Science.gov

Sample records for accelerated grain growth

  1. Isotropic Monte Carlo Grain Growth

    SciTech Connect

    Mason, J.

    2013-04-25

    IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.

  2. Dynamic grain growth during superplastic deformation

    SciTech Connect

    Rabinovich, M.Kh.; Trifonov, V.G.

    1996-05-01

    Superplastic deformation (SPD) causes the accelerated anisotropic grain growth. This process results in the formation of structure which is quasistable during superplastic deformation and unstable after deformation. The degree of instability is determined by the size of grains, their shape coefficient which depends on the nature of an alloy and is equal to 1.1--1.5 after SPD, and by the unbalance of triple junctions at boundaries. Alloying of metals can affect the thermodynamic force and mechanism of dynamic anisotropic grain growth and correspondingly influence the parameters of superplasticity in alloys.

  3. Fluctuation effects in grain growth

    NASA Astrophysics Data System (ADS)

    Kim, Seong Gyoon; Park, Yong Bum

    2016-08-01

    In this study, we attempted to clarify the roles of fluctuation effects in grain growth. To capture the persistent nature in both space and time of fluctuations due to variations in the local surroundings of individual grains, we developed a local mean-field model. The fluctuation strength in this model is arbitrarily controlled by employing an artificial number, n , of nearest neighbor grains. Large-scale numerical computations of the model for various n values and initial GSDs were carried out to follow transient behaviors and determine the steady states. This study reveals that, in the classical mean-field model with no fluctuation effects, the steady state is not unique but is strongly dependent upon the initial GSD. However, a small fluctuation drives the mean-field model to reach the Hillert solution, independent of the fluctuation strength and initial GSD, as long as the fluctuation strength is sufficiently small. On the other hand, when the fluctuation is sufficiently strong, the fluctuation pushes the steady state of the mean-field model out of the Hillert solution, and its strength determines a unique steady state independent of the initial GSD. The strong fluctuation makes the GSD more symmetric than the Hillert distribution. Computations designed to mimic actual 2 and 3D grain growth were carried out by taking the number of nearest neighbors of each grain as a function of the scaled grain size. The resultant GSDs in two and three dimensions were compared with the direct simulations of ideal grain growth.

  4. Grain boundary oxidation and fatigue crack growth at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1986-01-01

    Fatigue crack growth rate at elevated temperatures can be accelerated by grain boundary oxidation. Grain boundary oxidation kinetics and the statistical distribution of grain boundary oxide penetration depth were studied. At a constant delta K-level and at a constant test temperature, fatigue crack growth rate, da/dN, is a function of cyclic frequency, nu. A fatigue crack growth model of intermittent micro-ruptures of grain boundary oxide is constructed. The model is consistent with the experimental observations that, in the low frequency region, da/dN is inversely proportional to nu, and fatigue crack growth is intergranular.

  5. Grain Growth in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Perez Munoz, Laura Maria

    The majority of young, low-mass stars are surrounded by optically thick accretion disks. These circumstellar disks provide large reservoirs of gas and dust that will eventually be transformed into planetary systems. Theory and observations suggest that the earliest stage toward planet formation in a protoplanetary disk is the growth of particles, from sub-micron-sized grains to centimeter- sized pebbles. Theory indicates that small interstellar grains are well coupled into the gas and are incorporated to the disk during the proto-stellar collapse. These dust particles settle toward the disk mid-plane and simultaneously grow through collisional coagulation in a very short timescale. Observationally, grain growth can be inferred by measuring the spectral energy distribution at long wavelengths, which traces the continuum dust emission spectrum and hence the dust opacity. Several observational studies have indicated that the dust component in protoplanetary disks has evolved as compared to interstellar medium dust particles, suggesting at least 4 orders of magnitude in particle-size growth. However, the limited angular resolution and poor sensitivity of previous observations has not allowed for further exploration of this astrophysical process. As part of my thesis, I embarked in an observational program to search for evidence of radial variations in the dust properties across a protoplanetary disk, which may be indicative of grain growth. By making use of high angular resolution observations obtained with CARMA, VLA, and SMA, I searched for radial variations in the dust opacity inside protoplanetary disks. These observations span more than an order of magnitude in wavelength (from sub-millimeter to centimeter wavelengths) and attain spatial resolutions down to 20 AU. I characterized the radial distribution of the circumstellar material and constrained radial variations of the dust opacity spectral index, which may originate from particle growth in these circumstellar

  6. Concepts on Low Temperature Mechanical Grain Growth

    SciTech Connect

    Sharon, John Anthony; Boyce, Brad Lee

    2013-11-01

    In metals, as grain size is reduced below 100nm, conventional dislocation plasticity is suppressed resulting in improvements in strength, hardness, and wears resistance. Existing and emerging components use fine grained metals for these beneficial attributes. However, these benefits can be lost in service if the grains undergo growth during the component’s lifespan. While grain growth is traditionally viewed as a purely thermal process that requires elevated temperature exposure, recent evidence shows that some metals, especially those with nanocrystalline grain structure, can undergo grain growth even at room temperature or below due to mechanical loading. This report has been assembled to survey the key concepts regarding how mechanical loads can drive grain coarsening at room temperature and below. Topics outlined include the atomic level mechanisms that facilitate grain growth, grain boundary mobility, and the impact of boundary structure, loading scheme, and temperature.

