Sample records for accelerated finite difference

  1. Convergence Rates of Finite Difference Stochastic Approximation Algorithms

    DTIC Science & Technology

    2016-06-01

    dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It

  2. Graphics-processing-unit-accelerated finite-difference time-domain simulation of the interaction between ultrashort laser pulses and metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Nikolskiy, V. P.; Stegailov, V. V.

    2018-01-01

    Metal nanoparticles (NPs) serve as important tools for many modern technologies. However, the proper microscopic models of the interaction between ultrashort laser pulses and metal NPs are currently not very well developed in many cases. One part of the problem is the description of the warm dense matter that is formed in NPs after intense irradiation. Another part of the problem is the description of the electromagnetic waves around NPs. Description of wave propagation requires the solution of Maxwell’s equations and the finite-difference time-domain (FDTD) method is the classic approach for solving them. There are many commercial and free implementations of FDTD, including the open source software that supports graphics processing unit (GPU) acceleration. In this report we present the results on the FDTD calculations for different cases of the interaction between ultrashort laser pulses and metal nanoparticles. Following our previous results, we analyze the efficiency of the GPU acceleration of the FDTD algorithm.

  3. The Relation of Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  4. [A simulation study with finite element model on the unequal loss of peripheral vision caused by acceleration].

    PubMed

    Geng, Xiaoqi; Liu, Xiaoyu; Liu, Songyang; Xu, Yan; Zhao, Xianliang; Wang, Jie; Fan, Yubo

    2017-04-01

    An unequal loss of peripheral vision may happen with high sustaining multi-axis acceleration, leading to a great potential flight safety hazard. In the present research, finite element method was used to study the mechanism of unequal loss of peripheral vision. Firstly, a 3D geometric model of skull was developed based on the adult computer tomography (CT) images. The model of double eyes was created by mirroring with the previous right eye model. Then, the double-eye model was matched to the skull model, and fat was filled between eyeballs and skull. Acceleration loads of head-to-foot (G z ), right-to-left (G y ), chest-to-back (G x ) and multi-axis directions were applied to the current model to simulate dynamic response of retina by explicit dynamics solution. The results showed that the relative strain of double eyes was 25.7% under multi-axis acceleration load. Moreover, the strain distributions showed a significant difference among acceleration loaded in different directions. It indicated that a finite element model of double eyes was an effective means to study the mechanism of an unequal loss of peripheral vision at sustaining high multi-axis acceleration.

  5. A fast finite-difference algorithm for topology optimization of permanent magnets

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Huber, Christian; Bruckner, Florian; Vogler, Christoph; Wautischer, Gregor; Suess, Dieter

    2017-09-01

    We present a finite-difference method for the topology optimization of permanent magnets that is based on the fast-Fourier-transform (FFT) accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparison to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.

  6. Acceleration of low order finite element computation with GPUs (Invited)

    NASA Astrophysics Data System (ADS)

    Knepley, M. G.

    2010-12-01

    Considerable effort has been focused on the acceleration using GPUs of high order spectral element methods and discontinuous Galerkin finite element methods. However, these methods are not universally applicable, and much of the existing FEM software base employs low order methods. In this talk, we present a formulation of FEM, using the PETSc framework from ANL, which is amenable to GPU acceleration even at very low order. In addition, using the FEniCS system for FEM, we show that the relevant kernels can be automatically generated and optimized using a symbolic manipulation system.

  7. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  8. Finite element analyses of a linear-accelerator electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049; Wasy, A.

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gunmore » is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.« less

  9. Finite element analyses of a linear-accelerator electron gun

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  10. Finite element analyses of a linear-accelerator electron gun.

    PubMed

    Iqbal, M; Wasy, A; Islam, G U; Zhou, Z

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  11. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-01

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  12. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  13. CUDA Fortran acceleration for the finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Hadi, Mohammed F.; Esmaeili, Seyed A.

    2013-05-01

    A detailed description of programming the three-dimensional finite-difference time-domain (FDTD) method to run on graphical processing units (GPUs) using CUDA Fortran is presented. Two FDTD-to-CUDA thread-block mapping designs are investigated and their performances compared. Comparative assessment of trade-offs between GPU's shared memory and L1 cache is also discussed. This presentation is for the benefit of FDTD programmers who work exclusively with Fortran and are reluctant to port their codes to C in order to utilize GPU computing. The derived CUDA Fortran code is compared with an optimized CPU version that runs on a workstation-class CPU to present a realistic GPU to CPU run time comparison and thus help in making better informed investment decisions on FDTD code redesigns and equipment upgrades. All analyses are mirrored with CUDA C simulations to put in perspective the present state of CUDA Fortran development.

  14. Analysis of ballistic transport in nanoscale devices by using an accelerated finite element contact block reduction approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Li, G., E-mail: gli@clemson.edu

    2014-08-28

    An accelerated Finite Element Contact Block Reduction (FECBR) approach is presented for computational analysis of ballistic transport in nanoscale electronic devices with arbitrary geometry and unstructured mesh. Finite element formulation is developed for the theoretical CBR/Poisson model. The FECBR approach is accelerated through eigen-pair reduction, lead mode space projection, and component mode synthesis techniques. The accelerated FECBR is applied to perform quantum mechanical ballistic transport analysis of a DG-MOSFET with taper-shaped extensions and a DG-MOSFET with Si/SiO{sub 2} interface roughness. The computed electrical transport properties of the devices obtained from the accelerated FECBR approach and associated computational cost as amore » function of system degrees of freedom are compared with those obtained from the original CBR and direct inversion methods. The performance of the accelerated FECBR in both its accuracy and efficiency is demonstrated.« less

  15. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study

    PubMed Central

    Hsu, Hung-Yao

    2016-01-01

    Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE) models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity) on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85–48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g) to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies. PMID:28074178

  16. Validation of Finite-Element Models of Persistent-Current Effects in Nb 3Sn Accelerator Magnets

    DOE PAGES

    Wang, X.; Ambrosio, G.; Chlachidze, G.; ...

    2015-01-06

    Persistent magnetization currents are induced in superconducting filaments during the current ramping in magnets. The resulting perturbation to the design magnetic field leads to field quality degradation, in particular at low field where the effect is stronger relative to the main field. The effects observed in NbTi accelerator magnets were reproduced well with the critical-state model. However, this approach becomes less accurate for the calculation of the persistent-current effects observed in Nb 3Sn accelerator magnets. Here a finite-element method based on the measured strand magnetization is validated against three state-of-art Nb3Sn accelerator magnets featuring different subelement diameters, critical currents, magnetmore » designs and measurement temperatures. The temperature dependence of the persistent-current effects is reproduced. Based on the validated model, the impact of conductor design on the persistent current effects is discussed. The performance, limitations and possible improvements of the approach are also discussed.« less

  17. A parallel finite-difference method for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Swisshelm, Julie M.

    1989-01-01

    A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed.

  18. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  19. A flexible nonlinear diffusion acceleration method for the S N transport equations discretized with discontinuous finite elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick

    This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost

  20. A flexible nonlinear diffusion acceleration method for the S N transport equations discretized with discontinuous finite elements

    DOE PAGES

    Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick; ...

    2017-02-21

    This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost

  1. Numerical time-domain electromagnetics based on finite-difference and convolution

    NASA Astrophysics Data System (ADS)

    Lin, Yuanqu

    Time-domain methods posses a number of advantages over their frequency-domain counterparts for the solution of wideband, nonlinear, and time varying electromagnetic scattering and radiation phenomenon. Time domain integral equation (TDIE)-based methods, which incorporate the beneficial properties of integral equation method, are thus well suited for solving broadband scattering problems for homogeneous scatterers. Widespread adoption of TDIE solvers has been retarded relative to other techniques by their inefficiency, inaccuracy and instability. Moreover, two-dimensional (2D) problems are especially problematic, because 2D Green's functions have infinite temporal support, exacerbating these difficulties. This thesis proposes a finite difference delay modeling (FDDM) scheme for the solution of the integral equations of 2D transient electromagnetic scattering problems. The method discretizes the integral equations temporally using first- and second-order finite differences to map Laplace-domain equations into the Z domain before transforming to the discrete time domain. The resulting procedure is unconditionally stable because of the nature of the Laplace- to Z-domain mapping. The first FDDM method developed in this thesis uses second-order Lagrange basis functions with Galerkin's method for spatial discretization. The second application of the FDDM method discretizes the space using a locally-corrected Nystrom method, which accelerates the precomputation phase and achieves high order accuracy. The Fast Fourier Transform (FFT) is applied to accelerate the marching-on-time process in both methods. While FDDM methods demonstrate impressive accuracy and stability in solving wideband scattering problems for homogeneous scatterers, they still have limitations in analyzing interactions between several inhomogenous scatterers. Therefore, this thesis devises a multi-region finite-difference time-domain (MR-FDTD) scheme based on domain-optimal Green's functions for solving

  2. Electron-phonon coupling from finite differences

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  3. Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Swarnava; Suryanarayana, Phanish, E-mail: phanish.suryanarayana@ce.gatech.edu

    2016-02-15

    We present a real-space formulation and higher-order finite-difference implementation of periodic Orbital-free Density Functional Theory (OF-DFT). Specifically, utilizing a local reformulation of the electrostatic and kernel terms, we develop a generalized framework for performing OF-DFT simulations with different variants of the electronic kinetic energy. In particular, we propose a self-consistent field (SCF) type fixed-point method for calculations involving linear-response kinetic energy functionals. In this framework, evaluation of both the electronic ground-state and forces on the nuclei are amenable to computations that scale linearly with the number of atoms. We develop a parallel implementation of this formulation using the finite-difference discretization.more » We demonstrate that higher-order finite-differences can achieve relatively large convergence rates with respect to mesh-size in both the energies and forces. Additionally, we establish that the fixed-point iteration converges rapidly, and that it can be further accelerated using extrapolation techniques like Anderson's mixing. We validate the accuracy of the results by comparing the energies and forces with plane-wave methods for selected examples, including the vacancy formation energy in Aluminum. Overall, the suitability of the proposed formulation for scalable high performance computing makes it an attractive choice for large-scale OF-DFT calculations consisting of thousands of atoms.« less

  4. The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography.

    PubMed

    Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie

    2010-09-13

    In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.

  5. Numerical solution of nonlinear partial differential equations of mixed type. [finite difference approximation

    NASA Technical Reports Server (NTRS)

    Jameson, A.

    1976-01-01

    A review is presented of some recently developed numerical methods for the solution of nonlinear equations of mixed type. The methods considered use finite difference approximations to the differential equation. Central difference formulas are employed in the subsonic zone and upwind difference formulas are used in the supersonic zone. The relaxation method for the small disturbance equation is discussed and a description is given of difference schemes for the potential flow equation in quasi-linear form. Attention is also given to difference schemes for the potential flow equation in conservation form, the analysis of relaxation schemes by the time dependent analogy, the accelerated iterative method, and three-dimensional calculations.

  6. Geometric multigrid to accelerate the solution of the quasi-static electric field problem by tetrahedral finite elements.

    PubMed

    Hollaus, K; Weiss, B; Magele, Ch; Hutten, H

    2004-02-01

    The acceleration of the solution of the quasi-static electric field problem considering anisotropic complex conductivity simulated by tetrahedral finite elements of first order is investigated by geometric multigrid.

  7. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.

  8. Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.

    PubMed

    Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray

    2017-07-11

    Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.

  9. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.

  10. Group foliation of finite difference equations

    NASA Astrophysics Data System (ADS)

    Thompson, Robert; Valiquette, Francis

    2018-06-01

    Using the theory of equivariant moving frames, a group foliation method for invariant finite difference equations is developed. This method is analogous to the group foliation of differential equations and uses the symmetry group of the equation to decompose the solution process into two steps, called resolving and reconstruction. Our constructions are performed algorithmically and symbolically by making use of discrete recurrence relations among joint invariants. Applications to invariant finite difference equations that approximate differential equations are given.

  11. An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Lessard, Victor R.

    1990-01-01

    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.

  12. Conservative properties of finite difference schemes for incompressible flow

    NASA Technical Reports Server (NTRS)

    Morinishi, Youhei

    1995-01-01

    The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.

  13. Practical aspects of prestack depth migration with finite differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ober, C.C.; Oldfield, R.A.; Womble, D.E.

    1997-07-01

    Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less

  14. Computer-Oriented Calculus Courses Using Finite Differences.

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    The so-called discrete approach in calculus instruction involves introducing topics from the calculus of finite differences and finite sums, both for motivation and as useful tools for applications of the calculus. In particular, it provides an ideal setting in which to incorporate computers into calculus courses. This approach has been…

  15. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    NASA Technical Reports Server (NTRS)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  16. Applications of an exponential finite difference technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.; Keith, T.G. Jr.

    1988-07-01

    An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.

  17. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    ERIC Educational Resources Information Center

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  18. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Khan, Abdul A.

    2018-04-01

    A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.

  19. exponential finite difference technique for solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less

  20. Finite difference method accelerated with sparse solvers for structural analysis of the metal-organic complexes

    NASA Astrophysics Data System (ADS)

    Guda, A. A.; Guda, S. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lamberti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y.

    2016-05-01

    Finite difference method (FDM) implemented in the FDMNES software [Phys. Rev. B, 2001, 63, 125120] was revised. Thorough analysis shows, that the calculated diagonal in the FDM matrix consists of about 96% zero elements. Thus a sparse solver would be more suitable for the problem instead of traditional Gaussian elimination for the diagonal neighbourhood. We have tried several iterative sparse solvers and the direct one MUMPS solver with METIS ordering turned out to be the best. Compared to the Gaussian solver present method is up to 40 times faster and allows XANES simulations for complex systems already on personal computers. We show applicability of the software for metal-organic [Fe(bpy)3]2+ complex both for low spin and high spin states populated after laser excitation.

  1. The Complex-Step-Finite-Difference method

    NASA Astrophysics Data System (ADS)

    Abreu, Rafael; Stich, Daniel; Morales, Jose

    2015-07-01

    We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.

  2. Simulating incompressible flow on moving meshfree grids using General Finite Differences (GFD)

    NASA Astrophysics Data System (ADS)

    Vasyliv, Yaroslav; Alexeev, Alexander

    2016-11-01

    We simulate incompressible flow around an oscillating cylinder at different Reynolds numbers using General Finite Differences (GFD) on a meshfree grid. We evolve the meshfree grid by treating each grid node as a particle. To compute velocities and accelerations, we consider the particles at a particular instance as Eulerian observation points. The incompressible Navier-Stokes equations are directly discretized using GFD with boundary conditions enforced using a sharp interface treatment. Cloud sizes are set such that the local approximations use only 16 neighbors. To enforce incompressibility, we apply a semi-implicit approximate projection method. To prevent overlapping particles and formation of voids in the grid, we propose a particle regularization scheme based on a local minimization principle. We validate the GFD results for an oscillating cylinder against the lattice Boltzmann method and find good agreement. Financial support provided by National Science Foundation (NSF) Graduate Research Fellowship, Grant No. DGE-1148903.

  3. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  4. Finite difference and Runge-Kutta methods for solving vibration problems

    NASA Astrophysics Data System (ADS)

    Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi

    2017-11-01

    The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.

  5. Flexible Automatic Discretization for Finite Differences: Eliminating the Human Factor

    NASA Astrophysics Data System (ADS)

    Pranger, Casper

    2017-04-01

    In the geophysical numerical modelling community, finite differences are (in part due to their small footprint) a popular spatial discretization method for PDEs in the regular-shaped continuum that is the earth. However, they rapidly become prone to programming mistakes when physics increase in complexity. To eliminate opportunities for human error, we have designed an automatic discretization algorithm using Wolfram Mathematica, in which the user supplies symbolic PDEs, the number of spatial dimensions, and a choice of symbolic boundary conditions, and the script transforms this information into matrix- and right-hand-side rules ready for use in a C++ code that will accept them. The symbolic PDEs are further used to automatically develop and perform manufactured solution benchmarks, ensuring at all stages physical fidelity while providing pragmatic targets for numerical accuracy. We find that this procedure greatly accelerates code development and provides a great deal of flexibility in ones choice of physics.

  6. Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width

    NASA Astrophysics Data System (ADS)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2018-04-01

    The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number AT=1 and for sufficiently small values of AT. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.

  7. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    NASA Astrophysics Data System (ADS)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Hybrid finite difference/finite element immersed boundary method.

    PubMed

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  9. On the wavelet optimized finite difference method

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1994-01-01

    When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.

  10. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1986-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  11. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1989-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  12. The Laguerre finite difference one-way equation solver

    NASA Astrophysics Data System (ADS)

    Terekhov, Andrew V.

    2017-05-01

    This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.

  13. A total variation diminishing finite difference algorithm for sonic boom propagation models

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    1993-01-01

    It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.

  14. Mixed finite-difference scheme for free vibration analysis of noncircular cylinders

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Stephens, W. B.

    1973-01-01

    A mixed finite-difference scheme is presented for the free-vibration analysis of simply supported closed noncircular cylindrical shells. The problem is formulated in terms of eight first-order differential equations in the circumferential coordinate which possess a symmetric coefficient matrix and are free of the derivatives of the elastic and geometric characteristics of the shell. In the finite-difference discretization, two interlacing grids are used for the different fundamental unknowns in such a way as to avoid averaging in the difference-quotient expressions used for the first derivative. The resulting finite-difference equations are symmetric. The inverse-power method is used for obtaining the eigenvalues and eigenvectors.

  15. Asymptotic analysis of numerical wave propagation in finite difference equations

    NASA Technical Reports Server (NTRS)

    Giles, M.; Thompkins, W. T., Jr.

    1983-01-01

    An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.

  16. Divergence correction schemes in finite difference method for 3D tensor CSAMT in axial anisotropic media

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Tan, Handong; Zhang, Zhiyong; Li, Zhiqiang; Cao, Meng

    2017-05-01

    Resistivity anisotropy and full-tensor controlled-source audio-frequency magnetotellurics (CSAMT) have gradually become hot research topics. However, much of the current anisotropy research for tensor CSAMT only focuses on the one-dimensional (1D) solution. As the subsurface is rarely 1D, it is necessary to study three-dimensional (3D) model response. The staggered-grid finite difference method is an effective simulation method for 3D electromagnetic forward modelling. Previous studies have suggested using the divergence correction to constrain the iterative process when using a staggered-grid finite difference model so as to accelerate the 3D forward speed and enhance the computational accuracy. However, the traditional divergence correction method was developed assuming an isotropic medium. This paper improves the traditional isotropic divergence correction method and derivation process to meet the tensor CSAMT requirements for anisotropy using the volume integral of the divergence equation. This method is more intuitive, enabling a simple derivation of a discrete equation and then calculation of coefficients related to the anisotropic divergence correction equation. We validate the result of our 3D computational results by comparing them to the results computed using an anisotropic, controlled-source 2.5D program. The 3D resistivity anisotropy model allows us to evaluate the consequences of using the divergence correction at different frequencies and for two orthogonal finite length sources. Our results show that the divergence correction plays an important role in 3D tensor CSAMT resistivity anisotropy research and offers a solid foundation for inversion of CSAMT data collected over an anisotropic body.

  17. Efficient discretization in finite difference method

    NASA Astrophysics Data System (ADS)

    Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris

    2015-04-01

    Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.

  18. A comparison of the finite difference and finite element methods for heat transfer calculations

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Mortazavi, H. R.

    1982-01-01

    The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined.

  19. How to choose a subset of frequencies in frequency-domain finite-difference migration

    NASA Astrophysics Data System (ADS)

    Mulder, W. A.; Plessix, R.-E.

    2004-09-01

    Finite-difference migration with the two-way wave equation can be accelerated by an order of magnitude if the frequency domain rather than the time domain is used. This gain is mainly accomplished by using a subset of the available frequencies. The implicit assumption is that the data have a certain amount of redundancy in the frequency domain. The choice of frequencies cannot be arbitrary. If the frequencies are chosen with a constant increment and their spacing is too large, the well-known wrap-around that occurs when transforming back to the time domain will also show up in the migration to the depth domain, albeit in a more subtle way. Because migration involves propagation in a given background velocity model and summation over shots and receivers, the effects of wrap-around may disappear even when the Nyquist theorem is not obeyed. We have studied these effects analytically for the constant-velocity case and determined sampling conditions that avoid wrap-around artefacts. The conditions depend on the velocity, depth of the migration grid and offset range. They show that the spacing between subsequent frequencies can be larger than the inverse of the time range prescribed by the Nyquist theorem. A 2-D example has been used to test the validity of these conditions for a more realistic velocity model. Finite-difference migration with the one-way wave equation shows a similar behaviour.

  20. Convergence of finite difference transient response computations for thin shells.

    NASA Technical Reports Server (NTRS)

    Sobel, L. H.; Geers, T. L.

    1973-01-01

    Numerical studies pertaining to the limits of applicability of the finite difference method in the solution of linear transient shell response problems are performed, and a computational procedure for the use of the method is recommended. It is found that the only inherent limitation of the finite difference method is its inability to reproduce accurately response discontinuities. This is not a serious limitation in view of natural constraints imposed by the extension of Saint Venant's principle to transient response problems. It is also found that the short wavelength limitations of thin shell (Bernoulli-Euler) theory create significant convergence difficulties in computed response to certain types of transverse excitations. These difficulties may be overcome, however, through proper selection of finite difference mesh dimensions and temporal smoothing of the excitation.

  1. Mixed finite-difference scheme for analysis of simply supported thick plates.

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1973-01-01

    A mixed finite-difference scheme is presented for the stress and free vibration analysis of simply supported nonhomogeneous and layered orthotropic thick plates. The analytical formulation is based on the linear, three-dimensional theory of orthotropic elasticity and a Fourier approach is used to reduce the governing equations to six first-order ordinary differential equations in the thickness coordinate. The governing equations possess a symmetric coefficient matrix and are free of derivatives of the elastic characteristics of the plate. In the finite difference discretization two interlacing grids are used for the different fundamental unknowns in such a way as to reduce both the local discretization error and the bandwidth of the resulting finite-difference field equations. Numerical studies are presented for the effects of reducing the interior and boundary discretization errors and of mesh refinement on the accuracy and convergence of solutions. It is shown that the proposed scheme, in addition to a number of other advantages, leads to highly accurate results, even when a small number of finite difference intervals is used.

  2. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    NASA Astrophysics Data System (ADS)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  3. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  4. Improving sub-grid scale accuracy of boundary features in regional finite-difference models

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.

    2012-01-01

    As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.

  5. Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method.

    PubMed

    Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying

    2013-12-01

    Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.

  6. Finite plate thickness effects on the Rayleigh-Taylor instability in elastic-plastic materials

    NASA Astrophysics Data System (ADS)

    Polavarapu, Rinosh; Banerjee, Arindam

    2017-11-01

    The majority of theoretical studies have tackled the Rayleigh-Taylor instability (RTI) problem in solids using an infinitely thick plate. Recent theoretical studies by Piriz et al. (PRE 95, 053108, 2017) have explored finite thickness effects. We seek to validate this recent theoretical estimate experimentally using our rotating wheel RTI experiment in an accelerated elastic-plastic material. The test section consists of a container filled with air and mayonnaise (a non-Newtonian emulsion) with an initial perturbation between two materials. The plate thickness effects are studied by varying the depth of the soft-solid. A set of experiments is run by employing different initial conditions with different container dimensions. Additionally, the effect of acceleration rate (driving pressure rise time) on the instability threshold with reference to the finite thickness will also be inspected. Furthermore, the experimental results are compared to the analytical strength models related to finite thickness effects on RTI. Authors acknowledge financial support from DOE-SSAA Grant # DE-NA0003195 and LANL subcontract #370333.

  7. An Adiabatic Phase-Matching Accelerator

    DOE PAGES

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...

    2018-05-25

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  8. An Adiabatic Phase-Matching Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe

    2017-12-22

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  9. Accuracy of finite-difference modeling of seismic waves : Simulation versus laboratory measurements

    NASA Astrophysics Data System (ADS)

    Arntsen, B.

    2017-12-01

    The finite-difference technique for numerical modeling of seismic waves is still important and for some areas extensively used.For exploration purposes is finite-difference simulation at the core of both traditional imaging techniques such as reverse-time migration and more elaborate Full-Waveform Inversion techniques.The accuracy and fidelity of finite-difference simulation of seismic waves are hard to quantify and meaningfully error analysis is really onlyeasily available for simplistic media. A possible alternative to theoretical error analysis is provided by comparing finite-difference simulated data with laboratory data created using a scale model. The advantage of this approach is the accurate knowledge of the model, within measurement precision, and the location of sources and receivers.We use a model made of PVC immersed in water and containing horizontal and tilted interfaces together with several spherical objects to generateultrasonic pressure reflection measurements. The physical dimensions of the model is of the order of a meter, which after scaling represents a model with dimensions of the order of 10 kilometer and frequencies in the range of one to thirty hertz.We find that for plane horizontal interfaces the laboratory data can be reproduced by the finite-difference scheme with relatively small error, but for steeply tilted interfaces the error increases. For spherical interfaces the discrepancy between laboratory data and simulated data is sometimes much more severe, to the extent that it is not possible to simulate reflections from parts of highly curved bodies. The results are important in view of the fact that finite-difference modeling is often at the core of imaging and inversion algorithms tackling complicatedgeological areas with highly curved interfaces.

  10. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    NASA Technical Reports Server (NTRS)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  11. Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.

    PubMed

    Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung

    2018-01-01

    A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.

  12. Exact finite difference schemes for the non-linear unidirectional wave equation

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.

  13. The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan

    1995-01-01

    The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.

  14. Finite Difference Schemes as Algebraic Correspondences between Layers

    NASA Astrophysics Data System (ADS)

    Malykh, Mikhail; Sevastianov, Leonid

    2018-02-01

    For some differential equations, especially for Riccati equation, new finite difference schemes are suggested. These schemes define protective correspondences between the layers. Calculation using these schemes can be extended to the area beyond movable singularities of exact solution without any error accumulation.

  15. On improving the iterative convergence properties of an implicit approximate-factorization finite difference algorithm. [considering transonic flow

    NASA Technical Reports Server (NTRS)

    Desideri, J. A.; Steger, J. L.; Tannehill, J. C.

    1978-01-01

    The iterative convergence properties of an approximate-factorization implicit finite-difference algorithm are analyzed both theoretically and numerically. Modifications to the base algorithm were made to remove the inconsistency in the original implementation of artificial dissipation. In this way, the steady-state solution became independent of the time-step, and much larger time-steps can be used stably. To accelerate the iterative convergence, large time-steps and a cyclic sequence of time-steps were used. For a model transonic flow problem governed by the Euler equations, convergence was achieved with 10 times fewer time-steps using the modified differencing scheme. A particular form of instability due to variable coefficients is also analyzed.

  16. Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian

    2015-10-01

    Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.

  17. Seismic imaging using finite-differences and parallel computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ober, C.C.

    1997-12-31

    A key to reducing the risks and costs of associated with oil and gas exploration is the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico and overthrust regions in US onshore regions. Prestack depth migration generally yields the most accurate images, and one approach to this is to solve the scalar wave equation using finite differences. As part of an ongoing ACTI project funded by the US Department of Energy, a finite difference, 3-D prestack, depth migration code has been developed. The goal of this work is to demonstrate that massively parallel computersmore » can be used efficiently for seismic imaging, and that sufficient computing power exists (or soon will exist) to make finite difference, prestack, depth migration practical for oil and gas exploration. Several problems had to be addressed to get an efficient code for the Intel Paragon. These include efficient I/O, efficient parallel tridiagonal solves, and high single-node performance. Furthermore, to provide portable code the author has been restricted to the use of high-level programming languages (C and Fortran) and interprocessor communications using MPI. He has been using the SUNMOS operating system, which has affected many of his programming decisions. He will present images created from two verification datasets (the Marmousi Model and the SEG/EAEG 3D Salt Model). Also, he will show recent images from real datasets, and point out locations of improved imaging. Finally, he will discuss areas of current research which will hopefully improve the image quality and reduce computational costs.« less

  18. Synchronous acceleration with tapered dielectric-lined waveguides

    NASA Astrophysics Data System (ADS)

    Lemery, F.; Floettmann, K.; Piot, P.; Kärtner, F. X.; Aßmann, R.

    2018-05-01

    We present a general concept to accelerate nonrelativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program astra and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100 MV /m . Numerical simulations indicate that a ˜200 -keV electron beam can be accelerated to an energy of ˜10 MeV over ˜10 cm with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.

  19. Application of 'steady' state finite element and transient finite difference theory to sound propagation in a variable duct - A comparison with experiment

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.; Astley, R. J.; White, J. W.

    1981-01-01

    Experimental data are presented for sound propagation in a simulated infinite hard wall duct with a large change in duct cross sectional area. The data are conveniently tabulated for further use. The 'steady' state finite element theory of Astley and Eversman (1981) and the transient finite difference theory of White (1981) are in good agreement with the data for both the axial and transverse pressure profiles and the axial phase angle. Therefore, numerical finite difference and finite element theories appear to be ideally suited for handling duct propagation problems which encounter large axial gradients in acoustic parameters. The measured energy reflection coefficient agrees with the values from the Astley-Eversman modal coupling model.

  20. Experiments with explicit filtering for LES using a finite-difference method

    NASA Technical Reports Server (NTRS)

    Lund, T. S.; Kaltenbach, H. J.

    1995-01-01

    The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture

  1. Acceleration of FDTD mode solver by high-performance computing techniques.

    PubMed

    Han, Lin; Xi, Yanping; Huang, Wei-Ping

    2010-06-21

    A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.

  2. A QR accelerated volume-to-surface boundary condition for finite element solution of eddy current problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D; Fasenfest, B; Rieben, R

    2006-09-08

    We are concerned with the solution of time-dependent electromagnetic eddy current problems using a finite element formulation on three-dimensional unstructured meshes. We allow for multiple conducting regions, and our goal is to develop an efficient computational method that does not require a computational mesh of the air/vacuum regions. This requires a sophisticated global boundary condition specifying the total fields on the conductor boundaries. We propose a Biot-Savart law based volume-to-surface boundary condition to meet this requirement. This Biot-Savart approach is demonstrated to be very accurate. In addition, this approach can be accelerated via a low-rank QR approximation of the discretizedmore » Biot-Savart law.« less

  3. Implicit finite difference methods on composite grids

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1987-01-01

    Techniques for eliminating time lags in the implicit finite-difference solution of partial differential equations are investigated analytically, with a focus on transient fluid dynamics problems on overlapping multicomponent grids. The fundamental principles of the approach are explained, and the method is shown to be applicable to both rectangular and curvilinear grids. Numerical results for sample problems are compared with exact solutions in graphs, and good agreement is demonstrated.

  4. Comparison of finite-difference schemes for analysis of shells of revolution. [stress and free vibration analysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Stephens, W. B.

    1973-01-01

    Several finite difference schemes are applied to the stress and free vibration analysis of homogeneous isotropic and layered orthotropic shells of revolution. The study is based on a form of the Sanders-Budiansky first-approximation linear shell theory modified such that the effects of shear deformation and rotary inertia are included. A Fourier approach is used in which all the shell stress resultants and displacements are expanded in a Fourier series in the circumferential direction, and the governing equations reduce to ordinary differential equations in the meridional direction. While primary attention is given to finite difference schemes used in conjunction with first order differential equation formulation, comparison is made with finite difference schemes used with other formulations. These finite difference discretization models are compared with respect to simplicity of application, convergence characteristics, and computational efficiency. Numerical studies are presented for the effects of variations in shell geometry and lamination parameters on the accuracy and convergence of the solutions obtained by the different finite difference schemes. On the basis of the present study it is shown that the mixed finite difference scheme based on the first order differential equation formulation and two interlacing grids for the different fundamental unknowns combines a number of advantages over other finite difference schemes previously reported in the literature.

  5. The Master Equation for Two-Level Accelerated Systems at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Tomazelli, J. L.; Cunha, R. O.

    2016-10-01

    In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.

  6. Time dependent wave envelope finite difference analysis of sound propagation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  7. On One-Dimensional Stretching Functions for Finite-Difference Calculations

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1980-01-01

    The class of one dimensional stretching function used in finite difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two sided stretching function, for which the arbitrary slopes at the two ends of the one dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. The general two sided function has many applications in the construction of finite difference grids.

  8. Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach

    PubMed Central

    Calzolari, Arrigo; Nardelli, Marco Buongiorno

    2013-01-01

    Using first principles calculations based on density functional theory and a coupled finite-fields/finite-differences approach, we study the dielectric properties, phonon dispersions and Raman spectra of ZnO, a material whose internal polarization fields require special treatment to correctly reproduce the ground state electronic structure and the coupling with external fields. Our results are in excellent agreement with existing experimental measurements and provide an essential reference for the characterization of crystallinity, composition, piezo- and thermo-electricity of the plethora of ZnO-derived nanostructured materials used in optoelectronics and sensor devices. PMID:24141391

  9. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-16

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  10. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  11. Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods

    NASA Astrophysics Data System (ADS)

    Park, Brian T.; Petrosian, Vahe

    1996-03-01

    Stochastic wave-particle acceleration may be responsible for producing suprathermal particles in many astrophysical situations. The process can be described as a diffusion process through the Fokker-Planck equation. If the acceleration region is homogeneous and the scattering mean free path is much smaller than both the energy change mean free path and the size of the acceleration region, then the Fokker-Planck equation reduces to a simple form involving only the time and energy variables. in an earlier paper (Park & Petrosian 1995, hereafter Paper 1), we studied the analytic properties of the Fokker-Planck equation and found analytic solutions for some simple cases. In this paper, we study the numerical methods which must be used to solve more general forms of the equation. Two classes of numerical methods are finite difference methods and Monte Carlo simulations. We examine six finite difference methods, three fully implicit and three semi-implicit, and a stochastic simulation method which uses the exact correspondence between the Fokker-Planck equation and the it5 stochastic differential equation. As discussed in Paper I, Fokker-Planck equations derived under the above approximations are singular, causing problems with boundary conditions and numerical overflow and underflow. We evaluate each method using three sample equations to test its stability, accuracy, efficiency, and robustness for both time-dependent and steady state solutions. We conclude that the most robust finite difference method is the fully implicit Chang-Cooper method, with minor extensions to account for the escape and injection terms. Other methods suffer from stability and accuracy problems when dealing with some Fokker-Planck equations. The stochastic simulation method, although simple to implement, is susceptible to Poisson noise when insufficient test particles are used and is computationally very expensive compared to the finite difference method.

  12. An Eigenvalue Analysis of finite-difference approximations for hyperbolic IBVPs

    NASA Technical Reports Server (NTRS)

    Warming, Robert F.; Beam, Richard M.

    1989-01-01

    The eigenvalue spectrum associated with a linear finite-difference approximation plays a crucial role in the stability analysis and in the actual computational performance of the discrete approximation. The eigenvalue spectrum associated with the Lax-Wendroff scheme applied to a model hyperbolic equation was investigated. For an initial-boundary-value problem (IBVP) on a finite domain, the eigenvalue or normal mode analysis is analytically intractable. A study of auxiliary problems (Dirichlet and quarter-plane) leads to asymptotic estimates of the eigenvalue spectrum and to an identification of individual modes as either benign or unstable. The asymptotic analysis establishes an intuitive as well as quantitative connection between the algebraic tests in the theory of Gustafsson, Kreiss, and Sundstrom and Lax-Richtmyer L(sub 2) stability on a finite domain.

  13. High-order cyclo-difference techniques: An alternative to finite differences

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Otto, John C.

    1993-01-01

    The summation-by-parts energy norm is used to establish a new class of high-order finite-difference techniques referred to here as 'cyclo-difference' techniques. These techniques are constructed cyclically from stable subelements, and require no numerical boundary conditions; when coupled with the simultaneous approximation term (SAT) boundary treatment, they are time asymptotically stable for an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are ideally suited for parallel implementation, but do not require special collocation points or orthogonal basis functions. The principal focus is on methods of sixth-order formal accuracy or less; however, these methods could be extended in principle to any arbitrary order of accuracy.

  14. Finite difference schemes for long-time integration

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1993-01-01

    Finite difference schemes for the evaluation of first and second derivatives are presented. These second order compact schemes were designed for long-time integration of evolution equations by solving a quadratic constrained minimization problem. The quadratic cost function measures the global truncation error while taking into account the initial data. The resulting schemes are applicable for integration times fourfold, or more, longer than similar previously studied schemes. A similar approach was used to obtain improved integration schemes.

  15. Synchronous acceleration with tapered dielectric-lined waveguides

    DOE PAGES

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...

    2018-05-25

    Here, we present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  16. Optimal variable-grid finite-difference modeling for porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Li, Haishan

    2014-12-01

    Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs.

  17. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES

    PubMed Central

    Wan, Xiaohai; Li, Zhilin

    2012-01-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size. PMID:22701346

  18. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.

    PubMed

    Wan, Xiaohai; Li, Zhilin

    2012-06-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size.

  19. Accurate solutions for transonic viscous flow over finite wings

    NASA Technical Reports Server (NTRS)

    Vatsa, V. N.

    1986-01-01

    An explicit multistage Runge-Kutta type time-stepping scheme is used for solving the three-dimensional, compressible, thin-layer Navier-Stokes equations. A finite-volume formulation is employed to facilitate treatment of complex grid topologies encountered in three-dimensional calculations. Convergence to steady state is expedited through usage of acceleration techniques. Further numerical efficiency is achieved through vectorization of the computer code. The accuracy of the overall scheme is evaluated by comparing the computed solutions with the experimental data for a finite wing under different test conditions in the transonic regime. A grid refinement study ir conducted to estimate the grid requirements for adequate resolution of salient features of such flows.

  20. Analysis of transient, linear wave propagation in shells by the finite difference method

    NASA Technical Reports Server (NTRS)

    Geers, T. L.; Sobel, L. H.

