Science.gov

Sample records for accelerated electron energy

  1. Electron injector for compact staged high energy accelerator

    NASA Astrophysics Data System (ADS)

    Audet, T. L.; Desforges, F. G.; Maitrallain, A.; Dufrénoy, S. Dobosz; Bougeard, M.; Maynard, G.; Lee, P.; Hansson, M.; Aurand, B.; Persson, A.; González, I. Gallardo; Monot, P.; Wahlström, C.-G.; Lundh, O.; Cros, B.

    2016-09-01

    An electron injector for multi-stage laser wakefield experiments is presented. It consists of a variable length gas cell of small longitudinal dimension (⩽ 10 mm). The gas filling process in this cell was characterized both experimentally and with fluid simulation. Electron acceleration experiments were performed at two different laser facilities. Results show low divergence and low pointing fluctuation electron bunches suitable for transport to a second stage, and a peaked energy distribution suitable for injection into the second stage wakefield accelerator.

  2. Non-thermal electron acceleration in low Mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism

    SciTech Connect

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-10-20

    Electron acceleration to non-thermal energies in low Mach number (M{sub s} ≲ 5) shocks is revealed by radio and X-ray observations of galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Diffusive shock acceleration, also known as first-order Fermi acceleration, cannot be directly invoked to explain the acceleration of electrons. Rather, an additional mechanism is required to pre-accelerate the electrons from thermal to supra-thermal energies, so they can then participate in the Fermi process. In this work, we use two- and three-dimensional particle-in-cell plasma simulations to study electron acceleration in low Mach number shocks. We focus on the particle energy spectra and the acceleration mechanism in a reference run with M{sub s} = 3 and a quasi-perpendicular pre-shock magnetic field. We find that about 15% of the electrons can be efficiently accelerated, forming a non-thermal power-law tail in the energy spectrum with a slope of p ≅ 2.4. Initially, thermal electrons are energized at the shock front via shock drift acceleration (SDA). The accelerated electrons are then reflected back upstream where their interaction with the incoming flow generates magnetic waves. In turn, the waves scatter the electrons propagating upstream back toward the shock for further energization via SDA. In summary, the self-generated waves allow for repeated cycles of SDA, similarly to a sustained Fermi-like process. This mechanism offers a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  3. Energy Doubling of 42 GeV Electrons in a Meter-scale Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Joshi, Chandrashekhar; Katsouleas, Thomas; Kirby, Neil; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-03-14

    The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx} 52GV m{sup -1}. This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

  4. The neutrino electron accelerator

    SciTech Connect

    Shukla, P.K.; Stenflo, L.; Bingham, R.; Bethe, H.A.; Dawson, J.M.; Mendonca, J.T.

    1998-01-01

    It is shown that a wake of electron plasma oscillations can be created by the nonlinear ponderomotive force of an intense neutrino flux. The electrons trapped in the plasma wakefield will be accelerated to high energies. Such processes may be important in supernovas and pulsars. {copyright} {ital 1998 American Institute of Physics.}

  5. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect

    Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

    2010-06-01

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  6. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    NASA Astrophysics Data System (ADS)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge–Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  7. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    NASA Astrophysics Data System (ADS)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  8. Radiation Shielding at High-Energy Electron and Proton Accelerators

    SciTech Connect

    Rokni, Sayed H.; Cossairt, J.Donald; Liu, James C.; /SLAC

    2007-12-10

    The goal of accelerator shielding design is to protect the workers, general public, and the environment against unnecessary prompt radiation from accelerator operations. Additionally, shielding at accelerators may also be used to reduce the unwanted background in experimental detectors, to protect equipment against radiation damage, and to protect workers from potential exposure to the induced radioactivity in the machine components. The shielding design for prompt radiation hazards is the main subject of this chapter.

  9. Energy-angle correlation of electrons accelerated by laser beam in vacuum

    SciTech Connect

    Chen, Z.; Ho, Y.K.; Xie, Y.J.; Zhang, S.Y.; Yan, Z.; Xu, J.J.; Lin, Y.Z.; Hua, J.F.

    2004-09-27

    The correlation between the outgoing energy and the scattering angle of electrons accelerated by a laser beam in vacuum has been investigated. Essentially, the single-valued function of the correlation, derived from classical electrodynamics Compton scattering for a plane wave, is broadened to a band. It means electrons with the same outgoing energy will have an angular spread. An equation to describe this correlation has been derived. Dependence of the spread width of scattering angle on laser beam parameters is examined, and physical explanations of these features are given. The results are found to be consistent with the simulation results for a proposed vacuum laser acceleration scheme: the capture and acceleration scenario.

  10. Comparing Solar-Flare Acceleration of >-20 MeV Protons and Electrons Above Various Energies

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2010-01-01

    A large fraction (up to tens of percent) of the energy released in solar flares goes into accelerated ions and electrons, and studies indicate that these two populations have comparable energy content. RHESSI observations have shown a striking close linear correlation between the 2.223 MeV neutron-capture gamma-ray line and electron bremsstrahlung emission >300 keV, indicating that the flare acceleration of >^20 MeV protons and >300 keV electrons is roughly proportional over >3 orders of magnitude in fluence. We show that the correlations of neutron-capture line fluence with GOES class or with bremsstrahlung emission at lower energies show deviations from proportionality, primarily for flares with lower fluences. From analyzing thirteen flares, we demonstrate that there appear to be two classes of flares with high-energy acceleration: flares that exhibit only proportional acceleration of ions and electrons down to 50 keV and flares that have an additional soft, low-energy bremsstrahlung component, suggesting two separate populations of accelerated electrons. We use RHESSI spectroscopy and imaging to investigate a number of these flares in detail.

  11. High-energy, laser accelerator for electrons using the inverse Cherenkov effect

    SciTech Connect

    Fontana, J.R.; Pantell, R.H.

    1983-08-01

    A laser method for accelerating electrons is described, based on the inverse Cherenkov effect in a gas. The laser fields are in the form of a cylindrical cone of plane waves on whose axis travel the electrons, with the cone angle and the gas refraction index such that each electron sees constant fields in time. Expressions are obtained relating the overall energy transfer to total laser power and wavelength, and to gas index and interaction length. With laser powers now available, energy increments of tens of GeV are possible. For comparative purposes, a related alternative scheme involving electrons in vacuum and evanescent laser fields is also analyzed. It is found that the method applies particularly well to adding energy to the electron bunches produced by large microwave accelerators, as collision effects are less troublesome at high injection energies.

  12. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  13. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  14. Direct observation of radiation-belt electron acceleration from electron-volt energies to megavolts by nonlinear whistlers.

    PubMed

    Mozer, F S; Agapitov, O; Krasnoselskikh, V; Lejosne, S; Reeves, G D; Roth, I

    2014-07-18

    The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth's outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electric field to relativistic energies in several resonant interactions. TDS are packets of electric field spikes, each spike having duration of a few hundred microseconds and containing a local parallel electric field. The TDS of interest resulted from nonlinearity of the parallel electric field component in oblique whistlers and consisted of ∼ 0.1 msec pulses superposed on the whistler waveform with each such spike containing a net parallel potential the order of 50 V. Local magnetic field compression from remote activity provided the free energy to drive the two processes. The expected temporal correlations between the compressed magnetic field, the nonlinear whistlers with their parallel electric field spikes, the electron flux and the electron pitch angle distributions were all observed. PMID:25083648

  15. Enhancement of electron energy during vacuum laser acceleration in an inhomogeneous magnetic field

    SciTech Connect

    Saberi, H.; Maraghechi, B.

    2015-03-15

    In this paper, the effect of a stationary inhomogeneous magnetic field on the electron acceleration by a high intensity Gaussian laser pulse is investigated. A focused TEM (0,0) laser mode with linear polarization in the transverse x-direction that propagates along the z-axis is considered. The magnetic field is assumed to be stationary in time, but varies longitudinally in space. A linear spatial profile for the magnetic field is adopted. In other words, the axial magnetic field increases linearly in the z-direction up to an optimum point z{sub m} and then becomes constant with magnitude equal to that at z{sub m}. Three-dimensional single-particle simulations are performed to find the energy and trajectory of the electron. The electron rotates around and stays near the z-axis. It is shown that with a proper choice of the magnetic field parameters, the electron will be trapped at the focus of the laser pulse. Because of the cyclotron resonance, the electron receives enough energy from the laser fields to be accelerated to relativistic energies. Using numerical simulations, the criteria for optimum regime of the acceleration mechanism is found. With the optimized parameters, an electron initially at rest located at the origin achieves final energy of γ=802. The dynamics of a distribution of off-axis electrons are also investigated in which shows that high energy electrons with small energy and spatial spread can be obtained.

  16. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Hu, Ronghao; Lu, Haiyang; Shou, Yinren; Lin, Chen; Zhuo, Hongbin; Chen, Chia-erh; Yan, Xueqing

    2016-09-01

    The production of GeV electron beam with narrow energy spread and high brightness is investigated using particle-in-cell simulations. A controlled electron injection scheme and a method for phase-space manipulation in a laser plasma accelerator are found to be essential. The injection is triggered by the evolution of two copropagating laser pulses near a sharp vacuum-plasma transition. The collection volume is well confined and the injected bunch is isolated in phase space. By tuning the parameters of the laser pulses, the parameters of the injected electron bunch, such as the bunch length, energy spread, emittance and charge, can be adjusted. Manipulating the phase-space rotation with the rephasing technique, the injected electron bunch can be accelerated to GeV level while keeping relative energy spread below 0.5% and transverse emittance below 1.0 μ m . The results present a very promising way to drive coherent x-ray sources.

  17. Absolute energy calibration of FD by an electron linear accelerator for Telescope Array

    SciTech Connect

    Shibata, T.; Fukushima, M.; Ikeda, D.; Enomoto, A.; Fukuda, S.; Furukawa, K.; Ikeda, M.; Iwase, H.; Kakihara, K.; Kamitani, T.; Kondo, Y.; Ohsawa, S.; Sagawa, H.; Sanami, T.; Satoh, M.; Shidara, T.; Sugimura, T.; Yoshida, M.; Matthews, J. N.; Ogio, S.

    2011-09-22

    The primary energy of the ultra-high energy cosmic rays(UHECR) are measured with the number of fluorescence photons which are detected with fluorescence detectors(FD) in the Telescope Array experiment(TA). Howevery since there is large uncertinty as 19% in the measurement of the energy scale, the most important theme is improvement of the energy calibration. The electron light source(ELS) is a small electron linear accelerator for new energy calibration. The ELS is located 100 m far from the FD station, and injects electron beam which is accelerated to 40 MeV energy into the sky. We can calibrate the FD energy scale by detection the air shower directly which is generated by the electron beam. The ELS was developed in KEK Japan, and moved to the TA site in March 2009. We started the beam operation in September 2010, in consequence we detected the air shower which was generated by electron beam in the air. The output kinetic energy of the electron beam was 41.1 MeV, we adjusted the output charge from 40 to 140 pC/pulse. We expect that we can improve the uncertinty of the energy scale to about 10% with the ELS, futhermore ELS will be a very useful apparatus for R and D of future UHECR observation.

  18. Bremsstrahlung source term estimation for high energy electron accelerators

    NASA Astrophysics Data System (ADS)

    Nayak, M. K.; Sahu, T. K.; Nair, H. G.; Nandedkar, R. V.; Bandyopadhyay, Tapas; Tripathi, R. M.; Hannurkar, P. R.; Sharma, D. N.

    2015-08-01

    Thick target bremsstrahlung source term for 450 MeV and 550 MeV electrons are experimentally determined using booster synchrotron of Indus facility at Raja Ramanna Centre for Advanced Technology, Indore, India. The source term is also simulated using EGSnrc Monte Carlo code. Results from experiment and simulation are found to be in very good agreement. Based on the agreement between experimental and simulated data, the source term is determined up to 3000 MeV by simulation. The paper also describes the studies carried out on the variation of source term when a thin target is considered in place of a thick target, used in earlier studies.

  19. Shielding for High-Energy Electron Accelerator Installations. National Bureau of Standards Handbook 97.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    Recommendations for radiation shielding, protection, and measurement are presented. This handbook is an extension of previous recommendations for protection against radiation from--(1) high energy and power electron accelerators, (2) food processing equipment, and (3) general sterilization equipment. The new recommendations are concerned with…

  20. Electron acceleration to high energies at quasi-parallel shock waves in the solar corona

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves are generated by flares and/or coronal mass ejections. They manifest themselves in solar type 2 radio bursts appearing as emission stripes with a slow drift from high to low frequencies in dynamic radio spectra. Their nonthermal radio emission indicates that electrons are accelerated to suprathermal and/or relativistic velocities at these shocks. As well known by extraterrestrial in-situ measurements supercritical, quasi-parallel, collisionless shocks are accompanied by so-called SLAMS (short large amplitude magnetic field structures). These SLAMS can act as strong magnetic mirrors, at which charged particles can be reflected and accelerated. Thus, thermal electrons gain energy due to multiple reflections between two SLAMS and reach suprathermal and relativistic velocities. This mechanism of accelerating electrons is discussed for circumstances in the solar corona and may be responsible for the so-called 'herringbones' observed in solar type 2 radio bursts.

  1. Two-Screen Method for Determining Electron Beam Energy and Deflection from Laser Wakefield Acceleration

    SciTech Connect

    Pollock, B B; Ross, J S; Tynan, G R; Divol, L; Glenzer, S H; Leurent, V; Palastro, J P; Ralph, J E; Froula, D H; Clayton, C E; Marsh, K A; Pak, A E; Wang, T L; Joshi, C

    2009-04-24

    Laser Wakefield Acceleration (LWFA) experiments have been performed at the Jupiter Laser Facility, Lawrence Livermore National Laboratory. In order to unambiguously determine the output electron beam energy and deflection angle at the plasma exit, we have implemented a two-screen electron spectrometer. This system is comprised of a dipole magnet followed by two image plates. By measuring the electron beam deviation from the laser axis on each plate, both the energy and deflection angle at the plasma exit are determined through the relativistic equation of motion.

  2. The Rhodotron, a new high-energy, high-power, CW electron accelerator

    NASA Astrophysics Data System (ADS)

    Jongen, Y.; Abs, M.; Capdevila, J. M.; Defrise, D.; Genin, F.; NGuyen, A.

    1994-05-01

    Over the last years, a new kind of industrial electron accelerator has been conjointly developed by the French Atomic Energy Agency (CEA) and IBA (Ion Beam Applications) in Belgium. This accelerator, called the Rhodotron, is a recirculating accelerator, operated in CW. It uses low frequencies (metric waves), that make possible the generation of continuous high-energy high-power beams. The construction of the first industrial model of the Rhodotron began in January 1992. It is a 10 MeV, 100 kW beam power unit, with an additional beam exit at 5 MeV. A target is also being developed in order to allow an efficient conversion of the electrons into X-rays. The different subsystems of this machine are now being assembled and tested. The first beam tests are scheduled for the autumn of 1993. A complete report presenting the state of development of this prototype is included in this paper.

  3. Application of aluminum and titanium foils in low-energy wide-aperture electron accelerators

    NASA Astrophysics Data System (ADS)

    Bodakin, L. V.; Gusakov, A. I.; Komarov, O. V.; Kosogorov, S. L.; Motovilov, S. A.; Uspenskii, N. A.

    2016-09-01

    We have reported on the results of theoretical and experimental investigations of characteristics of aluminum and titanium foils used in devices to extract electron beams from wide-aperture low-energy accelerators with a high current density. The mechanical properties of foils at different temperatures and the electron beam transmission and absorption coefficients have been compared. The results of analyzing the dependences of the efficiency of the electron beam extraction from accelerators on the type of the electron-optical system, material, and thickness of the foil for various sizes of extraction windows and the same type of the slot support grids have been presented. We have proposed an analytic model for calculating the temperature of the foil in the unit cell of the support grid. The electron transmittance and absorbance, as well as the temperature regimes of the foils, have been calculated using different methods.

  4. Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator

    SciTech Connect

    Cha, H. J.; Choi, I. W.; Kim, H. T.; Kim, I J.; Nam, K. H.; Jeong, T. M.; Lee, J.

    2012-06-15

    The pointing instability of energetic electron beams generated from a laser-driven accelerator can cause a serious error in measuring the electron spectrum with a magnetic spectrometer. In order to determine a correct electron spectrum, the pointing angle of an electron beam incident on the spectrometer should be exactly defined. Here, we present a method for absolutely calibrating the electron spectrum by monitoring the pointing angle using a scintillating screen installed in front of a permanent dipole magnet. The ambiguous electron energy due to the pointing instability is corrected by the numerical and analytical calculations based on the relativistic equation of electron motion. It is also possible to estimate the energy spread of the electron beam and determine the energy resolution of the spectrometer using the beam divergence angle that is simultaneously measured on the screen. The calibration method with direct measurement of the spatial profile of an incident electron beam has a simple experimental layout and presents the full range of spatial and spectral information of the electron beams with energies of multi-hundred MeV level, despite the limited energy resolution of the simple electron spectrometer.

  5. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  6. High-Energy Laser-Accelerated Electron Beams for Long-Range Interrogation

    SciTech Connect

    Cummingham, N. J.; Banerjee, Sudeep; Ramanathan, Vidya; Powell, Nathan; Chandler-Smith, Nate; Vane, C Randy; Schultz, David Robert; Pozzi, Sara; Clarke, Shaun; Beene, James R; Umstadter, Donald

    2009-01-01

    We are studying the use of 0.1 1.0 GeV laser-accelerated electron beams as active interrogation probes for long-standoff radiography or nuclear activation of concealed special nuclear material. Use of beams in this energy range is largely unexplored, but such beams could provide notable advantages over lower-energy beams and x-rays. High-energy laser-accelerated electrons exhibit large penetration range through air and solids, and low beam divergence for both direct beams and secondary Bremsstrahlung x-rays. We present laboratory measurements of radiography and activation, using the high-power Diodes laser system at the University of Nebraska, as well as MCNP and GEANT Monte Carlo simulation results used to aid experiment design and interpretation.

  7. Target normal sheath acceleration sheath fields for arbitrary electron energy distribution

    SciTech Connect

    Schmitz, Holger

    2012-08-15

    Relativistic electrons, generated by ultraintense laser pulses, travel through the target and form a space charge sheath at the rear surface which can be used to accelerate ions to high energies. If the laser pulse duration is comparable or shorter than the time needed for the electrons to travel through the target, the electrons will not have the chance to form an equilibrium distribution but must be described by a non-equilibrium distribution. We present a kinetic theory of the rear sheath for arbitrary electron distribution function f(E), where E is the electron energy, and evaluate it for different shapes of f(E). We find that the far field is mainly determined by the high energy tail of the distribution, a steep decay of f(E) for high energies results in a small electric field and vice versa. The model is extended to account for electrons escaping the sheath region thereby allowing a finite potential drop over the sheath. The consequences of the model for the acceleration of ions are discussed.

  8. Luminescent tracks of high-energy photoemitted electrons accelerated by plasmonic fields

    NASA Astrophysics Data System (ADS)

    Di Vece, Marcel; Giannakoudakis, Giorgos; Bjørkøy, Astrid; Tang, Wingjohn

    2015-12-01

    The emission of an electron from a metal nanostructure under illumination and its subsequent acceleration in a plasmonic field forms a platform to extend these phenomena to deposited nanoparticles, which can be studied by state-of-the-art confocal microscopy combined with femtosecond optical excitation. The emitted and accelerated electrons leave defect tracks in the immersion oil, which can be revealed by thermoluminescence. These photographic tracks are read out with the confocal microscope and have a maximum length of about 80 μm, which corresponds to a kinetic energy of about 100 keV. This energy is consistent with the energy provided by the intense laser pulse combined with plasmonic local field enhancement. The results are discussed within the context of the rescattering model by which electrons acquire more energy. The visualization of electron tracks originating from plasmonic field enhancement around a gold nanoparticle opens a new way to study with confocal microscopy both the plasmonic properties of metal nano objects as well as high energy electron interaction with matter.

  9. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  10. A method of determining narrow energy spread electron beams from a laser plasma wakefield accelerator using undulator radiation

    SciTech Connect

    Gallacher, J. G.; Anania, M. P.; Brunetti, E.; Ersfeld, B.; Islam, M. R.; Reitsma, A. J. W.; Shanks, R. P.; Wiggins, S. M.; Jaroszynski, D. A.; Budde, F.; Debus, A.; Haupt, K.; Schwoerer, H.; Jaeckel, O.; Pfotenhauer, S.; Rohwer, E.; Schlenvoigt, H.-P.

    2009-09-15

    In this paper a new method of determining the energy spread of a relativistic electron beam from a laser-driven plasma wakefield accelerator by measuring radiation from an undulator is presented. This could be used to determine the beam characteristics of multi-GeV accelerators where conventional spectrometers are very large and cumbersome. Simultaneous measurement of the energy spectra of electrons from the wakefield accelerator in the 55-70 MeV range and the radiation spectra in the wavelength range of 700-900 nm of synchrotron radiation emitted from a 50 period undulator confirm a narrow energy spread for electrons accelerated over the dephasing distance where beam loading leads to energy compression. Measured energy spreads of less than 1% indicates the potential of using a wakefield accelerator as a driver of future compact and brilliant ultrashort pulse synchrotron sources and free-electron lasers that require high peak brightness beams.

  11. Online beam energy measurement of Beijing electron positron collider II linear accelerator.

    PubMed

    Wang, S; Iqbal, M; Liu, R; Chi, Y

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  12. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  13. Influence of asymmetric injection of laser radiation into capillary waveguides on wake acceleration of electrons possessing various injection energies

    NASA Astrophysics Data System (ADS)

    Veisman, M. E.; Kuznetsov, S. V.; Andreev, N. E.

    2016-04-01

    Laser wakefield acceleration of electron bunches possessing various initial injection energies in capillary waveguides is studied in the conditions of an asymmetric input of laser radiation into a waveguide (the propagation direction of laser radiation deviates from the capillary axis or the laser spot is not symmetric). The factors determining the critical angle of the laser radiation input into the capillary, within which the wake acceleration of electrons is close to optimal, have been found. It is shown that in acceleration stages where electron energies are high, the requirements to angular concentricity of the capillary axis and laser radiation focusing are substantially weaker due to the relativistic 'weighting' of the electron mass.

  14. Absolute energy calibration of the Telescope Array fluorescence detector with an electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Beitollahi, M.; Fukushima, M.; Ikeda, D.; Langely, K.; Matthews, J. N.; Sagawa, H.; Shin, B. K.; Thomas, S. B.; Thomson, G. B.

    2013-06-01

    The Electron Light Source(ELS) is a new light source for the absolute energy calibration of cosmic ray Fluorescence Detector(FD) telescopes. The ELS is a compact electron linear accelerator with a typical output of 109 electrons per pulse at 40 MeV. We fire the electron beam vertically into the air 100 m in front of the telescope. The electron beam excites the gases of the atmosphere in the same way as the charged particles of the cosmic ray induced extensive air shower. The gases give off the same light with the same wavelength dependence. The light passes through a small amount of atmosphere and is collected by the same mirror and camera with their wavelength dependence. In this way we can use the electron beam from ELS to make an end-to-end calibration of the telescope. In September 2010, we began operation of the ELS and the FD telescopes observed the fluorescence photons from the air shower which was generated by the electron beam. In this article, we will reort the status of analysis of the absolute energy calibration with data which was taken in September 2010, and beam monitor study in November 2011.

  15. Mount Aragats as a stable electron accelerator for atmospheric high-energy physics research

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot; Hovsepyan, Gagik; Mnatsakanyan, Eduard

    2016-03-01

    Observation of the numerous thunderstorm ground enhancements (TGEs), i.e., enhanced fluxes of electrons, gamma rays, and neutrons detected by particle detectors located on the Earth's surface and related to the strong thunderstorms above it, helped to establish a new scientific topic—high-energy physics in the atmosphere. Relativistic runaway electron avalanches (RREAs) are believed to be a central engine initiating high-energy processes in thunderstorm atmospheres. RREAs observed on Mount Aragats in Armenia during the strongest thunderstorms and simultaneous measurements of TGE electron and gamma-ray energy spectra proved that RREAs are a robust and realistic mechanism for electron acceleration. TGE research facilitates investigations of the long-standing lightning initiation problem. For the last 5 years we were experimenting with the "beams" of "electron accelerators" operating in the thunderclouds above the Aragats research station. Thunderstorms are very frequent above Aragats, peaking in May-June, and almost all of them are accompanied with enhanced particle fluxes. The station is located on a plateau at an altitude 3200 asl near a large lake. Numerous particle detectors and field meters are located in three experimental halls as well as outdoors; the facilities are operated all year round. All relevant information is being gathered, including data on particle fluxes, fields, lightning occurrences, and meteorological conditions. By the example of the huge thunderstorm that took place at Mount Aragats on August 28, 2015, we show that simultaneous detection of all the relevant data allowed us to reveal the temporal pattern of the storm development and to investigate the atmospheric discharges and particle fluxes.

  16. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    SciTech Connect

    Borovskiy, A. V.; Galkin, A. L.; Kalashnikov, M. P.

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  17. The slingshot effect: A possible new laser-driven high energy acceleration mechanism for electrons

    SciTech Connect

    Fiore, Gaetano; Fedele, Renato; Angelis, Umberto de

    2014-11-15

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of the propagations of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation (“slingshot effect”). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or laser-wake-field ones.

  18. An accelerator scenario for a hard X-ray free electron laser combined with high energy electron radiography

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Li, Yiding; Yang, Guojun; Pang, Jian; Li, Yuhui; Li, Peng; Pflueger, Joachim; He, Xiaozhong; Lu, Yaxin; Wang, Ke; Long, Jidong; Zhang, Linwen; Wu, Qiang

    2016-08-01

    In order to study the dynamic response of the material and the physical mechanism of fluid dynamics, an accelerator scenario which can be applied to both hard X-ray free electron laser and high energy electron radiography is proposed. This accelerator is mainly composed of a 12 GeV linac, an undulator branch and an eRad beamline. In order to characterize a sample’s dynamic behavior in situ and real-time with XFEL and eRad simultaneously, the linac should be capable of accelerating the two kinds of beam within the same operation mode. Combining in-vacuum and tapering techniques, the undulator branch can produce more than 1011 photons per pulse in 0.1% bandwidth at 42 keV. Finally, an eRad amplifying beamline with 1:10 ratio is proposed as an important complementary tool for the wider view field and density identification ability. Supported by China Academy of Engineering Physics (2014A0402016) and Institute of Fluid Physics (SFZ20140201)

  19. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  20. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  1. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  2. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  3. Stable Electron Beams With Low Absolute Energy Spread From a LaserWakefield Accelerator With Plasma Density Ramp Controlled Injection

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, E.; Esarey, E.; Leemans,W.P.; Nakamura, K.; Panasenko, D.; Plateau, Guillaume R.; Schroeder, CarlB.; Toth, Csaba; Cary, J.R.

    2007-06-25

    Laser wakefield accelerators produce accelerating gradientsup to hundreds of GeV/m, and recently demonstrated 1-10 MeV energy spreadat energies up to 1 GeV using electrons self-trapped from the plasma.Controlled injection and staging may further improve beam quality bycircumventing tradeoffs between energy, stability, and energyspread/emittance. We present experiments demonstrating production of astable electron beam near 1 MeV with hundred-keV level energy spread andcentral energy stability by using the plasma density profile to controlselfinjection, and supporting simulations. Simulations indicate that suchbeams can be post accelerated to high energies,potentially reducingmomentum spread in laser acceleratorsby 100-fold or more.

  4. Terahertz-driven linear electron acceleration

    SciTech Connect

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  5. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  6. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton acceleratorsmore » with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  7. Low energy spread 100 MeV-1 GeV electron bunches from laserwakefiel d acceleration at LOASIS

    SciTech Connect

    Geddes, C.G.R.; Esarey, E.; Michel, P.; Nagler, B.; Nakamura, K.; Plateau, G.R.; Schroeder, C.B.; Shadwick, B.A.; Toth, Cs.; Van Tilborg,J.; Leemans, W.P.; Hooker, S.M.; Gonsalves, A.J.; Michel, E.; Cary, J.R.; and Bruhwiler, D.

    2006-08-01

    Experiments at the LOASIS laboratory of LBNL recentlydemonstrated production of 100 MeV electron beams with low energy spreadand low divergence from laser wakefield acceleration. The radiationpressure of a 10 TW laser pulse guided over 10 diffraction ranges by aplasma density channel was used to drive an intense plasma wave(wakefield), producing acceleration gradients on the order of 100 GV/m ina mm-scale channel. Beam energy has now been increased from 100 to 1000MeV by using a cm-scale guiding channel at lower density, driven by a 40TW laser, demonstrating the anticipated scaling to higher beam energies.Particle simulations indicate that the low energy spread beams wereproduced from self trapped electrons through the interplay of trapping,loading, and dephasing. Other experiments and simulations are alsounderway to control injection of particles into the wake, and henceimprove beam quality and stability further.

  8. Relativistic electron acceleration by oblique whistler waves

    SciTech Connect

    Yoon, Peter H.; Pandey, Vinay S.; Lee, Dong-Hun

    2013-11-15

    Test-particle simulations of electrons interacting with finite-amplitude, obliquely propagating whistler waves are carried out in order to investigate the acceleration of relativistic electrons by these waves. According to the present findings, an efficient acceleration of relativistic electrons requires a narrow range of oblique propagation angles, close to the whistler resonance cone angle, when the wave amplitude is held constant at relatively low value. For a constant wave propagation angle, it is found that a range of oblique whistler wave amplitudes permits the acceleration of relativistic electrons to O(MeV) energies. An initial distribution of test electrons is shown to form a power-law distribution when plotted in energy space. It is also found that the acceleration is largely uniform in electron pitch-angle space.

  9. Phase motion of accelerated electrons in vacuum laser acceleration

    SciTech Connect

    Hua, J. F.; Lin, Y. Z.; Tang, Ch. X.; Ho, Y. K.; Kong, Q.

    2007-01-15

    The phase stability in the capture and acceleration scenario (CAS) is studied and compared with that of conventional linear electron accelerators (CLEAs). For the CAS case, it has been found that a slow phase slippage occurs due to the difference between the electron velocity and the phase velocity of the longitudinal accelerating electric field. Thus, CAS electrons cannot remain in a fixed small phase region of the accelerating field to obtain a quasimonoenergy gain in contrast to the stability of phase oscillation in CLEAs. Also, the energy spread of the output electron beam for the CAS case cannot be kept as small as the CLEA because there is no good phase bunching phenomenon generated by phase oscillation.

  10. Pulsed Neutron Monitoring at High Energy Electron Accelerators with Silver Lined Proportional Counter

    NASA Astrophysics Data System (ADS)

    Dighe, P. M.; Ghodgaonkar, M. D.; Dhairyawan, M. P.; Haridas, P.

    2007-01-01

    To meet the challenging requirement of pulsed neutron background measurement, which is present around electron accelerators at the Indus-1 facility of the Raja Ramanna Centre for Advanced Technology (RRCAT) Indore, a silver lined proportional counter with 0.2cps/n cm-2s-1 thermal neutron sensitivity has been developed. The detector has been tested for its performance in continuous thermal neutron field at Apsara reactor and in pulsed neutron field at Indus-1 facility. The detector shows ±11% signal linearity at various reactor powers and follows the silver decay scheme during reactor scram experiment. Off-line measurements made in pulsed neutron background at the Indus-1 facility compare well with nuclear track detectors (CR-39). For monitoring on-line neutron flux, electronic gating circuit was used that can switch off the scalar counter unit during the prompt X-ray response of the detector taking trigger pulse from the accelerator and experiments showed that the neutron flux measured by the detector is in close agreement with CR-39 values.

  11. Electron accelerators: History, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Martins, M. N.; Silva, T. F.

    2014-02-01

    This paper will present an outlook on sources of radiation, focusing on electron accelerators. We will review advances that were important for the development of particle accelerators, concentrating on those that led to modern electron accelerators. Electron accelerators are multipurpose machines that deliver beams with energies spanning five orders of magnitude, and are used in applications that range from fundamental studies of particle interactions to cross-linking polymer chains in industrial plants. Each accelerator type presents specific characteristics that make it more suitable for certain applications. Our work will focus on radiation sources for medical applications, dominated by electron linacs (linear accelerators), and those used for research, field where electron rings dominate. We will outline the main technological advances that occurred in the past decades, which made possible the construction of machines fit for clinical environments. Their compactness, efficiency and reliability have been key to their acceptance in clinical applications. This outline will include advances that allowed for the construction of brighter synchrotron light sources, where the relevant beam characteristics are good optical quality and high beam current. The development of insertion devices will also be discussed, as well the development of Free Electron Lasers (FEL). We conclude the review with an outline of the new developments of electron accelerators and the expectations for Energy Recovery Linacs.

  12. Pondermotive acceleration of electrons to GeV energies by a tightly focused ultra-short ultra-intense laser pulse

    NASA Astrophysics Data System (ADS)

    Tian, Youwei; Yu, Wei; Lu, Peixiang; He, Feng; Xu, Han

    2005-12-01

    Laser-driven pondermotive acceleration of electrons in vacuum has been considered using computer simulations. It is demonstrated that a low-energy free electron can be violently accelerated to final kinetic energy of GeV by a tightly focused ultra-short ultra-intense laser pulse. Suitable conditions that are crucial for this phenomenon to occur have been investigated. It is shown that selection of appropriate initial conditions like relative time delay between electron and the laser pulse, electron's incident angle and momentum, laser pulse duration and its focal spot size play important roles in the efficient acceleration scheme.

  13. Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Baker, D. N.; Fennell, J. F.; Jones, A.; Schiller, Q.; Richardson, I. G.; Li, X.; Turner, D. L.; Califf, S.; Claudepierre, S. G.; Wilson, L. B.; Jaynes, A.; Blake, J. B.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Wygant, J. R.

    2016-08-01

    Trapped electrons in Earth's outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impact led to the most powerful geomagnetic storm (minimum Dst = -223 nT at 17 March, 23 UT) observed not only during the Van Allen Probe era but also the entire preceding decade. Magnetospheric response in the outer radiation belt eventually resulted in elevated levels of energized electrons. The CME itself was preceded by a strong IP shock whose immediate effects vis-a-vis electron energization were observed by sensors on board the Van Allen Probes. The comprehensive and high-quality data from the Van Allen Probes enable the determination of the location of the electron injection, timescales, and spectral aspects of the energized electrons. The observations clearly show that ultrarelativistic electrons with energies E > 6 MeV were injected deep into the magnetosphere at L ≈ 3 within about 2 min of the shock impact. However, electrons in the energy range of ≈250 keV to ≈900 keV showed no immediate response to the IP shock. Electric and magnetic fields resulting from the shock-driven compression complete the comprehensive set of observations that provide a full description of the near-instantaneous electron energization.

  14. Electron injection for direct acceleration to multi-GeV energy by a Gaussian laser field under the influence of axial magnetic field

    NASA Astrophysics Data System (ADS)

    Ghotra, Harjit Singh; Kant, Niti

    2016-05-01

    Electron injected in the path of a circularly polarized Gaussian laser beam under the influence of an external axial magnetic field is shown to be accelerated with a several GeV of energy in vacuum. A small angle of injection δ with 0 ∘ < δ < 20 ∘ for a sideway injection of electron about the axis of propagation of laser pulse is suggested for better trapping of electron in laser field and stronger betatron resonance under the influence of axial magnetic field. Such an optimized electron injection with axial magnetic field maximizes the acceleration gradient and electron energy gain with low electron scattering.

  15. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    SciTech Connect

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-08-31

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  16. Phase Stable Net Acceleration of Electrons From a Two-Stage Optical Accelerator

    SciTech Connect

    Sears, Christopher M.S.; Colby, Eric; England, R.J.; Ischebeck, Rasmus; McGuinness, Christopher; Nelson, Janice; Noble, Robert; Siemann, Robert H.; Spencer, James; Walz, Dieter; Plettner, Tomas; Byer, Robert L.; /Stanford U., Phys. Dept.

    2011-11-11

    In this article we demonstrate the net acceleration of relativistic electrons using a direct, in-vacuum interaction with a laser. In the experiment, an electron beam from a conventional accelerator is first energy modulated at optical frequencies in an inverse-free-electron-laser and bunched in a chicane. This is followed by a second stage optical accelerator to obtain net acceleration. The optical phase between accelerator stages is monitored and controlled in order to scan the accelerating phase and observe net acceleration and deceleration. Phase jitter measurements indicate control of the phase to {approx}13{sup o} allowing for stable net acceleration of electrons with lasers.

  17. Neutron Energy and Time-of-flight Spectra Behind the Lateral Shield of a High Energy Electron Accelerator Beam Dump, Part II: Monte Carlo Simulations

    SciTech Connect

    Roesler, Stefan

    2002-09-19

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.

  18. Maximum Energies of Shock-Accelerated Electrons in Young Shell Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Reynolds, Stephen P.; Keohane, Jonathan W.; White, Nicholas E. (Technical Monitor)

    1999-01-01

    Young supernova remnants (SNRs) are often assumed to be the source of cosmic rays up to energies approaching the slight steepening in the cosmic ray spectrum at around 1000 TeV, known as the "knee." We show that the observed X-ray emission of 14 radio-bright shell remnants, including all five historical shells, can be used to put limits on E(sub max), the energy at which the electron energy distribution must steepen from its slope at radio-emitting energies. Most of the remnants show thermal spectra, so any synchrotron component must fall below the observed X-ray fluxes. We obtain upper limits on E(sub max) by considering the most rapid physically plausible cutoff in the relativistic electron distribution, an exponential, which is as sharp or sharper than found in any more elaborate models. This maximally curved model then gives us the highest possible E(sub max) consistent with not exceeding observed X-rays. Our results are thus independent of particular models for the electron spectrum in SNRs. Assuming homogeneous emitting volumes with a constant magnetic field strength of 10 uG, no object could reach 1000 TeV, and only one, Kes 73, has an upper limit on E(sub max), above 100 TeV. All the other remnants have limits at or below 80 TeV. E(sub max) is probably set by the finite remnant lifetime rather than by synchrotron losses for remnants younger than a few thousand years, so that an observed electron steepening should be accompanied by steepening at the same energy for protons. More complicated, inhomogeneous models could allow higher values of E(sub max) in parts of the remnant, but the emission-weighted average value, that characteristic of typical electrons, should obey these limits. The young remnants are not expected to improve much over their remaining lives at producing the highest energy Galactic cosmic rays; if they cannot, this picture of cosmic-ray origin may need major alteration.

  19. Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses.

    PubMed

    Kim, Hyung Taek; Pae, Ki Hong; Cha, Hyuk Jin; Kim, I Jong; Yu, Tae Jun; Sung, Jae Hee; Lee, Seong Ku; Jeong, Tae Moon; Lee, Jongmin

    2013-10-18

    Laser-wakefield acceleration offers the promise of a compact electron accelerator for generating a multi-GeV electron beam using the huge field gradient induced by an intense laser pulse, compared to conventional rf accelerators. However, the energy and quality of the electron beam from the laser-wakefield accelerator have been limited by the power of the driving laser pulses and interaction properties in the target medium. Recent progress in laser technology has resulted in the realization of a petawatt (PW) femtosecond laser, which offers new capabilities for research on laser-wakefield acceleration. Here, we present a significant increase in laser-driven electron energy to the multi-GeV level by utilizing a 30-fs, 1-PW laser system. In particular, a dual-stage laser-wakefield acceleration scheme (injector and accelerator scheme) was applied to boost electron energies to over 3 GeV with a single PW laser pulse. Three-dimensional particle-in-cell simulations corroborate the multi-GeV electron generation from the dual-stage laser-wakefield accelerator driven by PW laser pulses.

  20. Low Energy Electron Cooling and Accelerator Physics for the Heidelberg CSR

    NASA Astrophysics Data System (ADS)

    Fadil, H.; Grieser, M.; von Hahn, R.; Orlov, D.; Schwalm, D.; Wolf, A.; Zajfman, D.

    2006-03-01

    The Cryogenic Storage Ring (CSR) is currently under construction at MPI-K in Heidelberg. The CSR is an electrostatic ring with a total circumference of about 34 m, straight section length of 2.5 m and will store ions in the 20 ˜ 300 keV energy range (E/Q). The cryogenic system in the CSR is expected to cool the inner vacuum chamber down to 2 K. The CSR will be equipped with an electron cooler which has also to serve as an electron target for high resolution recombination experiments. In this paper we present the results of numerical investigations of the CSR lattice with finite element calculations of the deflection and focusing elements of the ring. We also present a layout of the CSR electron cooler which will have to operate in low energy mode to cool 20 keV protons in the CSR, as well as numerical estimations of the cooling times to be expected with this device.

  1. Remote sensing of the energy of Jovian auroral electrons with STIS: a clue to unveil plasma acceleration processes

    NASA Astrophysics Data System (ADS)

    Gerard, Jean-Claude

    2013-10-01

    The polar aurora, an important energy source for the Earth's upper atmosphere, is about two orders of magnitude more intense at Jupiter where it releases approximately 10 GW in Jupiter's thermosphere. So far, HST observations of Jupiter's aurora have concentrated on the morphology and the relationship between the solar wind and the brightness distribution. While STIS-MAMA is still operational, time is now critical to move into a new era where FUV long-slit spectroscopy and the spatial scanning capabilities of HST are combined. We propose to use this powerful tool to remotely sense the characteristics of the precipitated electrons by slewing the spectral slit over the different auroral components. It will then be possible to associate electron energies with spatial auroral components and constrain acceleration mechanisms {field-aligned acceleration, magnetic field reconnection, pitch angle electron scattering} associated with specific emission regions. For this, a combination of FUV imaging with STIS long slit spectroscopy will map the spatial variations of the auroral depth and thus the energy of the precipitated electrons. These results will be compared with current models of the Jovian magnetosphere-ionosphere interactions and will provide key inputs to a 3-D model of the Jupiter's atmosphere global heat budget and dynamics currently under development. This compact timely program is designed to provide a major step forward for a better understanding of the physical interactions taking place in Jupiter's magnetosphere and their effects on giant planets' atmospheres, a likely paradigm for many giant fast spinning planets with massive magnetic field in the universe.

  2. The theory and design of a chirped-pulse inverse free-electron laser: An innovative, compact, high-energy, vacuum-based, electron accelerator

    NASA Astrophysics Data System (ADS)

    Troha, Anthony Lawrence

    As current high-energy accelerator facilities continue to increase in both size and cost, there is a growing need for a relatively small and inexpensive alternative. Numerous experiments over the past decade have shown the inverse free-electron laser (IFEL) to be a feasible laser-driven particle accelerator. In the present work, a new variant of the IFEL is proposed, which uses a short-duration, chirped laser pulse to greatly increase the energy exchange from the drive-laser pulse to the electron bunch. An extensive investigation is then conducted, starting with analytical and numerical studies of the dynamics of an electron interacting with a high-intensity, focused laser pulse. Following a review of the physics behind a free-electron laser (FEL), a detailed analysis of several variants of the IFEL is performed, from which it is determined that an IFEL driven by a chirped laser pulse will not suffer the detrimental effects experienced by other IFEL schemes. The design specifications for the chirped-pulse inverse free-electron laser (CPIFEL) are then obtained from theoretical and computational models of the interaction, which culminates in a device that has an acceleration gradient approaching 1 GeV/m over an interaction distance of less than 5 cm. The acceleration mechanism is very efficient, providing a nearly uniform acceleration to a picosecond-duration charge bunch. The demands on laser technology are stringent, but not extreme. The laser must produce chirped-pulse durations only a few optical cycles long and intensities near 9 x 1016 W/cm2 at the focal plane. The IFEL is also an appealing choice, because it is essentially an FEL functioning in a different operational mode. FEL's are a well-established, familiar technology, routinely and reliably employed in a variety of research facilities throughout the world. Thus, the development of the IFEL has a strong foundation upon which to build, a heritage that will hopefully hasten the realization of a CPIFEL

  3. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    SciTech Connect

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R.

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  4. Final report to US Department of Energy: Cyclotron autoresonance accelerator for electron beam dry scrubbing of flue gases

    SciTech Connect

    Hirshfield, J.L.

    2001-05-25

    Several designs have been built and operated of microwave cyclotron autoresonance accelerators (CARA's) with electron beam parameters suitable for remediation of pollutants in flue gas emissions from coal-burning power plants. CARA designs have also been developed with a TW-level 10.6 micron laser driver for electron acceleration from 50 to 100 MeV, and with UHF drivers for proton acceleration to over 500 MeV. Dose requirements for reducing SO2, NOx, and particulates in flue gas emissions to acceptable levels have been surveyed, and used to optimize the design of an electron beam source to deliver this dose.

  5. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-01-01

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PMID:27074452

  6. Acceleration of electrons in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Shaposhnikov, V. E.; Khodachenko, M. L.; Rucker, H. O.; Panchenko, M.