  7. Grain boundary resistance to fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Chen, QI; Liu, H. W.

    1993-01-01

    Results of an experimental study tracing the grain boundary effect on the fatigue crack growth rate are reported. Direct experimental evidence for the grain boundary blockage mechanism is presented. The orientation difference between two neighboring grains directly contributed to the extent of crack growth retardation.

  8. Potts-model grain growth simulations: Parallel algorithms and applications

    SciTech Connect

    Wright, S.A.; Plimpton, S.J.; Swiler, T.P.

    1997-08-01

    Microstructural morphology and grain boundary properties often control the service properties of engineered materials. This report uses the Potts-model to simulate the development of microstructures in realistic materials. Three areas of microstructural morphology simulations were studied. They include the development of massively parallel algorithms for Potts-model grain grow simulations, modeling of mass transport via diffusion in these simulated microstructures, and the development of a gradient-dependent Hamiltonian to simulate columnar grain growth. Potts grain growth models for massively parallel supercomputers were developed for the conventional Potts-model in both two and three dimensions. Simulations using these parallel codes showed self similar grain growth and no finite size effects for previously unapproachable large scale problems. In addition, new enhancements to the conventional Metropolis algorithm used in the Potts-model were developed to accelerate the calculations. These techniques enable both the sequential and parallel algorithms to run faster and use essentially an infinite number of grain orientation values to avoid non-physical grain coalescence events. Mass transport phenomena in polycrystalline materials were studied in two dimensions using numerical diffusion techniques on microstructures generated using the Potts-model. The results of the mass transport modeling showed excellent quantitative agreement with one dimensional diffusion problems, however the results also suggest that transient multi-dimension diffusion effects cannot be parameterized as the product of the grain boundary diffusion coefficient and the grain boundary width. Instead, both properties are required. Gradient-dependent grain growth mechanisms were included in the Potts-model by adding an extra term to the Hamiltonian. Under normal grain growth, the primary driving term is the curvature of the grain boundary, which is included in the standard Potts-model Hamiltonian.

  9. Grain boundary oxidation and oxidation accelerated fatigue crack nucleation and propagation

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1986-01-01

    Fatigue life at elevated temperatures is often shortened by oxidation. Grain boundary oxidation penetrates deeper than the surface oxidation. Therefore, grain boundary oxide penetration could be the primary cause of accelerated fatigue crack nucleation and propagation, and the shortened fatigue life at elevated temperatures. Grain boundary oxidation kinetics was studied and its statistical scatter was analyzed by the Weibull's distribution function. The effects of grain boundary oxidation on shortened fatigue life was analyzed and discussed. A model of intermittent microruptures of the grain boundary oxide was proposed for the fatigue crack growth in the low frequency region. The proposed model is consistent with the observations that fatigue crack growth rate in the low frequency region with hold time at K sub max is inversely proportional to cyclic frequency and that crack growth is intergranular.

  10. Cavity growth on a sliding grain boundary

    SciTech Connect

    I-Wei Chen

    1983-11-01

    Cavity growth on a sliding grain boundary to which a normal stress is applied is found to be faster than that on a stationary grain boundary. The morphology of the cavity contains an asymmetric crack-like tip which prompts surface diffusion locally when the sliding is dominant, and the growth rate becomes proportional to the third power of the normal stress independent of the sliding rate. Since the sliding rates of all grain boundaries are statistically comparable, only the normal stress dependence remains important. The conditions which favor the present mechanism are examined and shown to be in good agreement with the experimental evidence in creep cavitation.

  11. The use of electron accelerators for radiation disinfestation of grain

    NASA Astrophysics Data System (ADS)

    Salimov, R. A.; Cherepkov, V. G.; Kuksanov, N. K.; Kuznetzov, S. A.