    1971-01-01

    The applicability of the finite difference method to propagation problems in shells, and the response of a cylindrical shell with cutouts to both longitudinal and radial transient excitations are investigated. It is found that the only inherent limitation of the finite difference method is its inability to reproduce accurately response discontinuities. The short wave length limitations of thin shell theory create significant convergence difficulties may often be overcome through proper selection of finite difference mesh dimensions and temporal or spatial smoothing of the excitation. Cutouts produce moderate changes in early and intermediate time response of a cylindrical shell to axisymmetric pulse loads applied at one end. The cutouts may facilitate the undesirable late-time transfer of load-injected extensional energy into nonaxisymmetric flexural response.

  1. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  2. Numerically stable finite difference simulation for ultrasonic NDE in anisotropic composites

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Quintanilla, Francisco Hernando; Cole, Christina M.

    2018-04-01

    Simulation tools can enable optimized inspection of advanced materials and complex geometry structures. Recent work at NASA Langley is focused on the development of custom simulation tools for modeling ultrasonic wave behavior in composite materials. Prior work focused on the use of a standard staggered grid finite difference type of mathematical approach, by implementing a three-dimensional (3D) anisotropic Elastodynamic Finite Integration Technique (EFIT) code. However, observations showed that the anisotropic EFIT method displays numerically unstable behavior at the locations of stress-free boundaries for some cases of anisotropic materials. This paper gives examples of the numerical instabilities observed for EFIT and discusses the source of instability. As an alternative to EFIT, the 3D Lebedev Finite Difference (LFD) method has been implemented. The paper briefly describes the LFD approach and shows examples of stable behavior in the presence of stress-free boundaries for a monoclinic anisotropy case. The LFD results are also compared to experimental results and dispersion curves.

  3. Finite difference methods for transient signal propagation in stratified dispersive media

    NASA Technical Reports Server (NTRS)

    Lam, D. H.

    1975-01-01

    Explicit difference equations are presented for the solution of a signal of arbitrary waveform propagating in an ohmic dielectric, a cold plasma, a Debye model dielectric, and a Lorentz model dielectric. These difference equations are derived from the governing time-dependent integro-differential equations for the electric fields by a finite difference method. A special difference equation is derived for the grid point at the boundary of two different media. Employing this difference equation, transient signal propagation in an inhomogeneous media can be solved provided that the medium is approximated in a step-wise fashion. The solutions are generated simply by marching on in time. It is concluded that while the classical transform methods will remain useful in certain cases, with the development of the finite difference methods described, an extensive class of problems of transient signal propagating in stratified dispersive media can be effectively solved by numerical methods.

  4. Improving a complex finite-difference ground water flow model through the use of an analytic element screening model

    USGS Publications Warehouse

    Hunt, R.J.; Anderson, M.P.; Kelson, V.A.

    1998-01-01

    This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.

  5. Optimization of finite difference forward modeling for elastic waves based on optimum combined window functions

    NASA Astrophysics Data System (ADS)

    Jian, Wang; Xiaohong, Meng; Hong, Liu; Wanqiu, Zheng; Yaning, Liu; Sheng, Gui; Zhiyang, Wang

    2017-03-01

    Full waveform inversion and reverse time migration are active research areas for seismic exploration. Forward modeling in the time domain determines the precision of the results, and numerical solutions of finite difference have been widely adopted as an important mathematical tool for forward modeling. In this article, the optimum combined of window functions was designed based on the finite difference operator using a truncated approximation of the spatial convolution series in pseudo-spectrum space, to normalize the outcomes of existing window functions for different orders. The proposed combined window functions not only inherit the characteristics of the various window functions, to provide better truncation results, but also control the truncation error of the finite difference operator manually and visually by adjusting the combinations and analyzing the characteristics of the main and side lobes of the amplitude response. Error level and elastic forward modeling under the proposed combined system were compared with outcomes from conventional window functions and modified binomial windows. Numerical dispersion is significantly suppressed, which is compared with modified binomial window function finite-difference and conventional finite-difference. Numerical simulation verifies the reliability of the proposed method.

  6. Mimetic finite difference method

    NASA Astrophysics Data System (ADS)

    Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail

    2014-01-01

    The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.

  7. Semianalytical computation of path lines for finite-difference models

    USGS Publications Warehouse

    Pollock, D.W.

    1988-01-01

    A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author

  8. Viscoelastic Finite Difference Modeling Using Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B.

    2014-12-01

    Full waveform seismic modeling requires a huge amount of computing power that still challenges today's technology. This limits the applicability of powerful processing approaches in seismic exploration like full-waveform inversion. This paper explores the use of Graphics Processing Units (GPU) to compute a time based finite-difference solution to the viscoelastic wave equation. The aim is to investigate whether the adoption of the GPU technology is susceptible to reduce significantly the computing time of simulations. The code presented herein is based on the freely accessible software of Bohlen (2002) in 2D provided under a General Public License (GNU) licence. This implementation is based on a second order centred differences scheme to approximate time differences and staggered grid schemes with centred difference of order 2, 4, 6, 8, and 12 for spatial derivatives. The code is fully parallel and is written using the Message Passing Interface (MPI), and it thus supports simulations of vast seismic models on a cluster of CPUs. To port the code from Bohlen (2002) on GPUs, the OpenCl framework was chosen for its ability to work on both CPUs and GPUs and its adoption by most of GPU manufacturers. In our implementation, OpenCL works in conjunction with MPI, which allows computations on a cluster of GPU for large-scale model simulations. We tested our code for model sizes between 1002 and 60002 elements. Comparison shows a decrease in computation time of more than two orders of magnitude between the GPU implementation run on a AMD Radeon HD 7950 and the CPU implementation run on a 2.26 GHz Intel Xeon Quad-Core. The speed-up varies depending on the order of the finite difference approximation and generally increases for higher orders. Increasing speed-ups are also obtained for increasing model size, which can be explained by kernel overheads and delays introduced by memory transfers to and from the GPU through the PCI-E bus. Those tests indicate that the GPU memory size

  9. Error analysis of finite difference schemes applied to hyperbolic initial boundary value problems

    NASA Technical Reports Server (NTRS)

    Skollermo, G.

    1979-01-01

    Finite difference methods for the numerical solution of mixed initial boundary value problems for hyperbolic equations are studied. The reported investigation has the objective to develop a technique for the total error analysis of a finite difference scheme, taking into account initial approximations, boundary conditions, and interior approximation. Attention is given to the Cauchy problem and the initial approximation, the homogeneous problem in an infinite strip with inhomogeneous boundary data, the reflection of errors in the boundaries, and two different boundary approximations for the leapfrog scheme with a fourth order accurate difference operator in space.

  10. A guide to differences between stochastic point-source and stochastic finite-fault simulations

    USGS Publications Warehouse

    Atkinson, G.M.; Assatourians, K.; Boore, D.M.; Campbell, K.; Motazedian, D.

    2009-01-01

    Why do stochastic point-source and finite-fault simulation models not agree on the predicted ground motions for moderate earthquakes at large distances? This question was posed by Ken Campbell, who attempted to reproduce the Atkinson and Boore (2006) ground-motion prediction equations for eastern North America using the stochastic point-source program SMSIM (Boore, 2005) in place of the finite-source stochastic program EXSIM (Motazedian and Atkinson, 2005) that was used by Atkinson and Boore (2006) in their model. His comparisons suggested that a higher stress drop is needed in the context of SMSIM to produce an average match, at larger distances, with the model predictions of Atkinson and Boore (2006) based on EXSIM; this is so even for moderate magnitudes, which should be well-represented by a point-source model. Why? The answer to this question is rooted in significant differences between point-source and finite-source stochastic simulation methodologies, specifically as implemented in SMSIM (Boore, 2005) and EXSIM (Motazedian and Atkinson, 2005) to date. Point-source and finite-fault methodologies differ in general in several important ways: (1) the geometry of the source; (2) the definition and application of duration; and (3) the normalization of finite-source subsource summations. Furthermore, the specific implementation of the methods may differ in their details. The purpose of this article is to provide a brief overview of these differences, their origins, and implications. This sets the stage for a more detailed companion article, "Comparing Stochastic Point-Source and Finite-Source Ground-Motion Simulations: SMSIM and EXSIM," in which Boore (2009) provides modifications and improvements in the implementations of both programs that narrow the gap and result in closer agreement. These issues are important because both SMSIM and EXSIM have been widely used in the development of ground-motion prediction equations and in modeling the parameters that control

  11. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisitsa, Vadim, E-mail: lisitsavv@ipgg.sbras.ru; Novosibirsk State University, Novosibirsk; Tcheverda, Vladimir

    We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. Inmore » this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.« less

  12. Effects of finite volume on the K L – K S mass difference

    DOE PAGES

    Christ, N.  H.; Feng, X.; Martinelli, G.; ...

    2015-06-24

    Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the Kmore » L – K S mass difference ΔM K and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.« less

  13. A Finite Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces

    DTIC Science & Technology

    1991-09-01

    Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces by Victor W. Sparrow...The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency...incident on the hard and porous surfaces were produced. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance

  14. A coarse-grid-projection acceleration method for finite-element incompressible flow computations

    NASA Astrophysics Data System (ADS)

    Kashefi, Ali; Staples, Anne; FiN Lab Team

    2015-11-01

    Coarse grid projection (CGP) methodology provides a framework for accelerating computations by performing some part of the computation on a coarsened grid. We apply the CGP to pressure projection methods for finite element-based incompressible flow simulations. Based on it, the predicted velocity field data is restricted to a coarsened grid, the pressure is determined by solving the Poisson equation on the coarse grid, and the resulting data are prolonged to the preset fine grid. The contributions of the CGP method to the pressure correction technique are twofold: first, it substantially lessens the computational cost devoted to the Poisson equation, which is the most time-consuming part of the simulation process. Second, it preserves the accuracy of the velocity field. The velocity and pressure spaces are approximated by Galerkin spectral element using piecewise linear basis functions. A restriction operator is designed so that fine data are directly injected into the coarse grid. The Laplacian and divergence matrices are driven by taking inner products of coarse grid shape functions. Linear interpolation is implemented to construct a prolongation operator. A study of the data accuracy and the CPU time for the CGP-based versus non-CGP computations is presented. Laboratory for Fluid Dynamics in Nature.

  15. Cook-Levin Theorem Algorithmic-Reducibility/Completeness = Wilson Renormalization-(Semi)-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') REPLACING CRUTCHES!!!: Models: Turing-machine, finite-state-models, finite-automata

    NASA Astrophysics Data System (ADS)

    Young, Frederic; Siegel, Edward

    Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!

  16. Numerical simulation of KdV equation by finite difference method

    NASA Astrophysics Data System (ADS)

    Yokus, A.; Bulut, H.

    2018-05-01

    In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.

  17. Radiation boundary condition and anisotropy correction for finite difference solutions of the Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Webb, Jay C.

    1994-01-01

    In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The

  18. A FINITE-DIFFERENCE, DISCRETE-WAVENUMBER METHOD FOR CALCULATING RADAR TRACES

    EPA Science Inventory

    A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromagnetic properties of the model are symmetric with respect ...

  19. Spatially inhomogeneous acceleration of electrons in solar flares

    NASA Astrophysics Data System (ADS)

    Stackhouse, Duncan J.; Kontar, Eduard P.

    2018-04-01

    The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.

  20. Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case

    NASA Astrophysics Data System (ADS)

    Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun

    2008-07-01

    Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.

  1. An improved finite-difference analysis of uncoupled vibrations of tapered cantilever beams

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1983-01-01

    An improved finite difference procedure for determining the natural frequencies and mode shapes of tapered cantilever beams undergoing uncoupled vibrations is presented. Boundary conditions are derived in the form of simple recursive relations involving the second order central differences. Results obtained by using the conventional first order central differences and the present second order central differences are compared, and it is observed that the present second order scheme is more efficient than the conventional approach. An important advantage offered by the present approach is that the results converge to exact values rapidly, and thus the extrapolation of the results is not necessary. Consequently, the basic handicap with the classical finite difference method of solution that requires the Richardson's extrapolation procedure is eliminated. Furthermore, for the cases considered herein, the present approach produces consistent lower bound solutions.

  2. A FINITE-DIFFERENCE, DISCRETE-WAVENUMBER METHOD FOR CALCULATING RADAR TRACES

    EPA Science Inventory

    A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromag-netic properties of the model are symmetric with respect...

  3. Time-domain finite-difference based analysis of induced crosstalk in multiwall carbon nanotube interconnects

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Nehra, Vikas; Kaushik, Brajesh Kumar

    2017-08-01

    Graphene rolled-up cylindrical sheets i.e. carbon nanotubes (CNTs) is one of the finest and emerging research area. This paper presents the investigation of induced crosstalk in coupled on-chip multiwalled carbon nanotube (MWCNT) interconnects using finite-difference analysis (FDA) in time-domain i.e. the finite-difference time-domain (FDTD) method. The exceptional properties of versatile MWCNTs profess their candidacy to replace conventional on-chip copper interconnects. Time delay and crosstalk noise have been evaluated for coupled on-chip MWCNT interconnects. With a decrease in CNT length, the obtained results for an MWCNT shows that transmission performance improves as the number of shells increases. It has been observed that the obtained results using the finite-difference time domain (FDTD) technique shows a very close match with the HSPICE simulated results.

  4. Finite-difference modeling with variable grid-size and adaptive time-step in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Wu, Guochen

    2014-04-01

    Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However, the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap, combined with variable grid-size and time-step, this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.

  5. Application of a trigonometric finite difference procedure to numerical analysis of compressive and shear buckling of orthotropic panels

    NASA Technical Reports Server (NTRS)

    Stein, M.; Housner, J. D.

    1978-01-01

    A numerical analysis developed for the buckling of rectangular orthotropic layered panels under combined shear and compression is described. This analysis uses a central finite difference procedure based on trigonometric functions instead of using the conventional finite differences which are based on polynomial functions. Inasmuch as the buckle mode shape is usually trigonometric in nature, the analysis using trigonometric finite differences can be made to exhibit a much faster convergence rate than that using conventional differences. Also, the trigonometric finite difference procedure leads to difference equations having the same form as conventional finite differences; thereby allowing available conventional finite difference formulations to be converted readily to trigonometric form. For two-dimensional problems, the procedure introduces two numerical parameters into the analysis. Engineering approaches for the selection of these parameters are presented and the analysis procedure is demonstrated by application to several isotropic and orthotropic panel buckling problems. Among these problems is the shear buckling of stiffened isotropic and filamentary composite panels in which the stiffener is broken. Results indicate that a break may degrade the effect of the stiffener to the extent that the panel will not carry much more load than if the stiffener were absent.

  6. Projection methods for incompressible flow problems with WENO finite difference schemes

    NASA Astrophysics Data System (ADS)

    de Frutos, Javier; John, Volker; Novo, Julia

    2016-03-01

    Weighted essentially non-oscillatory (WENO) finite difference schemes have been recommended in a competitive study of discretizations for scalar evolutionary convection-diffusion equations [20]. This paper explores the applicability of these schemes for the simulation of incompressible flows. To this end, WENO schemes are used in several non-incremental and incremental projection methods for the incompressible Navier-Stokes equations. Velocity and pressure are discretized on the same grid. A pressure stabilization Petrov-Galerkin (PSPG) type of stabilization is introduced in the incremental schemes to account for the violation of the discrete inf-sup condition. Algorithmic aspects of the proposed schemes are discussed. The schemes are studied on several examples with different features. It is shown that the WENO finite difference idea can be transferred to the simulation of incompressible flows. Some shortcomings of the methods, which are due to the splitting in projection schemes, become also obvious.

  7. Nonlinear truncation error analysis of finite difference schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Mcrae, D. S.

    1983-01-01

    It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.

  8. A semi-implicit finite difference model for three-dimensional tidal circulation,

    USGS Publications Warehouse

    Casulli, V.; Cheng, R.T.

    1992-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.

  9. Energy stable and high-order-accurate finite difference methods on staggered grids

    NASA Astrophysics Data System (ADS)

    O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan

    2017-10-01

    For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.

  10. A finite difference solution for the propagation of sound in near sonic flows

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Lester, H. C.

    1983-01-01

    An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.

  11. An Exponential Finite Difference Technique for Solving Partial Differential Equations. M.S. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.

  12. Development of low-frequency kernel-function aerodynamics for comparison with time-dependent finite-difference methods

    NASA Technical Reports Server (NTRS)

    Bland, S. R.

    1982-01-01

    Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.

  13. Finite-difference time-domain modelling of through-the-Earth radio signal propagation

    NASA Astrophysics Data System (ADS)

    Ralchenko, M.; Svilans, M.; Samson, C.; Roper, M.

    2015-12-01

    This research seeks to extend the knowledge of how a very low frequency (VLF) through-the-Earth (TTE) radio signal behaves as it propagates underground, by calculating and visualizing the strength of the electric and magnetic fields for an arbitrary geology through numeric modelling. To achieve this objective, a new software tool has been developed using the finite-difference time-domain method. This technique is particularly well suited to visualizing the distribution of electromagnetic fields in an arbitrary geology. The frequency range of TTE radio (400-9000 Hz) and geometrical scales involved (1 m resolution for domains a few hundred metres in size) involves processing a grid composed of millions of cells for thousands of time steps, which is computationally expensive. Graphics processing unit acceleration was used to reduce execution time from days and weeks, to minutes and hours. Results from the new modelling tool were compared to three cases for which an analytic solution is known. Two more case studies were done featuring complex geologic environments relevant to TTE communications that cannot be solved analytically. There was good agreement between numeric and analytic results. Deviations were likely caused by numeric artifacts from the model boundaries; however, in a TTE application in field conditions, the uncertainty in the conductivity of the various geologic formations will greatly outweigh these small numeric errors.

  14. Rupture Dynamics Simulation for Non-Planar fault by a Curved Grid Finite Difference Method

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhu, G.; Chen, X.

    2011-12-01

    We first implement the non-staggered finite difference method to solve the dynamic rupture problem, with split-node, for non-planar fault. Split-node method for dynamic simulation has been used widely, because of that it's more precise to represent the fault plane than other methods, for example, thick fault, stress glut and so on. The finite difference method is also a popular numeric method to solve kinematic and dynamic problem in seismology. However, previous works focus most of theirs eyes on the staggered-grid method, because of its simplicity and computational efficiency. However this method has its own disadvantage comparing to non-staggered finite difference method at some fact for example describing the boundary condition, especially the irregular boundary, or non-planar fault. Zhang and Chen (2006) proposed the MacCormack high order non-staggered finite difference method based on curved grids to precisely solve irregular boundary problem. Based upon on this non-staggered grid method, we make success of simulating the spontaneous rupture problem. The fault plane is a kind of boundary condition, which could be irregular of course. So it's convinced that we could simulate rupture process in the case of any kind of bending fault plane. We will prove this method is valid in the case of Cartesian coordinate first. In the case of bending fault, the curvilinear grids will be used.

  15. High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1999-01-01

    Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.

  16. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model

    USGS Publications Warehouse

    McDonald, Michael G.; Harbaugh, Arlen W.; Guo, Weixing; Lu, Guoping

    1988-01-01

    This report presents a finite-difference model and its associated modular computer program. The model simulates flow in three dimensions. The report includes detailed explanations of physical and mathematical concepts on which the model is based and an explanation of how those concepts are incorporated in the modular structure of the computer program. The modular structure consists of a Main Program and a series of highly independent subroutines called 'modules.' The modules are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system which is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving linear equations which describe the flow system, such as the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The division of the program into modules permits the user to examine specific hydrologic features of the model independently. This also facilita development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program are also designed to permit maximum flexibility. Ground-water flow within the aquifer is simulated using a block-centered finite-difference approach. Layers can be simulated as confined, unconfined, or a combination of confined and unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and streams, can also be simulated. The finite-difference equations can be solved using either the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The program is written in FORTRAN 77 and will run without modification on most computers that have a FORTRAN 77 compiler. For each program ,module, this report includes a narrative description, a flow chart, a list of variables, and a module listing.

  17. Characteristics of four SPE groups with different origins and acceleration processes

    NASA Astrophysics Data System (ADS)

    Kim, R.-S.; Cho, K.-S.; Lee, J.; Bong, S.-C.; Joshi, A. D.; Park, Y.-D.

    2015-09-01

    Solar proton events (SPEs) can be categorized into four groups based on their associations with flare or CME inferred from onset timings as well as acceleration patterns using multienergy observations. In this study, we have investigated whether there are any typical characteristics of associated events and acceleration sites in each group using 42 SPEs from 1997 to 2012. We find the following: (i) if the proton acceleration starts from a lower energy, a SPE has a higher chance to be a strong event (> 5000 particle flux per unit (pfu)) even if its associated flare and/or CME are not so strong. The only difference between the SPEs associated with flare and CME is the location of the acceleration site. (ii) For the former (Group A), the sites are very low (˜ 1 Rs) and close to the western limb, while the latter (Group C) have relatively higher (mean = 6.05 Rs) and wider acceleration sites. (iii) When the proton acceleration starts from the higher energy (Group B), a SPE tends to be a relatively weak event (< 1000 pfu), although its associated CME is relatively stronger than previous groups. (iv) The SPEs categorized by the simultaneous acceleration in whole energy range within 10 min (Group D) tend to show the weakest proton flux (mean = 327 pfu) in spite of strong associated eruptions. Based on those results, we suggest that the different characteristics of SPEs are mainly due to the different conditions of magnetic connectivity and particle density, which are changed with longitude and height as well as their origin.

  18. Finite difference time domain modeling of spiral antennas

    NASA Technical Reports Server (NTRS)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  19. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnikov, K; Berirao, L

    2009-01-01

    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this articlemore » is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.« less

  20. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prudencio, E.; Candel, A.; Ge, L.

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation timemore » from days to some hours.« less

  1. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Wu, Zedong; Alkhalifah, Tariq

    2018-07-01

    Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.

  2. Linear finite-difference bond graph model of an ionic polymer actuator

    NASA Astrophysics Data System (ADS)

    Bentefrit, M.; Grondel, S.; Soyer, C.; Fannir, A.; Cattan, E.; Madden, J. D.; Nguyen, T. M. G.; Plesse, C.; Vidal, F.

    2017-09-01

    With the recent growing interest for soft actuation, many new types of ionic polymers working in air have been developed. Due to the interrelated mechanical, electrical, and chemical properties which greatly influence the characteristics of such actuators, their behavior is complex and difficult to understand, predict and optimize. In light of this challenge, an original linear multiphysics finite difference bond graph model was derived to characterize this ionic actuation. This finite difference scheme was divided into two coupled subparts, each related to a specific physical, electrochemical or mechanical domain, and then converted into a bond graph model as this language is particularly suited for systems from multiple energy domains. Simulations were then conducted and a good agreement with the experimental results was obtained. Furthermore, an analysis of the power efficiency of such actuators as a function of space and time was proposed and allowed to evaluate their performance.

  3. Dispersion-relation-preserving finite difference schemes for computational acoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Webb, Jay C.

    1993-01-01

    Time-marching dispersion-relation-preserving (DRP) schemes can be constructed by optimizing the finite difference approximations of the space and time derivatives in wave number and frequency space. A set of radiation and outflow boundary conditions compatible with the DRP schemes is constructed, and a sequence of numerical simulations is conducted to test the effectiveness of the DRP schemes and the radiation and outflow boundary conditions. Close agreement with the exact solutions is obtained.

  4. Finite-difference modeling of the electroseismic logging in a fluid-saturated porous formation

    NASA Astrophysics Data System (ADS)

    Guan, Wei; Hu, Hengshan

    2008-05-01

    In a fluid-saturated porous medium, an electromagnetic (EM) wavefield induces an acoustic wavefield due to the electrokinetic effect. A potential geophysical application of this effect is electroseismic (ES) logging, in which the converted acoustic wavefield is received in a fluid-filled borehole to evaluate the parameters of the porous formation around the borehole. In this paper, a finite-difference scheme is proposed to model the ES logging responses to a vertical low frequency electric dipole along the borehole axis. The EM field excited by the electric dipole is calculated separately by finite-difference first, and is considered as a distributed exciting source term in a set of extended Biot's equations for the converted acoustic wavefield in the formation. This set of equations is solved by a modified finite-difference time-domain (FDTD) algorithm that allows for the calculation of dynamic permeability so that it is not restricted to low-frequency poroelastic wave problems. The perfectly matched layer (PML) technique without splitting the fields is applied to truncate the computational region. The simulated ES logging waveforms approximately agree with those obtained by the analytical method. The FDTD algorithm applies also to acoustic logging simulation in porous formations.

  5. Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method

    NASA Astrophysics Data System (ADS)

    Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang

    2017-06-01

    Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.

  6. High-order asynchrony-tolerant finite difference schemes for partial differential equations

    NASA Astrophysics Data System (ADS)

    Aditya, Konduri; Donzis, Diego A.

    2017-12-01

    Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.

  7. Finite difference computation of Casimir forces

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2016-09-01

    In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing

  8. Finite difference methods for the solution of unsteady potential flows

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1982-01-01

    Various problems which are confronted in the development of an unsteady finite difference potential code are reviewed mainly in the context of what is done for a typical small disturbance and full potential method. The issues discussed include choice of equations, linearization and conservation, differencing schemes, and algorithm development. A number of applications, including unsteady three dimensional rotor calculations, are demonstrated.

  9. Parallelized implicit propagators for the finite-difference Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Parker, Jonathan; Taylor, K. T.

    1995-08-01

    We describe the application of block Gauss-Seidel and block Jacobi iterative methods to the design of implicit propagators for finite-difference models of the time-dependent Schrödinger equation. The block-wise iterative methods discussed here are mixed direct-iterative methods for solving simultaneous equations, in the sense that direct methods (e.g. LU decomposition) are used to invert certain block sub-matrices, and iterative methods are used to complete the solution. We describe parallel variants of the basic algorithm that are well suited to the medium- to coarse-grained parallelism of work-station clusters, and MIMD supercomputers, and we show that under a wide range of conditions, fine-grained parallelism of the computation can be achieved. Numerical tests are conducted on a typical one-electron atom Hamiltonian. The methods converge robustly to machine precision (15 significant figures), in some cases in as few as 6 or 7 iterations. The rate of convergence is nearly independent of the finite-difference grid-point separations.

  10. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less

  11. Iterative methods for 3D implicit finite-difference migration using the complex Padé approximation

    NASA Astrophysics Data System (ADS)

    Costa, Carlos A. N.; Campos, Itamara S.; Costa, Jessé C.; Neto, Francisco A.; Schleicher, Jörg; Novais, Amélia

    2013-08-01

    Conventional implementations of 3D finite-difference (FD) migration use splitting techniques to accelerate performance and save computational cost. However, such techniques are plagued with numerical anisotropy that jeopardises the correct positioning of dipping reflectors in the directions not used for the operator splitting. We implement 3D downward continuation FD migration without splitting using a complex Padé approximation. In this way, the numerical anisotropy is eliminated at the expense of a computationally more intensive solution of a large-band linear system. We compare the performance of the iterative stabilized biconjugate gradient (BICGSTAB) and that of the multifrontal massively parallel direct solver (MUMPS). It turns out that the use of the complex Padé approximation not only stabilizes the solution, but also acts as an effective preconditioner for the BICGSTAB algorithm, reducing the number of iterations as compared to the implementation using the real Padé expansion. As a consequence, the iterative BICGSTAB method is more efficient than the direct MUMPS method when solving a single term in the Padé expansion. The results of both algorithms, here evaluated by computing the migration impulse response in the SEG/EAGE salt model, are of comparable quality.

  12. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.

  13. Double absorbing boundaries for finite-difference time-domain electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu

    We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.

  14. Finite-Difference Solutions for Compressible Laminar Boundary-Layer Flows of a Dusty Gas over a Semi-Infinite Flat Plate.

    DTIC Science & Technology

    1986-08-01

    AD-A174 952 FINITE - DIFFERENCE SOLUTIONS FOR CONPRESSIBLE LANINAR 1/2 BOUNDARY-LAYER FLOUS (U) TORONTO UNIV DOWNSVIEW (ONTARIO) INST FOR AEROSPACE...dilute dusty gas over a semi-infinite flat plate. Details are given of the impliit finite , difference schemes as well as the boundary conditions... FINITE - DIFFERENCE SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY-LAYER FLOWS OF A DUSTY GAS OVER A SEMI-INFINITE FLAT PLATE by B. Y. Wang and I. I

  15. On the Definition of Surface Potentials for Finite-Difference Operators

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    For a class of linear constant-coefficient finite-difference operators of the second order, we introduce the concepts similar to those of conventional single- and double-layer potentials for differential operators. The discrete potentials are defined completely independently of any notion related to the approximation of the continuous potentials on the grid. We rather use all approach based on differentiating, and then inverting the differentiation of a function with surface discontinuity of a particular kind, which is the most general way of introducing surface potentials in the theory of distributions. The resulting finite-difference "surface" potentials appear to be solutions of the corresponding continuous potentials. Primarily, this pertains to the possibility of representing a given solution to the homogeneous equation on the domain as a variety of surface potentials, with the density defined on the domain's boundary. At the same time the discrete surface potentials can be interpreted as one specific realization of the generalized potentials of Calderon's type, and consequently, their approximation properties can be studied independently in the framework of the difference potentials method by Ryaben'kii. The motivation for introducing and analyzing the discrete surface potentials was provided by the problems of active shielding and control of sound, in which the aforementioned source terms that drive the potentials are interpreted as the acoustic control sources that cancel out the unwanted noise on a predetermined region of interest.

  16. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagatesmore » in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.« less

  17. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.

  18. Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect

    NASA Astrophysics Data System (ADS)

    Good, Michael R. R.; Linder, Eric V.

    2017-12-01

    Radiation from accelerating mirrors in a Minkowski spacetime provides insights into the nature of horizons, black holes, and entanglement entropy. We introduce new, simple, symmetric and analytic moving mirror solutions and study their particle, energy, and entropy production. This includes an asymptotically static case with finite emission that is the black hole analog of complete evaporation. The total energy, total entropy, total particles, and spectrum are the same on both sides of the mirror. We also study its asymptotically inertial, drifting analog (which gives a black hole remnant) to explore differences in finite and infinite production.

  19. APPLICATION OF A FINITE-DIFFERENCE TECHNIQUE TO THE HUMAN RADIOFREQUENCY DOSIMETRY PROBLEM

    EPA Science Inventory

    A powerful finite difference numerical technique has been applied to the human radiofrequency dosimetry problem. The method possesses inherent advantages over the method of moments approach in that its implementation requires much less computer memory. Consequently, it has the ca...

  20. Gender differences in head-neck segment dynamic stabilization during head acceleration.

    PubMed

    Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph

    2005-02-01

    Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum

  1. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman

    2014-04-15

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, themore » energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.« less

  2. Finite difference methods for the solution of unsteady potential flows

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.

    1985-01-01

    A brief review is presented of various problems which are confronted in the development of an unsteady finite difference potential code. This review is conducted mainly in the context of what is done for a typical small disturbance and full potential methods. The issues discussed include choice of equation, linearization and conservation, differencing schemes, and algorithm development. A number of applications including unsteady three-dimensional rotor calculation, are demonstrated.

  3. Subresolution Displacements in Finite Difference Simulations of Ultrasound Propagation and Imaging.

    PubMed

    Pinton, Gianmarco F

    2017-03-01

    Time domain finite difference simulations are used extensively to simulate wave propagation. They approximate the wave field on a discrete domain with a grid spacing that is typically on the order of a tenth of a wavelength. The smallest displacements that can be modeled by this type of simulation are thus limited to discrete values that are integer multiples of the grid spacing. This paper presents a method to represent continuous and subresolution displacements by varying the impedance of individual elements in a multielement scatterer. It is demonstrated that this method removes the limitations imposed by the discrete grid spacing by generating a continuum of displacements as measured by the backscattered signal. The method is first validated on an ideal perfect correlation case with a single scatterer. It is subsequently applied to a more complex case with a field of scatterers that model an acoustic radiation force-induced displacement used in ultrasound elasticity imaging. A custom finite difference simulation tool is used to simulate propagation from ultrasound imaging pulses in the scatterer field. These simulated transmit-receive events are then beamformed into images, which are tracked with a correlation-based algorithm to determine the displacement. A linear predictive model is developed to analytically describe the relationship between element impedance and backscattered phase shift. The error between model and simulation is λ/ 1364 , where λ is the acoustical wavelength. An iterative method is also presented that reduces the simulation error to λ/ 5556 over one iteration. The proposed technique therefore offers a computationally efficient method to model continuous subresolution displacements of a scattering medium in ultrasound imaging. This method has applications that include ultrasound elastography, blood flow, and motion tracking. This method also extends generally to finite difference simulations of wave propagation, such as electromagnetic or

  4. Scale-by-scale contributions to Lagrangian particle acceleration

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian C.; Wilczek, Michael

    2017-11-01

    Fluctuations on a wide range of scales in both space and time are characteristic of turbulence. Lagrangian particles, advected by the flow, probe these fluctuations along their trajectories. In an effort to isolate the influence of the different scales on Lagrangian statistics, we employ direct numerical simulations (DNS) combined with a filtering approach. Specifically, we study the acceleration statistics of tracers advected in filtered fields to characterize the smallest temporal scales of the flow. Emphasis is put on the acceleration variance as a function of filter scale, along with the scaling properties of the relevant terms of the Navier-Stokes equations. We furthermore discuss scaling ranges for higher-order moments of the tracer acceleration, as well as the influence of the choice of filter on the results. Starting from the Lagrangian tracer acceleration as the short time limit of the Lagrangian velocity increment, we also quantify the influence of filtering on Lagrangian intermittency. Our work complements existing experimental results on intermittency and accelerations of finite-sized, neutrally-buoyant particles: for the passive tracers used in our DNS, feedback effects are neglected such that the spatial averaging effect is cleanly isolated.

  5. Coilgun Acceleration Model Containing Interactions Between Multiple Coils

    NASA Technical Reports Server (NTRS)

    Liu, Connie; Polzin, Kurt; Martin, Adam

    2017-01-01

    Electromagnetic (EM) accelerators have the potential to fill a performance range not currently being met by conventional chemical and electric propulsion systems by providing a specific impulse of 600-1000 seconds and a thrust-to-power ratio greater than 200 mN/kW. A propulsion system based on EM acceleration of small projectiles has the traditional advantages of using a pulsed system, including precise control over a range of thrust and power levels as well as rapid response and repetition rates. Furthermore, EM accelerators have lower power requirements than conventional electric propulsion systems since no plasma creation is necessary. A coilgun is a specific type of EM device where a high-current pulse through a coil of wire interacts with a conductive projectile via an induced magnetic field to accelerate the projectile. There are no physical or electrical connections to the projectile, which leads to less system degradation and a longer life expectancy. Multi-staging a coilgun by adding multiple turns on a single coil or on the projectile increases the inductance, thus permitting acceleration of the projectile to higher velocities. Previously, a simplified problem of modeling an inductively-coupled, single-coil coilgun using a circuit-based analysis coupled to the one-dimensional momentum equation through Lenz's law was solved; however, the analysis was only conducted on uncoupled coils. The problem is significantly more complicated when multiple, independently-powered coils simultaneously operate and interact with each other and the projectile through induced magnetic fields. This paper presents a multi-coil model developed with the magnetostatic finite element solver QuickField. In the model, mutual inductance values between pairs of conductors were found by first computing the magnetic field energy for different cases where individual coils or multiple coils carry current, then integrating over the entire finite element domain for each case, and finally

  6. Rotational degree-of-freedom synthesis: An optimised finite difference method for non-exact data

    NASA Astrophysics Data System (ADS)

    Gibbons, T. J.; Öztürk, E.; Sims, N. D.

    2018-01-01

    Measuring the rotational dynamic behaviour of a structure is important for many areas of dynamics such as passive vibration control, acoustics, and model updating. Specialist and dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised based upon translational data. However, this involves numerically differentiating the translational mode shapes to approximate the rotational modes, for example using a finite difference algorithm. A key challenge with this approach is choosing the measurement spacing between the data points, an issue which has often been overlooked in the published literature. The present contribution will for the first time prove that the use of a finite difference approach can be unstable when using non-exact measured data and a small measurement spacing, for beam-like structures. Then, a generalised analytical error analysis is used to propose an optimised measurement spacing, which balances the numerical error of the finite difference equation with the propagation error from the perturbed data. The approach is demonstrated using both numerical and experimental investigations. It is shown that by obtaining a small number of test measurements it is possible to optimise the measurement accuracy, without any further assumptions on the boundary conditions of the structure.

  7. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  8. Finite difference time domain grid generation from AMC helicopter models

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.

    1992-01-01

    A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.

  9. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  10. Improved finite difference schemes for transonic potential calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Osher, S.; Whitlow, W., Jr.

    1984-01-01

    Engquist and Osher (1980) have introduced a finite difference scheme for solving the transonic small disturbance equation, taking into account cases in which only compression shocks are admitted. Osher et al. (1983) studied a class of schemes for the full potential equation. It is proved that these schemes satisfy a new discrete 'entropy inequality' which rules out expansion shocks. However, the conducted analysis is restricted to steady two-dimensional flows. The present investigation is concerned with the adoption of a heuristic approach. The full potential equation in conservation form is solved with the aid of a modified artificial density method, based on flux biasing. It is shown that, with the current scheme, expansion shocks are not possible.

  11. Elastic critical moment for bisymmetric steel profiles and its sensitivity by the finite difference method

    NASA Astrophysics Data System (ADS)

    Kamiński, M.; Supeł, Ł.

    2016-02-01

    It is widely known that lateral-torsional buckling of a member under bending and warping restraints of its cross-sections in the steel structures are crucial for estimation of their safety and durability. Although engineering codes for steel and aluminum structures support the designer with the additional analytical expressions depending even on the boundary conditions and internal forces diagrams, one may apply alternatively the traditional Finite Element or Finite Difference Methods (FEM, FDM) to determine the so-called critical moment representing this phenomenon. The principal purpose of this work is to compare three different ways of determination of critical moment, also in the context of structural sensitivity analysis with respect to the structural element length. Sensitivity gradients are determined by the use of both analytical and the central finite difference scheme here and contrasted also for analytical, FEM as well as FDM approaches. Computational study is provided for the entire family of the steel I- and H - beams available for the practitioners in this area, and is a basis for further stochastic reliability analysis as well as durability prediction including possible corrosion progress.