    2010-03-01

    A consideration of the acceleration mechanism which supplies the fast electrons to the source of Saturnian kilometric radiation (SKR) and an interpretation of the recently reported observational indications of the influence of Titan on the SKR are presented. The proposed mechanism operates by the effect of the different magnetization of the electrons and ions in Titan's ionosphere which in the course of Titan's motion through the Saturnian magnetic field causes the creation of a charge-separation electric field. This field has a component parallel to the magnetic field and accelerates part of the ionospheric electrons (called “runaway electrons”). The performed estimates show that the mechanism accelerates the runaway electrons up to an energy of ˜5 keV. The power of the acceleration mechanism is sufficient for SKR generation and also for the ultraviolet luminescence of Titan's atmosphere. The weakening of the SKR when Titan passes on the dayside of Saturn is due to a decrease of the magnetic field strength near the dayside magnetopause, when the Moon escapes the Saturnian magnetosphere, as well as due to the break in the magnetic connection between the electron acceleration region on Titan and the SKR sources. The latter prevents the penetration of the accelerated electrons into the radiation generation region. When Titan is on the nightside of Saturn, it enters into shell L˜14, which is stretched owing to the ring current. In this case, the electrons that accelerated in the ionosphere of Titan can reach the nightside SKR sources and activate them and therefore being the reason for the Titan influence on the SKR.

  7. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators

    SciTech Connect

    Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N.

    2012-09-15

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  8. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators.

    PubMed

    Silva, T F; Bonini, A L; Lima, R R; Maidana, N L; Malafronte, A A; Pascholati, P R; Vanin, V R; Martins, M N

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  9. Electron Cloud Effects in Accelerators

    SciTech Connect

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  10. Laser-driven electron acceleration in an inhomogeneous plasma channel

    SciTech Connect

    Zhang, Rong; Cheng, Li-Hong; Xue, Ju-Kui

    2015-12-15

    We study the laser-driven electron acceleration in a transversely inhomogeneous plasma channel. We find that, in inhomogeneous plasma channel, the developing of instability for electron acceleration and the electron energy gain can be controlled by adjusting the laser polarization angle and inhomogeneity of plasma channel. That is, we can short the accelerating length and enhance the energy gain in inhomogeneous plasma channel by adjusting the laser polarization angle and inhomogeneity of the plasma channel.

  11. HF Accelerated Electron Fluxes, Spectra, and Ionization

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert C.; Jensen, Joseph B.

    2015-10-01

    Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth's weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145-1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089-1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to -100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057-1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015-1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131-145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038-2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187-195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles

  12. Compression and acceleration of electron bunches to high energies in the interference field of intense laser pulses with tilted amplitude fronts: concept and modelling

    SciTech Connect

    Korobkin, V V; Romanovsky, Mikhail Yu; Trofimov, V A; Shiryaev, O B

    2013-03-31

    A new concept of accelerating electrons by laser radiation is proposed, namely, direct acceleration by a laser field under the conditions of interference of several relativistic-intensity laser pulses with amplitude fronts tilted by the angle 45 Degree-Sign with respect to the phase fronts. Due to such interference the traps moving with the speed of light arise that capture the electrons, produced in the process of ionisation of low-density gas by the same laser radiation. The modelling on the basis of solving the relativistic Newton equation with the appropriate Lorenz force shows that these traps, moving in space, successively collect electrons from the target, compress the resulting electron ensemble in all directions up to the dimensions smaller than the wavelength of the laser radiation and accelerate it up to the energies of the order of a few GeV per electron. (extreme light fields and their applications)

  13. Extrapolation chamber mounted on perspex for calibration of high energy photon and electron beams from a clinical linear accelerator

    PubMed Central

    Ravichandran, R.; Binukumar, J. P.; Sivakumar, S. S.; Krishnamurthy, K.; Davis, C. A.

    2009-01-01

    The objective of the present study is to establish radiation standards for absorbed doses, for clinical high energy linear accelerator beams. In the nonavailability of a cobalt-60 beam for arriving at Nd, water values for thimble chambers, we investigated the efficacy of perspex mounted extrapolation chamber (EC) used earlier for low energy x-rays and beta dosimetry. Extrapolation chamber with facility for achieving variable electrode separations 10.5mm to 0.5mm using micrometer screw was used for calibrations. Photon beams 6 MV and 15 MV and electron beams 6 MeV and 15 MeV from Varian Clinac linacs were calibrated. Absorbed Dose estimates to Perspex were converted into dose to solid water for comparison with FC 65 ionisation chamber measurements in water. Measurements made during the period December 2006 to June 2008 are considered for evaluation. Uncorrected ionization readings of EC for all the radiation beams over the entire period were within 2% showing the consistency of measurements. Absorbed doses estimated by EC were in good agreement with in-water calibrations within 2% for photons and electron beams. The present results suggest that extrapolation chambers can be considered as an independent measuring system for absorbed dose in addition to Farmer type ion chambers. In the absence of standard beam quality (Co-60 radiations as reference Quality for Nd,water) the possibility of keeping EC as Primary Standards for absorbed dose calibrations in high energy radiation beams from linacs should be explored. As there are neither Standard Laboratories nor SSDL available in our country, we look forward to keep EC as Local Standard for hospital chamber calibrations. We are also participating in the IAEA mailed TLD intercomparison programme for quality audit of existing status of radiation dosimetry in high energy linac beams. The performance of EC has to be confirmed with cobalt-60 beams by a separate study, as linacs are susceptible for minor variations in dose

  14. Vacuum electron acceleration by coherent dipole radiation

    SciTech Connect

    Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Hartemann, F.V.; Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Li, K.; Luhmann, N.C. Jr.; Hartemann, F.V.; Unterberg, Z.A.; Kerman, A.K.

    1999-07-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell{close_quote}s equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. {copyright} {ital 1999} {ital The American Physical Society}

  15. Vacuum electron acceleration by coherent dipole radiation.

    PubMed

    Troha, A L; Van Meter, J R; Landahl, E C; Alvis, R M; Unterberg, Z A; Li, K; Luhmann, N C; Kerman, A K; Hartemann, F V

    1999-07-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell's equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. PMID:11969838

  16. Vacuum electron acceleration by coherent dipole radiation.

    PubMed

    Troha, A L; Van Meter, J R; Landahl, E C; Alvis, R M; Unterberg, Z A; Li, K; Luhmann, N C; Kerman, A K; Hartemann, F V

    1999-07-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell's equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically.

  17. Neutron energy and time-of-flight spectra behind the lateral shield of a high energy electron accelerator beam dump. Part II: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Roesler, S.; Liu, J. C.; Rokni, S. H.; Taniguchi, S.

    2003-05-01

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight spectra were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.

  18. Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Vafaei-Najafabadi, N.; An, W.; Clayton, C. E.; Joshi, C.; Marsh, K. A.; Mori, W. B.; Welch, E. C.; Lu, W.; Adli, E.; Allen, J.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; Yakimenko, V.

    2016-03-01

    Ionization injection in a plasma wakefield accelerator was investigated experimentally using two lithium plasma sources of different lengths. The ionization of the helium gas, used to confine the lithium, injects electrons in the wake. After acceleration, these injected electrons are observed as a distinct group from the drive beam on the energy spectrometer. They typically have a charge of tens of pC, an energy spread of a few GeV, and a maximum energy of up to 30 GeV. The emittance of this group of electrons can be many times smaller than the initial emittance of the drive beam. The energy scaling for the trapped charge from one plasma length to the other is consistent with the blowout theory of the plasma wakefield.

  19. Electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Droge, Wolfgang; Meyer, Peter; Evenson, Paul; Moses, Dan

    1989-01-01

    For the period Spetember 1978 to December 1982, 55 solar flare particle events for which the instruments on board the ISEE-3 spacecraft detected electrons above 10 MeV. Combining data with those from the ULEWAT spectrometer electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (less than 1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (more than 1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops.

  20. Calculation of Neutron Time-of-Flight and Energy Spectra Behind Thick Shielding of an Electron Accelerator and Comparison to Experimental Data

    NASA Astrophysics Data System (ADS)

    Roesler, S.

    2002-05-01

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.

  1. Calculation of Neutron Time-of-Flight and Energy Spectra Behind Thick Shielding of an Electron Accelerator and Comparison to Experimental Data

    SciTech Connect

    Roesler, Stefan

    2002-05-06

    Energy spectra of high-energy neutrons and neutron time-of-flight spectra were calculated for the setup of experiment T-454 performed with a NE213 liquid scintillator at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were created by the interaction a 28.7 GeV electron beam in the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shielding. In order to determine the attenuation length of high-energy neutrons additional concrete shielding of various thicknesses was placed outside the existing shielding. The calculations were performed using the FLUKA interaction and transport code. The energy and time-of-flight were recorded for the location of the detector allowing a detailed comparison with the experimental data. A generally good description of the data is achieved adding confidence to the use of FLUKA for the design of shielding for high-energy electron accelerators.

  2. Plasma production for electron acceleration by resonant plasma wave

    NASA Astrophysics Data System (ADS)

    Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  3. Electron dynamics in a plasma focus. [electron acceleration

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.; Winters, P. A.

    1977-01-01

    Results are presented of a numerical integration of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields deduced from experiments. Fields due to two different models are investigated. For the first model, the fields are those due to a circular distribution of axial current filaments. As the current filaments collapse toward the axis, large azimuthal magnetic and axial electric fields are induced. These fields effectively heat the electrons to a temperature of approximately 8 keV and accelerate electrons within the radius of the filaments to high axial velocities. Similar results are obtained for the current-reduction phase of focus formation. For the second model, the fields are those due to a uniform current distribution. Both the current-reduction and the compression phases were studied. These is little heating or acceleration of electrons during the compression phase because the electrons are tied to the magnetic field. However, during the current-reduction phase, electrons near the axis are accelerated toward the center electrode and reach energies of 100 keV. A criterion is obtained which limits the runaway electron current to about 400 A.

  4. Summary of the electron accelerators session

    SciTech Connect

    Prescott, C.Y.

    1988-10-01

    Since the last High Energy Physics Symposium, there has been considerable progress in the field of polarized electron accelerators. Projects well into construction include the SLC, HERA, and LEP. The status of polarized beams for these projects is discussed in this session. Semiclassical and quantum mechanical calculations of polarizing and depolarizing effects are discussed, for both linear colliders and for storage rings. Substantial progress is continuing in the understanding of depolarizing mechanisms for circular machines. Modelling of these machines is underway. Activities with polarized electron beams at Novosibirsk are described. 8 refs.

  5. Electron acceleration in a two-stage laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Li, Ruxin; Liu, Jiansheng; Xia, Changquan; Wang, Wentao; Lu, Haiyang; Wang, Cheng; Deng, Aihua; Li, Wentao; Zhang, Hui; Liang, Xiaoyan; Leng, Yuxin; Lu, Xiaoming; Wang, Cheng; Wang, Jianzhou; Shen, Baifei; Nakajima, Kazuhisa; Xu, Zhizhan

    2012-07-01

    Near-GeV electron beam generation from a two-stage laser wakefield accelerator (LWFA) is reported. Electron injection and acceleration are separated into two distinct LWFA stages and controlled independently from each other by employing two gas cells filled with a He/O2 mixture and pure He gas, respectively. Electrons with a Maxwellian spectrum, generated from the injection stage assisted by ionization-induced injection, are seeded into the acceleration stage with a 3-mm long gas cell and accelerated to produce a 0.8-GeV quasimonoenergetic electron beam for a 45 TW 40 fs laser pulse, corresponding to an acceleration gradient of 187 GV/m. In the injection stage, the produced electron beam properties can be optimized by adjusting the input laser intensity and the plasma density so that quasimonoenergetic electron beams are obtained owing to the self-focusing effects of the laser beam. The ionization-induced injection scheme has been extensively employed for a capillary discharge plasma waveguide to demonstrate channel-guided LWFA beyond 1 GeV. Using a 4-cm capillary made of oxygen containing acrylic resin results in optically guiding 130 TW 55 fs laser pulse that accelerates electrons up to 1.8 GeV in contrast with no electron acceleration in a polyethylene capillary free of oxygen.

  6. Reconstruction of the energy spectrum of electrons accelerated in the April 15, 2002 solar flare based on IRIS X-ray spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Motorina, G. G.; Kudryavtsev, I. V.; Lazutkov, V. P.; Savchenko, M. I.; Skorodumov, D. V.; Charikov, Yu. E.

    2016-04-01

    We reconstruct the energy distribution of electrons accelerated in the April 15, 2002 solar flare on the basis of the data from the IRIS X-ray spectrometer onboard the CORONAS-F satellite. We obtain the solution to the integral equations describing the transformation of the spectrum of X-ray photons during the recording and reconstruction of the spectrum of accelerated electrons in the bremsstrahlung source using the random search method and the Tikhonov regularization method. In this event, we detected a singularity in the electron spectrum associated with the existence of a local minimum in the energy range 40-60 keV, which cannot be detected by a direct method.

  7. Electron acceleration in impulsive solar flares

    SciTech Connect

    Kane, S.R.; Benz, A.O.; Treumann, R.A.

    1982-12-01

    Simultaneous observations of the hard X-ray, microwave, and type III and DCIM (decimetric)radio bursts associated with the 1978 December 4 solar flare have been used to study the physical parameters relevant to the acceleration and propagation of energetic electrons during the impulsive phase of a solar flare. The hard X-ray observations were made with the X-ray spectrometer aboard the ISEE 3 spacecraft. The radio spectra in metric and decimetric bands were recorded with the radiospectrograph located at Durnten, near Zurich, Switzerland. The microwave observations were made at the Sagamore Hill and Bern observatories. The three metric type III bursts coincided with the three most prominent hard X-ray peaks. This is the fist time a clear one-to-one association between single type III bursts and hard X-ray peaks has been established. The average delay of the type III bursts with respect to the X-ray peaks was 0.5 s. The harder the X-ray spectrum, the higher was the drift rate of the associated type III burst. The characteristic electron energies inferred from the drift rate are of the order of 70 keV. The observed increase in the high-frequency cutoff of the metric type III bursts during the impulsive phase has been examined in terms of the decreasing altitude of the electron acceleration/injection region, the increasing hardness of the electron spectrum, and the decreasing acceleration time. A pulsating decimetric continuum (DCIM) was also found to be present during and before the impulsive phase. The DCIM source seems to coincide spatially with the electron acceleration region and the (projected) origin of the associated type II shock.ction region.

  8. Direct Acceleration of Electrons in a Corrugated Plasma Channel

    SciTech Connect

    Palastro, J. P.; Antonsen, T. M.; Morshed, S.; York, A. G.; Layer, B.; Aubuchon, M.; Milchberg, H. M.; Froula, D. H.

    2009-01-22

    Direct laser acceleration of electrons provides a low power tabletop alternative to laser wakefield accelerators. Until recently, however, direct acceleration has been limited by diffraction, phase matching, and material damage thresholds. The development of the corrugated plasma channel [B. Layer et al., Phys. Rev. Lett. 99, 035001 (2007)] has removed all of these limitations and promises to allow direct acceleration of electrons over many centimeters at high gradients using femtosecond lasers [A. G. York et al., Phys Rev. Lett 100, 195001 (2008), J. P. Palastro et al., Phys. Rev. E 77, 036405 (2008)]. We present a simple analytic model of laser propagation in a corrugated plasma channel and examine the laser-electron beam interaction. Simulations show accelerating gradients of several hundred MeV/cm for laser powers much lower than required by standard laser wakefield schemes. In addition, the laser provides a transverse force that confines the high energy electrons on axis, while expelling low energy electrons.

  9. Electron Acceleration by Transient Ion Foreshock Phenomena

    NASA Astrophysics Data System (ADS)

    Wilson, L. B., III; Turner, D. L.

    2015-12-01

    Particle acceleration is a topic of considerable interest in space, laboratory, and astrophysical plasmas as it is a fundamental physical process to all areas of physics. Recent THEMIS [e.g., Turner et al., 2014] and Wind [e.g., Wilson et al., 2013] observations have found evidence for strong particle acceleration at macro- and meso-scale structures and/or pulsations called transient ion foreshock phenomena (TIFP). Ion acceleration has been extensively studied, but electron acceleration has received less attention. Electron acceleration can arise from fundamentally different processes than those affecting ions due to differences in their gyroradii. Electron acceleration is ubiquitous, occurring in the solar corona (e.g., solar flares), magnetic reconnection, at shocks, astrophysical plasmas, etc. We present new results analyzing the dependencies of electron acceleration on the properties of TIFP observed by the THEMIS spacecraft.

  10. Electron energy boosting in laser-wake-field acceleration with external magnetic field B˜1 T and laser prepulses

    NASA Astrophysics Data System (ADS)

    Hosokai, Tomonao; Zhidkov, Alexei; Yamazaki, Atsushi; Mizuta, Yoshio; Uesaka, Mitsuru; Kodama, Ryosuke

    2010-03-01

    Hundred-mega-electron-volt electron beams with quasi-monoenergetic distribution, and a transverse geometrical emittance as small as ˜0.02 π mm mrad are generated by low power (7 TW, 45 fs) laser pulses tightly focused in helium gas jets in an external static magnetic field, B˜1 T. Generation of monoenergetic beams strongly correlates with appearance of a straight, at least 2 mm length plasma channel in a short time before the main laser pulse and with the energy of copropagating picosecond pedestal pulses (PPP). For a moderate energy PPP, the multiple or staged electron self-injection in the channel gives several narrow peaks in the electron energy distribution.

  11. Neutron Energy and Time-of-flight Spectra Behind the Lateral Shield of a High Energy Electron Accelerator Beam Dump,Part I: Measurements

    SciTech Connect

    Roesler, Stefan

    2002-09-24

    Neutron energy and time-of-flight spectra were measured behind the lateral shield of the electron beam dump at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were produced by a 28.7 GeV electron beam hitting the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shield. The measurements were performed using a NE213 organic liquid scintillator behind different thicknesses of the concrete shield of 274 cm, 335 cm, and 396 cm, respectively. The neutron energy spectra between 6 and 800 MeV were obtained by unfolding the measured pulse height spectrum with the detector response function. The attenuation length of neutrons in concrete was then derived. The spectra of neutron time-of-flight between beam on dump and neutron detection by NE213 were also measured. The corresponding experimental results were simulated with the FLUKA Monte Carlo code. The experimental results show good agreement with the simulated results.

  12. Neutron energy and time-of-flight spectra behind the lateral shield of a high energy electron accelerator beam dump. Part I: measurements

    NASA Astrophysics Data System (ADS)

    Taniguchi, S.; Nakamura, T.; Nunomiya, T.; Iwase, H.; Yonai, S.; Sasaki, M.; Rokni, S. H.; Liu, J. C.; Kase, K. R.; Roesler, S.

    2003-05-01

    Neutron energy and time-of-flight spectra were measured behind the lateral shield of the electron beam dump at the Final Focus Test Beam (FFTB) facility at the Stanford Linear Accelerator Center. The neutrons were produced by a 28.7 GeV electron beam hitting the aluminum beam dump of the FFTB which is housed inside a thick steel and concrete shield. The measurements were performed using an NE213 organic liquid scintillator behind different thicknesses of the concrete shield of 274, 335, and 396 cm, respectively. The neutron energy spectra between 6 and 800 MeV were obtained by unfolding the measured pulse height spectrum with the detector response function. The attenuation length of neutrons in concrete was then derived. The spectra of neutron time-of-flight between beam on dump and neutron detection by NE213 were also measured. The corresponding experimental results were simulated with the FLUKA Monte Carlo code. The experimental results show good agreement with the simulated results.

  13. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator.

    PubMed

    Litos, M; Adli, E; An, W; Clarke, C I; Clayton, C E; Corde, S; Delahaye, J P; England, R J; Fisher, A S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Muggli, P; Vafaei-Najafabadi, N; Walz, D; White, G; Wu, Z; Yakimenko, V; Yocky, G

    2014-11-01

    High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a

  14. Free electron laser using Rf coupled accelerating and decelerating structures

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1984-01-01

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  15. Onset of electron acceleration in a flare loop

    SciTech Connect

    Sharykin, Ivan; Liu, Siming; Fletcher, Lyndsay

    2014-09-20

    We carried out a detailed analysis of X-ray and radio observations of a simple flare loop that occurred on 2002 August 12, with the impulsive hard X-ray (HXR) light curves dominated by a single pulse. The emission spectra of the early impulsive phase are consistent with an isothermal model in the coronal loop with a temperature reaching several keV. A power-law high-energy spectral tail is evident near the HXR peak time, in accordance with the appearance of footpoints at high energies, and is well correlated with the radio emission. The energy content of the thermal component keeps increasing gradually after the disappearance of this nonthermal component. These results suggest that electron acceleration only covers the central period of a longer and more gradual energy dissipation process and that the electron transport within the loop plays a crucial role in the formation of the inferred power-law electron distribution. The spectral index of power-law photons shows a very gradual evolution, indicating that the electron accelerator is in a quasi-steady state, which is confirmed by radio observations. These results are consistent with the theory of stochastic electron acceleration from a thermal background. Advanced modeling with coupled electron acceleration and spatial transport processes is needed to explain these observations more quantitatively, which may reveal the dependence of the electron acceleration on the spatial structure of the acceleration region.

  16. Microbunching and coherent acceleration of electrons by subcycle laser pulses

    SciTech Connect

    Rau, B.; Tajima, T.; Hojo, H.

    1997-05-01

    The pick up and acceleration of all plasma electrons irradiated by an intense, subcyclic laser pulse is demonstrated via analytical and numerical calculations. It is shown that the initial low emittance of the plasma electrons is conserved during the process of acceleration, leading to an extremely cold, bunched electron beam. Compression of the electron bunch along the longitudinal coordinate is naturally achieved due to the interaction of electrons and laser pulse. In this paper, the authors find the localized solutions to Maxwell`s equations of a subcyclic laser pulse and use these to determine the acceleration of charged particles and they suggest future application for this acceleration mechanism as low energy particle injector and as electron source for coherent x-ray generation.

  17. Neutron contamination from medical electron accelerators

    SciTech Connect

    Not Available

    1984-01-01

    This report addresses a problem encountered with the use of electron accelerators in radiation therapy. The potential exists for the production of neutrons, in several different ways, when equipment used to generate electrons operates at energies above 10 MeV. The sources of these neutrons and their relative contributions are described. A further section is devoted to the potential hazard from the neutrons which are produced and which represent a contribution to the total radiation dose to the patient. This contribution is not normally included in the calculation of dose delivered to the treatment volume, as performed by the therapist and the medical physicist. The question of whether or not this additional dose constitutes an unacceptable risk to the patient is discussed. The report addresses the hazard to operating personnel from neutrons produced outside the patient's treatment volume. Neutron measurement methods are also addressed. The report concludes with a survey of the published literature relevant to the subject.

  18. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    SciTech Connect

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  19. Measurement of electron clouds in large accelerators by microwave dispersion.

    PubMed

    De Santis, S; Byrd, J M; Caspers, F; Krasnykh, A; Kroyer, T; Pivi, M T F; Sonnad, K G

    2008-03-01

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

  20. Trapping of high-energy electrons into regime of surfatron acceleration by electromagnetic waves in space plasma

    SciTech Connect

    Erokhin, A. N.; Erokhin, N. S.; Milant'ev, V. P.

    2012-05-15

    The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc{sup 2}) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initial particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.

  1. Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    SciTech Connect

    Masson-Laborde, P. E. Teychenné, D.; Mo, M. Z.; Ali, A.; Fedosejevs, R.; Fourmaux, S.; Lassonde, P.; Kieffer, J. C.; Rozmus, W.

    2014-12-15

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional particle-in-cell simulations support this analysis and confirm the scenario.

  2. Electron Acceleration and Radio Noise Storms

    NASA Astrophysics Data System (ADS)

    Vilmer, N.; Trottet, G.

    2008-05-01

    Radio noise storms are radiated by suprathermal electrons accelerated continuously over time scales of hours to days in the vicinity of active regions. Such long-duration electron acceleration may be related to emerging magnetic loops interacting with overlying loops leading to magnetic reconfiguration in the corona. A close spatial and temporal relationship is also sometimes observed between noise storm onsets or enhancements and white light transient activity. For a few cases, noise storm enhancements were found to be associated with flare like sudden energy release in the active region, either as a fully developed flare or, more often as a microwave or soft X-ray brightening without Halpha signature. A few cases have also been reported in which 10-30 keV X-rays from a superhot flaring plasma or from non-thermal electrons have been observed at the onset of the noise storm confirming that a flare-like signature in the low corona could be a necessary condition for noise storms to start. Most of these results were however obtained with no spatial resolution at X-ray wavelengths allowing us to confirm that the flare-like signature was indeed related to the radio noise storm onset. We shall present here some results of a search of X-ray counterparts (observed by RHESSI) at the onset or enhancements of a few radio noise storms observed with the Nançay Radioheliograph. We shall investigate whether X-ray flare-like signatures are seen in close temporal and spatial association with the appearance of the noise storm and briefly discuss the thermal or non thermal nature of the emission as well as its energy content.

  3. Emittance Measurements of Trapped Electrons from a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, N.; Berry, M.; Blumenfeld, I.; Decker, F.-J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.; Siemann, R.; Walz, D.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2007-06-28

    Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC showed trapping of plasma electrons. These trapped electrons appeared on an energy spectrometer with smaller transverse size than the beam driving the wake. A connection is made between transverse size and emittance; due to the spectrometer's resolution, this connection allows for placing an upper limit on the trapped electron emittance. The upper limit for the lowest normalized emittance measured in the experiment is 1 mm {center_dot} mrad.

  4. Theory of electron-cyclotron-resonance laser accelerators

    SciTech Connect

    Chen, C. )

    1992-11-15

    The cyclotron-resonance laser (CRL) accelerator is a novel concept of accelerating continuous charged-particle beams to moderately or highly relativistic energies. This paper discusses prospects and limitations of this concept. In particular, the nonlinear coupling of an intense traveling electromagnetic wave with an electron beam in a guide magnetic field is studied, and the effects of wave dispersion on particle acceleration are analyzed. For a tenuous beam, it is shown in a single-particle theory that the maximum energy gain and the maximum acceleration distance for the beam electrons in CRL accelerators with optimal magnetic taper exhibit power-law scaling on the degree of wave dispersion (measured by the parameter [omega]/[ital ck][sub [parallel

  5. Vacuum electron acceleration by using two variable frequency laser pulses

    SciTech Connect

    Saberi, H.; Maraghechi, B.

    2013-12-15

    A method is proposed for producing a relativistic electron bunch in vacuum via direct acceleration by using two frequency-chirped laser pulses. We consider the linearly polarized frequency-chiped Hermit-Gaussian 0, 0 mode lasers with linear chirp in which the local frequency varies linearly in time and space. Electron motion is investigated through a numerical simulation using a three-dimensional particle trajectory code in which the relativistic Newton's equations of motion with corresponding Lorentz force are solved. Two oblique laser pulses with proper chirp parameters and propagation angles are used for the electron acceleration along the z-axis. In this way, an electron initially at rest located at the origin could achieve high energy, γ=319 with the scattering angle of 1.02{sup ∘} with respect to the z-axis. Moreover, the acceleration of an electron in different initial positions on each coordinate axis is investigated. It was found that this mechanism has the capability of producing high energy electron microbunches with low scattering angles. The energy gain of an electron initially located at some regions on each axis could be greatly enhanced compared to the single pulse acceleration. Furthermore, the scattering angle will be lowered compared to the acceleration by using laser pulses propagating along the z-axis.

  6. Acceleration of electrons in strong beam-plasma interactions

    NASA Astrophysics Data System (ADS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-12-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  7. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  8. Electron acceleration by inertial Alfven waves

    SciTech Connect

    Thompson, B.J.; Lysak, R.L.

    1996-03-01

    Alfven waves reflected by the ionosphere and by inhomogeneities in the Alfven speed can develop an oscillating parallel electric field when electron inertial effects are included. These waves, which have wavelengths of the order of an Earth radius, can develop a coherent structure spanning distances of several Earth radii along geomagnetic field lines. This system has characteristic frequencies in the range of 1 Hz and can exhibit electric fields capable of accelerating electrons in several senses: via Landua resonance, bounce or transit time resonance as discussed by Andre and Eliasson or through the effective potential drop which appears when the transit time of the electrons is much smaller than the wave period, so that the electric fields appear effectively static. A time-dependent model of wave propagation is developed which represents inertial Alfven wave propagation along auroral field lines. The disturbance is modeled as it travels earthward, experiences partial reflections in regions of rapid variation, and finally reflects off a conducting ionosphere to continue propagating antiearthward. The wave experiences partial trapping by the ionospheric and the Alfven speed peaks discussed earlier by Polyakov and Rapoport and Trakhtengerts and Feldstein and later by Lysak. Results of the wave simulation and an accompanying test particle simulation are presented, which indicate that inertial Alfven waves are a possible mechanism for generating electron conic distributions and field-aligned particle precipitation. The model incorporates conservation of energy by allowing electrons to affect the wave via Landau damping, which appears to enhance the effect of the interactions which heat electron populations. 22 refs., 14 figs.

  9. The importance of energetic particle injections and cross-energy and -species interactions to the acceleration and loss of relativistic electrons in Earth's outer radiation belt (invited talk)

    NASA Astrophysics Data System (ADS)

    Turner, Drew; Gkioulidou, Matina; Ukhorskiy, Aleksandr; Gabrielse, Christine; Runov, Andrei; Angelopoulos, Vassilis

    2014-05-01

    Earth's radiation belts provide a natural laboratory to study a variety of physical mechanisms important for understanding the nature of energetic particles throughout the Universe. The outer electron belt is a particularly variable population, with drastic changes in relativistic electron intensities occurring on a variety of timescales ranging from seconds to decades. Outer belt variability ultimately results from the complex interplay between different source, loss, and transport processes, and all of these processes are related to the dynamics of the inner magnetosphere. Currently, an unprecedented number of spacecraft are providing in situ observations of the inner magnetospheric environment, including missions such as NASA's THEMIS and Van Allen Probes and ESA's Cluster and operational monitors such as NOAA's GOES and POES constellations. From a sampling of case studies using multi-point observations, we present examples showcasing the significant importance of two processes to outer belt dynamics: energetic particle injections and wave-particle interactions. Energetic particle injections are transient events that tie the inner magnetosphere to the near-Earth magnetotail; they involve the rapid inward transport of plasmasheet particles into the trapping zone in the inner magnetosphere. We briefly review key concepts and present new evidence from Van Allen Probes, GOES, and THEMIS of how these injections provide: 1. the seed population of electrons that are subsequently accelerated locally to relativistic energies in the outer belt and 2. the source populations of ions and electrons that produce a variety of ULF and VLF waves, which are also important for driving outer belt dynamics via wave-particle interactions. Cases of electron acceleration by chorus waves, losses by plasmaspheric hiss and EMIC waves, and radial transport driven by ULF waves will also be presented. Finally, we discuss the implications of this developing picture of the system, namely how

  10. MESSENGER observations of energetic electron acceleration in Mercury's magnetotail

    NASA Astrophysics Data System (ADS)

    Dewey, Ryan; Slavin, James A.; Baker, Daniel; Raines, Jim; Lawrence, David

    2016-10-01

    Energetic particle bursts within Mercury's magnetosphere have been a source of curiosity and controversy since Mariner 10's flybys. Unfortunately, instrumental effects prevent an unambiguous determination of species, flux, and energy spectrum for the Mariner 10 events. MESSENGER data taken by the Energetic Particle Spectrometer (EPS) have now shown that these energetic particle bursts are composed entirely of electrons. EPS made directional measurements of these electrons from ~30 to 300 keV at 3 s resolution, and while the energy of these electrons sometimes exceeded 200 keV, the energy distributions usually exhibited a cutoff near 100 keV. The Gamma Ray Spectrometer (GRS) has also provided measurements of these electron events, at higher time resolution (10 ms) and energetic threshold (> 50 keV) compared to EPS. We focus on GRS electron events near the plasma sheet in Mercury's magnetotail to identify reconnection-associated acceleration mechanisms. We present observations of acceleration associated with dipolarization events (betratron acceleration), flux ropes (Fermi acceleration), and tail loading/unloading (X-line acceleration). We find that the most common source of energetic electron events in Mercury's magnetosphere are dipolarization events similar to those first observed by Mariner 10. Further, a significant dawn-dusk asymmetry is found with dipolarization-associated energetic particle bursts being more common on the dawn side of the magnetotail.

  11. Ponderomotive Acceleration of Hot Electrons in Tenuous Plasmas

    SciTech Connect

    V. I. Geyko; Fraiman, G. M.; Dodin, I. Y.; Fisch, N. J.

    2009-02-01

    The oscillation-center Hamiltonian is derived for a relativistic electron injected with an arbitrary momentum in a linearly polarized laser pulse propagating in tenuous plasma, assuming that the pulse length is smaller than the plasma wavelength. For hot electrons generated at collisions with ions under intense laser drive, multiple regimes of ponderomotive acceleration are identified and the laser dispersion is shown to affect the process at plasma densities down to 1017 cm-3. Assuming a/Υg << 1, which prevents net acceleration of the cold plasma, it is also shown that the normalized energy Υ of hot electrons accelerated from the initial energy Υo < , Γ does not exceed Γ ~ aΥg, where a is the normalized laser field, and Υg is the group velocity Lorentz factor. Yet Υ ~ Γ is attained within a wide range of initial conditions; hence a cutoff in the hot electron distribution is predicted.

  12. Electron Acceleration in Shock-Shock Interaction: Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Nakanotani, M.; Matsukiyo, S.; Mazelle, C. X.; Hada, T.

    2015-12-01

    Collisionless shock waves play a crucial role in producing high energy particles (cosmic rays) in space. While most of the past studies about particle acceleration assume the presence of a single shock, in space two shocks frequently come close to or even collide with each other. Hietala et al. [2011] observed the collision of an interplanetary shock and the earth's bow shock and the associated acceleration of energetic ions. The kinetic natures of a shock-shock collision has not been well understood. Only the work done by using hybrid simulation was reported by Cargill et al. [1986], in which they focus on a collision of two supercritical shocks and the resultant ion acceleration. We expect similarly that electron acceleration can also occur in shock-shock collision. To investigate the electron acceleration process in a shock-shock collision, we perform one-dimensional full particle-in-cell (PIC) simulations. In the simulation energetic electrons are observed between the two approaching shocks before colliding. These energetic electrons are efficiently accelerated through multiple reflections at the two shocks (Fermi acceleration). The reflected electrons create a temperature anisotropy and excite large amplitude waves upstream via the electron fire hose instability. The large amplitude waves can scatter the energetic electrons in pitch angle so that some of them gain large pitch angles and are easily reflected when they encounter the shocks subsequently. The reflected electrons can sustain, or probably even strengthen, them. We further discuss observational results of an interaction of interplanetary shocks and the earth's bow shock by examining mainly Cluster data. We focus on whether or not electrons are accelerated in the shock-shock interaction.

  13. Laser-plasma interactions from thin tapes for high-energy electron accelerators and seeding compact FELs

    NASA Astrophysics Data System (ADS)

    Shaw, Brian Henry

    This thesis comprises a detailed investigation of the physics of using a plasma mirror (PM) from a tape by reflecting ultrashort pulses from a laser-triggered surface plasma. The tapes used in the characterization of the PM are VHS and computer data storage tape. The tapes are 6.6 m (computer storage tape) and 15 m (VHS) thick. Each tape is 0.5 inches wide, and 10s of meters of tape are spooled using a tape drive; providing thousands of shots on a single reel of tape. The amount of reflected energy of the PM was studied for different input intensities. The fluence was varied by translating the focus of the laser upstream and downstream of the tape, which changed the spot size on the tape surface and hence changed the fluence. This study measured reflectances from both sides of the two tapes, and for input light of both s and p-polarizations. Lastly, an analytic model was developed to understand the reflectance as a function of fluence for each tape material and polarization. Another application that benefits from the advancements of LPA technology is an LPAbased FEL. By sending a high quality electron bunch through an undulator (a periodic structure of positive and negative magnetic poles), the electrons oscillate transversely to the propagation axis and produce radiation. The 1.5 m THUNDER undulator at the BELLA Center has been commissioned using electron beams of 400MeV beams with broad energy spread (35%). To produce a coherent LPA-based FEL, the beam quality would need to improve to sub-percent level energy spread. A seed source could be used to help induce bunching of the electron beam within the undulator. This thesis described the experimental investigation of the physics of using solid-based surface high-harmonic generation (SHHG) from a thin tape as a possible seed source for an FEL. A thin tape placed within centimeters of the undulator's entrance could act as a harmonic generating source, while simultaneously transmitting an electron beam. This removes

  14. HIGH ENERGY PARTICLE ACCELERATOR

    DOEpatents

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  15. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    SciTech Connect

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to be conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.

  16. Energy saver prototype accelerating resonator

    SciTech Connect

    Kerns, Q.; May, M.; Miller, H.W.; Reid, J.; Turkot, F.; Webber, R.; Wildman, D.

    1981-06-01

    A fixed frequency rf accelerating resonator has been built and tested for the Fermilab Energy Saver. The design parameters and prototype resonator test results are given. The resonator features a high permeability nickel alloy resistor which damps unwanted modes and corona rolls designed with the aid of the computer code SUPERFISH. In bench measurements, the prototype resonator has achieved peak accelerating voltages of 500 kV for a 1% duty cycle and cw operation at 360 kV. 4 refs.

  17. Parametric injection for monoenergetic electron acceleration

    NASA Astrophysics Data System (ADS)

    Oguchi, A.; Zhidkov, A.; Takano, K.; Hotta, E.; Nemoto, K.; Nakajima, K.

    2008-05-01

    Electrons are accelerated in the laser wakefield (LWFA). This mechanism has been studied by 2D or 3D Particle In Cell simulation. However, how the electrons are injected in the wakefield is not understood. In this paper, we consider about the process of self -injection and propose new scheme. When plasma electron density modulates, parametric resonance of electron momentum is induced. The parametric resonance depends on laser waist modulation. We carried out 2D PIC simulation with the initial condition decided from resonance condition. Moreover, we analyze experimental result that generated 200-250 MeV monoenergetic electron beam with 400TW intense laser in CAEP in China.

  18. Inverse free-electron laser accelerator

    SciTech Connect

    Pellegrini, C.; Campisi, R.

    1982-01-01

    We first describe the basic physical properties of an inverse free-electron laser and make an estimate of the order of magnitude of the accelerating field obtainable with such a system; then apply the general ideas to the design of an actual device and through this example we give a more accurate evaluation of the fundamental as well as the technical limitations that this acceleration scheme imposes.

  19. Physics of laser-driven plasma-based electron accelerators

    SciTech Connect

    Esarey, E.; Schroeder, C. B.; Leemans, W. P.

    2009-07-15

    Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.

  20. Secondary electron emission from plasma processed accelerating cavity grade niobium

    NASA Astrophysics Data System (ADS)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  1. A count rate based contamination control standard for electron accelerators

    SciTech Connect

    May, R.T.; Schwahn, S.O.

    1996-12-31

    Accelerators of sufficient energy and particle fluence can produce radioactivity as an unwanted byproduct. The radioactivity is typically imbedded in structural materials but may also be removable from surfaces. Many of these radionuclides decay by positron emission or electron capture; they often have long half lives and produce photons of low energy and yield making detection by standard devices difficult. The contamination control limit used throughout the US nuclear industry and the Department of Energy is 1,000 disintegrations per minute. This limit is based on the detection threshold of pancake type Geiger-Mueller probes for radionuclides of relatively high radiotoxicity, such as cobalt-60. Several radionuclides of concern at a high energy electron accelerator are compared in terms of radiotoxicity with radionuclides commonly found in the nuclear industry. Based on this comparison, a count-rate based contamination control limit and associated measurement strategy is proposed which provides adequate detection of contamination at accelerators without an increase in risk.

  2. Millisecond newly born pulsars as efficient accelerators of electrons.

    PubMed

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 10(18) eV for parameters characteristic of a young star.

  3. Millisecond newly born pulsars as efficient accelerators of electrons

    NASA Astrophysics Data System (ADS)

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-09-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 1018 eV for parameters characteristic of a young star.

  4. Millisecond newly born pulsars as efficient accelerators of electrons

    PubMed Central

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 1018 eV for parameters characteristic of a young star. PMID:26403155

  5. Millisecond newly born pulsars as efficient accelerators of electrons.

    PubMed

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-01-01

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 10(18) eV for parameters characteristic of a young star. PMID:26403155

  6. Relativistic electrons near geostationary orbit: Evidence for internal magnetospheric acceleration

    SciTech Connect

    Baker, D. N.; Blake, J. B.; Callis, L. B.; Belian, R. D.; Cayton, T. E.

    1989-06-01

    At times, relativistic electron fluxes in Earth's outer magnetosphere are not obviously related to an external (Jovian or solar) source. This finding suggests that an internal magnetospheric acceleration mechanism may operate under some circumstances. A possible mechanism identified for Jupiter's magnetosphere could also be considered in the terrestrial case. Such a model requires the substorm- generation of a spectrally-soft electron component with subsequent inward radial diffusion (violating the third adiabatic invariant). A large electron energy gain transverse to the magnetic field occurs in this process. Eventually, deep within the magnetosphere, substantial pitch angle scattering occurs violating all adiabatic invariants. Then, at low L-values, there occurs an energy-preserving outward transport of energetic electrons near the mirror points. This leads to a return of the accelerated population to the outer magnetosphere. Such low-altitude processes should result in ''conic'' or ''butterfly'' pitch angle distributions at very high energies as the electrons execute trans-L diffusion at the mirror altitudes and then are magnetically focussed near the equator. Data collected concurrently at geostationary orbit at three widely-spaced local times during a relativisic electron event show a butterfly pitch angle distribution, while lower energy electrons simultaneously show pancake-like distributions. The butterfly pitch angle distributions appear in /similar to/25% of the examined relativistic electron events, thereby providing support for acceleration by a recirculation process. /copyright/ American Geophysical Union 1989

  7. Generation of attosecond electron packets via conical surface plasmon electron acceleration

    NASA Astrophysics Data System (ADS)

    Greig, S. R.; Elezzabi, A. Y.

    2016-01-01

    We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets.

  8. The mechanisms of electron heating and acceleration during magnetic reconnection

    SciTech Connect

    Dahlin, J. T. Swisdak, M.; Drake, J. F.

    2014-09-15

    The heating of electrons in collisionless magnetic reconnection is explored in particle-in-cell simulations with non-zero guide fields so that electrons remain magnetized. In this regime, electric fields parallel to B accelerate particles directly, while those perpendicular to B do so through gradient-B and curvature drifts. The curvature drift drives parallel heating through Fermi reflection, while the gradient B drift changes the perpendicular energy through betatron acceleration. We present simulations in which we evaluate each of these mechanisms in space and time in order to quantify their role in electron heating. For a case with a small guide field (20% of the magnitude of the reconnecting component), the curvature drift is the dominant source of electron heating. However, for a larger guide field (equal to the magnitude of the reconnecting component) electron acceleration by the curvature drift is comparable to that of the parallel electric field. In both cases, the heating by the gradient B drift is negligible in magnitude. It produces net cooling because the conservation of the magnetic moment and the drop of B during reconnection produce a decrease in the perpendicular electron energy. Heating by the curvature drift dominates in the outflow exhausts where bent field lines expand to relax their tension and is therefore distributed over a large area. In contrast, the parallel electric field is localized near X-lines. This suggests that acceleration by parallel electric fields may play a smaller role in large systems where the X-line occupies a vanishing fraction of the system. The curvature drift and the parallel electric field dominate the dynamics and drive parallel heating. A consequence is that the electron energy spectrum becomes extremely anisotropic at late time, which has important implications for quantifying the limits of electron acceleration due to synchrotron emission. An upper limit on electron energy gain that is substantially higher than

  9. THE SPECIFIC ACCELERATION RATE IN LOOP-STRUCTURED SOLAR FLARES-IMPLICATIONS FOR ELECTRON ACCELERATION MODELS

    SciTech Connect

    Guo, Jingnan; Emslie, A. Gordon; Piana, Michele E-mail: piana@dima.unige.it

    2013-03-20

    We analyze electron flux maps based on RHESSI hard X-ray imaging spectroscopy data for a number of extended coronal-loop flare events. For each event, we determine the variation of the characteristic loop length L with electron energy E, and we fit this observed behavior with models that incorporate an extended acceleration region and an exterior 'propagation' region, and which may include collisional modification of the accelerated electron spectrum inside the acceleration region. The models are characterized by two parameters: the plasma density n in, and the longitudinal extent L{sub 0} of, the acceleration region. Determination of the best-fit values of these parameters permits inference of the volume that encompasses the acceleration region and of the total number of particles within it. It is then straightforward to compute values for the emission filling factor and for the specific acceleration rate (electrons s{sup -1} per ambient electron above a chosen reference energy). For the 24 events studied, the range of inferred filling factors is consistent with a value of unity. The inferred mean value of the specific acceleration rate above E{sub 0} = 20 keV is {approx}10{sup -2} s{sup -1}, with a 1{sigma} spread of about a half-order-of-magnitude above and below this value. We compare these values with the predictions of several models, including acceleration by large-scale, weak (sub-Dreicer) fields, by strong (super-Dreicer) electric fields in a reconnecting current sheet, and by stochastic acceleration processes.

