were subjected to 600°C for an hour whereas in acid resistance test, they were kept in 5% sulphuric acid solution for 4 weeks. The specimens were thereafter studied for surface degradation, strength loss and weight loss. Pastes with red mud percentage greater than 50% developed lot of shrinkage cracks. The blocks coated with 30% and 50% red mud paste showed better durability than the other blocks. The use of blocks coated with red mud - fly ash geopolymer paste improves the aesthetics, eliminates the use of plaster and improves the durability of the structure.

  13. Corrosion Testing in Support of the Accelerator Production of Tritium Program

    SciTech Connect

    Chandler, G.

    2000-11-07

    The Accelerator Production of Tritium Project is part of the United States Department of Energy strategy to meet the nation's tritium needs. The project involves the design of a proton beam accelerator, which will produce tritium through neutron/proton interaction with helium-3. Design, construction and operation of this one-of-a-kind facility will involve the utilization of a wide variety of materials exposed to unique conditions, including elevated temperature and high-energy mixed-proton and -neutron spectra. A comprehensive materials test program was established by the APT project which includes the irradiation of structural materials by exposure to high-energy protons and neutrons at the Los Alamos Neutron Science Center at the Los Alamos National Laboratory. Real-time corrosion measurements were performed on specially designed corrosion probes in water irradiated by an 800 MeV proton beam. The water test system provided a means for measuring water chemistry, dissolved hydroge n concentration, and the effects of water radiolysis and water quality on corrosion rate. The corrosion probes were constructed of candidate APT materials alloy 718, 316L stainless steel, 304L stainless steel, and 6061 Aluminum (T6 heat treatment), and alternate materials 5052 aluminum alloy, alloy 625, and C276. Real-time corrosion rates during proton irradiation increased with proton beam current. Efforts are continuing to determine the effect of proton beam characteristics and mixed-particle flux on the corrosion rate of materials located directly in the proton beam. This paper focuses on the real-time corrosion measurements of materials located in the supply stream and return stream of the water flow line to evaluate effects of long-lived radiolysis products and water chemistry on the corrosion rates of materials. In general, the corrosion rates for the out-of-beam probes were low and were affected mainly by water conductivity. The data indicate a water conductivity threshold e xists

  14. Polylactic Acid-Based Polymer Blends for Durable Applications

    NASA Astrophysics Data System (ADS)

    Finniss, Adam

    , showing that no matter the treatment or formulation, PLA achieved a maximum of 30-35 percent crystallinity. Samples receiving no treatment as well as those with annealing, the addition of graphene, and in some cases annealing/graphene were subjected to both solvent and hydrolytic degradation in order to find the most stable blend or treatment. Both pellets and molded parts of varying thicknesses were investigated to evaluate the effect of diffusional resistance on long term durability. It was determined that while the addition of crystallinity or graphene platelets can provide a temporary barrier against diffusion of attacking species, PLA polymer itself is not dimensionally stable over the long lifecycle required for durable applications such as for automotive parts. In fact, PLA-only molded panels aged in distilled water at 50°C for 42 days experienced over 99% viscosity loss regardless of which treatment was applied, and nearly all mechanical strength was lost during this time. Furthermore, while the addition of graphene and the heat treatment produced diffusion barriers which could slightly enhance PLA's degradation resistance, the treatments caused the already fragile polymer to become very brittle. Solvent degradation experiments also showed that molded parts containing more than 40% PLA loading lost in excess of 75% of the original viscosity no matter what treatment was used. This showed that these materials are likely to fail well before a sufficiently long lifecycle for durable goods is achieved. Polycarbonate rich blends with less than 30% PLA as the dispersed phase showed excellent property retention after the accelerated aging tests. Formulations with up to 20% PLA content had degradation results that were nearly identical to those of 100% polycarbonate, which literature has shown to have useful lifecycles for durable applications of up to 20 years. By completely encapsulating the PLA in the polycarbonate matrix, which occurred at about 30% PLA by maximum, it

  15. Durability Evaluation of Reversible Solid Oxide Cells

    SciTech Connect

    Xiaoyu Zhang; James E. O'Brien; Robert C. O'Brien; Gregory K. Housley

    2013-11-01

    An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus for single cell and small stack tests has been developed for this purpose. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.

  16. On the design and testing of solid armatures for rail accelerator applications

    SciTech Connect

    Karthaus, W.; de Zeeuw, W.A.; Kolkert, W.J. )

    1991-01-01

    Two different armature designs, for rail accelerator applications have been studied during electromagnetic launch experiments. The designs investigated are an aluminium multi-finger monoblock and a copper fiber brush armature. The experimental set-up used and the results obtained together with an electro-thermal model that describes the armature interface behavior during the acceleration process itself are presented in this paper.

  17. Durability of high performance concrete in magnesium brine

    SciTech Connect

    Tumidajski, P.J.; Chan, G.W.

    1996-04-01

    The durability of six concretes exposed to magnesium brine was monitored for 24 months. These concretes incorporated ground granulated blast furnace slag, silica fume, and fly ash. The Young`s moduli, chloride penetrations, and median pore diameters were measured. There was a cyclic nature to these properties due to the complicated interaction of hydration with magnesium, chloride and sulfate attack. Mineral admixtures, in combination with a long initial cure, provided the most durable concrete. Concrete with 65% slag had the best overall durability to the brines tested.

  18. Particle acceleration and plasma energization in substorms: MHD and test particle studies

    SciTech Connect

    Birn, Joachim

    2015-07-16

    The author organizes his slide presentation under the following topics: background, MHD simulation, orbit integration, typical orbits, spatial and temporal features, acceleration mechanisms, source locations, and source energies. Field-­aligned energetic particle fluxes are shown for 45-keV electrons and 80-keV protons. It is concluded that the onset from local thin current sheet is electron tearing. Acceleration is mainly from field collapse, governed by Ey = -vxXBz: importance of localization; betatron acceleration (similar if nonadiabatic); 1st order Fermi, type B (or A; current sheet acceleration). There are two source regions (of comparable importance in magnetotail): - flanks, inner tail - drift entry - early, higher energy - outer plasma sheet - reconnection entry - later, lower energy. Both thermal and suprathermal sources are important, with limited energy range for acceleration

  19. The LeRC rail accelerators: Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1983-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed.

  20. INITIAL TEST OF A FAST RAMPED SUPERCONDUCTING MODEL DIPOLE FOR GSIS PROPOSED SIS200 ACCELERATOR.

    SciTech Connect

    WANDERER,P.; ANERELLA,M.; GANETIS,G.; GHOSH,A.; JOSHI,P.; MARONE,A.; MURATORE,J.; SCHMALZLE,J.; SOIKA,R.; THOMAS,R.; KAUGERTS,J.; MORITZ,G.; HASSENZAHL,W.; WILSON,N.M.

    2003-05-12

    Gesellschaft fur Schwerionenforschung (GSI) has proposed a large expansion of the existing facility in Darmstadt, Germany. The proposal includes an accelerator, SIS200, with rigidity of 200 Tam that utilizes 4 T superconducting dipoles ramped at 1 T/s. An R&D program including both the superconductor and the magnet is directed at achieving the desired ramp rate with minimal energy loss. The RHIC arc dipoles, with 8 cm aperture, possess adequate aperture and field strength but are ramped at only 1/20 of the desired rate. However, for reasons of speed and economy, the RHIC dipole is being used as the basis for this work. The superconductor R&D has progressed far enough to permit the manufacture of an initial cable with satisfactory properties. This cable has been used in the construction of a I m model magnet, appropriately modified from the RHIC design. The magnet has been tested successfully at 2 T/s to 4.38 T.