  12. A robust method of computing finite difference coefficients based on Vandermonde matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Yijie; Gao, Jinghuai; Peng, Jigen; Han, Weimin

    2018-05-01

    When the finite difference (FD) method is employed to simulate the wave propagation, high-order FD method is preferred in order to achieve better accuracy. However, if the order of FD scheme is high enough, the coefficient matrix of the formula for calculating finite difference coefficients is close to be singular. In this case, when the FD coefficients are computed by matrix inverse operator of MATLAB, inaccuracy can be produced. In order to overcome this problem, we have suggested an algorithm based on Vandermonde matrix in this paper. After specified mathematical transformation, the coefficient matrix is transformed into a Vandermonde matrix. Then the FD coefficients of high-order FD method can be computed by the algorithm of Vandermonde matrix, which prevents the inverse of the singular matrix. The dispersion analysis and numerical results of a homogeneous elastic model and a geophysical model of oil and gas reservoir demonstrate that the algorithm based on Vandermonde matrix has better accuracy compared with matrix inverse operator of MATLAB.

  13. A simple finite-difference scheme for handling topography with the first-order wave equation

    NASA Astrophysics Data System (ADS)

    Mulder, W. A.; Huiskes, M. J.

    2017-07-01

    One approach to incorporate topography in seismic finite-difference codes is a local modification of the difference operators near the free surface. An earlier paper described an approach for modelling irregular boundaries in a constant-density acoustic finite-difference code, based on the second-order formulation of the wave equation that only involves the pressure. Here, a similar method is considered for the first-order formulation in terms of pressure and particle velocity, using a staggered finite-difference discretization both in space and in time. In one space dimension, the boundary conditions consist in imposing antisymmetry for the pressure and symmetry for particle velocity components. For the pressure, this means that the solution values as well as all even derivatives up to a certain order are zero on the boundary. For the particle velocity, all odd derivatives are zero. In 2D, the 1-D assumption is used along each coordinate direction, with antisymmetry for the pressure along the coordinate and symmetry for the particle velocity component parallel to that coordinate direction. Since the symmetry or antisymmetry should hold along the direction normal to the boundary rather than along the coordinate directions, this generates an additional numerical error on top of the time stepping errors and the errors due to the interior spatial discretization. Numerical experiments in 2D and 3D nevertheless produce acceptable results.

  14. Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soong, Ken; Peralta, E.A.; Byer, R.L.

    A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry,more » as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a

  15. Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles.

    PubMed

    Yang, Ping; Kattawar, George W; Liou, Kuo-Nan; Lu, Jun Q

    2004-08-10

    Two grid configurations can be employed to implement the finite-difference time-domain (FDTD) technique in a Cartesian system. One configuration defines the electric and magnetic field components at the cell edges and cell-face centers, respectively, whereas the other reverses these definitions. These two grid configurations differ in terms of implication on the electromagnetic boundary conditions if the scatterer in the FDTD computation is a dielectric particle. The permittivity has an abrupt transition at the cell interface if the dielectric properties of two adjacent cells are not identical. Similarly, the discontinuity of permittivity is also observed at the edges of neighboring cells that are different in terms of their dielectric constants. We present two FDTD schemes for light scattering by dielectric particles to overcome the above-mentioned discontinuity on the basis of the electromagnetic boundary conditions for the two Cartesian grid configurations. We also present an empirical approach to accelerate the convergence of the discrete Fourier transform to obtain the field values in the frequency domain. As a new application of the FDTD method, we investigate the scattering properties of multibranched bullet-rosette ice crystals at both visible and thermal infrared wavelengths.

  16. A moving mesh finite difference method for equilibrium radiation diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaobo, E-mail: xwindyb@126.com; Huang, Weizhang, E-mail: whuang@ku.edu; Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativitymore » of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.« less

  17. Particle acceleration in laser-driven magnetic reconnection

    DOE PAGES

    Totorica, S. R.; Abel, T.; Fiuza, F.

    2017-04-03

    Particle acceleration induced by magnetic reconnection is thought to be a promising candidate for producing the nonthermal emissions associated with explosive phenomena such as solar flares, pulsar wind nebulae, and jets from active galactic nuclei. Laboratory experiments can play an important role in the study of the detailed microphysics of magnetic reconnection and the dominant particle acceleration mechanisms. We have used two- and three-dimensional particle-in-cell simulations to study particle acceleration in high Lundquist number reconnection regimes associated with laser-driven plasma experiments. For current experimental conditions, we show that nonthermal electrons can be accelerated to energies more than an order ofmore » magnitude larger than the initial thermal energy. The nonthermal electrons gain their energy mainly from the reconnection electric field near the X points, and particle injection into the reconnection layer and escape from the finite system establish a distribution of energies that resembles a power-law spectrum. Energetic electrons can also become trapped inside the plasmoids that form in the current layer and gain additional energy from the electric field arising from the motion of the plasmoid. We compare simulations for finite and infinite periodic systems to demonstrate the importance of particle escape on the shape of the spectrum. Based on our findings, we provide an analytical estimate of the maximum electron energy and threshold condition for observing suprathermal electron acceleration in terms of experimentally tunable parameters. We also discuss experimental signatures, including the angular distribution of the accelerated particles, and construct synthetic detector spectra. Finally, these results open the way for novel experimental studies of particle acceleration induced by reconnection.« less

  18. Finite volume method and multigrid acceleration in modelling of rapid crack propagation in full-scale pipe test

    NASA Astrophysics Data System (ADS)

    Ivankovic, A.; Muzaferija, S.; Demirdzic, I.

    1997-07-01

    Rapid Crack Propagation (RCP) along pressurised plastic pipes is by far the most dangerous pipe failure mode. Despite the economic benefits offered by increasing pipe size and operating pressure, both strategies increase the risk and the potential consequences of RCP. It is therefore extremely important to account for RCP in establishing the safe operational conditions. Combined experimental-numerical study is the only reliable approach of addressing the problem, and extensive research is undertaken by various fracture groups (e.g. Southwest Research Institute - USA, Imperial College - UK). This paper presents numerical results from finite volume modelling of full-scale test on medium density polyethylene gas pressurised pipes. The crack speed and pressure profile are prescribed in the analysis. Both steady-state and transient RCPs are considered, and the comparison between the two shown. The steady-state results are efficiently achieved employing a full multigrid acceleration technique, where sets of progressively finer grids are used in V-cycles. Also, the effect of inelastic behaviour of polyethylene on RCP results is demonstrated.

  19. Assessing women's lacrosse head impacts using finite element modelling.

    PubMed

    Clark, J Michio; Hoshizaki, T Blaine; Gilchrist, Michael D

    2018-04-01

    Recently studies have assessed the ability of helmets to reduce peak linear and rotational acceleration for women's lacrosse head impacts. However, such measures have had low correlation with injury. Maximum principal strain interprets loading curves which provide better injury prediction than peak linear and rotational acceleration, especially in compliant situations which create low magnitude accelerations but long impact durations. The purpose of this study was to assess head and helmet impacts in women's lacrosse using finite element modelling. Linear and rotational acceleration loading curves from women's lacrosse impacts to a helmeted and an unhelmeted Hybrid III headform were input into the University College Dublin Brain Trauma Model. The finite element model was used to calculate maximum principal strain in the cerebrum. The results demonstrated for unhelmeted impacts, falls and ball impacts produce higher maximum principal strain values than stick and shoulder collisions. The strain values for falls and ball impacts were found to be within the range of concussion and traumatic brain injury. The results also showed that men's lacrosse helmets reduced maximum principal strain for follow-through slashing, falls and ball impacts. These findings are novel and demonstrate that for high risk events, maximum principal strain can be reduced by implementing the use of helmets if the rules of the sport do not effectively manage such situations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Finite-difference model for 3-D flow in bays and estuaries

    USGS Publications Warehouse

    Smith, Peter E.; Larock, Bruce E.; ,

    1993-01-01

    This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.

  1. Finite-difference models of ordinary differential equations - Influence of denominator functions

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.; Smith, Arthur

    1990-01-01

    This paper discusses the influence on the solutions of finite-difference schemes of using a variety of denominator functions in the discrete modeling of the derivative for any ordinary differential equation. The results obtained are a consequence of using a generalized definition of the first derivative. A particular example of the linear decay equation is used to illustrate in detail the various solution possibilities that can occur.

  2. Distributed Finite Element Analysis Using a Transputer Network

    NASA Technical Reports Server (NTRS)

    Watson, James; Favenesi, James; Danial, Albert; Tombrello, Joseph; Yang, Dabby; Reynolds, Brian; Turrentine, Ronald; Shephard, Mark; Baehmann, Peggy

    1989-01-01

    The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the $80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the $15,000,000 Cray X-MP24 system.

  3. Moving magnets in a micromagnetic finite-difference framework

    NASA Astrophysics Data System (ADS)

    Rissanen, Ilari; Laurson, Lasse

    2018-05-01

    We present a method and an implementation for smooth linear motion in a finite-difference-based micromagnetic simulation code, to be used in simulating magnetic friction and other phenomena involving moving microscale magnets. Our aim is to accurately simulate the magnetization dynamics and relative motion of magnets while retaining high computational speed. To this end, we combine techniques for fast scalar potential calculation and cubic b-spline interpolation, parallelizing them on a graphics processing unit (GPU). The implementation also includes the possibility of explicitly simulating eddy currents in the case of conducting magnets. We test our implementation by providing numerical examples of stick-slip motion of thin films pulled by a spring and the effect of eddy currents on the switching time of magnetic nanocubes.

  4. Properties of finite difference models of non-linear conservative oscillators

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1988-01-01

    Finite-difference (FD) approaches to the numerical solution of the differential equations describing the motion of a nonlinear conservative oscillator are investigated analytically. A generalized formulation of the Duffing and modified Duffing equations is derived and analyzed using several FD techniques, and it is concluded that, although it is always possible to contstruct FD models of conservative oscillators which are themselves conservative, caution is required to avoid numerical solutions which do not accurately reflect the properties of the original equation.

  5. Full Wave Analysis of Passive Microwave Monolithic Integrated Circuit Devices Using a Generalized Finite Difference Time Domain (GFDTD) Algorithm

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1993-01-01

    This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.

  6. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review)

    NASA Astrophysics Data System (ADS)

    Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.

    2012-11-01

    Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)

  7. FINITE-DIFFERENCE ELECTROMAGNETIC DEPOSITION/THERMOREGULATORY MODEL: COMPARISON BETWEEN THEORY AND MEASUREMENTS (JOURNAL VERSION)

    EPA Science Inventory

    The rate of the electromagnetic energy deposition and the resultant thermoregulatory response of a block model of a squirrel monkey exposed to plane-wave fields at 350 MHz were calculated using a finite-difference procedure. Noninvasive temperature measurements in live squirrel m...

  8. Broadband ground motion simulation using a paralleled hybrid approach of Frequency Wavenumber and Finite Difference method

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wei, S.

    2016-12-01

    The serious damage of Mexico City caused by the 1985 Michoacan earthquake 400 km away indicates that urban areas may be affected by remote earthquakes. To asses earthquake risk of urban areas imposed by distant earthquakes, we developed a hybrid Frequency Wavenumber (FK) and Finite Difference (FD) code implemented with MPI, since the computation of seismic wave propagation from a distant earthquake using a single numerical method (e.g. Finite Difference, Finite Element or Spectral Element) is very expensive. In our approach, we compute the incident wave field (ud) at the boundaries of the excitation box, which surrounding the local structure, using a paralleled FK method (Zhu and Rivera, 2002), and compute the total wave field (u) within the excitation box using a parallelled 2D FD method. We apply perfectly matched layer (PML) absorbing condition to the diffracted wave field (u-ud). Compared to previous Generalized Ray Theory and Finite Difference (Wen and Helmberger, 1998), Frequency Wavenumber and Spectral Element (Tong et al., 2014), and Direct Solution Method and Spectral Element hybrid method (Monteiller et al., 2013), our absorbing boundary condition dramatically suppress the numerical noise. The MPI implementation of our method can greatly speed up the calculation. Besides, our hybrid method also has a potential use in high resolution array imaging similar to Tong et al. (2014).

  9. Finite Difference modeling of VLF Propagation in the Earth-Ionosphere Waveguide

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Wallace, T.; Turbe, M.

    2016-12-01

    Very-low-frequency (VLF, 3—30 kHz) waves can propagate efficiently in the waveguide formed by the Earth and the D-region ionosphere. vVariation in the signals monitored by a stationary receiver can be attributed to variations in the lower ionosphere. As such, these signals are used to monitor the D-region ionosphere in daytime and nighttime. However, the use of VLF transmitter signals to quantitatively diagnose the D-region ionosphere is complicated by i) the propagation of many modes in the waveguide, and their interference, and ii) the effect of the ionosphere along the entire path on the receiver signal at a single location. In this paper, we compare the modeled phase and amplitude of VLF signals using three methods: a Finite-Difference Time-Domain (FDTD) model, a Finite-Difference Frequency-Domain (FDFD) model, and the Long-Wave Prediction Capability (LWPC) model, which has been the method de rigueur since the 1970s. While LWPC solves mode propagation and coupling in the anisotropic waveguide, the FD methods directly solve for electric and magnetic fields from Maxwell's equations on a finite-difference grid. Thus, FD methods provide greater freedom to vary the physical inputs of the model, limited only by the spatial resolution, but at the expense of computation time. We compare the simulated amplitude and phase of these models by running them with identical physical inputs. In this work we compare both i) the absolute amplitude and phase trends as a function of distance, and ii) the magnitude of amplitude and phase variations for given ionosphere changes. Modeling results show that FDTD and FDFD simulations track the amplitude and phase as a function of distance very closely when compared to LWPC. Phase drift due to numerical dispersion is observed at large distances, of a few tens of degrees per 1000 km. These phase drifts increase quadratically with frequency, as expected from numerical dispersion in FD methods. In fact, the phase drift can be mostly

  10. SPIREs: A Finite-Difference Frequency-Domain electromagnetic solver for inhomogeneous magnetized plasma cylinders

    NASA Astrophysics Data System (ADS)

    Melazzi, D.; Curreli, D.; Manente, M.; Carlsson, J.; Pavarin, D.

    2012-06-01

    We present SPIREs (plaSma Padova Inhomogeneous Radial Electromagnetic solver), a Finite-Difference Frequency-Domain (FDFD) electromagnetic solver in one dimension for the rapid calculation of the electromagnetic fields and the deposited power of a large variety of cylindrical plasma problems. The two Maxwell wave equations have been discretized using a staggered Yee mesh along the radial direction of the cylinder, and Fourier transformed along the other two dimensions and in time. By means of this kind of discretization, we have found that mode-coupling of fast and slow branches can be fully resolved without singularity issues that flawed other well-established methods in the past. Fields are forced by an antenna placed at a given distance from the plasma. The plasma can be inhomogeneous, finite-temperature, collisional, magnetized and multi-species. Finite-temperature Maxwellian effects, comprising Landau and cyclotron damping, have been included by means of the plasma Z dispersion function. Finite Larmor radius effects have been neglected. Radial variations of the plasma parameters are taken into account, thus extending the range of applications to a large variety of inhomogeneous plasma systems. The method proved to be fast and reliable, with accuracy depending on the spatial grid size. Two physical examples are reported: fields in a forced vacuum waveguide with the antenna inside, and forced plasma oscillations in the helicon radiofrequency range.

  11. Modeling of NiTiHf using finite difference method

    NASA Astrophysics Data System (ADS)

    Farjam, Nazanin; Mehrabi, Reza; Karaca, Haluk; Mirzaeifar, Reza; Elahinia, Mohammad

    2018-03-01

    NiTiHf is a high temperature and high strength shape memory alloy with transformation temperatures above 100oC. A constitutive model based on Gibbs free energy is developed to predict the behavior of this material. Two different irrecoverable strains including transformation induced plastic strain (TRIP) and viscoplastic strain (VP) are considered when using high temperature shape memory alloys (HTSMAs). The first one happens during transformation at high levels of stress and the second one is related to the creep which is rate-dependent. The developed model is implemented for NiTiHf under uniaxial loading. Finite difference method is utilized to solve the proposed equations. The material parameters in the equations are calibrated from experimental data. Simulation results are captured to investigate the superelastic behavior of NiTiHf. The extracted results are compared with experimental tests of isobaric heating and cooling at different levels of stress and also superelastic tests at different levels of temperature. More results are generated to investigate the capability of the proposed model in the prediction of the irrecoverable strain after full transformation in HTSMAs.

  12. Finite-thickness effects on the Rayleigh-Taylor instability in accelerated elastic solids

    NASA Astrophysics Data System (ADS)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-05-01

    A physical model has been developed for the linear Rayleigh-Taylor instability of a finite-thickness elastic slab laying on top of a semi-infinite ideal fluid. The model includes the nonideal effects of elasticity as boundary conditions at the top and bottom interfaces of the slab and also takes into account the finite transit time of the elastic waves across the slab thickness. For Atwood number AT=1 , the asymptotic growth rate is found to be in excellent agreement with the exact solution [Plohr and Sharp, Z. Angew. Math. Mech. 49, 786 (1998), 10.1007/s000330050121], and a physical explanation is given for the reduction of the stabilizing effectiveness of the elasticity for the thinner slabs. The feedthrough factor is also calculated.

  13. Pull-in instability of paddle-type and double-sided NEMS sensors under the accelerating force

    NASA Astrophysics Data System (ADS)

    Keivani, M.; Khorsandi, J.; Mokhtari, J.; Kanani, A.; Abadian, N.; Abadyan, M.

    2016-02-01

    Paddle-type and double-sided nanostructures are potential for use as accelerometers in flying vehicles and aerospace applications. Herein the pull-in instability of the cantilever paddle-type and double-sided sensors in the Casimir regime are investigated under the acceleration. The D'Alembert principle is employed to transform the accelerating system into an equivalent static system by incorporating the accelerating force. Based on the couple stress theory (CST), the size-dependent constitutive equations of the sensors are derived. The governing nonlinear equations are solved by two approaches, i.e. modified variational iteration method and finite difference method. The influences of the Casimir force, geometrical parameters, acceleration and the size phenomenon on the instability performance have been demonstrated. The obtained results are beneficial to design and fabricate paddle-type and double-sided accelerometers.

  14. Four-level conservative finite-difference schemes for Boussinesq paradigm equation

    NASA Astrophysics Data System (ADS)

    Kolkovska, N.

    2013-10-01

    In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.

  15. Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2012-01-01

    An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…

  16. Analysis of microstrip patch antennas using finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Reineix, Alain; Jecko, Bernard

    1989-11-01

    The study of microstrip patch antennas is directly treated in the time domain, using a modified finite-difference time-domain (FDTD) method. Assuming an appropriate choice of excitation, the frequency dependence of the relevant parameters can readily be found using the Fourier transform of the transient current. The FDTD method allows a rigorous treatment of one or several dielectric interfaces. Different types of excitation can be taken into consideration (coaxial, microstrip lines, etc.). Plotting the spatial distribution of the current density gives information about the resonance modes. The usual frequency-depedent parameters (input impedance, radiation pattern) are given for several examples.

  17. Composite scheme using localized relaxation with non-standard finite difference method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Kumar, Vivek; Raghurama Rao, S. V.

    2008-04-01

    Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally

  18. Newton's method applied to finite-difference approximations for the steady-state compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Bailey, Harry E.; Beam, Richard M.

    1991-01-01

    Finite-difference approximations for steady-state compressible Navier-Stokes equations, whose two spatial dimensions are written in generalized curvilinear coordinates and strong conservation-law form, are presently solved by means of Newton's method in order to obtain a lifting-airfoil flow field under subsonic and transonnic conditions. In addition to ascertaining the computational requirements of an initial guess ensuring convergence and the degree of computational efficiency obtainable via the approximate Newton method's freezing of the Jacobian matrices, attention is given to the need for auxiliary methods assessing the temporal stability of steady-state solutions. It is demonstrated that nonunique solutions of the finite-difference equations are obtainable by Newton's method in conjunction with a continuation method.

  19. Boundary and Interface Conditions for High Order Finite Difference Methods Applied to the Euler and Navier-Strokes Equations

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1998-01-01

    Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.

  20. Effects of Different Backpack Loads in Acceleration Transmission during Recreational Distance Walking.

    PubMed

    Lucas-Cuevas, Angel G; Pérez-Soriano, Pedro; Bush, Michael; Crossman, Aaron; Llana, Salvador; Cortell-Tormo, Juan M; Pérez-Turpin, José A

    2013-01-01

    It is well established nowadays the benefits that physical activity can have on the health of individuals. Walking is considered a fundamental method of movement and using a backpack is a common and economical manner of carrying load weight. Nevertheless, the shock wave produced by the impact forces when carrying a backpack can have detrimental effects on health status. Therefore, the aim of this study was to investigate differences in the accelerations placed on males and females whilst carrying different loads when walking. Twenty nine sports science students (16 males and 13 females) participated in the study under 3 different conditions: no weight, 10% and 20% body weight (BW) added in a backpack. Accelerometers were attached to the right shank and the centre of the forehead. Results showed that males have lower accelerations than females both in the head (2.62 ± 0.43G compared to 2.83 + 0.47G) and shank (1.37 ± 0.14G compared to 1.52 ± 0.15G; p<0.01). Accelerations for males and females were consistent throughout each backpack condition (p>0.05). The body acts as a natural shock absorber, reducing the amount of force that transmits through the body between the foot (impact point) and head. Anthropometric and body mass distribution differences between males and females may result in women receiving greater impact acceleration compared to men when the same load is carried.

  1. Effects of Different Backpack Loads in Acceleration Transmission during Recreational Distance Walking

    PubMed Central

    Lucas-Cuevas, Angel G.; Pérez-Soriano, Pedro; Bush, Michael; Crossman, Aaron; Llana, Salvador; Cortell-Tormo, Juan M.; Pérez-Turpin, José A.

    It is well established nowadays the benefits that physical activity can have on the health of individuals. Walking is considered a fundamental method of movement and using a backpack is a common and economical manner of carrying load weight. Nevertheless, the shock wave produced by the impact forces when carrying a backpack can have detrimental effects on health status. Therefore, the aim of this study was to investigate differences in the accelerations placed on males and females whilst carrying different loads when walking. Twenty nine sports science students (16 males and 13 females) participated in the study under 3 different conditions: no weight, 10% and 20% body weight (BW) added in a backpack. Accelerometers were attached to the right shank and the centre of the forehead. Results showed that males have lower accelerations than females both in the head (2.62 ± 0.43G compared to 2.83 + 0.47G) and shank (1.37 ± 0.14G compared to 1.52 ± 0.15G; p<0.01). Accelerations for males and females were consistent throughout each backpack condition (p>0.05). The body acts as a natural shock absorber, reducing the amount of force that transmits through the body between the foot (impact point) and head. Anthropometric and body mass distribution differences between males and females may result in women receiving greater impact acceleration compared to men when the same load is carried. PMID:24146708

  2. An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation

    NASA Astrophysics Data System (ADS)

    Zhan, Ge; Pestana, Reynam C.; Stoffa, Paul L.

    2013-04-01

    The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations.

  3. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments

    USGS Publications Warehouse

    Trescott, Peter C.; Pinder, George Francis; Larson, S.P.

    1976-01-01

    The model will simulate ground-water flow in an artesian aquifer, a water-table aquifer, or a combined artesian and water-table aquifer. The aquifer may be heterogeneous and anisotropic and have irregular boundaries. The source term in the flow equation may include well discharge, constant recharge, leakage from confining beds in which the effects of storage are considered, and evapotranspiration as a linear function of depth to water. The theoretical development includes presentation of the appropriate flow equations and derivation of the finite-difference approximations (written for a variable grid). The documentation emphasizes the numerical techniques that can be used for solving the simultaneous equations and describes the results of numerical experiments using these techniques. Of the three numerical techniques available in the model, the strongly implicit procedure, in general, requires less computer time and has fewer numerical difficulties than do the iterative alternating direction implicit procedure and line successive overrelaxation (which includes a two-dimensional correction procedure to accelerate convergence). The documentation includes a flow chart, program listing, an example simulation, and sections on designing an aquifer model and requirements for data input. It illustrates how model results can be presented on the line printer and pen plotters with a program that utilizes the graphical display software available from the Geological Survey Computer Center Division. In addition the model includes options for reading input data from a disk and writing intermediate results on a disk.

  4. Effects of sources on time-domain finite difference models.

    PubMed

    Botts, Jonathan; Savioja, Lauri

    2014-07-01

    Recent work on excitation mechanisms in acoustic finite difference models focuses primarily on physical interpretations of observed phenomena. This paper offers an alternative view by examining the properties of models from the perspectives of linear algebra and signal processing. Interpretation of a simulation as matrix exponentiation clarifies the separate roles of sources as boundaries and signals. Boundary conditions modify the matrix and thus its modal structure, and initial conditions or source signals shape the solution, but not the modal structure. Low-frequency artifacts are shown to follow from eigenvalues and eigenvectors of the matrix, and previously reported artifacts are predicted from eigenvalue estimates. The role of source signals is also briefly discussed.

  5. Treatment of late time instabilities in finite difference EMP scattering codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, L.T.; Arman, S.; Holland, R.

    1982-12-01

    Time-domain solutions to the finite-differenced Maxwell's equations give rise to several well-known nonphysical propagation anomalies. In particular, when a radiative electric-field look back scheme is employed to terminate the calculation, a high-frequency, growing, numerical instability is introduced. This paper describes the constraints made on the mesh to minimize this instability, and a technique of applying an absorbing sheet to damp out this instability without altering the early time solution. Also described are techniques to extend the data record in the presence of high-frequency noise through application of a low-pass digital filter and the fitting of a damped sinusoid to themore » late-time tail of the data record. An application of these techniques is illustrated with numerical models of the FB-111 aircraft and the B-52 aircraft in the in-flight refueling configuration using the THREDE finite difference computer code. Comparisons are made with experimental scale model measurements with agreement typically on the order of 3 to 6 dB near the fundamental resonances.« less

  6. Numerical stability of an explicit finite difference scheme for the solution of transient conduction in composite media

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1981-01-01

    A theoretical evaluation of the stability of an explicit finite difference solution of the transient temperature field in a composite medium is presented. The grid points of the field are assumed uniformly spaced, and media interfaces are either vertical or horizontal and pass through grid points. In addition, perfect contact between different media (infinite interfacial conductance) is assumed. A finite difference form of the conduction equation is not valid at media interfaces; therefore, heat balance forms are derived. These equations were subjected to stability analysis, and a computer graphics code was developed that permitted determination of a maximum time step for a given grid spacing.

  7. A time-space domain stereo finite difference method for 3D scalar wave propagation

    NASA Astrophysics Data System (ADS)

    Chen, Yushu; Yang, Guangwen; Ma, Xiao; He, Conghui; Song, Guojie

    2016-11-01

    The time-space domain finite difference methods reduce numerical dispersion effectively by minimizing the error in the joint time-space domain. However, their interpolating coefficients are related with the Courant numbers, leading to significantly extra time costs for loading the coefficients consecutively according to velocity in heterogeneous models. In the present study, we develop a time-space domain stereo finite difference (TSSFD) method for 3D scalar wave equation. The method propagates both the displacements and their gradients simultaneously to keep more information of the wavefields, and minimizes the maximum phase velocity error directly using constant interpolation coefficients for different Courant numbers. We obtain the optimal constant coefficients by combining the truncated Taylor series approximation and the time-space domain optimization, and adjust the coefficients to improve the stability condition. Subsequent investigation shows that the TSSFD can suppress numerical dispersion effectively with high computational efficiency. The maximum phase velocity error of the TSSFD is just 3.09% even with only 2 sampling points per minimum wavelength when the Courant number is 0.4. Numerical experiments show that to generate wavefields with no visible numerical dispersion, the computational efficiency of the TSSFD is 576.9%, 193.5%, 699.0%, and 191.6% of those of the 4th-order and 8th-order Lax-Wendroff correction (LWC) method, the 4th-order staggered grid method (SG), and the 8th-order optimal finite difference method (OFD), respectively. Meanwhile, the TSSFD is compatible to the unsplit convolutional perfectly matched layer (CPML) boundary condition for absorbing artificial boundaries. The efficiency and capability to handle complex velocity models make it an attractive tool in imaging methods such as acoustic reverse time migration (RTM).

  8. A conservative implicit finite difference algorithm for the unsteady transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Caradonna, F. X.

    1980-01-01

    An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.

  9. Comparison Between THOR Anthropomorphic Test Device and THOR Finite Element Model

    NASA Technical Reports Server (NTRS)

    Moore, Erik

    2014-01-01

    Extended time spent in reduced gravity can cause physiologic deconditioning of astronauts, reducing their ability to sustain excessive forces during dynamic phases of spaceflight such as landing. To make certain that the crew is safe during these phases, NASA must take caution when determining what types of landings are acceptable based on the accelerations applied to the astronaut. In order to test acceptable landings, various trials have been run accelerating humans, cadavers, and Anthropomorphic Test Devices (ATDs), or crash test dummies, at different acceleration and velocity rates on a sled testing platform. Using these tests, risks of injury will be created and metrics will be developed for the likelihood of injuries due to the acceleration. A finite element model (FEM) of the Test Device for Human Occupant Restraint (THOR) ATD has been developed that can simulate these test trials and others (Putnam, 2014), reducing the need for human and ATD testing. Additionally, this will give researchers a more effective way to test the accelerations and orientations encountered during spaceflight landings during design of new space vehicles for crewed missions. However, the FEM has not been proven and must be validated by comparing the forces, accelerations, and other measurements of all parts of the body between the physical tests already completed and computer simulated trials. The purpose of my research was to validate the FEM for the ATD using previously run trials with the physical THOR ATD.

  10. Finite Volume Algorithms for Heat Conduction

    DTIC Science & Technology

    2010-05-01

    scalar quantity). Although (3) is relatively easy to discretize by using finite differences , its form in generalized coordinates is not. Later, we...familiar with the finite difference method for discretizing differential equations. In fact, the Newton divided difference is the numerical analog for a...expression (8) for the average derivative matches the Newton divided difference formula, so for uniform one-dimensional meshes, the finite volume and

  11. Compact lumped circuit model of discharges in DC accelerator using partial element equivalent circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Srutarshi; Rajan, Rehim N.; Singh, Sandeep K.

    2014-07-01

    DC Accelerators undergoes different types of discharges during its operation. A model depicting the discharges has been simulated to study the different transient conditions. The paper presents a Physics based approach of developing a compact circuit model of the DC Accelerator using Partial Element Equivalent Circuit (PEEC) technique. The equivalent RLC model aids in analyzing the transient behavior of the system and predicting anomalies in the system. The electrical discharges and its properties prevailing in the accelerator can be evaluated by this equivalent model. A parallel coupled voltage multiplier structure is simulated in small scale using few stages of coronamore » guards and the theoretical and practical results are compared. The PEEC technique leads to a simple model for studying the fault conditions in accelerator systems. Compared to the Finite Element Techniques, this technique gives the circuital representation. The lumped components of the PEEC are used to obtain the input impedance and the result is also compared to that of the FEM technique for a frequency range of (0-200) MHz. (author)« less

  12. Electron heating and acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dahlin, Joel

    2017-10-01

    Magnetic reconnection is thought to be an important driver of energetic particles in a variety of astrophysical phenomena such as solar flares and magnetospheric storms. However, the observed fraction of energy imparted to a nonthermal component can vary widely in different regimes. We use kinetic particle-in-cell (PIC) simulations to demonstrate the important role of the non-reversing (guide) field in controlling the efficiency of electron acceleration in collisionless reconnection. In reconnection where the guide field is smaller than the reconnecting component, the dominant electron accelerator is a Fermi-type mechanism that preferentially energizes the most energetic particles. In strong guide field reconnection, the field-line contraction that drives the Fermi mechanism becomes weak. Instead, parallel electric fields are primarily responsible for driving electron heating but are ineffective in driving the energetic component of the spectrum. Three-dimensional simulations reveal that the stochastic magnetic field that develops during 3D guide field reconnection plays a vital role in particle acceleration and transport. The reconnection outflows that drive Fermi acceleration also expel accelerating particles from energization regions. In 2D reconnection, electrons are trapped in island cores and acceleration ceases, whereas in 3D the stochastic magnetic field enables energetic electrons to leak out of islands and freely sample regions of energy release. A finite guide field is required to break initial 2D symmetry and facilitate escape from island structures. We show that reconnection with a guide field comparable to the reconnecting field generates the greatest number of energetic electrons, a regime where both (a) the Fermi mechanism is an efficient driver and (b) energetic electrons may freely access acceleration sites. These results have important implications for electron acceleration in solar flares and reconnection-driven dissipation in turbulence.

  13. A finite-difference time-domain electromagnetic solver in a generalized coordinate system

    NASA Astrophysics Data System (ADS)

    Hochberg, Timothy Allen

    A new, finite-difference, time-domain method for the simulation of full-wave electromagnetic wave propogation in complex structures is developed. This method is simple and flexible; it allows for the simulation of transient wave propogation in a large class of practical structures. Boundary conditions are implemented for perfect and imperfect electrically conducting boundaries, perfect magnetically conducting boundaries, and absorbing boundaries. The method is validated with the aid of several different types of test cases. Two types of coaxial cables with helical breaks are simulated and the results are discussed.

  14. Perturbations for transient acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S., E-mail: win_unac@hotmail.com, E-mail: hipolito@ceunes.ufes.br, E-mail: winfried.zimdahl@pq.cnpq.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested againstmore » the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.« less

  15. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-06-01

    The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.

  16. Some Finite Difference Solutions of the Laminar Compressible Boundary Layer Showing the Effects of Upstream Transpiration Cooling

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1959-01-01

    Three numerical solutions of the partial differential equations describing the compressible laminar boundary layer are obtained by the finite difference method described in reports by I. Flugge-Lotz, D.C. Baxter, and this author. The solutions apply to steady-state supersonic flow without pressure gradient, over a cold wall and over an adiabatic wall, both having transpiration cooling upstream, and over an adiabatic wall with upstream cooling but without upstream transpiration. It is shown that for a given upstream wall temperature, upstream transpiration cooling affords much better protection to the adiabatic solid wall than does upstream cooling without transpiration. The results of the numerical solutions are compared with those of approximate solutions. The thermal results of the finite difference solution lie between the results of Rubesin and Inouye, and those of Libby and Pallone. When the skin-friction results of one finite difference solution are used in the thermal analysis of Rubesin and Inouye, improved agreement between the thermal results of the two methods of solution is obtained.

  17. Finite-difference solution of the compressible stability eigenvalue problem

    NASA Technical Reports Server (NTRS)

    Malik, M. R.

    1982-01-01

    A compressible stability analysis computer code is developed. The code uses a matrix finite difference method for local eigenvalue solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used initial value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed which may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black box stability code. Sample stability calculations are presented for the boundary layer profiles of a Laminar Flow Control (LFC) swept wing.

  18. Accurate finite difference methods for time-harmonic wave propagation

    NASA Technical Reports Server (NTRS)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  19. [Human tolerance to Coriolis acceleration during exertion of different muscle groups].

    PubMed

    Aĭzikov, G S; Emel'ianov, M D; Ovechkin, V G

    1975-01-01

    The effect of an arbitrary loading of different muscle groups (shoulder, back, legs) and motor acts on the tolerance to Coriolis accelerations was investigated in 140 experiments in which 40 test subjects participated. The accelerations were cumulated and simulated by the Bryanov scheme. Muscle tension was accompanied by a less expressed vestibulo-vegetative reaction and shortening of the recovery period after the development of motion sickness symptoms. The greatest changes were observed during the performance of complex motor acts and tension of shoulder muscles. Possible mechanisms of these effects are discussed.

  20. High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaolin

    1998-08-01

    Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition need to consider the effects of bow shocks, entropy layers, surface curvature, and finite-rate chemistry. It is necessary that numerical methods for such studies are robust and high-order accurate both in resolving wide ranges of flow time and length scales and in resolving the interaction between the bow shocks and flow disturbance waves. This paper presents a new high-order shock-fitting finite-difference method for the DNS of the stability and transition of hypersonic boundary layers over blunt bodies with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The proposed method includes a set of new upwind high-order finite-difference schemes which are stable and are less dissipative than a straightforward upwind scheme using an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order semi-implicit Runge-Kutta schemes for temporal discretization of stiff reacting flow equations. The accuracy and stability of the new schemes are validated by numerical experiments of the linear wave equation and nonlinear Navier-Stokes equations. The algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers over a parabolic leading edge to freestream acoustic disturbances.

  1. Accelerated horizons and Planck-scale kinematics

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Laudonio, Matteo

    2018-04-01

    We extend the concept of accelerated horizons to the framework of deformed relativistic kinematics at the Planck scale. We show that the nontrivial effects due to symmetry deformation manifest in a finite blueshift for field modes as measured by a Rindler observer approaching the horizon. We investigate whether, at a field theoretic level, this effect could manifest in the possibility of a finite horizon contribution to the entropy, a sort of covariant brick wall. In the specific model of symmetry deformation considered, it will turn out that a nondiverging density of modes close to the horizon can be achieved only by introducing a momentum space measure which violates Lorentz invariance.

  2. Accelerating Airy beams with non-parabolic trajectories

    NASA Astrophysics Data System (ADS)

    Besieris, Ioannis M.; Shaarawi, Amr M.

    2014-11-01

    A class of Airy accelerating beams with non-parabolic trajectories are derived by means of a novel application of a conformal transformation originally due to Bateman. It is also shown that the salient features of these beams are very simply incorporated in a solution which is derived by applying a conventional conformal transformation together with a Galilean translation to the basic accelerating Airy beam solution of the two-dimensional paraxial equation. Motivation for the non-parabolic beam trajectories is provided and the effects of finite-energy requirements are discussed.