  10. Direct longitudinal laser acceleration of electrons in free space

    NASA Astrophysics Data System (ADS)

    Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.

    2016-02-01

    Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser

  11. Electron accelerators for industrial processing--a review

    SciTech Connect

    Scharf, Waldemar; Wieszczycka, Wioletta

    1999-06-10

    The applications of over 1000 electron beam (EB) accelerator processors used recently worldwide span technological fields from material modification to medical sterilization and food processing. The performance level achieved by the main manufacturers is demonstrated by some selected parameters of processors in the energy range from 0.1 MeV to 10 MeV. The design of the new generation of low cost compact in-line and stand-alone accelerators is discussed.

  12. Characteristics of betatron radiation from direct-laser-accelerated electrons.

    PubMed

    Huang, T W; Robinson, A P L; Zhou, C T; Qiao, B; Liu, B; Ruan, S C; He, X T; Norreys, P A

    2016-06-01

    Betatron radiation from direct-laser-accelerated electrons is characterized analytically and numerically. It is shown here that the electron dynamics is strongly dependent on a self-similar parameter S(≡n_{e}/n_{c}a_{0}). Both the electron transverse momentum and energy are proportional to the normalized amplitude of laser field (a_{0}) for a fixed value of S. As a result, the total number of radiated photons scales as a_{0}^{2}/sqrt[S] and the energy conversion efficiency of photons from the accelerated electrons scales as a_{0}^{3}/S. The particle-in-cell simulations agree well with the analytical scalings. It is suggested that a tunable high-energy and high-flux radiation source can be achieved by exploiting this regime. PMID:27415373

  13. Electron acceleration via high contrast laser interacting with submicron clusters

    SciTech Connect

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi; Faenov, Anatoly; Pikuz, Tatiana; Li Dazhang; Sheng Zhengming; Zhang Jie

    2012-01-02

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  14. Correlation between laser accelerated MeV proton and electron beams using simple fluid model for target normal sheath acceleration

    SciTech Connect

    Tampo, M.; Awano, S.; Nakamura, H.; Nakatsutsumi, M.; Tanimoto, T.; Yabuuchi, T.; Bolton, P. R.; Kondo, K.; Mima, K.; Mori, Y.; Stephens, R. B.; Tanaka, K. A.; Kodama, R.

    2010-07-15

    High density energetic electrons that are created by intense laser plasma interactions drive MeV proton acceleration. The correlation between accelerated MeV protons and escaped electrons is experimentally investigated at laser intensities in the range of 10{sup 18}-10{sup 19} W/cm{sup 2} with S-polarization. Observed proton maximum energies are linearly proportional to escaped electron slope temperatures with a scaling coefficient of about 10. In the context of the simple analytical fluid model for transverse normal sheath acceleration, hot electron sheath density near the target rear surface can be estimated if an empirical acceleration time is assumed.

  15. A Spin Manipulator for Electron Accelerators

    SciTech Connect

    Dunham, Bruce; Sinclair, Charles; Engwall, David; Heddle, David; Cardman, Lawrence

    1992-06-01

    We have designed and constructed a novel optical system capable of manipulating the orientation of the polarization direction. vector P, of a 100 keV beam of polarized electrons relative to the momentum vector, k, in an arbitrary manner. This spin manipulator is fully compatible with the UHV requirements of the photocathode sources that are typically used for accelerator-based experiments involving polarized electrons. We describe the design and operation of the system and its components, and document its performance.

  16. Electron capture acceleration channel in a slit laser beam

    SciTech Connect

    Wang, P. X.; Scheid, W.; Ho, Y. K.

    2007-03-12

    Using numerical simulations, the authors find that the electrons can be captured and accelerated to high energies (GeV) in a slit laser beam with an intensity of I{lambda}{sup 2}{approx}10{sup 20} W/cm{sup 2} {mu}m{sup 2}, where {lambda} is the laser wavelength in units of {mu}m. The range of the optimum incident energy is very wide, even up to GeV. These results are of interest for experiments because the relatively low intensity can be achieved with present chirped pulse amplification technique and a wide range of incident energies means that a multistage acceleration is possible.

  17. PARTICLE ACCELERATION IN RELATIVISTIC MAGNETIZED COLLISIONLESS ELECTRON-ION SHOCKS

    SciTech Connect

    Sironi, Lorenzo; Spitkovsky, Anatoly E-mail: anatoly@astro.princeton.edu

    2011-01-10

    We investigate shock structure and particle acceleration in relativistic magnetized collisionless electron-ion shocks by means of 2.5-dimensional particle-in-cell simulations with ion-to-electron mass ratios (m{sub i} /m{sub e} ) ranging from 16 to 1000. We explore a range of inclination angles between the pre-shock magnetic field and the shock normal. In 'subluminal' shocks, where relativistic particles can escape ahead of the shock along the magnetic field lines, ions are efficiently accelerated via the first-order Fermi process. The downstream ion spectrum consists of a relativistic Maxwellian and a high-energy power-law tail, which contains {approx}5% of ions and {approx}30% of ion energy. Its slope is -2.1 {+-} 0.1. The scattering is provided by short-wavelength non-resonant modes produced by Bell's instability, whose growth is seeded by the current of shock-accelerated ions that propagate ahead of the shock. Upstream electrons enter the shock with lower energy than ions (albeit by only a factor of {approx}5 << m{sub i} /m{sub e} ), so they are more strongly tied to the field. As a result, only {approx}1% of the incoming electrons are accelerated at the shock before being advected downstream, where they populate a steep power-law tail (with slope -3.5 {+-} 0.1). For 'superluminal' shocks, where relativistic particles cannot outrun the shock along the field, the self-generated turbulence is not strong enough to permit efficient Fermi acceleration, and the ion and electron downstream spectra are consistent with thermal distributions. The incoming electrons are heated up to equipartition with ions, due to strong electromagnetic waves emitted by the shock into the upstream. Thus, efficient electron heating ({approx}>15% of the upstream ion energy) is the universal property of relativistic electron-ion shocks, but significant nonthermal acceleration of electrons ({approx}>2% by number, {approx}>10% by energy, with slope flatter than -2.5) is hard to achieve in

  18. Gamma-ray emission and electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe; Mctiernan, James M.; Marschhauser, Holger

    1994-01-01

    Recent observations have extended the spectra of the impulsive phase of flares to the GeV range. Such high-energy photons can be produced either by electron bremsstrahlung or by decay of pions produced by accelerated protons. In this paper we investigate the effects of processes which become important at high energies. We examine the effects of synchrotron losses during the transport of electrons as they travel from the acceleration region in the corona to the gamma-ray emission sites deep in the chromosphere and photosphere, and the effects of scattering and absorption of gamma rays on their way from the photosphere to space instruments. These results are compared with the spectra from so-called electron-dominated flares, observed by GRS on the Solar Maximum Mission, which show negligible or no detectable contribution from accelerated protons. The spectra of these flares show a distinct steepening at energies below 100 keV and a rapid falloff at energies above 50 MeV. Following our earlier results based on lower energy gamma-ray flare emission we have modeled these spectra. We show that neither the radiative transfer effects, which are expected to become important at higher energies, nor the transport effects (Coulomb collisions, synchrotron losses, or magnetic field convergence) can explain such sharp spectral deviations from a simple power law. These spectral deviations from a power law are therefore attributed to the acceleration process. In a stochastic acceleration model the low-energy steepening can be attributed to Coulomb collision and the rapid high-energy steepening can result from synchrotron losses during the acceleration process.

  19. Ponderomotive acceleration of electrons by a laser pulse in magnetized plasma

    SciTech Connect

    Sharma, Anamika; Tripathi, V. K.

    2009-04-15

    Electron acceleration by a circularly polarized Gaussian laser pulse in magnetized plasma is investigated in the limit of frozen refractive index. The electron acceleration depends on the ratio of laser frequency to electron cyclotron frequency, amplitude of the laser pulse and plasma density. Near Doppler shifted cyclotron resonance the electron acquires maximum energy. In this scheme, 0.10 MeV electrons can be effectively accelerated to 1-100 MeV using moderate intensity laser pulse.

  20. Stochastic electron acceleration during turbulent reconnection in strong shock waves

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yosuke

    2016-04-01

    Acceleration of charged particles is a fundamental topic in astrophysical, space and laboratory plasmas. Very high energy particles are commonly found in the astrophysical and planetary shocks, and in the energy releases of solar flares and terrestrial substorms. Evidence for relativistic particle production during such phenomena has attracted much attention concerning collisionless shock waves and magnetic reconnection, respectively, as ultimate plasma energization mechanisms. While the energy conversion proceeds macroscopically, and therefore the energy mostly flows to ions, plasma kinetic instabilities excited in a localized region have been considered to be the main electron heating and acceleration mechanisms. We present that efficient electron energization can occur in a much larger area during turbulent magnetic reconnection from the intrinsic nature of a strong collisionless shock wave. Supercomputer simulations have revealed a multiscale shock structure comprising current sheets created via an ion-scale Weibel instability and resulting energy dissipation through magnetic reconnection. A part of the upstream electrons undergoes first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. The dynamics has shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves.

  1. Proton laser accelerator by means of the inverse free electron laser mechanism

    SciTech Connect

    Zakowicz, W.

    1984-07-01

    The inverse free electron laser accelerator is considered to be a potential high gradient electron accelerator. In this accelerator electrons oscillating in the magnetic field of a wiggler can gain energy from a strong laser beam propagating collinearly. The same mechanism of acceleration can work for protons and all other heavier particles. One can expect that the proton acceleration will be less effective, as it is more difficult to wiggle a heavier particle. It is indeed so, but this less efficient coupling of the proton and laser beam is partly compensated by the negligible radiative losses. These losses impose restrictions on the electron acceleration above 100 Gev. 6 references, 2 figures.

  2. Gamma-ray generation using laser-accelerated electron beam

    NASA Astrophysics Data System (ADS)

    Park, Seong Hee; Lee, Ho-Hyung; Lee, Kitae; Cha, Yong-Ho; Lee, Ji-Young; Kim, Kyung-Nam; Jeong, Young Uk

    2011-06-01

    A compact gamma-ray source using laser-accelerated electron beam is being under development at KAERI for nuclear applications, such as, radiography, nuclear activation, photonuclear reaction, and so on. One of two different schemes, Bremsstrahlung radiation and Compton backscattering, may be selected depending on the required specification of photons and/or the energy of electron beams. Compton backscattered gamma-ray source is tunable and quasimonochromatic and requires electron beams with its energy of higher than 100 MeV to produced MeV photons. Bremsstrahlung radiation can generate high energy photons with 20 - 30 MeV electron beams, but its spectrum is continuous. As we know, laser accelerators are good for compact size due to localized shielding at the expense of low average flux, while linear RF accelerators are good for high average flux. We present the design issues for a compact gamma-ray source at KAERI, via either Bremsstrahlung radiation or Compton backscattering, using laser accelerated electron beams for the potential nuclear applications.

  3. Drift mechanism of laser-induced electron acceleration in vacuum

    NASA Astrophysics Data System (ADS)

    Morgovsky, L.

    2015-12-01

    Laser-induced electron acceleration in vacuum is possible due to the ejection of electrons from the beam as a consequence of the transverse drift orthogonal to the propagation direction. The transverse drift is derived from the general solution of the equations of motion of the electrons in the field of a plane electromagnetic wave with arbitrary polarization. It is shown that the energy gain is proportional to the square of the field strength additionally modulated by the function of the injection and ejection phases. In particular, for a linearly polarized beam this function is reduced to the squared difference between the cosines of these phases. The finite laser pulse duration restricts the range of the field strength suitable for direct electron acceleration in vacuum within certain limits. It is demonstrated that the high efficiency of energy transfer from the laser wave into the kinetic energy of the accelerated electrons demands phase matching between the electron quiver phase at the exit point and the phase of the energy transfer.

  4. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  5. Electron acceleration in the near-Earth magnetotail in substorms

    NASA Astrophysics Data System (ADS)

    Asano, Y.; Shinohara, I.; Retino, A.; Daly, P.; Kronberg, E.; Khotyaintsev, Y.; Vaivads, A.; Owen, C. J.; Fazakerley, A. N.; Nakamura, R.; Baumjohann, W.; Nagai, T.; Takada, T.; Miyashita, Y.; Fujimoto, M.; Lucek, E. A.; Reme, H.

    2008-12-01

    We investigate substorm events in the near-Earth magnetotail in order to examine acceleration signatures of electrons using data from the Cluster satellites with separation larger than 1 RE. Thermal electrons detected by the PEACE instrument and the high-energy electron flux from the RAPID instrument are analyzed and compared with simultaneous magnetic field, electric field, and ion observations from FGM, EFW, and CIS instruments, respectively. It is found that electrons with energies up to a few hundreds keV exhibit the hardest spectra in the initial stage of the events. These electrons are associated with fast Earthward ion flows and the enhancement of the dipolar magnetic field and the electric field. Although most of the distributions are isotropic, electrons sometimes show the preferential increase of the perpendicular flux, suggesting the effect of betatron acceleration. These electron signatures last only for about one minute, and after that either the flux quickly decreases or a more isotropic flux is observed. The spectra gradually become softer in the course of substorms, and the spectra are softer than the initial state in some cases. The soft spectra are sometimes associated with the temporal drop of the perpendicular electrons. The larger flux is observed by the satellite closer to the Earth, while the satellite on the tailward side shows a faster response to magnetotail perturbations. We discuss possible acceleration mechanisms and the flux transport in the magnetotail.

  6. Statistical acceleration of electrons by lower-hybrid turbulence

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Gaffey, J. D., Jr.; Liberman, B.

    1981-01-01

    The statistical acceleration of electrons along an ambient magnetic field by large-amplitude lower-hybrid turbulence is discussed. Perturbations driven by a crossfield current and propagating nearly perpendicular to the applied magnetic field are considered. It is assumed that the instability saturates rapidly and that the fluctuating electric field is predominantly electrostatic. If the turbulence is characterized by a spectrum of small parallel wavenumbers, such that the parallel phase velocity of the waves is greater than the electron thermal velocity, then the turbulence can only accelerate electrons moving with large velocities along the magnetic field. The quasi-linear diffusion equation is solved using a Green's function technique, assuming a power law spectral energy density. The time evolution of an initial Maxwellian distribution is given and the time rate of change of the mean electron energy is calculated for various cases.

  7. Electron acceleration in long scale laser - plasma interactions

    NASA Astrophysics Data System (ADS)

    Kamperidis, Christos; Mangles, Stuart P. D.; Nagel, Sabrina R.; Bellei, Claudio; Krushelnick, Karl; Najmudin, Zulfikar; Bourgeois, Nicola; Marques, Jean Raphael; Kaluza, Malte C.

    2006-10-01

    Broad energy electron bunches are produced through the Self-Modulated Laser Wakefield Acceleration scheme at the 30J, 300 fsec laser, LULI, France, with long scale underdense plasmas, created in a He filled gas cell and in He gas jet nozzles of various lengths. With c.τlaser>>λplasma, electrons reached Emax ˜ 200MeV. By carefully controlling the dynamics of the interaction and by simultaneous observations of the electron energy spectra and the forward emitted optical spectrum, we found that a plasma density threshold (˜5.10^18 cm-3) exists for quasi-monoenergetic (˜30MeV) features to appear. The overall plasma channel size was inferred from the collected Thomson scattered light. 2D PIC simulations indicate that the main long laser pulse breaks up into small pulselets that eventually get compressed and tightly focused inside the first few plasma periods, leading to a bubble like acceleration of electron bunches.

  8. Laser-driven acceleration of subrelativistic electrons near a nanostructured dielectric grating: From acceleration via higher spatial harmonics to necessary elements of a dielectric accelerator

    NASA Astrophysics Data System (ADS)

    McNeur, Josh; Kozak, Martin; Schönenberger, Norbert; Li, Ang; Tafel, Alexander; Hommelhoff, Peter

    2016-09-01

    The experimental setup that allows for the observation of energy gain of electrons interacting with Dielectric Laser Accelerators (DLAs) is reviewed. Moreover, recent results, including acceleration due to electron interaction with third, fourth and fifth spatial harmonics of a nanostructured grating are discussed and an extended outlook is given.

  9. Acceleration of free electrons in a symmetric evanescent wave

    NASA Astrophysics Data System (ADS)

    Frandsen, B. R.; Glasgow, S. A.; Peatross, J. B.

    2006-09-01

    The possibility of accelerating free electrons in a vacuum gap between closely spaced dielectric materials is explored. Plane waves impinging symmetrically on the gap from either side at oblique incidence produce an evanescent wave with net electric field along the direction of propagation. Near the critical angle, the evanescent wave propagates at the vacuum speed of light. A theoretical development and numerical simulations show that free electrons in the gap can be accelerated and accumulate energy indefinitely. This approach lies outside the purview of the Lawson-Woodward theorem, which does not apply in the vicinity of a medium. Damage thresholds of materials restrict the light intensity to far below that achievable by current high-power lasers. This limits the particle energy that might be achieved from an accelerator based on this approach.

  10. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron

  11. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  12. Electron acceleration in the heart of the Van Allen radiation belts.

    PubMed

    Reeves, G D; Spence, H E; Henderson, M G; Morley, S K; Friedel, R H W; Funsten, H O; Baker, D N; Kanekal, S G; Blake, J B; Fennell, J F; Claudepierre, S G; Thorne, R M; Turner, D L; Kletzing, C A; Kurth, W S; Larsen, B A; Niehof, J T

    2013-08-30

    The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth's magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA's Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

  13. Undulator radiation driven by laser-wakefield accelerator electron beams

    NASA Astrophysics Data System (ADS)

    Wiggins, S. M.; Anania, M. P.; Welsh, G. H.; Brunetti, E.; Cipiccia, S.; Grant, P. A.; Reboredo, D.; Manahan, G.; Grant, D. W.; Jaroszynski, D. A.

    2015-05-01

    The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma accelerators for the production of ultra-short electron bunches with subsequent generation of coherent, bright, short-wavelength radiation pulses. The new Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) will develop a wide range of applications utilising such light sources. Electron bunches can be propagated through a magnetic undulator with the aim of generating fully coherent free-electron laser (FEL) radiation in the ultra-violet and Xrays spectral ranges. Demonstration experiments producing spontaneous undulator radiation have been conducted at visible and extreme ultra-violet wavelengths but it is an on-going challenge to generate and maintain electron bunches of sufficient quality in order to stimulate FEL behaviour. In the ALPHA-X beam line experiments, a Ti:sapphire femtosecond laser system with peak power 20 TW has been used to generate electron bunches of energy 80-150 MeV in a 2 mm gas jet laser-plasma wakefield accelerator and these bunches have been transported through a 100 period planar undulator. High peak brilliance, narrow band spontaneous radiation pulses in the vacuum ultra-violet wavelength range have been generated. Analysis is provided with respect to the magnetic quadrupole beam transport system and subsequent effect on beam emittance and duration. Requirements for coherent spontaneous emission and FEL operation are presented.

  14. Performance of photocathode rf gun electron accelerators

    SciTech Connect

    Ben-Zvi, I.

    1993-01-01

    In Photo-Injectors (PI) electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense rf fields in a resonant cavity. The best known advantage of this technique is the high peak current with a good emittance (high brightness). This is important for short wavelength Free-Electron Lasers and linear colliders. PIs are in operation in many electron accelerator facilities and a large number of new guns are under construction. Some applications have emerged, providing, for example, very high pulse charges. PIs have been operated over a wide range of frequencies, from 144 to 3000 MHz (a 17 GHz gun is being developed). An exciting new possibility is the development of superconducting PIs. A significant body of experimental and theoretical work exists by now, indicating the criticality of the accelerator elements that follow the gun for the preservation of the PI's performance as well as possible avenues of improvements in brightness. Considerable research is being done on the laser and photocathode material of the PI, and improvement is expected in this area.

  15. Performance of photocathode rf gun electron accelerators

    SciTech Connect

    Ben-Zvi, I.

    1993-07-01

    In Photo-Injectors (PI) electron guns, electrons are emitted from a photocathode by a short laser pulse and then accelerated by intense rf fields in a resonant cavity. The best known advantage of this technique is the high peak current with a good emittance (high brightness). This is important for short wavelength Free-Electron Lasers and linear colliders. PIs are in operation in many electron accelerator facilities and a large number of new guns are under construction. Some applications have emerged, providing, for example, very high pulse charges. PIs have been operated over a wide range of frequencies, from 144 to 3000 MHz (a 17 GHz gun is being developed). An exciting new possibility is the development of superconducting PIs. A significant body of experimental and theoretical work exists by now, indicating the criticality of the accelerator elements that follow the gun for the preservation of the PI`s performance as well as possible avenues of improvements in brightness. Considerable research is being done on the laser and photocathode material of the PI, and improvement is expected in this area.

  16. Trends for Electron Beam Accelerator Applications in Industry

    NASA Astrophysics Data System (ADS)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  17. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    SciTech Connect

    Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.; Nakamura, K.; Robinson, K.E.; Schroeder, C.B.; Toth, C.

    2009-05-04

    to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision. The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.

  18. Energetics of Accelerated Ions and Electrons in Flares

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Mugler, A. J.; Murphy, R. J.; Schwartz, R. A.

    2001-12-01

    We have analyzed hard X-ray and gamma-ray emission from 176 solar flares observed from 1980 to 1989 by the Solar Maximum Mission HXRBS and GRS experiments. This joint analysis provides flare spectra from ~40 keV to 8.5 MeV. We compare the photon spectra integrated over the same time intervals by the two experiments. The agreement in most instances is good. We present the combined spectra for all of the flares. These combined spectra can be used to study the shape of the bremsstrahlung continuum and therefore the shape of the accelerated electron spectrum over a broad range in energy. We estimate the energy contained in accelerated electrons above cutoffs of 20 keV and 70 keV using the X-ray data obtained with the HXRBS experiment. These energies range from ~ 1028 to 1034 ergs for a cutoff of 20 keV and from ~ 1027 to 1032 ergs for a cutoff of 70 keV. The energy in accelerated ions can be estimated from the gamma-ray fluxes in nuclear lines. These lines are strong enough to individually determine the energy contained in ions for about 40 flares. We plan to sum gamma-ray spectra from the remaining flares, grouped by the energy contained in electrons, to reveal the weak nuclear lines and therefore to determine the average energy contained in ions in these groupings. This work expands on the study performed by Ramaty and Mandzhavize (2000) for 19 intense nuclear line flares where they concluded that energy is often equipartitioned between accelerated ions and electrons.

  19. Signatures of Accelerated Electrons in Solar and Stellar Flares

    NASA Astrophysics Data System (ADS)

    Benz, Arnold O.

    2015-08-01

    Flares energize electrons (and ions) to supra-thermal energies. In most cases the final distribution in momentum or energy space is non-Maxwellian. The non-thermal part of the energy can be the source for various emissions, including hard X-rays, synchrotron radiation and coherent radio emission. Such non-thermal emissions may contain information on the acceleration process. Several acceleration scenarios have been proposed: electric DC field, stochastic, and shock acceleration. There is observational evidence for all three scenarios. The new data come from SDO, X-ray (RHESSI), radio observations (Nobeyama, VLA and e-Callisto). Solar energetic particles are an additional channel of information.Tiny solar microflares and huge stellar flares in binary systems (RS CVns) and dMe dwarfs differ by more than 10 orders of magnitude in released energy. Yet the relation between peak luminosity in thermal (soft) X-ray and non-thermal synchrotron (radio) emission is surprisingly constant. This observational fact indicates that flare acceleration scales with energy release over a large range. Electron acceleration in flares seems to be a universal process. The constraint on simultaneous thermal X-rays and non-thermal (radio) synchrotron emission seems to select on particular kind of flare. In this subset, there seems to be only one type of acceleration.Yet, small deviations are noted: Small solar flares are softer in hard X-rays. Solar nanoflares are relatively weak in synchrotron emission. The recently noted case of radio-poor preflares will also be presented. The deviations suggest that the acceleration is less efficient in small flares and in the early phase of flares. Larger deviations are reported occasionally for solar flares and more often from stellar flares, where either thermal or non-thermal emission seems to be missing completely.The location of the acceleration in solar flares remains disputed. Observations suggesting acceleration in the soft X-ray top-tops, above

  20. Multi-MeV Electron Acceleration by Subterawatt Laser Pulses

    NASA Astrophysics Data System (ADS)

    Goers, A. J.; Hine, G. A.; Feder, L.; Miao, B.; Salehi, F.; Wahlstrand, J. K.; Milchberg, H. M.

    2015-11-01

    We demonstrate laser-plasma acceleration of high charge electron beams to the ˜10 MeV scale using ultrashort laser pulses with as little energy as 10 mJ. This result is made possible by an extremely dense and thin hydrogen gas jet. Total charge up to ˜0.5 nC is measured for energies >1 MeV . Acceleration is correlated to the presence of a relativistically self-focused laser filament accompanied by an intense coherent broadband light flash, associated with wave breaking, which can radiate more than ˜3 % of the laser energy in a ˜1 fs bandwidth consistent with half-cycle optical emission. Our results enable truly portable applications of laser-driven acceleration, such as low dose radiography, ultrafast probing of matter, and isotope production.

  1. Electron acceleration and radiation in evolving complex active regions

    NASA Astrophysics Data System (ADS)

    Anastasiadis, A.; Gontikakis, C.; Vilmer, N.; Vlahos, L.

    2004-07-01

    We present a model for the acceleration and radiation of solar energetic particles (electrons) in evolving complex active regions. The spatio - temporal evolution of active regions is calculated using a cellular automaton model, based on self-organized criticality. The acceleration of electrons is due to the presence of randomly placed, localized electric fields produced by the energy release process, simulated by the cellular automaton model. We calculate the resulting kinetic energy distributions of the particles and their emitted X-ray radiation spectra using the thick target approximation, and we perform a parametric study with respect to number of electric fields present and thermal temperature of the injected distribution. Finally, comparing our results with the existing observations, we find that they are in a good agreement with the observed X-ray spectra in the energy range 100-1000 keV.

  2. A Contracting Island Mechanism for Electron Acceleration during Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Drake, James; Swisdak, M.; Che, H.; Shay, M. A.

    2007-05-01

    A Fermi-like model for energetic electron production during magnetic reconnection is described that explains key observations in the magnetosphere and solar corona [1]. Magnetic reconnection with a guide field leads to the growth and dynamics of multiple magnetic islands rather than a single large x-line. Above a critical energy electron acceleration is dominated by the Fermi-like reflection of electrons within the resulting magnetic islands rather than by the parallel electric fields associated with the x-line. Particles trapped within islands gain energy as they reflect from ends of contracting magnetic islands. The pressure from energetic electrons rises rapidly until the rate of electron energy gain balances the rate of magnetic energy release, establishing for the first time a link between the energy gain of electrons and the released magnetic energy. The energetic particle pressure therefore throttles the rate of reconnection. A transport equation for the distribution of energetic particles, including their feedback on island contraction, is obtained by averaging over the particle interaction with many islands. The steady state solutions in reconnection geometry result from convective losses balancing the Fermi drive. At high energy distribution functions take the form of a powerlaw whose spectral index depends only on the initial electron β, lower (higher) β producing harder (softer) spectra. The spectral index matches that seen in recent Wind spacecraft observations in the magnetotail. Harder spectra are predicted for the low β conditions of the solar corona. 1. Drake et al., Nature 443, 553, 2006.

  3. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    SciTech Connect

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-11-15

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA.

  4. Detecting Energy Modulation in a Dielectric Laser Accelerator

    SciTech Connect

    Lukaczyk, Louis

    2015-08-21

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the un-accelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  5. Electron Acceleration by a Tightly Focused Laser Beam

    NASA Astrophysics Data System (ADS)

    Salamin, Yousef I.; Keitel, Christoph H.

    2002-03-01

    State-of-the-art petawatt laser beams may be focused down to few-micron spot sizes and can produce violent electron acceleration as a result of the extremely intense and asymmetric fields. Classical fifth-order calculations in the diffraction angle show that electrons, injected sideways into the tightly focused laser beam, get captured and gain energy in the GeV regime. We point out the most favorable points of injection away from the focus, along with an efficient means of extracting the energetic electron with a static magnetic field.

  6. Wave acceleration of electrons in the Van Allen radiation belts.

    PubMed

    Horne, Richard B; Thorne, Richard M; Shprits, Yuri Y; Meredith, Nigel P; Glauert, Sarah A; Smith, Andy J; Kanekal, Shrikanth G; Baker, Daniel N; Engebretson, Mark J; Posch, Jennifer L; Spasojevic, Maria; Inan, Umran S; Pickett, Jolene S; Decreau, Pierrette M E

    2005-09-01

    The Van Allen radiation belts are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity and they represent a hazard to satellites and humans in space. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.

  7. Dynamic magnetic island coalescence and associated electron acceleration

    SciTech Connect

    Tanaka, Kentaro G.; Fujimoto, Masaki; Badman, Sarah V.; Shinohara, Iku

    2011-02-15

    The system size dependence of electron acceleration during large-scale magnetic island coalescence is studied via a two-dimensional particle-in-cell simulation. Using a simulation box that is larger than those used in previous studies, injection by merging line acceleration and subsequent reacceleration inside a merged island are found to be the mechanisms for producing the most energetic electrons. This finding and knowledge of the reacceleration process enable us to predict that the high energy end of the electron energy spectrum continues to expand as the merged island size increases. Both the merging line acceleration and the reacceleration within a merged island require the island coalescence process to be so dynamic as to involve fast in-flow toward the center of a merged island. Once this condition is met in an early stage of the coalescence, it is likely to stay in the subsequent phase. In other words, if the thin elongated current sheet is initially able to host the dynamic magnetic island coalescence process, it will be a site where repeated upgrades in the maximum energy of electrons occur in a systematic manner.

  8. Generation of attosecond electron packets via conical surface plasmon electron acceleration

    PubMed Central

    Greig, S. R.; Elezzabi, A. Y.

    2016-01-01

    We present a method for the generation of high kinetic energy attosecond electron packets via magnetostatic and aperture filtering of conical surface plasmon (SP) accelerated electrons. The conical SP waves are excited by coupling an ultrafast radially polarized laser beam to a conical silica lens coated with an Ag film. Electromagnetic and particle tracking models are employed to characterize the ultrafast electron packets. PMID:26764129

  9. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    SciTech Connect

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.

  10. The effects of high energy electron beam irradiation in air on accelerated aging and on the structure property relationships of low density polyethylene

    NASA Astrophysics Data System (ADS)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2013-02-01

    The response of low density polyethylene (LDPE) to high energy electron beam irradiation in air (10 MeV) between 25 and 400 kGy was examined and compared to non-irradiated polyethylene in terms of the mechanical and structural properties. To quantify the degree of crosslinking, swelling studies were performed and from this it was observed that the crosslink density increased as the irradiation dose increased. Furthermore, a reduction was observed in the numerical data for molar mass between adjacent crosslinks and the number of monomeric units between adjacent crosslinks as the irradiation dose was conducted incrementally. Accelerated aging provided evidence that radicals became trapped in the polymer matrix of LDPE and this in turn initiated further reactions to transpire as time elapsed, leading to additional alteration in the structural properties. Fourier transform infrared spectroscopy (FTIR) was implemented to provide insight into this. This technique established that the aging process had increased the oxidative degradation products due to oxygen permeation into the polymer and double bonds within the material. Mechanical testing revealed an increase in the tensile strength and a decrease in the elongation at break. Accelerated aging caused additional modifications to occur in the mechanical properties which are further elucidated throughout this study. Dynamic frequency sweeps investigated the effects of irradiation on the structural properties of LDPE. The effect of varying the irradiation dose concentration was apparent as this controlled the level of crosslinking within the material. Maxwell and Kelvin or Voigt models were employed in this analytical technique to define the reaction procedure of the frequency sweep test with regards to non-crosslinked and crosslinked LDPE.

  11. Laser electron acceleration in the prepulse produced plasma corona

    NASA Astrophysics Data System (ADS)

    Andreev, N. E.; Povarnitsyn, M. E.; Pugachev, L. P.; Levashov, P. R.

    2015-11-01

    The generation of hot electrons at grazing incidence of a subpicosecond relativistic-intense laser pulse onto the plane solid target is analyzed for the parameters of the petawatt class laser systems. We study the preplasma formation on the surface of solid Al target produced by the laser prepulses with different time structure. For modeling of the preplasma dynamics we use a wide-range two-temperature hydrodynamic model. As a result of simulations, the preplasma expansion under the action of the laser prepulse and the plasma density profiles for different contrast ratios of the nanosecond pedestal are found. These density profiles were used as the initial density distributions in 3-D PIC simulations of electron acceleration by the main P-polarized laser pulse. Results of modeling demonstrate the substantial increase of the characteristic energy and number of accelerated electrons for the grazing incidence of a subpicosecond intense laser pulse in comparison with the laser-target interaction at normal incidence.

  12. A contracting island model of electron acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Drake, J. F.; Che, H.; Swisdak, M.; Shay, M. A.

    2006-10-01

    A Fermi-like model for energetic electron production during magnetic reconnection is described that explains key observations in the magnetosphere and solar corona [1]. Magnetic reconnection with a guide field leads to the growth and dynamics of multiple magnetic islands rather than a single large x-line [2]. Above a critical energy electron acceleration is dominated by the Fermi-like reflection of electrons within the resulting magnetic islands rather than by the parallel electric fields associated with the x-line. Particles trapped within islands gain energy as they reflect from ends of contracting magnetic islands. The pressure from energetic electrons rises rapidly until the rate of electron energy gain balances the rate of magnetic energy release. A Fokker-Planck equation for the distribution of energetic particles, including their feedback on island contraction, is obtained by averaging over the particle interaction with many islands. The steady state solutions in reconnection geometry result from convective losses balancing the Fermi drive. At high energy the electron distribution functions take the form of powerlaws whose spectral index depends on the initial electron β, lower (higher) β producing harder (softer) spectra.1. Drake et al., Nature, in press.2. Drake et al., Geophys. Res. Lett. 33, L13105, 2006.

  13. From electron maps to acceleration models in the physics of flare

    NASA Astrophysics Data System (ADS)

    Massone, Anna Maria

    Electron maps reconstructed from RHESSI visibilities represent a powerful source of information for constraining models of electron acceleration in solar plasma physics during flaring events. In this talk I will describe how and to which extent electron maps can be utilized to estimate local electron spectral indices, the evolution of centroid position at different energies in the electron space and the compatibility of RHESSI observations with different theoretical models for the acceleration mechanisms.

  14. Nonthermally Dominated Electron Acceleration during Magnetic Reconnection in a Low-beta Plasma

    SciTech Connect

    Li, Xiaocan

    2015-07-21

    This work was motivated by electron acceleration during solar flares. After some introductory remarks on proposed particle acceleration mechanisms and questions needing answers, dynamic simulations and simulation results are presented including energy spectra and the formation of the power law distribution. In summary, magnetic reconnection is highly efficient at converting the free magnetic energy stored in a magnetic shear and accelerating electrons to nonthermal energies in low-β regime. The nonthermal electrons have a dominant fraction and form power-law energy spectra with spectral index p ~ 1 in low-β regime. Electrons are preferentially accelerated along the curvature drift direction along the electric field induced by the reconnection outflow. The results can be applied to explain the observations of electron acceleration during solar flares.

  15. Simulating Electron Clouds in Heavy-Ion Accelerators

    SciTech Connect

    Cohen, R.H.; Friedman, A.; Kireeff Covo, M.; Lund, S.M.; Molvik,A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J-L.; Stoltz, P.; Veitzer, S.

    2005-04-07

    Contaminating clouds of electrons are a concern for most accelerators of positive-charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly-, weakly-, and un-magnetized. They describe their approach to such self-consistency, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyro period in the magnets. They present tests and applications: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the High-Current Experiment (HCX) at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam and an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-timestep mover to accurately calculate the instability.

  16. Process in high energy heavy ion acceleration

    NASA Astrophysics Data System (ADS)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  17. Electron acceleration by laser fields in a gas. Final report

    SciTech Connect

    Fontana, J.R.

    1997-08-01

    The purpose of the project is an investigation of topics related to the high-energy acceleration of electrons by means of suitably shaped laser beams in an inert gaseous medium. By slowing down the phase velocity of the fields by its index of refraction, the gas allows a cumulative interaction with the electrons resulting in net acceleration and also focusing. The objectives of the work reported here were twofold: (1) to participate as a consultant in the design and analysis of demonstration experiments performed at the Brookhaven National Laboratory by STI Optronics, a Belleview, WA company, under a separate DOE funded contract; (2) to perform further analytic and design work on the laser acceleration scheme originally proposed and explore a possible extension of the method to acceleration in vacuum using the same field configuration and analogous interaction process as with a gas. This report thus comprises an account of both activities. Section 2 is an overview of the various laser acceleration methods that have been proposed, in order to provide a framework to the work reported. Section 3 contains a list of meetings attended by the Principal Investigator to present his work and interact with research community colleagues and STI staff, and a list of publications containing work he co-authored or was acknowledged for. Section 4 summarizes the work performed by STI to which he contributed. Section 5 consists of the technical reports the Principal Investigator wrote describing his independent theoretical work elaborating and extending the scope of the original project.

  18. Controlled Electron Acceleration in a Plane Laser Beam

    NASA Astrophysics Data System (ADS)

    Tataronis, J. A.; Petržílka, V.; Krlín, L.

    2002-11-01

    Through numerical modeling of the relativistic test particle motion of an ensemble of electrons in a plane laser beam, we show in the present contribution that a significant electron acceleration arises if an additional perpendicularly propagagating transverse laser beam with a randomized phase is present. We also demonstrate that the acceleration rate can be controlled by the power flux intensity of the additional laser beam. The power flux intensity of the additional beam can be typically much lower than the power flux intensity of the main laser beam. In the main laser beam, the electrons perform also a forward oscillating motion because of the effects of the magnetic field intensity of the beam. The acceleration results from the accumulation of the forward electron motion due to phase changes provided by the additional laser beam. For parameters of the PALS^1 device (Prague Asterix Laser System), the attainable electron energy is about 40 MeV in 10^4 wave periods. [2pt] Acknowledgments: This work has been supported by Czech grant GACR 202/00/1217 and USDOE Grant DE-FG02-97ER54398. [2pt] ^1K.Jungwirth et al., Phys. Plasmas 8 (2001) 2495.

  19. Low energy electron magnetometer using a monoenergetic electron beam

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M.; Rayborn, G. H.; White, F. A. (Inventor)

    1983-01-01

    A low energy electron beam magnetometer utilizes near-monoenergetic electrons thereby reducing errors due to electron energy spread and electron nonuniform angular distribution. In a first embodiment, atoms in an atomic beam of an inert gas are excited to a Rydberg state and then electrons of near zero energy are detached from the Rydberg atoms. The near zero energy electrons are then accelerated by an electric field V(acc) to form the electron beam. In a second embodiment, a filament emits electrons into an electrostatic analyzer which selects electrons at a predetermined energy level within a very narrow range. These selected electrons make up the electron beam that is subjected to the magnetic field being measured.

  20. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  1. Electron Acceleration by Cascading Reconnection in the Solar Corona. II. Resistive Electric Field Effects

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Bárta, M.; Gan, W.; Liu, S.

    2016-08-01

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  2. A Fermi model for electron acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Drake, J. F.; Swisdak, M.; Che, H.; Shay, M. A.

    2006-12-01

    A Fermi-like model for energetic electron production during magnetic reconnection is described that explains key observations in the magnetosphere and solar corona [1]. Magnetic reconnection with a guide field leads to the growth and dynamics of multiple magnetic islands rather than a single large x-line. Above a critical energy electron acceleration is dominated by the Fermi-like reflection of electrons within the resulting magnetic islands rather than by the parallel electric fields associated with the x-line. Particles trapped within islands gain energy as they reflect from ends of contracting magnetic islands. The pressure from energetic electrons rises rapidly until the rate of electron energy gain balances the rate of magnetic energy release. The energetic particle pressure therefore throttles the rate of reconnection. A transport equation for the distribution of energetic particles, including their feedback on island contraction, is obtained by averaging over the particle interaction with many islands. The steady state solutions in reconnection geometry result from convective losses balancing the Fermi drive. At high energy distribution functions take the form of a powerlaw whose spectral index depends only on the initial electron β, lower (higher) β producing harder (softer) spectra. The spectral index matches that seen in recent Wind spacecraft observations in the magnetotail. Harder spectra are predicted for the low β conditions of the solar corona. 1. Drake et al., Nature, in press.

  3. Staging Laser Plasma Accelerators for Increased Beam Energy

    SciTech Connect

    Panasenko, D.; Shu, A. J.; Schroeder, C. B.; Gonsalves, A. J.; Nakamura, K.; Matlis, N. H.; Cormier-Michel, E.; Plateau, G.; Lin, C.; Toth, C.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10 m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  4. Staging laser plasma accelerators for increased beam energy

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-09-29

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  5. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    SciTech Connect

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; Tilborg, J. van; Toth, Cs.; Leemans, W. P.

    2010-11-04

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g. diverse forms of electromagnetic emission) and difficulties (e.g. shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  6. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    SciTech Connect

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  7. A "slingshot" laser-driven acceleration mechanism of plasma electrons

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano; De Nicola, Sergio

    2016-09-01

    We briefly report on the recently proposed Fiore et al. [1] and Fiore and De Nicola [2] electron acceleration mechanism named "slingshot effect": under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  8. Electron trapping and acceleration by kinetic Alfvén waves in solar flares

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Zimovets, I. V.; Rankin, R.

    2016-05-01

    Context. Theoretical models and spacecraft observations of solar flares highlight the role of wave-particle interaction for non-local electron acceleration. In one scenario, the acceleration of a large electron population up to high energies is due to the transport of electromagnetic energy from the loop-top region down to the footpoints, which is then followed by the energy being released in dense plasma in the lower atmosphere. Aims: We consider one particular mechanism of non-linear electron acceleration by kinetic Alfvén waves. Here, waves are generated by plasma flows in the energy release region near the loop top. We estimate the efficiency of this mechanism and the energies of accelerated electrons. Methods: We use analytical estimates and test-particle modelling to investigate the effects of electron trapping and acceleration by kinetic Alfvén waves in the inhomogeneous plasma of the solar corona. Results: We demonstrate that, for realistic wave amplitudes, electrons can be accelerated up to 10-1000 keV during their propagation along magnetic field lines. Here the electric field that is parallel to the direction of the background magnetic field is about 10 to 103 times the amplitude of the Dreicer electric field. The acceleration mechanism strongly depends on electron scattering which is due to collisions that only take place near the loop footpoints. Conclusions: The non-linear wave-particle interaction can play an important role in the generation of relativistic electrons within flare loops. Electron trapping and coherent acceleration by kinetic Alfvén waves represent the energy cascade from large-scale plasma flows that originate at the loop-top region down to the electron scale. The non-diffusive character of the non-linear electron acceleration may be responsible for the fast generation of high-energy particles.

  9. Acceleration of Ions and Electrons by Coronal Shocks

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2013-12-01

    Diffusive shock acceleration (DSA) of particles at collisionless shock waves driven by coronal mass ejections (CMEs) is the best developed theory for the genesis of gradual solar energetic particle (SEP) events. According to DSA, particles scatter from fluctuations present in the ambient magnetic field, which causes some particles to encounter the shock front repeatedly and to gain energy during each crossing. DSA operating in solar corona is a complex process whose outcome depends on multiple parameters such as shock speed and strength, magnetic geometry, and composition of seed particles. Currently, STEREO and other near-Earth spacecraft are providing valuable multi-point information on how SEP properties, such as composition and energy spectra, vary in longitude. Initial results have shown that longitude distributions of large CME-associated SEP events are much wider than previously thought. These findings have many important consequences on SEP modeling. For example, it is important to extend the present models into two or three spatial coordinates to properly account for the effects of coronal and interplanetary magnetic geometry and the evolution of the CME-driven shock wave on the acceleration and transport of SEPs. We present a new model for the shock acceleration of ions and electrons in the solar corona and discuss implications for particle properties (energy spectra, longitudinal distribution, composition) in the resulting gradual SEP events. We also discuss the possible emission of type II radio waves by the accelerated coronal electrons. In the new model, the ion pitch angle scattering rate is calculated from modeled Alfvén wave power spectra using quasilinear theory. The energy gained by ions in scatterings are self-consistently removed from waves so that total energy (ions+waves) is conserved. New model has been implemented on massively parallel simulation platform Corsair.

  10. PIC simulations on the termination shock: Microstructure and electron acceleration

    NASA Astrophysics Data System (ADS)

    Matsukiyo, S.; Scholer, M.