  3. A fast referenceless PRFS-based MR thermometry by phase finite difference

    NASA Astrophysics Data System (ADS)

    Zou, Chao; Shen, Huan; He, Mengyue; Tie, Changjun; Chung, Yiu-Cho; Liu, Xin

    2013-08-01

    Proton resonance frequency shift-based MR thermometry is a promising temperature monitoring approach for thermotherapy but its accuracy is vulnerable to inter-scan motion. Model-based referenceless thermometry has been proposed to address this problem but phase unwrapping is usually needed before the model fitting process. In this paper, a referenceless MR thermometry method using phase finite difference that avoids the time consuming phase unwrapping procedure is proposed. Unlike the previously proposed phase gradient technique, the use of finite difference in the new method reduces the fitting error resulting from the ringing artifacts associated with phase discontinuity in the calculation of the phase gradient image. The new method takes into account the values at the perimeter of the region of interest because of their direct relevance to the extrapolated baseline phase of the region of interest (where temperature increase takes place). In simulation study, in vivo and ex vivo experiments, the new method has a root-mean-square temperature error of 0.35 °C, 1.02 °C and 1.73 °C compared to 0.83 °C, 2.81 °C, and 3.76 °C from the phase gradient method, respectively. The method also demonstrated a slightly higher, albeit small, temperature accuracy than the original referenceless MR thermometry method. The proposed method is computationally efficient (∼0.1 s per image), making it very suitable for the real time temperature monitoring.

  4. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    NASA Astrophysics Data System (ADS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi; El Achouby, Hicham; Feddi, El Mustapha; Dujardin, Francis

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image-charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  5. Three-dimensional compact explicit-finite difference time domain scheme with density variation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takao; Maruta, Naoki

    2018-07-01

    In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.

  6. The role of finite-difference methods in design and analysis for supersonic cruise

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.

    1976-01-01

    Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.

  7. Finite difference modelling of dipole acoustic logs in a poroelastic formation with anisotropic permeability

    NASA Astrophysics Data System (ADS)

    He, Xiao; Hu, Hengshan; Wang, Xiuming

    2013-01-01

    Sedimentary rocks can exhibit strong permeability anisotropy due to layering, pre-stresses and the presence of aligned microcracks or fractures. In this paper, we develop a modified cylindrical finite-difference algorithm to simulate the borehole acoustic wavefield in a saturated poroelastic medium with transverse isotropy of permeability and tortuosity. A linear interpolation process is proposed to guarantee the leapfrog finite difference scheme for the generalized dynamic equations and Darcy's law for anisotropic porous media. First, the modified algorithm is validated by comparison against the analytical solution when the borehole axis is parallel to the symmetry axis of the formation. The same algorithm is then used to numerically model the dipole acoustic log in a borehole with its axis being arbitrarily deviated from the symmetry axis of transverse isotropy. The simulation results show that the amplitudes of flexural modes vary with the dipole orientation because the permeability tensor of the formation is dependent on the wellbore azimuth. It is revealed that the attenuation of the flexural wave increases approximately linearly with the radial permeability component in the direction of the transmitting dipole. Particularly, when the borehole axis is perpendicular to the symmetry axis of the formation, it is possible to estimate the anisotropy of permeability by evaluating attenuation of the flexural wave using a cross-dipole sonic logging tool according to the results of sensitivity analyses. Finally, the dipole sonic logs in a deviated borehole surrounded by a stratified porous formation are modelled using the proposed finite difference code. Numerical results show that the arrivals and amplitudes of transmitted flexural modes near the layer interface are sensitive to the wellbore inclination.

  8. Solution of a tridiagonal system of equations on the finite element machine

    NASA Technical Reports Server (NTRS)

    Bostic, S. W.

    1984-01-01

    Two parallel algorithms for the solution of tridiagonal systems of equations were implemented on the Finite Element Machine. The Accelerated Parallel Gauss method, an iterative method, and the Buneman algorithm, a direct method, are discussed and execution statistics are presented.

  9. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting.

    PubMed

    Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru

    2018-06-01

    This study aimed to investigate activation characteristics of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles during the acceleration and maximum-speed phases of sprinting. Lower-extremity kinematics and electromyographic (EMG) activities of the BFlh and ST muscles were examined during the acceleration sprint and maximum-speed sprint in 13 male sprinters during an overground sprinting. Differences in hamstring activation during each divided phases and in the hip and knee joint angles and torques at each time point of the sprinting gait cycle were determined between two sprints. During the early stance of the acceleration sprint, the hip extension torque was significantly greater than during the maximum-speed sprint, and the relative EMG activation of the BFlh muscle was significantly higher than that of the ST muscle. During the late stance and terminal mid-swing of maximum-speed sprint, the knee was more extended and a higher knee flexion moment was observed compared to the acceleration sprint, and the ST muscle showed higher activation than that of the BFlh. These results indicate that the functional demands of the medial and lateral hamstring muscles differ between two different sprint performances.

  10. Stability Analysis of Finite Difference Schemes for Hyperbolic Systems, and Problems in Applied and Computational Linear Algebra.

    DTIC Science & Technology

    FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.

  11. A comparison of constant acceleration swimming speeds when acceleration rates are different with critical swimming speeds in Chinese bream under two oxygen tensions.

    PubMed

    Wang, Jian-Wei; Cao, Zhen-Dong; Fu, Shi-Jian

    2016-10-01

    To investigate the effect of acceleration rates on the constant acceleration test speed (U cat) and to compare U cat with the critical swimming speed (U crit) in Chinese bream (Parabramis pekinensis), the U cat test at acceleration rates of 0.05, 0.1, 0.2, 0.4 and 0.8 cm s(-2) and the U crit test in juvenile fish at 20 °C in either normoxia (>90 % saturation oxygen tension) or hypoxia (30 % saturation) were compared. The lactate concentration ([lactate]) of white muscle, liver and plasma and the glycogen concentration ([glycogen]) of white muscle and liver were also measured to identify whether tissue substrate depletion or tissue lactate accumulation correlated with exhaustion. The U cat decreased with the acceleration rate, and there was no significant difference between U crit and U cat at lower acceleration rates. Hypoxia resulted in lower U cat and U crit, and the difference increased with decreased acceleration rates of the U cat test, possibly due to the increased contribution of aerobic components in U crit or U cat at low acceleration rates. Hypoxia elicited a significant decrease in muscle [glycogen] and an increase in muscle and liver [lactate] in resting fish. All post-exercise fish had similar muscle [lactate], suggesting that tissue lactate accumulation may correlate with exercise exhaustion. Unlike hypoxia, exercise induced an increase in muscle [lactate] and a significant increase in plasma [lactate], which were worthy of further investigation. The similar swimming speed and biochemical indicators after exercise in the U crit and U cat groups at low acceleration rates suggested that U cat can be an alternative for the more frequently adopted protocols in U crit in Chinese bream and possibly in other cyprinid fish species.

  12. 3-D geoelectrical modelling using finite-difference: a new boundary conditions improvement

    NASA Astrophysics Data System (ADS)

    Maineult, A.; Schott, J.-J.; Ardiot, A.

    2003-04-01

    Geoelectrical prospecting is a well-known and frequently used method for quantitative and non-destructive subsurface exploration until depths of a few hundreds metres. Thus archeological objects can be efficiently detected as their resistivities often contrast with those of the surrounding media. Nevertheless using the geoelectrical prospecting method has long been restricted due to inhability to model correctly arbitrarily-shaped structures. The one-dimensional modelling and inversion have long been classical, but are of no interest for the majority of field data, since the natural distribution of resistivity is rarely homogeneous or tabular. Since the 1970's some authors developed discrete methods in order to solve the two and three-dimensional problem, using mathematical tools such as finite-element or finite-difference. The finite-difference approach is quite simple, easily understandable and programmable. Since the work of Dey and Morrison (1979), this approach has become quite popular. Nevertheless, one of its major drawbacks is the difficulty to establish satisfying boundary conditions. Recently Lowry et al. (1989) and Zhao and Yedlin (1996) suggested some refinements on the improvement of the boundary problem. We propose a new betterment, based on the splitting of the potential into two terms, the potential due to a reference tabular medium and a secondary potential caused by a disturbance of this medium. The surface response of a tabular medium has long been known (see for example Koefoed 1979). Here we developed the analytical solution for the electrical tabular potential everywhere in the medium, in order to establish more satisfying boundary conditions. The response of the perturbation, that is to say the object of interest, is then solved using volume-difference and preconditioned conjugate gradient. Finally the grid is refined one or more times in the perturbed domain in order to ameliorate the precision. This method of modelling is easy to implement

  13. Critical Nucleation Length for Accelerating Frictional Slip

    NASA Astrophysics Data System (ADS)

    Aldam, Michael; Weikamp, Marc; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran

    2017-11-01

    The spontaneous nucleation of accelerating slip along slowly driven frictional interfaces is central to a broad range of geophysical, physical, and engineering systems, with particularly far-reaching implications for earthquake physics. A common approach to this problem associates nucleation with an instability of an expanding creep patch upon surpassing a critical length Lc. The critical nucleation length Lc is conventionally obtained from a spring-block linear stability analysis extended to interfaces separating elastically deformable bodies using model-dependent fracture mechanics estimates. We propose an alternative approach in which the critical nucleation length is obtained from a related linear stability analysis of homogeneous sliding along interfaces separating elastically deformable bodies. For elastically identical half-spaces and rate-and-state friction, the two approaches are shown to yield Lc that features the same scaling structure, but with substantially different numerical prefactors, resulting in a significantly larger Lc in our approach. The proposed approach is also shown to be naturally applicable to finite-size systems and bimaterial interfaces, for which various analytic results are derived. To quantitatively test the proposed approach, we performed inertial Finite-Element-Method calculations for a finite-size two-dimensional elastically deformable body in rate-and-state frictional contact with a rigid body under sideway loading. We show that the theoretically predicted Lc and its finite-size dependence are in reasonably good quantitative agreement with the full numerical solutions, lending support to the proposed approach. These results offer a theoretical framework for predicting rapid slip nucleation along frictional interfaces.

  14. Transport and dispersion of pollutants in surface impoundments: a finite difference model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.

  15. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  16. A General Formulation for Robust and Efficient Integration of Finite Differences and Phase Unwrapping on Sparse Multidimensional Domains

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Malvarosa, Fabio; Minati, Federico

    2010-03-01

    Phase unwrapping and integration of finite differences are key problems in several technical fields. In SAR interferometry and differential and persistent scatterers interferometry digital elevation models and displacement measurements can be obtained after unambiguously determining the phase values and reconstructing the mean velocities and elevations of the observed targets, which can be performed by integrating differential estimates of these quantities (finite differences between neighboring points).In this paper we propose a general formulation for robust and efficient integration of finite differences and phase unwrapping, which includes standard techniques methods as sub-cases. The proposed approach allows obtaining more reliable and accurate solutions by exploiting redundant differential estimates (not only between nearest neighboring points) and multi-dimensional information (e.g. multi-temporal, multi-frequency, multi-baseline observations), or external data (e.g. GPS measurements). The proposed approach requires the solution of linear or quadratic programming problems, for which computationally efficient algorithms exist.The validation tests obtained on real SAR data confirm the validity of the method, which was integrated in our production chain and successfully used also in massive productions.

  17. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need

  18. A study of unstable rock failures using finite difference and discrete element methods

    NASA Astrophysics Data System (ADS)

    Garvey, Ryan J.

    Case histories in mining have long described pillars or faces of rock failing violently with an accompanying rapid ejection of debris and broken material into the working areas of the mine. These unstable failures have resulted in large losses of life and collapses of entire mine panels. Modern mining operations take significant steps to reduce the likelihood of unstable failure, however eliminating their occurrence is difficult in practice. Researchers over several decades have supplemented studies of unstable failures through the application of various numerical methods. The direction of the current research is to extend these methods and to develop improved numerical tools with which to study unstable failures in underground mining layouts. An extensive study is first conducted on the expression of unstable failure in discrete element and finite difference methods. Simulated uniaxial compressive strength tests are run on brittle rock specimens. Stable or unstable loading conditions are applied onto the brittle specimens by a pair of elastic platens with ranging stiffnesses. Determinations of instability are established through stress and strain histories taken for the specimen and the system. Additional numerical tools are then developed for the finite difference method to analyze unstable failure in larger mine models. Instability identifiers are established for assessing the locations and relative magnitudes of unstable failure through measures of rapid dynamic motion. An energy balance is developed which calculates the excess energy released as a result of unstable equilibria in rock systems. These tools are validated through uniaxial and triaxial compressive strength tests and are extended to models of coal pillars and a simplified mining layout. The results of the finite difference simulations reveal that the instability identifiers and excess energy calculations provide a generalized methodology for assessing unstable failures within potentially complex

  19. Higher-order ice-sheet modelling accelerated by multigrid on graphics cards

    NASA Astrophysics Data System (ADS)

    Brædstrup, Christian; Egholm, David

    2013-04-01

    Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.

  20. Application of finite difference techniques to noise propagation in jet engine ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1973-01-01

    A finite difference formulation is presented for wave propagation in a rectangular two-dimensional duct without steady flow. The difference technique, which should be used in the study of acoustically treated inlet and exhausts ducts used in turbofan engines, can readily handle acoustical flow field complications such as axial variations in wall impedance and cross-section area. In the numerical analysis, the continuous acoustic field is lumped into a series of grid points in which the pressure and velocity at each grid point are separated into real and imaginary terms. An example calculation is also presented for the sound attenuation in a two-dimensional straight soft-walled suppressor.

  1. Application of finite difference techniques to noise propagation in jet engine ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1973-01-01

    A finite difference formulation is presented for wave propagation in a rectangular two-dimensional duct without steady flow. The difference technique, which should be useful in the study of acoustically treated inlet and exhausts ducts used in turbofan engines, can readily handle acoustical flow field complications such as axial variations in wall impedance and cross section area. In the numerical analysis, the continuous acoustic field is lumped into a series of grid points in which the pressure and velocity at each grid point are separated into real and imaginary terms. An example calculation is also presented for the sound attenuation in a two-dimensional straight soft-walled suppressor.

  2. On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.

    PubMed

    Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2011-11-01

    Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.

  3. Second order accurate finite difference approximations for the transonic small disturbance equation and the full potential equation

    NASA Technical Reports Server (NTRS)

    Mostrel, M. M.

    1988-01-01

    New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.

  4. Different Solutions for the Generator-accelerator Module

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Zavadtsev, A. A.; Zavadtsev, D. A.

    The most important part of the particle accelerators [1] - is the power generator together with the whole feeding system [2]. All types of generators, such as klystrons, magnetrons, solid state generators cover their own field of power and pulse length values. For the last couple of year the Inductive Output Tubes (IOT) becomes very popular because of their comparative construction simplicity: it represents the klystron output cavity with the grid modulated electron beam injected in it. Now such IOTs are used with the superconductive particle accelerators at 700 MHz operating frequency with around 1MW output power. Higher frequencies problem - is the inability to apply high frequency modulated voltage to the grid. Thus we need to figure out some kind of RF gun. But this article is about the first steps of the geometry and beam dynamics simulation in the six beam S-band IOT, which will be used with the compact biperiodic accelerating structure.

  5. Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    DOE PAGES

    Li, Fei; Yu, Peicheng; Xu, Xinlu; ...

    2017-01-12

    In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less

  6. Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    NASA Astrophysics Data System (ADS)

    Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.; Dalichaouch, Thamine; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank S.; Fonseca, Ricardo A.; Lu, Wei; Mori, Warren B.

    2017-05-01

    In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1 ˆ direction). We show that this eliminates the main NCI modes with moderate |k1 | , while keeps additional main NCI modes well outside the range of physical interest with higher |k1 | . These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1 ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss' Law is satisfied. We present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.

  7. Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fei; Yu, Peicheng; Xu, Xinlu

    In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less

  8. Vortex Formation and Acceleration of a Fish-Inspired Robot Performing Starts from Rest

    NASA Astrophysics Data System (ADS)

    Devoria, Adam; Bapst, Jonathan; Ringuette, Matthew

    2009-11-01

    We investigate the unsteady flow of a fish-inspired robot executing starts from rest, with the objective of understanding the connection among the kinematics, vortex formation, and acceleration performance. Several fish perform ``fast starts,'' where the body bends into a ``C'' or ``S'' shape while turning (phase I), followed by a straightening of the body and caudal fin and a linear acceleration (phase II). The resulting highly 3-D, unsteady vortex formation and its relationship to the acceleration are not well understood. The self-propelled robotic model contains motor-driven joints with programmable motion to emulate phase II of a simplified C-start. The experiments are conducted in a water tank, and the model is constrained to 1 direction along rails. The velocity is measured using digital particle image velocimetry (DPIV) in multiple planes. Vortex boundaries are identified using the finite-time Lyapunov exponent, then the unsteady vortex circulation is computed. The thrust is estimated from the identified vortices, and correlated with the circulation and model acceleration for different kinematics.

  9. A multilevel correction adaptive finite element method for Kohn-Sham equation

    NASA Astrophysics Data System (ADS)

    Hu, Guanghui; Xie, Hehu; Xu, Fei

    2018-02-01

    In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.

  10. QED multi-dimensional vacuum polarization finite-difference solver

    NASA Astrophysics Data System (ADS)

    Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo

    2015-11-01

    The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph

  11. Computational procedure for finite difference solution of one-dimensional heat conduction problems reduces computer time

    NASA Technical Reports Server (NTRS)

    Iida, H. T.

    1966-01-01

    Computational procedure reduces the numerical effort whenever the method of finite differences is used to solve ablation problems for which the surface recession is large relative to the initial slab thickness. The number of numerical operations required for a given maximum space mesh size is reduced.

  12. The limitations of staggered grid finite differences in plasticity problems

    NASA Astrophysics Data System (ADS)

    Pranger, Casper; Herrendörfer, Robert; Le Pourhiet, Laetitia

    2017-04-01

    Most crustal-scale applications operate at grid sizes much larger than those at which plasticity occurs in nature. As a consequence, plastic shear bands often localize to the scale of one grid cell, and numerical ploys — like introducing an artificial length scale — are needed to counter this. If for whatever reasons (good or bad) this is not done, we find that problems may arise due to the fact that in the staggered grid finite difference discretization, unknowns like components of the stress tensor and velocity vector are located in physically different positions. This incurs frequent interpolation, reducing the accuracy of the discretization. For purely stress-dependent plasticity problems the adverse effects might be contained because the magnitude of the stress discontinuity across a plastic shear band is limited. However, we find that when rate-dependence of friction is added in the mix, things become ugly really fast and the already hard-to-solve and highly nonlinear problem of plasticity incurs an extra penalty.

  13. Colour stability of temporary restorations with different thicknesses submitted to artificial accelerated aging.

    PubMed

    Silame, F D J; Tonani, R; Alandia-Roman, C C; Chinelatti, M; Panzeri, H; Pires-de-Souza, F C P

    2013-12-01

    This study evaluated the colour stability of temporary prosthetic restorations with different thicknesses submitted to artificial accelerated aging. The occlusal surfaces of 40 molars were grinded to obtain flat enamel surfaces. Twenty acrylic resin specimens [Polymethyl methacrylate (Duralay) and Bis-methyl acrylate (Luxatemp)] were made with two different thicknesses, 0.5 mm and 1.0 mm. Temporary restorations were fixed on enamel and CIE L*a*b* colour parameters of each specimen were assessed before and after artificial accelerated aging. All groups showed colour alterations above the clinically acceptable limit. Luxatemp showed the lowest colour alteration regardless its thickness and Duralay showed the greatest alteration with 0.5 mm.

  14. Varieties of operator manipulation. [for solving differential equations and calculating finite differences

    NASA Technical Reports Server (NTRS)

    Doohovskoy, A.

    1977-01-01

    A change in MACSYMA syntax is proposed to accommodate the operator manipulators necessary to implement direct and indirect methods for the solution of differential equations, calculus of finite differences, and the fractional calculus, as well as their modern counterparts. To illustrate the benefits and convenience of this syntax extension, an example is given to show how MACSYMA's pattern-matching capability can be used to implement a particular set of operator identities which can then be used to obtain exact solutions to nonlinear differential equations.

  15. Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Kiris, Cetin

    2016-01-01

    Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.

  16. Explicit finite-difference simulation of optical integrated devices on massive parallel computers.

    PubMed

    Sterkenburgh, T; Michels, R M; Dress, P; Franke, H

    1997-02-20

    An explicit method for the numerical simulation of optical integrated circuits by means of the finite-difference time-domain (FDTD) method is presented. This method, based on an explicit solution of Maxwell's equations, is well established in microwave technology. Although the simulation areas are small, we verified the behavior of three interesting problems, especially nonparaxial problems, with typical aspects of integrated optical devices. Because numerical losses are within acceptable limits, we suggest the use of the FDTD method to achieve promising quantitative simulation results.

  17. Galerkin finite difference Laplacian operators on isolated unstructured triangular meshes by linear combinations

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1990-01-01

    The Galerkin weighted residual technique using linear triangular weight functions is employed to develop finite difference formulae in Cartesian coordinates for the Laplacian operator on isolated unstructured triangular grids. The weighted residual coefficients associated with the weak formulation of the Laplacian operator along with linear combinations of the residual equations are used to develop the algorithm. The algorithm was tested for a wide variety of unstructured meshes and found to give satisfactory results.

  18. Time-dependent diffusive acceleration of test particles at shocks

    NASA Astrophysics Data System (ADS)

    Drury, L. O'C.

    1991-07-01

    A theoretical description is developed for the acceleration of test particles at a steady plane nonrelativistic shock. The mean and the variance of the acceleration-time distribution are expressed analytically for the condition under which the diffusion coefficient is arbitrarily dependent on position and momentum. The formula for an acceleration rate with arbitrary spatial variation in the diffusion coefficient developed by Drury (1987) is supplemented by a general theory of time dependence. An approximation scheme is developed by means of the analysis which permits the description of the spectral cutoff resulting from the finite shock age. The formulas developed in the analysis are also of interest for analyzing the observations of heliospheric shocks made from spacecraft.

  19. HEMP 3D: A finite difference program for calculating elastic-plastic flow, appendix B

    NASA Astrophysics Data System (ADS)

    Wilkins, Mark L.

    1993-05-01

    The HEMP 3D program can be used to solve problems in solid mechanics involving dynamic plasticity and time dependent material behavior and problems in gas dynamics. The equations of motion, the conservation equations, and the constitutive relations listed below are solved by finite difference methods following the format of the HEMP computer simulation program formulated in two space dimensions and time.

  20. Spatially dispersive finite-difference time-domain analysis of sub-wavelength imaging by the wire medium slabs

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Belov, Pavel A.; Hao, Yang

    2006-06-01

    In this paper, a spatially dispersive finite-difference time-domain (FDTD) method to model wire media is developed and validated. Sub-wavelength imaging properties of the finite wire medium slabs are examined. It is demonstrated that the slab with its thickness equal to an integer number of half-wavelengths is capable of transporting images with sub-wavelength resolution from one interface of the slab to another. It is also shown that the operation of such transmission devices is not sensitive to their transverse dimensions, which can be made even comparable to the wavelength. In this case, the edge diffractions are negligible and do not disturb the image formation.

  1. A mixed pseudospectral/finite difference method for the axisymmetric flow in a heated, rotating spherical shell. [for experimental atmospheric simulation

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1986-01-01

    For a Spacelab flight, a model experiment of the earth's atmospheric circulation has been proposed. This experiment is known as the Atmospheric General Circulation Experiment (AGCE). In the experiment concentric spheres will rotate as a solid body, while a dielectric fluid is confined in a portion of the gap between the spheres. A zero gravity environment will be required in the context of the simulation of the gravitational body force on the atmosphere. The present study is concerned with the development of pseudospectral/finite difference (PS/FD) model and its subsequent application to physical cases relevant to the AGCE. The model is based on a hybrid scheme involving a pseudospectral latitudinal formulation, and finite difference radial and time discretization. The advantages of the use of the hybrid PS/FD method compared to a pure second-order accurate finite difference (FD) method are discussed, taking into account the higher accuracy and efficiency of the PS/FD method.

  2. Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case

    NASA Astrophysics Data System (ADS)

    Hojbotǎ, C. I.; Toşa, V.; Mercea, P. V.

    2013-08-01

    We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food.

  3. A multithreaded and GPU-optimized compact finite difference algorithm for turbulent mixing at high Schmidt number using petascale computing

    NASA Astrophysics Data System (ADS)

    Clay, M. P.; Yeung, P. K.; Buaria, D.; Gotoh, T.

    2017-11-01

    Turbulent mixing at high Schmidt number is a multiscale problem which places demanding requirements on direct numerical simulations to resolve fluctuations down the to Batchelor scale. We use a dual-grid, dual-scheme and dual-communicator approach where velocity and scalar fields are computed by separate groups of parallel processes, the latter using a combined compact finite difference (CCD) scheme on finer grid with a static 3-D domain decomposition free of the communication overhead of memory transposes. A high degree of scalability is achieved for a 81923 scalar field at Schmidt number 512 in turbulence with a modest inertial range, by overlapping communication with computation whenever possible. On the Cray XE6 partition of Blue Waters, use of a dedicated thread for communication combined with OpenMP locks and nested parallelism reduces CCD timings by 34% compared to an MPI baseline. The code has been further optimized for the 27-petaflops Cray XK7 machine Titan using GPUs as accelerators with the latest OpenMP 4.5 directives, giving 2.7X speedup compared to CPU-only execution at the largest problem size. Supported by NSF Grant ACI-1036170, the NCSA Blue Waters Project with subaward via UIUC, and a DOE INCITE allocation at ORNL.

  4. Single-cone finite-difference schemes for the (2+1)-dimensional Dirac equation in general electromagnetic textures

    NASA Astrophysics Data System (ADS)

    Pötz, Walter

    2017-11-01

    A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.

  5. Further investigation of a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.; Yip, E.; Sebastian, J. D.

    1980-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. The steady velocity potential is obtained first from the well-known nonlinear equation for steady transonic flow. The unsteady velocity potential is then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. An out-of-core direct solution procedure was developed and applied to two-dimensional sections. Results are presented for a section of vanishing thickness in subsonic flow and an NACA 64A006 airfoil in supersonic flow. Good correlation is obtained in the first case at values of Mach number and reduced frequency of direct interest in flutter analyses. Reasonable results are obtained in the second case. Comparisons of two-dimensional finite difference solutions with exact analytic solutions indicate that the accuracy of the difference solution is dependent on the boundary conditions used on the outer boundaries. Homogeneous boundary conditions on the mesh edges that yield complex eigenvalues give the most accurate finite difference solutions. The plane outgoing wave boundary conditions meet these requirements.

  6. Generalized energy and potential enstrophy conserving finite difference schemes for the shallow water equations

    NASA Technical Reports Server (NTRS)

    Abramopoulos, Frank

    1988-01-01

    The conditions under which finite difference schemes for the shallow water equations can conserve both total energy and potential enstrophy are considered. A method of deriving such schemes using operator formalism is developed. Several such schemes are derived for the A-, B- and C-grids. The derived schemes include second-order schemes and pseudo-fourth-order schemes. The simplest B-grid pseudo-fourth-order schemes are presented.

  7. Finite difference solutions of heat conduction problems in multi-layered bodies with complex geometries

    NASA Technical Reports Server (NTRS)

    Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.

    1984-01-01

    A numerical procedure is presented for analyzing a wide variety of heat conduction problems in multilayered bodies having complex geometry. The method is based on a finite difference solution of the heat conduction equation using a body fitted coordinate system transformation. Solution techniques are described for steady and transient problems with and without internal energy generation. Results are found to compare favorably with several well known solutions.

  8. Scalable algorithms for three-field mixed finite element coupled poromechanics

    NASA Astrophysics Data System (ADS)

    Castelletto, Nicola; White, Joshua A.; Ferronato, Massimiliano

    2016-12-01

    We introduce a class of block preconditioners for accelerating the iterative solution of coupled poromechanics equations based on a three-field formulation. The use of a displacement/velocity/pressure mixed finite-element method combined with a first order backward difference formula for the approximation of time derivatives produces a sequence of linear systems with a 3 × 3 unsymmetric and indefinite block matrix. The preconditioners are obtained by approximating the two-level Schur complement with the aid of physically-based arguments that can be also generalized in a purely algebraic approach. A theoretical and experimental analysis is presented that provides evidence of the robustness, efficiency and scalability of the proposed algorithm. The performance is also assessed for a real-world challenging consolidation experiment of a shallow formation.

  9. On the performance of piezoelectric harvesters loaded by finite width impulses

    NASA Astrophysics Data System (ADS)

    Doria, A.; Medè, C.; Desideri, D.; Maschio, A.; Codecasa, L.; Moro, F.

    2018-02-01

    The response of cantilevered piezoelectric harvesters loaded by finite width impulses of base acceleration is studied analytically in the frequency domain in order to identify the parameters that influence the generated voltage. Experimental tests are then performed on harvesters loaded by hammer impacts. The latter are used to confirm analytical results and to validate a linear finite element (FE) model of a unimorph harvester. The FE model is, in turn, used to extend analytical results to more general harvesters (tapered, inverse tapered, triangular) and to more general impulses (heel strike in human gait). From analytical and numerical results design criteria for improving harvester performance are obtained.

  10. Computationally efficient finite-difference modal method for the solution of Maxwell's equations.

    PubMed

    Semenikhin, Igor; Zanuccoli, Mauro

    2013-12-01

    In this work, a new implementation of the finite-difference (FD) modal method (FDMM) based on an iterative approach to calculate the eigenvalues and corresponding eigenfunctions of the Helmholtz equation is presented. Two relevant enhancements that significantly increase the speed and accuracy of the method are introduced. First of all, the solution of the complete eigenvalue problem is avoided in favor of finding only the meaningful part of eigenmodes by using iterative methods. Second, a multigrid algorithm and Richardson extrapolation are implemented. Simultaneous use of these techniques leads to an enhancement in terms of accuracy, which allows a simple method such as the FDMM with a typical three-point difference scheme to be significantly competitive with an analytical modal method.

  11. Effects of Spatial Gradients on Electron Runaway Acceleration

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Ljepojevic, N. N.

    1996-01-01

    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.

  12. Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.

    2013-12-01

    In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1

  13. A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena

    NASA Technical Reports Server (NTRS)

    Zingg, David W.

    1996-01-01

    This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.

  14. Flux vector splitting of the inviscid equations with application to finite difference methods

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Warming, R. F.

    1979-01-01

    The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.

  15. [Finite element analysis of the stress distribution of two-piece post crown with different adhesives ].

    PubMed

    He, Lihui; Liu, Lijie; Gao, Bei; Gao, Shang; Chen, Yifu; Zhihui, Liu

    2013-08-01

    To establish three-dimensional finite element model of two-piece post crown to the mandibular first molar residual roots, and analyze the stress distribution characteristic to the residual roots with different adhesives, so as to get the best combination under different conditions. The complete mandibular first molar in vitro was selected, the crown was removed along the cemento-enamel junction, then the residual roots were scanned by CT. CT images were imported into a reverse engineering software, and the three-dimensional finite element model of the mandibular first molar residual roots was reconstructed. Titanium two-piece post crown of the mandibular first molar residual roots was produced, then was scanned by CT. The model was reconstructed and assembled by MIMICS. The stress distribution of the root canal and root section under the vertical load and lateral load with different bonding systems were analyzed. Three-dimensional finite element model of two-piece post crown to the mandibular first molar residual roots was established. With the increasing of elastic modulus of the adhesives, the maximum stress within the root canal was also increasing. Elastic modulus of zinc phosphate was the biggest, so the stress within the root canal was the biggest; elastic modulus of Superbond C&B was the smallest, so the stress within the root canal was the smallest. Lateral loading stress was much larger than the vertical load. Under vertical load, the load on the root section was even with different bonding systems. Under lateral load, the maximum stress was much larger than the vertical load. The stress on the root section was minimum using zinc phosphate binder, and the stress on the root section was maximum using Superbond C&B. In two-piece post crown restorations, there is significant difference between different adhesives on tooth protection. When the tooth structure of the root canal orifices is weak, in order to avoid the occurrence of splitting, the larger elastic

  16. Finite Element Analysis and Experimental Study on Elbow Vibration Transmission Characteristics

    NASA Astrophysics Data System (ADS)

    Qing-shan, Dai; Zhen-hai, Zhang; Shi-jian, Zhu

    2017-11-01

    Pipeline system vibration is one of the significant factors leading to the vibration and noise of vessel. Elbow is widely used in the pipeline system. However, the researches about vibration of elbow are little, and there is no systematic study. In this research, we firstly analysed the relationship between elbow vibration transmission characteristics and bending radius by ABAQUS finite element simulation. Then, we conducted the further vibration test to observe the vibration transmission characteristics of different elbows which have the same diameter and different bending radius under different flow velocity. The results of simulation calculation and experiment both showed that the vibration acceleration levels of the pipeline system decreased with the increase of bending radius of the elbow, which was beneficial to reduce the transmission of vibration in the pipeline system. The results could be used as reference for further studies and designs for the low noise installation of pipeline system.

  17. Field Test of a Hybrid Finite-Difference and Analytic Element Regional Model.

    PubMed

    Abrams, D B; Haitjema, H M; Feinstein, D T; Hunt, R J

    2016-01-01

    Regional finite-difference models often have cell sizes that are too large to sufficiently model well-stream interactions. Here, a steady-state hybrid model is applied whereby the upper layer or layers of a coarse MODFLOW model are replaced by the analytic element model GFLOW, which represents surface waters and wells as line and point sinks. The two models are coupled by transferring cell-by-cell leakage obtained from the original MODFLOW model to the bottom of the GFLOW model. A real-world test of the hybrid model approach is applied on a subdomain of an existing model of the Lake Michigan Basin. The original (coarse) MODFLOW model consists of six layers, the top four of which are aggregated into GFLOW as a single layer, while the bottom two layers remain part of MODFLOW in the hybrid model. The hybrid model and a refined "benchmark" MODFLOW model simulate similar baseflows. The hybrid and benchmark models also simulate similar baseflow reductions due to nearby pumping when the well is located within the layers represented by GFLOW. However, the benchmark model requires refinement of the model grid in the local area of interest, while the hybrid approach uses a gridless top layer and is thus unaffected by grid discretization errors. The hybrid approach is well suited to facilitate cost-effective retrofitting of existing coarse grid MODFLOW models commonly used for regional studies because it leverages the strengths of both finite-difference and analytic element methods for predictions in mildly heterogeneous systems that can be simulated with steady-state conditions. © 2015, National Ground Water Association.

  18. Ground motion simulations in Marmara (Turkey) region from 3D finite difference method

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Ulrich, Thomas; Douglas, John

    2016-04-01

    In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.

  19. A new multigrid formulation for high order finite difference methods on summation-by-parts form

    NASA Astrophysics Data System (ADS)

    Ruggiu, Andrea A.; Weinerfelt, Per; Nordström, Jan

    2018-04-01

    Multigrid schemes for high order finite difference methods on summation-by-parts form are studied by comparing the effect of different interpolation operators. By using the standard linear prolongation and restriction operators, the Galerkin condition leads to inaccurate coarse grid discretizations. In this paper, an alternative class of interpolation operators that bypass this issue and preserve the summation-by-parts property on each grid level is considered. Clear improvements of the convergence rate for relevant model problems are achieved.

  20. Updating the Finite Element Model of the Aerostructures Test Wing Using Ground Vibration Test Data

    NASA Technical Reports Server (NTRS)

    Lung, Shun-Fat; Pak, Chan-Gi

    2009-01-01

    Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the aerostructures test wing (ATW), which was designed and tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.

  1. Updating the Finite Element Model of the Aerostructures Test Wing using Ground Vibration Test Data

    NASA Technical Reports Server (NTRS)

    Lung, Shun-fat; Pak, Chan-gi

    2009-01-01

    Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the Aerostructures Test Wing (ATW), which was designed and tested at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.

  2. Bridging the gap between high and low acceleration for planetary escape

    NASA Astrophysics Data System (ADS)

    Indrikis, Janis; Preble, Jeffrey C.

    With the exception of the often time consuming analysis by numerical optimization, no single orbit transfer analysis technique exists that can be applied over a wide range of accelerations. Using the simple planetary escape (parabolic trajectory) mission some of the more common techniques are considered as the limiting bastions at the high and the extremely low acceleration regimes. The brachistochrone, the minimum time of flight path, is proposed as the technique to bridge the gap between the high and low acceleration regions, providing a smooth bridge over the entire acceleration spectrum. A smooth and continuous velocity requirement is established for the planetary escape mission. By using these results, it becomes possible to determine the effect of finite accelerations on mission performance and target propulsion and power system designs which are consistent with a desired mission objective.