    2013-05-01

    The ability of the termination shock as a particle accelerator is totally unknown. Voyager data and recent kinetic numerical simulations revealed that the compression ratio of the termination shock is rather low due to the presence of pickup ions, i.e., the termination shock appears to be a weak shock. Nevertheless, two Voyager spacecraft observed not only high energy ions called termination shock particles, which are non-thermal but less energetic compared to the so-called anomalous cosmic rays, but also high energy electrons. In this study we focus especially on microstructure of the termination shock and the associated electron acceleration process by performing one-dimensional full particle-in-cell (PIC) simulations for a variety of parameters. For typical solar wind parameters at the termination shock, a shock potential has no sharp ramp with the spatial scale of the order of electron inertial length which is suitable for the injection of anomalous cosmic ray acceleration. Solar wind ions are not so much heated, which is consistent with Voyager spacecraft data. If a shock angle is close to 90 deg., a shock is almost time stationary or weakly breathing when a relative pickup ion density is 30%, while it becomes non-stationary if the relative pickup ion density is 20%. When the shock angle becomes oblique, a self-reformation occurs due to the interaction of solar wind ions and whistler precursors. Here, the shock angle is defined as the angle between upstream magnetic field and shock normal. For the case with relatively low beta solar wind plasma (electron beta is 0.1 and solar wind ion temperature equals to electron temperature), modified two-stream instability (MTSI) gets excited in the extended foot sustained by reflected pickup ions, and both solar wind electrons and ions are heated. If the solar wind plasma temperature gets five times higher, on the other hand, the MTSI is weakened and the pre-heating of the solar wind plasma in the extended foot is

  11. Electron acceleration by few-cycle laser pulses with single-wavelength spot size.

    PubMed

    Dudnikova, G I; Bychenkov, V Yu; Maksimchuk, A; Mourou, G; Nees, J; Bochkarev, S G; Vshivkov, V A

    2003-02-01

    Generation of relativistic electrons from the interaction of a laser pulse with a high density plasma foil, accompanied by an underdense preplasma in front of it, has been studied with two-dimensional particle-in-cell (PIC) simulations for pulse durations comparable to a single cycle and for single-wavelength spot size. The electrons are accelerated predominantly in forward direction for a preplasma longer than the pulse length. Otherwise, both forward and backward electron accelerations occur. The primary mechanism responsible for electron acceleration is identified. Simulations show that the energy of the accelerated electrons has a maximum versus the pulse duration for relativistic laser intensities. The most effective electron acceleration takes place when the preplasma scale length is comparable to the pulse duration. Electron distribution functions have been found from PIC simulations. Their tails are well approximated by Maxwellian distributions with a hot temperature in the MeV range.

  12. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  13. Petawatt laser-driven wakefield accelerator: All-optical electron injection via collision of laser pulses and radiation cooling of accelerated electron bunches.

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei; Avitzour, Yoav; Yi, S. Austin; Shvets, Gennady

    2007-11-01

    We explore an electron injection into the laser wakefield accelerator (LWFA) using nearly head-on collision of the petawatt ultrashort (˜30 fs) laser pulse (driver) with a low- amplitude laser (seed) beam of the same duration and polarization. To eliminate the threat to the main laser amplifier we consider two options: (i) a frequency-shifted seed and (ii) a seed pulse propagating at a small angle to the axis. We show that the emission of synchrotron radiation due to betatron oscillations of trapped and accelerated electrons results in significant transverse cooling of quasi- monoenergetic accelerated electrons (with energies above 1 GeV). At the same time, the energy losses due to the synchrotron emission preserve the final energy spread of the electron beam. The ``dark current'' due to the electron trapping in multiple wake buckets and the effect of beam loading (wake destruction at the instant of beams collision) are discussed.

  14. High-quality electron beams from a helical inverse free-electron laser accelerator.

    PubMed

    Duris, J; Musumeci, P; Babzien, M; Fedurin, M; Kusche, K; Li, R K; Moody, J; Pogorelsky, I; Polyanskiy, M; Rosenzweig, J B; Sakai, Y; Swinson, C; Threlkeld, E; Williams, O; Yakimenko, V

    2014-09-15

    Compact, table-top sized accelerators are key to improving access to high-quality beams for use in industry, medicine and academic research. Among laser-based accelerating schemes, the inverse free-electron laser (IFEL) enjoys unique advantages. By using an undulator magnetic field in combination with a laser, GeV m(-1) gradients may be sustained over metre-scale distances using laser intensities several orders of magnitude less than those used in laser wake-field accelerators. Here we show for the first time the capture and high-gradient acceleration of monoenergetic electron beams from a helical IFEL. Using a modest intensity (~10(13) W cm(-2)) laser pulse and strongly tapered 0.5 m long undulator, we demonstrate >100 MV m(-1) accelerating gradient, >50 MeV energy gain and excellent output beam quality. Our results pave the way towards compact, tunable GeV IFEL accelerators for applications such as driving soft X-ray free-electron lasers and producing γ-rays by inverse Compton scattering.

  15. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Li, X. F.; Yu, Q.; Gu, Y. J.; Qu, J. F.; Ma, Y. Y.; Kong, Q.; Kawata, S.

    2016-03-01

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser-plasma interaction by using the Lienard-Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser-plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electrons is significant, especially to the peak photon energy.

  16. On the role of terahertz field acceleration and beaming of surface plasmon generated ultrashort electron pulses

    SciTech Connect

    Greig, S. R. Elezzabi, A. Y.

    2014-07-28

    A mechanism for control of the energy and pitch angle of surface plasmon accelerated electron pulses is proposed. Electrons generated via multi-photon absorption in a silver film on a glass prism are ponderomotively accelerated in the surface plasmon field excited by a 30 fs, 800 nm optical pulse. Through introduction of a single-cycle terahertz (THz) pulse, the energy spectrum and trajectory of the generated electron pulse can be controlled via the THz field strength. Generated electron pulses achieve peak kinetic energies up to 1.56 keV, while utilizing an incident optical field strength five times less than comparable plasmon accelerated electron pulses. These results demonstrate that THz pulses can be utilized to achieve tunable, high energy, trajectory controlled electron pulses necessary for various applications that require ultrafast electron pulse manipulation.

  17. New accelerators in high-energy physics

    SciTech Connect

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  18. Electron acceleration by Z-mode and whistler-mode waves

    SciTech Connect

    Lee, K. H.; Omura, Y.; Lee, L. C.

    2013-11-15

    We carried out a series of particle simulations to study electron acceleration by Z-mode and whistler-mode waves generated by an electron ring distribution. The electron ring distribution leads to excitations of X-mode waves mainly in the perpendicular direction, Z-mode waves in the perpendicular and parallel directions, and whistler-mode waves mainly in the parallel direction. The parallel Z- and whistler-mode waves can lead to an effective acceleration of ring electrons. The electron acceleration is mainly determined by the wave amplitude and phase velocity, which in turn is affected by the ratio of electron plasma to cyclotron frequencies. For the initial kinetic energy ranging from 100 to 500 keV, the peak energy of the accelerated electrons is found to reach 2–8 times the initial kinetic energy. We further study the acceleration process by test-particle calculations in which electrons interact with one, two, or four waves. The electron trajectories in the one-wave case are simple diffusion curves. In the multi-wave cases, electrons are accelerated simultaneously by counter-propagating waves and can have a higher final energy.

  19. The polarized electron source of the Stanford Linear Accelerator Center

    SciTech Connect

    Schultz, D.; Alley, R.; Clendenin, J.; Frisch, J.; Mulhollan, G.; Saez, P.; Tang, H.; Witte, K.

    1994-08-01

    The Stanford Linear Accelerator has been running with polarized electrons both in the collider (SLC) mode and in the fixed target mode. The accelerators polarized electron source is based on a thin, strained GaAs photocathode, which is held at a negative high voltage and illuminated by a Titanium Sapphire laser. The reliability of the source was better than 95% during the eight-month-long 1993 SLC run. A beam polarization of 63% was measured by the SLD experiment at the SLC interaction point in the 1993 data run. The fixed-target experiment E143 measured a beam polarization of 85% in its 1993--94 run. These polarization measurements, made at high energy, are in good agreement with measurements made at low energy on a calibrated Mott polarimeter. The higher beam polarization in the fixed target experiment is due to a thinner, more highly strained GaAs photocathode than had been used earlier, and to the experiment`s low beam current requirements. The SLC is now running with the high polarization photocathode. Details of the source, and experience with the high polarization strained GaAs photocathodes on the accelerator in the current SLC run, will be presented.

  20. Electron acceleration driven by ultrashort and nonparaxial radially polarized laser pulses.

    PubMed

    Marceau, Vincent; April, Alexandre; Piché, Michel

    2012-07-01

    Exact closed-form solutions to Maxwell's equations are used to investigate the acceleration of electrons in vacuum driven by ultrashort and nonparaxial radially polarized laser pulses. We show that the threshold power above which significant acceleration takes place is greatly reduced by using a tighter focus. Moreover, electrons accelerated by tightly focused single-cycle laser pulses may reach around 80% of the theoretical energy gain limit, about twice the value previously reported with few-cycle paraxial pulses. Our results demonstrate that the direct acceleration of electrons in vacuum is well within reach of current laser technology.

  1. BOOK REVIEW: Electron acceleration in the aurora and beyond

    NASA Astrophysics Data System (ADS)

    McClements, K. G.

    1999-08-01

    Duncan Bryant is a retired space plasma physicist who spent most of his career at the Rutherford-Appleton Laboratory in Oxfordshire, England. For many years he has been challenging a widely accepted theory, that auroral electrons are accelerated by double layers, on the grounds that it contains a fundamental error (allegedly, an implicit assumption that charged particles can gain energy from conservative fields). It is, of course, right that models of particle acceleration in natural plasmas should be scrutinized carefully in terms of their consistency with basic physical principles, and I believe that Dr Bryant has performed a valuable service by highlighting this issue. He maintains that auroral electron acceleration by double layers is fundamentally untenable, and that acceleration takes place instead via resonant interactions with lower hybrid waves. In successive chapters, he asserts that essentially the same process can account for electron acceleration observed at the Earth's bow shock, in the neighbourhood of an `artificial comet' produced as part of the Active Magnetospheric Particle Explorers (AMPTE) space mission in 1984/85, in the solar wind, at the Earth's magnetopause, and in the Earth's magneto- sphere. The evidence for this is not always convincing: waves with frequencies of the order of the lower hybrid resonance are often observed in these plasma environments, but in general it is difficult to identify clearly which wave mode is being observed (whistlers, for example, have frequencies in approximately the same range as lower hybrid waves). Moreover, it is not at all clear that the waves which are observed, even if they were of the appropriate type, would have sufficient intensity to accelerate electrons to the extent observed. The author makes a persuasive case, however, that acceleration in the aurora, and in other plasma environments accessible to in situ measurements, involves some form of wave turbulence. In Chapter 2 it is pointed out that

  2. Experimental evidence for the acceleration of thermal electrons by ion cyclotron waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Norris, A. J.; Sojka, J. J.; Wrenn, G. L.; Johnson, J. F. E.; Cornilleau-Wehrlin, N.; Perraut, S.; Roux, A.

    1983-01-01

    Experimental evidence is presented for the acceleration of thermal electrons by large amplitude ion cyclotron waves (ICWs). The wave power in the ULF range near the helium gyrofrequency is compared with the distribution function of low energy electrons measured by GEOS satellite instruments. This comparison shows that electrons are accelerated near the geomagnetic equator along field lines, at times when the ICW energy is large and the cold plasma density is below a threshold value. It is suggested that these accelerated electrons can account for the ELF emissions, modulated at the ICW frequency, observed by Wehrlin (1981). A very efficient acceleration of thermal electrons along field lines results from other ULF events having frequencies close to the proton gyrofrequency. Evidence for this lies in the fact that medium energy protons having large temperature anisotropies in the 100-500 eV range are responsible for the ICW wave generation.

  3. Solar flare accelerated electron transport through the turbulent solar wind

    NASA Astrophysics Data System (ADS)

    Reid, Hamish; Kontar, Eduard

    Solar flare accelerated electron beams can become unstable during transport from the Sun to the Earth, producing plasma waves in the turbulent inner heliosphere. We simulate solar electron beam propagation to the Earth in the weak turbulent regime taking into account the self-consistent generation of plasma waves. Induced plasma waves interact with the density fluctuations from low frequency MHD turbulence present in the background plasma. These fluctuations act to suppress the generation of waves, most acutely when fluctuations have large amplitudes or small wavelengths. The reduction of plasma wave generation alters the wave distribution which changes electron beam transport. Assuming an observed 5/3 Kolmogorov-type power density spectra of fluctuations, we investigate the energy spectra of the electron beam near the Earth. We find the presence of turbulence in the background plasma alters the spectral index below the break energy of the double power-law formed at 1AU. From an initial single power-law electron distribution, we find a range of spectra below the break energy, with higher levels of turbulence corresponding to a higher spectral index.

  4. Magnetically Controlled Optical Plasma Waveguide for Electron Acceleration

    SciTech Connect

    Pollock, B. B.; Davis, P.; Divol, L.; Glenzer, S. H.; Palastro, J. P.; Price, D.; Froula, D. H.; Tynan, G. R.

    2009-01-22

    In order to produce multi-Gev electrons from Laser Wakefield Accelerators, we present a technique to guide high power laser beams through underdense plasma. Experimental results from the Jupiter Laser Facility at the Lawrence Livermore National Laboratory that show density channels with minimum plasma densities below 5x10{sup 17} cm{sup -3} are presented. These results are obtained using an external magnetic field (<5 T) to limit the radial heat flux from a pre-forming laser beam. The resulting increased plasma pressure gradient produces a parabolic density gradient which is tunable by changing the external magnetic field strength. These results are compared with 1-D hydrodynamic simulations, while quasi-static kinetic simulations show that for these channel conditions 90% of the energy in a 150 TW short pulse beam is guided over 5 cm and predict electron energy gains of 3 GeV.

  5. Magnetically Controlled Optical Plasma Waveguide for Electron Acceleration

    SciTech Connect

    Pollock, B B; Froula, D H; Tynan, G R; Divol, L; Davis, P; Palastro, J P; Price, D; Glenzer, S H

    2008-08-28

    In order to produce multi-Gev electrons from Laser Wakefield Accelerators, we present a technique to guide high power laser beams through underdense plasma. Experimental results from the Jupiter Laser Facility at the Lawrence Livermore National Laboratory that show density channels with minimum plasma densities below 5 x 10{sup 17} cm{sup -3} are presented. These results are obtained using an external magnetic field (<5 T) to limit the radial heat flux from a pre-forming laser beam. The resulting increased plasma pressure gradient produces a parabolic density gradient which is tunable by changing the external magnetic field strength. These results are compared with 1-D hydrodynamic simulations, while quasi-static kinetic simulations show that for these channel conditions 90% of the energy in a 150 TW short pulse beam is guided over 5 cm and predict electron energy gains of 3 GeV.

  6. Investigation of electromagnetic interactions by means of electron--photon beams from proton accelerators

    SciTech Connect

    Govorkov, B.B.

    1980-09-01

    The methods for obtaining electron and photon beams from high-energy proton accelerators are considered. The results of investigations of the electromagnetic interactions of elementary particles obtained by means of these beams are discussed.

  7. The electron accelerator for the AWAKE experiment at CERN

    NASA Astrophysics Data System (ADS)

    Pepitone, K.; Doebert, S.; Burt, G.; Chevallay, E.; Chritin, N.; Delory, C.; Fedosseev, V.; Hessler, Ch.; McMonagle, G.; Mete, O.; Verzilov, V.; Apsimon, R.

    2016-09-01

    The AWAKE collaboration prepares a proton driven plasma wakefield acceleration experiment using the SPS beam at CERN. A long proton bunch extracted from the SPS interacts with a high power laser and a 10 m long rubidium vapour plasma cell to create strong wakefields allowing sustained electron acceleration. The electron bunch to probe these wakefields is supplied by a 20 MeV electron accelerator. The electron accelerator consists of an RF-gun and a short booster structure. This electron source should provide beams with intensities between 0.1 and 1 nC, bunch lengths between 0.3 and 3 ps and an emittance of the order of 2 mm mrad. The wide range of parameters should cope with the uncertainties and future prospects of the planned experiments. The layout of the electron accelerator, its instrumentation and beam dynamics simulations are presented.

  8. Characteristics of an electron-beam rocket pellet accelerator

    SciTech Connect

    Tsai, C.C.; Foster, C.A.; Schechter, D.E.

    1989-01-01

    An electron-beam rocket pellet accelerator has been designed, built, assembled, and tested as a proof-of-principle (POP) apparatus. The main goal of accelerators based on this concept is to use intense electron-beam heating and ablation of a hydrogen propellant stick to accelerate deuterium and/or tritium pellets to ultrahigh speeds (10 to 20 km/s) for plasma fueling of next-generation fusion devices such as the International Thermonuclear Engineering Reactor (ITER). The POP apparatus is described and initial results of pellet acceleration experiments are presented. Conceptual ultrahigh-speed pellet accelerators are discussed. 14 refs., 8 figs.

  9. Laser driven electron acceleration in vacuum, gases and plasmas

    SciTech Connect

    Sprangle, P.; Esarey, E.; Krall, J.

    1996-04-19

    This paper discusses some of the important issues pertaining to laser acceleration in vacuum, neutral gases and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self guided in a partially ionized gas. Optical self guiding is the result of a balance between the nonlinear self focusing properties of neutral gases and the diffraction effects of ionization. The stability of self guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser driven accelerator experiments are briefly discussed.

  10. Nonthermally dominated electron acceleration during magnetic reconnection in a low-β plasma

    SciTech Connect

    Li, Xiaocan; Guo, Fan; Li, Hui; Li, Gang

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization. We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.

  11. Nonthermally dominated electron acceleration during magnetic reconnection in a low-β plasma

    DOE PAGES

    Li, Xiaocan; Guo, Fan; Li, Hui; Li, Gang

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization.more » We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.« less

  12. NONTHERMALLY DOMINATED ELECTRON ACCELERATION DURING MAGNETIC RECONNECTION IN A LOW-β PLASMA

    SciTech Connect

    Li, Xiaocan; Li, Gang; Guo, Fan; Li, Hui

    2015-10-01

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization. We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. The nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the  highly efficient electron acceleration in solar flares and other astrophysical systems.

  13. Electron Accelerators for Radioactive Ion Beams

    SciTech Connect

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  14. Artificial aurora conjugate to a rocket-borne electron accelerator

    NASA Technical Reports Server (NTRS)

    Davis, T. N.; Wescott, E. M.; Hallinan, T. J.; Stenbaek-Nielsen, H. C.; Hess, W. N.; Trichel, M. C.; Maier, E. J. R.

    1980-01-01

    An accelerator intended to send electron beams upward along an L = 1.24 magnetic field line was flown from a rocket launched from Kauai, Hawaii, on October 15, 1972. Though the intent was to produce several hundred observable auroral streaks in the Southern Hemisphere, imaging instruments operated there aboard jet aircraft detected only a single aurora. Produced by a 0.155-A beam of energy 22.8 keV, the aurora was of expected brightness and had a diameter (210 + or - 50 m) somewhat larger than expected and an altitude (top 116 + or - 2 km; bottom 92 + or - 2 km) higher than expected.

  15. Examination of sea freight containers using modern electron linear accelerators

    NASA Astrophysics Data System (ADS)

    Dönges, G.; Geus, G.; Henkel, R.; Ries, H.; Schall, P.; Bermbach, R.

    1992-05-01

    Electron linear accelerators and scintillation line detectors were studied as major components of a transmission scanning system to check the contents of standard sea containers. A maximum beam energy of 10 MeV was found to be the best compromise of high penetration capability of the bremsstrahlung and the WHO recommendations for irradiation of food. CsI(Tl) scintillation detectors turned out to be very efficient and reliable for this rugged application. The results obtained in full size prototype systems are discussed.

  16. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  17. Characterization of electron self-injection in laser wake field acceleration due to the parametric resonance

    NASA Astrophysics Data System (ADS)

    Zhidkov, A.; Koga, J.; Hosokai, T.; Fujii, T.; Oishi, Y.; Nemoto, K.; Kodama, R.

    2010-08-01

    The wave-breaking processes originating from a parametric resonance in the wake of a laser pulse in the absence of pulse overfocusing are thoroughly analyzed via multidimensional particle-in-cell simulations. The processes play a key role in the electron self-injection in the laser-driven acceleration of high energy, monoenergetic electrons in plasma channels. The resonance character of the charge loading in the first, second, and third injections is shown; its effect on the electron acceleration is demonstrated.

  18. COLLISIONAL RELAXATION OF ELECTRONS IN A WARM PLASMA AND ACCELERATED NONTHERMAL ELECTRON SPECTRA IN SOLAR FLARES

    SciTech Connect

    Kontar, Eduard P.; Jeffrey, Natasha L. S.; Bian, N. H.; Emslie, A. Gordon

    2015-08-10

    Extending previous studies of nonthermal electron transport in solar flares, which include the effects of collisional energy diffusion and thermalization of fast electrons, we present an analytic method to infer more accurate estimates of the accelerated electron spectrum in solar flares from observations of the hard X-ray spectrum. Unlike for the standard cold-target model, the spatial characteristics of the flaring region, especially the necessity to consider a finite volume of hot plasma in the source, need to be taken into account in order to correctly obtain the injected electron spectrum from the source-integrated electron flux spectrum (a quantity straightforwardly obtained from hard X-ray observations). We show that the effect of electron thermalization can be significant enough to nullify the need to introduce an ad hoc low-energy cutoff to the injected electron spectrum in order to keep the injected power in non-thermal electrons at a reasonable value. Rather, the suppression of the inferred low-energy end of the injected spectrum compared to that deduced from a cold-target analysis allows the inference from hard X-ray observations of a more realistic energy in injected non-thermal electrons in solar flares.

  19. Electron acceleration by femtosecond laser interaction with micro-structured plasmas

    NASA Astrophysics Data System (ADS)

    Goers, Andy James

    Laser-driven accelerators are a promising and compact alternative to RF accelerator technology for generating relativistic electron bunches for medical, scientific, and security applications. This dissertation presents three experiments using structured plasmas designed to advance the state of the art in laser-based electron accelerators, with the goal of reducing the energy of the drive laser pulse and enabling higher repetition rate operation with current laser technology. First, electron acceleration by intense femtosecond laser pulses in He-like nitrogen plasma waveguides is demonstrated. Second, significant progress toward a proof of concept realization of quasi-phasematched direct acceleration (QPM-DLA) is presented. Finally, a laser wakefield accelerator at very high plasma density is studied, enabling relativistic electron beam generation with ˜10 mJ pulse energies. Major results from these experiments include: • Acceleration of electrons up to 120 MeV from an ionization injected wakefield accelerator driven in a 1.5 mm long He-like nitrogen plasma waveguide • Guiding of an intense, quasi-radially polarized femtosecond laser pulse in a 1 cm plasma waveguide. This pulse provides a strong drive field for the QPM-DLA concept. • Wakefield acceleration of electrons up to ˜10 MeV with sub-terawatt, ˜10 mJ pulses interacting with a thin (˜200 mum), high density (>1020 cm-3) plasma. • Observation of an intense, coherent, broadband wave breaking radiation flash from a high plasma density laser wakefield accelerator. The flash radiates > 1% of the drive laser pulse energy in a bandwidth consistent with half-cycle (˜1 fs) emission from violent unidirectional acceleration of electron bunches from rest. These results open the way to high repetition rate (>˜kHz) laser-driven generation of relativistic electron beams with existing laser technology.

  20. Low Energy Accelerators for Cargo Inspection

    NASA Astrophysics Data System (ADS)

    Tang, Chuanxiang

    Cargo inspection by X-rays has become essential for seaports and airports. With the emphasis on homeland security issues, the identification of dangerous things, such as explosive items and nuclear materials, is the key feature of a cargo inspection system. And new technologies based on dual energy X-rays, neutrons and monoenergetic X-rays have been studied to achieve sufficiently good material identification. An interpretation of the principle of X-ray cargo inspection technology and the features of X-ray sources are presented in this article. As most of the X-ray sources are based on RF electron linear accelerators (linacs), we give a relatively detailed description of the principle and characteristics of linacs. Cargo inspection technologies based on neutron imaging, neutron analysis, nuclear resonance fluorescence and computer tomography are also mentioned here. The main vendors and their products are summarized at the end of the article.

  1. Cold test results of a side-coupled standing-wave electron-accelerating structure

    NASA Astrophysics Data System (ADS)

    Song, Ki Baek; Li, Yonggui; Lee, Sanghyun; Lee, Byeong-No; Park, Hyung Dal; Cha, Sung-Su; Lee, Byung Cheol

    2013-07-01

    The radio-frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) is designed for a cargo inspection system (CIS) at the Korea Atomic Energy Research Institute (KAERI). The cold test results of the electron accelerator structure, which has a side-coupled standing-wave interlaced-pulse dual-energy mode, are described. The design concept, basic structure, microwave-tuning method, and cold-test procedure are described as well. The measured dispersion curve, spectrum characteristics, ρ-f relation of the power coupler, and axial field distribution of the accelerating gradient are provided.

  2. The Formation of Kappa-Distribution Accelerated Electron Populations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Bian, N. H.; Kontar, E.; Emslie, G.

    2015-12-01

    Driven by recent RHESSI observations of confined loop-top hard X-ray sources in solar flares, we consider stochastic acceleration of electrons in the presence of Coulomb collisions. If electron escape from the acceleration region can be neglected, the electron distribution function is determined by a balance between diffusive acceleration and collisions. Such a scenario admits a stationary solution for the electron distribution function that takes the form of a kappa distribution. We show that the evolution toward this kappa distribution involves a "wave front" propagating forwards in velocity space, so that electrons of higher energy are accelerated later; the acceleration time scales as the power three-half of the energy. At sufficiently high energies escape from the finite-length acceleration region will eventually dominate. For such energies, the electron velocity distribution function is obtained by solving a time-dependent Fokker-Planck equation in the "leaky-box" approximation. Solutions are obtained in the limit of a small escape rate from an acceleration region that can effectively be considered a thick target.

  3. The formation of kappa-distribution accelerated electron populations in solar flares

    SciTech Connect

    Bian, Nicolas H.; Stackhouse, Duncan J.; Kontar, Eduard P.; Emslie, A. Gordon E-mail: d.stackhouse.1@research.gla.ac.uk E-mail: emslieg@wku.edu

    2014-12-01

    Driven by recent RHESSI observations of confined loop-top hard X-ray sources in solar flares, we consider stochastic acceleration of electrons in the presence of Coulomb collisions. If electron escape from the acceleration region can be neglected, the electron distribution function is determined by a balance between diffusive acceleration and collisions. Such a scenario admits a stationary solution for the electron distribution function that takes the form of a kappa distribution. We show that the evolution toward this kappa distribution involves a 'wave front' propagating forward in velocity space, so that electrons of higher energy are accelerated later; the acceleration timescales with energy according to τ{sub acc} ∼ E {sup 3/2}. At sufficiently high energies escape from the finite-length acceleration region will eventually dominate. For such energies, the electron velocity distribution function is obtained by solving a time-dependent Fokker-Planck equation in the 'leaky-box' approximation. Solutions are obtained in the limit of a small escape rate from an acceleration region that can effectively be considered a thick target.

  4. Electronic accelerator pedal optimal design of intelligent test system

    NASA Astrophysics Data System (ADS)

    Li, Quailing; Lin, Min; Guo, Bin; Luo, Zai

    2010-12-01

    Developed an intelligent test system for the electronic accelerator pedal, and optimized it. The system uses the three-dimensional motion platform driven by servo motor to realize to control the movement of the electronic accelerator pedal automatically and uses the least squares method to optimize the data for the electronic accelerator pedal which is integrated with linear Hall sensors. Carried on the test experiment to the double electric potential signal output electron accelerator pedal and the results show that the system has excellent dynamic and static performance, and the change of motor parameters and load disturbances has strong robustness. Performance indicators have reached the Euro III emission standard configuration of the electronic accelerator pedal and the new technical requirements.

  5. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  6. Simple scalings for various regimes of electron acceleration in surface plasma waves

    NASA Astrophysics Data System (ADS)

    Riconda, C.; Raynaud, M.; Vialis, T.; Grech, M.

    2015-07-01

    Different electron acceleration regimes in the evanescent field of a surface plasma wave are studied by considering the interaction of a test electron with the high-frequency electromagnetic field of a surface wave. The non-relativistic and relativistic limits are investigated. Simple scalings are found demonstrating the possibility to achieve an efficient conversion of the surface wave field energy into electron kinetic energy. This mechanism of electron acceleration can provide a high-frequency pulsed source of relativistic electrons with a well defined energy. In the relativistic limit, the most energetic electrons are obtained in the so-called electromagnetic regime for surface waves. In this regime, the particles are accelerated to velocities larger than the wave phase velocity, mainly in the direction parallel to the plasma-vacuum interface.

  7. Simple scalings for various regimes of electron acceleration in surface plasma waves

    SciTech Connect

    Riconda, C.; Vialis, T.; Raynaud, M.; Grech, M.

    2015-07-15

    Different electron acceleration regimes in the evanescent field of a surface plasma wave are studied by considering the interaction of a test electron with the high-frequency electromagnetic field of a surface wave. The non-relativistic and relativistic limits are investigated. Simple scalings are found demonstrating the possibility to achieve an efficient conversion of the surface wave field energy into electron kinetic energy. This mechanism of electron acceleration can provide a high-frequency pulsed source of relativistic electrons with a well defined energy. In the relativistic limit, the most energetic electrons are obtained in the so-called electromagnetic regime for surface waves. In this regime, the particles are accelerated to velocities larger than the wave phase velocity, mainly in the direction parallel to the plasma-vacuum interface.

  8. Electron Beam Transport in Advanced Plasma Wave Accelerators

    SciTech Connect

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams were generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.

  9. Characterisation of electron beams from laser-driven particle accelerators

    SciTech Connect

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  10. Optimization of positrons generation based on laser wakefield electron acceleration

    NASA Astrophysics Data System (ADS)

    Wu, Yuchi; Han, Dan; Zhang, Tiankui; Dong, Kegong; Zhu, Bin; Yan, Yonghong; Gu, Yuqiu

    2016-08-01

    Laser based positron represents a new particle source with short pulse duration and high charge density. Positron production based on laser wakefield electron acceleration (LWFA) has been investigated theoretically in this paper. Analytical expressions for positron spectra and yield have been obtained through a combination of LWFA and cascade shower theories. The maximum positron yield and corresponding converter thickness have been optimized as a function of driven laser power. Under the optimal condition, high energy (>100 MeV ) positron yield up to 5 ×1011 can be produced by high power femtosecond lasers at ELI-NP. The percentage of positrons shows that a quasineutral electron-positron jet can be generated by setting the converter thickness greater than 5 radiation lengths.

  11. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  12. Energy efficiency of electron plasma emitters

    SciTech Connect

    Zalesski, V. G.

    2011-12-15

    Electron emission influence from gas-discharge plasma on plasma emitter energy parameters is considered. It is shown, that electron emission from plasma is accompanied by energy contribution redistribution in the gas-discharge from plasma emitter supplies sources-the gas-discharge power supply and the accelerating voltage power supply. Some modes of electron emission as a result can be realized: 'a probe measurements mode,' 'a transitive mode,' and 'a full switching mode.'.

  13. Electron acceleration in the inverse free electron laser with a helical wiggler by axial magnetic field and ion-channel guiding

    NASA Astrophysics Data System (ADS)

    Reza, Khazaeinezhad; Mahdi, Esmaeilzadeh

    2012-09-01

    Electron acceleration in the inverse free electron laser (IFEL) with a helical wiggler in the presence of ion-channel guiding and axial magnetic field is investigated in this article. The effects of tapering wiggler amplitude and axial magnetic field are calculated for the electron acceleration. In free electron lasers, electron beams lose energy through radiation while in IFEL electron beams gain energy from the laser. The equation of electron motion and the equation of energy exchange between a single electron and electromagnetic waves are derived and then solved numerically using the fourth order Runge-Kutta method. The tapering effects of a wiggler magnetic field on electron acceleration are investigated and the results show that the electron acceleration increases in the case of a tapered wiggler magnetic field with a proper taper constant.

  14. Shock-drift accelerated electrons and n-distribution

    NASA Astrophysics Data System (ADS)

    Vandas, M.; Karlický, M.

    2016-06-01

    Aims: By analyzing soft X-ray spectra observed during the impulsive phase of several solar flares, the n-distribution function of superthermal electrons has been detected. In the paper we try to answer the question of whether electrons with this type of distribution function can be produced in a shock, e.g. in a flare termination shock. Methods: We use analytical and numerical methods to compute distribution functions of electrons accelerated by a shock. Results: We analytically derive the distribution functions of reflected electrons at quasi-perpendicular shocks. We also consider the influence of the electrostatic cross-shock potential, shock curvature, and the role of the upstream seed population on these distributions. The computed distributions are compared with the n-distributions. We found that a high-energy part of the distribution of electrons reflected at a quasi-perpendicular shock can be very well fitted by the n-distribution in all the cases we studied. This provides a chance to detect the flare termination shock.

  15. Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays

    SciTech Connect

    Leemans, W.P.; Esarey, E.; van Tilborg, J.; Michel, P.A.; Schroeder, C.B.; Toth, Cs.; Geddes, C.G.R.; Shadwick, B.A.

    2004-10-01

    Electron beam based radiation sources provide electromagnetic radiation for countless applications. The properties of the radiation are primarily determined by the properties of the electron beam. Compact laser driven accelerators are being developed that can provide ultra-short electron bunches (femtosecond duration) with relativistic energies reaching towards a GeV. The electron bunches are produced when an intense laser interacts with a dense plasma and excites a large amplitude plasma density modulation (wakefield) that can trap background electrons and accelerate them to high energies. The short pulse nature of the accelerated bunches and high particle energy offer the possibility of generating radiation from one compact source that ranges from coherent terahertz to gamma rays. The intrinsic synchronization to a laser pulse and unique character of the radiation offers a wide range of possibilities for scientific applications. Two particular radiation source regimes are discussed: Coherent terahertz emission and x-ray emission based on betatron oscillations and Thomson scattering.

  16. A high current, short pulse electron source for wakefield accelerators

    SciTech Connect

    Ho, Ching-Hung

    1992-12-31

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  17. A high current, short pulse electron source for wakefield accelerators

    SciTech Connect

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  18. Measurements of beat wave accelerated electrons in a toroidal plasma

    SciTech Connect

    Rogers, J.H. . Plasma Physics Lab.); Hwang, D.W. . Dept. of Applied Science Lawrence Livermore National Lab., CA )

    1992-06-01

    Electrons are accelerated by large amplitude electron plasma waves driven by counter-propagating microwaves with a difference frequency approximately equal to the electron plasma frequency. Energetic electrons are observed only when the phase velocity of the wave is in the range 3v{sub e} < v{sub ph} < 7v{sub e} (v{sub ph} was varied 2v{sub e} < v{sub ph} < 10v{sub e}), where v{sub e} is the electron thermal velocity, (kT{sub e}/m{sub e}){sup {1/2}}. As the phase velocity increases, fewer electrons are accelerated to higher velocities. The measured current contained in these accelerated electrons has the power dependence predicted by theory, but the magnitude is lower than predicted.

  19. A laser accelerator. [interaction of polarized light beam with electrons in magnetic field

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1979-01-01

    It is shown that a laser can efficiently accelerate charged particles if a magnetic field is introduced to improve the coupling between the particle and the wave. Solving the relativistic equations of motion for an electron in a uniform magnetic field and superposed, circularly polarized electromagnetic wave, it is found that in energy-position phase space an electron traces out a curtate cycloid: it alternately gains and loses energy. If, however, the parameters are chosen so that the electron's oscillations in the two fields are resonant, it will continually accelerate or decelerate depending on its initial position within a wavelength of light. A laboratory accelerator operating under these resonant conditions appears attractive: in a magnetic field of 10,000 gauss, and the fields of a 5 x 10 to the 12th W, 10 micron wavelength laser, an optimally positioned electron would accelerate to 700 MeV in only 10 m.

  20. GeV electron beams from a cm-scale accelerator

    SciTech Connect

    Leemans, W.P.; Nagler, B.; Gonsalves, A.J.; Toth, C.; Nakamura,K.; Geddes, C.G.R.; Esarey, E.B.; Schroeder, C.; Hooker, S.M.

    2006-05-04

    GeV electron accelerators are essential to synchrotron radiation facilities and free electron lasers, and as modules for high-energy particle physics. Radio frequency based accelerators are limited to relatively low accelerating fields (10-50 MV/m) and hence require tens to hundreds of meters to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometers to generate particle energies of interest to the frontiers of high-energy physics.Laser wakefield accelerators (LWFA) in which particles are accelerated by the field of a plasma wave driven by an intense laser pulse produce electric fields several orders of magnitude stronger (10-100 GV/m) and so offer the potential of very compact devices. However, until now it has not been possible to maintain the required laser intensity, and hence acceleration, over the several centimeters needed to reach GeV energies.For this reason laser-driven accelerators have to date been limited to the 100 MeV scale. Contrary to predictions that PW-class lasers would be needed to reach GeV energies, here we demonstrate production of a high-quality electron beam with 1 GeV energy by channeling a 40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide. We anticipate that laser-plasma accelerators based on capillary discharge waveguides will have a major impact on the development of future femtosecond radiation sources such as x-ray free electron lasers and become a standard building block for next generation high-energy accelerators.

  1. Electron acceleration at nearly perpendicular collisionless shocks. 3: Downstream distributions

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.

    1994-01-01

    Spacecraft observations at the Earth's bow shock and at interplanetary shocks have established that the largest fluxes of accelerated suprathermal electrons occur in so-called shock spike events immediately downstream of the shock ramp. Previous theoretical efforts have mainly focused on explaining upstream energetic electron beams. Here we investigate the general motion and acceleration of energetic electrons in a curved, nearly perpendicular shock by numerically integrating the orbits of solar wind halo electrons in shock fields generated by a hybrid simulation (core electron fluid and kinetic ions). Close to the angle Theta(sub Bn) = 90 degs between the upstream magnetic field and shock normal, the calculations result in a (perpendicular) temperature increase proportional to the magnetic field ratio and give the highest phase space densities in the overshoot. For a steep distribution, the temperature change can correspond to an enhancement of the distribution by several orders of magnitude. These results are in agreement with predictions from adiabatic mapping. With smaller angles Theta(sub Bn), the overshoot and downstream densities fall off quickly, because the adiabatic energy gain is less and fewer electrons transmit. The shock curvature also leads to an accumulation of electrons close to 90 degs. Without pitch angle scattering, energization is only significant within a few (approximately 5 to 10 degs) degrees of the point of tangency. However, shock spike events appear to be observed more easily and farther away from 90 degs. Given that over a region of several degrees around 90 degs the theory gives enhancements of up to approximately 4 orders of magnitude, such electrons could in principle account for the typically observed enhancements of 1 to 2 orders of magnitude, if they were distributed over Theta(sub Bn). To test the idea that scattering could efficiently redistribute the energetic electrons, we have conducted test particle simulations in which

  2. Characteristics of an electron-beam rocket pellet accelerator

    SciTech Connect

    Tsai, C.C.; Foster, C.A.; Milora, S.L.; Schechter, D.E.

    1991-01-01

    A proof-of-principle (POP) electron-beam pellet accelerator has been developed and used for accelerating hydrogen and deuterium pellets. An intact hydrogen pellet was accelerated to a speed of 460 m/s by an electron beam of 13.5 keV. 0.3 A, and 2 ms. The maximum speed is limited by the acceleration path length (0.4 m) and pellet integrity. Experimental data have been collected for several hundred hydrogen pellets, which were accelerated by electron beams with parameters of voltage up to 16 kV, current up to 0.4 A, and pulse length up to 10 ms. Preliminary results reveal that the measured burn velocity increases roughly with the square of the beam voltage, as the theoretical model predicts. The final pellet velocity is proportional to the exhaust velocity, which increases with the beam power. To reach the high exhaust velocity needed for accelerating pellets to >1000 m/s, a new electron gun, with its cathode indirectly heated by a graphite heater and an electron beam, is being developed to increase beam current and power. A rocket casing or shell around the pellet has been designed and developed to increase pellet strength and improve the electron-rocket coupling efficiency. We present the characteristics of this pellet accelerator, including new improvements. 13 refs., 6 figs.

  3. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  4. Probing gravitation, dark energy, and acceleration

    SciTech Connect

    Linder, Eric V.

    2004-02-20

    The acceleration of the expansion of the universe arises from unknown physical processes involving either new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to characterize the properties of the dark energy or gravity through cosmological observations and compare and distinguish between them. In fact, close consistencies exist between a dark energy equation of state function w(z) and changes to the framework of the Friedmann cosmological equations as well as direct spacetime geometry quantities involving the acceleration, such as ''geometric dark energy'' from the Ricci scalar. We investigate these interrelationships, including for the case of super acceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.

  5. Advanced Accelerating Structures and Their Interaction with Electron Beams

    SciTech Connect

    Gai Wei

    2009-01-22

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  6. Advanced accelerating structures and their interaction with electron beams.

    SciTech Connect

    Gai, W.; High Energy Physics

    2008-01-01

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  7. Future Accelerator Challenges in Support of High-Energy Physics

    SciTech Connect

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  8. Testing general relativity with laser accelerated electron beams

    SciTech Connect

    Gergely, L. A.; Harko, T.

    2012-07-09

    Electron accelerations of the order of 10{sup 21} g obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a uniformly accelerated particle.

  9. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  10. Acceleration of electrons generated during ionization of a gas by a nearly flat profile laser pulse

    SciTech Connect

    Singh, Kunwar Pal

    2009-09-15

    A scheme of acceleration of electrons generated during ionization of krypton by nearly flat radial and nearly flat temporal laser pulse profiles has been suggested. The energy spectrum of the electrons suggests that energy of the electrons is higher for a nearly flat temporal profile than that for a nearly flat radial profile. The suppression of scattering of the electrons is better for a nearly flat radial profile than that for a nearly flat temporal profile. The energy of the electrons increases, scattering decreases, and beam quality improves with an increase in flatness of radial and temporal profiles.

  11. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV

    PubMed Central

    Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil; Li, Zhengyan; Yi, S. A.; Zhang, Xi; Henderson, Watson; Chang, Y.-Y.; Korzekwa, R.; Tsai, H.-E.; Pai, C.-H.; Quevedo, H.; Dyer, G.; Gaul, E.; Martinez, M.; Bernstein, A. C.; Borger, T.; Spinks, M.; Donovan, M.; Khudik, V.; Shvets, G.; Ditmire, T.; Downer, M. C.

    2013-01-01

    Laser-plasma accelerators of only a centimetre’s length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence. Petawatt pulses inject ambient plasma electrons into the laser-driven accelerator at much lower density than was previously possible, thereby overcoming the principal physical barriers to multi-gigaelectronvolt acceleration: dephasing between laser-driven wake and accelerating electrons and laser pulse erosion. Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy. PMID:23756359

  12. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV.

    PubMed

    Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil; Li, Zhengyan; Yi, S A; Zhang, Xi; Henderson, Watson; Chang, Y-Y; Korzekwa, R; Tsai, H-E; Pai, C-H; Quevedo, H; Dyer, G; Gaul, E; Martinez, M; Bernstein, A C; Borger, T; Spinks, M; Donovan, M; Khudik, V; Shvets, G; Ditmire, T; Downer, M C

    2013-01-01

    Laser-plasma accelerators of only a centimetre's length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence. Petawatt pulses inject ambient plasma electrons into the laser-driven accelerator at much lower density than was previously possible, thereby overcoming the principal physical barriers to multi-gigaelectronvolt acceleration: dephasing between laser-driven wake and accelerating electrons and laser pulse erosion. Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy.

  13. Broadband Single-Shot Electron Spectrometer for GeV-Class Laser Plasma Based Accelerators

    SciTech Connect

    Nakamura, K.; Wan, W.; Ybarrolaza, N.; Syversrud, D.; Wallig, J.; Leemans, W.P.

    2008-05-01

    Laser-plasma-based accelerators can provide electrons over a broad energy range and/or with large momentum spread. The electron beam energy distribution can be controlled via accurate control of laser and plasma properties, and beams with energies ranging from'0.5 to 1000 MeV have been observed. Measuring these energy distributions in a single shot requires the use of a diagnostic with large momentum acceptance and, ideally, sufficient resolution to accurately measure energy spread in the case of narrow energy spread. Such a broadband single-shot electron magnetic spectrometer for GeV-class laser-plasma-based accelerators has been developed at Lawrence Berkeley National Laboratory. A detailed description of the hardware and the design concept is presented, as well as a performance evaluation of the spectrometer. The spectrometer covered electron beam energies raging from 0.01 to 1.1 GeV in a single shot, and enabled the simultaneous measurement of the laser properties at the exit of the accelerator through the use of a sufficiently large pole gap. Based on measured field maps and 3rd-order transport analysis, a few percent-level resolution and determination of the absolute energy were achieved over the entire energy range. Laser-plasma-based accelerator experiments demonstrated the capability of the spectrometer as a diagnostic and its suitability for such a broadband electron source.

  14. Acceleration of electrons by a circularly polarized laser pulse in the presence of an intense axial magnetic field in vacuum

    SciTech Connect

    Singh, K. P.

    2006-08-15

    Acceleration of electrons by a circularly polarized laser pulse in the presence of a short duration intense axial magnetic field has been studied. Resonance occurs between the electrons and the laser field for an optimum magnetic field leading to effective energy transfer from laser to electrons. The value of optimum magnetic field is independent of the laser intensity and decreases with initial electron energy. The electrons rotate around the axis of the laser pulse with small angle of emittance and small energy spread. Acceleration gradient increases with laser intensity and decreases with initial electron energy.

  15. Electrostatic-accelerator free-electron lasers for power beaming

    SciTech Connect

    Pinhasi, Y.; Yakover, I.M.; Gover, A.

    1995-12-31

    Novel concepts of electrostatic-accelerator free-electron lasers (EA-FELs) for energy transfer through the atmosphere are presented. The high average power attained from an EA-FEL makes it an efficient source of mm-wave for power beaming from a ground stations. General aspects of operating the FEL as a high power oscillator (like acceleration voltage, e-beam. current, gain and efficiency) are studied and design considerations are described. The study takes into account requirements of power beaming application such as characteristic dips in the atmospheric absorption spectrum, sizes of transmitting and receiving antennas and meteorological conditions. We present a conceptual design of a moderate voltage (.5-3 MeV) high current (1-10 Amp) EA-FEL operating at mm-wavelength bands, where the atmospheric attenuation allows efficient power beaming to space. The FEL parameters were calculated, employing analytical and numerical models. The performance parameters of the FEL (power, energy conversion efficiency average power) will be discussed in connection to the proposed application.

  16. Spectral features of the diffusive shock acceleration of electrons at the termination shock

    NASA Astrophysics Data System (ADS)

    Prinsloo, Phillip; Toit Strauss, Du; Potgieter, Marius

    2016-07-01

    Following the revelation that the source of the anomalous cosmic rays was, contrary to expectation, not located at the termination shock, the diffusive shock acceleration mechanism came under increased criticism. With regards to galactic cosmic rays, however, its involvement in their re-acceleration is less disputed, but the extent of this involvement had to be reaffirmed given the new parameter constraints provided by the Voyager spacecraft. Hence, the features of diffusive shock acceleration, studied in the context of the transport of galactic electrons, are investigated using a numerical cosmic-ray modulation model that makes provision for the effects of this acceleration mechanism. The imprint of diffusive shock acceleration on the energy distributions of galactic electrons arriving at the termination shock is studied, along with the interplay between this acceleration mechanism and transport processes such as drift and diffusion. An important overarching set of results is that if the energy distribution of electrons incident at the termination shock is softer than the power law associated with the shock compression ratio, the latter is adopted by the accelerated particles, while if the converse is true, the incident distribution's intensity is raised uniformly. This intensity increase is in turn dependent on how similar the incident spectrum is to the power law associated with the compression ratio. The influence of other transport processes on cosmic-ray re-acceleration hence hinges on how they alter energy distributions incident at the termination shock.

  17. Variable energy constant current accelerator structure

    DOEpatents

    Anderson, Oscar A.

    1990-01-01

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.

  18. The evolution of high energy accelerators

    SciTech Connect

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  19. Electron acceleration in three-dimensional magnetic reconnection with a guide field

    SciTech Connect

    Dahlin, J. T. Swisdak, M.; Drake, J. F.

    2015-10-15

    Kinetic simulations of 3D collisionless magnetic reconnection with a guide field show a dramatic enhancement of energetic electron production when compared with 2D systems. In the 2D systems, electrons are trapped in magnetic islands that limit their energy gain, whereas in the 3D systems the filamentation of the current layer leads to a stochastic magnetic field that enables the electrons to access volume-filling acceleration regions. The dominant accelerator of the most energetic electrons is a Fermi-like mechanism associated with reflection of charged particles from contracting field lines.

  20. The accelerating universe and dark energy

    NASA Astrophysics Data System (ADS)

    Baltay, Charles

    2014-05-01

    The recent discovery by Riess et al.1 and Perlmutter et al.2 that the expansion of the universe is accelerating is one of the most significant discoveries in cosmology in the last few decades. To explain this acceleration a mysterious new component of the universe, dark energy, was hypothesized. Using general relativity (GR), the measured rate of acceleration translates to the present understanding that the baryonic matter, of which the familiar world is made of, is a mere 4% of the total mass-energy of the universe, with nonbaryonic dark matter making up 24% and dark energy making up the majority 72%. Dark matter, by definition, has attractive gravity, and even though we presently do not know what it is, it could be made of the next heavy particles discovered by particle physicists. Dark energy, however, is much more mysterious, in that even though we do not know what it is, it must have some kind of repulsive gravity and negative pressure, very unusual properties that are not part of the present understanding of physics. Investigating the nature of dark energy is therefore one of the most important areas of cosmology. In this review, the cosmology of an expanding universe, based on GR, is discussed. The methods of studying the acceleration of the universe, and the nature of dark energy, are presented. A large amount of experimentation on this topic has taken place in the decade since the discovery of the acceleration. These are discussed and the present state of knowledge of the cosmological parameters is summarized in Table 7 below. A vigorous program to further these studies is under way. These are presented and the expected results are summarized in Table 10 below. The hope is that at the end of this program, it would be possible to tell whether dark energy is due to Einstein's cosmological constant or is some other new constituent of the universe, or alternately the apparent acceleration is due to some modification of GR.

  1. OBSERVATION OF HEATING BY FLARE-ACCELERATED ELECTRONS IN A SOLAR CORONAL MASS EJECTION

    SciTech Connect

    Glesener, Lindsay; Bain, Hazel M.; Krucker, Säm; Lin, Robert P.

    2013-12-20

    We report a Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observation of flare-accelerated electrons in the core of a coronal mass ejection (CME) and examine their role in heating the CME. Previous CME observations have revealed remarkably high thermal energies that can far surpass the CME's kinetic energy. A joint observation by RHESSI and the Atmospheric Imaging Assembly of a partly occulted flare on 2010 November 3 allows us to test the hypothesis that this excess energy is collisionally deposited by flare-accelerated electrons. Extreme ultraviolet (EUV) images show an ejection forming the CME core and sheath, with isothermal multifilter analysis revealing temperatures of ∼11 MK in the core. RHESSI images reveal a large (∼100 × 50 arcsec{sup 2}) hard X-ray (HXR) source matching the location, shape, and evolution of the EUV plasma, indicating that the emerging CME is filled with flare-accelerated electrons. The time derivative of the EUV emission matches the HXR light curve (similar to the Neupert effect observed in soft and HXR time profiles), directly linking the CME temperature increase with the nonthermal electron energy loss, while HXR spectroscopy demonstrates that the nonthermal electrons contain enough energy to heat the CME. This is the most direct observation to date of flare-accelerated electrons heating a CME, emphasizing the close relationship of the two in solar eruptive events.

  2. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect

    Raja, Rajendran

    2009-03-18

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years. At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.

  3. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE PAGES

    Li, W.; Thorne, R. M.; Bortnik, J.; Baker, D. N.; Reeves, G. D.; Kanekal, S. G.; Spence, H. E.; Green, J. C.

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  4. Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus.

    PubMed

    Thorne, R M; Li, W; Ni, B; Ma, Q; Bortnik, J; Chen, L; Baker, D N; Spence, H E; Reeves, G D; Henderson, M G; Kletzing, C A; Kurth, W S; Hospodarsky, G B; Blake, J B; Fennell, J F; Claudepierre, S G; Kanekal, S G

    2013-12-19

    Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt, but are inconsistent with acceleration by inward radial diffusive transport. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model. Here we report high-resolution electron observations obtained during the 9 October storm and demonstrate, using a two-dimensional simulation performed with a recently developed time-varying data-driven model, that chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase. Our detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth's outer radiation belt, and the results presented have potential application to Jupiter, Saturn and other magnetized astrophysical objects. PMID:24352287

  5. Electron Acceleration by Langmuir Waves Produced by a Decay Cascade

    NASA Astrophysics Data System (ADS)

    Krafft, C.; Volokitin, A. S.

    2016-04-01

    It was recently reported that a significant part of the Langmuir waveforms observed by the STEREO satellite during type III solar radio bursts are likely consistent with the occurrence of electrostatic decay instabilities, when a Langmuir wave { L } resonantly interacts with another Langmuir wave { L }\\prime and an ion sound wave { S }\\prime through the decay channel { L }\\to { L }\\prime +{ S }\\prime . Usually such wave-wave interactions occur in regions of the solar wind where the presence of electron beams can drive Langmuir turbulence to levels allowing waves { L } to decay. Moreover, such solar wind plasmas can present long-wavelength, randomly fluctuating density inhomogeneities or monotonic density gradients which can significantly modify the development of such resonant instabilities. If some conditions are met, the waves can encounter a second decay cascade (SDC) according to { L }\\prime \\to { L }\\prime\\prime +{ S }\\prime\\prime . Analytical estimates and observations based on numerical simulations show that the Langmuir waves { L }\\prime\\prime produced by this SDC can accelerate beam particles up to velocities and kinetic energies exceeding two times the beam drift velocity vb and half the initial beam energy, respectively. Moreover, this process can be particularly efficient if the scattering effects of waves on the background plasma inhomogeneities have already accelerated a sufficient amount of beam electrons up to the velocity range where the phase velocities of the { L }\\prime\\prime waves are lying. The paper shows that the conditions necessary for such process to occur can be easily met in solar wind plasmas if the beam velocities do not exceed around 35 times the plasma thermal velocity.

  6. ION-STABILIZED ELECTRON INDUCTION ACCELERATOR

    DOEpatents

    Finkelstein, D.

    1960-03-22

    A method and apparatus for establishing an ion-stabilized self-focusing relativistic electron beam from a plasma are reported. A plasma is introduced into a specially designed cavity by plasma guns, and a magnetic field satisfying betatron conditions is produced in the cavity by currents flowing in the highly conductive, non-magnetic surface of the cavity. This field forms the electron beam by induction from the plasma.

  7. Electron heating in radiation-pressure-driven proton acceleration with a circularly polarized laser

    NASA Astrophysics Data System (ADS)

    Paradkar, B. S.; Krishnagopal, S.

    2016-02-01

    Dynamics of electron heating in the radiation-pressure-driven acceleration through self-induced transparency (SIT) is investigated with the help of particle-in-cell simulations. The SIT is achieved through laser filamentation which is seeded by the transverse density modulations due to the Rayleigh-Taylor-like instability. We observe stronger SIT induced electron heating for the longer duration laser pulses leading to deterioration of accelerated ion beam quality (mainly energy spread). Such heating can be controlled to obtain a quasimonoenergetic beam by cascaded foils targets where a second foil behind the main accelerating foil acts as a laser reflector to suppress the SIT.

  8. Accumulation and Effects of Stray Electrons in IFE Accelerators

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Molvik, A. W.; Vay, J. L.

    2002-11-01

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. Electron accumulation is impacted by the ion beam potential, accelerating fields, multipole magnetic fields used for beam focus, and the pulse duration. We present electron particle orbit studies and estimates showing the various dependences. We also present ion simulations with prescribed random electron neutralization to elucidate electron effects on ion beam quality. Finally we contrast electron effects to be expected on the proposed Integrated Beam Experiment (IBX) with those for the High-Current Experiment (HCX), and discuss ways to measure these differences.

  9. Electron Beam Focusing in the Linear Accelerator (linac)

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis

    2015-10-01

    To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  10. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Hansson, M.; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma.

  11. Projectile image acceleration, neutralization and electron emission during grazing interactions of multicharged ions with Au(110)

    SciTech Connect

    Meyer, F.W.; Folkerts, L.; Folkerts, H.O.; Schippers, S. |

    1995-03-01

    Recent Oak Ridge work is summarized on projectile energy gain by image charge acceleration, scattered ion charge distributions, and K-Auger electron emission during low energy grazing interactions of highly charged Pb, I, O, and Ar ions with a Au(110) surface.

  12. Acceleration of non-relativistic electrons at a dielectric grating structure: Status report

    SciTech Connect

    Breuer, John; Hommelhoff, Peter

    2012-12-21

    We report on an experiment aiming at a proof-of-concept of a non-relativistic direct laser accelerator. The system is based on a fused-silica transmission grating illuminated by Titanium:sapphire femtosecond pulses in order to excite evanescent spatial modes, which propagate synchronously with 28 keV electrons originating from an electron column of a scanning electron microscope. The grating period is 750 nm, and we use the third spatial harmonic to continuously accelerate the non-relativistic electrons. With a laser pulse energy of about 150 nJ numerical simulations show expected accelerating gradients of up to 60 MeV/m and an energy gain of around 300 eV at a distance of 100 nm away from the grating surface. The current status of the experiment is reported.

  13. Experimental evaluation of 350 MHz RF accelerator windows for the low energy demonstration accelerator

    SciTech Connect

    Cummings, K.; Rees, D.; Roybal, W.

    1997-09-01

    Radio frequency (RF) windows are historically a point where failure occurs in input power couplers for accelerators. To obtain a reliable, high-power, 350 MHz RF window for the Low Energy Demonstration Accelerator (LEDA) project of the Accelerator Production of Tritium program, RF windows prototypes from different vendors were tested. Experiments were performed to evaluate the RF windows by the vendors to select a window for the LEDA project. The Communications and Power, Inc. (CPI) windows were conditioned to 445 kW in roughly 15 hours. At 445 kW a window failed, and the cause of the failure will be presented. The English Electronic Valve, Inc. (EEV) windows were conditioned to 944 kW in 26 hours and then tested at 944 kW for 4 hours with no indication of problems.

  14. Study on the radiation problem caused by electron beam loss in accelerator tubes

    NASA Astrophysics Data System (ADS)

    Li, Quan-Feng; Guo, Bing-Qi; Zhang, Jie-Xi; Chen, Huai-Bi

    2008-07-01

    The beam dynamic code PARMELA was used to simulate the transportation process of accelerating electrons in S-band SW linacs with different energies of 2.5, 6 and 20 MeV. The results indicated that in the ideal condition, the percentage of electron beam loss was 50% in accelerator tubes. Also we calculated the spectrum, the location and angular distribution of the lost electrons. Calculation performed by Monte Carlo code MCNP demonstrated that the radiation distribution of lost electrons was nearly uniform along the tube axis, the angular distributions of the radiation dose rates of the three tubes were similar, and the highest leaking dose was at the angle of 160° with respect to the axis. The lower the energy of the accelerator, the higher the radiation relative leakage. For the 2.5 MeV accelerator, the maximum dose rate reached 5% of the main dose and the one on the head of the electron gun was 1%, both of which did not meet the eligible protection requirement for accelerators. We adopted different shielding designs for different accelerators. The simulated result showed that the shielded radiation leaking dose rates fulfilled the requirement. Supported by National Natural Science Foundation of China (10135040)

  15. Numerical modeling of multi-GeV laser wakefield electron acceleration inside a dielectric capillary tube

    SciTech Connect

    Paradkar, B. S.; Cros, B.; Maynard, G.; Mora, P.

    2013-08-15

    Numerical modeling of laser wakefield electron acceleration inside a gas filled dielectric capillary tube is presented. Guiding of a short pulse laser inside a dielectric capillary tube over a long distance (∼1 m) and acceleration of an externally injected electron bunch to ultra-relativistic energies (∼5-10 GeV) are demonstrated in the quasi-linear regime of laser wakefield acceleration. Two dimensional axisymmetric simulations were performed with the code WAKE-EP (Extended Performances), which allows computationally efficient simulations of such long scale plasma. The code is an upgrade of the quasi-static particle code, WAKE [P. Mora and T. M. Antonsen, Jr., Phys. Plasmas 4, 217 (1997)], to simulate the acceleration of an externally injected electron bunch (including beam loading effect) and propagation of the laser beam inside a dielectric capillary. The influence of the transverse electric field of the plasma wake on the radial loss of the accelerated electrons to the dielectric wall is investigated. The stable acceleration of electrons to multi-GeV energy with a non-resonant laser pulse with a large spot-size is demonstrated.

  16. Refluxed electrons direct laser acceleration in ultrahigh laser and relativistic critical density plasma interaction

    SciTech Connect

    Wang, J.; Zhao, Z. Q.; Zhu, B.; Zhang, Z. M.; Zhou, W. M.; Gu, Y. Q.; Cao, L. H.

    2015-01-15

    Refluxed electrons direct laser acceleration is proposed so as to generate a high-charge energetic electron beam. When a laser pulse is incident on a relativistic critical density target, the rising edge of the pulse heats the target and the sheath fields on the both sides of the target reflux some electrons inside the expanding target. These electrons can be trapped and accelerated due to the self-transparency and the negative longitudinal electrostatic field in the expanding target. Some of the electrons can be accelerated to energies exceeding the ponderomotive limit 1/2a{sub 0}{sup 2}mc{sup 2}. Effective temperature significantly above the ponderomotive scaling is observed. Furthermore, due to the limited expanding length, the laser propagating instabilities are suppressed in the interaction. Thus, high collimated beams with tens of μC charge can be generated.

  17. Comment on ''Electron acceleration by a chirped Gaussian laser pulse in vacuum'' [Phys. Plasmas 13, 123108 (2006)

    SciTech Connect

    Gupta, D. N.; Hur, M. S.; Suk, H.

    2007-04-15

    Sohbatzadeh et al. [Phys. Plasmas 13, 123108 (2006)] have presented a scheme of vacuum electron acceleration by using a chirped Gaussian laser pulse. They assume a linear polarization of the laser pulse in this scheme. We point out that this might be an important assumption in their work and it can seriously influence the electron energy gain during laser acceleration. In this Comment, the circular polarization of a chirped laser pulse is employed and our results show higher electron energy gains.

  18. Laser driver for a photocathode of an electron linear accelerator

    SciTech Connect

    Potemkin, A K; Gacheva, E I; Zelenogorskii, V V; Katin, E V; Kozhevatov, I E; Lozhkarev, V V; Luchinin, G A; Silin, D E; Khazanov, Efim A; Trubnikov, D V; Shirkov, G D; Kuriki, M; Urakava, J

    2011-01-24

    A laser system is designed for operation with a photocathode electron gun for a linear accelerator with the following parameters of radiation at a wavelength of 262 nm (the fourth harmonic of a Nd:YLF laser). The pulse trains (macropulses) with a repetition rate of 5 Hz and a duration of 900 {mu}s consist of 8-ps micropulses with an energy of 1.4 {mu}J and a repetition rate of 2.708 MHz. This repetition rate is variable within {+-}32 kHz and is stabilised by an external signal with an accuracy of 10 Hz. Due to the use of a feedback-controlled acousto-optic modulator, the root-mean-square deviation of the micropulse energy in the first and second harmonics is 2.5% and 3.6%, respectively. Using the decaying branch of the dependence of the second-to-fourth harmonic conversion efficiency on the second harmonic intensity, we decreased the root-mean-square deviation of the energy of the fourth-harmonic micropulses to 2.3% at the first-to-fourth harmonic conversion efficiency of 27%. (lasers and amplifiers)

  19. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.

    PubMed

    Vlček, Antonín; Kvapilová, Hana; Towrie, Michael; Záliš, Stanislav

    2015-03-17

    Ultrafast electron transfer (ET) processes are important primary steps in natural and artificial photosynthesis, as well as in molecular electronic/photonic devices. In biological systems, ET often occurs surprisingly fast over long distances of several tens of angströms. Laser-pulse irradiation is conveniently used to generate strongly oxidizing (or reducing) excited states whose reactions are then studied by time-resolved spectroscopic techniques. While photoluminescence decay and UV-vis absorption supply precise kinetics data, time-resolved infrared absorption (TRIR) and Raman-based spectroscopies have the advantage of providing additional structural information and monitoring vibrational energy flows and dissipation, as well as medium relaxation, that accompany ultrafast ET. We will discuss three cases of photoinduced ET involving the Re(I)(CO)3(N,N) moiety (N,N = polypyridine) that occur much faster than would be expected from ET theories. [Re(4-N-methylpyridinium-pyridine)(CO)3(N,N)](2+) represents a case of excited-state picosecond ET between two different ligands that remains ultrafast even in slow-relaxing solvents, beating the adiabatic limit. This is caused by vibrational/solvational excitation of the precursor state and participation of high-frequency quantum modes in barrier crossing. The case of Re-tryptophan assemblies demonstrates that excited-state Trp → *Re(II) ET is accelerated from nanoseconds to picoseconds when the Re(I)(CO)3(N,N) chromophore is appended to a protein, close to a tryptophan residue. TRIR in combination with DFT calculations and structural studies reveals an interaction between the N,N ligand and the tryptophan indole. It results in partial electronic delocalization in the precursor excited state and likely contributes to the ultrafast ET rate. Long-lived vibrational/solvational excitation of the protein Re(I)(CO)3(N,N)···Trp moiety, documented by dynamic IR band shifts, could be another accelerating factor. The last

  20. Electron bunch acceleration in an inverse free-electron laser with a helical magnetic wiggler and axial guide field

    SciTech Connect

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Asri, Mehdi; Toosi, Ershad Sadeghi

    2006-12-15

    Electron bunch acceleration by a laser pulse having Gaussian radial and temporal profiles of intensity has been studied numerically in a static helical magnetic wiggler in vacuum. The main electron bunch parameters for simulations are 10 MeV initial energy with 0.1% longitudinal energy spread, 1 mm mrad rms transverse emittance, and 3x10{sup 12} cm{sup -3} density. It is shown that the radial Gaussian profile can decrease the acceleration gradient compared with that of the plane-wave approximation due to the reduction of electron-pulse interaction area. In order to collimate electron bunch and overcome the decreasing of the acceleration gradient, an external axial magnetic field is used. The importance of the electron initial phase with respect to laser pulse is considered, and some appropriate values are found. Finally, acceleration of a femtosecond (fs) microbunch with an optimum appropriate initial phase is considered, which leads to a nearly monoenergetic microbunch and an acceleration gradient of about {approx_equal}0.2 GeV/m.

  1. Experimental results of an electron cyclotron resonance oxygen source and a low energy beam transport system for 1 MeV integral split ring radio frequency quadruple accelerator upgrade project

    SciTech Connect

    Peng, S. X.; Zhang, M.; Song, Z. Z.; Xu, R.; Zhao, J.; Yuan, Z. X.; Yu, J. X.; Chen, J.; Guo, Z. Y.

    2008-02-15

    To meet the requirements of developing separated function radio frequency quadruple (rfq) and upgrading the 1 MeV integral split ring rfq accelerator, an electron cyclotron resonance O{sup +} ion source and low energy beam transport (LEBT) system have been developed. Using two Einzel lenses to focus the beam, more than 6 mA O{sup +} peak beam current with energy of 22 keV can be easily obtained at the end of LEBT when the duty faction is at 1/6. The normalized root-mean-square emittance of 90% of the beam is about 0.12{pi} mm mrad. By changing the focusing power of lenses, the beam waist can be shifted from 80 mm before the beam diaphragm 2 to 80 mm after it. The experimental results will be presented in this article.

  2. Measurements of radiation fields around high-energy proton accelerators.

    PubMed

    Agosteo, Stefano; Silari, Marco

    2005-01-01

    Monitoring of ionising radiation around high-energy particle accelerators is a difficult task due to the complexity of the radiation field, which is made up of neutrons, charged hadrons, muons, photons and electrons, with energy spectra extending over a wide energy range. The dose-equivalent outside a thick shield is mainly owing to neutrons, with some contribution from photons and, to a minor extent, the other particles. Neutron dosimetry and spectrometry are thus of primary importance to correctly evaluate the exposure of personnel. This paper reviews the relevant techniques and instrumentation employed for monitoring radiation fields around high-energy proton accelerators, with particular emphasis on the recent development to increase the response of neutron measuring devices > 20 MeV. Rem-counters, pressurised ionisation chambers, superheated emulsions, tissue-equivalent proportional counters and Bonner sphere spectrometers are discussed. PMID:16604662

  3. Energetic electron acceleration observed by MMS in the vicinity of an X-line crossing

    NASA Astrophysics Data System (ADS)

    Jaynes, A. N.; Turner, D. L.; Wilder, F. D.; Osmane, A.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Cohen, I. J.; Mauk, B. H.; Reeves, G. D.; Ergun, R. E.; Giles, B. L.; Gershman, D. J.; Torbert, R. B.; Burch, J. L.

    2016-07-01

    During the first months of observations, the Magnetospheric Multiscale Fly's Eye Energetic Particle Spectrometer instrument has observed several instances of electron acceleration up to >100 keV while in the vicinity of the dayside reconnection region. While particle acceleration associated with magnetic reconnection has been seen to occur up to these energies in the tail region, it had not yet been reported at the magnetopause. This study reports on observations of electron acceleration up to hundreds of keV that were recorded on 19 September 2015 around 1000 UT, in the midst of an X-line crossing. In the region surrounding the X-line, whistler-mode and broadband electrostatic waves were observed simultaneously with the appearance of highly energetic electrons which exhibited significant energization in the perpendicular direction. The mechanisms by which particles may be accelerated via reconnection-related processes are intrinsic to understanding particle dynamics among a wide range of spatial scales and plasma environments.

  4. Electron acceleration by linearly polarized twisted laser pulse with narrow divergence

    SciTech Connect

    Vaziri, Mohammad Sohaily, Sozha; Golshani, Mojtaba; Bahrampour, Alireza

    2015-03-15

    We numerically investigate the vacuum electron acceleration by a high-intensity linearly polarized twisted laser pulse. It is shown that the inherent spiral structure of a Laguerre-Gaussian laser pulse leads to improvement in trapping and acceleration of an electron to energies of the order of GeV in the off-axis case. Also, it is demonstrated that by employing a proper choice of initial injection parameters, the high-energetic electrons with very small scattering angles can be produced.

  5. Comparisons of electron acceleration efficiency among different structures during magnetic reconnection: a Cluster multicase study

    NASA Astrophysics Data System (ADS)

    Zhou, M.; Li, T.; Deng, X.; Huang, S.; Li, H.

    2015-12-01

    Magnetic reconnection has long been believed to be an efficient engine for energetic electrons production. Four different structures have been proposed for electrons being energized: flux pileup region, density cavity located around the separatrix, magnetic island and thin current sheet. In this paper, we compare the electron acceleration efficiency among these structures based on 12 magnetotail reconnection events observed by the Cluster spacecraft in 2001-2006. We used the flux ratio between the energetic electrons (> 50 keV) and lower energy electrons (< 26 keV) to quantify the electron acceleration efficiency. We do not find any specific sequence in which electrons are accelerated within these structures, though the flux pileup region, magnetic island and thin current sheet have higher probabilities to reach the maximum efficiency among the four structures than the density cavity. However, the most efficient electron energization usually occurs outside these structures. We suggest that other structures may also play important roles in energizing electrons. Our results could provide important constraints for the further modeling of electron acceleration during magnetic reconnection.

  6. Enhancement of injection and acceleration of electrons in a laser wakefield accelerator by using an argon-doped hydrogen gas jet and optically preformed plasma waveguide

    SciTech Connect

    Ho, Y.-C.; Hung, T.-S.; Chen, S.-Y.; Chou, M.-C.; Yen, C.-P.; Wang, J.; Chu, H.-H.; Lin, J.-Y.

    2011-06-15

    A systematic experimental study on injection of electrons in a gas-jet-based laser wakefield accelerator via ionization of dopant was conducted. The pump-pulse threshold energy for producing a quasi-monoenergetic electron beam was significantly reduced by doping the hydrogen gas jet with argon atoms, resulting in a much better spatial contrast of the electron beam. Furthermore, laser wakefield electron acceleration in an optically preformed plasma waveguide based on the axicon-ignitor-heater scheme was achieved. It was found that doping with argon atoms can also lower the pump-pulse threshold energy in this experimental configuration.

  7. Techniques for increasing the reliability of accelerator control system electronics

    SciTech Connect

    Utterback, J.

    1993-09-01

    As the physical size of modern accelerators becomes larger and larger, the number of required control system circuit boards increases, and the probability of one of those circuit boards failing while in service also increases. In order to do physics, the experimenters need the accelerator to provide beam reliably with as little down time as possible. With the advent of colliding beams physics, reliability becomes even more important due to the fact that a control system failure can cause the loss of painstakingly produced antiprotons. These facts prove the importance of keeping reliability in mind when designing and maintaining accelerator control system electronics.

  8. Tunable monoenergetic electron beams from independently controllable laser-wakefield acceleration and injection

    NASA Astrophysics Data System (ADS)

    Golovin, G.; Chen, S.; Powers, N.; Liu, C.; Banerjee, S.; Zhang, J.; Zeng, M.; Sheng, Z.; Umstadter, D.

    2015-01-01

    We report the results of experiments on laser-wakefield acceleration in a novel two-stage gas target with independently adjustable density and atomic-composition profiles. We were able to tailor these profiles in a way that led to the separation of the processes of electron injection and acceleration and permitted independent control of both. This resulted in the generation of stable, quasimonoenergetic electron beams with central energy tunable in 50-300 MeV range. For the first time, we are able to independently control the beam charge and energy spread over the entire tunability range.

  9. Electron Acceleration in a Dynamically Evolved Current Sheet Under Solar Coronal Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Shaohua; Du, A. M.; Feng, Xueshang; Cao, Xin; Lu, Quanming; Yang, Liping; Chen, Gengxiong; Zhang, Ying

    2014-05-01

    Electron acceleration in a drastically evolved current sheet under solar coronal conditions is investigated via the combined 2.5-dimensional (2.5D) resistive magnetohydrodynamics (MHD) and test-particle approaches. Having a high magnetic Reynolds number (105), the long, thin current sheet is torn into a chain of magnetic islands, which grow in size and coalesce with each other. The acceleration of electrons is explored in three typical evolution phases: when several large magnetic islands are formed (phase 1), two of these islands are approaching each other (phase 2), and almost merging into a "monster" magnetic island (phase 3). The results show that for all three phases electrons with an initial Maxwell distribution evolve into a heavy-tailed distribution and more than 20 % of the electrons can be accelerated higher than 200 keV within 0.1 second and some of them can even be energized up to MeV ranges. The lower-energy electrons are located away from the magnetic separatrices and the higher-energy electrons are inside the magnetic islands. The most energetic electrons have a tendency to be around the outer regions of the magnetic islands or to appear in the small secondary magnetic islands. It is the trapping effect of the magnetic islands and the distributions of E p that determine the acceleration and spatial distributions of the energetic electrons.

  10. Effects of Spatial Gradients on Electron Runaway Acceleration

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Ljepojevic, N. N.

    1996-01-01

    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.

  11. Energy Release, Acceleration, and Escape of Solar Energetic Ions

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Ireland, J.; Ryan, J. M.; Young, C. A.

    2013-12-01

    Solar flares are prodigious producers of energetic particles, and thus a rich laboratory for studying particle acceleration. The acceleration occurs through the release of magnetic energy, a significant fraction of which can go into the acceleration of particles. Coronal mass ejections (CMEs) certainly produce shocks that both accelerate particles and provide a mechanism for escape into the interplanetary medium (IP). What is less well understood is whether accelerated particles produced from the flare reconnection process escape, and if so, how these same particles are related to solar energetic particles (SEPs) detected in-situ. Energetic electron SEPs have been shown to be correlated with Type III radio bursts, hard X-ray emission, and EUV jets, making a very strong case for the connection between acceleration at the flare and escape along open magnetic field lines. Because there has not been a clear signature of ion escape, as is the case with the Type III radio emission for electrons, sorting out the avenues of escape for accelerated flare ions and the possible origin of the impulsive SEPs continues to be a major challenge. The key to building a clear picture of particle escape relies on the ability to map signatures of escape such as EUV jets at the Sun and to follow the progression of these escape signatures as they evolve in time. Furthermore, nuclear γ-ray emissions provide critical context relating ion acceleration to that of escape. With the advent observations from Fermi as well as RHESSI and the Solar Dynamics Observatory (SDO), the challenge of ion escape from the Sun can now be addressed. We present a preliminary study of the relationship of EUV jets with nuclear γ-ray emission and Type III radio observations and discuss the implications for possible magnetic topologies that allow for ion escape from deep inside the corona to the interplanetary medium.

  12. Summary Report of Working Group 5: Electron Beam Driven Plasma Accelerators

    SciTech Connect

    Hogan, Mark J.; Conde, Manoel E.

    2009-01-22

    Electron beam driven plasma accelerators have seen rapid progress over the last decade. Recent efforts have built on this success by constructing a concept for a plasma wakefield accelerator based linear collider. The needs for any future collider to deliver both energy and luminosity have substantial implications for interpreting current experiments and setting priorities for the future. This working group reviewed current experiments and ideas in the context of the demands of a future collider. The many discussions and presentations are summarized here.

  13. Applications for Energy Recovering Free Electron Lasers

    SciTech Connect

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  14. Evolution of magnetohydrodynamic waves and associated ultrarelativistic electron acceleration

    SciTech Connect

    Takeyama, Yosuke; Nakayama, Shun-ichi; Ohsawa, Yukiharu

    2011-09-15

    The evolution of magnetosonic shock waves and Alfven waves generated by a strong disturbance and electron acceleration occurring in these waves is studied with fully kinetic, relativistic, electromagnetic, particle simulations. If two plasmas collide, magnetic field lines are compressed near the initial boundary of the two, resulting in the formation of a strong-magnetic-field pulse, which reflects ions of the two plasmas in two opposite directions. These ion motions create forward and backward shock waves. Furthermore, large-amplitude Alfven waves are produced, with their propagation speeds much lower than the shock speeds. In the Alfven wave region, three types of ultrarelativistic electron acceleration are observed, which are analyzed in detail.

  15. Electron energies in metals

    SciTech Connect

    Mahan, G.D. Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy)

    1991-07-10

    The modern era of electron-electron interactions began a decade ago. Plummer's group initiated a program of using angular resolved photoemission to examine the band structure of the simple metals. Beginning with aluminum, and carrying on to sodium and potassium, they always found that the occupied energy bands were much narrower than expected. For example, the compressed energy bands for metallic potassium suggest a band effective mass of m* = 1.33m{sub e}. This should be compared to the band mass found from optical conductivity m*/m{sub e} = 1.01 {plus minus} 0.01. The discrepancy between these results is startling. It was this great difference which started my group doing calculations. Our program was two-fold. On one hand, we reanalyzed the experimental data, in order to see if Plummer's result was an experimental artifact. On the other hand, we completely redid the electron-electron self-energy calculations for simple metals, using the most modern choices of local-field corrections and vertex corrections. Our results will be reported in these lectures. They can be summarized as following: Our calculations give the same effective masses as the older calculations, so the theory is relatively unchanged; Our analysis of the experiments suggests that the recent measurements of band narrowing are an experimental artifact. 38 refs., 9 figs.

  16. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Blake, J. B.; Fennell, J. F.; Kanekal, S. G.; Angelopoulos, V.; Green, J. C.; Goldstein, J.

    2016-06-01

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.

  17. Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma

    SciTech Connect

    Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro E-mail: saito@stelab.nagoya-u.ac.jp

    2014-10-10

    Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.

  18. Charging and the cross-field discharge during electron accelerator operation on a rocket

    NASA Technical Reports Server (NTRS)

    Kellogg, Paul J.; Monson, Steven J.

    1988-01-01

    Preliminary results are presented from experiments to study the neutralization processes around an electron beam emitting rocket. The rocket, SCEX II, was flown on January 31, 1987 from Alaska, with a payload consisting of two independent electron accelerators and two arms with conducting elements to act as Langmuir probes and to measure floating potentials. It was expected that electrons in the strong electric fields around the charged rocket would gain sufficient energy to ionize neutrals, producing ions which would be hurled outward at energies up to the rocket potential. Three hemispherical retarding potential analyzers were ejected from the main payload to measure these ions. The measurements show that fields sufficient to accelerate electrons to ionizing energies were present around the rocket.

  19. Low energy demonstration accelerator technical area 53

    SciTech Connect

    1996-04-01

    As part of the Department of Energy`s (DOE) need to maintain the capability of producing tritium in support of its historic and near-term stewardship of the nation`s nuclear weapons stockpile, the agency has recently completed a Programmatic Environmental Impact Statement for Tritium Supply and Recycling. The resulting Record of Decision (ROD) determined that over the next three years the DOE would follow a dual-track acquisition strategy that assures tritium production for the nuclear weapon stockpile in a rapid, cost effective, and safe manner. Under this strategy the DOE will further investigate and compare two options for producing tritium: (1) purchase of an existing commercial light-water reactor or irradiation services with an option to purchase the reactor for conversion to a defense facility; and (2) design, build, and test critical components of a system for accelerator production of tritium (APT). The final decision to select the primary production option will be made by the Secretary of Energy in the October 1998 time frame. The alternative not chosen as the primary production method, if feasible, would be developed as a back-up tritium supply source. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if the DOE were to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end low-energy section of the accelerator, at Los Alamos National Laboratory. The Low Energy Demonstration Accelerator (LEDA) would be incrementally developed and tested in five separate stages over the next seven years. The following issues were evaluated for the proposed action: utility demands, air, human health, environmental restoration, waste management, transportation, water, threatened and endangered species, wetlands, cultural resources, and environmental justice.

  20. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    SciTech Connect

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  1. Validity of the paraxial approximation for electron acceleration with radially polarized laser beams.

    PubMed

    Marceau, Vincent; Varin, Charles; Piché, Michel

    2013-03-15

    In the study of laser-driven electron acceleration, it has become customary to work within the framework of paraxial wave optics. Using an exact solution to the Helmholtz equation as well as its paraxial counterpart, we perform numerical simulations of electron acceleration with a high-power TM(01) beam. For beam waist sizes at which the paraxial approximation was previously recognized valid, we highlight significant differences in the angular divergence and energy distribution of the electron bunches produced by the exact and the paraxial solutions. Our results demonstrate that extra care has to be taken when working under the paraxial approximation in the context of electron acceleration with radially polarized laser beams.

  2. Simulation on buildup of electron cloud in a proton circular accelerator

    NASA Astrophysics Data System (ADS)

    Li, Kai-Wei; Liu, Yu-Dong

    2015-10-01

    Electron cloud interaction with high energy positive beams are believed responsible for various undesirable effects such as vacuum degradation, collective beam instability and even beam loss in high power proton circular accelerators. An important uncertainty in predicting electron cloud instability lies in the detailed processes of the generation and accumulation of the electron cloud. The simulation on the build-up of electron cloud is necessary to further studies on beam instability caused by electron clouds. The China Spallation Neutron Source (CSNS) is an intense proton accelerator facility now being built, whose accelerator complex includes two main parts: an H-linac and a rapid cycling synchrotron (RCS). The RCS accumulates the 80 MeV proton beam and accelerates it to 1.6 GeV with a repetition rate of 25 Hz. During beam injection with lower energy, the emerging electron cloud may cause serious instability and beam loss on the vacuum pipe. A simulation code has been developed to simulate the build-up, distribution and density of electron cloud in CSNS/RCS. Supported by National Natural Science Foundation of China (11275221, 11175193)

  3. Electron acceleration observed in a near-Earth magnetotail reconnection event

    NASA Astrophysics Data System (ADS)

    Aasnes, Arne; Taylor, Matthew; Escoubet, C. Philippe; Laakso, Harri; Masson, Arnaud; Davies, Jackie; Daly, Patrick; Fazakerley, Andrew N.; Perry, Chris

    We present a detailed examination of a magnetic reconnection event in Earth's magnetotail, focusing on the acceleration of electrons. Cluster measurements of the full 3D electron particle distribution over the energy range 1 eV to 400 keV from the PEACE and RAPID IES instruments are discussed. The unique four-point capability of Cluster reveals a separation in space of a dominant beam of low energy electrons (> 1 keV), directed towards the X-line, and unidirectional high-energy electrons (>10 keV), directed away from the X-line. These electrons are observed at the interface between the plasma sheet and a tenuous, cold plasma. Although unidirectional high energy electrons are observed streaming away directly from the X-line, their fluxes are not significantly increased compared to those in the pre-reconnection plasma sheet.

  4. Study of electron acceleration through the ? mode in a collisional plasma-filled cylindrical waveguide

    NASA Astrophysics Data System (ADS)

    Abdoli-Arani, A.; Moghaddasi, M.

    2016-07-01

    Acceleration of an externally injected electron inside the collisional plasma-filled cylindrical waveguide during its motion in the fields of the ? mode excited by microwave radiation is studied. The effect of the electron collision frequency with background ions on the deflection angle and energy gain of electron, when it is injected along the direction of the mode propagation is investigated. The fields for the mode, the deflection angle of electron trajectory, due to these fields, and the electron energy gradient are obtained. The results for collisionless and collisional plasma are graphically presented. The numerical results illustrate that the presence of the electron collision term in the dielectric permittivity can reduce the electron's energy gain in the configuration.

  5. The 500-MeV, 2 1/2% duty factor linear electron accelerator (MEA)

    SciTech Connect

    Bruinsma, P.J.T.; Kroes, F.B.; Kuijer, L.H.; Noomen, J.G.; Spelt, J.B.; Vogel, A.G.C.

    1983-08-01

    Although the intermediate energy electron accelerator in Amsterdam has not reached completely its design specifications, since early 1981 a fully grown scientific program has developed using beams with an energy ranging from 20 to 120 MeV in the 140 MeV substation (for radio-chemistry and low-energy electron scattering over 180/sup 0/) and from 70 to 400 MeV in the high energy stations for electron scattering and physics with pion and muon beams. A brief description of the MIT-type accelerator and its performance will be given with emphasis on typical features of the machine. Some examples will be given of recently obtained scientific data from which can be derived that the quality of the beam is in full accordance with the high performance level of the scientific equipment, involving a complex beam transport system and a pair of spectrometers for high resolution (1x10/sup -4/) work.

  6. Power Supplies for High Energy Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  7. The Effect of Large Scale Magnetic Turbulence on the Acceleration of Electrons by Perpendicular Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Guo, F.; Giacalone, J.

    2009-12-01

    We investigate electron acceleration at collisionless shocks propagating into an upstream plasma containing large-scale magnetic fluctuations in the direction normal to the mean field. We treat electrons as test particles, and integrate their trajectories numerically, in a time dependent electromagnetic field which is determined from a two-dimensional hybrid (kinetic ions, fluid electron) simulation. We find the large-scale magnetic fluctuations effect the electrons in a number of ways leading to efficient and rapid energization at the shock front. Since the electrons move freely along the magnetic field lines, the large scale field line meandering allows the fast-moving electrons to cross the shock front multiple times, leading to efficient acceleration. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring electrons back and forth between them. The downstream spectrum is broadened, with a power-law like tail at high energies up to 200-300 times of the original energy. It is also shown that the spatial distribution of energetic electrons appears to be similar to in-situ observations (e.g. Bale 1999; Simnett 2005). The study may be important in understanding observations of energetic electrons in planetary bow shocks and interplanetary shocks, and explaining herringbone structures in type II solar radio bursts.

  8. Electron self-injection in the proton-driven-plasma-wakefield acceleration

    SciTech Connect

    Hu, Zhang-Hu; Wang, You-Nian

    2013-12-15

    The self-injection process of plasma electrons in the proton-driven-plasma-wakefield acceleration scheme is investigated using a two-dimensional, electromagnetic particle-in-cell method. Plasma electrons are self-injected into the back of the first acceleration bucket during the initial bubble formation period, where the wake phase velocity is low enough to trap sufficient electrons. Most of the self-injected electrons are initially located within a distance of the skin depth c/ω{sub pe} to the beam axis. A decrease (or increase) in the beam radius (or length) leads to a significant reduction in the total charges of self-injected electron bunch. Compared to the uniform plasma, the energy spread, emittance and total charges of the self-injected bunch are reduced in the plasma channel case, due to a reduced injection of plasma electrons that initially located further away from the beam axis.

  9. Compact electron acceleration and bunch compression in THz waveguides.

    PubMed

    Wong, Liang Jie; Fallahi, Arya; Kärtner, Franz X

    2013-04-22

    We numerically investigate the acceleration and bunch compression capabilities of 20 mJ, 0.6 THz-centered coherent terahertz pulses in optimized metallic dielectric-loaded cylindrical waveguides. In particular, we theoretically demonstrate the acceleration of 1.6 pC and 16 pC electron bunches from 1 MeV to 10 MeV over an interaction distance of 20mm, the compression of a 1.6 pC 1 MeV bunch from 100 fs to 2 fs (50 times compression) over an interaction distance of about 18mm, and the compression of a 1.6 pC 10 MeV bunch from 100 fs to 1.61 fs (62 times) over an interaction distance of 42 cm. The obtained results show the promise of coherent THz pulses in realizing compact electron acceleration and bunch compression schemes. PMID:23609686

  10. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probea)

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Yang, X. Y.; Lin, C.; Wang, L.; Xu, M.; Wang, X. G.; Xiao, C. J.

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  11. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    PubMed

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  12. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  13. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, D.; Esarey, E.; Kim, J.K.

    1997-06-10

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention. 21 figs.

  14. Method for generating a plasma wave to accelerate electrons

    DOEpatents

    Umstadter, Donald; Esarey, Eric; Kim, Joon K.

    1997-01-01

    The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.

  15. Comparing the dosimetric characteristics of the electron beam from dedicated intraoperative and conventional radiotherapy accelerators.