  3. Fully Implict Magneto-hydrodynamics Simulations of Coaxial Plasma Accelerators

    DOE PAGES

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-01-05

    The resistive Magneto-Hydrodynamic (MHD) model describes the behavior of a strongly ionized plasma in the presence of external electric and magnetic fields. We developed a fully implicit MHD simulation tool to solve the resistive MHD governing equations in the context of a cell-centered finite-volume scheme. The primary objective of this study is to use the fully-implicit algorithm to obtain insights into the plasma acceleration and jet formation processes in Coaxial Plasma accelerators; electromagnetic acceleration devices that utilize self-induced magnetic fields to accelerate thermal plasmas to large velocities. We also carry out plasma-surface simulations in order to study the impact interactionsmore » when these high velocity plasma jets impinge on target material surfaces. Scaling studies are carried out to establish some basic functional relationships between the target-stagnation conditions and the current discharged between the coaxial electrodes.« less

  4. Rotational Acceleration during Head Impact Resulting from Different Judo Throwing Techniques

    PubMed Central

    MURAYAMA, Haruo; HITOSUGI, Masahito; MOTOZAWA, Yasuki; OGINO, Masahiro; KOYAMA, Katsuhiro

    2014-01-01

    Most severe head injuries in judo are reported as acute subdural hematoma. It is thus necessary to examine the rotational acceleration of the head to clarify the mechanism of head injuries. We determined the rotational acceleration of the head when the subject is thrown by judo techniques. One Japanese male judo expert threw an anthropomorphic test device using two throwing techniques, Osoto-gari and Ouchigari. Rotational and translational head accelerations were measured with and without an under-mat. For Osoto-gari, peak resultant rotational acceleration ranged from 4,284.2 rad/s2 to 5,525.9 rad/s2 and peak resultant translational acceleration ranged from 64.3 g to 87.2 g; for Ouchi-gari, the accelerations respectively ranged from 1,708.0 rad/s2 to 2,104.1 rad/s2 and from 120.2 g to 149.4 g. The resultant rotational acceleration did not decrease with installation of an under-mat for both Ouchi-gari and Osoto-gari. We found that head contact with the tatami could result in the peak values of translational and rotational accelerations, respectively. In general, because kinematics of the body strongly affects translational and rotational accelerations of the head, both accelerations should be measured to analyze the underlying mechanism of head injury. As a primary preventative measure, throwing techniques should be restricted to participants demonstrating ability in ukemi techniques to avoid head contact with the tatami. PMID:24477065

  5. Rotational acceleration during head impact resulting from different judo throwing techniques.

    PubMed

    Murayama, Haruo; Hitosugi, Masahito; Motozawa, Yasuki; Ogino, Masahiro; Koyama, Katsuhiro

    2014-01-01

    Most severe head injuries in judo are reported as acute subdural hematoma. It is thus necessary to examine the rotational acceleration of the head to clarify the mechanism of head injuries. We determined the rotational acceleration of the head when the subject is thrown by judo techniques. One Japanese male judo expert threw an anthropomorphic test device using two throwing techniques, Osoto-gari and Ouchi-gari. Rotational and translational head accelerations were measured with and without an under-mat. For Osoto-gari, peak resultant rotational acceleration ranged from 4,284.2 rad/s(2) to 5,525.9 rad/s(2) and peak resultant translational acceleration ranged from 64.3 g to 87.2 g; for Ouchi-gari, the accelerations respectively ranged from 1,708.0 rad/s(2) to 2,104.1 rad/s(2) and from 120.2 g to 149.4 g. The resultant rotational acceleration did not decrease with installation of an under-mat for both Ouchi-gari and Osoto-gari. We found that head contact with the tatami could result in the peak values of translational and rotational accelerations, respectively. In general, because kinematics of the body strongly affects translational and rotational accelerations of the head, both accelerations should be measured to analyze the underlying mechanism of head injury. As a primary preventative measure, throwing techniques should be restricted to participants demonstrating ability in ukemi techniques to avoid head contact with the tatami.

  6. Biomechanical Evaluation of Different Fixation Methods for Mandibular Anterior Segmental Osteotomy Using Finite Element Analysis, Part Two: Superior Repositioning Surgery With Bone Allograft.

    PubMed

    Kilinç, Yeliz; Erkmen, Erkan; Kurt, Ahmet

    2016-01-01

    In this study, the biomechanical behavior of different fixation methods used to fix the mandibular anterior segment following various amounts of superior repositioning was evaluated by using Finite Element Analysis (FEA). The three-dimensional finite element models representing 3 and 5 mm superior repositioning were generated. The gap in between segments was assumed to be filled by block bone allograft and resignated to be in perfect contact with the mandible and segmented bone. Six different finite element models with 2 distinct mobilization rate including 3 different fixation configurations, double right L (DRL), double left L (DLL), or double I (DI) miniplates with monocortical screws, correspondingly were created. A comparative evaluation has been made under vertical, horizontal and oblique loads. The von Mises and principal maximum stress (Pmax) values were calculated by finite element solver programme. The first part of our ongoing Finite Element Analysis research has been addressed to the mechanical behavior of the same fixation configurations in nongrafted models. In comparison with the findings of the first part of the study, it was concluded that bone graft offers superior mechanical stability without any limitation of mobilization and less stress on the fixative appliances as well as in the bone.

  7. A fast Cauchy-Riemann solver. [differential equation solution for boundary conditions by finite difference approximation

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Balgovind, R.

    1979-01-01

    The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.

  8. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Lockner, D. A.; Reches, Z.

    2012-12-01

    We simulated the slip of a fault-patch during a large earthquake by rapidly loading an experimental, ring-shaped fault with energy stored in a spinning flywheel. The flywheel abruptly delivers a finite amount of energy by spinning the fault-patch that spontaneously dissipates the energy without operator intervention. We conducted 42 experiments on Sierra White granite (SWG) samples, and 24 experiments on Kasota dolomite (KD) samples. Each experiment starts by spinning a 225 kg disk-shaped flywheel to a prescribed angular velocity. We refer to this experiment as an "earthquake-like slip-event" (ELSE). The strength-evolution in ELSE experiments is similar to the strength-evolution proposed for earthquake models and observed in stick-slip experiments. Further, we found that ELSE experiments are similar to earthquakes in at least three ways: (1) slip driven by the release of a finite amount of stored energy; (2) pattern of fault strength evolution; and (3) seismically observed values, such as average slip, peak-velocity and rise-time. By assuming that the measured slip, D, in ELSE experiments is equivalent to the average slip during an earthquake, we found that ELSE experiments (D = 0.003-4.6 m) correspond to earthquakes in moment-magnitude range of Mw = 4-8. In ELSE experiments, the critical-slip-distance, dc, has mean values of 2.7 cm and 1.2 cm for SWG and KD, that are much shorter than the 1-10 m in steady-state classical experiments in rotary shear systems. We attribute these dc values, to ELSE loading in which the fault-patch is abruptly loaded by impact with a spinning flywheel. Under this loading, the friction-velocity relations are strikingly different from those under steady-state loading on the same rock samples with the same shear system (Reches and Lockner, Nature, 2010). We further note that the slip acceleration in ELSE evolves systematically with fault strength and wear-rate, and that the dynamic weakening is restricted to the period of intense

  9. Control of Finite-State, Finite Memory Stochastic Systems

    NASA Technical Reports Server (NTRS)

    Sandell, Nils R.

    1974-01-01

    A generalized problem of stochastic control is discussed in which multiple controllers with different data bases are present. The vehicle for the investigation is the finite state, finite memory (FSFM) stochastic control problem. Optimality conditions are obtained by deriving an equivalent deterministic optimal control problem. A FSFM minimum principle is obtained via the equivalent deterministic problem. The minimum principle suggests the development of a numerical optimization algorithm, the min-H algorithm. The relationship between the sufficiency of the minimum principle and the informational properties of the problem are investigated. A problem of hypothesis testing with 1-bit memory is investigated to illustrate the application of control theoretic techniques to information processing problems.

  10. Particle acceleration at shocks with surface ripples

    NASA Technical Reports Server (NTRS)

    Decker, R. B.

    1990-01-01

    The present treatment of superthermal-ion acceleration on the surface of a fast-mode hydromagnetic shock gives attention to (1) small-amplitude surface ripples characterized by width L and amplitude A that are large relative to the energetic-ion gyroradius, and (2) shocks which are on average quasi-perpendicular. An investigation is made of the effects of the confinement, evolving geometry, and finite shock curvature associated with the ripple, by integrating along the orbits of the proton test particles. As an upstream magnetic field line convects through the surface ripple, it intersects the shock at two points, thereby forming a temporary magnetic trap. Flux-line profiles and angular distributions in a given ripple differ substantially, depending on the path it takes through the ripple and its distance from the shock.

  11. An investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.

    1979-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.

  12. Performance of low-rank QR approximation of the finite element Biot-Savart law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D A; Fasenfest, B J

    2006-01-12

    We are concerned with the computation of magnetic fields from known electric currents in the finite element setting. In finite element eddy current simulations it is necessary to prescribe the magnetic field (or potential, depending upon the formulation) on the conductor boundary. In situations where the magnetic field is due to a distributed current density, the Biot-Savart law can be used, eliminating the need to mesh the nonconducting regions. Computation of the Biot-Savart law can be significantly accelerated using a low-rank QR approximation. We review the low-rank QR method and report performance on selected problems.

  13. Acute Effect of Different Combined Stretching Methods on Acceleration and Speed in Soccer Players.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Calleja-Gonzalez, Julio; Mogharabi-Manzari, Mansooreh

    2016-04-01

    The purpose of this study was to investigate the acute effect of different stretching methods, during a warm-up, on the acceleration and speed of soccer players. The acceleration performance of 20 collegiate soccer players (body height: 177.25 ± 5.31 cm; body mass: 65.10 ± 5.62 kg; age: 16.85 ± 0.87 years; BMI: 20.70 ± 5.54; experience: 8.46 ± 1.49 years) was evaluated after different warm-up procedures, using 10 and 20 m tests. Subjects performed five types of a warm-up: static, dynamic, combined static + dynamic, combined dynamic + static, and no-stretching. Subjects were divided into five groups. Each group performed five different warm-up protocols in five non-consecutive days. The warm-up protocol used for each group was randomly assigned. The protocols consisted of 4 min jogging, a 1 min stretching program (except for the no-stretching protocol), and 2 min rest periods, followed by the 10 and 20 m sprint test, on the same day. The current findings showed significant differences in the 10 and 20 m tests after dynamic stretching compared with static, combined, and no-stretching protocols. There were also significant differences between the combined stretching compared with static and no-stretching protocols. We concluded that soccer players performed better with respect to acceleration and speed, after dynamic and combined stretching, as they were able to produce more force for a faster execution.

  14. Stability analysis of flexible wind turbine blades using finite element method

    NASA Technical Reports Server (NTRS)

    Kamoulakos, A.

    1982-01-01

    Static vibration and flutter analysis of a straight elastic axis blade was performed based on a finite element method solution. The total potential energy functional was formulated according to linear beam theory. The inertia and aerodynamic loads were formulated according to the blade absolute acceleration and absolute velocity vectors. In vibration analysis, the direction of motion of the blade during the first out-of-lane and first in-plane modes was examined; numerical results involve NASA/DOE Mod-0, McCauley propeller, north wind turbine and flat plate behavior. In flutter analysis, comparison cases were examined involving several references. Vibration analysis of a nonstraight elastic axis blade based on a finite element method solution was performed in a similar manner with the straight elastic axis blade, since it was recognized that a curved blade can be approximated by an assembly of a sufficient number of straight blade elements at different inclinations with respect to common system of axes. Numerical results involve comparison between the behavior of a straight and a curved cantilever beam during the lowest two in-plane and out-of-plane modes.

  15. Finite element modelling of Plantar Fascia response during running on different surface types

    NASA Astrophysics Data System (ADS)

    Razak, A. H. A.; Basaruddin, K. S.; Salleh, A. F.; Rusli, W. M. R.; Hashim, M. S. M.; Daud, R.

    2017-10-01

    Plantar fascia is a ligament found in human foot structure located beneath the skin of human foot that functioning to stabilize longitudinal arch of human foot during standing and normal gait. To perform direct experiment on plantar fascia seems very difficult since the structure located underneath the soft tissue. The aim of this study is to develop a finite element (FE) model of foot with plantar fascia and investigate the effect of the surface hardness on biomechanical response of plantar fascia during running. The plantar fascia model was developed using Solidworks 2015 according to the bone structure of foot model that was obtained from Turbosquid database. Boundary conditions were set out based on the data obtained from experiment of ground reaction force response during running on different surface hardness. The finite element analysis was performed using Ansys 14. The results found that the peak of stress and strain distribution were occur on the insertion of plantar fascia to bone especially on calcaneal area. Plantar fascia became stiffer with increment of Young’s modulus value and was able to resist more loads. Strain of plantar fascia was decreased when Young’s modulus increased with the same amount of loading.

  16. Finite volume model for two-dimensional shallow environmental flow

    USGS Publications Warehouse

    Simoes, F.J.M.

    2011-01-01

    This paper presents the development of a two-dimensional, depth integrated, unsteady, free-surface model based on the shallow water equations. The development was motivated by the desire of balancing computational efficiency and accuracy by selective and conjunctive use of different numerical techniques. The base framework of the discrete model uses Godunov methods on unstructured triangular grids, but the solution technique emphasizes the use of a high-resolution Riemann solver where needed, switching to a simpler and computationally more efficient upwind finite volume technique in the smooth regions of the flow. Explicit time marching is accomplished with strong stability preserving Runge-Kutta methods, with additional acceleration techniques for steady-state computations. A simplified mass-preserving algorithm is used to deal with wet/dry fronts. Application of the model is made to several benchmark cases that show the interplay of the diverse solution techniques.

  17. Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers

    PubMed Central

    Cai, Qin; Hsieh, Meng-Juei; Wang, Jun; Luo, Ray

    2014-01-01

    We implemented and optimized seven finite-difference solvers for the full nonlinear Poisson-Boltzmann equation in biomolecular applications, including four relaxation methods, one conjugate gradient method, and two inexact Newton methods. The performance of the seven solvers was extensively evaluated with a large number of nucleic acids and proteins. Worth noting is the inexact Newton method in our analysis. We investigated the role of linear solvers in its performance by incorporating the incomplete Cholesky conjugate gradient and the geometric multigrid into its inner linear loop. We tailored and optimized both linear solvers for faster convergence rate. In addition, we explored strategies to optimize the successive over-relaxation method to reduce its convergence failures without too much sacrifice in its convergence rate. Specifically we attempted to adaptively change the relaxation parameter and to utilize the damping strategy from the inexact Newton method to improve the successive over-relaxation method. Our analysis shows that the nonlinear methods accompanied with a functional-assisted strategy, such as the conjugate gradient method and the inexact Newton method, can guarantee convergence in the tested molecules. Especially the inexact Newton method exhibits impressive performance when it is combined with highly efficient linear solvers that are tailored for its special requirement. PMID:24723843

  18. Assessment of Linear Finite-Difference Poisson-Boltzmann Solvers

    PubMed Central

    Wang, Jun; Luo, Ray

    2009-01-01

    CPU time and memory usage are two vital issues that any numerical solvers for the Poisson-Boltzmann equation have to face in biomolecular applications. In this study we systematically analyzed the CPU time and memory usage of five commonly used finite-difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson-Boltzmann equation. It turns out that the time-limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson-Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications. PMID:20063271

  19. Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A.; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).

  20. A finite difference analysis of the field present behind an acoustically impenetrable two-layer barrier.

    PubMed

    Hurrell, Andrew M

    2008-06-01

    The interaction of an incident sound wave with an acoustically impenetrable two-layer barrier is considered. Of particular interest is the presence of several acoustic wave components in the shadow region of this barrier. A finite difference model capable of simulating this geometry is validated by comparison to the analytical solution for an idealized, hard-soft barrier. A panel comprising a high air-content closed cell foam backed with an elastic (metal) back plate is then examined. The insertion loss of this panel was found to exceed the dynamic range of the measurement system and was thus acoustically impenetrable. Experimental results from such a panel are shown to contain artifacts not present in the diffraction solution, when acoustic waves are incident upon the soft surface. A finite difference analysis of this experimental configuration replicates the presence of the additional field components. Furthermore, the simulated results allow the additional components to be identified as arising from the S(0) and A(0) Lamb modes traveling in the elastic plate. These Lamb mode artifacts are not found to be present in the shadow region when the acoustic waves are incident upon the elastic surface.

  1. The electromagnetic modeling of thin apertures using the finite-difference time-domain technique

    NASA Technical Reports Server (NTRS)

    Demarest, Kenneth R.

    1987-01-01

    A technique which computes transient electromagnetic responses of narrow apertures in complex conducting scatterers was implemented as an extension of previously developed Finite-Difference Time-Domain (FDTD) computer codes. Although these apertures are narrow with respect to the wavelengths contained within the power spectrum of excitation, this technique does not require significantly more computer resources to attain the increased resolution at the apertures. In the report, an analytical technique which utilizes Babinet's principle to model the apertures is developed, and an FDTD computer code which utilizes this technique is described.

  2. Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Agarwal, P.; El-Sayed, A. A.

    2018-06-01

    In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.

  3. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE PAGES

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    2017-01-01

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  4. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  5. Arbitrary Order Mixed Mimetic Finite Differences Method with Nodal Degrees of Freedom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iaroshenko, Oleksandr; Gyrya, Vitaliy; Manzini, Gianmarco

    2016-09-01

    In this work we consider a modification to an arbitrary order mixed mimetic finite difference method (MFD) for a diffusion equation on general polygonal meshes [1]. The modification is based on moving some degrees of freedom (DoF) for a flux variable from edges to vertices. We showed that for a non-degenerate element this transformation is locally equivalent, i.e. there is a one-to-one map between the new and the old DoF. Globally, on the other hand, this transformation leads to a reduction of the total number of degrees of freedom (by up to 40%) and additional continuity of the discrete flux.

  6. A finite difference model for free surface gravity drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couri, F.R.; Ramey, H.J. Jr.

    1993-09-01

    The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells inmore » the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.« less

  7. Limitation to Communication of Fermionic System in Accelerated Frame

    NASA Astrophysics Data System (ADS)

    Chang, Jinho; Kwon, Younghun

    2015-03-01

    In this article, we investigate communication between an inertial observer and an accelerated observer, sharing fermionic system, when they use classical and quantum communication using single rail or dual rail encoding. The purpose of this work is to understand the limit to the communication between an inertial observer and an accelerated observer, with single rail or dual rail encoding of fermionic system. We observe that at the infinite acceleration, the coherent information of single(or double) rail quantum channel vanishes, but those of classical ones may have finite values. In addition, we see that even when considering a method beyond the single-mode approximation, for the communication between Alice and Bob, the dual rail entangled state seems to provide better information transfer than the single rail entangled state, when we take a fixed choice of the Unruh mode. Moreover, we find that the single-mode approximation may not be sufficient to analyze communication of fermionic system in an accelerated frame.

  8. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.

  9. Acceleration feedback improves balancing against reflex delay

    PubMed Central

    Insperger, Tamás; Milton, John; Stépán, Gábor

    2013-01-01

    A model for human postural balance is considered in which the time-delayed feedback depends on position, velocity and acceleration (proportional–derivative–acceleration (PDA) feedback). It is shown that a PDA controller is equivalent to a predictive controller, in which the prediction is based on the most recent information of the state, but the control input is not involved into the prediction. A PDA controller is superior to the corresponding proportional–derivative controller in the sense that the PDA controller can stabilize systems with approximately 40 per cent larger feedback delays. The addition of a sensory dead zone to account for the finite thresholds for detection by sensory receptors results in highly intermittent, complex oscillations that are a typical feature of human postural sway. PMID:23173196

  10. Prediction of force and acceleration control spectra for Space Shuttle orbiter sidewall-mounted payloads

    NASA Technical Reports Server (NTRS)

    Hipol, Philip J.

    1990-01-01

    The development of force and acceleration control spectra for vibration testing of Space Shuttle (STS) orbiter sidewall-mounted payloads requiresreliable estimates of the sidewall apparent weight and free (i.e. unloaded) vibration during lift-off. The feasibility of analytically predicting these quantities has been investigated through the development and analysis of a finite element model of the STS cargo bay. Analytical predictions of the sidewall apparent weight were compared with apparent weight measurements made on OV-101, and analytical predictions of the sidewall free vibration response during lift-off were compared with flight measurements obtained from STS-3 and STS-4. These analysis suggest that the cargo bay finite element model has potential application for the estimation of force and acceleration control spectra for STS sidewall-mounted payloads.

  11. 3-D thermal analysis using finite difference technique with finite element model for improved design of components of rocket engine turbomachines for Space Shuttle Main Engine SSME

    NASA Technical Reports Server (NTRS)

    Sohn, Kiho D.; Ip, Shek-Se P.

    1988-01-01

    Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.

  12. Finite-Difference Numerical Simulation of Seismic Gradiometry

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Symons, N. P.; Haney, M. M.

    2006-12-01

    We use the phrase seismic gradiometry to refer to the developing research area involving measurement, modeling, analysis, and interpretation of spatial derivatives (or differences) of a seismic wavefield. In analogy with gradiometric methods used in gravity and magnetic exploration, seismic gradiometry offers the potential for enhancing resolution, and revealing new (or hitherto obscure) information about the subsurface. For example, measurement of pressure and rotation enables the decomposition of recorded seismic data into compressional (P) and shear (S) components. Additionally, a complete observation of the total seismic wavefield at a single receiver (including both rectilinear and rotational motions) offers the possibility of inferring the type, speed, and direction of an incident seismic wave. Spatially extended receiver arrays, conventionally used for such directional and phase speed determinations, may be dispensed with. Seismic wave propagation algorithms based on the explicit, time-domain, finite-difference (FD) numerical method are well-suited for investigating gradiometric effects. We have implemented in our acoustic, elastic, and poroelastic algorithms a point receiver that records the 9 components of the particle velocity gradient tensor. Pressure and particle rotation are obtained by forming particular linear combinations of these tensor components, and integrating with respect to time. All algorithms entail 3D O(2,4) FD solutions of coupled, first- order systems of partial differential equations on uniformly-spaced staggered spatial and temporal grids. Numerical tests with a 1D model composed of homogeneous and isotropic elastic layers show isolation of P, SV, and SH phases recorded in a multiple borehole configuration, even in the case of interfering events. Synthetic traces recorded by geophones and rotation receivers in a shallow crosswell geometry with randomly heterogeneous poroelastic models also illustrate clear P (fast and slow) and S

  13. A user's guide for V174, a program using a finite difference method to analyze transonic flow over oscillating wings

    NASA Technical Reports Server (NTRS)

    Butler, T. D.; Weatherill, W. H.; Sebastian, J. D.; Ehlers, F. E.

    1977-01-01

    The design and usage of a pilot program using a finite difference method for calculating the pressure distributions over harmonically oscillating wings in transonic flow are discussed. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The steady velocity potential which must be obtained from some other program, is required for input. The unsteady differential equation is linear, complex in form with spatially varying coefficients. Because sinusoidal motion is assumed, time is not a variable. The numerical solution is obtained through a finite difference formulation and a line relaxation solution method.

  14. Micro finite element analysis of dental implants under different loading conditions.

    PubMed

    Marcián, Petr; Wolff, Jan; Horáčková, Ladislava; Kaiser, Jozef; Zikmund, Tomáš; Borák, Libor

    2018-05-01

    Osseointegration is paramount for the longevity of dental implants and is significantly influenced by biomechanical stimuli. The aim of the present study was to assess the micro-strain and displacement induced by loaded dental implants at different stages of osseointegration using finite element analysis (FEA). Computational models of two mandible segments with different trabecular densities were constructed using microCT data. Three different implant loading directions and two osseointegration stages were considered in the stress-strain analysis of the bone-implant assembly. The bony segments were analyzed using two approaches. The first approach was based on Mechanostat strain intervals and the second approach was based on tensile/compression yield strains. The results of this study revealed that bone surrounding dental implants is critically strained in cases when only a partial osseointegration is present and when an implant is loaded by buccolingual forces. In such cases, implants also encounter high stresses. Displacements of partially-osseointegrated implant are significantly larger than those of fully-osseointegrated implants. It can be concluded that the partial osseointegration is a potential risk in terms of implant longevity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Nonlinear dynamics of beam-plasma instability in a finite magnetic field

    NASA Astrophysics Data System (ADS)

    Bogdankevich, I. L.; Goncharov, P. Yu.; Gusein-zade, N. G.; Ignatov, A. M.

    2017-06-01

    The nonlinear dynamics of beam-plasma instability in a finite magnetic field is investigated numerically. In particular, it is shown that decay instability can develop. Special attention is paid to the influence of the beam-plasma coupling factor on the spectral characteristics of a plasma relativistic microwave accelerator (PRMA) at different values of the magnetic field. It is shown that two qualitatively different physical regimes take place at two values of the external magnetic field: B 0 = 4.5 kG (Ω ω B p ) and 20 kG (Ω B ≫ ωp). For B 0 = 4.5 kG, close to the actual experimental value, there exists an optimal value of the gap length between the relativistic electron beam and the plasma (and, accordingly, an optimal value of the coupling factor) at which the PRMA output power increases appreciably, while the noise level decreases.

  16. Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

    PubMed Central

    2015-01-01

    PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578

  17. Moment Inversion of the DPRK Nuclear Tests Using Finite-Difference Three-dimensional Strain Green's Tensors

    NASA Astrophysics Data System (ADS)

    Bao, X.; Shen, Y.; Wang, N.

    2017-12-01

    Accurate estimation of the source moment is important for discriminating underground explosions from earthquakes and other seismic sources. In this study, we invert for the full moment tensors of the recent seismic events (since 2016) at the Democratic People's Republic of Korea (PRRK) Punggye-ri test site. We use waveform data from broadband seismic stations located in China, Korea, and Japan in the inversion. Using a non-staggered-grid, finite-difference algorithm, we calculate the strain Green's tensors (SGT) based on one-dimensional (1D) and three-dimensional (3D) Earth models. Taking advantage of the source-receiver reciprocity, a SGT database pre-calculated and stored for the Punggye-ri test site is used in inversion for the source mechanism of each event. With the source locations estimated from cross-correlation using regional Pn and Pn-coda waveforms, we obtain the optimal source mechanism that best fits synthetics to the observed waveforms of both body and surface waves. The moment solutions of the first three events (2016-01-06, 2016-09-09, and 2017-09-03) show dominant isotropic components, as expected from explosions, though there are also notable non-isotropic components. The last event ( 8 minutes after the mb6.3 explosion in 2017) contained mainly implosive component, suggesting a collapse following the explosion. The solutions from the 3D model can better fit observed waveforms than the corresponding solutions from the 1D model. The uncertainty in the resulting moment solution is influenced by heterogeneities not resolved by the Earth model according to the waveform misfit. Using the moment solutions, we predict the peak ground acceleration at the Punggye-ri test site and compare the prediction with corresponding InSAR and other satellite images.

  18. Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies

    NASA Astrophysics Data System (ADS)

    Gerke, Kirill M.; Vasilyev, Roman V.; Khirevich, Siarhei; Collins, Daniel; Karsanina, Marina V.; Sizonenko, Timofey O.; Korost, Dmitry V.; Lamontagne, Sébastien; Mallants, Dirk

    2018-05-01

    Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be measured directly at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale fluid flow simulations. We introduce the free software Finite-Difference Method Stokes Solver (FDMSS) that solves Stokes equation using a finite-difference method (FDM) directly on voxelized 3D pore geometries (i.e. without meshing). Based on explicit convergence studies, validation on sphere packings with analytically known permeabilities, and comparison against lattice-Boltzmann and other published FDM studies, we conclude that FDMSS provides a computationally efficient and accurate basis for single-phase pore-scale flow simulations. By implementing an efficient parallelization and code optimization scheme, permeability inferences can now be made from 3D images of up to 109 voxels using modern desktop computers. Case studies demonstrate the broad applicability of the FDMSS software for both natural and artificial porous media.

  19. Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were

  20. A Novel Permanent Magnetic Angular Acceleration Sensor

    PubMed Central

    Zhao, Hao; Feng, Hao

    2015-01-01

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. PMID:26151217

  1. K-t GRAPPA-accelerated 4D flow MRI of liver hemodynamics: influence of different acceleration factors on qualitative and quantitative assessment of blood flow.

    PubMed

    Stankovic, Zoran; Fink, Jury; Collins, Jeremy D; Semaan, Edouard; Russe, Maximilian F; Carr, James C; Markl, Michael; Langer, Mathias; Jung, Bernd

    2015-04-01

    We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.

  2. Explicit finite difference predictor and convex corrector with applications to hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Dey, C.; Dey, S. K.

    1983-01-01

    An explicit finite difference scheme consisting of a predictor and a corrector has been developed and applied to solve some hyperbolic partial differential equations (PDEs). The corrector is a convex-type function which is applied at each time level and at each mesh point. It consists of a parameter which may be estimated such that for larger time steps the algorithm should remain stable and generate a fast speed of convergence to the steady-state solution. Some examples have been given.

  3. Parallelization of implicit finite difference schemes in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel

    1990-01-01

    Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.

  4. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.

  5. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a 2-D demonstration. Extensions to 3-D should be straightforward.

  6. Finite-difference numerical simulations of underground explosion cavity decoupling

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Preston, L. A.; Jensen, R. P.

    2012-12-01

    Earth models containing a significant portion of ideal fluid (e.g., air and/or water) are of increasing interest in seismic wave propagation simulations. Examples include a marine model with a thick water layer, and a land model with air overlying a rugged topographic surface. The atmospheric infrasound community is currently interested in coupled seismic-acoustic propagation of low-frequency signals over long ranges (~tens to ~hundreds of kilometers). Also, accurate and efficient numerical treatment of models containing underground air-filled voids (caves, caverns, tunnels, subterranean man-made facilities) is essential. In support of the Source Physics Experiment (SPE) conducted at the Nevada National Security Site (NNSS), we are developing a numerical algorithm for simulating coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite-differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within the fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via a finite-difference operator "order switching" formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Current modeling efforts are oriented toward quantifying the amount of atmospheric infrasound energy generated by various underground seismic sources (explosions and earthquakes). Source depth and orientation, and surface topography play obvious roles. The cavity decoupling problem, where an explosion is detonated within an air-filled void, is of special interest. A point explosion

  7. An Analysis Technique/Automated Tool for Comparing and Tracking Analysis Modes of Different Finite Element Models

    NASA Technical Reports Server (NTRS)

    Towner, Robert L.; Band, Jonathan L.

    2012-01-01

    An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.

  8. Exact solutions for sporadic acceleration of cosmic rays

    NASA Technical Reports Server (NTRS)

    Cowsik, R.

    1985-01-01

    The steady state spectra of cosmic rays which are subject to a sporadic acceleration process, wherein the gain in energy in each encounter is a finite fraction of the particle energy are discussed. They are derived from a mathematical model which includes the possibility of energy dependent leakage of cosmic rays from the galaxy. Comparison with observations allows limits to be placed on the frequency and efficiency of such encounters.

  9. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    In this paper transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  10. GPU accelerated FDTD solver and its application in MRI.

    PubMed

    Chi, J; Liu, F; Jin, J; Mason, D G; Crozier, S

    2010-01-01

    The finite difference time domain (FDTD) method is a popular technique for computational electromagnetics (CEM). The large computational power often required, however, has been a limiting factor for its applications. In this paper, we will present a graphics processing unit (GPU)-based parallel FDTD solver and its successful application to the investigation of a novel B1 shimming scheme for high-field magnetic resonance imaging (MRI). The optimized shimming scheme exhibits considerably improved transmit B(1) profiles. The GPU implementation dramatically shortened the runtime of FDTD simulation of electromagnetic field compared with its CPU counterpart. The acceleration in runtime has made such investigation possible, and will pave the way for other studies of large-scale computational electromagnetic problems in modern MRI which were previously impractical.

  11. Rotordynamic coefficients for labyrinth seals calculated by means of a finite difference technique

    NASA Technical Reports Server (NTRS)

    Nordmann, R.; Weiser, P.

    1989-01-01

    The compressible, turbulent, time dependent and three dimensional flow in a labyrinth seal can be described by the Navier-Stokes equations in conjunction with a turbulence model. Additionally, equations for mass and energy conservation and an equation of state are required. To solve these equations, a perturbation analysis is performed yielding zeroth order equations for centric shaft position and first order equations describing the flow field for small motions around the seal center. For numerical solution a finite difference method is applied to the zeroth and first order equations resulting in leakage and dynamic seal coefficients respectively.

  12. Finite difference time domain analysis of chirped dielectric gratings

    NASA Technical Reports Server (NTRS)

    Hochmuth, Diane H.; Johnson, Eric G.

    1993-01-01

    The finite difference time domain (FDTD) method for solving Maxwell's time-dependent curl equations is accurate, computationally efficient, and straight-forward to implement. Since both time and space derivatives are employed, the propagation of an electromagnetic wave can be treated as an initial-value problem. Second-order central-difference approximations are applied to the space and time derivatives of the electric and magnetic fields providing a discretization of the fields in a volume of space, for a period of time. The solution to this system of equations is stepped through time, thus, simulating the propagation of the incident wave. If the simulation is continued until a steady-state is reached, an appropriate far-field transformation can be applied to the time-domain scattered fields to obtain reflected and transmitted powers. From this information diffraction efficiencies can also be determined. In analyzing the chirped structure, a mesh is applied only to the area immediately around the grating. The size of the mesh is then proportional to the electric size of the grating. Doing this, however, imposes an artificial boundary around the area of interest. An absorbing boundary condition must be applied along the artificial boundary so that the outgoing waves are absorbed as if the boundary were absent. Many such boundary conditions have been developed that give near-perfect absorption. In this analysis, the Mur absorbing boundary conditions are employed. Several grating structures were analyzed using the FDTD method.

  13. Time-Dependent Parabolic Finite Difference Formulation for Harmonic Sound Propagation in a Two-Dimensional Duct with Flow

    NASA Technical Reports Server (NTRS)

    Kreider, Kevin L.; Baumeister, Kenneth J.

    1996-01-01

    An explicit finite difference real time iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for future large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable for a harmonic monochromatic sound field, a parabolic (in time) approximation is introduced to reduce the order of the governing equation. The analysis begins with a harmonic sound source radiating into a quiescent duct. This fully explicit iteration method then calculates stepwise in time to obtain the 'steady state' harmonic solutions of the acoustic field. For stability, applications of conventional impedance boundary conditions requires coupling to explicit hyperbolic difference equations at the boundary. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  14. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motamarri, P.; Nowak, M.R.; Leiter, K.

    2013-11-15

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposedmore » solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system

  15. Effects of variable electrical conductivity and thermal conductivity on unsteady MHD free convection flow past an exponential accelerated inclined plate

    NASA Astrophysics Data System (ADS)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    An analysis is carried out to investigate the effects of variable viscosity, thermal radiation, absorption of radiation and cross diffusion past an inclined exponential accelerated plate under the influence of variable heat and mass transfer. A set of suitable transformations has been used to obtain the non-dimensional coupled governing equations. Explicit finite difference technique has been used to solve the obtained numerical solutions of the present problem. Stability and convergence of the finite difference scheme have been carried out for this problem. Compaq Visual Fortran 6.6a has been used to calculate the numerical results. The effects of various physical parameters on the fluid velocity, temperature, concentration, coefficient of skin friction, rate of heat transfer, rate of mass transfer, streamlines and isotherms on the flow field have been presented graphically and discussed in details.

  16. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    PubMed

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  17. Accelerated Time-Domain Modeling of Electromagnetic Pulse Excitation of Finite-Length Dissipative Conductors over a Ground Plane via Function Fitting and Recursive Convolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Sainath, Kamalesh

    In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a techniquemore » to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank« less

  18. A two-dimensional, finite-difference model of the oxidation of a uranium carbide fuel pellet

    NASA Astrophysics Data System (ADS)

    Shepherd, James; Fairweather, Michael; Hanson, Bruce C.; Heggs, Peter J.

    2015-12-01

    The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used to model the heat and mass transfer processes occurring during the reaction in two dimensions and are coupled to kinetics found in the literature.

  19. Treatment of late time instabilities in finite-difference EMP scattering codes

    NASA Astrophysics Data System (ADS)

    Simpson, L. T.; Holland, R.; Arman, S.

    1982-12-01

    Constraints applicable to a finite difference mesh for solution of Maxwell's equations are defined. The equations are applied in the time domain for computing electromagnetic coupling to complex structures, e.g., rectangular, cylindrical, or spherical. In a spatially varying grid, the amplitude growth of high frequency waves becomes exponential through multiple reflections from the outer boundary in cases of late-time solution. The exponential growth of the numerical noise exceeds the value of the real signal. The correction technique employs an absorbing surface and a radiating boundary, along with tailored selection of the grid mesh size. High frequency noise is removed through use of a low-pass digital filter, a linear least squares fit is made to thy low frequency filtered response, and the original, filtered, and fitted data are merged to preserve the high frequency early-time response.

  20. Wave-vector and polarization dependent impedance model for a hexagonal periodic metasurface exemplified through finite-difference time-domain simulations.

    PubMed

    Ding, Yi S; He, Yang

    2017-08-21

    An isotropic impedance sheet model is proposed for a loop-type hexagonal periodic metasurface. Both frequency and wave-vector dispersion are considered near the resonance frequency. Therefore both the angle and polarization dependences of the metasurface impedance can be properly and simultaneously described in our model. The constitutive relation of this model is transformed into auxiliary differential equations which are integrated into the finite-difference time-domain algorithm. Finally, a finite large metasurface sample under oblique illumination is used to test the model and the algorithm. Our model and algorithm can significantly increase the accuracy of the homogenization methods for modeling periodic metasurfaces.

  1. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for the Convective Wave Equation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Kreider, K. L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  2. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  3. A Rigorous Solution for Finite-State Inflow throughout the Flowfield

    NASA Astrophysics Data System (ADS)

    Fei, Zhongyang

    In this research, the Hseih/Duffy model is extended to all three velocity components of inflow across the rotor disk in a mathematically rigorous way so that it can be used to calculate the inflow below the rotor disk plane. This establishes a complete dynamic inflow model for the entire flow field with finite state method. The derivation is for the case of general skewed angle. The cost of the new method is that one needs to compute the co-states of the inflow equations in the upper hemisphere along with the normal states. Numerical comparisons with exact solutions for the z-component of flow in axial and skewed angle flow demonstrate excellent correlation with closed-form solutions. The simulations also illustrate that the model is valid at both the frequency domain and the time domain. Meanwhile, in order to accelerate the convergence, an optimization of even terms is used to minimize the error in the axial component of the induced velocity in the on and on/off disk region. A novel method for calculating associate Legendre function of the second kind is also developed to solve the problem of divergence of Q¯mn (ieta) for large eta with the iterative method. An application of the new model is also conducted to compute inflow in the wake of a rotor with a finite number of blades. The velocities are plotted at different distances from the rotor disk and are compared with the Glauert prediction for axial flow and wake swirl. In the finite-state model, the angular momentum does not jump instantaneously across the disk, but it does transition rapidly across the disk to correct Glauert value.

  4. A finite-difference method for the variable coefficient Poisson equation on hierarchical Cartesian meshes

    NASA Astrophysics Data System (ADS)

    Raeli, Alice; Bergmann, Michel; Iollo, Angelo

    2018-02-01

    We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations.

  5. Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules

    1999-01-01

    In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.

  6. Finite element analysis of heat generation from different light-polymerization sources during cementation of all-ceramic crowns.

    PubMed

    Tunc, Elif Pak

    2007-06-01

    Exothermic composite resin chemical reactions and visible light generators can produce heat during a restorative polymerization process. These thermal changes in restored teeth may cause pain and irreversible pulpitis. The purpose of this study was to analyze the temperature distribution and heat flow patterns of a crowned mandibular second premolar tooth model using 3 different light-polymerization technologies and a finite element technique. A 2-dimensional finite element model was used to simulate a clinical condition. Heat flow and thermal stress distribution in a tooth during cementation of an all-ceramic crown using 4 commercially available light-polymerization units (LPUs), each with different wavelengths (Elipar TriLight, Elipar Freelight, Apollo 95 E, and ADT 1000 PAC), were investigated. The temperature values were measured at 3, 10, 12, and 40 seconds for each light-polymerizing unit (LPU) at 6 different finite element nodes. Two-dimensional temporal and spatial distribution of the thermal stress within the tooth, including the thermal coefficients and boundary conditions of the dental materials, were obtained and evaluated. The temperature at the nodal points did not exceed 42 degrees C, which is a threshold value for tissue vitality within the recommended operating periods at the dentin and pulp surface for all LPUs, except for Elipar TriLight. In the case of Elipar TriLlight, the temperatures at the dentin and pulp surfaces were 47 degrees C and 42 degrees C, respectively. When the light-polymerization units were used according to the manufacturers' operating procedures and without prolonged operating periods, with the exception of Elipar TriLight, the investigated LPUs did not produce significant heat. However, when the operating periods were prolonged, unacceptable temperature increases were observed, especially with the high-intensity LPUs.

  7. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1979-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent.

  8. A Finite Difference Method for Modeling Migration of Impurities in Multilayer Systems

    NASA Astrophysics Data System (ADS)

    Tosa, V.; Kovacs, Katalin; Mercea, P.; Piringer, O.

    2008-09-01

    A finite difference method to solve the one-dimensional diffusion of impurities in a multilayer system was developed for the special case in which a partition coefficient K impose a ratio of the concentrations at the interface between two adiacent layers. The fictitious point method was applied to derive the algebraic equations for the mesh points at the interface, while for the non-uniform mesh points within the layers a combined method was used. The method was tested and then applied to calculate migration of impurities from multilayer systems into liquids or solids samples, in migration experiments performed for quality testing purposes. An application was developed in the field of impurities migrations from multilayer plastic packagings into food, a problem of increasing importance in food industry.

  9. Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skolski, J. Z. P., E-mail: j.z.p.skolski@utwente.nl; Vincenc Obona, J.; Römer, G. R. B. E.

    2014-03-14

    A model predicting the formation of laser-induced periodic surface structures (LIPSSs) is presented. That is, the finite-difference time domain method is used to study the interaction of electromagnetic fields with rough surfaces. In this approach, the rough surface is modified by “ablation after each laser pulse,” according to the absorbed energy profile, in order to account for inter-pulse feedback mechanisms. LIPSSs with a periodicity significantly smaller than the laser wavelength are found to “grow” either parallel or orthogonal to the laser polarization. The change in orientation and periodicity follow from the model. LIPSSs with a periodicity larger than the wavelengthmore » of the laser radiation and complex superimposed LIPSS patterns are also predicted by the model.« less

  10. A mass filter based on an accelerating traveling wave.

    PubMed

    Wiedenbeck, Michael; Kasemset, Bodin; Kasper, Manfred

    2008-01-01

    We describe a novel mass filtering concept based on the acceleration of a pulsed ion beam through a stack of electrostatic plates. A precisely controlled traveling wave generated within such an ion guide will induce a mass-selective ion acceleration, with mass separation ultimately accomplished via a simple energy-filtering system. Crucial for successful filtering is that the velocity with which the traveling wave passes through the ion guide must be dynamically controlled in order to accommodate the acceleration of the target ion species. Mass selection is determined by the velocity and acceleration with which the wave traverses the ion guide, whereby the target species will acquire a higher kinetic energy than all other lighter as well as heaver species. Finite element simulations of this design demonstrate that for small masses a mass resolution M/DeltaM approximately 1000 can be achieved within an electrode stack containing as few as 20 plates. Some of the possible advantages and drawbacks which distinguish this concept from established mass spectrometric technologies are discussed.

  11. Propagation and stability of wavelike solutions of finite difference equations with variable coefficients

    NASA Technical Reports Server (NTRS)

    Giles, M. B.; Thompkins, W. T., Jr.

    1985-01-01

    The propagation and dissipation of wavelike solutions to finite difference equations is analyzed on the basis of an asymptotic approach in which a wave solution is expressed as a product of a complex amplitude and an oscillatory phase function whose frequency and wavenumber may also be complex. An asymptotic expansion leads to a local dispersion relation for wavenumber and frequency; the first-order terms produce an equation for the amplitude in which the local group velocity appears as the convection velocity of the amplitude. Equations for the motion of wavepackets and their interaction at boundaries are derived, and a global stability analysis is carried out.

  12. One-dimensional transient finite difference model of an operational salinity gradient solar pond

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Golding, Peter

    1992-01-01

    This paper describes the modeling approach used to simulate the transient behavior of a salinity gradient solar pond. A system of finite difference equations are used to generate the time dependent temperature and salinity profiles within the pond. The stability of the pond, as determined by the capacity of the resulting salinity profile to suppress thermal convection within the primary gradient region of the pond, is continually monitored and when necessary adjustments are made to the thickness of the gradient zone. Results of the model are then compared to measurements taken during two representative seasonal periods at the University of Texas at El Paso's (UTEP's) research solar pond.

  13. Simulation of the turbulent Rayleigh-Benard problem using a spectral/finite difference technique

    NASA Technical Reports Server (NTRS)

    Eidson, T. M.; Hussaini, M. Y.; Zang, T. A.

    1986-01-01

    The three-dimensional, incompressible Navier-Stokes and energy equations with the Bousinesq assumption have been directly simulated at a Rayleigh number of 3.8 x 10 to the 5th power and a Prandtl number of 0.76. In the vertical direction, wall boundaries were used and in the horizontal, periodic boundary conditions were used. A spectral/finite difference numerical method was used to simulate the flow. The flow at these conditions is turbulent and a sufficiently fine mesh was used to capture all relevant flow scales. The results of the simulation are compared to experimental data to justify the conclusion that the small scale motion is adequately resolved.

  14. Finite-difference solution for turbulent swirling compressible flow in axisymmetric ducts with struts

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1974-01-01

    A finite-difference procedure for computing the turbulent, swirling, compressible flow in axisymmetric ducts is described. Arbitrary distributions of heat and mass transfer at the boundaries can be treated, and the effects of struts, inlet guide vanes, and flow straightening vanes can be calculated. The calculation procedure is programmed in FORTRAN 4 and has operated successfully on the UNIVAC 1108, IBM 360, and CDC 6600 computers. The analysis which forms the basis of the procedure, a detailed description of the computer program, and the input/output formats are presented. The results of sample calculations performed with the computer program are compared with experimental data.

  15. Evaluation of stress distribution of implant-retained mandibular overdenture with different vertical restorative spaces: A finite element analysis

    PubMed Central

    Ebadian, Behnaz; Farzin, Mahmoud; Talebi, Saeid; Khodaeian, Niloufar

    2012-01-01

    Background: Available restorative space and bar height is an important factor in stress distribution of implant-supported overdentures. The purpose of this study was to evaluate the effect of different vertical restorative spaces and different bar heights on the stress distribution around implants by 3D finite element analysis. Materials and Methods: 3D finite element models were developed from mandibular overdentures with two implants in the interforaminal region. In these models, four different bar heights from gingival crest (0.5, 1, 1.5, 2 mm) with 15 mm occlusal plane height and three different occlusal plane heights from gingival crest (9, 12, 15 mm) with 2 mm bar height were analyzed. A vertical unilateral and a bilateral load of 150 N were applied to the central occlusal fossa of the first molar and the stress of bone around implant was analyzed by finite element analysis. Results: By increasing vertical restorative space, the maximum stress values around implants were found to be decreased in unilateral loading models but slightly increased in bilateral loading cases. By increasing bar height from gingival crest, the maximum stress values around implants were found to be increased in unilateral loading models but slightly decreased in bilateral loading cases. In unilateral loading models, maximum stress was found in a model with 9 mm occlusal plane height and 1.5 mm bar height (6.254 MPa), but in bilateral loading cases, maximum stress was found in a model with 15 mm occlusal plane height and 0.5 mm bar height (3.482 MPa). Conclusion: The reduction of bar height and increase in the thickness of acrylic resin base in implant-supported overdentures are biomechanically favorable and may result in less stress in periimplant bone. PMID:23559952

  16. Inviscid linear stability analysis of two vertical columns of different densities in a gravitational acceleration field

    DOE PAGES

    Prathama, Aditya Heru; Pantano, Carlos

    2017-08-09

    Here, we study the inviscid linear stability of a vertical interface separating two fluids of different densities and subject to a gravitational acceleration field parallel to the interface. In this arrangement, the two free streams are constantly accelerated, which means that the linear stability analysis is not amenable to Fourier or Laplace solution in time. Instead, we derive the equations analytically by the initial-value problem method and express the solution in terms of the well-known parabolic cylinder function. The results, which can be classified as an accelerating Kelvin–Helmholtz configuration, show that even in the presence of surface tension, the interfacemore » is unconditionally unstable at all wavemodes. This is a consequence of the ever increasing momentum of the free streams, as gravity accelerates them indefinitely. The instability can be shown to grow as the exponential of a quadratic function of time.« less

  17. Improved finite-difference computation of the van der Waals force: One-dimensional case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Fabrizio

    2009-10-15

    We present an improved demonstration of the calculation of Casimir forces in one-dimensional systems based on the recently proposed numerical imaginary frequency Green's function computation approach. The dispersion force on two thick lossy dielectric slabs separated by an empty gap and placed within a perfectly conducting cavity is obtained from the Green's function of the modified Helmholtz equation by means of an ordinary finite-difference method. In order to demonstrate the possibility to develop algorithms to explore complex geometries in two and three dimensions to higher order in the mesh spacing, we generalize existing classical electromagnetism algebraic methods to generate themore » difference equations for dielectric boundaries not coinciding with any grid points. Diagnostic tests are presented to monitor the accuracy of our implementation of the method and follow-up applications in higher dimensions are introduced.« less

  18. High-order flux correction/finite difference schemes for strand grids

    NASA Astrophysics Data System (ADS)

    Katz, Aaron; Work, Dalon

    2015-02-01

    A novel high-order method combining unstructured flux correction along body surfaces and high-order finite differences normal to surfaces is formulated for unsteady viscous flows on strand grids. The flux correction algorithm is applied in each unstructured layer of the strand grid, and the layers are then coupled together via a source term containing derivatives in the strand direction. Strand-direction derivatives are approximated to high-order via summation-by-parts operators for first derivatives and second derivatives with variable coefficients. We show how this procedure allows for the proper truncation error canceling properties required for the flux correction scheme. The resulting scheme possesses third-order design accuracy, but often exhibits fourth-order accuracy when higher-order derivatives are employed in the strand direction, especially for highly viscous flows. We prove discrete conservation for the new scheme and time stability in the absence of the flux correction terms. Results in two dimensions are presented that demonstrate improvements in accuracy with minimal computational and algorithmic overhead over traditional second-order algorithms.

  19. Seakeeping with the semi-Lagrangian particle finite element method

    NASA Astrophysics Data System (ADS)

    Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio

    2017-07-01

    The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.

  20. A finite difference method for off-fault plasticity throughout the earthquake cycle

    NASA Astrophysics Data System (ADS)

    Erickson, Brittany A.; Dunham, Eric M.; Khosravifar, Arash

    2017-12-01

    We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiation-damping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor and the return-mapping algorithm. Solutions are verified by convergence tests and comparison to a finite element solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magnitude and off-fault extent of plastic strain that develops over many ruptures. If hardening is included, plastic strain saturates after the first event and the response during subsequent ruptures is effectively elastic. For viscoplasticity without hardening, however, successive ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the shallow sub-surface is diminished compared to slip accumulated at depth during interseismic loading. The evolution of this slip deficit with each subsequent event, however, is dictated by the plasticity model. Integration of the off-fault plastic strain from the viscoplastic model reveals that a significant amount of tectonic offset is accommodated by inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget).

  1. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations

    NASA Astrophysics Data System (ADS)

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-01

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  2. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations.

    PubMed

    Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin

    2016-04-07

    Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.

  3. Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Bray, Matthew G.

    The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through

  4. An in situ Comparison of Electron Acceleration at Collisionless Shocks under Differing Upstream Magnetic Field Orientations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, A.; Dougherty, M. K.; Sulaiman, A. H.

    A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturn’s bow shock have revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at amore » quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream–downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ∼100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures.« less

  5. THREE-POINT BACKWARD FINITE DIFFERENCE METHOD FOR SOLVING A SYSTEM OF MIXED HYPERBOLIC-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. (R825549C019)

    EPA Science Inventory

    A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...

  6. Effective closed form mathematical approach to determine kinetic constants of NR vulcanized with sulphur and accelerators at different concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milani, Gabriele, E-mail: milani@stru.polimi.it, E-mail: gabriele.milani@polimi.it; Hanel, Thomas; Donetti, Raffaella

    2015-03-10

    The basic reaction scheme due to Han and co-workers for NR vulcanized with sulphur is adopted and modified taking into account the single contributions of the different accelerators, focusing in particular on some experimental data ad hoc obtained at Pirelli’s laboratories, where NR was vulcanized at different temperatures (from 150 to 180 °C) and concentrations of sulphur, using TBBS and DPG in the mixture as co-agents. Typically, the chain reactions are initiated by the formation of macro-compounds that are responsible of the formation of the unmatured crosslinked polymer. This first reaction depends on the reciprocal concentrations of all components andmore » their chemical nature. In presence of two accelerators, it was considered that the reactions between each single accelerator and the NR raw material occur in parallel, making the reasonable assumption that there are no mutual reactions between the two accelerators. From the kinetic scheme adopted, a closed form solution was found for the crosslink density, with the only limitation that the induction period is excluded from computations. Even kinetic constants are evaluated in closed form, avoiding a numerically demanding least-squares best fitting on rheometer experimental data. Two series of experiments available, relying into rheometer curves at different temperatures and different concentrations of sulphur and accelerator, are utilized to evaluate the fitting capabilities of the mathematical model. Very good agreement between numerical output and experimental data is experienced in all cases analysed.« less

  7. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1983-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. Previously announced in STAR as N80-25055

  8. Comparison of Accuracy and Performance for Lattice Boltzmann and Finite Difference Simulations of Steady Viscous Flow

    NASA Astrophysics Data System (ADS)

    Noble, David R.; Georgiadis, John G.; Buckius, Richard O.

    1996-07-01

    The lattice Boltzmann method (LBM) is used to simulate flow in an infinite periodic array of octagonal cylinders. Results are compared with those obtained by a finite difference (FD) simulation solved in terms of streamfunction and vorticity using an alternating direction implicit scheme. Computed velocity profiles are compared along lines common to both the lattice Boltzmann and finite difference grids. Along all such slices, both streamwise and transverse velocity predictions agree to within 05% of the average streamwise velocity. The local shear on the surface of the cylinders also compares well, with the only deviations occurring in the vicinity of the corners of the cylinders, where the slope of the shear is discontinuous. When a constant dimensionless relaxation time is maintained, LBM exhibits the same convergence behaviour as the FD algorithm, with the time step increasing as the square of the grid size. By adjusting the relaxation time such that a constant Mach number is achieved, the time step of LBM varies linearly with the grid size. The efficiency of LBM on the CM-5 parallel computer at the National Center for Supercomputing Applications (NCSA) is evaluated by examining each part of the algorithm. Overall, a speed of 139 GFLOPS is obtained using 512 processors for a domain size of 2176×2176.

  9. Estimating finite-population reproductive numbers in heterogeneous populations.

    PubMed

    Keegan, Lindsay T; Dushoff, Jonathan

    2016-05-21

    The basic reproductive number, R0, is one of the most important epidemiological quantities. R0 provides a threshold for elimination and determines when a disease can spread or when a disease will die out. Classically, R0 is calculated assuming an infinite population of identical hosts. Previous work has shown that heterogeneity in the host mixing rate increases R0 in an infinite population. However, it has been suggested that in a finite population, heterogeneity in the mixing rate may actually decrease the finite-population reproductive numbers. Here, we outline a framework for discussing different types of heterogeneity in disease parameters, and how these affect disease spread and control. We calculate "finite-population reproductive numbers" with different types of heterogeneity, and show that in a finite population, heterogeneity has complicated effects on the reproductive number. We find that simple heterogeneity decreases the finite-population reproductive number, whereas heterogeneity in the intrinsic mixing rate (which affects both infectiousness and susceptibility) increases the finite-population reproductive number when R0 is small relative to the size of the population and decreases the finite-population reproductive number when R0 is large relative to the size of the population. Although heterogeneity has complicated effects on the finite-population reproductive numbers, its implications for control are straightforward: when R0 is large relative to the size of the population, heterogeneity decreases the finite-population reproductive numbers, making disease control or elimination easier than predicted by R0. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A conservative finite difference algorithm for the unsteady transonic potential equation in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.

    1982-01-01

    An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.

  11. Distribution of the background gas in the MITICA accelerator

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Dal Bello, S.; Serianni, G.; Sonato, P.

    2013-02-01

    MITICA is the ITER neutral beam test facility to be built in Padova for the generation of a 40A D- ion beam with a 16×5×16 array of 1280 beamlets accelerated to 1MV. The background gas pressure distribution and the particle flows inside MITICA accelerator are critical aspects for stripping losses, generation of secondary particles and beam non-uniformities. To keep the stripping losses in the extraction and acceleration stages reasonably low, the source pressure should be 0.3 Pa or less. The gas flow in MITICA accelerator is being studied using a 3D Finite Element code, named Avocado. The gas-wall interaction model is based on the cosine law, and the whole vacuum system geometry is represented by a view factor matrix based on surface discretization and gas property definitions. Pressure distribution and mutual fluxes are then solved linearly. In this paper the result of a numerical simulation is presented, showing the steady-state pressure distribution inside the accelerator when gas enters the system at room temperature. The accelerator model is limited to a horizontal slice 400 mm high (1/4 of the accelerator height). The pressure profile at solid walls and through the beamlet axis is obtained, allowing the evaluation and the discussion of the background gas distribution and nonuniformity. The particle flux at the inlet and outlet boundaries (namely the grounded grid apertures and the lateral conductances respectively) will be discussed.

  12. A fourth order accurate finite difference scheme for the computation of elastic waves

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Jordan, K. E.; Lemesurier, B. J.; Turkel, E.

    1986-01-01

    A finite difference for elastic waves is introduced. The model is based on the first order system of equations for the velocities and stresses. The differencing is fourth order accurate on the spatial derivatives and second order accurate in time. The model is tested on a series of examples including the Lamb problem, scattering from plane interf aces and scattering from a fluid-elastic interface. The scheme is shown to be effective for these problems. The accuracy and stability is insensitive to the Poisson ratio. For the class of problems considered here it is found that the fourth order scheme requires for two-thirds to one-half the resolution of a typical second order scheme to give comparable accuracy.

  13. Multi-Dimensional High Order Essentially Non-Oscillatory Finite Difference Methods in Generalized Coordinates

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1998-01-01

    This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.

  14. Analysis of multi lobe journal bearings with surface roughness using finite difference method

    NASA Astrophysics Data System (ADS)

    PhaniRaja Kumar, K.; Bhaskar, SUdaya; Manzoor Hussain, M.

    2018-04-01

    Multi lobe journal bearings are used for high operating speeds and high loads in machines. In this paper symmetrical multi lobe journal bearings are analyzed to find out the effect of surface roughnessduring non linear loading. Using the fourth order RungeKutta method, time transient analysis was performed to calculate and plot the journal centre trajectories. Flow factor method is used to evaluate the roughness and the finite difference method (FDM) is used to predict the pressure distribution over the bearing surface. The Transient analysis is done on the multi lobe journal bearings for threedifferent surface roughness orientations. Longitudinal surface roughness is more effective when compared with isotopic and traverse surface roughness.

  15. Unsteady solute-transport simulation in streamflow using a finite-difference model

    USGS Publications Warehouse

    Land, Larry F.

    1978-01-01

    This report documents a rather simple, general purpose, one-dimensional, one-parameter, mass-transport model for field use. The model assumes a well-mixed conservative solute that may be coming from an unsteady source and is moving in unsteady streamflow. The quantity of solute being transported is in the units of concentration. Results are reported as such. An implicit finite-difference technique is used to solve the mass transport equation. It consists of creating a tridiagonal matrix and using the Thomas algorithm to solve the matrix for the unknown concentrations at the new time step. The computer program pesented is designed to compute the concentration of a water-quality constituent at any point and at any preselected time in a one-dimensional stream. The model is driven by the inflowing concentration of solute at the upstream boundary and is influenced by the solute entering the stream from tributaries and lateral ground-water inflow and from a source or sink. (Woodard-USGS)

  16. Evidence for a Finite-Temperature Insulator.

    PubMed

    Ovadia, M; Kalok, D; Tamir, I; Mitra, S; Sacépé, B; Shahar, D

    2015-08-27

    In superconductors the zero-resistance current-flow is protected from dissipation at finite temperatures (T) by virtue of the short-circuit condition maintained by the electrons that remain in the condensed state. The recently suggested finite-T insulator and the "superinsulating" phase are different because any residual mechanism of conduction will eventually become dominant as the finite-T insulator sets-in. If the residual conduction is small it may be possible to observe the transition to these intriguing states. We show that the conductivity of the high magnetic-field insulator terminating superconductivity in amorphous indium-oxide exhibits an abrupt drop, and seem to approach a zero conductance at T < 0.04 K. We discuss our results in the light of theories that lead to a finite-T insulator.

  17. Single particles accelerate final stages of capillary break-up

    NASA Astrophysics Data System (ADS)

    Lindner, Anke; Fiscina, Jorge Eduardo; Wagner, Christian

    2015-06-01

    Droplet formation of suspensions is present in many industrial and technological processes such as coating and food engineering. Whilst the finite-time singularity of the minimum neck diameter in capillary break-up of simple liquids can be described by well-known self-similarity solutions, the pinching of non-Brownian suspension depends in a complex way on the particle dynamics in the thinning thread. Here we focus on the very dilute regime where the filament contains only isolated beads to identify the physical mechanisms leading to the pronounced acceleration of the filament thinning observed. This accelerated regime is characterized by an asymmetric shape of the filament with an enhanced curvature that depends on the size and the spatial distribution of the particles within the capillary thread.

  18. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less

  19. A two-dimensional, finite-difference model of the high plains aquifer in southern South Dakota

    USGS Publications Warehouse

    Kolm, K.E.; Case, H. L.

    1983-01-01

    The High Plains aquifer is the principal source of water for irrigation, industry, municipalities, and domestic use in south-central South Dakota. The aquifer, composed of upper sandstone units of the Arikaree Formation, and the overlying Ogallala and Sand Hills Formations, was simulated using a two-dimensional, finite-difference computer model. The maximum difference between simulated and measured potentiometric heads was less than 60 feet (1- to 4-percent error). Two-thirds of the simulated potentiometric heads were within 26 feet of the measured values (3-percent error). The estimated saturated thickness, computed from simulated potentiometric heads, was within 25-percent error of the known saturated thickness for 95 percent of the study area. (USGS)

  20. A spectral-finite difference solution of the Navier-Stokes equations in three dimensions

    NASA Astrophysics Data System (ADS)

    Alfonsi, Giancarlo; Passoni, Giuseppe; Pancaldo, Lea; Zampaglione, Domenico

    1998-07-01

    A new computational code for the numerical integration of the three-dimensional Navier-Stokes equations in their non-dimensional velocity-pressure formulation is presented. The system of non-linear partial differential equations governing the time-dependent flow of a viscous incompressible fluid in a channel is managed by means of a mixed spectral-finite difference method, in which different numerical techniques are applied: Fourier decomposition is used along the homogeneous directions, second-order Crank-Nicolson algorithms are employed for the spatial derivatives in the direction orthogonal to the solid walls and a fourth-order Runge-Kutta procedure is implemented for both the calculation of the convective term and the time advancement. The pressure problem, cast in the Helmholtz form, is solved with the use of a cyclic reduction procedure. No-slip boundary conditions are used at the walls of the channel and cyclic conditions are imposed at the other boundaries of the computing domain.Results are provided for different values of the Reynolds number at several time steps of integration and are compared with results obtained by other authors.

  1. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  2. A two-dimensional finite-difference solution for the temperature distribution in a radial gas turbine guide vane blade

    NASA Technical Reports Server (NTRS)

    Hosny, W. M.; Tabakoff, W.

    1975-01-01

    A two-dimensional finite difference numerical technique is presented to determine the temperature distribution in a solid blade of a radial guide vane. A computer program is written in Fortran IV for IBM 370/165 computer. The computer results obtained from these programs have a similar behavior and trend as those obtained by experimental results.

  3. An implicit finite-difference solution to the viscous shock layer, including the effects of radiation and strong blowing

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.; Smith, G. L.; Perkins, J. N.

    1972-01-01

    An implicit finite-difference scheme is developed for the fully coupled solution of the viscous, radiating stagnation-streamline equations, including strong blowing. Solutions are presented for both air injection and injection of carbon-phenolic ablation products into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative-transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized in the study. With minimum number of assumptions for the initially unknown parameters and profile distributions, convergent solutions to the full stagnation-line equations are rapidly obtained by a method of successive approximations. Damping of selected profiles is required to aid convergence of the solutions for massive blowing. It is shown that certain finite-difference approximations to the governing differential equations stabilize and improve the solutions. Detailed comparisons are made with the numerical results of previous investigations. Results of the present study indicate lower radiative heat fluxes at the wall for carbonphenolic ablation than previously predicted.

  4. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill

    PubMed Central

    Van Caekenberghe, Ine; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-01-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level

  5. Finite element simulation of structural performance on flexible pavements with stabilized base/treated subbase materials under accelerated loading.

    DOT National Transportation Integrated Search

    2011-12-01

    Accelerated pavement testing (APT) has been increasingly used by state highway agencies in recent years for evaluating pavement structures and/or materials. However, running an APT experiment is expensive. It requires costly accelerated loading devic...

  6. A review of hybrid implicit explicit finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Chen, Juan

    2018-06-01

    The finite-difference time-domain (FDTD) method has been extensively used to simulate varieties of electromagnetic interaction problems. However, because of its Courant-Friedrich-Levy (CFL) condition, the maximum time step size of this method is limited by the minimum size of cell used in the computational domain. So the FDTD method is inefficient to simulate the electromagnetic problems which have very fine structures. To deal with this problem, the Hybrid Implicit Explicit (HIE)-FDTD method is developed. The HIE-FDTD method uses the hybrid implicit explicit difference in the direction with fine structures to avoid the confinement of the fine spatial mesh on the time step size. So this method has much higher computational efficiency than the FDTD method, and is extremely useful for the problems which have fine structures in one direction. In this paper, the basic formulations, time stability condition and dispersion error of the HIE-FDTD method are presented. The implementations of several boundary conditions, including the connect boundary, absorbing boundary and periodic boundary are described, then some applications and important developments of this method are provided. The goal of this paper is to provide an historical overview and future prospects of the HIE-FDTD method.

  7. Finite-Difference Time-Domain Analysis of Tapered Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Ali, M. I. Md; Sanusidin, S. N.; Yusof, M. H. M.

    2018-03-01

    This paper brief about the simulation of tapered photonic crystal fiber (PCF) LMA-8 single-mode type based on correlation of scattering pattern at wavelength of 1.55 μm, analyzation of transmission spectrum at wavelength over the range of 1.0 until 2.5 μm and correlation of transmission spectrum with the refractive index change in photonic crystal holes with respect to taper size of 0.1 until 1.0 using Optiwave simulation software. The main objective is to simulate using Finite-Difference Time-Domain (FDTD) technique of tapered LMA-8 PCF and for sensing application by improving the capabilities of PCF without collapsing the crystal holes. The types of FDTD techniques used are scattering pattern and transverse transmission and principal component analysis (PCA) used as a mathematical tool to model the data obtained by MathCad software. The simulation results showed that there is no obvious correlation of scattering pattern at a wavelength of 1.55 μm, a correlation obtained between taper sizes with a transverse transmission and there is a parabolic relationship between the refractive index changes inside the crystal structure.

  8. A magnetorheological haptic cue accelerator for manual transmission vehicles

    NASA Astrophysics Data System (ADS)

    Han, Young-Min; Noh, Kyung-Wook; Lee, Yang-Sub; Choi, Seung-Bok

    2010-07-01

    This paper proposes a new haptic cue function for manual transmission vehicles to achieve optimal gear shifting. This function is implemented on the accelerator pedal by utilizing a magnetorheological (MR) brake mechanism. By combining the haptic cue function with the accelerator pedal, the proposed haptic cue device can transmit the optimal moment of gear shifting for manual transmission to a driver without requiring the driver's visual attention. As a first step to achieve this goal, a MR fluid-based haptic device is devised to enable rotary motion of the accelerator pedal. Taking into account spatial limitations, the design parameters are optimally determined using finite element analysis to maximize the relative control torque. The proposed haptic cue device is then manufactured and its field-dependent torque and time response are experimentally evaluated. Then the manufactured MR haptic cue device is integrated with the accelerator pedal. A simple virtual vehicle emulating the operation of the engine of a passenger vehicle is constructed and put into communication with the haptic cue device. A feed-forward torque control algorithm for the haptic cue is formulated and control performances are experimentally evaluated and presented in the time domain.

  9. Finite-element approach to Brownian dynamics of polymers.

    PubMed

    Cyron, Christian J; Wall, Wolfgang A

    2009-12-01

    In the last decades simulation tools for Brownian dynamics of polymers have attracted more and more interest. Such simulation tools have been applied to a large variety of problems and accelerated the scientific progress significantly. However, the currently most frequently used explicit bead models exhibit severe limitations, especially with respect to time step size, the necessity of artificial constraints and the lack of a sound mathematical foundation. Here we present a framework for simulations of Brownian polymer dynamics based on the finite-element method. This approach allows simulating a wide range of physical phenomena at a highly attractive computational cost on the basis of a far-developed mathematical background.

  10. Finite-difference simulation of transonic separated flow using a full potential boundary layer interaction approach

    NASA Technical Reports Server (NTRS)

    Van Dalsem, W. R.; Steger, J. L.

    1983-01-01

    A new, fast, direct-inverse, finite-difference boundary-layer code has been developed and coupled with a full-potential transonic airfoil analysis code via new inviscid-viscous interaction algorithms. The resulting code has been used to calculate transonic separated flows. The results are in good agreement with Navier-Stokes calculations and experimental data. Solutions are obtained in considerably less computer time than Navier-Stokes solutions of equal resolution. Because efficient inviscid and viscous algorithms are used, it is expected this code will also compare favorably with other codes of its type as they become available.

  11. New way for determining electron energy levels in quantum dots arrays using finite difference method

    NASA Astrophysics Data System (ADS)

    Dujardin, F.; Assaid, E.; Feddi, E.

    2018-06-01

    Electronic states are investigated in quantum dots arrays, depending on the type of cubic Bravais lattice (primitive, body centered or face centered) according to which the dots are arranged, the size of the dots and the interdot distance. It is shown that the ground state energy level can undergo significant variations when these parameters are modified. The results were obtained by means of finite difference method which has proved to be easily adaptable, efficient and precise. The symmetry properties of the lattice have been used to reduce the size of the Hamiltonian matrix.

  12. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes

    NASA Astrophysics Data System (ADS)

    Don, Wai-Sun; Borges, Rafael

    2013-10-01

    In the reconstruction step of (2r-1) order weighted essentially non-oscillatory conservative finite difference schemes (WENO) for solving hyperbolic conservation laws, nonlinear weights αk and ωk, such as the WENO-JS weights by Jiang et al. and the WENO-Z weights by Borges et al., are designed to recover the formal (2r-1) order (optimal order) of the upwinded central finite difference scheme when the solution is sufficiently smooth. The smoothness of the solution is determined by the lower order local smoothness indicators βk in each substencil. These nonlinear weight formulations share two important free parameters in common: the power p, which controls the amount of numerical dissipation, and the sensitivity ε, which is added to βk to avoid a division by zero in the denominator of αk. However, ε also plays a role affecting the order of accuracy of WENO schemes, especially in the presence of critical points. It was recently shown that, for any design order (2r-1), ε should be of Ω(Δx2) (Ω(Δxm) means that ε⩾CΔxm for some C independent of Δx, as Δx→0) for the WENO-JS scheme to achieve the optimal order, regardless of critical points. In this paper, we derive an alternative proof of the sufficient condition using special properties of βk. Moreover, it is unknown if the WENO-Z scheme should obey the same condition on ε. Here, using same special properties of βk, we prove that in fact the optimal order of the WENO-Z scheme can be guaranteed with a much weaker condition ε=Ω(Δxm), where m(r,p)⩾2 is the optimal sensitivity order, regardless of critical points. Both theoretical results are confirmed numerically on smooth functions with arbitrary order of critical points. This is a highly desirable feature, as illustrated with the Lax problem and the Mach 3 shock-density wave interaction of one dimensional Euler equations, for a smaller ε allows a better essentially non-oscillatory shock capturing as it does not over-dominate over the size of

  13. Parallel processing in finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1987-01-01

    A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).

  14. Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique

    NASA Technical Reports Server (NTRS)

    Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.

    2003-01-01

    The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.

  15. Lower Arm Muscle Activation during Indirect-Localized Vibration: The Influence of Skill Levels When Applying Different Acceleration Loads.

    PubMed

    Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M; Migliaccio, Gian M; Grgantov, Zoran; Ardigò, Luca P

    2016-01-01

    We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads.

  16. Lower Arm Muscle Activation during Indirect-Localized Vibration: The Influence of Skill Levels When Applying Different Acceleration Loads

    PubMed Central

    Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M.; Migliaccio, Gian M.; Grgantov, Zoran; Ardigò, Luca P.

    2016-01-01

    We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P < 0.05), with the exception of flexor carpi radialis (at low acceleration load, P > 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P < 0.05), with the exception of flexor digitorum superficialis (P > 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads. PMID:27378948

  17. A Non-Dissipative Staggered Fourth-Order Accurate Explicit Finite Difference Scheme for the Time-Domain Maxwell's Equations

    NASA Technical Reports Server (NTRS)

    Yefet, Amir; Petropoulos, Peter G.

    1999-01-01

    We consider a divergence-free non-dissipative fourth-order explicit staggered finite difference scheme for the hyperbolic Maxwell's equations. Special one-sided difference operators are derived in order to implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not aligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.

  18. Finite-difference time-domain modeling of transient infrasonic wavefields excited by volcanic explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Lees, J. M.

    2011-03-01

    Numerical modeling of waveform diffractions along the rim of a volcano vent shows high correlation to observed explosion signals at Karymsky Volcano, Kamchatka, Russia. The finite difference modeling assumed a gaussian source time function and an axisymmetric geometry. A clear demonstration of the significant distortion of infrasonic wavefronts was caused by diffraction at the vent rim edge. Data collected at Karymsky in 1997 and 1998 were compared to synthetic waveforms and variations of vent geometry were determined via grid search. Karymsky exhibited a wide range of variation in infrasonic waveforms, well explained by the diffraction, and modeled as changing vent geometry. Rim diffraction of volcanic infrasound is shown to be significant and must be accounted for when interpreting source physics from acoustic observations.

  19. Shock capturing finite difference algorithms for supersonic flow past fighter and missile type configurations

    NASA Technical Reports Server (NTRS)

    Osher, S.

    1984-01-01

    The construction of a reliable, shock capturing finite difference method to solve the Euler equations for inviscid, supersonic flow past fighter and missile type configurations is highly desirable. The numerical method must have a firm theoretical foundation and must be robust and efficient. It should be able to treat subsonic pockets in a predominantly supersonic flow. The method must also be easily applicable to the complex topologies of the aerodynamic configuration under consideration. The ongoing approach to this task is described and for steady supersonic flows is presented. This scheme is the basic numerical method. Results of work obtained during previous years are presented.