    PubMed

    Baghani, Hamid Reza; Aghamiri, Seyed Mahmoud Reza; Mahdavi, Seyed Rabi; Akbari, Mohammad Esmail; Mirzaei, Hamid Reza

    2015-01-01

    The specific design of the mobile dedicated intraoperative radiotherapy (IORT) accelerators and different electron beam collimation system can change the dosimetric characteristics of electron beam with respect to the conventional accelerators. The aim of this study is to measure and compare the dosimetric characteristics of electron beam produced by intraoperative and conventional radiotherapy accelerators. To this end, percentage depth dose along clinical axis (PDD), transverse dose profile (TDP), and output factor of LIAC IORT and Varian 2100C/D conventional radiotherapy accelerators were measured and compared. TDPs were recorded at depth of maximum dose. The results of this work showed that depths of maximum dose, R90, R50, and RP for LIAC beam are lower than those of Varian beam. Furthermore, for all energies, surface doses related to the LIAC beam are substantially higher than those of Varian beam. The symmetry and flatness of LIAC beam profiles are more desirable compared to the Varian ones. Contrary to Varian accelerator, output factor of LIAC beam substantially increases with a decrease in the size of the applicator. Dosimetric characteristics of beveled IORT applicators along clinical axis were different from those of the flat ones. From these results, it can be concluded that dosimetric characteristics of intraoperative electron beam are substantially different from those of conventional clinical electron beam. The dosimetric characteristics of the LIAC electron beam make it a useful tool for intraoperative radiotherapy purposes.

  16. Vacuum system of the 3MeV industrial electron beam accelerator

    NASA Astrophysics Data System (ADS)

    Jayaprakash, D.; Mishra, R. L.; Ghodke, S. R.; kumar, M.; kumar, M.; Nanu, K.; Mittal, K. C., Dr

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF6 gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1×10-7mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm × 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50μm thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  17. Acceleration of electrons during the flash phase of solar flares

    NASA Technical Reports Server (NTRS)

    Kane, S. R.

    1974-01-01

    The characteristics of the electron acceleration process operating during the flash phase of solar flares are deduced from the high time resolution observations of impulsive solar X rays greater than or equal to 10 keV and other flash phase emissions from small solar flares, and the implications of these findings are discussed.

  18. The 20 kilovolt rocket borne electron accelerator. [equipment specifications

    NASA Technical Reports Server (NTRS)

    Harrison, R.

    1973-01-01

    The accelerator system is a preprogrammed multi-voltage system capable of operating at a current level of 1/2 ampere at the 20 kilovolt level. The five major functional areas which comprise this system are: (1) Silver zinc battery packs; (2) the electron gun assembly; (3) gun control and opening circuits; (4) the telemetry conditioning section; and (5) the power conversion section.

  19. Accelerator Driven Nuclear Energy: The Thorium Option

    SciTech Connect

    Raja, Rajendran

    2009-03-18

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  20. Accelerator Driven Nuclear Energy: The Thorium Option

    ScienceCinema

    Raja, Rajendran

    2016-07-12

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  1. High Energy Electron Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ATIC (Advanced Thin Ionization Calorimeter) balloon-borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons. The instrument was exposed to high-energy beams at CERN H2 bean-dine in September of 1999. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well.

  2. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    NASA Astrophysics Data System (ADS)

    Lemery, F.; Piot, P.

    2015-08-01

    Collinear high-gradient O (GV /m ) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2 , a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting "drive" bunch to an accelerated "witness" bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles which support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ˜60 MV /m and a transformer ratio ˜5 consistent with a recently proposed multiuser free-electron laser facility.

  3. Collisionless Weibel Shocks and Electron Acceleration in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi; Lembége, Bertrand

    2015-09-01

    A study of collisionless external shocks in gamma-ray bursts is presented. The shock structure, electromagnetic field, and process of electron acceleration are assessed by performing a self-consistent 3D particle-in-cell simulation. In accordance with hydrodynamic shock systems, the shock consists of a reverse shock (RS) and forward shock separated by a contact discontinuity. The development and structure are controlled by the ion Weibel instability. The ion filaments are sources of strong transverse electromagnetic fields at both sides of the double shock structure over a length of 30–100 ion skin depths. Electrons are heated up to a maximum energy {ε }{ele}≈ \\sqrt{{ε }{{b}}}, where ɛ is the energy normalized to the total incoming energy. Jet electrons are trapped in the RS transition region due to the presence of an ambipolar electric field and reflection by the strong transverse magnetic fields in the shocked region. In a process similar to shock surfing acceleration for ions, electrons experience drift motion and acceleration by ion filament transverse electric fields in the plane perpendicular to the shock propagation direction. Ultimately, accelerated jet electrons are convected back into the upstream.

  4. Collisionless Weibel Shocks and Electron Acceleration in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi; Lembége, Bertrand

    2015-09-01

    A study of collisionless external shocks in gamma-ray bursts is presented. The shock structure, electromagnetic field, and process of electron acceleration are assessed by performing a self-consistent 3D particle-in-cell simulation. In accordance with hydrodynamic shock systems, the shock consists of a reverse shock (RS) and forward shock separated by a contact discontinuity. The development and structure are controlled by the ion Weibel instability. The ion filaments are sources of strong transverse electromagnetic fields at both sides of the double shock structure over a length of 30-100 ion skin depths. Electrons are heated up to a maximum energy {ɛ }{ele}≈ \\sqrt{{ɛ }{{b}}}, where ɛ is the energy normalized to the total incoming energy. Jet electrons are trapped in the RS transition region due to the presence of an ambipolar electric field and reflection by the strong transverse magnetic fields in the shocked region. In a process similar to shock surfing acceleration for ions, electrons experience drift motion and acceleration by ion filament transverse electric fields in the plane perpendicular to the shock propagation direction. Ultimately, accelerated jet electrons are convected back into the upstream.

  5. The electron-optical system of the LIU-2 induction accelerator

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. I.; Batazova, M. A.

    2014-09-01

    The electron-optical system (EOS) of an induction accelerator for generation of an electron beam with an energy of 2 MeV, a current of 2 kA, an impulse duration of 2 × 10-7 s, and a geometric output emittance not exceeding the thermal value of it is described. The EOS consists of two parts. The first part is a diode gun with a perveance of 2 × 10-6 A/B3/2 and a cathode-anode voltage of 1 MeV. The second part is an accelerating tube with uniform distribution of the same accelerating voltage. A beam is transported at a distance of about 4 m from the cathode and focused on a spot with a diameter of about 1 mm. The compliance tests results of the linear-induction accelerator precisely conform to the calculated design parameters.

  6. Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets

    NASA Astrophysics Data System (ADS)

    Pugachev, L. P.; Andreev, N. E.; Levashov, P. R.; Rosmej, O. N.

    2016-09-01

    Optimization study for future experiments on interaction of petawatt laser pulses with foam targets was done by 3D PIC simulations. Densities in the range 0.5nc-nc and thicknesses in the range 100 - 500 μm of the targets were considered corresponding to those which are currently available. It is shown that heating of electrons mainly occurs under the action of the ponderomotive force of a laser pulse in which amplitude increases up to three times because of self-focusing effect in underdense plasma. Accelerated electrons gain additional energy directly from the high-frequency laser field at the betatron resonance in the emerging plasma density channels. For thicker targets a higher number of electrons with higher energies are obtained. The narrowing of the angular distribution of electrons for thicker targets is explained by acceleration in multiple narrow filaments. Obtained energies of accelerated electrons can be approximated by Maxwell distribution with the temperature 8.5 MeV. The charge carried by electrons with energies higher than 30 MeV is about 30 nC, that is 3-4 order of magnitude higher than the charge predicted by the ponderomotive scaling for the incident laser amplitude.

  7. Relativistic electron acceleration and decay time scales in the inner and outer radiation belts: SAMPEX

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Blake, J. B.; Callis, L. B.; Cummings, J. R.; Hovestadt, D.; Kanekal, S.; Klecker, B.; Mewaldt, R. A.; Zwickl, R. D.

    1994-01-01

    High-energy electrons have been measured systematically in a low-altitude (520 x 675 km), nearly polar (inclination = 82 deg) orbit by sensitive instruments onboard the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX). Count rate channels with electron energy thresholds ranging from 0.4 MeV to 3.5 MeV in three different instruments have been used to examine relativistic electron variations as a function of L-shell parameter and time. A long run of essentially continuous data (July 1992 - July 1993) shows substantial acceleration of energetic electrons throughout much of the magnetosphere on rapid time scales. This acceleration appears to be due to solar wind velocity enhancements and is surprisingly large in that the radiation belt 'slot' region often is filled temporarily and electron fluxes are strongly enhanced even at very low L-values (L aprroximately 2). A superposed epoch analysis shows that electron fluxes rise rapidly for 2.5 is approximately less than L is approximately less than 5. These increases occur on a time scale of order 1-2 days and are most abrupt for L-values near 3. The temporal decay rate of the fluxes is dependent on energy and L-value and may be described by J = Ke-t/to with t(sub o) approximately equals 5-10 days. Thus, these results suggest that the Earth's magnetosphere is a cosmic electron accelerator of substantial strength and efficiency.

  8. GeV electron beams from a laser-plasma accelerator

    SciTech Connect

    Schroeder, C.B.; Toth, Cs.; Nagler, B.; Gonsalves, A.J.; Nakamura, K.; Geddes, C.G.R.; Esarey, E.; Hooker, S.M.; Leemans, W.P.

    2006-10-01

    High-quality electron beams with up to 1 GeV energy havebeen generated by a laser-driven plasma-based accelerator by guiding a 40TW peak power laser pulse in a 3.3 cm long gas-filled capillary dischargewaveguide.

  9. Method and apparatus for varying accelerator beam output energy

    DOEpatents

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  10. Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas.

    PubMed

    Marceau, Vincent; Varin, Charles; Brabec, Thomas; Piché, Michel

    2013-11-27

    We propose a simple laser-driven electron acceleration scheme based on tightly focused radially polarized laser pulses for the production of femtosecond electron bunches with energies in the few-hundreds-of-keV range. In this method, the electrons are accelerated forward in the focal volume by the longitudinal electric field component of the laser pulse. Three-dimensional test-particle and particle-in-cell simulations reveal the feasibility of generating well-collimated electron bunches with an energy spread of 5% and a temporal duration of the order of 1 fs. These results offer a route towards unprecedented time resolution in ultrafast electron diffraction experiments.

  11. Nonlinear electron acceleration by oblique whistler waves: Landau resonance vs. cyclotron resonance

    SciTech Connect

    Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V.; Mourenas, D.

    2013-12-15

    This paper is devoted to the study of the nonlinear interaction of relativistic electrons and high amplitude strongly oblique whistler waves in the Earth's radiation belts. We consider electron trapping into Landau and fundamental cyclotron resonances in a simplified model of dipolar magnetic field. Trapping into the Landau resonance corresponds to a decrease of electron equatorial pitch-angles, while trapping into the first cyclotron resonance increases electron equatorial pitch-angles. For 100 keV electrons, the energy gained due to trapping is similar for both resonances. For electrons with smaller energy, acceleration is more effective when considering the Landau resonance. Moreover, trapping into the Landau resonance is accessible for a wider range of initial pitch-angles and initial energies in comparison with the fundamental resonance. Thus, we can conclude that for intense and strongly oblique waves propagating in the quasi-electrostatic mode, the Landau resonance is generally more important than the fundamental one.

  12. A new electron accelerator facility for commercial and educational uses

    NASA Astrophysics Data System (ADS)

    Uribe, R. M.; Vargas-Aburto, C.

    2001-07-01

    A 5 MeV 150 kW electron accelerator facility (NEO Beam Alliance Inc.) has recently initiated operations in Ohio. NEO Beam is the result of a "partnership" between Kent State University (KSU) and a local plastics company (Mercury Plastics, Inc.). The accelerator will be used for electron beam processing, and for educational activities. KSU has created a university-wide Program on Electron Beam Technology (EBT) to address both instructional (including workforce training and development) and research opportunities. In this work, a description is made of the facility and its genesis. Present curricular initiatives are described. Preliminary dosimetry measurements performed with radiochromic (RC) dye films, calorimeters, and alanine pellets are presented and discussed.

  13. Finite element analyses of a linear-accelerator electron gun

    SciTech Connect

    Iqbal, M. E-mail: muniqbal@ihep.ac.cn; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  14. Acceleration and loss of relativistic electrons during small geomagnetic storms

    SciTech Connect

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; Friedel, R. H. W.

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  15. Acceleration and loss of relativistic electrons during small geomagnetic storms

    DOE PAGES

    Anderson, Brett R.; Millan, R. M.; Reeves, Geoffrey D.; Friedel, Reinhard Hans W.

    2015-12-02

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > –50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletionmore » than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. As a result, small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.« less

  16. Acceleration and loss of relativistic electrons during small geomagnetic storms

    SciTech Connect

    Anderson, Brett R.; Millan, R. M.; Reeves, Geoffrey D.; Friedel, Reinhard Hans W.

    2015-12-02

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > –50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. As a result, small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  17. Acceleration and loss of relativistic electrons during small geomagnetic storms

    DOE PAGES

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; Friedel, R. H. W.

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result inmore » flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.« less

  18. Temporal Electron-bunch Shaping from a Photoinjector for Advanced Accelerator Applications

    SciTech Connect

    Lemery, Francois; Piot, Philippe

    2014-07-01

    Advanced-accelerator applications often require the production of bunches with shaped temporal distributions. An example of sought-after shape is a linearly-ramped current profile that can be improve the transformer ratio in beam-driven acceleration, or produce energy-modulated pulse for, e.g., the subsequent generation of THz radiation. Typically,  such a shaping is achieved by manipulating ultra-relativistic electron bunches. In this contribution we discuss the possibility of shaping the bunch via photoemission and demonstrate using particle-in-cell simulations the production of MeV electron bunches with quasi-ramped current profile.

  19. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Wittig, G.; Karger, O.; Knetsch, A.; Xi, Y.; Deng, A.; Rosenzweig, J. B.; Bruhwiler, D. L.; Smith, J.; Manahan, G. G.; Sheng, Z.-M.; Jaroszynski, D. A.; Hidding, B.

    2015-08-01

    A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  20. Radiative damping and electron beam dynamics in plasma-based accelerators.

    PubMed

    Michel, P; Schroeder, C B; Shadwick, B A; Esarey, E; Leemans, W P

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  1. Radiative damping and electron beam dynamics in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  2. Energy Efficient Electronics Cooling Project

    SciTech Connect

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  3. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    NASA Astrophysics Data System (ADS)

    Beck, A.; Kalmykov, S. Y.; Davoine, X.; Lifschitz, A.; Shadwick, B. A.; Malka, V.; Specka, A.

    2014-03-01

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 1018 cm-3. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  4. Direct acceleration of electrons by a circular polarized laser pulse with phase modulation

    SciTech Connect

    Zhu, Lun-Wu; Sheng, Zheng-Mao; Yu, M. Y.

    2013-11-15

    Electron acceleration by transversely echelon phase-modulated (EPM) circularly polarized (CP) intense laser pulse is investigated. Solution of the relativistic electron equations of motion shows that the CP EPM light wave structure can disrupt the harmonic response of a trapped electron not only in the transverse direction but also in the direction of laser propagation. In each laser cycle, there can be a net gain in the electron's transverse momentum, which is promptly converted into the forward direction by the Lorentz force. As a result, the electron can be trapped and accelerated in the favorable phase of the laser for a rather long time. Its momentum gain then accumulates and can eventually reach high levels. It is also found that with the CP EPM laser, the net acceleration of the electron is not sensitive to its initial position and velocity relative to the phase of the laser fields, so that such a laser can also be useful for accelerating thermal electron bunches to high energies.

  5. Plasma physics. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave.

    PubMed

    Matsumoto, Y; Amano, T; Kato, T N; Hoshino, M

    2015-02-27

    Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves. PMID:25722406

  6. Leakage neutron radiation in a medical electron accelerator

    NASA Astrophysics Data System (ADS)

    Paredes, Lydia; Balcazar, Miguel; Genis, Roberto; Ortiz, Raúl

    2001-10-01

    A simple method was used for the calculation of neutron yield produced by main components of medical electron accelerator head, using a simplified geometric model with spherical-shell for the head shielding made of different materials. The leakage neutron radiation on the patient plane and outside the patient plane at one meter from the x-ray target for a Varian accelerator model Clinac 2100C was evaluated experimentally, using Panasonic UD-802 and UD-809 thermoluminescent dosimeters and CR-39 nuclear track dosimeters. The measured values of leakage neutron radiation were lower than the limits specified in the NCRP-102 and IEC 60601-2-1-Ed.2.0 reports.

  7. Electron orbits in the microwave inverse FEL accelerator (MIFELA)

    SciTech Connect

    Zhang, T.B.; Marshall, T.C.

    1995-12-31

    The MIFELA is a new device based on stimulated absorption of microwaves by electrons moving along an undulator. An intense microwave field is used (a{sub s} = eE{sub s}/k{sub s} m c{sup 2} = 0.2) as well as a large undulator field (a{sub w}/{gamma} = eB{sub {perpendicular}}/{gamma}k{sub w} mc{sup 2} = 1/2) to accelerate electrons emitted at 6MeV from a rf gun to 20MeV in 1.5m. The spiral radius of the electrons in the undulator is 8mm, in a waveguide of diameter 34mm, with undulator period about 10cm. There is a small guiding field, and the electrons move in type I orbits. We describe three problems connected with the orbital motion of the electrons in this structure: (i) injecting the electrons in an increasing undulator field prior to entering the MIFELA; (ii) orbital motion and stability inside the MIFELA; (iii) extraction of electrons from the spiral orbit in the accelerator into an axially-propagating beam, obtaining {Beta}{sub {perpendicular}} < 0.02. These studies have application to a MIFELA which is under construction at Yale University by Omega-P.

  8. On the Production of Flat Electron Bunches for Laser Wake Field Acceleration

    SciTech Connect

    Kando, M.; Fukuda, Y.; Kotaki, H.; Koga, J.; Bulanov, S.V.; Tajima, T.; Chao, A.; Pitthan, R.; Schuler, K.-P.; Zhidkov, A.G.; Nemoto, K.; /CRIEPI, Tokyo

    2006-06-27

    We suggest a novel method for injection of electrons into the acceleration phase of particle accelerators, producing low emittance beams appropriate even for the demanding high energy Linear Collider specifications. In this paper we work out the injection into the acceleration phase of the wake field in a plasma behind a high intensity laser pulse, taking advantage of the laser polarization and focusing. With the aid of catastrophe theory we categorize the injection dynamics. The scheme uses the structurally stable regime of transverse wake wave breaking, when electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse in a line-focus with an underdense plasma, the electrons, injected via the transverse wake wave breaking and accelerated by the wake wave, perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with asymmetric emittance (flat beam). An approach for generating flat laser accelerated ion beams is briefly discussed.

  9. Noninvasive Laser Probing of Ultrashort Single Electron Bunches for Accelerator And Light Source Development

    SciTech Connect

    Bolton, P.R.; /SLAC

    2007-06-11

    Companion development of ultrafast electron beam diagnostics capable of noninvasively resolving single bunch detail is essential for the development of high energy, high brightness accelerator facilities and associated beam-based light source applications. Existing conventional accelerators can exhibit timing-jitter down to the 100 femtosecond level which exceeds their single bunch duration capability. At the other extreme, in relatively jitterless environments, laser-plasma wakefield accelerators (LWFA) can generate single electron bunches of duration estimated to be of order 10 femtoseconds making this setting a valuable testbed for development of broadband electron bunch diagnostics. Characteristics of electro-optic schemes and laser-induced reflectance are discussed with emphasis on temporal resolution.

  10. Chirped-Pulse Inverse Free Electron Laser: A Tabletop, High-Gradient Vacuum Laser Accelerator

    SciTech Connect

    Hartemann, F V; Troha, A L; Baldis, H A

    2001-03-05

    The inverse free-electron laser (IFEL) interaction is studied both theoretically and numerically in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. We show that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. A computer code which takes into account the three-dimensional nature of the interaction is currently in development and results are expected this Spring.

  11. Pointlike gamma ray sources as signatures of distant accelerators of ultrahigh energy cosmic rays.

    PubMed

    Gabici, Stefano; Aharonian, Felix A

    2005-12-16

    We discuss the possibility of observing distant accelerators of ultrahigh energy cosmic rays in synchrotron gamma rays. Protons propagating away from their acceleration sites produce extremely energetic electrons during photopion interactions with cosmic microwave background photons. If the accelerator is embedded in a magnetized region, these electrons will emit high energy synchrotron radiation. The resulting synchrotron source is expected to be pointlike, steady, and detectable in the GeV-TeV energy range if the magnetic field is at the nanoGauss level.

  12. Acceleration of electrons and ions by strong lower-hybrid turbulence in solar flares

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Bingham, R.; Su, J. J.; Shapiro, V. D.; Shevchenko, V.; Ma, S.; Dawson, J. M.; Mcclements, K. G.

    1994-01-01

    One of the outstanding problems in solar flare theory is how to explain the 10-20 keV and greater hard x-ray emissions by a thick target bremsstrahlung model. The model requires the acceleration mechanism to accelerate approximately 10(exp 35) electrons sec(exp -l) with comparable energies, without producing a large return current which persists for long time scales after the beam ceases to exist due to Lenz's law, thereby, producing a self-magnetic field of order a few mega-Gauss. In this paper, we investigate particle acceleration resulting from the relaxation of unstable ion ring distributions, producing strong wave activity at the lower hybrid frequency. It is shown that strong lower hybrid wave turbulence collapses in configuration space producing density cavities containing intense electrostatic lower hybrid wave activity. The collapse of these intense nonlinear wave packets saturate by particle acceleration producing energetic electron and ion tails. There are several mechanisms whereby unstable ion distributions could be formed in the solar atmosphere, including reflection at perpendicular shocks, tearing modes, and loss cone depletion. Numerical simulations of ion ring relaxation processes, obtained using a 2 1/2-D fully electromagnetic, relativistic particle in cell code are discussed. We apply the results to the problem of explaining energetic particle production in solar flares. The results show the simultaneous acceleration of both electrons and ions to very high energies: electrons are accelerated to energies in the range 10-500 keV, while ions are accelerated to energies of the order of MeVs, giving rise to x-ray emission and gamma-ray emission respectively. Our simulations also show wave generation at the electron cyclotron frequency. We suggest that these waves are the solar millisecond radio spikes. The strong turbulence collapse process leads to a highly filamented plasma producing many localized regions for particle acceleration and resulting in

  13. Electron beam accelerator: A new tool for environmental preservation in Malaysia

    SciTech Connect

    Hashim, Siti Aiasah; Bakar, Khomsaton Abu; Othman, Mohd Nahar

    2012-09-26

    Electron beam accelerators are widely used for industrial applications such as surface curing, crosslinking of wires and cables and sterilization/ decontamination of pharmaceutical products. The energy of the electron beam determines the type of applications. This is due to the penetration power of the electron that is limited by the energy. In the last decade, more work has been carried out to utilize the energetic electron for remediation of environmental pollution. For this purposes, 1 MeV electron beam accelerator is sufficient to treat wastewater from textile industry and flue gases from fossil fuel combustions. In Nuclear Malaysia, a variable energy Cockroft Walton type accelerator has been utilized to initiate investigations in these two areas. An electron beam flue gas treatment test rig was built to treat emission from diesel combustion, where it was found that using EB parameters of 1MeV and 12mA can successfully remove at least 80% of nitric oxide in the emission. Wastewater from textile industries was treated using combination of biological treatment and EB. The initial findings indicated that the quality of water had improved based on the COD{sub Cr}, BOD{sub 5} indicators.

  14. Electron beam accelerator: A new tool for environmental preservation in Malaysia

    NASA Astrophysics Data System (ADS)

    Hashim, Siti Aiasah; Bakar, Khomsaton Abu; Othman, Mohd Nahar

    2012-09-01

    Electron beam accelerators are widely used for industrial applications such as surface curing, crosslinking of wires and cables and sterilization/ decontamination of pharmaceutical products. The energy of the electron beam determines the type of applications. This is due to the penetration power of the electron that is limited by the energy. In the last decade, more work has been carried out to utilize the energetic electron for remediation of environmental pollution. For this purposes, 1 MeV electron beam accelerator is sufficient to treat wastewater from textile industry and flue gases from fossil fuel combustions. In Nuclear Malaysia, a variable energy Cockroft Walton type accelerator has been utilized to initiate investigations in these two areas. An electron beam flue gas treatment test rig was built to treat emission from diesel combustion, where it was found that using EB parameters of 1MeV and 12mA can successfully remove at least 80% of nitric oxide in the emission. Wastewater from textile industries was treated using combination of biological treatment and EB. The initial findings indicated that the quality of water had improved based on the CODCr, BOD5 indicators.

  15. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    SciTech Connect

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  16. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    SciTech Connect

    Fubiani, Gwenael G.J.

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.

  17. HARD X-RAY OBSERVATIONS OF A JET AND ACCELERATED ELECTRONS IN THE CORONA

    SciTech Connect

    Glesener, Lindsay; Lin, R. P.; Krucker, Saem

    2012-07-20

    We report the first hard X-ray observation of a solar jet on the limb with flare footpoints occulted, so that faint emission from accelerated electrons in the corona can be studied in detail. In this event on 2003 August 21, RHESSI observed a double coronal hard X-ray source in the pre-impulsive phase at both thermal and nonthermal energies. In the impulsive phase, the first of two hard X-ray bursts consists of a single thermal/nonthermal source coinciding with the lower of the two earlier sources, and the second burst shows an additional nonthermal, elongated source, spatially and temporally coincident with the coronal jet. Analysis of the jet hard X-ray source shows that collisional losses by accelerated electrons can deposit enough energy to generate the jet. The hard X-ray time profile above 20 keV matches that of the accompanying Type III and broadband gyrosynchrotron radio emission, indicating both accelerated electrons escaping outward along the jet path and electrons trapped in the flare loop. The double coronal hard X-ray source, the open field lines indicated by Type III bursts, and the presence of a small post-flare loop are consistent with significant electron acceleration in an interchange reconnection geometry.

  18. Electron acceleration in the turbulent reconnecting current sheets in solar flares

    NASA Astrophysics Data System (ADS)

    Wu, G. P.; Huang, G. L.

    2009-07-01

    Context: We investigate the nonlinear evolution of the electron distribution in the presence of the strong inductive electric field in the reconnecting current sheets (RCS) of solar flares. Aims: We aim to study the characteristics of nonthermal electron-beam plasma instability and its influence on electron acceleration in RCS. Methods: Including the external inductive field, the one-dimensional Vlasov simulation is performed with a realistic mass ratio for the first time. Results: Our principal findings are as follows: 1) the Buneman instability can be quickly excited on the timescale of 10-7 s for the typical parameters of solar flares. After saturation, the beam-plasma instabilities are excited due to the non-Maxwellian electron distribution; 2) the final velocity of the electrons trapped by these waves is of the same order as the phase speed of the waves, while the untrapped electrons continue to be accelerated; 3) the inferred anomalous resistance of the current sheet and the energy conversion rate are basically of the same order as those previously estimated, e.g., “the analysis of Martens”. Conclusions: The Buneman instability is excited on the timescale of 10-7 s and the wave-particle resonant interaction limits the low-energy electrons to be further accelerated in RCS.

  19. Relativistic electron accelerations associated with the interplanetary pressure pulse

    NASA Astrophysics Data System (ADS)

    Miyoshi, Yoshizumi; Saito, Shinji; Matsumoto, Yosuke; Hayashi, Masahiro; Amano, Takanobu; Seki, Kanako

    2016-04-01

    The radiation belt electron fluxes are highly variable, and various time scales for the flux enhancements are observed. The rapid flux enhancements of the outer belt electrons have been observed associated with the solar wind pressure pulse. In order to investigate such rapid flux enhancements, we conduct the code-coupling simulations of GEMSIS-RB test particle simulation [Saito et al., 2010] and GEMSIS-GM global MHD simulation [Matsumoto et al., 2010]. The GEMSIS-RB simulation calculates the 3-dimentional guiding-center motion of a number of test particles in the electric/magnetic fields provided from the GEMSIS-GM. After the arrival of the pressure pulse, the outer belt electrons in the dayside moves inward due to the drift resonance with inductive electric fields of the fast mode waves. Some of electrons are strongly accelerated within a few ten minutes and spiral patterns of drifted electrons can be observed. We may discuss the possibility to identify such selected acceleration of relativistic electrons by Van Allen Probes and upcoming ERG satellite.

  20. Experimental validation of a radio frequency photogun as external electron injector for a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Stragier, X. F. D.; Luiten, O. J.; van der Geer, S. B.; van der Wiel, M. J.; Brussaard, G. J. H.

    2011-07-01

    A purpose-built RF-photogun as external electron injector for a laser wakefield accelerator has been thoroughly tested. Different properties of the RF-photogun have been measured such as energy, energy spread and transverse emittance. The focus of this study is the investigation of the smallest possible focus spot and focus stability at the entrance of the plasma channel. For an electron bunch with 10 pC charge and 3.7 MeV kinetic energy, the energy spread was 0.5% with a shot-to-shot stability of 0.05%. After focusing the bunch by a pulsed solenoid lens at 140 mm from the middle of the lens, the focal spot was 40 μm with a shot-to-shot stability of 5 μm. Higher charge leads to higher energy spread and to a larger spot size, due to space charge effects. All properties were found to be close to design values. Given the limited energy of 3.7 MeV, the properties are sufficient for this gun to serve as injector for one particular version of laser wakefield acceleration, i.e., injection ahead of the laser pulse. These measured electron bunch properties were then used as input parameters for simulations of electron bunch injection in a laser wakefield accelerator. The arrival time jitter was deduced from measurements of the energy fluctuation, in combination with earlier measurements using THz coherent transition radiation, and is around 150 fs in the present setup. The bunch length in the focus, simulated using particle tracking, depends on the accelerated charge and goes from 100 fs at 0.1 pC to 1 ps at 50 pC. When simulating the injection of the 3.7 MeV electron bunch of 10 pC in front of a 25 TW laser pulse with a waist of 30 μm in a plasma with a density of 0.7 × 1024 m-3, the maximum accelerated charge was found to be 1.2 pC with a kinetic energy of ˜900 MeV and an energy spread of ˜5%. The experiments combined with the simulations show the feasibility of external injection and give a prediction of the output parameters that can be expected from a laser

  1. Origin of high-energy electrons beyond the magnetosphere.

    NASA Technical Reports Server (NTRS)

    Chang, C. C.; Shen, C. S.

    1966-01-01

    Acceleration of high energy electrons by means of Parker-Wentzel version of Fermi mechanism due to geometry and distorted structure of interplanetary magnetic field near magnetopause in transition region

  2. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We

  3. Non-thermal electron acceleration in low Mach number collisionless shocks. II. Firehose-mediated Fermi acceleration and its dependence on pre-shock conditions

    SciTech Connect

    Guo, Xinyi; Narayan, Ramesh; Sironi, Lorenzo

    2014-12-10

    Electron acceleration to non-thermal energies is known to occur in low Mach number (M{sub s} ≲ 5) shocks in galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Using two-dimensional (2D) particle-in-cell (PIC) plasma simulations, we showed in Paper I that electrons are efficiently accelerated in low Mach number (M{sub s} = 3) quasi-perpendicular shocks via a Fermi-like process. The electrons bounce between the upstream region and the shock front, with each reflection at the shock resulting in energy gain via shock drift acceleration. The upstream scattering is provided by oblique magnetic waves that are self-generated by the electrons escaping ahead of the shock. In the present work, we employ additional 2D PIC simulations to address the nature of the upstream oblique waves. We find that the waves are generated by the shock-reflected electrons via the firehose instability, which is driven by an anisotropy in the electron velocity distribution. We systematically explore how the efficiency of wave generation and of electron acceleration depend on the magnetic field obliquity, the flow magnetization (or equivalently, the plasma beta), and the upstream electron temperature. We find that the mechanism works for shocks with high plasma beta (≳ 20) at nearly all magnetic field obliquities, and for electron temperatures in the range relevant for galaxy clusters. Our findings offer a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  4. Non-thermal Electron Acceleration in Low Mach Number Collisionless Shocks. II. Firehose-mediated Fermi Acceleration and its Dependence on Pre-shock Conditions

    NASA Astrophysics Data System (ADS)

    Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh

    2014-12-01

    Electron acceleration to non-thermal energies is known to occur in low Mach number (Ms <~ 5) shocks in galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Using two-dimensional (2D) particle-in-cell (PIC) plasma simulations, we showed in Paper I that electrons are efficiently accelerated in low Mach number (Ms = 3) quasi-perpendicular shocks via a Fermi-like process. The electrons bounce between the upstream region and the shock front, with each reflection at the shock resulting in energy gain via shock drift acceleration. The upstream scattering is provided by oblique magnetic waves that are self-generated by the electrons escaping ahead of the shock. In the present work, we employ additional 2D PIC simulations to address the nature of the upstream oblique waves. We find that the waves are generated by the shock-reflected electrons via the firehose instability, which is driven by an anisotropy in the electron velocity distribution. We systematically explore how the efficiency of wave generation and of electron acceleration depend on the magnetic field obliquity, the flow magnetization (or equivalently, the plasma beta), and the upstream electron temperature. We find that the mechanism works for shocks with high plasma beta (gsim 20) at nearly all magnetic field obliquities, and for electron temperatures in the range relevant for galaxy clusters. Our findings offer a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  5. Design and operation of an inverse free-electron-laser accelerator in the microwave regime

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney Bruce

    2000-09-01

    A novel electron accelerator demonstrating the inverse free-electron-laser (IFEL) principle has been designed, built, and operated using radio-frequency power at 2.856 GHz. Such an accelerator uses a stationary, periodic magnetic field to impart transverse motion to charged particles, which are then accelerated by guided electromagnetic waves. The experiment described here demonstrates for the first time the phase dependence of IFEL acceleration. This design uses up to 15 MW of RF power propagating in a smooth-walled circular waveguide surrounded by a pulsed bifilar helical undulator; an array of solenoids provides an axial guiding magnetic field undulator; pitch, which is initially 11.75 cm, is linearly increased to 12.3 cm. over the 1-meter length of the structure to maintain acceleration gradient. Numerical computations predict an energy gain of up to 0.7 MeV using a 6 MeV injected beam from a 2-1/2 cell RF gun, with small energy spread and strong phase trapping. The initial injection phase is the most important parameter, determining the rate of energy gain or loss. These simulations are compared with experimental measurements at low power in which electron beams at energies between 5 and 6 MeV gain up to 0.35 MeV with minimal energy spread, all exiting particles having been accelerated. The predicted phase sensitivity of the mechanism is verified, with beams injected into accelerating phases gaining energy cleanly while those injected into ``decelerating'' phases are shown to be degraded in quality and hardly changed in energy, demonstrating the asymmetry of a tapered-wiggler design. Agreement with simulation is very good for accelerating phases, though less exact otherwise. Scaling to higher power and frequency is investigated. The maximum attainable acceleration gradient for a MIFELA using 150 MW of RF power at 34 GHz is estimated to be at least 30 MV/m, and laser IFELs could conceivably reach gradients in the GeV/m range.

  6. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    SciTech Connect

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T.; Chen, L. M.; Li, D. Z.; Chen, Z. Y.; Sheng, Z. M.; Zhang, J.

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  7. Modeling Electron-Cloud Effects in Heavy-Ion Accelerators

    SciTech Connect

    Cohen, R H; Friedman, A; Lund, S M; Molvik, A W; Lee, E P; Azevedo, T; Vay, J; Stoltz, P; Veitzer, S

    2004-09-21

    Stray electrons can arise in positive-ion accelerators for heavy ion fusion or other applications as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary- electron emission. We summarize results from several studies undertaken in conjunction with an effort to develop a self-consistent modeling capability: (1) Calculation of the electron cloud produced by electron desorption from computed beam-ion loss, which illustrates the importance of retaining ion reflection at the walls; (2) Simulation of the effect of specified electron cloud distributions on ion beam dynamics; and (3) analysis of an instability associated with a resonance between the beam-envelope ''breathing'' mode and the electron perturbation. We also report first results from a long-timestep algorithm for electron dynamics, which holds promise for efficient simultaneous solution of electron and ion dynamics. One conclusion from study (2) is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations.

  8. Plasmon-Enhanced Electron Acceleration in Intense Laser Metal-Cluster Interactions

    SciTech Connect

    Fennel, Th.; Doeppner, T.; Passig, J.; Schaal, Ch.; Tiggesbaeumker, J.; Meiwes-Broer, K.-H.

    2007-04-06

    We have measured the energy and angular-resolved electron emission from medium-sized silver clusters (N{approx_equal}500-2000) exposed to dual laser pulses of moderate intensity (I{approx}10{sup 13-14} W/cm{sup 2}). When the second pulse excites the plasmon resonantly, we observe enhanced emission along the laser polarization axis. The asymmetry of the electron spectrum is strongly increasing with electron energy. Semiclassical simulations reveal the following mechanism: Electrons bound in highly excited states can leave, return to, and traverse the cluster. Those electrons that return at zero plasmon deflection and traverse the cluster during a favorable plasmon half-cycle can experience maximum acceleration by the evolving polarization field. As a result of these constraints energetic electrons are emitted in direction of the laser polarization axis in subcycle bursts.

  9. Accelerator physics in ERL based polarized electron ion collider

    SciTech Connect

    Hao, Yue

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  10. Electron acceleration by parametrically excited Langmuir waves. [in ionospheric modification

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.; Graham, K. N.

    1974-01-01

    Simple physical arguments are used to estimate the downward-going energetic electron flux due to parametrically excited Langmuir waves in ionospheric modification experiments. The acceleration mechanism is a single velocity reversal as seen in the frame of the Langmuir wave. The flux is sufficient to produce the observed ionospheric airglow if focusing-type instabilities are invoked to produce moderate local enhancements of the pump field.

  11. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator

    SciTech Connect

    Huang, Zhirong; Ding, Yuantao; Schroeder, Carl B.; /LBL, Berkeley

    2012-09-13

    Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent FEL radiation generation. In this paper, we discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for SASE and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

  12. Note: Numerical simulation and experimental validation of accelerating voltage formation for a pulsed electron accelerator

    SciTech Connect

    Egorov, I.

    2014-06-15

    This paper describes the development of a computation model of a pulsed voltage generator for a repetitive electron accelerator. The model is based on a principle circuit of the generator, supplemented with the parasitics elements of the construction. Verification of the principle model was achieved by comparison of simulation with experimental results, where reasonable agreement was demonstrated for a wide range of generator load resistance.

  13. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    SciTech Connect

    Higginson, Drew Pitney

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  14. Intense Laser Ionization and Acceleration of Electrons in Highly-Charged Ions Using Vortex Laser Beams

    NASA Astrophysics Data System (ADS)

    Pi, Liang-Wen; Vikartofsky, Andrew; Starace, Anthony F.

    2016-05-01

    Recent advances in laser technology have led to the development of high-power petawatt lasers, making possible laser intensities of the order of 1022 W /cm2 . An electron in a highly-charged ion can be ionized in a laser field at its peak intensity and swiftly accelerated to GeV energies. Our prior investigation of laser acceleration of electrons using linearly-polarized Gaussian beams (with zero orbital angular momentum) has revealed that the final-state energies and ejection angles of the electrons depend on the initial target ion positions relative to the laser focus. We report here recent simulations of laser ionization and acceleration of electrons using linearly-polarized vortex laser beams (i.e., Laguerre-Gaussian beams), which carry orbital angular momentum and can spin microscopic objects. These simulations show that the inherent spiral phase structure of the vortex beams leads to improved final-state energy and ejection angle distributions of the electrons. This work is supported in part by DOE, Office of Science, Division of Chemical Sciences, Geosciences, and Biosciences, under Grant No. DE-FG02-96ER14646.

  15. Collective electron driven linac for high energy physics

    SciTech Connect

    Seeman, J.T.

    1983-08-01

    A linac design is presented in which an intense ultrarelativistic electron bunch is used to excite fields in a series of cavities and accelerate charged particles. The intense electron bunch is generated in a simple storage ring to have the required transverse and longitudinal dimensions. The bunch is then transferred to the linac. The linac structure can be inexpensively constructed of spacers and washers. The fields in the cells resulting from the bunch passage are calculated using the program BCI. The results show that certain particles within the driving bunch and also trailing particles of any sign charge can be accelerated. With existing electron storage rings, accelerating gradients greater than 16 MV/m are possible. Examples of two accelerators are given: a 30 GeV electron/positron accelerator useful as an injector for a high energy storage ring and 2) a 110 GeV per beam electron-positron collider.

  16. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    SciTech Connect

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  17. Universal Scalings for Direct Laser Acceleration of Relativistic Electrons in Ion Channels

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Arefiev, Alexey; Zhang, Xi; Shvets, Gennady

    2015-11-01

    Direct Laser Acceleration (DLA) of electrons in ion channels is investigated in the general case when the laser phase velocity is greater or equal to the speed of light, and the electrons execute a fully three-dimensional trajectory inside the focusing channel. In the paraxial limit of electron motion (mostly forward), we develop an analytic theory that provides an accurate estimate of the maximum possible energy gain of the electrons as a function of their initial conditions and laser parameters. Some of the counter-intuitive predictions validated via particle simulations include the emergence of the phase space barriers that prevent electrons from getting accelerated, and the threshold-like dependence of the energy on the initial conditions. The predictive power of the theory is demonstrated by identifying the laser-plasma parameters for the electron acceleration through the resonant interaction between the third harmonic of betatron oscillations and the laser wave. Possible experimental signatures of the high-order resonances will be discussed. This work was supported by DOE grants DESC0007889 and DE-SC0010622, and by an AFOSR grant FA9550-14-1-0045.

  18. Acceleration of electrons in the inner radiation zone during solar superstorms

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri; Baker, Daniel N.; Subbotin, Dmitriy; Horne, Richard

    2012-07-01

    Recent observational, modeling, and data assimilation studies showed that both radial diffusion and local acceleration play a significant role in accelerating particles to relativistic energies. Radial diffusion and convection brings seed population for the radiation belt electrons inside the geosynchronous orbit, where electrons can be further accelerated to relativistic energies by chorus waves. Observations of the radiation belts during the Halloween storms in 2003 showed unusual behavior of the radiation belt electron fluxes. In this study, we show that simulations can reproduce the general dynamics of radiation belt electron fluxes during the remarkably strong storm period in October - November 2003. Simulations of even stronger storms showed that during extremely strong storms erosion of the plasmasphere may result in a dramatic intensification of the radiation belt fluxes in the inner radiation zone. Such strong fluxes in the inner zone may persist for a very long time and will increase the radiation doze on satellites at LEO orbit. Acceleration and loss processes responsible for the dynamics of the inner belt still not well understood and will be addressed by the upcoming Radiation Belt Storm Probe.

  19. Detecting Partial Energy Modulation in a Dielectric Laser Accelerator - Oral Presentation

    SciTech Connect

    Lukaczyk, Louis

    2015-08-24

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the unaccelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  20. Direct laser acceleration of electron by an ultra intense and short-pulsed laser in under-dense plasma

    SciTech Connect

    Li, Y. Y.; Gu, Y. J.; Zhu, Z.; Li, X. F.; Ban, H. Y.; Kong, Q.; Kawata, S.

    2011-05-15

    Direct laser acceleration (DLA) of electron by an ultra intense and short-pulsed laser interacting with under-dense plasma is investigated based on 2.5-dimensional particle-in-cell simulation. A high-density electron beam is generated by the laser longitudinal ponderomotive force. Although the total number of DLA electrons is significantly smaller than the number of electrons trapped in the bubble, the total charge of high-energy DLA electrons (E>800MeV) reaches 67 pC/{mu}m. It is found that the electron beam occurs in a two-stage acceleration, i.e., accelerated in vacuum by the laser directly soon after a DLA process in plasma. The beam is accelerated violently with effective acceleration gradient in 100 GeV/cm. The energy spectrum of electrons presents a Maxwellian distribution with the highest energy of about 3.1 GeV. The dependence of maximum electron energy and electric quantity with laser intensity, laser width, pulse duration, and initial plasma density are also studied.

  1. Cosmic Rays and Runaway Electrons: Evidence for Acceleration of Electrons during Thunderstorms

    NASA Astrophysics Data System (ADS)

    Lidvansky, A. S.; Khaerdinov, N. S.; Petkov, V. B.