  20. The use of the Finite Element method for the earthquakes modelling in different geodynamic environments

    NASA Astrophysics Data System (ADS)

    Castaldo, Raffaele; Tizzani, Pietro

    2016-04-01

    Many numerical models have been developed to simulate the deformation and stress changes associated to the faulting process. This aspect is an important topic in fracture mechanism. In the proposed study, we investigate the impact of the deep fault geometry and tectonic setting on the co-seismic ground deformation pattern associated to different earthquake phenomena. We exploit the impact of the structural-geological data in Finite Element environment through an optimization procedure. In this framework, we model the failure processes in a physical mechanical scenario to evaluate the kinematics associated to the Mw 6.1 L'Aquila 2009 earthquake (Italy), the Mw 5.9 Ferrara and Mw 5.8 Mirandola 2012 earthquake (Italy) and the Mw 8.3 Gorkha 2015 earthquake (Nepal). These seismic events are representative of different tectonic scenario: the normal, the reverse and thrust faulting processes, respectively. In order to simulate the kinematic of the analyzed natural phenomena, we assume, under the plane stress approximation (is defined to be a state of stress in which the normal stress, sz, and the shear stress sxz and syz, directed perpendicular to x-y plane are assumed to be zero), the linear elastic behavior of the involved media. The performed finite element procedure consist of through two stages: (i) compacting under the weight of the rock successions (gravity loading), the deformation model reaches a stable equilibrium; (ii) the co-seismic stage simulates, through a distributed slip along the active fault, the released stresses. To constrain the models solution, we exploit the DInSAR deformation velocity maps retrieved by satellite data acquired by old and new generation sensors, as ENVISAT, RADARSAT-2 and SENTINEL 1A, encompassing the studied earthquakes. More specifically, we first generate 2D several forward mechanical models, then, we compare these with the recorded ground deformation fields, in order to select the best boundaries setting and parameters. Finally

  1. Finite T spectral function of a single carrier injected into an Ising chain: a comparison of 3 different models

    NASA Astrophysics Data System (ADS)

    Moeller, Mirko; Berciu, Mona

    2015-03-01

    When studying the properties of complex, magnetic materials it is often necessary to work with effective Hamiltonians. In many cases the effective Hamiltonian is obtained by mapping the full, multiband Hamiltonian onto a simpler, single band model. A prominent example is the use of Zhang-Rice singlets to map the multiband Emery model for cuprates onto the single band t - J -model. Such mappings are usually done at zero temperature (T) and it is implicitly assumed that they are justified at finite T, as well. We present results on 3 different models of a single charge carrier (electron or hole) injected into a ferromagnetic Ising chain. Model I is a two band, two sublattice model, Model II is a two band, single sublattice model, and Model III is a single band model, the so called t -Jz -model. Due to the absence of spin-flip terms, a numerically exact solution of all 3 Models is possible, even at finite T. At zero T a mapping between all 3 models results in the same low energy physics. However, this is no longer true at finite T. Here the low energy behavior of Model III is significantly different from that of Models I and II. The reasons for this discrepancy and its implications for more realistic models (higher dimension, inclusion of spin-flip terms) are discussed. This work was supported by NSERC, QMI and the UBC 4YF (M.M.).

  2. A 3D finite element model to investigate prosthetic interface stresses of different posterior tibial slope.

    PubMed

    Shen, Yi; Li, Xiaomiao; Fu, Xiaodong; Wang, Weili

    2015-11-01

    Posterior tibial slope that is created during proximal tibial resection in total knee arthroplasty has emerged as an important factor in the mechanics of the knee joint and the surgical outcome. But the ideal degree of posterior tibial slope for recovery of the knee joint function and preventions of complications remains controversial and should vary in different racial groups. The objective of this paper is to investigate the effects of posterior tibial slope on contact stresses in the tibial polyethylene component of total knee prostheses. Three-dimensional finite element analysis was used to calculate contact stresses in tibial polyethylene component of total knee prostheses subjected to a compressive load. The 3D finite element model of total knee prosthesis was constructed from the images produced by 3D scanning technology. Stresses in tibial polyethylene component were calculated with four different posterior tibial slopes (0°, 3°, 6° and 9°). The 3D finite element model of total knee prosthesis we presented was well validated. We found that the stress distribution in the polythene as evaluated by the distributions of the von Mises stress, the maximum principle stress, the minimum principle stress and the Cpress were more uniform with 3° and 6° posterior tibial slopes than with 0° and 9° posterior tibial slopes. Moreover, the peaks of the above stresses and trends of changes with increasing degree of knee flexion were more ideal with 3° and 6° posterior slopes. The results suggested that the tibial component inclination might be favourable to 7°-10° so far as the stress distribution is concerned. The range of the tibial component inclination also can decrease the wear of polyethylene. Chinese posterior tibial slope is bigger than in the West, and the current domestic use of prostheses is imported from the West, so their demands to tilt back bone cutting can lead to shorten the service life of prostheses; this experiment result is of important

  3. SU-E-T-543: Measurement of Neutron Activation From Different High Energy Varian Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thatcher, T; Madsen, S; Sudowe, R

    2015-06-15

    Purpose: Linear accelerators producing photons above 10 MeV may induce photonuclear reactions in high Z components of the accelerator. These liberated neutrons can then activate the structural components of the accelerator and other materials in the beam path through neutron capture reactions. The induced activity within the accelerator may contribute to additional dose to both patients and personnel. This project seeks to determine the total activity and activity per activated isotope following irradiation in different Varian accelerators at energies above 10 MeV. Methods: A Varian 21IX accelerator was used to irradiate a 30 cm × 30 cm × 20 cmmore » solid water phantom with 15 MV x-rays. The phantom was placed at an SSD of 100 cm and at the center of a 20 cm × 20 cm field. Activation induced gamma spectra were acquired over a 5 minute interval after 1 and 15 minutes from completion of the irradiation. All measurements were made using a CANBERRA Falcon 5000 Portable HPGe detector. The majority of measurements were made in scattering geometry with the detector situated at 90° to the incident beam, 30 cm from the side of the phantom and approximately 10 cm from the top. A 5 minute background count was acquired and automatically subtracted from all subsequent measurements. Photon spectra were acquired for both open and MLC fields. Results: Based on spectral signatures, nuclides have been identified and their activities calculated for both open and MLC fields. Preliminary analyses suggest that activities from the activation products in the microcurie range. Conclusion: Activation isotopes have been identified and their relative activities determined. These activities are only gross estimates since efficiencies have not been determined for this source-detector geometry. Current efforts are focused on accurate determination of detector efficiencies using Monte Carlo calculations.« less

  4. Finite spaces and schemes

    NASA Astrophysics Data System (ADS)

    Sancho de Salas, Fernando

    2017-12-01

    A ringed finite space is a ringed space whose underlying topological space is finite. The category of ringed finite spaces contains, fully faithfully, the category of finite topological spaces and the category of affine schemes. Any ringed space, endowed with a finite open covering, produces a ringed finite space. We introduce the notions of schematic finite space and schematic morphism, showing that they behave, with respect to quasi-coherence, like schemes and morphisms of schemes do. Finally, we construct a fully faithful and essentially surjective functor from a localization of a full subcategory of the category of schematic finite spaces and schematic morphisms to the category of quasi-compact and quasi-separated schemes.

  5. The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Swisdak, M.; Dahlin, J. T.; Drake, J. F.

    2017-12-01

    Magnetic reconnection is an important driver of energetic particles in many space and astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the effects that the dynamics in three-dimensions has on reconnection and the efficiency of particle acceleration. In two-dimensional systems, Alfvenic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. The greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration.

  6. The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dahlin, J. T.; Drake, J. F.; Swisdak, M.

    2017-09-01

    Magnetic reconnection is an important driver of energetic particles in many astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the impact of three-dimensional reconnection dynamics on the efficiency of particle acceleration. In two-dimensional systems, Alfvénic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop an axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. We show that greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration. This suggests a natural explanation for the envelope of electron acceleration during the impulsive phase of eruptive flares.

  7. A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection

    NASA Astrophysics Data System (ADS)

    Korpusik, Adam

    2017-02-01

    We present a nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. The main advantage of this approach is that it preserves the essential qualitative features of the original continuous model (non-negativity and boundedness of the solution, equilibria and their stability conditions), while being easy to implement. All of the qualitative features are preserved independently of the chosen step-size. Numerical simulations of our approach and comparison with other conventional simulation methods are presented.

  8. Accelerating separable footprint (SF) forward and back projection on GPU

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobin; McGaffin, Madison G.; Long, Yong; Fessler, Jeffrey A.; Wen, Minhua; Lin, James

    2017-03-01

    Statistical image reconstruction (SIR) methods for X-ray CT can improve image quality and reduce radiation dosages over conventional reconstruction methods, such as filtered back projection (FBP). However, SIR methods require much longer computation time. The separable footprint (SF) forward and back projection technique simplifies the calculation of intersecting volumes of image voxels and finite-size beams in a way that is both accurate and efficient for parallel implementation. We propose a new method to accelerate the SF forward and back projection on GPU with NVIDIA's CUDA environment. For the forward projection, we parallelize over all detector cells. For the back projection, we parallelize over all 3D image voxels. The simulation results show that the proposed method is faster than the acceleration method of the SF projectors proposed by Wu and Fessler.13 We further accelerate the proposed method using multiple GPUs. The results show that the computation time is reduced approximately proportional to the number of GPUs.

  9. Multi-dimensional effects in radiation pressure acceleration of ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, V. K., E-mail: tripathivipin@yahoo.co.in

    A laser carries momentum. On reflection from an ultra-thin overdense plasma foil, it deposits recoil momentum on the foil, i.e. exerts radiation pressure on the foil electrons and pushes them to the rear. The space charge field thus created takes the ions along, accelerating the electron-ion double layer as a single unit. When the foil has surface ripple, of wavelength comparable to laser wavelength, the radiation pressure acts non-uniformly on the foil and the perturbation grows as Reyleigh-Taylor (RT) instability as the foil moves. The finite spot size of the laser causes foil to bend. These effects limit the quasi-monomore » energy acceleration of ions. Multi-ion foils, e.g., diamond like carbon foil embedded with protons offer the possibility of suppressing RT instability.« less

  10. Social-emotional characteristics of gifted accelerated and non-accelerated students in the Netherlands.

    PubMed

    Hoogeveen, Lianne; van Hell, Janet G; Verhoeven, Ludo

    2012-12-01

    In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. In this study, social-emotional characteristics of accelerated gifted students in the Netherlands were examined in relation to personal and environmental factors. Self-concept and social contacts of accelerated (n = 148) and non-accelerated (n = 55) gifted students, aged 4 to 27 (M = 11.22, SD = 4.27) were measured. Self-concept and social contacts of accelerated and non-accelerated gifted students were measured using a questionnaire and a diary, and parents of these students evaluated their behavioural characteristics. Gender and birth order were studied as personal factors and grade, classroom, teachers' gender, teaching experience, and the quality of parent-school contact as environmental factors. The results showed minimal differences in the social-emotional characteristics of accelerated and non-accelerated gifted students. The few differences we found favoured the accelerated students. We also found that multiple grade skipping does not have negative effects on social-emotional characteristics, and that long-term effects of acceleration tend to be positive. As regards the possible modulation of personal and environmental factors, we merely found an impact of such factors in the non-accelerated group. The results of this study strongly suggest that social-emotional characteristics of accelerated gifted students and non-accelerated gifted students are largely similar. These results thus do not support worries expressed by teachers about the acceleration of gifted students. Our findings parallel the outcomes of earlier studies in the United States and Germany in that we observed that acceleration does not harm gifted students, not even in the case of multiple grade skipping. On the contrary, there is a

  11. The arbitrary order mixed mimetic finite difference method for the diffusion equation

    DOE PAGES

    Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco

    2016-05-01

    Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less

  12. Protecting a quantum state from environmental noise by an incompatible finite-time measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasil, Carlos Alexandre; Castro, L. A. de; Napolitano, R. d. J.

    We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analyticalmore » predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.« less

  13. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    Determining transient electromagnetic fields in antennas with nonlinear loads is a challenging problem. Typical methods used involve calculating frequency domain parameters at a large number of different frequencies, then applying Fourier transform methods plus nonlinear equation solution techniques. If the antenna is simple enough so that the open circuit time domain voltage can be determined independently of the effects of the nonlinear load on the antennas current, time stepping methods can be applied in a straightforward way. Here, transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain (FDTD) methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case, the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets, including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  14. A Finite-Difference Time-Domain Model of Artificial Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Cannon, Patrick; Honary, Farideh; Borisov, Nikolay

    Experiments in the artificial modification of the ionosphere via a radio frequency pump wave have observed a wide range of non-linear phenomena near the reflection height of an O-mode wave. These effects exhibit a strong aspect-angle dependence thought to be associated with the process by which, for a narrow range of off-vertical launch angles, the O-mode pump wave can propagate beyond the standard reflection height at X=1 as a Z-mode wave and excite additional plasma activity. A numerical model based on Finite-Difference Time-Domain method has been developed to simulate the interaction of the pump wave with an ionospheric plasma and investigate different non-linear processes involved in modification experiments. The effects on wave propagation due to plasma inhomogeneity and anisotropy are introduced through coupling of the Lorentz equation of motion for electrons and ions to Maxwell’s wave equations in the FDTD formulation, leading to a model that is capable of exciting a variety of plasma waves including Langmuir and upper-hybrid waves. Additionally, discretized equations describing the time-dependent evolution of the plasma fluid temperature and density are included in the FDTD update scheme. This model is used to calculate the aspect angle dependence and angular size of the radio window for which Z-mode excitation occurs, and the results compared favourably with both theoretical predictions and experimental observations. The simulation results are found to reproduce the angular dependence on electron density and temperature enhancement observed experimentally. The model is used to investigate the effect of different initial plasma density conditions on the evolution of non-linear effects, and demonstrates that the inclusion of features such as small field-aligned density perturbations can have a significant influence on wave propagation and the magnitude of temperature and density enhancements.

  15. High-performance modeling of plasma-based acceleration and laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri

    2016-10-01

    Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.

  16. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  17. Investigation of the Numerical Methods of Finite Differences and Weighted Residuals for Solution of the Heat Equation.

    DTIC Science & Technology

    1982-03-01

    OF FINITE DIFFERENCES AND WEIGHTED RESIDUALS FOR SOLUTION OF THE HEAT EQUATION a THESIS J’. AFIT/GNE/PH/81-7 *-.1 Robert Naegeli .. ....... J --aC t...Institute of Technology Air University in Partial Fulfillment of the a Requirements for the Degree of Master of Science by Robert E. Naegeli , M.S. Capt USAF...a time which proved to be one of great personal adjustment and turmoil. Robert E. Naegeli ii Contents Page Preface

  18. A hybrid finite-difference and analytic element groundwater model

    USGS Publications Warehouse

    Haitjema, Henk M.; Feinstein, Daniel T.; Hunt, Randall J.; Gusyev, Maksym

    2010-01-01

    Regional finite-difference models tend to have large cell sizes, often on the order of 1–2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW–MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models.

  19. Complex-Difference Constrained Compressed Sensing Reconstruction for Accelerated PRF Thermometry with Application to MRI Induced RF Heating

    PubMed Central

    Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T.; Griswold, Mark A.; Collins, Christopher M.

    2014-01-01

    Purpose Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency (PRF) shift temperature imaging for MRI induced radiofrequency (RF) heating evaluation. Methods A compressed sensing approach that exploits sparsity of the complex difference between post-heating and baseline images is proposed to accelerate PRF temperature mapping. The method exploits the intra- and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex-vivo and in-vivo studies by comparing performance with previously proposed techniques. Results The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local PRF temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo . Conclusion Complex difference based compressed sensing with utilization of a fully-sampled baseline image improves the reconstruction accuracy for accelerated PRF thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of RF heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. PMID:24753099

  20. A finite difference-time domain technique for modeling narrow apertures in conducting scatterers

    NASA Technical Reports Server (NTRS)

    Demarest, Kenneth R.

    1987-01-01

    The finite difference-time domain (FDTD) technique has proven to be a valuable tool for the calculation of the transient and steady state scattering characteristics of relatively complex scatterer and source configurations. In spite of its usefulness, it exhibits serious deficiencies when used to analyze geometries that contain fine detail. An FDTD technique is described that utilizes Babinet's principle to decouple the regions on both sides of the aperture. The result is an FDTD technique that is capable of modeling apertures that are much smaller than the spatial grid used in the analysis and yet is not perturbed by numerical noise when used in the 'scattered field' mode. Numerical results are presented that show the field penetration through cavity-backed apertures that are much smaller than the spatial grid used during the solution.

  1. Finite-difference time-domain analysis of photonic nanojets from liquid-crystal-containing microcylinder

    NASA Astrophysics Data System (ADS)

    Matsui, Tatsunosuke; Okajima, Akiko

    2014-01-01

    The photonic nanojet (PNJ) from a microcylinder with liquid crystals (LCs) showing tangential molecular alignment inside the microcylinder has been numerically analyzed on the basis of the finite-difference time-domain method. By introducing a small degree of birefringence, the characteristics of the PNJ, such as propagation length and polarization state, can be drastically changed. The azimuth angle and the ellipticity of the elliptically polarized PNJ obtained from the LC microcylinder changes within the propagation lengths in the micrometer range even in the isotropic matrix, which might be attributed to the jet like spatial profile of the PNJ. By using LC microcylinders or microspheres, we may obtain a rich variety of PNJs with unique polarization characteristics, which might open a new avenue for the development of novel optical devices with electrical tunability.

  2. Application of finite element approach to transonic flow problems

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C., Jr.

    1976-01-01

    A variational finite element model for transonic small disturbance calculations is described. Different strategy is adopted in subsonic and supersonic regions, and blending elements are introduced between different regions. In the supersonic region, no upstream effect is allowed. If rectangular elements with linear shape functions are used, the model is similar to Murman's finite difference operators. Higher order shape functions, nonrectangular elements, and discontinuous approximation of shock waves are also discussed.

  3. Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.

  4. Unsteady streamflow simulation using a linear implicit finite-difference model

    USGS Publications Warehouse

    Land, Larry F.

    1978-01-01

    A computer program for simulating one-dimensional subcritical, gradually varied, unsteady flow in a stream has been developed and documented. Given upstream and downstream boundary conditions and channel geometry data, roughness coefficients, stage, and discharge can be calculated anywhere within the reach as a function of time. The program uses a linear implicit finite-difference technique that discritizes the partial differential equations. Then it arranges the coefficients of the continuity and momentum equations into a pentadiagonal matrix for solution. Because it is a reasonable compromise between computational accuracy, speed and ease of use,the technique is one of the most commonly used. The upstream boundary condition is a depth hydrograph. However, options also allow the boundary condition to be discharge or water-surface elevation. The downstream boundary condition is a depth which may be constant, self-setting, or unsteady. The reach may be divided into uneven increments and the cross sections may be nonprismatic and may vary from one to the other. Tributary and lateral inflow may enter the reach. The digital model will simulate such common problems as (1) flood waves, (2) releases from dams, and (3) channels where storage is a consideration. It may also supply the needed flow information for mass-transport simulation. (Woodard-USGS)

  5. Effects of different computer typing speeds on acceleration and peak contact pressure of the fingertips during computer typing.

    PubMed

    Yoo, Won-Gyu

    2015-01-01

    [Purpose] This study showed the effects of different computer typing speeds on acceleration and peak contact pressure of the fingertips during computer typing. [Subjects] Twenty-one male computer workers voluntarily consented to participate in this study. They consisted of 7 workers who could type 200-300 characteristics/minute, 7 workers who could type 300-400 characteristics/minute, and 7 workers who could type 400-500 chracteristics/minute. [Methods] This study was used to measure the acceleration and peak contact pressure of the fingertips for different typing speed groups using an accelerometer and CONFORMat system. [Results] The fingertip contact pressure was increased in the high typing speed group compared with the low and medium typing speed groups. The fingertip acceleration was increased in the high typing speed group compared with the low and medium typing speed groups. [Conclusion] The results of the present study indicate that a fast typing speed cause continuous pressure stress to be applied to the fingers, thereby creating pain in the fingers.

  6. Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Billings, Marcus D.

    2001-01-01

    The nonlinear, transient dynamic finite element code, MSC.Dytran, was used to simulate an impact test of an energy absorbing Earth Entry Vehicle (EEV) that will impact without a parachute. EEVOs are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEVOs cellular structure. Pre-test analytical predictions were compared with the test results from a bungee accelerator. The model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAM1 model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for cellular impact.

  7. An object-oriented, coprocessor-accelerated model for ice sheet simulations

    NASA Astrophysics Data System (ADS)

    Seddik, H.; Greve, R.

    2013-12-01

    Recently, numerous models capable of modeling the thermo-dynamics of ice sheets have been developed within the ice sheet modeling community. Their capabilities have been characterized by a wide range of features with different numerical methods (finite difference or finite element), different implementations of the ice flow mechanics (shallow-ice, higher-order, full Stokes) and different treatments for the basal and coastal areas (basal hydrology, basal sliding, ice shelves). Shallow-ice models (SICOPOLIS, IcIES, PISM, etc) have been widely used for modeling whole ice sheets (Greenland and Antarctica) due to the relatively low computational cost of the shallow-ice approximation but higher order (ISSM, AIF) and full Stokes (Elmer/Ice) models have been recently used to model the Greenland ice sheet. The advance in processor speed and the decrease in cost for accessing large amount of memory and storage have undoubtedly been the driving force in the commoditization of models with higher capabilities, and the popularity of Elmer/Ice (http://elmerice.elmerfem.com) with an active user base is a notable representation of this trend. Elmer/Ice is a full Stokes model built on top of the multi-physics package Elmer (http://www.csc.fi/english/pages/elmer) which provides the full machinery for the complex finite element procedure and is fully parallel (mesh partitioning with OpenMPI communication). Elmer is mainly written in Fortran 90 and targets essentially traditional processors as the code base was not initially written to run on modern coprocessors (yet adding support for the recently introduced x86 based coprocessors is possible). Furthermore, a truly modular and object-oriented implementation is required for quick adaptation to fast evolving capabilities in hardware (Fortran 2003 provides an object-oriented programming model while not being clean and requiring a tricky refactoring of Elmer code). In this work, the object-oriented, coprocessor-accelerated finite element

  8. Storm Water Infiltration and Focused Groundwater Recharge in a Rain Garden: Finite Volume Model and Numerical Simulations for Different Configurations and Climates

    NASA Astrophysics Data System (ADS)

    Aravena, J.; Dussaillant, A. R.

    2006-12-01

    Source control is the fundamental principle behind sustainable management of stormwater. Rain gardens are an infiltration practice that provides volume and water quality control, recharge, and multiple landscape, ecological and economic potential benefits. The fulfillment of these objectives requires understanding their behavior during events as well as long term, and tools for their design. We have developed a model based on Richards equation coupled to a surface water balance, solved with a 2D finite volume Fortran code which allows alternating upper boundary conditions, including ponding, which is not present in available 2D models. Also, it can simulate non homogeneous water input, heterogeneous soil (layered or more complex geometries), and surface irregularities -e.g. terracing-, so as to estimate infiltration and recharge. The algorithm is conservative; being an advantage compared to available finite difference and finite element methods. We will present performance comparisons to known models, to experimental data from a bioretention cell, which receives roof water to its surface depression planted with native species in an organic-rich root zone soil layer (underlain by a high conductivity lower layer that, while providing inter-event storage, percolates water readily), as well as long term simulations for different rain garden configurations. Recharge predictions for different climates show significant increases from natural recharge, and that the optimal area ratio (raingarden vs. contributing impervious area) reduces from 20% (humid) to 5% (dry).

  9. Finite-difference time-domain simulation of GPR data

    NASA Astrophysics Data System (ADS)

    Chen, How-Wei; Huang, Tai-Min

    1998-10-01

    Simulation of digital ground penetrating radar (GPR) wave propagation in two-dimensional (2-D) media is developed, tested, implemented, and applied using a time-domain staggered-grid finite-difference (FD) numerical method. Three types of numerical algorithms for constructing synthetic common-shot, constant-offset radar profiles based on an actual transmitter-to-receiver configuration and based on the exploding reflector concept are demonstrated to mimic different types of radar survey geometries. Frequency-dependent attenuation is also incorporated to account for amplitude decay and time shift in the recorded responses. The algorithms are based on an explicit FD solution to Maxwell's curl equations. In addition, the first-order TE mode responses of wave propagation phenomena are considered due to the operating frequency of current GPR instruments. The staggered-grid technique is used to sample the fields and approximate the spatial derivatives with fourth-order FDs. The temporal derivatives are approximated by an explicit second-order difference time-marching scheme. By combining paraxial approximation of the one-way wave equation ( A2) and the damping mechanisms (sponge filter), we propose a new composite absorbing boundary conditions (ABC) algorithm that effectively absorb both incoming and outgoing waves. To overcome the angle- and frequency-dependent characteristic of the absorbing behaviors, each ABC has two types of absorption mechanism. The first ABC uses a modified Clayton and Enquist's A2 condition. Moreover, a fixed and a floating A2 ABC that operates at one grid point is proposed. The second ABC uses a damping mechanism. By superimposing artificial damping and by alternating the physical attenuation properties and impedance contrast of the media within the absorbing region, those waves impinging on the boundary can be effectively attenuated and can prevent waves from reflecting back into the grid. The frequency-dependent characteristic of the damping

  10. Atomic Charge Parameters for the Finite Difference Poisson-Boltzmann Method Using Electronegativity Neutralization.

    PubMed

    Yang, Qingyi; Sharp, Kim A

    2006-07-01

    An optimization of Rappe and Goddard's charge equilibration (QEq) method of assigning atomic partial charges is described. This optimization is designed for fast and accurate calculation of solvation free energies using the finite difference Poisson-Boltzmann (FDPB) method. The optimization is performed against experimental small molecule solvation free energies using the FDPB method and adjusting Rappe and Goddard's atomic electronegativity values. Using a test set of compounds for which experimental solvation energies are available and a rather small number of parameters, very good agreement was obtained with experiment, with a mean unsigned error of about 0.5 kcal/mol. The QEq atomic partial charge assignment method can reflect the effects of the conformational changes and solvent induction on charge distribution in molecules. In the second section of the paper we examined this feature with a study of the alanine dipeptide conformations in water solvent. The different contributions to the energy surface of the dipeptide were examined and compared with the results from fixed CHARMm charge potential, which is widely used for molecular dynamics studies.

  11. Steady state quantum discord for circularly accelerated atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn; Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081

    2015-12-15

    We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptoticmore » value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.« less

  12. A 3D staggered-grid finite difference scheme for poroelastic wave equation

    NASA Astrophysics Data System (ADS)

    Zhang, Yijie; Gao, Jinghuai

    2014-10-01

    Three dimensional numerical modeling has been a viable tool for understanding wave propagation in real media. The poroelastic media can better describe the phenomena of hydrocarbon reservoirs than acoustic and elastic media. However, the numerical modeling in 3D poroelastic media demands significantly more computational capacity, including both computational time and memory. In this paper, we present a 3D poroelastic staggered-grid finite difference (SFD) scheme. During the procedure, parallel computing is implemented to reduce the computational time. Parallelization is based on domain decomposition, and communication between processors is performed using message passing interface (MPI). Parallel analysis shows that the parallelized SFD scheme significantly improves the simulation efficiency and 3D decomposition in domain is the most efficient. We also analyze the numerical dispersion and stability condition of the 3D poroelastic SFD method. Numerical results show that the 3D numerical simulation can provide a real description of wave propagation.

  13. A finite-state, finite-memory minimum principle, part 2

    NASA Technical Reports Server (NTRS)

    Sandell, N. R., Jr.; Athans, M.

    1975-01-01

    In part 1 of this paper, a minimum principle was found for the finite-state, finite-memory (FSFM) stochastic control problem. In part 2, conditions for the sufficiency of the minimum principle are stated in terms of the informational properties of the problem. This is accomplished by introducing the notion of a signaling strategy. Then a min-H algorithm based on the FSFM minimum principle is presented. This algorithm converges, after a finite number of steps, to a person - by - person extremal solution.

  14. An Implicit Finite Difference Solution to the Viscous Radiating Shock Layer with Strong Blowing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1971-01-01

    An implicit finite difference scheme is developed for the fully coupled solution of the viscous radiating stagnation line equations, including strong blowing. Solutions are presented for both air injection and carbon phenolic ablation products injection into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized.

  15. An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology.

    PubMed

    Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E

    2013-12-01

    In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Accelerators for charged particle therapy: PAMELA and related issues

    NASA Astrophysics Data System (ADS)

    Peach, Ken

    2014-05-01

    Cancer is a dreadful disease that will affect one in three people at some point in their life; radiotherapy is used in more than half of all cancer treatment, and contributes about 40% to the successful treatment of cancer. Charged Particle Therapy uses protons and other light ions to deliver the lethal dose to the tumor while being relatively sparing of healthy tissue and, because of the finite range of the particles, is able to avoid giving any dose to vital organs. While there are adequate technologies currently available to deliver the required energies and fluxes, the two main technologies (cyclotrons and synchrotrons) have limitations. PAMELA (the Particle Accelerator for MEdicaLApplications) uses the newly-developed non-scaling Fixed Field Alternating Gradient accelerator concepts to deliver therapeutically relevant beams. The status of the development of the PAMELA conceptual design is discussed.

  17. [Application of finite element method in spinal biomechanics].

    PubMed

    Liu, Qiang; Zhang, Jun; Sun, Shu-Chun; Wang, Fei

    2017-02-25

    The finite element model is one of the most important methods in study of modern spinal biomechanics, according to the needs to simulate the various states of the spine, calculate the stress force and strain distribution of the different groups in the state, and explore its principle of mechanics, mechanism of injury, and treatment effectiveness. In addition, in the study of the pathological state of the spine, the finite element is mainly used in the understanding the mechanism of lesion location, evaluating the effects of different therapeutic tool, assisting and completing the selection and improvement of therapeutic tool, in order to provide a theoretical basis for the rehabilitation of spinal lesions. Finite element method can be more provide the service for the patients suffering from spinal correction, operation and individual implant design. Among the design and performance evaluation of the implant need to pay attention to the individual difference and perfect the evaluation system. At present, how to establish a model which is more close to the real situation has been the focus and difficulty of the study of human body's finite element.Although finite element method can better simulate complex working condition, it is necessary to improve the authenticity of the model and the sharing of the group by using many kinds of methods, such as image science, statistics, kinematics and so on. Copyright© 2017 by the China Journal of Orthopaedics and Traumatology Press.

  18. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne

    2011-11-01

    We present a coarse-grid projection (CGP) algorithm for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. Here, we investigate a particular CGP method for the vorticity-stream function formulation that uses the full weighting operation for mapping from fine to coarse grids, the third-order Runge-Kutta method for time stepping, and finite differences for the spatial discretization. After solving the Poisson equation on a coarsened grid, bilinear interpolation is used to obtain the fine data for consequent time stepping on the full grid. We compute several benchmark flows: the Taylor-Green vortex, a vortex pair merging, a double shear layer, decaying turbulence and the Taylor-Green vortex on a distorted grid. In all cases we use either FFT-based or V-cycle multigrid linear-cost Poisson solvers. Reducing the number of degrees of freedom of the Poisson solver by powers of two accelerates these computations while, for the first level of coarsening, retaining the same level of accuracy in the fine resolution vorticity field.

  19. Cosmological solutions and finite time singularities in Finslerian geometry

    NASA Astrophysics Data System (ADS)

    Paul, Nupur; de, S. S.; Rahaman, Farook

    2018-03-01

    We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.

  20. Stress distributions in internal resorption cavities restored with different materials at different root levels: A finite element analysis study.

    PubMed

    Aslan, Tuğrul; Üstün, Yakup; Esim, Emir

    2018-04-15

    The aim of this study was to evaluate the stresses within simulated roots with internal resorption cavities at the apical, middle and coronal root levels, after obturation with gutta-percha and/or MTA utilising finite element analysis (FEA). Mandibular premolar teeth with internal resorption cavities at different root levels were modelled. Models were restored with gutta-percha and/or MTA. An oblique force of 300 N was applied and stress evaluations were carried out. In the MTA-filled resorption models, the stresses were distributed more homogeneously than the gutta-percha filled models, and the stress concentrations were lower in the remaining dentinal tissues. If the whole root is considered, the fully gutta-percha-filled models generated the highest stress values. Differences between the fully MTA-filled models and hybrid techniques were present only in the apical resorption models. Both the MTA and combination of MTA and gutta-percha can be suggested for use in clinical practice, in cases of internal root resorption cavity obturation. © 2018 Australian Society of Endodontology Inc.

  1. A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations

    NASA Technical Reports Server (NTRS)

    Gerritsen, Margot; Olsson, Pelle

    1996-01-01

    We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

  2. Finite-difference simulation and visualization of elastodynamics in time-evolving generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K. (Inventor)

    2009-01-01

    Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.

  3. A progress report on estuary modeling by the finite-element method

    USGS Publications Warehouse

    Gray, William G.

    1978-01-01

    Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)

  4. Modeling of thermalization phenomena in coaxial plasma accelerators

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vivek; Panneerchelvam, Premkumar; Raja, Laxminarayan L.

    2018-05-01

    Coaxial plasma accelerators are electromagnetic acceleration devices that employ a self-induced Lorentz force to produce collimated plasma jets with velocities ~50 km s‑1. The accelerator operation is characterized by the formation of an ionization/thermalization zone near gas inlet of the device that continually processes the incoming neutral gas into a highly ionized thermal plasma. In this paper, we present a 1D non-equilibrium plasma model to resolve the plasma formation and the electron-heavy species thermalization phenomena that take place in the thermalization zone. The non-equilibrium model is based on a self-consistent multi-species continuum description of the plasma with finite-rate chemistry. The thermalization zone is modelled by tracking a 1D gas-bit as it convects down the device with an initial gas pressure of 1 atm. The thermalization process occurs in two stages. The first is a plasma production stage, associated with a rapid increase in the charged species number densities facilitated by cathode surface electron emission and volumetric production processes. The production stage results in the formation of a two-temperature plasma with electron energies of ~2.5 eV in a low temperature background gas of ~300 K. The second, a temperature equilibration stage, is characterized by the energy transfer between the electrons and heavy species. The characteristic length scale for thermalization is found to be comparable to axial length of the accelerator thus putting into question the equilibrium magnetohydrodynamics assumption used in modeling coaxial accelerators.

  5. High-order finite difference formulations for the incompressible Navier-Stokes equations on the CM-5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tafti, D.

    1995-12-01

    The paper describes the features and implementation of a general purpose high-order accurate finite difference computer program for direct and large-eddy simulations of turbulence on the CM-5 in the data parallel mode. Benchmarking studies for a direct simulation of turbulent channel flow are discussed. Performance of up to 8.8 GFLOPS is obtained for the high-order formulations on 512 processing nodes of the CM-5. The execution time for a simulation with 24 million nodes in a domain with two periodic directions is in the range of 0.2 {mu}secs/time-step/degree of freedom on 512 processing nodes of the CM-5.

  6. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    NASA Astrophysics Data System (ADS)

    Mignone, Andrea; Tzeferacos, Petros; Bodo, Gianluigi

    2010-08-01

    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. [J. Comput. Phys. 175 (2002) 645-673]. The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.

  7. Effects of centrifugal acceleration on the flows and segregation in vertical Bridgman crystal growth with steady ampoule rotation

    NASA Astrophysics Data System (ADS)

    Lan, C. W.

    2001-07-01

    The effects of centrifugal acceleration on the flows and segregation in vertical Bridgman crystal growth with steady ampoule rotation are investigated through numerical simulation. The numerical model is based on the Boussinesq approximation in a rotating frame, and the fluid flow, heat and mass transfer, and the growth interface are solved simultaneously by a robust finite-volume/Newton method. The growth of gallium-doped germanium (GaGe) in the Grenoble furnace is adopted as an example. The calculated results at small Froude number (Fr<<1) are consistent with the previous prediction (Lan, J. Crystal growth 197 (1999) 983). However, at a high rotation speed or in reduced gravity, where the centrifugal acceleration becomes important (Fr˜1), the results are quite different due to the secondary flow induced. Since the direction of the induced flow is different from that of the buoyancy convection due to the concave interface, the flow damping is more effective than that due to the Coriolis force alone. More importantly, radial segregation can be reversed during the flow transition from one to the other.

  8. Detailed analysis of Honeywell In-Space Accelerometer data - STS-32. [crystal microstructure response to different types of residual acceleration

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. I. D.; Schoess, Jeff

    1993-01-01

    The Honeywell In-Space Accelerometer (HISA) system collected data in the mid-deck area of the Shuttle Columbia during the flight of STS-32, January 1990. The resulting data were to be used to investigate the response of crystal microstructure to different types of residual acceleration. The HISA is designed to detect and record transient and oscillatory accelerations. The sampling and electronics package stored averaged accelerations over two sampling periods; two sampling rates were available: 1 Hz and 50 Hz. Analysis of the HISA data followed the CMMR Acceleration Data Processing Guide, considering in-house computer modelling of a float-zone indium crystal growth experiment. Characteristic examples of HISA data showing the response to the primary reaction control system, Orbiter Maneuvering System operations, and crew treadmill activity are presented. Various orbiter structural modes are excited by these and other activities.

  9. Particle acceleration in the dynamic magnetotail: Orbits in self-consistent three-dimensional MHD fields

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Hesse, Michael

    1994-01-01

    The acceleration of protons in a dynamically evolving magnetotail is investigated by tracing particles in the fields obtained from a three-dimensional resistive magnetohydrodynamic (MHD) simulation. The MHD simulation, representing plasmoid formation and ejection through a near-Earth reconnection process, leads to cross-tail electric fields of up to approximately 4 mV/m with integrated voltages across the tail of up to approximately 200 kV. Energization of particles takes place over a wide range along the tail, due to the large spatial extent of the increased electric field together with the finite cross-tail extent of the electric field region. Such accelerated particles appear earthward of the neutral line over a significant portion of the closed field line region inside of the separatrix, not just in the vicinity of the separatrix. Two different acceleration processes are identified: a 'quasi-potential' acceleration, due to particle motion in the direction of the cross-tail electric field, and a 'quasi-betatron' effect, which consists of multiple energy gains from repeated crossings of the acceleration region, mostly on Speiser-type orbits, in the spatially varying induced electric field. The major source region for accelerated particles in the hundreds of keV range is the central plasma sheet at the dawn flank outside the reconnection site. Since this source plasma is already hot and dense, its moderate energization by a factor of approximately 2 may be sufficient to explain the observed increases in the energetic particle fluxes. Particles from the tail are the source of beams at the plasma sheet/lobe boundary. The temporal increase in the energetic particle fluxes, estimated from the increase in energy gain, occurs on a fast timescale of a few minutes, coincident with a strong increase in B(sub z), despite the fact that the inner boundary ('injection boundary') of the distribution of energized particles is fairly smooth.

  10. Semiconductor acceleration sensor

    NASA Astrophysics Data System (ADS)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  11. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running.

    PubMed

    Giandolini, Marlene; Horvais, Nicolas; Rossi, Jérémy; Millet, Guillaume Y; Samozino, Pierre; Morin, Jean-Benoît

    2016-06-14

    Trail runners are exposed to a high number of shocks, including high-intensity shocks on downhill sections leading to greater risk of osseous overuse injury. The type of foot strike pattern (FSP) is known to influence impact severity and lower-limb kinematics. Our purpose was to investigate the influence of FSP on axial and transverse components of shock acceleration and attenuation during an intense downhill trail run (DTR). Twenty-three trail runners performed a 6.5-km DTR (1264m of negative elevation change) as fast as possible. Four tri-axial accelerometers were attached to the heel, metatarsals, tibia and sacrum. Accelerations were continuously recorded at 1344Hz and analyzed over six sections (~400 steps per subject). Heel and metatarsal accelerations were used to identify the FSP. Axial, transverse and resultant peak accelerations, median frequencies and shock attenuation within the impact-related frequency range (12-20Hz) were assessed between tibia and sacrum. Multiple linear regressions showed that anterior (i.e. forefoot) FSPs were associated with higher peak axial acceleration and median frequency at the tibia, lower transverse median frequencies at the tibia and sacrum, and lower transverse peak acceleration at the sacrum. For resultant acceleration, higher tibial median frequency but lower sacral peak acceleration were reported with forefoot striking. FSP therefore differently affects the components of impact shock acceleration. Although a forefoot strike reduces impact severity and impact frequency content along the transverse axis, a rearfoot strike decreases them in the axial direction. Globally, the attenuation of axial and resultant impact-related vibrations was improved using anterior FSPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A compact finite element method for elastic bodies

    NASA Technical Reports Server (NTRS)

    Rose, M. E.

    1984-01-01

    A nonconforming finite method is described for treating linear equilibrium problems, and a convergence proof showing second order accuracy is given. The close relationship to a related compact finite difference scheme due to Phillips and Rose is examined. A condensation technique is shown to preserve the compactness property and suggests an approach to a certain type of homogenization.

  13. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  14. Geodynamics for Everyone: Robust Finite-Difference Heat Transfer Models using MS Excel 2007 Spreadsheets

    NASA Astrophysics Data System (ADS)

    Grose, C. J.

    2008-05-01

    Numerical geodynamics models of heat transfer are typically thought of as specialized topics of research requiring knowledge of specialized modelling software, linux platforms, and state-of-the-art finite-element codes. I have implemented analytical and numerical finite-difference techniques with Microsoft Excel 2007 spreadsheets to solve for complex solid-earth heat transfer problems for use by students, teachers, and practicing scientists without specialty in geodynamics modelling techniques and applications. While implementation of equations for use in Excel spreadsheets is occasionally cumbersome, once case boundary structure and node equations are developed, spreadsheet manipulation becomes routine. Model experimentation by modifying parameter values, geometry, and grid resolution makes Excel a useful tool whether in the classroom at the undergraduate or graduate level or for more engaging student projects. Furthermore, the ability to incorporate complex geometries and heat-transfer characteristics makes it ideal for first and occasionally higher order geodynamics simulations to better understand and constrain the results of professional field research in a setting that does not require the constraints of state-of-the-art modelling codes. The straightforward expression and manipulation of model equations in excel can also serve as a medium to better understand the confusing notations of advanced mathematical problems. To illustrate the power and robustness of computation and visualization in spreadsheet models I focus primarily on one-dimensional analytical and two-dimensional numerical solutions to two case problems: (i) the cooling of oceanic lithosphere and (ii) temperatures within subducting slabs. Excel source documents will be made available.

  15. ɛ-connectedness, finite approximations, shape theory and coarse graining in hyperspaces

    NASA Astrophysics Data System (ADS)

    Alonso-Morón, Manuel; Cuchillo-Ibanez, Eduardo; Luzón, Ana

    2008-12-01

    We use upper semifinite hyperspaces of compacta to describe ε-connectedness and to compute homology from finite approximations. We find a new connection between ε-connectedness and the so-called Shape Theory. We construct a geodesically complete R-tree, by means of ε-components at different resolutions, whose behavior at infinite captures the topological structure of the space of components of a given compact metric space. We also construct inverse sequences of finite spaces using internal finite approximations of compact metric spaces. These sequences can be converted into inverse sequences of polyhedra and simplicial maps by means of what we call the Alexandroff-McCord correspondence. This correspondence allows us to relate upper semifinite hyperspaces of finite approximation with the Vietoris-Rips complexes of such approximations at different resolutions. Two motivating examples are included in the introduction. We propose this procedure as a different mathematical foundation for problems on data analysis. This process is intrinsically related to the methodology of shape theory. This paper reinforces Robins’s idea of using methods from shape theory to compute homology from finite approximations.

  16. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    by Chen et al where the driver, instead of being a laser, is a whistler wave known as the magnetowave plasma accelerator. The application to electron--positron plasmas that are found around pulsars is studied in the paper by Shukla, and to muon acceleration by Peano et al. Electron wakefield experiments are now concentrating on control and optimisation of high-quality beams that can be used as drivers for novel radiation sources. Studies by Thomas et al show that filamentation has a deleterious effect on the production of high quality mono-energetic electron beams and is caused by non-optimal choice of focusing geometry and/or electron density. It is crucial to match the focusing with the right plasma parameters and new types of plasma channels are being developed, such as the magnetically controlled plasma waveguide reported by Froula et al. The magnetic field provides a pressure profile shaping the channel to match the guiding conditions of the incident laser, resulting in predicted electron energies of 3GeV. In the forced laser-wakefield experiment Fang et al show that pump depletion reduces or inhibits the acceleration of electrons. One of the earlier laser acceleration concepts known as the beat wave may be revived due to the work by Kalmykov et al who report on all-optical control of nonlinear focusing of laser beams, allowing for stable propagation over several Rayleigh lengths with pre-injected electrons accelerated beyond 100 MeV. With the increasing number of petawatt lasers, attention is being focused on different acceleration regimes such as stochastic acceleration by counterpropagating laser pulses, the relativistic mirror, or the snow-plough effect leading to single-step acceleration reported by Mendonca. During wakefield acceleration the leading edge of the pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake while the trailing edge of the laser pulse undergoes frequency up-shift. This is commonly known

  17. In vitro fatigue tests and in silico finite element analysis of dental implants with different fixture/abutment joint types using computer-aided design models.

    PubMed

    Yamaguchi, Satoshi; Yamanishi, Yasufumi; Machado, Lucas S; Matsumoto, Shuji; Tovar, Nick; Coelho, Paulo G; Thompson, Van P; Imazato, Satoshi

    2018-01-01

    The aim of this study was to evaluate fatigue resistance of dental fixtures with two different fixture-abutment connections by in vitro fatigue testing and in silico three-dimensional finite element analysis (3D FEA) using original computer-aided design (CAD) models. Dental implant fixtures with external connection (EX) or internal connection (IN) abutments were fabricated from original CAD models using grade IV titanium and step-stress accelerated life testing was performed. Fatigue cycles and loads were assessed by Weibull analysis, and fatigue cracking was observed by micro-computed tomography and a stereomicroscope with high dynamic range software. Using the same CAD models, displacement vectors of implant components were also analyzed by 3D FEA. Angles of the fractured line occurring at fixture platforms in vitro and of displacement vectors corresponding to the fractured line in silico were compared by two-way ANOVA. Fatigue testing showed significantly greater reliability for IN than EX (p<0.001). Fatigue crack initiation was primarily observed at implant fixture platforms. FEA demonstrated that crack lines of both implant systems in vitro were observed in the same direction as displacement vectors of the implant fixtures in silico. In silico displacement vectors in the implant fixture are insightful for geometric development of dental implants to reduce complex interactions leading to fatigue failure. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, D., E-mail: Daniel.Brinkman@asu.edu; School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287; Heitzinger, C., E-mail: Clemens.Heitzinger@asu.edu

    2014-01-15

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.

  19. Computation of the acoustic radiation force using the finite-difference time-domain method.

    PubMed

    Cai, Feiyan; Meng, Long; Jiang, Chunxiang; Pan, Yu; Zheng, Hairong

    2010-10-01

    The computational details related to calculating the acoustic radiation force on an object using a 2-D grid finite-difference time-domain method (FDTD) are presented. The method is based on propagating the stress and velocity fields through the grid and determining the energy flow with and without the object. The axial and radial acoustic radiation forces predicted by FDTD method are in excellent agreement with the results obtained by analytical evaluation of the scattering method. In particular, the results indicate that it is possible to trap the steel cylinder in the radial direction by optimizing the width of Gaussian source and the operation frequency. As the sizes of the relating objects are smaller than or comparable to wavelength, the algorithm presented here can be easily extended to 3-D and include torque computation algorithms, thus providing a highly flexible and universally usable computation engine.

  20. The influence of Unruh effect on quantum steering for accelerated two-level detectors with different measurements

    NASA Astrophysics Data System (ADS)

    Liu, Tonghua; Wang, Jieci; Jing, Jiliang; Fan, Heng

    2018-03-01

    We propose a tight measure of quantum steering and study the dynamics of steering in a relativistic setting via different quantifiers. We present the dynamics of steering between two correlated Unruh-Dewitt detectors when one of them locally interacts with external scalar field. We find that the quantum steering, either measured by the entropic steering inequality or the Cavalcanti-Jones-Wiseman-Reid inequality, is fragile under the influence of Unruh thermal noise. The quantum steering is found always asymmetric and the asymmetry is extremely sensitive to the initial state parameter. In addition, the steering-type quantum correlations experience "sudden death" for some accelerations, which are quite different from the behaviors of other quantum correlations in the same system. It is worth noting that the domination value of the tight quantum steering exists a transformation point with increasing acceleration. We also find that the robustness of quantum steerability under the Unruh thermal noise can be realized by choosing the smallest energy gap in the detectors.

  1. Influence of Regional Difference in Bone Mineral Density on Hip Fracture Site in Elderly Females by Finite Element Analysis.

    PubMed

    Lin, Z L; Li, P F; Pang, Z H; Zheng, X H; Huang, F; Xu, H H; Li, Q L

    2015-11-01

    Hip fracture is a kind of osteoporotic fractures in elderly patients. Its important monitoring indicator is to measure bone mineral density (BMD) using DXA. The stress characteristics and material distribution in different parts of the bones can be well simulated by three-dimensional finite element analysis. Our previous studies have demonstrated a linear positive correlation between clinical BMD and the density of three-dimensional finite element model of the femur. However, the correlation between the density variation between intertrochanteric region and collum femoris region of the model and the fracture site has not been studied yet. The present study intends to investigate whether the regional difference in the density of three-dimensional finite element model of the femur can be used to predict hip fracture site in elderly females. The CT data of both hip joints were collected from 16 cases of elderly female patients with hip fractures. Mimics 15.01 software was used to reconstruct the model of proximal femur on the healthy side. Ten kinds of material properties were assigned. In Abaqus 6.12 software, the collum femoris region and intertrochanteric region were, respectively, drawn for calculating the corresponding regional density of the model, followed by prediction of hip fracture site and final comparison with factual fracture site. The intertrochanteric region/collum femoris region density was [(1.20 ± 0.02) × 10(6)] on the fracture site and [(1.22 ± 0.03) × 10(6)] on the non-fracture site, and the difference was statistically significant (P = 0.03). Among 16 established models of proximal femur on the healthy side, 14 models were consistent with the actual fracture sites, one model was inconsistent, and one model was unpredictable, with the coincidence rate of 87.5 %. The intertrochanteric region or collum femoris region with lower BMD is more prone to hip fracture of the type on the corresponding site.

  2. Charged particle tracking through electrostatic wire meshes using the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devlin, L. J.; Karamyshev, O.; Welsch, C. P., E-mail: carsten.welsch@cockcroft.ac.uk

    Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed.more » The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.« less

  3. Scattering theory of efficient quantum transport across finite networks

    NASA Astrophysics Data System (ADS)

    Walschaers, Mattia; Mulet, Roberto; Buchleitner, Andreas

    2017-11-01

    We present a scattering theory for the efficient transmission of an excitation across a finite network with designed disorder. We show that the presence of randomly positioned network sites allows significant acceleration of the excitation transfer processes as compared to a dimer structure, but only if the disordered Hamiltonians are constrained to be centrosymmetric and exhibit a dominant doublet in their spectrum. We identify the cause of this efficiency enhancement to be the constructive interplay between disorder-induced fluctuations of the dominant doublet’s splitting and the coupling strength between the input and output sites to the scattering channels. We find that the characteristic strength of these fluctuations together with the channel coupling fully control the transfer efficiency.

  4. Geodetic Finite-Fault-based Earthquake Early Warning Performance for Great Earthquakes Worldwide

    NASA Astrophysics Data System (ADS)

    Ruhl, C. J.; Melgar, D.; Grapenthin, R.; Allen, R. M.

    2017-12-01

    GNSS-based earthquake early warning (EEW) algorithms estimate fault-finiteness and unsaturated moment magnitude for the largest, most damaging earthquakes. Because large events are infrequent, algorithms are not regularly exercised and insufficiently tested on few available datasets. The Geodetic Alarm System (G-larmS) is a GNSS-based finite-fault algorithm developed as part of the ShakeAlert EEW system in the western US. Performance evaluations using synthetic earthquakes offshore Cascadia showed that G-larmS satisfactorily recovers magnitude and fault length, providing useful alerts 30-40 s after origin time and timely warnings of ground motion for onshore urban areas. An end-to-end test of the ShakeAlert system demonstrated the need for GNSS data to accurately estimate ground motions in real-time. We replay real data from several subduction-zone earthquakes worldwide to demonstrate the value of GNSS-based EEW for the largest, most damaging events. We compare predicted ground acceleration (PGA) from first-alert-solutions with those recorded in major urban areas. In addition, where applicable, we compare observed tsunami heights to those predicted from the G-larmS solutions. We show that finite-fault inversion based on GNSS-data is essential to achieving the goals of EEW.

  5. Finite element modeling of human brain response to football helmet impacts.

    PubMed

    Darling, T; Muthuswamy, J; Rajan, S D

    2016-10-01

    The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and validate a coupled finite element (FE) model of a football helmet and the human body, and (b) to assess responses of different regions of the brain to two different impact conditions - frontal oblique and crown impact conditions. The FE helmet model was validated using experimental results of drop tests. Subsequently, the integrated helmet-human body FE model was used to assess the responses of different regions of the brain to impact loads. Strain-rate, strain, and stress measures in the corpus callosum, midbrain, and brain stem were assessed. Results show that maximum strain-rates of 27 and 19 s(-1) are observed in the brain-stem and mid-brain, respectively. This could potentially lead to axonal injuries and neuronal cell death during crown impact conditions. The developed experimental-numerical framework can be used in the study of other helmet-related impact conditions.

  6. A finite difference method for the solution of the transonic flow around harmonically oscillating wings

    NASA Technical Reports Server (NTRS)

    Ehlers, E. F.

    1974-01-01

    A finite difference method for the solution of the transonic flow about a harmonically oscillating wing is presented. The partial differential equation for the unsteady transonic flow was linearized by dividing the flow into separate steady and unsteady perturbation velocity potentials and by assuming small amplitudes of harmonic oscillation. The resulting linear differential equation is of mixed type, being elliptic or hyperbolic whereever the steady flow equation is elliptic or hyperbolic. Central differences were used for all derivatives except at supersonic points where backward differencing was used for the streamwise direction. Detailed formulas and procedures are described in sufficient detail for programming on high speed computers. To test the method, the problem of the oscillating flap on a NACA 64A006 airfoil was programmed. The numerical procedure was found to be stable and convergent even in regions of local supersonic flow with shocks.

  7. Unconditionally stable finite-difference time-domain methods for modeling the Sagnac effect

    NASA Astrophysics Data System (ADS)

    Novitski, Roman; Scheuer, Jacob; Steinberg, Ben Z.

    2013-02-01

    We present two unconditionally stable finite-difference time-domain (FDTD) methods for modeling the Sagnac effect in rotating optical microsensors. The methods are based on the implicit Crank-Nicolson scheme, adapted to hold in the rotating system reference frame—the rotating Crank-Nicolson (RCN) methods. The first method (RCN-2) is second order accurate in space whereas the second method (RCN-4) is fourth order accurate. Both methods are second order accurate in time. We show that the RCN-4 scheme is more accurate and has better dispersion isotropy. The numerical results show good correspondence with the expression for the classical Sagnac resonant frequency splitting when using group refractive indices of the resonant modes of a microresonator. Also we show that the numerical results are consistent with the perturbation theory for the rotating degenerate microcavities. We apply our method to simulate the effect of rotation on an entire Coupled Resonator Optical Waveguide (CROW) consisting of a set of coupled microresonators. Preliminary results validate the formation of a rotation-induced gap at the center of a transfer function of a CROW.

  8. Methods for compressible fluid simulation on GPUs using high-order finite differences

    NASA Astrophysics Data System (ADS)

    Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer

    2017-08-01

    We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.

  9. Black-Scholes finite difference modeling in forecasting of call warrant prices in Bursa Malaysia

    NASA Astrophysics Data System (ADS)

    Mansor, Nur Jariah; Jaffar, Maheran Mohd

    2014-07-01

    Call warrant is a type of structured warrant in Bursa Malaysia. It gives the holder the right to buy the underlying share at a specified price within a limited period of time. The issuer of the structured warrants usually uses European style to exercise the call warrant on the maturity date. Warrant is very similar to an option. Usually, practitioners of the financial field use Black-Scholes model to value the option. The Black-Scholes equation is hard to solve analytically. Therefore the finite difference approach is applied to approximate the value of the call warrant prices. The central in time and central in space scheme is produced to approximate the value of the call warrant prices. It allows the warrant holder to forecast the value of the call warrant prices before the expiry date.

  10. Chiral anomaly and anomalous finite-size conductivity in graphene

    NASA Astrophysics Data System (ADS)

    Shen, Shun-Qing; Li, Chang-An; Niu, Qian

    2017-09-01

    Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.

  11. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    NASA Astrophysics Data System (ADS)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  12. Plasma inverse transition acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ming

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood,more » and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.« less

  13. Acceleration of Convergence to Equilibrium in Markov Chains by Breaking Detailed Balance

    NASA Astrophysics Data System (ADS)

    Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes

    2017-07-01

    We analyse and interpret the effects of breaking detailed balance on the convergence to equilibrium of conservative interacting particle systems and their hydrodynamic scaling limits. For finite systems of interacting particles, we review existing results showing that irreversible processes converge faster to their steady state than reversible ones. We show how this behaviour appears in the hydrodynamic limit of such processes, as described by macroscopic fluctuation theory, and we provide a quantitative expression for the acceleration of convergence in this setting. We give a geometrical interpretation of this acceleration, in terms of currents that are antisymmetric under time-reversal and orthogonal to the free energy gradient, which act to drive the system away from states where (reversible) gradient-descent dynamics result in slow convergence to equilibrium.

  14. Introducing a new methodology for the calculation of local philicity and multiphilic descriptor: an alternative to the finite difference approximation

    NASA Astrophysics Data System (ADS)

    Sánchez-Márquez, Jesús; Zorrilla, David; García, Víctor; Fernández, Manuel

    2018-07-01

    This work presents a new development based on the condensation scheme proposed by Chamorro and Pérez, in which new terms to correct the frozen molecular orbital approximation have been introduced (improved frontier molecular orbital approximation). The changes performed on the original development allow taking into account the orbital relaxation effects, providing equivalent results to those achieved by the finite difference approximation and leading also to a methodology with great advantages. Local reactivity indices based on this new development have been obtained for a sample set of molecules and they have been compared with those indices based on the frontier molecular orbital and finite difference approximations. A new definition based on the improved frontier molecular orbital methodology for the dual descriptor index is also shown. In addition, taking advantage of the characteristics of the definitions obtained with the new condensation scheme, the descriptor local philicity is analysed by separating the components corresponding to the frontier molecular orbital approximation and orbital relaxation effects, analysing also the local parameter multiphilic descriptor in the same way. Finally, the effect of using the basis set is studied and calculations using DFT, CI and Möller-Plesset methodologies are performed to analyse the consequence of different electronic-correlation levels.

  15. Seismic wavefield simulation in 2D elastic and viscoelastic tilted transversely isotropic media: comparisons between four different kinds of finite-difference grid schemes

    NASA Astrophysics Data System (ADS)

    Li, Zhong-sheng; Bai, Chao-ying; Sun, Yao-chong

    2013-08-01

    In this paper, we use the staggered grid, the auxiliary grid, the rotated staggered grid and the non-staggered grid finite-difference methods to simulate the wavefield propagation in 2D elastic tilted transversely isotropic (TTI) and viscoelastic TTI media, respectively. Under the stability conditions, we choose different spatial and temporal intervals to get wavefront snapshots and synthetic seismograms to compare the four algorithms in terms of computational accuracy, CPU time, phase shift, frequency dispersion and amplitude preservation. The numerical results show that: (1) the rotated staggered grid scheme has the least memory cost and the fastest running speed; (2) the non-staggered grid scheme has the highest computational accuracy and least phase shift; (3) the staggered grid has less frequency dispersion even when the spatial interval becomes larger.

  16. Pion properties at finite isospin chemical potential with isospin symmetry breaking

    NASA Astrophysics Data System (ADS)

    Wu, Zuqing; Ping, Jialun; Zong, Hongshi

    2017-12-01

    Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the u quark and d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI <0 and μI >0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses. Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)

  17. Translational Vestibulo-Ocular Reflex and Motion Perception During Interaural Linear Acceleration: Comparison of Different Motion Paradigms

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, S. J.

    2011-01-01

    The neural mechanisms to resolve ambiguous tilt-translation motion have been hypothesized to be different for motion perception and eye movements. Previous studies have demonstrated differences in ocular and perceptual responses using a variety of motion paradigms, including Off-Vertical Axis Rotation (OVAR), Variable Radius Centrifugation (VRC), translation along a linear track, and tilt about an Earth-horizontal axis. While the linear acceleration across these motion paradigms is presumably equivalent, there are important differences in semicircular canal cues. The purpose of this study was to compare translation motion perception and horizontal slow phase velocity to quantify consistencies, or lack thereof, across four different motion paradigms. Twelve healthy subjects were exposed to sinusoidal interaural linear acceleration between 0.01 and 0.6 Hz at 1.7 m/s/s (equivalent to 10 tilt) using OVAR, VRC, roll tilt, and lateral translation. During each trial, subjects verbally reported the amount of perceived peak-to-peak lateral translation and indicated the direction of motion with a joystick. Binocular eye movements were recorded using video-oculography. In general, the gain of translation perception (ratio of reported linear displacement to equivalent linear stimulus displacement) increased with stimulus frequency, while the phase did not significantly vary. However, translation perception was more pronounced during both VRC and lateral translation involving actual translation, whereas perceptions were less consistent and more variable during OVAR and roll tilt which did not involve actual translation. For each motion paradigm, horizontal eye movements were negligible at low frequencies and showed phase lead relative to the linear stimulus. At higher frequencies, the gain of the eye movements increased and became more inphase with the acceleration stimulus. While these results are consistent with the hypothesis that the neural computational strategies for

  18. Explicit formula of finite difference method to estimate human peripheral tissue temperatures during exposure to severe cold stress.

    PubMed

    Khanday, M A; Hussain, Fida

    2015-02-01

    During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Semi-implicit finite difference methods for three-dimensional shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Cheng, Ralph T.

    1992-01-01

    A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.

  20. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  1. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    PubMed

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  2. The aggregated unfitted finite element method for elliptic problems

    NASA Astrophysics Data System (ADS)

    Badia, Santiago; Verdugo, Francesc; Martín, Alberto F.

    2018-07-01

    Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterative Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.

  3. Finite-size scaling and integer-spin Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Bonner, Jill C.; Müller, Gerhard

    1984-03-01

    Finite-size scaling (phenomenological renormalization) techniques are trusted and widely applied in low-dimensional magnetism and, particularly, in lattice gauge field theory. Recently, investigations have begun which subject the theoretical basis to systematic and intensive scrutiny to determine the validity of finite-size scaling in a variety of situations. The 2D ANNNI model is an example of a situation where finite-size scaling methods encounter difficulty, related to the occurrence of a disorder line (one-dimensional line). A second example concerns the behavior of the spin-1/2 antiferromagnetic XXZ model where the T=0 critical behavior is exactly known and features an essential singularity at the isotropic Heisenberg point. Standard finite-size scaling techniques do not convincingly reproduce the exact phase behavior and this is attributable to the essential singularity. The point is relevant in connection with a finite-size scaling analysis of a spin-one antiferromagnetic XXZ model, which claims to support a conjecture by Haldane that the T=0 phase behavior of integer-spin Heisenberg chains is significantly different from that of half-integer-spin Heisenberg chains.

  4. Computation of ground motion amplification in Kolkata megacity (India) using finite-difference method for seismic microzonation

    NASA Astrophysics Data System (ADS)

    Shiuly, Amit; Kumar, Vinay; Narayan, Jay

    2014-06-01

    This paper presents the ground motion amplification scenario along with fundamental frequency (F 0) of sedimentary deposit for the seismic microzonation of Kolkata City, situated on the world's largest delta island with very soft soil deposit. A 4th order accurate SH-wave viscoelastic finite-difference algorithm is used for computation of response of 1D model for each borehole location. Different maps, such as for F 0, amplification at F 0, average spectral amplification (ASA) in the different frequency bandwidth of earthquake engineering interest are developed for a variety of end-users communities. The obtained ASA of the order of 3-6 at most of the borehole locations in a frequency range of 0.25-10.0 Hz reveals that Kolkata City may suffer severe damage even during a moderate earthquake. Further, unexpected severe damage to collapse of multi-storey buildings may occur in localities near Hoogly River and Salt Lake area due to double resonance effects during distant large earthquakes.

  5. Nonlinear transient survival level seismic finite element analysis of Magellan ground based telescope

    NASA Astrophysics Data System (ADS)

    Griebel, Matt; Buleri, Christine; Baylor, Andrew; Gunnels, Steve; Hull, Charlie; Palunas, Povilas; Phillips, Mark

    2016-07-01

    The Magellan Telescopes are a set of twin 6.5 meter ground based optical/near-IR telescopes operated by the Carnegie Institution for Science at the Las Campanas Observatory (LCO) in Chile. The primary mirrors are f/1.25 paraboloids made of borosilicate glass and a honeycomb structure. The secondary mirror provides both f/11 and f/5 focal lengths with two Nasmyth, three auxiliary, and a Cassegrain port on the optical support structure (OSS). The telescopes have been in operation since 2000 and have experienced several small earthquakes with no damage. Measurement of in situ response of the telescopes to seismic events showed significant dynamic amplification, however, the response of the telescopes to a survival level earthquake, including component level forces, displacements, accelerations, and stresses were unknown. The telescopes are supported with hydrostatic bearings that can lift up under high seismic loading, thus causing a nonlinear response. For this reason, the typical response spectrum analysis performed to analyze a survival level seismic earthquake is not sufficient in determining the true response of the structure. Therefore, a nonlinear transient finite element analysis (FEA) of the telescope structure was performed to assess high risk areas and develop acceleration responses for future instrument design. Several configurations were considered combining different installed components and altitude pointing directions. A description of the models, methodology, and results are presented.

  6. Comprehensive Numerical Analysis of Finite Difference Time Domain Methods for Improving Optical Waveguide Sensor Accuracy

    PubMed Central

    Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly

    2016-01-01

    This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.

  7. LaRC design analysis report for National Transonic Facility for 304 stainless steel tunnel shell. Volume 1S: Finite difference analysis of cone/cylinder junction

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W., Jr.; Taylor, J. T.; Wilson, J. F.; Gray, C. E., Jr.; Leatherman, A. D.; Rooker, J. R.; Allred, J. W.

    1976-01-01

    The results of extensive computer (finite element, finite difference and numerical integration), thermal, fatigue, and special analyses of critical portions of a large pressurized, cryogenic wind tunnel (National Transonic Facility) are presented. The computer models, loading and boundary conditions are described. Graphic capability was used to display model geometry, section properties, and stress results. A stress criteria is presented for evaluation of the results of the analyses. Thermal analyses were performed for major critical and typical areas. Fatigue analyses of the entire tunnel circuit are presented.

  8. 3D finite element analysis of tightening process of bolt and nut connections with pitch difference

    NASA Astrophysics Data System (ADS)

    Liu, X.; Noda, N.-A.; Sano, Y.; Huang, Y. T.; Takase, Y.

    2018-06-01

    In a wide industrial field, the bolt-nut joint is unitized as an important machine element and anti-loosening performance is always required. In this paper, the effect of a slight pitch difference between a bolt and nut is studied. Firstly, by varying the pitch difference, the prevailing torque required for the nut rotation, before the nut touches the clamped body, is measured experimentally. Secondly, the tightening torque is determined as a function of the axial force of the bolt after the nut touches the clamped body. The results show that a large value of pitch difference may provide large prevailing torque that causes an anti-loosening effect although a very large pitch difference may deteriorate the bolt axial force under a certain tightening torque. Thirdly, a suitable pitch difference is determined taking into account the anti-loosening and clamping abilities. Furthermore, the chamfered corners at nut ends are considered, and it is found that the 3D finite element analysis with considering the chamfered nut threads has a good agreement with the experimental observation. Finally, the most desirable pitch difference required for improving anti-loosening is proposed.

  9. Improving finite element results in modeling heart valve mechanics.

    PubMed

    Earl, Emily; Mohammadi, Hadi

    2018-06-01

    Finite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques. In this study, we introduce a novel numerical technique that enhances the results obtained from coarse mesh finite element models to provide accuracy comparable to that of fine mesh finite element models while maintaining a relatively low computational cost. Introduced in this study is a method by which the computational expense required to solve linear and nonlinear constitutive models, commonly used in heart valve mechanics simulations, is reduced while continuing to account for large and infinitesimal deformations. This continuum model is developed based on the least square algorithm procedure coupled with the finite difference method adhering to the assumption that the components of the strain tensor are available at all nodes of the finite element mesh model. The suggested numerical technique is easy to implement, practically efficient, and requires less computational time compared to currently available commercial finite element packages such as ANSYS and/or ABAQUS.

  10. Finite element solution of low bond number sloshing

    NASA Technical Reports Server (NTRS)

    Wohlen, R. L.; Park, A. C.; Warner, D. M.

    1975-01-01

    The dynamics of liquid propellant in a low Bond number environment which are critical to the design of spacecraft systems with respect to orbital propellant transfer and attitude control system were investigated. Digital computer programs were developed for the determination of liquid free surface equilibrium shape, lateral slosh natural vibration mode shapes, and frequencies for a liquid in a container of arbitrary axisymmetric shape with surface tension forces the same order of magnitude as acceleration forces. A finite volume element representation of the liquid was used for the vibration analysis. The liquid free surface equilibrium shapes were computed for several tanks at various contact angles and ullage volumes. A configuration was selected for vibration analysis and lateral slosh mode shapes and natural frequencies were obtained. Results are documented.

  11. FIDDLE: A Computer Code for Finite Difference Development of Linear Elasticity in Generalized Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2005-01-01

    A three-dimensional numerical solver based on finite-difference solution of three-dimensional elastodynamic equations in generalized curvilinear coordinates has been developed and used to generate data such as radial and tangential stresses over various gear component geometries under rotation. The geometries considered are an annulus, a thin annular disk, and a thin solid disk. The solution is based on first principles and does not involve lumped parameter or distributed parameter systems approach. The elastodynamic equations in the velocity-stress formulation that are considered here have been used in the solution of problems of geophysics where non-rotating Cartesian grids are considered. For arbitrary geometries, these equations along with the appropriate boundary conditions have been cast in generalized curvilinear coordinates in the present study.

  12. A Comparison of Spectral Element and Finite Difference Methods Using Statically Refined Nonconforming Grids for the MHD Island Coalescence Instability Problem

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Bhattacharjee, A.

    2009-04-01

    A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (\\ci) in two dimensions. \\ci is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effective resolution, spectral element runs can maintain accuracy significantly higher than that of the finite difference runs, in some cases achieving close to full spectral accuracy.

  13. SU-F-T-577: Comparison of Small Field Dosimetry Measurements in Fields Shaped with Conical Applicators On Two Different Accelerating Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, B; McEwen, M; Belec, J

    2016-06-15

    Purpose: To investigate small field dosimetry measurements and associated uncertainties when conical applicators are used to shape treatment fields from two different accelerating systems. Methods: Output factor measurements are made in water in beams from the CyberKnife radiosurgery system, which uses conical applicators to shape fields from a (flattening filter-free) 6 MV beam, and in a 6 MV beam from the Elekta Precise linear accelerator (with flattening filter) with BrainLab external conical applicators fitted to shape the field. The measurements use various detectors: (i) an Exradin A16 ion chamber, (ii) two Exradin W1 plastic scintillation detectors, (iii) a Sun Nuclearmore » Edge diode, and (iv) two PTW microDiamond synthetic diamond detectors. Profiles are used for accurate detector positioning and to specify field size (FWHM). Output factor measurements are corrected with detector specific correction factors taken from the literature where available and/or from Monte Carlo simulations using the EGSnrc code system. Results: Differences in measurements of up to 1.7% are observed with a given detector type in the same beam (i.e., intra-detector variability). Corrected results from different detectors in the same beam (inter-detector differences) show deviations up to 3 %. Combining data for all detectors and comparing results from the two accelerators results in a 5.9% maximum difference for the smallest field sizes (FWHM=5.2–5.6 mm), well outside the combined uncertainties (∼1% for the smallest beams) and/or differences among detectors. This suggests that the FWHM of a measured profile is not a good specifier to compare results from different small fields with the same nominal energy. Conclusion: Large differences in results for both intra-detector variability and inter-detector differences suggest potentially high uncertainties in detector-specific correction factors. Differences between the results measured in circular fields from different

  14. Stable Artificial Dissipation Operators for Finite Volume Schemes on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Svard, Magnus; Gong, Jing; Nordstrom, Jan

    2006-01-01

    Our objective is to derive stable first-, second- and fourth-order artificial dissipation operators for node based finite volume schemes. Of particular interest are general unstructured grids where the strength of the finite volume method is fully utilized. A commonly used finite volume approximation of the Laplacian will be the basis in the construction of the artificial dissipation. Both a homogeneous dissipation acting in all directions with equal strength and a modification that allows different amount of dissipation in different directions are derived. Stability and accuracy of the new operators are proved and the theoretical results are supported by numerical computations.

  15. Fractional finite Fourier transform.

    PubMed

    Khare, Kedar; George, Nicholas

    2004-07-01

    We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.

  16. Influence of artificial accelerated aging on the color stability and opacity of composites of different shades.

    PubMed

    Mundim, F M; Da Fonseca Roberti Garcia, L; Silva Sousa, A B; Cruvinel, D R; De Carvalho Panzeri Pires-De-Souza, F

    2010-10-01

    The aim of this study was to evaluate the influence of artificial accelerated aging on the color stability and opacity of composites of different shades. Four composites for direct use (Heliomolar, 4 Seasons, Tetric EvoCeram; QuiXfil) and one for indirect use (SR Adoro) in two shades were used: light (A2) and dark (C3 for direct, and D4 for indirect composite). QuiXfil was obtained in Universal shade. A Teflon matrix (12 X 2 mm) was used to obtain 54 specimens (N=6), which were submitted to color and opacity analysis (Spectrophotometer PCB 6807, Byk Gardner) before and after artificial accelerated aging for 384 hours. After the statistical analysis (2-way ANOVA - Bonferroni - P<0.05), significant color alteration was observed in the light and dark composites studied (P<0.05), with the exception of QuiXfil. Composite 4 Seasons/C3 showed less color alteration (ΔE=0.91). The opacity alteration (ΔOP) was higher for light composites. Artificial accelerated aging interfered in the optical properties assessed; however, the alterations seemed to be more related to the composites composition than to their shade.

  17. Radiotherapy using a laser proton accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masao; Hishikawa, Yoshio; Miyajima, Satoshi; Okazaki, Yoshiko; Sutherland, Kenneth L.; Abe, Mitsuyuki; Bulanov, Sergei V.; Daido, Hiroyuki; Esirkepov, Timur Zh.; Koga, James; Yamagiwa, Mitsuru; Tajima, Toshiki

    2008-06-01

    Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. Because of its compactness and other novel characteristics, the laser acceleration method provides many enhanced capabilities

  18. A finite difference Hartree-Fock program for atoms and diatomic molecules

    NASA Astrophysics Data System (ADS)

    Kobus, Jacek

    2013-03-01

    The newest version of the two-dimensional finite difference Hartree-Fock program for atoms and diatomic molecules is presented. This is an updated and extended version of the program published in this journal in 1996. It can be used to obtain reference, Hartree-Fock limit values of total energies and multipole moments for a wide range of diatomic molecules and their ions in order to calibrate existing and develop new basis sets, calculate (hyper)polarizabilities (αzz, βzzz, γzzzz, Az,zz, Bzz,zz) of atoms, homonuclear and heteronuclear diatomic molecules and their ions via the finite field method, perform DFT-type calculations using LDA or B88 exchange functionals and LYP or VWN correlations ones or the self-consistent multiplicative constant method, perform one-particle calculations with (smooth) Coulomb and Krammers-Henneberger potentials and take account of finite nucleus models. The program is easy to install and compile (tarball+configure+make) and can be used to perform calculations within double- or quadruple-precision arithmetic. Catalogue identifier: ADEB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADEB_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 171196 No. of bytes in distributed program, including test data, etc.: 9481802 Distribution format: tar.gz Programming language: Fortran 77, C. Computer: any 32- or 64-bit platform. Operating system: Unix/Linux. RAM: Case dependent, from few MB to many GB Classification: 16.1. Catalogue identifier of previous version: ADEB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 98(1996)346 Does the new version supersede the previous version?: Yes Nature of problem: The program finds virtually exact solutions of the Hartree-Fock and density functional theory type equations for atoms, diatomic molecules and their ions

  19. Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.

    PubMed

    Xu, Zhenli; Ma, Manman; Liu, Pei

    2014-07-01

    We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.

  20. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.