    2003-12-01

    We present the data on correlations of the intensity of the soft component (10 -30 MeV) of cosmic rays with the local electric field of the near-earth atmosphere during thunderstorm periods at the Baksan Valley (North Caucasus, 1700 m a. s. l.). The large-area array for studying the extensive air showers of cosmic rays is used as a particle detector. An electric field meter of the `electric mill' type is mounted on the roof of the building in the center of this array. The data were obtained in the summer seasons of 2000--2002. We have observed strong enhancements of the soft component intensity before some lightning strokes [1]. The largest enhancement detected in the first season demonstrated an exponential growth of intensity before lightning and was interpreted as a confirmation of runaway electron breakdown mechanism [2]. However, this event is apparently very rare (a single event for three seasons of observation). The enhancements of a different pattern (slow events several minutes long) turned out to be much more numerous. Recently, a special experiment was made to estimate the minimum distance to lightning events [3], and the distances were found to be fairly large (2-5 km). At the same time, the analysis of the regression curve `intensity versus field' [4] discovers a bump at the field sign that is opposite to the field sign corresponding to acceleration of electrons (see Fig. 1). It is interpreted as a precipitation of runaway electrons from the region of the strong field (with the opposite sign) overhead. If this interpretation is true, one can conclude from these data that (i) Wilson's runaway electrons do exist, (ii) their energy can be pretty high (more than ten MeV), and (iii) they are not necessarily directly related to lightning events. Fig. 1. Deviation of the soft component intensity from its mean value versus the near-earth electric field during thunderstorms. The left-hand side of the plot corresponds to acceleration of electrons near the ground

  2. Operational Radiation Protection in High-Energy Physics Accelerators

    SciTech Connect

    Rokni, S.H.; Fasso, A.; Liu, J.C.; /SLAC

    2012-04-03

    An overview of operational radiation protection (RP) policies and practices at high-energy electron and proton accelerators used for physics research is presented. The different radiation fields and hazards typical of these facilities are described, as well as access control and radiation control systems. The implementation of an operational RP programme is illustrated, covering area and personnel classification and monitoring, radiation surveys, radiological environmental protection, management of induced radioactivity, radiological work planning and control, management of radioactive materials and wastes, facility dismantling and decommissioning, instrumentation and training.

  3. Ion and relativistic electron acceleration by Alfven and whistler turbulence in solar flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.; Ramaty, Reuven

    1987-01-01

    A model is proposed in which turbulent Alfven and whistler waves simultaneously produce the proton and electron spectra implied by the gamma-ray observations noted during the impulsive phase of the June 3, 1982 flare. The results demonstrate that protons can be accelerated to several GeV in less than about 10 sec by Alfven turbulence whose energy density is greater than a few erg/cu cm. It is also found that electrons may be accelerated to tens of MeV on similar time scales by whistler and Alfven turbulence. A lower limit on the energy density of the Alfven turbulence is obtained which is small compared to the total magnetic energy density.

  4. Relativistic electron acceleration during HILDCAA events: are precursor CIR magnetic storms important?

    NASA Astrophysics Data System (ADS)

    Hajra, Rajkumar; Tsurutani, Bruce T.; Echer, Ezequiel; Gonzalez, Walter D.; Brum, Christiano Garnett Marques; Vieira, Luis Eduardo Antunes; Santolik, Ondrej

    2015-07-01

    We present a comparative study of high-intensity long-duration continuous AE activity (HILDCAA) events, both isolated and those occurring in the "recovery phase" of geomagnetic storms induced by corotating interaction regions (CIRs). The aim of this study is to determine the difference, if any, in relativistic electron acceleration and magnetospheric energy deposition. All HILDCAA events in solar cycle 23 (from 1995 through 2008) are used in this study. Isolated HILDCAA events are characterized by enhanced fluxes of relativistic electrons compared to the pre-event flux levels. CIR magnetic storms followed by HILDCAA events show almost the same relativistic electron signatures. Cluster 1 spacecraft showed the presence of intense whistler-mode chorus waves in the outer magnetosphere during all HILDCAA intervals (when Cluster data were available). The storm-related HILDCAA events are characterized by slightly lower solar wind input energy and larger magnetospheric/ionospheric dissipation energy compared with the isolated events. A quantitative assessment shows that the mean ring current dissipation is ~34 % higher for the storm-related events relative to the isolated events, whereas Joule heating and auroral precipitation display no (statistically) distinguishable differences. On the average, the isolated events are found to be comparatively weaker and shorter than the storm-related events, although the geomagnetic characteristics of both classes of events bear no statistically significant difference. It is concluded that the CIR storms preceding the HILDCAAs have little to do with the acceleration of relativistic electrons. Our hypothesis is that ~10-100-keV electrons are sporadically injected into the magnetosphere during HILDCAA events, the anisotropic electrons continuously generate electromagnetic chorus plasma waves, and the chorus then continuously accelerates the high-energy portion of this electron spectrum to MeV energies.

  5. INJECTION AND ACCELERATION OF ELECTRONS AT A STRONG SHOCK: RADIO AND X-RAY STUDY OF YOUNG SUPERNOVA 2011dh

    SciTech Connect

    Maeda, Keiichi

    2012-10-20

    In this paper, we develop a model for the radio and X-ray emissions from the Type IIb supernova (SN IIb) 2011dh in the first 100 days after the explosion, and investigate a spectrum of relativistic electrons accelerated at a strong shock wave. The widely accepted theory of particle acceleration, the so-called diffusive shock acceleration (DSA) or Fermi mechanism, requires seed electrons with modest energy with {gamma} {approx} 1-100, and little is known about this pre-acceleration mechanism. We derive the energy distribution of relativistic electrons in this pre-accelerated energy regime. We find that the efficiency of the electron acceleration must be low, i.e., {epsilon}{sub e} {approx}< 10{sup -2} as compared to the conventionally assumed value of {epsilon}{sub e} {approx} 0.1. Furthermore, independent of the low value of {epsilon}{sub e}, we find that the X-ray luminosity cannot be attributed to any emission mechanisms suggested as long as these electrons follow the conventionally assumed single power-law distribution. A consistent view between the radio and X-ray can only be obtained if the pre-acceleration injection spectrum peaks at {gamma} {approx} 20-30 and then only a fraction of these electrons eventually experience the DSA-like acceleration toward the higher energy-then the radio and X-ray properties are explained through the synchrotron and inverse Compton mechanisms, respectively. Our findings support the idea that the pre-acceleration of the electrons is coupled with the generation/amplification of the magnetic field.

  6. ARIEL e-linac. Electron linear accelerator for photo-fission

    NASA Astrophysics Data System (ADS)

    Koscielniak, Shane

    2014-01-01

    The design and implementation of a 1/2 MW beam power electron linear accelerator (e-linac) for the production of rare isotope beams (RIB) via photo-fission in the context of the Advanced Rare IsotopE Laboratory, ARIEL (Koscielniak et al. 2008; Merminga et al. 2011; Dilling et al., Hyperfine Interact, 2013), is described. The 100 % duty factor e-linac is based on super-conducting radiofrequency (SRF) technology at 1.3 GHz and has a nominal energy of 50 MeV. This paper provides an overview of the accelerator major components including the gun, cryomodules and cryoplant, high power RF sources, and machine layout including beam lines. Design features to facilitate operation of the linac as a Recirculating Linear Accelerator (RLA) for various applications, including Free Electron Lasers, are also noted.

  7. Optimization of Electron Beam Transport for a 3-MeV DC Accelerator

    NASA Astrophysics Data System (ADS)

    Baruah, S.; Bhattacharjee, D.; Tiwari, R.; Sahu, G. K.; Thakur, K. B.; Mittal, K. C.; Gantayet, L. M.

    2012-11-01

    Transport of a low-current-density electron beam is simulated for an electrostatic accelerator system. Representative charged particles are uniformly assigned for emission from a circular indirectly-heated cathode of an axial electron gun. The beam is accelerated stepwise up to energy of 1 MeV electrostatically in a length-span of ~3 m using multiple accelerating electrodes in a column of ten tubes. The simulation is done under relativistic condition and the effect of the magnetic field induced by the cathode-heating filament current is taken into account. The beam diameter is tracked at different axial locations for various settings of the electrode potentials. Attempts have been made to examine and explain data on beam transport efficiency obtained from experimental observations.

  8. Pulsars as cosmic ray particle accelerators: Dynamics of electrons

    NASA Technical Reports Server (NTRS)

    Thielheim, K. O.

    1985-01-01

    The Lorentz-Dirac-equation with Landau approximation has been solved numerically for electrons in the electromagnetic field of a magnetic dipole rotating with the angular velocity omega perpendicular to its magnetic moment mu. Results are discussed with respect to electron orbits and energy development.

  9. Relativistic electron beam acceleration by Compton scattering of extraordinary waves

    SciTech Connect

    Sugaya, R.

    2006-05-15

    Relativistic transport equations, which demonstrate that relativistic and nonrelativistic particle acceleration along and across a magnetic field and the generation of an electric field transverse to the magnetic field, are induced by nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of almost perpendicularly propagating electromagnetic waves in a relativistic magnetized plasma were derived from the relativistic Vlasov-Maxwell equations. The relativistic transport equations show that electromagnetic waves can accelerate particles in the k{sup ''} direction (k{sup ''}=k-k{sup '}). Simultaneously, an intense cross-field electric field, E{sub 0}=B{sub 0}xv{sub d}/c, is generated via the dynamo effect owing to perpendicular particle drift to satisfy the generalized Ohm's law, which means that this cross-field particle drift is identical to the ExB drift. On the basis of these equations, acceleration and heating of a relativistic electron beam due to nonlinear wave-particle scattering of electromagnetic waves in a magnetized plasma were investigated theoretically and numerically. Two electromagnetic waves interact nonlinearly with the relativistic electron beam, satisfying the resonance condition of {omega}{sub k}-{omega}{sub k{sup '}}-(k{sub perpendicular}-k{sub perpendicula=} r{sup '})v{sub d}-(k{sub parallel}-k{sub parallel}{sup '})v{sub b}{approx_equal}m{omega}{sub ce}, where v{sub b} and v{sub d} are the parallel and perpendicular velocities of the relativistic electron beam, respectively, and {omega}{sub ce} is the relativistic electron cyclotron frequency. The relativistic transport equations using the relativistic drifted Maxwellian momentum distribution function of the relativistic electron beam were derived and analyzed. It was verified numerically that extraordinary waves can accelerate the highly relativistic electron beam efficiently with {beta}m{sub e}c{sup 2} < or approx. 1 GeV, where {beta}=(1-v{sub b}{sup 2}/c{sup 2}){sup -1/2}.

  10. Generation of electron beams from a laser wakefield acceleration in pure neon gas

    SciTech Connect

    Li, Song; Hafz, Nasr A. M. Mirzaie, Mohammad; Elsied, Ahmed M. M.; Ge, Xulei; Liu, Feng; Sokollik, Thomas; Chen, Min; Sheng, Zhengming; Zhang, Jie; Tao, Mengze; Chen, Liming

    2014-08-15

    We report on the generation of quasimonoenergetic electron beams by the laser wakefield acceleration of 17–50 TW, 30 fs laser pulses in pure neon gas jet. The generated beams have energies in the range 40–120 MeV and up to ∼430 pC of charge. At a relatively high density, we observed multiple electron beamlets which has been interpreted by simulations to be the result of breakup of the laser pulse into multiple filaments in the plasma. Each filament drives its own wakefield and generates its own electron beamlet.

  11. Conceptual design of industrial free electron laser using superconducting accelerator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  12. Photodetector performance enhancement using an electron accelerator controlled by light.

    PubMed

    Srithanachai, Itsara; Dilla Zainol, Farrah; Ueamanapong, Surada; Niemcharoen, Surasak; Ali, Jalil; Yupapin, Preecha P

    2012-07-20

    A new method of photodetector performance enhancement using an embedded optical accelerator circuit within the photodetector is proposed. The principle of optical tweezer generation using a light pulse within a PANDA ring is also reviewed. By using a modified add-drop optical filter known as a PANDA microring resonator, which is embedded within the photodetector circuit, the device performance can be improved by using an electron injection technique, in which electrons can be trapped by optical tweezers generated by a PANDA ring resonator. Finally, electrons can move faster within the device via the optical waveguide without trapping center in the silicon bulk to the contact, in which the increase in photodetector current is seen. Simulation results obtained have shown that the device's light currents are increased by the order of four, and the switching time is increased by the order of five. This technique can be used for better photodetector performance and other semiconductor applications in the future.

  13. Quasimonoenergetic collimated electron beams from a laser wakefield acceleration in low density pure nitrogen

    SciTech Connect

    Tao, Mengze; Hafz, Nasr A. M. Li, Song; Mirzaie, Mohammad; Elsied, Ahmed M. M.; Ge, Xulei; Liu, Feng; Sokollik, Thomas; Sheng, Zhengming; Zhang, Jie; Chen, Liming

    2014-07-15

    A laser wakefield acceleration (LWFA) experiment is performed using 30 TW, 30 fs, and 800 nm laser pulses, focused onto pure nitrogen plasma having relatively low densities in the range of 0.8×10{sup 18} cm{sup −3} to 2.7×10{sup 18} cm{sup −3}. Electron beams having a low divergence of ∼3  mrad (full-width at half-maximum) and quasi-monoenergetic peak energies of ∼105  MeV are achieved over 4-mm interaction length. The total electron beam charge reached to 2 nC, however, only 1%–2% of this (tens of pC) had energies >35 MeV. We tried different conditions to optimize the electron beam acceleration; our experiment verifies that lower nitrogen plasma densities are generating electron beams with high quality in terms of divergence, charge, pointing stability, and maximum energy. In addition, if LWFA is to be widely used as a basis for compact particle accelerators in the future, therefore, from the economic and safety points of view we propose the use of nitrogen gas rather than helium or hydrogen.

  14. Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics.

    PubMed

    Lloyd, Samantha A M; Zavgorodni, Sergei; Gagne, Isabelle M

    2015-07-08

    Dosimetric comparisons of radiation fields produced by Varian's newest linear accelerator, the TrueBeam, with those produced by older Varian accelerators are of interest from both practical and research standpoints. While photon fields have been compared in the literature, similar comparisons of electron fields have not yet been reported. In this work, electron fields produced by the TrueBeam are compared with those produced by Varian's Clinac 21EX accelerator. Diode measurements were taken of fields shaped with electron applicators and delivered at 100 cm SSD, as well as those shaped with photon MLCs without applicators and delivered at 70 cm SSD for field sizes ranging from 5 × 5 to 25 × 25 cm² at energies between 6 and 20 MeV. Additionally, EBT2 and EBT3 radio-chromic film measurements were taken of an MLC-shaped aperture with closed leaf pairs delivered at 70 cm SSD using 6 and 20 MeV electrons. The 6 MeV fields produced by the TrueBeam and Clinac 21EX were found to be almost indistinguishable. At higher energies, TrueBeam fields shaped by electron applicators were generally flatter and had less photon contamination compared to the Clinac 21EX. Differences in PDDs and profiles fell within 3% and 3 mm for the majority of measurements. The most notable differences for open fields occurred in the profile shoulders for the largest applicator field sizes. In these cases, the TrueBeam and Clinac 21EX data differed by as much as 8%. Our data indicate that an accurate electron beam model of the Clinac 21EX could be used as a starting point to simulate electron fields that are dosimetrically equivalent to those produced by the TrueBeam. Given that the Clinac 21EX shares head geometry with Varian's iX, Trilogy, and Novalis TX accelerators, our findings should also be applicable to these machines.

  15. Comparison of measured Varian Clinac 21EX and TrueBeam accelerator electron field characteristics.

    PubMed

    Lloyd, Samantha A M; Zavgorodni, Sergei; Gagne, Isabelle M

    2015-01-01

    Dosimetric comparisons of radiation fields produced by Varian's newest linear accelerator, the TrueBeam, with those produced by older Varian accelerators are of interest from both practical and research standpoints. While photon fields have been compared in the literature, similar comparisons of electron fields have not yet been reported. In this work, electron fields produced by the TrueBeam are compared with those produced by Varian's Clinac 21EX accelerator. Diode measurements were taken of fields shaped with electron applicators and delivered at 100 cm SSD, as well as those shaped with photon MLCs without applicators and delivered at 70 cm SSD for field sizes ranging from 5 × 5 to 25 × 25 cm² at energies between 6 and 20 MeV. Additionally, EBT2 and EBT3 radio-chromic film measurements were taken of an MLC-shaped aperture with closed leaf pairs delivered at 70 cm SSD using 6 and 20 MeV electrons. The 6 MeV fields produced by the TrueBeam and Clinac 21EX were found to be almost indistinguishable. At higher energies, TrueBeam fields shaped by electron applicators were generally flatter and had less photon contamination compared to the Clinac 21EX. Differences in PDDs and profiles fell within 3% and 3 mm for the majority of measurements. The most notable differences for open fields occurred in the profile shoulders for the largest applicator field sizes. In these cases, the TrueBeam and Clinac 21EX data differed by as much as 8%. Our data indicate that an accurate electron beam model of the Clinac 21EX could be used as a starting point to simulate electron fields that are dosimetrically equivalent to those produced by the TrueBeam. Given that the Clinac 21EX shares head geometry with Varian's iX, Trilogy, and Novalis TX accelerators, our findings should also be applicable to these machines. PMID:26219015

  16. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    NASA Astrophysics Data System (ADS)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  17. Electron-beam rocket acceleration of hydrogen pellets

    NASA Astrophysics Data System (ADS)

    Tsai, C. C.; Foster, C. A.; Milora, S. L.; Schechter, D. E.; Whealton, J. H.

    A proof-of-principle device for characterizing electron-beam rocket pellet acceleration has been developed and operated during the last few years. Experimental data have been collected for thousands of accelerated hydrogen pellets under a variety of beam conditions. One intact hydrogen pellet was accelerated to a speed of 578 m/s by an electron beam of 10 kV, 0.8 A, and I ms. The collected data reveal the significant finding that the measured bum velocity of bare hydrogen pellets increases with the square of the beam voltage in a way that is qualitatively consistent with the theoretical prediction based on the neutral gas shielding (NGS) model. The measured bum velocity increases with the beam current or power and then saturates at values two to three times greater than that predicted by the NGS model. The discrepancy may result from low pellet strength and large beam-pellet interaction areas. Moreover, this feature may be the cause of the low measured exhaust velocity, which often exceeds the sonic velocity of the ablated gas. Consistent with the NGS model, the measured exhaust velocity increases in direct proportion to the beam current and in inverse proportion to the beam voltage. To alleviate the pellet strength problem, experiments have been performed with the hydrogen ice contained in a lightweight rocket casing or shell. Pellets in such sabots have the potential to withstand higher beam powers and achieve higher thrust-coupling efficiency. Some experimental results are reported and ways of accelerating pellets to higher velocity are discussed.

  18. An accelerating cosmology without dark energy

    SciTech Connect

    Steigman, G.; Santos, R.C.; Lima, J.A.S. E-mail: cliviars@astro.iag.usp.br

    2009-06-01

    The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996 [1]) without requiring the presence of dark energy or a cosmological constant. In a recent study, Lima et al. 2008 [2] (LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations [3] of the recent transition from a decelerating to an accelerating Universe, without the need for Dark Energy. Here we consider a class of such models where the particle creation rate is assumed to be of the form Γ = βH+γH{sub 0}, where H is the Hubble parameter and H{sub 0} is its present value. The evolution of such models is tested at low redshift by the latest SNe Ia data provided by the Union compilation [4] and at high redshift using the value of z{sub eq}, the redshift of the epoch of matter — radiation equality, inferred from the WMAP constraints on the early Integrated Sachs-Wolfe (ISW) effect [5]. Since the contributions of baryons and radiation were ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM are constrained at widely-separated epochs (z{sub eq} ≈ 3000 and z ≈ 0) in the evolution of the Universe. The comparison of the parameter values, (β, γ), determined at these different epochs reveals a tension between the values favored by the high redshift CMB constraint on z{sub eq} from the ISW and those which follow from the low redshift SNIa data, posing a potential challenge to this class of models. While for β = 0 this conflict is only at ∼< 2σ, it worsens as β increases from zero.

  19. Evidence of electron acceleration around the reconnection X-point in a solar flare

    SciTech Connect

    Narukage, Noriyuki; Shimojo, Masumi; Sakao, Taro

    2014-06-01

    Particle acceleration is one of the most significant features that are ubiquitous among space and cosmic plasmas. It is most prominent during flares in the case of the Sun, with which huge amounts of electromagnetic radiation and high-energy particles are expelled into the interplanetary space through acceleration of plasma particles in the corona. Though it has been well understood that energies of flares are supplied by the mechanism called magnetic reconnection based on the observations in X-rays and EUV with space telescopes, where and how in the flaring magnetic field plasmas are accelerated has remained unknown due to the low plasma density in the flaring corona. We here report the first observational identification of the energetic non-thermal electrons around the point of the ongoing magnetic reconnection (X-point), with the location of the X-point identified by soft X-ray imagery and the localized presence of non-thermal electrons identified from imaging-spectroscopic data at two microwave frequencies. Considering the existence of the reconnection outflows that carries both plasma particles and magnetic fields out from the X-point, our identified non-thermal microwave emissions around the X-point indicate that the electrons are accelerated around the reconnection X-point. Additionally, the plasma around the X-point was also thermally heated up to 10 MK. The estimated reconnection rate of this event is ∼0.017.

  20. Modeling Electron Clouds in High-Current Ion Accelerators with Solenoid Focusing

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Cohen, R. H.; Grote, D. P.; Vay, J.-L.; Haber, I.

    2006-10-01

    Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics (HEDP). These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to beam deflection, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations to show the evolution of the electron and ion-beam distributions first in idealized 2-D solenoid fields and then in the 3-D field values obtained from probes. Comparisons are made with experimental data, and several techniques to mitigate electron effects are demonstrated numerically.

  1. Nonlinear acceleration of the electron inertia-dominated magnetohydrodynamic modes due to electron parallel compressibility

    SciTech Connect

    Matsumoto, Taro; Naitou, Hiroshi; Tokuda, Shinji; Kishimoto, Yasuaki

    2005-09-15

    The behavior of the collisionless magnetohydrodynamics modes is investigated by the gyrokinetic particle simulation in a cylindrical tokamak plasma in the parameter region where the effects of electron inertia and electron parallel compressibility are competitive for magnetic reconnection. Although the linear growth of the m=1 internal kink-tearing mode is dominated by the electron inertia, it is found that the growth rate can be nonlinearly accelerated due to the electron parallel compressibility proportional to the ion sound Larmor radius {rho}{sub s}. It is also found that, as decreasing the electron skin depth {delta}{sub e}, the maximum growth rate before the internal collapse saturates independently of the microscopic scales such as {delta}{sub e} and {rho}{sub s}. The acceleration of growth rate is also observed in the nonlinear phase of the m=2 double tearing mode.

  2. The energy spectra of solar flare electrons

    NASA Technical Reports Server (NTRS)

    Evenson, P. A.; Hovestadt, D.; Meyer, P.; Moses, D.

    1985-01-01

    A survey of 50 electron energy spectra from .1 to 100 MeV originating from solar flares was made by the combination of data from two spectrometers onboard the International Sun Earth Explorer-3 spacecraft. The observed spectral shapes of flare events can be divided into two classes through the criteria of fit to an acceleration model. This standard two step acceleration model, which fits the spectral shape of the first class of flares, involves an impulsive step that accelerates particles up to 100 keV and a second step that further accelerates these particles up to 100 MeV by a single shock. This fit fails for the second class of flares that can be characterized as having excessively hard spectra above 1 MeV relative to the predictions of the model. Correlations with soft X-ray and meter radio observations imply that the acceleration of the high energy particles in the second class of flares is dominated by the impulsive phase of the flares.

  3. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    SciTech Connect

    I.Yu. Kostyukov; G. Shvets; N.J. Fisch; J.M. Rax

    2001-12-12

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made.

  4. a New Mobile Electron Accelerator for Intra Operative Electron Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Adrich, P.; Baczewski, A.; Baran, M.; Drabik, W.; Gryn, K.; Hanke, R.; Jakubowska, E.; Jankowski, E.; Kędzierski, G.; Kielar, N.; Kujawiński, Ł.; Kopeć, J.; Kosiński, K.; Kozioł, R.; Kraszewski, P.; Krawczyk, P.; Kulczycka, E.; Lalik, P.; Marczenko, M.; Masternak, A.; Misiarz, A.; Olszewski, J.; Ozon, K.; Pławski, E.; Polak, A.; Psonka, W.; Rutkowska, M.; Rzadkiewicz, J.; Sienkiewicz, Z.; Staszczak, M.; Swat, K.; Syntfeld-Każuch, A.; Terka, M.; Wasilewski, A.; Wilczek, J.; Wojciechowski, M.; Wójtowicz, M.; Wronka, S.; Wysocka-Rabin, A.; Zalewski, K.

    2014-02-01

    A demonstrator of a new, highly mobile, robotized linear electron accelerator for Intra Operative Electron Radiation Therapy (IOERT) is under construction at National Centre for Nuclear Studies. In an IOERT treatment, a high dose of electron radiation is delivered in a single fraction directly to an exposed location after tumor ablation during oncological surgery. Due to the fact that the tumor can be located anywhere in the body, a high maneuverability of the accelerator and its adaptability to anatomical conditions are required. Moreover, since the treatment is usually executed in an unshielded operation room, the radiation protection issues are of principal importance. To assure safety of the patient and medical personnel, the therapeutic head is designed to constrain the radiation to the volume of the tumor lodge while minimizing leakage and stray radiation. For these reasons, construction of accelerators for IOERT differs considerably from the construction of linear electron accelerators for external beam radiation therapy. This paper presents some challenges and solutions in construction of the accelerator and in particular its therapeutic head with beam forming system.

  5. Economics of food irradiation: Comparison between electron accelerators and cobalt-60

    NASA Astrophysics Data System (ADS)

    Morrison, R. M.

    The Codex Alimentarius Commission's proposed international standard permits three types of ionizing radiation to be used on foods: gamma rays from radioactive cobalt-60 or cesium-137, high energy electrons, and x-rays. The latter two types of radiation are produced by electron accelerators powered by electricity. Unlike gamma rays and x-rays which can penetrate pallet loads of foods, electrons of the allowed energy levels only penetrate 1 to 3 inches when irradiated from one side. Thus, electrons are limited to treating the surface of foods or foods in thin packages or a shallow stream of grains, powders, or liquids. Average costs per kilogram (kg) of irradiating selected foods are similar for the electron accelerator and cobalt-60 irradiators analyzed in this study, but initial investment costs generally vary by U.S. $1 million. Irradiation treatment costs range from 1 to 15 U.S. cents per kg for the foods and annual volumes examined with larger volumes having lower treatment costs. Cobalt-60 is less expensive than electrons when annual volumes are below 23 million kgs. For radiation source requirements above the equivalent of about 1 million curies of cobalt-60, electrons become more economical. The largest differences in costs occur with the papaya irradiators where using x-rays to penetrate the fruit is more expensive than using cobalt-60.

  6. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect

    Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu - Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  7. GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2010-07-08

    Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

  8. Study of photon emission by electron capture during solar nuclei acceleration. 2: Delimitation of conditions for charge transfert establishment

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Gallegos, A.

    1985-01-01

    The conditions for establishment of charge transfer during acceleration of nuclei up to Fe, for typical conditions of solar flare regions T = 5 x 10 to the 3rd power to 2.5 x 10 to the 8th power degrees K were explored. Results show that such conditions are widely assorted, depending on the acceleration mechanism, the kind of projections and their velocity, the target elements, the source temperature and consequently on the degree of ionization of matter and the local charge state of the accelerated ions. Nevertheless, in spite of that assorted behavior, there are some general tendencies that can be summarized as follows. In atomic H electron capture is systematically established from thermal energies up to high energies, whatever the element and for both acceleration process. For a given element and fixed temperature (T), the probability and energy domain of electron capture and loss with Fermi are higher than with Betatron acceleration. For a given acceleration process the heavier the ion the higher the probability and the wider the energy range for electron capture and loss. For given acceleration mechanism and fixed element the importance and energy domain of capture and loss increase with T: for those reasons, the energy range of charge equilibrium (illustrated with solid lines on the next figs.) is wider with Fermi and increases with temperature and atomic number of projectiles. For the same reasons, electron loss is smaller while the lighter the element, the lower the temperature and the Betatron process, such that there are conditions for which electron loss is not allowed at low energies, but only electron capture is established.

  9. Collective acceleration of electrons and ions in a high current relativistic electron beam. Final report

    SciTech Connect

    Nation, J.A.

    1996-12-31

    The original purpose of this research was an investigation into the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three main objectives namely, the development of a suitable ion injector, the growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components parts into a suitable proof of principle demonstration of the wave accelerator. This work focusses on the first two of these objectives.

  10. Electron acceleration by young supernova remnant blast waves

    NASA Technical Reports Server (NTRS)

    Blandford, R. D.

    1992-01-01

    Some general considerations regarding relativistic particle acceleration by young supernova remnants are reviewed. Recent radio observations of supernova remnants apparently locate the bounding shock and exhibit large electron density gradients which verify the presence of strong particle scattering. The radio 'rim' in Tycho's remnant has been found to contain a predominantly radial magnetic field. This may be attributable to an instability of the shock surface and a progress report on an investigation of the stability of strong shocks in partially ionized media is presented.

  11. Stability of electron energy in the Fermilab electron cooler

    SciTech Connect

    Shemyakin, A.; Carlson, K.; Prost, L.R.; Saewert, G.; /Fermilab

    2009-02-01

    A powerful electron beam (4.3 MeV, 0.1 A DC) generated by an electrostatic accelerator has been used at Fermilab for three years to cool antiprotons in the Recycler ring. For electron cooling to be effective, the electron energy should not deviate from its optimum value by more than 500V. The main tool for studying the energy stability is the electron beam position in a high-dispersion area. The energy ripple (frequencies above 0.2 Hz) was found to be less than 150 eV rms; the main cause of the ripple is the fluctuations of the chain current. In addition, the energy can drift to up to several keV that is traced to two main sources. One of them is a drift of the charging current, and another is a temperature dependence of generating voltmeter readings. The paper describes the efforts to reach the required level of stability as well as the setup, diagnostics, results of measurements, and operational experience.

  12. A miniaturized electron source based on dielectric laser accelerator operation at higher spatial harmonics and a nanotip photoemitter

    NASA Astrophysics Data System (ADS)

    McNeur, Joshua; Kozak, Martin; Ehberger, Dominik; Schönenberger, Norbert; Tafel, Alexander; Li, Ang; Hommelhoff, Peter

    2016-02-01

    Here we propose a miniaturized electron source driven by recent experimental results of laser-triggered electron emission from tungsten nanotips and dielectric laser acceleration of sub relativistic electrons with velocities as low as 5.7× {10}7 {{m}} {{{s}}}-1 or energies as low as 9.6 keV, less than 20% of the speed of light. The recently observed laser-triggered emission of coherent low-emittance electron pulses from tungsten nanotips naturally lends itself towards incorporation with subrelativistic dielectric laser accelerators (DLAs). These structures have previously been shown to accelerate 28 keV electrons and here we report on the utilization of the 4th and 5th spatial harmonics of near fields in the single grating DLA to achieve acceleration of electrons with kinetic energies of 15.2 and 9.6 keV. We then propose the combination of needle tip emitters with subrelativistic accelerators to form a mm-scale device capable of producing electrons with arbitrary energies.

  13. Recent developments in the application of electron accelerators for polymer processing

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Al-Sheikhly, M.; Berejka, A. J.; Cleland, M. R.; Antoniak, M.

    2014-01-01

    There are now over 1700 high current, electron beam (EB) accelerators being used world-wide in industrial applications, most of which involve polymer processing. In contrast to the use of heat, which transfers only about 5-10% of input energy into energy useful for materials modification, radiation processing is very energy efficient, with 60% or more of the input energy to an accelerator being available for affecting materials. Historic markets, such as the crosslinking of wire and cable jacketing, of heat shrinkable tubings and films, of partial crosslinking of tire components and of low-energy EB to cure or dry inks and coatings remain strong. Accelerator manufacturers have made equipment more affordable by down-sizing units while maintaining high beam currents. Very powerful accelerators with 700 kW output have made X-ray conversion a practical alternative to the historic use of radioisotopes, mainly cobalt-60, for applications as medical device sterilization. New EB end-uses are emerging, such as the development of nano-composites and nano-gels and the use of EB processing to facilitate biofuel production. These present opportunities for future research and development.

  14. Laser wakefield acceleration of electrons with ionization injection in a pure N{sup 5+} plasma waveguide

    SciTech Connect

    Goers, A. J.; Yoon, S. J.; Elle, J. A.; Hine, G. A.; Milchberg, H. M.

    2014-05-26

    Ionization injection-assisted laser wakefield acceleration of electrons up to 120 MeV is demonstrated in a 1.5 mm long pure helium-like nitrogen plasma waveguide. The guiding structure stabilizes the high energy electron beam pointing and reduces the beam divergence. Our results are confirmed by 3D particle-in-cell simulations.

  15. Ultrashort Electron Beam Pulses and Diagnosis by Advanced Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Iijima, H.; Muroya, Y.; Watanabe, T.; Hosokai, T.

    2003-08-01

    240fs 18 MeV low emittance(6 pai mm.mrad) electron beam was generated and its pulse shape was diagnosed by the S-band laser photocathode RF gun and linac. The maximum charge per bunch was 7 nC. This electron pulse was synchronized with 100fs 0.3TW Ti:Sapphire laser with the timing jitter of 330fs(rms). Recently, the Cu cathode(QE10∧-4) was replaced by Mg cathode(QE10∧-3). This system is utilized for radiation chemistry analysis for supercritical water. We have adopted the four diagnostic methods(femtosecond streak camera, coherent transition radiation interferometer, far-infrared polychromator, fluctuation method) and checked their time-resolution precisely. Further, we are doing the experiment on laser plasma cathode by 12TW 50fs laser and He gas jet. Laser plasma wakefield acceleration and electron injection via wavebreaking are planned. We have developed a new theory of self-injection scheme to generate ˜10fs electron pulse. We have already succeeded in observing 40 MeV low emittance electron beam of 14 nC.

  16. Superconducting accelerators for megawatt-class free-electron lasers

    NASA Astrophysics Data System (ADS)

    Berryman, Kenneth W.; Smith, Todd I.

    1995-04-01

    Power beaming and industrial materials processing are two applications which require high average power lasers operating in the visible or near infrared. Although a handful of gas lasers in the hundred kilowatt range exist, free electron lasers (FELs) should be capable of producing even greater powers, and provide continuous tunability and higher beam quality. While these benefits were realized early in the development of FELs, the highest average power FEL to date has produced just over ten watts. Progress in achieving more average power has been hindered largely by a lack of appropriate accelerators. We believe that superconducting accelerators, which offer continuous operation at high gradients and high efficiency with excellent beam quality are ideal candidates as drivers for such a device. We discuss the challenges of operating both superconducting and room temperature accelerators at high powers and described solutions to these problems. We propose general guidelines along which a superconducting FEL capable of 100 kW to 1 MW could be built and discuss recent experimental demonstrations of these design principles. Finally, we compare the superconducting approach with other possibilities and outline areas requiring future research.

  17. 3D electromagnetic simulation of spatial autoresonance acceleration of electron beams

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; González, J. D.; Orozco, E. A.

    2016-02-01

    The results of full electromagnetic simulations of the electron beam acceleration by a TE 112 linear polarized electromagnetic field through Space Autoresonance Acceleration mechanism are presented. In the simulations, both the self-sustaned electric field and selfsustained magnetic field produced by the beam electrons are included into the elaborated 3D Particle in Cell code. In this system, the space profile of the magnetostatic field maintains the electron beams in the acceleration regime along their trajectories. The beam current density evolution is calculated applying the charge conservation method. The full magnetic field in the superparticle positions is found by employing the trilinear interpolation of the mesh node data. The relativistic Newton-Lorentz equation presented in the centered finite difference form is solved using the Boris algorithm that provides visualization of the beam electrons pathway and energy evolution. A comparison between the data obtained from the full electromagnetic simulations and the results derived from the motion equation depicted in an electrostatic approximation is carried out. It is found that the self-sustained magnetic field is a factor which improves the resonance phase conditions and reduces the beam energy spread.

  18. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse

    SciTech Connect

    Kuramitsu, Y.; Sakawa, Y.; Takeda, K.; Tampo, M.; Takabe, H.; Nakanii, N.; Kondo, K.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Kodama, R.; Mima, K.; Tanaka, K. A.; Mori, Y.; Miura, E.; Kitagawa, Y.

    2011-02-15

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of {approx}2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

  19. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse.

    PubMed

    Kuramitsu, Y; Nakanii, N; Kondo, K; Sakawa, Y; Mori, Y; Miura, E; Tsuji, K; Kimura, K; Fukumochi, S; Kashihara, M; Tanimoto, T; Nakamura, H; Ishikura, T; Takeda, K; Tampo, M; Kodama, R; Kitagawa, Y; Mima, K; Tanaka, K A; Hoshino, M; Takabe, H

    2011-02-01

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer. PMID:21405912

  20. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse.

    PubMed

    Kuramitsu, Y; Nakanii, N; Kondo, K; Sakawa, Y; Mori, Y; Miura, E; Tsuji, K; Kimura, K; Fukumochi, S; Kashihara, M; Tanimoto, T; Nakamura, H; Ishikura, T; Takeda, K; Tampo, M; Kodama, R; Kitagawa, Y; Mima, K; Tanaka, K A; Hoshino, M; Takabe, H

    2011-02-01

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

  1. Novel production techniques of radioisotopes using electron accelerators

    NASA Astrophysics Data System (ADS)

    Lowe, Daniel Robert

    Non-traditional radioisotope production techniques using a compact, high power linear electron accelerator have been demonstrated and characterized for the production of 18F, 47Sc, 147 Pm, and 99mTc from a variety of target candidates. These isotopes are used extensively in the medical field as diagnostic and therapy radioisotopes, as well as the space industry as RTG's. Primary focus was placed on 99mTc as it constitutes approximately 80% of all diagnostic procedures in the medical community that use radioactive tracers. It was also the prime focus due to recent events at the Chalk River nuclear reactor, which caused global shortages of this isotope a few years ago. A Varian K15 LINAC was first used to show proof of principle in Las Vegas. Various samples were then taken to the Idaho Accelerator Center where they were activated using an electron LINAC capable of electron energies from 4 to 25 MeV at a beam power of approximately 1 kW. Production rates, cross sections, and viability studies were then performed and conducted to assess the effectiveness of the candidate target and the maximum production rate for each radioisotope. Production rates for 18F from lithium fluoride salts were shown to be ideal at 21MeV, namely 1.7 Ci per kg of LiF salt, per kW of beam current, per 10 hour irradiation time. As the typical hospital consumption of 18F is around 500 mCi per day, it is clear that a large amount of 18F can be made from a small (300 gram) sample of LiF salt. However, since there is no current separation process for 18F from 19F, the viability of this technique is limited until a separations technique is developed. Furthermore, the calculated cross section for this reaction is in good agreement with literature, which supports the techniques for the isotopes mentioned below. Production rates for 47Sc from vanadium oxide targets were shown to be a maximum at 25 MeV with a production rate of 2 mCi per day, assuming a 2 kW beam and a 10 kg target. While this

  2. Focusing of a megavoltage electron beam in a medical accelerator

    NASA Astrophysics Data System (ADS)

    Friedrichs, P. B.; Konrad, G. T.

    1991-05-01

    Due to packaging constraints in the radiotherapy machine gantry of Siemens Mevatrons, the electron linac used in the lower energy models has a long drift tube between the end of the linae and the 270° achromatic bend assembly. Space charge effects cause the electron beam to grow so that it frequently impinges upon the entrance hole to the bend assembly. A compact solenoid has been designed that is effective in increasing the transmitted beam through the bend assembly by over 40%. A permanent magnet design proved to be unsuccessful because of high transverse fields within the magnet. Trajectory calculations obtained through the electron linac design code PARMELA (Public domain code supplied to Siemens Medical Laboratories, Inc. by L.M. Young, Los Alamos National Laboratories, Los Alamos, NM) support the experimentally observed results. Data is presented for several electron energies over the normal operating range of 4-6 MV photons from these Mevatrons.

  3. Energy deposition via magnetoplasmadynamic acceleration: I. Experiment

    NASA Astrophysics Data System (ADS)

    Gilland, James; Mikellides, Pavlos; Marriott, Darin

    2009-02-01

    The expansion of a high-temperature fusion plasma through an expanding magnetic field is a process common to most fusion propulsion concepts. The propulsive efficiency of this process has a strong bearing on the overall performance of fusion propulsion. In order to simulate the expansion of a fusion plasma, a concept has been developed in which a high velocity plasma is first stagnated in a converging magnetic field to high (100s of eV) temperatures, then expanded though a converging/diverging magnetic nozzle. As a first step in constructing this experiment, a gigawatt magnetoplasmadynamic plasma accelerator was constructed to generate the initial high velocity plasma and has been characterized. The source is powered by a 1.6 MJ, 1.6 ms pulse forming network. The device has been operated with currents up to 300 kA and power levels up to 200 MWe. These values are among the highest levels reached in an magnetoplasmadynamic thruster. The device operation has been characterized by quasi-steady voltage and current measurements for helium mass flow rates from 0.5 to 27 g s-1. Probe results for downstream plasma density and electron temperature are also presented. The source behavior is examined in terms of current theories for magnetoplasmadynamic thrusters.

  4. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  5. Formation of Ultrarelativistic Electron Rings from a Laser-Wakefield Accelerator.

    PubMed

    Pollock, B B; Tsung, F S; Albert, F; Shaw, J L; Clayton, C E; Davidson, A; Lemos, N; Marsh, K A; Pak, A; Ralph, J E; Mori, W B; Joshi, C

    2015-07-31

    Ultrarelativistic-energy electron ring structures have been observed from laser-wakefield acceleration experiments in the blowout regime. These electron rings had 170-280 MeV energies with 5%-25% energy spread and ∼10  pC of charge and were observed over a range of plasma densities and compositions. Three-dimensional particle-in-cell simulations show that laser intensity enhancement in the wake leads to sheath splitting and the formation of a hollow toroidal pocket in the electron density around the wake behind the first wake period. If the laser propagates over a distance greater than the ideal dephasing length, some of the dephasing electrons in the second period can become trapped within the pocket and form an ultrarelativistic electron ring that propagates in free space over a meter-scale distance upon exiting the plasma. Such a structure acts as a relativistic potential well, which has applications for accelerating positively charged particles such as positrons.

  6. Electron string ion sources for carbon ion cancer therapy accelerators.

    PubMed

    Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C(4+) and C(6+) ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10(10) C(4+) ions per pulse and about 5 × 10(9) C(6+) ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10(11) C(6+) ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the (11)C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C(4+) ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of (11)C, transporting to the tumor with the primary accelerated (11)C(4+) beam, this efficiency is preliminarily considered to be large enough to produce the (11)C(4+) beam from radioactive methane and to inject this beam into synchrotrons.

  7. Narrowband Gyrosynchrotron Bursts: Probing Electron Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Nita, Gelu M.; Kontar, Eduard P.; Gary, Dale E.

    2016-07-01

    Recently, in a few case studies we demonstrated that gyrosynchrotron microwave emission can be detected directly from the acceleration region when the trapped electron component is insignificant. For the statistical study reported here, we have identified events with steep (narrowband) microwave spectra that do not show a significant trapped component and, at the same time, show evidence of source uniformity, which simplifies the data analysis greatly. Initially, we identified a subset of more than 20 radio bursts with such narrow spectra, having low- and high-frequency spectral indices larger than three in absolute value. A steep low-frequency spectrum implies that the emission is nonthermal (for optically thick thermal emission, the spectral index cannot be steeper than two), and the source is reasonably dense and uniform. A steep high-frequency spectrum implies that no significant electron trapping occurs, otherwise a progressive spectral flattening would be observed. Roughly half of these radio bursts have RHESSI data, which allow for detailed, joint diagnostics of the source parameters and evolution. Based on an analysis of radio-to-X-ray spatial relationships, timing, and spectral fits, we conclude that the microwave emission in these narrowband bursts originates directly from the acceleration regions, which have a relatively strong magnetic field, high density, and low temperature. In contrast, the thermal X-ray emission comes from a distinct loop with a smaller magnetic field, lower density, but higher temperature. Therefore, these flares likely occurred due to interaction between two (or more) magnetic loops.

  8. Electron string ion sources for carbon ion cancer therapy accelerators.

    PubMed

    Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C(4+) and C(6+) ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10(10) C(4+) ions per pulse and about 5 × 10(9) C(6+) ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10(11) C(6+) ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the (11)C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C(4+) ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of (11)C, transporting to the tumor with the primary accelerated (11)C(4+) beam, this efficiency is preliminarily considered to be large enough to produce the (11)C(4+) beam from radioactive methane and to inject this beam into synchrotrons. PMID:26329182

  9. Proposal for a study of laser acceleration of electrons using micrograting structures at ATF (Phase 1)

    SciTech Connect

    Chen, W.; Claus, J.; Fernow, R.C.; Fischer, J.; Gallardo, J.C.; Kirk, H.G.; Kramer, H.; Li, Z.; Palmer, R.B.; Rogers, J.; Shrinvasan-Rao, T.; Tsang, T.; Ulc, S.; Veligdan, J.; Warren, J.; Bigio, I.; Kurnit, N.; Shimada, T.; Wang, X.; McDonald, K.T.; Russell, D.P.; Los Alamos National Lab., NM; Princeton Univ., NJ; California Univ., Los Angeles, CA )

    1989-10-29

    We propose to investigate new methods of particle acceleration using a short-pulse CO{sub 2} laser as the power source and grating-like structures as accelerator cavities''. Phase I of this program is intended to demonstrate the principle of the method. We will focus the laser light to a 3 mm line on the surface of the microstructure. The structure is used to transform the electric field pattern of the incoming transversely polarized laser beam to a mode which has a component along the electron beam direction in the vicinity of the surface. With 6 mJ of laser energy and a 6 ps pulse length, the electric field in the spot will be around 1 GV/m. The electron beam from the Brookhaven Accelerator Test Facility (ATF) will be focused transversely within the few micron transverse dimension of the microstructure. The maximum expected acceleration for a 1 GV/m field and a 3 mm acceleration length is 3 MeV. 17 refs., 11 figs., 2 tabs.

  10. Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses

    SciTech Connect

    Kalmykov, S. Y. Shadwick, B. A.; Davoine, X.; Lehe, R.; Lifschitz, A. F.

    2015-05-15

    It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma (n{sub 0}∼10{sup 19} cm{sup −3}). Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3 mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.

  11. Implications of X-Ray Observations for Electron Acceleration and Propagation in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Aschwanden, M. J.; Aurass, H.; Battaglia, M.; Grigis, P. C.; Kontar, E. P.; Liu, W.; Saint-Hilaire, P.; Zharkova, V. V.

    2011-01-01

    High-energy X-rays and gamma-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed.

  12. Beam position and energy monitoring in compact linear accelerators for radiotherapy.

    PubMed

    Ruf, Marcel; Müller, Sven; Setzer, Stefan; Schmidt, Lorenz-Peter

    2014-02-01

    The experimental verification of a novel sensor topology capable of measuring both the position and energy of an electron beam inside a compact electron linear accelerator for radiotherapy is presented. The method applies microwave sensing techniques and allows for the noninterceptive monitoring of the respective beam parameters within compact accelerators for medical or industrial purposes. A state space feedback approach is described with the help of which beam displacements, once detected, can be corrected within a few system macropulses. The proof-of-principle experiments have been conducted with a prototype accelerator and customized hardware. Additionally, closed-loop operation with high accuracy is demonstrated.

  13. MeV electron acceleration by sub-terawatt laser pulses in near critical density plasmas

    NASA Astrophysics Data System (ADS)

    Goers, Andy; Hine, George; Feder, Linus; Miao, Bo; Salehi, Fatholah; Milchberg, Howard

    2015-11-01

    We demonstrate laser-plasma acceleration of high charge electron beams to the 10 MeV scale using ultrashort laser pulses with as little energy as 10 mJ. This result is made possible by an extremely dense and thin hydrogen gas jet where even sub-terawatt laser pulses are well above the critical power for relativistic self-focusing, and the 10 mJ pulses can drive a self-modulated wakefield accelerator. Total charge up to 0.5 nC is measured for energies >1 MeV. Acceleration is correlated to the presence of an intense, coherent, broadband light flash, associated with wavebreaking, which can radiate more than 3% of the laser energy in a sub-femtosecond bandwidth consistent with half-cycle optical emission. Our results enable truly portable applications of laser-driven acceleration, such as low dose radiography, ultrafast probing of matter, and isotope production. This work supported by DTRA and the US Department of Energy.

  14. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses

    DOE PAGES

    Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; Hanuka, Adi; Makasyuk, Igor V.; Peralta, Edgar A.; Soong, Ken; Byer, Robert L.; England, R. Joel

    2016-06-02

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m–1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m–1 was measured—a record for dielectric laser accelerators.

  15. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses.

    PubMed

    Wootton, Kent P; Wu, Ziran; Cowan, Benjamin M; Hanuka, Adi; Makasyuk, Igor V; Peralta, Edgar A; Soong, Ken; Byer, Robert L; Joel England, R

    2016-06-15

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m-1 accelerating gradients is possible only with laser pulse durations shorter than ∼1  ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Using this technique, an electron accelerating gradient of 690±100  MV m-1 was measured-a record for dielectric laser accelerators. PMID:27304266

  16. Electron acceleration at slow-mode shocks in the magnetic reconnection region in solar flares

    NASA Astrophysics Data System (ADS)

    Mann, Gottfried; Aurass, Henry; Önel, Hakan; Warmuth, Alexander

    2016-04-01

    A solar flare appears as an sudden enhancement of the emission of electromagnetic radiation of the Sun covering a broad range of the spectrum from the radio up to the gamma-ray range. That indicates the generation of energetic electrons during flares, which are considered as the manifestation of magnetic reconnection in the solar corona. Spacecraft observations in the Earth's magnetosphere, as for instance by NASA's MMS mission, have shown that electrons can efficiently accelerated at the slow-mode shocks occuring in the magnetic reconnection region. This mechanism is applied to solar flares. The electrons are accelerated by the cross-shock potential at slow-mode shocks resulting in magnetic field aligned beams of energetic electrons in the downstream region. The interaction of this electron beam with the plasma leads to the excitation of whistler waves and, subsequently, to a strong heating of the electrons in the downstream region. Considering this process under coronal circumstances, enough electrons with energies >30keV are generated in the magnetic reconnection region as required for the hard X-ray radiation during solar flares as observed by NASA's RHESSI mission.

  17. Electron dynamics and acceleration study in a magnetized plasma-filled cylindrical waveguide

    SciTech Connect

    Kumar, Sandeep; Yoon, Moohyun

    2008-01-15

    In this article, EH{sub 01} field components are evaluated in a cylindrical waveguide filled with plasma in the presence of external static magnetic field applied along the direction of the mode propagation. The electron acceleration inside the plasma-filled cylindrical waveguide is investigated numerically for a single-electron model. It is found that the electron acceleration is very sensitive to the initial phase of mode-field components, external static magnetic field, plasma density, point of injection of the electron, and microwave power density. The maximum amplitude of the EH{sub 01} mode's field components is approximately 100 times greater than the vacuum-waveguide case for operating microwave frequency f=7.64 GHz, plasma density n{sub 0}=1.08x10{sup 17} m{sup -3}, initial phase angle {phi}{sub 0}=60 deg., and microwave power {approx}14 MW in a cylindrical waveguide with a radius of 2.1 cm. An electron with 100 keV gets 27 MeV energy gain in 2.5 cm along the waveguide length in the presence of external power {approx}14 MW with a microwave frequency of 7.64 GHz. The electron trajectory is also analyzed under the effects of magnetic field when the electron is injected in the waveguide at r=R/2.

  18. Demonstration of electron acceleration in a laser-driven dielectric microstructure.

    PubMed

    Peralta, E A; Soong, K; England, R J; Colby, E R; Wu, Z; Montazeri, B; McGuinness, C; McNeur, J; Leedle, K J; Walz, D; Sozer, E B; Cowan, B; Schwartz, B; Travish, G; Byer, R L

    2013-11-01

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250 MeV m(-1)) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563 ± 104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30 MeV m(-1), and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6 MeV m(-1) (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (10(6)-10(9) eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (10(12)

  19. Demonstration of electron acceleration in a laser-driven dielectric microstructure

    NASA Astrophysics Data System (ADS)

    Peralta, E. A.; Soong, K.; England, R. J.; Colby, E. R.; Wu, Z.; Montazeri, B.; McGuinness, C.; McNeur, J.; Leedle, K. J.; Walz, D.; Sozer, E. B.; Cowan, B.; Schwartz, B.; Travish, G.; Byer, R. L.

    2013-11-01

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250MeVm-1) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563+/-104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30MeVm-1, and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6MeVm-1 (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (106-109eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (1012eV) scale.

  20. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams.

    PubMed

    van Tilborg, J; Steinke, S; Geddes, C G R; Matlis, N H; Shaw, B H; Gonsalves, A J; Huijts, J V; Nakamura, K; Daniels, J; Schroeder, C B; Benedetti, C; Esarey, E; Bulanov, S S; Bobrova, N A; Sasorov, P V; Leemans, W P

    2015-10-30

    Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained. PMID:26565471

  1. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Steinke, S.; Geddes, C. G. R.; Matlis, N. H.; Shaw, B. H.; Gonsalves, A. J.; Huijts, J. V.; Nakamura, K.; Daniels, J.; Schroeder, C. B.; Benedetti, C.; Esarey, E.; Bulanov, S. S.; Bobrova, N. A.; Sasorov, P. V.; Leemans, W. P.

    2015-10-01

    Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T /m , enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained.

  2. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect

    Weathersby, S. P.; Brown, G.; Centurion, M.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K.; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; Nguyen, M. N.; Reid, A. H.; Shen, X.; Sokolowski-Tinten, K.; Vecchione, T.; Vetter, S. L.; Wu, J.; Yang, J.; Dürr, H. A.; Wang, X. J.

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  3. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect

    Weathersby, S. P.; Brown, G.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K. Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; and others

    2015-07-15

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  4. Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop

    SciTech Connect

    Dunn, M.E.

    2006-02-27

    The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclear applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program

  5. Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam

    SciTech Connect

    Lotov, K. V.; Sosedkin, A. P.; Petrenko, A. V.; Amorim, L. D.; Vieira, J.; Fonseca, R. A.; Silva, L. O.; Gschwendtner, E.; Muggli, P.

    2014-12-15

    It is shown that co-linear injection of electrons or positrons into the wakefield of the self-modulating particle beam is possible and ensures high energy gain. The witness beam must co-propagate with the tail part of the driver, since the plasma wave phase velocity there can exceed the light velocity, which is necessary for efficient acceleration. If the witness beam is many wakefield periods long, then the trapped charge is limited by beam loading effects. The initial trapping is better for positrons, but at the acceleration stage a considerable fraction of positrons is lost from the wave. For efficient trapping of electrons, the plasma boundary must be sharp, with the density transition region shorter than several centimeters. Positrons are not susceptible to the initial plasma density gradient.

  6. Self-Consistent Synchrotron Spectra from Trans-Relativistic Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.

    2015-01-01

    Most existing analytical models describing the second-order Fermi acceleration of relativistic electrons due to collisions with MHD waves assume that the injected seed particles are already highly relativistic, despite the fact that the most prevalent source of particles is usually the non-relativistic thermal background gas. This presents a problem because the momentum dependence of the momentum diffusion coefficient describing the interaction between the electrons and the MHD waves is qualitatively different in the non-relativistic and highly relativistic limits. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work, we present the first analytical solution to the global, trans-relativistic problem of electron acceleration, obtained by using a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The model also incorporates the appropriate momentum dependence for the particle escape timescale, and the effect of synchrotron and inverse-Compton losses, which are critical for establishing the location of the high-energy cutoff in the particle spectrum. Since synchrotron and inverse-Compton losses are included in the transport equation, the resulting radiation spectra are computed self-consistently. The results can be used to model the acceleration of radiating electrons in AGN and solar environments, applications of both types are discussed.

  7. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator.

    PubMed

    Huang, K; Li, Y F; Li, D Z; Chen, L M; Tao, M Z; Ma, Y; Zhao, J R; Li, M H; Chen, M; Mirzaie, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2016-06-08

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 10(8)/shot and 10(8 )photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3(rd) generation synchrotrons.

  8. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    PubMed Central

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170

  9. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator.

    PubMed

    Huang, K; Li, Y F; Li, D Z; Chen, L M; Tao, M Z; Ma, Y; Zhao, J R; Li, M H; Chen, M; Mirzaie, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 10(8)/shot and 10(8 )photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3(rd) generation synchrotrons. PMID:27273170

  10. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-06-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons.

  11. High-Flux Femtosecond X-Ray Emission from Controlled Generation of Annular Electron Beams in a Laser Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Zhao, T. Z.; Behm, K.; Dong, C. F.; Davoine, X.; Kalmykov, S. Y.; Petrov, V.; Chvykov, V.; Cummings, P.; Hou, B.; Maksimchuk, A.; Nees, J. A.; Yanovsky, V.; Thomas, A. G. R.; Krushelnick, K.

    2016-08-01

    Annular quasimonoenergetic electron beams with a mean energy in the range 200-400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized injection produces a bunch of electrons performing coherent betatron oscillations in the wakefield, resulting in a significant increase in the x-ray yield. Annular electron distributions are detected in 40% of shots under optimal conditions. Simultaneous control of the pulse duration and frequency chirp enables optimization of both the energy and the energy spread of the annular beam and boosts the radiant energy per unit charge by almost an order of magnitude. These well-defined annular distributions of electrons are a promising source of high-brightness laser plasma-based x rays.

  12. Search by mariner 10 for electrons and protons accelerated in association with venus.

    PubMed

    Simpson, J A; Eraker, J H; Lamport, J E; Walpole, P H

    1974-03-29

    The University of Chicago instrumnents on board the Mariner 10 spacecraft bound for Mercury have measured energy spectra and fluxes of electrons from 0.18 to 30 million electron volts and protons from 0.5 to 68 million electron volts along the plasma wake and in the bow shock regions associated with Venus. Unusually quiet solar conditions and improved instrumentation made it possible to search for much lower fluxes of protons and electrons in similar energy regions as compared to earlier Mariner missions to Venus-that is, lower by a factor of 10(2) for protons and 10(3) for electrons. We found no evidence for electrons or protons either in the form of increases of intensity or energy spectral changes in the vicinity of the planet, nor any evidence of bursts of radiation in or near the observed bow shock where bursts of electrons might have been expected in analogy with the bow shock at the earth. The importance of these null results for determining the necessary and sufficient conditions for particle acceleration is discussed with respect to magnetometer evidence that Venus does not have a magnetosphere. PMID:17791375

  13. Laboratory Measurements of Linear Electron Acceleration by Inertial Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Schroeder, J. W. R.

    2015-11-01

    Alfvén waves occur in conjunction with a significant fraction of auroral electron acceleration. Inertial mode Alfvén waves (vA >vte) in the auroral magnetosphere (2 - 4RE) with perpendicular scales on the order of the electron skin depth (c /ωpe) have a parallel electric field that, according to theory, is capable of nonlinearly accelerating suprathermal electrons to auroral energies. Unfortunately, due to space-time ambiguities of rocket and satellite measurements, it has not yet been possible to fully verify how Alfvén waves contribute to the production of accelerated electrons. To overcome the limitations of in situ spacecraft data, laboratory experiments have been carried out using the Large Plasma Device (LaPD), an NSF/DOE user facility at UCLA. An Electron Cyclotron Absorption (ECA) diagnostic has been developed to record the suprathermal parallel electron distribution function with 0.1% precision. The diagnostic records the electron distribution while inertial Alfvén waves simultaneously propagate through the plasma. Recent measurements have isolated oscillations of suprathermal electrons at the Alfvén wave frequency. Despite complications from boundary effects and the finite size of the experiment, a linear kinetic model has been produced that describes the experimental results. To our knowledge this is the first quantitative agreement between the measured and modeled linear response of suprathermal electrons to an inertial Alfvén wave. This verification of the linear physics is a necessary step before the nonlinear acceleration process can be isolated in future experiments. Presently, nonlinear effects cannot be detected because of limited Alfvén wave amplitudes. Ongoing work is focused on designing a higher-power antenna capable of efficiently launching larger-amplitude Alfvén waves with tunable perpendicular wavenumber and developing a theoretical understanding of the nonlinear acceleration process in LaPD plasma conditions. This material is

  14. A neutron track etch detector for electron linear accelerators in radiotherapy

    PubMed Central

    Vukovic, Branko; Faj, Dario; Poje, Marina; Varga, Maja; Radolic, Vanja; Miklavcic, Igor; Ivkovic, Ana; Planinic, Josip

    2010-01-01

    Background Electron linear accelerators in medical radiotherapy have replaced cobalt and caesium sources of radiation. However, medical accelerators with photon energies over 10 MeV generate undesired fast neutron contamination in a therapeutic X-ray photon beam. Photons with energies above 10 MeV can interact with the atomic nucleus of a high-Z material, of which the target and the head of an accelerator consist, and lead to the neutron ejection. Results and conclusions. Our neutron dosimeter, composed of the LR-115 track etch detector and boron foil BN-1 converter, was calibrated on thermal neutrons generated in the nuclear reactor of the Josef Stefan Institute (Slovenia), and applied to dosimetry of undesirable neutrons in photon radiotherapy by the linear accelerator 15 MV Siemens Mevatron. Having considered a high dependence of a cross-section between neutron and boron on neutron energy, and broad neutron spectrum in a photon beam, as well as outside the entrance door to maze of the Mevatron, we developed a method for determining the effective neutron detector response. A neutron dose rate in the photon beam was measured to be 1.96 Sv/h. Outside the Mevatron room the neutron dose rate was 0.62 μSv/h. PACS: 87.52. Ga; 87.53.St; 29.40.Wk. PMID:22933893

  15. Self-injection and acceleration of electrons during ionization of gas atoms by a short laser pulse

    SciTech Connect

    Singh, K.P.

    2006-04-15

    Using a relativistic three-dimensional single-particle code, acceleration of electrons created during the ionization of nitrogen and oxygen gas atoms by a laser pulse has been studied. Barrier suppression ionization model has been used to calculate ionization time of the bound electrons. The energy gained by the electrons peaks for an optimum value of laser spot size. The electrons created near the tail do not gain sufficient energy for a long duration laser pulse. The electrons created at the tail of pulse escape before fully interacting with the trailing part of the pulse for a short duration laser pulse, which causes electrons to retain sufficient energy. If a suitable frequency chirp is introduced then energy of the electrons created at the tail of the pulse further increases.

  16. ELECTRON AND PROTON ACCELERATION DURING THE FIRST GROUND LEVEL ENHANCEMENT EVENT OF SOLAR CYCLE 24

    SciTech Connect

    Li, C.; Sun, L. P.; Firoz, Kazi A.; Miroshnichenko, L. I.

    2013-06-10

    High-energy particles were recorded by near-Earth spacecraft and ground-based neutron monitors (NMs) on 2012 May 17. This event was the first ground level enhancement (GLE) of solar cycle 24. In this study, we try to identify the acceleration source(s) of solar energetic particles by combining in situ particle measurements from the WIND/3DP, GOES 13, and solar cosmic rays registered by several NMs, as well as remote-sensing solar observations from SDO/AIA, SOHO/LASCO, and RHESSI. We derive the interplanetary magnetic field (IMF) path length (1.25 {+-} 0.05 AU) and solar particle release time (01:29 {+-} 00:01 UT) of the first arriving electrons by using their velocity dispersion and taking into account contamination effects. We found that the electron impulsive injection phase, indicated by the dramatic change in the spectral index, is consistent with flare non-thermal emission and type III radio bursts. Based on the potential field source surface concept, modeling of the open-field lines rooted in the active region has been performed to provide escape channels for flare-accelerated electrons. Meanwhile, relativistic protons are found to be released {approx}10 minutes later than the electrons, assuming their scatter-free travel along the same IMF path length. Combining multi-wavelength imaging data of the prominence eruption and coronal mass ejection (CME), we obtain evidence that GLE protons, with an estimated kinetic energy of {approx}1.12 GeV, are probably accelerated by the CME-driven shock when it travels to {approx}3.07 solar radii. The time-of-maximum spectrum of protons is typical for shock wave acceleration.

  17. Latest Diagnostic Electronics Development for the PROSCAN Proton Accelerator

    SciTech Connect

    Duperrex, P.A.; Frei, U.; Gamma, G.; Mueller, U.; Rezzonico, L.

    2004-11-10

    New VME-based diagnostic electronics are being developed for PROSCAN, a proton accelerator for medical application presently under construction at PSI. One new development is a VME-based multi-channel logarithmic amplifier for converting current to voltage (LogIV). The LogIV boards are used for measuring current from the multiple wire (harp) profile monitors. The LogIV calibration method, current dependant bandwidth and temperature stability are presented. Another development is a BPM front end, based on the newest digital receiver techniques. Features of this new system are the remote control of the preamplifier stage and the continuous monitoring of each individual signal overall gain. Characteristics of the developed prototype are given.

  18. Latest Diagnostic Electronics Development for the PROSCAN Proton Accelerator

    NASA Astrophysics Data System (ADS)

    Duperrex, P. A.; Frei, U.; Gamma, G.; Müller, U.; Rezzonico, L.

    2004-11-01

    New VME-based diagnostic electronics are being developed for PROSCAN, a proton accelerator for medical application presently under construction at PSI. One new development is a VME-based multi-channel logarithmic amplifier for converting current to voltage (LogIV). The LogIV boards are used for measuring current from the multiple wire (harp) profile monitors. The LogIV calibration method, current dependant bandwidth and temperature stability are presented. Another development is a BPM front end, based on the newest digital receiver techniques. Features of this new system are the remote control of the preamplifier stage and the continuous monitoring of each individual signal overall gain. Characteristics of the developed prototype are given.

  19. Vaccine Biotechnology by Accelerated Electron Beam and Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Craciun, Gabriela D.; Togoe, Iulian I.; Tudor, Laurentiu M.; Martin, Diana I.; Manaila, Elena N.; Ighigeanu, Daniel I.; Iacob, Nicusor I.; Oproiu, Constantin V.

    2007-04-01

    A new biotechnology for obtaining a commercial vaccine that contains either Fusobacterium necrophorum (F.n.) exotoxins inactivated by accelerated electron beam (EB) and microwave (MW) irradiation, or exotoxins isolated from F.n. cultures irradiated with EB+MW, is presented. This vaccine is designed for prophylaxis of ruminant infectious pododermatitis (IP) produced by F.n. Also, the research results concerning the effects of combined chemical adjuvant and EB+MW irradiation on F.n. immune capacity are discussed. The vaccine's efficacy will be tested in ruminant farms in which IP evolves. It is expected that this new vaccine to offer a better protection, more than 60%, which is the best presently obtained result in ruminant farms.

  20. Computations of longitudinal electron dynamics in the recirculating cw RF accelerator-recuperator for the high average power FEL

    NASA Astrophysics Data System (ADS)

    Sokolov, A. S.; Vinokurov, N. A.

    1994-03-01

    The use of optimal longitudinal phase-energy motion conditions for bunched electrons in a recirculating RF accelerator gives the possibility to increase the final electron peak current and, correspondingly, the FEL gain. The computer code RECFEL, developed for simulations of the longitudinal compression of electron bunches with high average current, essentially loading the cw RF cavities of the recirculator-recuperator, is briefly described and illustrated by some computational results.

  1. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  2. Simulations of a High-Transformer-Ratio Plasma Wakefield Accelerator Using Multiple Electron Bunches

    SciTech Connect

    Kallos, Efthymios; Muggli, Patric; Katsouleas, Thomas; Yakimenko, Vitaly; Park, Jangho

    2009-01-22

    Particle-in-cell simulations of a plasma wakefield accelerator in the linear regime are presented, consisting of four electron bunches that are fed into a high-density plasma. It is found that a high transformer ratio can be maintained over 43 cm of plasma if the charge in each bunch is increased linearly, the bunches are placed 1.5 plasma wavelengths apart and the bunch emmitances are adjusted to compensate for the nonlinear focusing forces. The generated wakefield is sampled by a test witness bunch whose energy gain after the plasma is six times the energy loss of the drive bunches.

  3. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    SciTech Connect

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  4. Electron string ion sources for carbon ion cancer therapy accelerators

    SciTech Connect

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.; Katagiri, K.; Noda, K.

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  5. Properties of the electron cloud in a high-energy positron and electron storage ring

    DOE PAGES

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in amore » positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.« less

  6. Properties of the electron cloud in a high-energy positron and electron storage ring

    SciTech Connect

    Harkay, K. C.; Rosenberg, R. A.

    2003-03-20

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  7. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  8. Acceleration and guiding of fast electrons by a nanobrush target

    NASA Astrophysics Data System (ADS)

    Zhao, Zongqing; Cao, Lihua; Cao, Leifeng; Wang, Jian; Huang, Wenzhong; Jiang, Wei; He, Yingling; Wu, Yuchi; Zhu, Bin; Dong, Kegong; Ding, Yongkun; Zhang, Baohan; Gu, Yuqiu; Yu, M. Y.; He, X. T.

    2010-12-01

    Laser interaction with a nanobrush target plasma is investigated at the SILEX-I laser facility [X. F. Wei et al., J. Phys. Conf. Ser. 112, 032010 (2008)] with a laser of intensity 7.9×1018 W/cm2. Highly collimated fast electron beams with yields of more than three times higher than that from the planar target can be produced. Two-dimensional particle-in-cell simulation confirms that a layered surface structure can increase the efficiency of laser energy absorption, and the resulting fast electrons are tightly collimated and guided by the plasma layers to a cross section of about the laser spot size.

  9. Simulating Electron Clouds in High-Current Ion Accelerators withSolenoid Focusing

    SciTech Connect

    Sharp, W.M.; Grote, D.P.; Cohen, R.H.; Friedman, A.; Vay, J.-L.; Seidl, P.A.; Roy, P.K.; Coleman, J.E.; Armijo, J.; Haber, I.

    2006-09-20

    Contamination from electrons is a concern for the solenoid-focused ion accelerators being developed for experiments in high-energy-density physics (HEDP). These electrons are produced directly by beam ions hitting lattice elements and intercepting diagnostics, or indirectly by ionization of desorbed neutral gas, and they are believed responsible for time dependence of the beam radius, emittance, and focal distance seen on the Solenoid Transport Experiment (STX) at Lawrence Berkeley National Laboratory. The electrostatic particle-in-cell code WARP has been upgraded to included the physics needed to simulate electron-cloud phenomena. We present preliminary self-consistent simulations of STX experiments suggesting that the observed time dependence of the beam stems from a complicated interaction of beam ions, desorbed neutrals, and electrons.

  10. Simulating Electron Clouds in High-Current Ion Accelerators with Solenoid Focusing

    SciTech Connect

    Sharp, W; Grote, D; Cohen, R; Friedman, A; Vay, J; Seidl, P; Roy, P; Coleman, J; Armijo, J; Haber, I

    2006-08-15

    Contamination from electrons is a concern for the solenoid-focused ion accelerators being developed for experiments in high-energy-density physics (HEDP). These electrons are produced directly by beam ions hitting lattice elements and intercepting diagnostics, or indirectly by ionization of desorbed neutral gas, and they are believed responsible for time dependence of the beam radius, emittance, and focal distance seen on the Solenoid Transport Experiment (STX) at Lawrence Berkeley National Laboratory. The electrostatic particle-in-cell code WARP has been upgraded to included the physics needed to simulate electron-cloud phenomena. We present preliminary self-consistent simulations of STX experiments suggesting that the observed time dependence of the beam stems from a complicated interaction of beam ions, desorbed neutrals, and electrons.

  11. Simulating Electron Effects in Heavy-Ion Accelerators with Solenoid Focusing

    SciTech Connect

    Sharp, W M; Grote, D P; Cohen, R H; Friedman, A; Molvik, A W; Vay, J; Seidl, P; Roy, P K; Coleman, J E; Haber, I

    2007-06-29

    Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics. These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to a time-varying focal spot, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations and compare the results with experimental data in order to calibrate physics parameters in the model.

  12. Simulating Electron Effects in Heavy-Ion Accelerators with Solenoid Focusing

    SciTech Connect

    Sharp, W. M.; Grote, D. P.; Cohen, R. H.; Friedman, A.; Molvik, A. W.; Vay, J.-L.; Seidl, P. A.; Roy, P. K.; Coleman, J. E.; Haber, I.

    2007-06-20

    Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics. These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to a time-varying focal spot, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations and compare the results with experimental data in order to calibrate physics parameters in the model.

  13. Simulating electron clouds in high-current ion accelerators with solenoid focusing

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Grote, D. P.; Cohen, R. H.; Friedman, A.; Vay, J.-L.; Seidl, P. A.; Roy, P. K.; Coleman, J. E.; Armijo, J.; Haber, I.

    2007-07-01

    Contamination from electrons is a concern for the solenoid-focused ion accelerators being developed for experiments in high-energy density physics (HEDP). These electrons are produced directly by beam ions hitting lattice elements and intercepting diagnostics, or indirectly by ionization of desorbed neutral gas, and they are believed responsible for time dependence of the beam radius, emittance, and focal distance seen on the solenoid transport experiment (STX) at Lawrence Berkeley National Laboratory. The electrostatic particle-in-cell code WARP has been upgraded to include the physics needed to simulate electron-cloud phenomena. We present preliminary self-consistent simulations of STX experiments suggesting that the observed time dependence of the beam stems from a complicated interaction of beam ions, desorbed neutrals, and electrons.

  14. Accumulation of accelerated electrons in coronal loops and time delays of solar flare nonthermal emission

    NASA Astrophysics Data System (ADS)

    Tsap, Yu. T.; Stepanov, A. V.; Kopylova, Yu. G.

    2015-12-01

    The mechanisms by which accelerated electrons accumulate in flare loops with regard to the observed time delays between peaks of prolonged (≫1 s) hard X-ray pulses with different energies are considered. The focus is on an analysis of electron pitch-angle scattering by background plasma particles and/or turbulent pulsations in extreme cases of frequent and rare collisions. It was shown that it is difficult to explain the origination of time delays in the scope of a diffusion model when the electron free path length ( l) in the corona is smaller than the flare loop length ( L). The accumulation of energetic particles in loops at l > L is related to a trap-plus-precipitation model in which the regime of weak pitch angle diffusion of trapped electrons in the loss cone predominates.

  15. Transport and acceleration of plasma sheet electrons to geostationary orbit (Invited)

    NASA Astrophysics Data System (ADS)

    Ganushkina, Natalia

    2014-05-01

    Transport and acceleration of the electrons with energies less than 200 keV from the plasma sheet to geostationary orbit were investigated. These electron fluxes constitute the seed population for the high energy MeV particles in the radiation belts and are responsible for hazardous phenomena such as surface charging. We modeled several quiet and storm events, when the presence of isolated substorms was seen in the AE index. We used the Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) with the boundary at 10 Re with Tsyganenko and Mukai moment values for the electrons in the plasma sheet. The output of the IMPTAM modeling was compared to the observed electron fluxes in ten energy ranges (from 5 to 50 keV) measured onboard the AMC 12 geostationary spacecraft by the CEASE II ESA instrument and to LANL data from MPA and SOPA instruments. The behavior of the fluxes depends on the electron energy. IMPTAM model, driven by the observed parameters such as IMF By and Bz, solar wind velocity, number density and dynamic pressure and the Dst index, was not able to reproduce the observed peaks in the electron fluxes when no significant variations are present in those parameters. The variations of the observed fluxes during this non-storm period are due to substorm activity. We introduced the substorm-associated electromagnetic fields by launching several electromagnetic pulses at the substorm onsets during the modeled period. The substorm-associated increases in the observed fluxes can be captured by IMPTAM when substorm-associated electromagnetic fields are taken into account. Modifications of the pulse model used here are needed, especially related to the pulse front velocity and arrival time.

  16. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  17. Re-acceleration of galactic electrons at the termination shock and its role in Voyager observations

    NASA Astrophysics Data System (ADS)

    Prinsloo, Phillip; Toit Strauss, Du; Potgieter, Marius

    2016-07-01

    The Voyager spacecraft have had a number of notable achievements, with the crossing of the TS certainly being among them. Observations of 0.35 to 14 MeV electron intensities in the proximity of the termination shock show narrow peak-like increases, which are thought to result, at least in part, due to diffusive shock acceleration. Using a numerical cosmic-ray modulation model, it is shown that this acceleration mechanism can indeed account for the magnitude of the peaks observed by Voyager 1 and 2. Additionally, the contribution of re-accelerated electrons to overall intensities in the heliosheath is revealed to be significant despite the low-diffusion conditions reigning in this region. With the appropriate specification of the rigidity dependence of diffusion coefficients in the transport equation, and including therein the dissipation-range contribution of magnetic turbulence, the form of the energy distribution observed by Voyager 1 at the termination shock is also reproduced with the inclusion of diffusive shock acceleration.

  18. The heliopause spectrum of galactic electrons below 4 MeV and implications for their re-acceleration.

    NASA Astrophysics Data System (ADS)

    Prinsloo, Phillip; Toit Strauss, Du; Potgieter, Marius

    2016-07-01

    With the availability of observations of electrons at energies exceeding roughly 4 MeV, from e.g. the Voyager and PAMELA missions, their intensity levels and energy distribution are relatively well-known at the heliopause, where input spectra are typically specified in cosmic-ray modulation models. Numerically solving a transport equation that accounts for the re-acceleration of galactic electrons, it becomes essential to specify the heliopause spectrum at very low energies, typically below 4 MeV, because the diffusive shock acceleration process of particles at any given energy is dependent on the spectral shape at lower energies. Informed by the results of both radio data surveys and galactic propagation modelling, a number of scenarios are considered for this very low-energy heliopause spectrum. Assuming rigidity-independent diffusion at the considered energies as an initial assumption, the contribution of re-accelerated electrons to intensity levels is probed for each of the aforementioned scenarios. The magnitudes of the resultant intensity increases are concluded to be highly dependent on the spectral shape specified for the heliopause at these low energies, with the softer distributions predictably yielding greater re-acceleration effects.

  19. Two-stage acceleration of interstellar ions driven by high-energy lepton plasma flows

    NASA Astrophysics Data System (ADS)

    Cui, YunQian; Sheng, ZhengMing; Lu, QuanMing; Li, YuTong; Zhang, Jie

    2015-10-01

    We present the particle-in-cell (PIC) simulation results of the interaction of a high-energy lepton plasma flow with background electron-proton plasma and focus on the acceleration processes of the protons. It is found that the acceleration follows a two-stage process. In the first stage, protons are significantly accelerated transversely (perpendicular to the lepton flow) by the turbulent magnetic field "islands" generated via the strong Weibel-type instabilities. The accelerated protons shows a perfect inverse-power energy spectrum. As the interaction continues, a shockwave structure forms and the protons in front of the shockwave are reflected at twice of the shock speed, resulting in a quasi-monoenergetic peak located near 200 MeV under the simulation parameters. The presented scenario of ion acceleration may be relevant to cosmic-ray generation in some astrophysical environments.

  20. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  1. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    NASA Astrophysics Data System (ADS)

    Higginson, Drew Pitney

    The cone-guided fast ignition approach to Inertial Confinement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the first time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of Kalpha x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an effective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser

  2. Using acceleration characteristics in air quality and energy consumption analyses. Technical report

    SciTech Connect

    Eisele, W.L.; Turner, S.M.; Benz, R.J.

    1996-08-01

    This research investigated the effects of detailed speed and acceleration characteristics on energy consumption utilizing several fuel consumption models. The relationships between speed and acceleration characteristics, geometric characteristics (e.g., number of lanes, signal density, driveway density), and traffic flow variability for various roadways were also investigated. Finally, distributions were produced that summarize the operating characteristics of freeway and arterial streets in Houston, Texas using an electronic distance-measuring instrument (DMI) and the floating car technique.

  3. Monte Carlo Simulation of the Irradiation of Alanine Coated Film Dosimeters with Accelerated Electrons

    NASA Astrophysics Data System (ADS)

    Uribe, R. M.; Salvat, F.; Cleland, M. R.; Berejka, A.

    2009-03-01

    The Monte Carlo code PENELOPE was used to simulate the irradiation of alanine coated film dosimeters with electron beams of energies from 1 to 5 MeV being produced by a high-current industrial electron accelerator. This code includes a geometry package that defines complex quadratic geometries, such as those of the irradiation of products in an irradiation processing facility. In the present case the energy deposited on a water film at the surface of a wood parallelepiped was calculated using the program PENMAIN, which is a generic main program included in the PENELOPE distribution package. The results from the simulation were then compared with measurements performed by irradiating alanine film dosimeters with electrons using a 150 kW Dynamitron™ electron accelerator. The alanine films were placed on top of a set of wooden planks using the same geometrical arrangement as the one used for the simulation. The way the results from the simulation can be correlated with the actual measurements, taking into account the irradiation parameters, is described. An estimation of the percentage difference between measurements and calculations is also presented.

  4. Monte Carlo Simulation of the Irradiation of Alanine Coated Film Dosimeters with Accelerated Electrons

    SciTech Connect

    Uribe, R. M.; Salvat, F.; Cleland, M. R.; Berejka, A.

    2009-03-10

    The Monte Carlo code PENELOPE was used to simulate the irradiation of alanine coated film dosimeters with electron beams of energies from 1 to 5 MeV being produced by a high-current industrial electron accelerator. This code includes a geometry package that defines complex quadratic geometries, such as those of the irradiation of products in an irradiation processing facility. In the present case the energy deposited on a water film at the surface of a wood parallelepiped was calculated using the program PENMAIN, which is a generic main program included in the PENELOPE distribution package. The results from the simulation were then compared with measurements performed by irradiating alanine film dosimeters with electrons using a 150 kW Dynamitron electron accelerator. The alanine films were placed on top of a set of wooden planks using the same geometrical arrangement as the one used for the simulation. The way the results from the simulation can be correlated with the actual measurements, taking into account the irradiation parameters, is described. An estimation of the percentage difference between measurements and calculations is also presented.

  5. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    NASA Astrophysics Data System (ADS)

    Yi, Longqing; Pukhov, Alexander; Shen, Baifei

    2016-06-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

  6. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    PubMed Central

    Yi, Longqing; Pukhov, Alexander; Shen, Baifei

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications. PMID:27320197

  7. Dose properties of a laser accelerated electron beam and prospects for clinical application.

    PubMed

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D; Chiu, C; Fomytskyi, M; Raischel, F; Downer, M; Tajima, T

    2004-07-01

    Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25 x 25 cm2 field. An energy window (deltaE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to deltaE. However, since the falloff of the depth-dose curve (R10-R90) and the dose rate both increase with deltaE, a tradeoff between minimizing (R10-R90) and maximizing dose rate is implied. If deltaE is constrained so that R10-R90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min

  8. ENERGY SPECTRUM OF ENERGETIC PARTICLES ACCELERATED BY SHOCK WAVES: FROM FOCUSED TRANSPORT TO DIFFUSIVE ACCELERATION

    SciTech Connect

    Zuo Pingbing; Zhang Ming; Gamayunov, Konstantin; Rassoul, Hamid; Luo Xi

    2011-09-10

    The focused transport equation (FTE) includes all the necessary physics for modeling the shock acceleration of energetic particles with a unified description of first-order Fermi acceleration, shock drift acceleration, and shock surfing acceleration. It can treat the acceleration and transport of particles with an anisotropic distribution. In this study, the energy spectrum of pickup ions accelerated at shocks of various obliquities is investigated based on the FTE. We solve the FTE by using a stochastic approach. The shock acceleration leads to a two-component energy spectrum. The low-energy component of the spectrum is made up of particles that interact with shock one to a few times. For these particles, the pitch angle distribution is highly anisotropic, and the energy spectrum is variable depending on the momentum and pitch angle of injected particles. At high energies, the spectrum approaches a power law consistent with the standard diffusive shock acceleration (DSA) theory. For a parallel shock, the high-energy component of the power-law spectrum, with the spectral index being the same as the prediction of DSA theory, starts just a few times the injection speed. For an oblique or quasi-perpendicular shock, the high-energy component of the spectrum exhibits a double power-law distribution: a harder power-law spectrum followed by another power-law spectrum with a slope the same as the spectral index of DSA. The shock acceleration will eventually go into the DSA regime at higher energies even if the anisotropy is not small. The intensity of the energy spectrum given by the FTE, in the high-energy range where particles get efficient acceleration in the DSA regime, is different from that given by the standard DSA theory for the same injection source. We define the injection efficiency {eta} as the ratio between them. For a parallel shock, the injection efficiency is less than 1, but for an oblique shock or a quasi-perpendicular shock it could be greater.

  9. 1 MeV, 10 kW DC electron accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Nayak, B.; Acharya, S.; Bhattacharjee, D.; Bakhtsingh, R. I.; Rajan, R.; Sharma, D. K.; Dewangan, S.; Sharma, V.; Patel, R.; Tiwari, R.; Benarjee, S.; Srivastava, S. K.

    2016-03-01

    Several modern applications of radiation processing like medical sterilization, rubber vulcanization, polymerization, cross-linking and pollution control from thermal power stations etc. require D.C. electron accelerators of energy ranging from a few hundred keVs to few MeVs and power from a few kilowatts to hundreds of kilowatts. To match these requirements, a 3 MeV, 30 kW DC electron linac has been developed at BARC, Mumbai and current operational experience of 1 MeV, 10 kW beam power will be described in this paper. The LINAC composed mainly of Electron Gun, Accelerating Tubes, Magnets, High Voltage source and provides 10 kW beam power at the Ti beam window stably after the scanning section. The control of the LINAC is fully automated. Here Beam Optics study is carried out to reach the preferential parameters of Accelerating as well as optical elements. Beam trials have been conducted to find out the suitable operation parameters of the system.

  10. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator.

    PubMed

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron-betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators.

  11. Separated-orbit bisected energy-recovered linear accelerator

    DOEpatents

    Douglas, David R.

    2015-09-01

    A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.

  12. Energy boost in laser wakefield accelerators using sharp density transitions

    NASA Astrophysics Data System (ADS)

    Döpp, A.; Guillaume, E.; Thaury, C.; Lifschitz, A.; Ta Phuoc, K.; Malka, V.

    2016-05-01

    The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficult to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing.

  13. Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Mozer, Forrest; Krasnoselskikh, Vladimir

    2016-04-01

    Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of ˜1-10 keV electrons and their acceleration up to 100-300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We demonstrate that the electron energy corresponding to the observed plateau remains in very good agreement with the energy required for Landau resonant interaction with the simultaneously measured oblique chorus waves over 6 h and a wide range of L shells (from 4 to 6) in the outer belt. The efficient parallel acceleration modifies electron pitch angle distributions at energies ˜50-200 keV, allowing us to distinguish the energized population. The observed energy range and the density of accelerated electrons are in reasonable agreement with test particle numerical simulations.

  14. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  15. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons. PMID:23405276

  16. Ultra High Energy Electrons Powered by Pulsar Rotation

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-02-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e+/-) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  17. The extent of non-thermal particle acceleration in relativistic, electron-positron reconnection

    SciTech Connect

    Werner, Greg; Guo, Fan

    2015-07-21

    Reconnection is studied as an explanation for high-energy flares from the Crab Nebula. The production of synchrotron emission >100 MeV challenges classical models of acceleration. 3D simulation shows that reconnection, converting magnetic energy to kinetic energy, can accelerate beyond γrad. The power-law index and high-energy cutoff are important for understanding the radiation spectrum dN/dγ = f(γ) ∝ γ. α and cutoff were measured vs. L and σ, where L is system (simulation) size and σ is upstream magnetization (σ = B2/4πnmc2). α can affect the high-energy cutoff. In conclusion, for collisionless relativistic reconnection in electron-positron plasma, without guide field, nb/nd=0.1: (1) relativistic magnetic reconnection yields power-law particle spectra, (2) the power law index decreases as σ increases, approaching ≈1.2. (3) the power law is cut off at an energy related to acceleration within a single current layer, which is proportional to the current layer length (for small systems, that length is the system length, yielding γc2 ≈ 0.1 L/ρ0; for large systems, the layer length is limited by secondary tearing instability, yielding γc1 ≈ 4σ; the transition from small to large is around L/ρ0 = 40σ.). (4) although the large-system energy cutoff is proportional to the average energy per particle, it is significantly higher than the average energy per particle.

  18. Femtosecond few-hundreds-of-keV electron pulses from direct laser acceleration in a low-density gas

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Marceau, Vincent; Brabec, Thomas; Piché, Michel

    2014-05-01

    Subrelativistic electrons are a valuable tool for high-resolution atomic and molecular imaging. In particular, electron pulses with energies ranging from 50 to 300 keV have been successfully used in time-resolved ultrafast electron diffraction (UED) experiments to probe physical phenomena on a subpicosecond time scale. Laser-driven electron acceleration has been proposed as an alternative to the static accelerator technology currently in use. In principle, it has several advantages: (i) the short wavelength of the accelerating field may lead to electron bunches with duration of the order of 10 fs or less; (ii) there is an intrinsic synchronization between the electron probe and the laser pump; and (iii) using a gas medium, the electron source is self-regenerating and could be used for UED experiments at high repetition rates. Using three-dimensional particle-in-cell simulations, we showed that 240-keV electron pulses with 1-fs initial duration and 5% energy spread could be produced by radially polarized laser pulses focused in a low-density hydrogen gas [Marceau et al., Phys. Rev. Lett. 111, 224801 (2013)]. The latest results suggest that 100-500 keV energy with similar duration is within reach of the actual laser technology.

  19. High-brightness ion and electron rf linear accelerators

    SciTech Connect

    Jameson, R.A. )

    1989-01-01

    In the past, development work to increase the energy and intensity of particle accelerators tended to be pursued in separate directions, but now almost all modern applications have to achieve an intensity as high as possible at the desired energy, along with a very good beam quality in terms of the beam confinement, aiming, or focusing. The figure of merit used is the beam brightness, defined as the beam power (or current when the energy is fixed) divided by the phase space appropriate to the problem at hand. Phase space for the beam as a whole is six-dimensional, describing the physical size of the beam and change in size with time or distance; the area projected on one plane is called emittance. Achieving high intensity and good quality simultaneously is difficult, primarily because of nonlinear space- charge and focusing forces at nonrelativistic velocities and because of beam-breakup effects for relativistic beams. In recent years, substantial progress has been made in understanding the physics of these effects; some aspects are reviewed here and related to their impact on practical design aspects. 7 refs.

  20. Variable-energy drift-tube linear accelerator

    DOEpatents

    Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.