    2000-03-01

    One of the ways to fight the insect pest in grain is treatment by the beam of accelerated electrons. This method provides an immediate cessation of the reproduction of their lifetime and intensity of nutrition, as well as the elimination of the latent forms of grain infestation (eggs, larvae, etc.). The main advantages of the electron beam technology of grain disinfestation are the following: a possibility of grain disinfestation continuously at a rate corresponding to the high capacity of the process equipment of modern elevators with the full automation of the process and safety for personnel; it does not cause pollution of the environment and leaves no residual pollution in grain; the irradiated grain can be used immediately. At present, the powerful radiation disinfestation unit (Radiation Disinfestor, RD) on a base of ELV-4 40 kW power electron accelerator with 3 m length extraction device has been developed for a technological line of capacity of 400 t/h. In 1980 two RDs on a base of ELV-2 electron accelerator were put into operation at the Odessa port elevator of 200 t/h capacity each. RDs are installed between the elevator and the freight wharf of the port. The infested grain is delivered to the elevator for storage. The electron accelerators of the ELV-type used in this RD have an electron beam power of 20 kW at an energy of up to 1.5 MeV. The operation mode is continuous with a guaranteed operation time of no less than 5000 h per year.

  12. Grain Growth in Collapsing Clouds

    NASA Astrophysics Data System (ADS)

    Rossi, S. C. F.; Benevides-Soares, P.; Barbuy, B.

    1990-11-01

    RESUMEN. Se ha considerado un proceso de coagulaci6n de granos en nubes colapsantes de diferentes metalicidades. Se aplicaron los calculos al intervalo de densidades n = lO to , forrespondiendo a la fase isotermica de contracci6n de nubes. A lo largo de esta fase en el colap- so, la temperatura es por lo tanto constante, en donde se alcanza T Q lOKpara nubes de metalicidad solar y T 100 K para nubes de baja metalicidad. El tamano final del grano es mayor para las mayores metali- cidades. ABSTRACT. A process of grain coagulation in collapsing clouds of different metallicities is considered. The calculations are applied to the density range n = 1O to , corresponding to the isothermal phase of cloud contraction. Along this phase in the collapse, the temperature is thus a constant, where T % 10 K for solar-metallicity clouds, and T % 100 K for low metallicity clouds is reached. The final grain size is larger for the higher metallicities. Keq : INTERSTELLAR-CLOUDS - INTERSTELLAR-CRAINS

  13. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  14. Parsing abnormal grain growth in specialty aluminas

    NASA Astrophysics Data System (ADS)

    Lawrence, Abigail Kremer

    Grain growth in alumina is strongly affected by the impurities present in the material. Certain impurity elements are known to have characteristic effects on abnormal grain growth in alumina. Specialty alumina powders contain multiple impurity species including MgO, CaO, SiO2, and Na 2O. In this work, sintered samples made from alumina powders containing various amounts of the impurities in question were characterized by their grain size and aspect ratio distributions. Multiple quantitative methods were used to characterize and classify samples with varying microstructures. The grain size distributions were used to partition the grain size population into subpopulations depending on the observed deviation from normal behavior. Using both grain size and aspect ratio a new visual representation for a microstructure was introduced called a morphology frequency map that gives a fingerprint for the material. The number of subpopulations within a sample and the shape of the distribution on the morphology map provided the basis for a classification scheme for different types of microstructures. Also using the two parameters a series of five metrics were calculated that describe the character of the abnormal grains in the sample, these were called abnormal character values. The abnormal character values describe the fraction of grains that are considered abnormal, the average magnitude of abnormality (including both grain size and aspect ratio), the average size, and variance in size. The final metric is the correlation between grain size and aspect ratio for the entire population of grains. The abnormal character values give a sense of how different from "normal" the sample is, given the assumption that a normal sample has a lognormal distribution of grain size and a Gaussian distribution of aspect ratios. In the second part of the work the quantified measures of abnormality were correlated with processing parameters such as composition and heat treatment conditions. A

  15. GROWTH OF GRAINS IN BROWN DWARF DISKS

    SciTech Connect

    Meru, Farzana; Galvagni, Marina; Olczak, Christoph

    2013-09-01

    We perform coagulation and fragmentation simulations using the new physically motivated model by Garaud et al. to determine growth locally in brown dwarf disks. We show that large grains can grow and that if brown dwarf disks are scaled-down versions of T Tauri disks (in terms of stellar mass, disk mass, and disk radius) growth at an equivalent location with respect to the disk truncation radius can occur to the same size in both disks. We show that similar growth occurs because the collisional timescales in the two disks are comparable. Our model may therefore potentially explain the recent observations of grain growth to millimeter sizes in brown dwarf disks, as seen in T Tauri disks.

  16. Assessment of MARMOT Grain Growth Model

    SciTech Connect

    Fromm, B.; Zhang, Y.; Schwen, D.; Brown, D.; Pokharel, R.

    2015-12-01

    This report assesses the MARMOT grain growth model by comparing modeling predictions with experimental results from thermal annealing. The purpose here is threefold: (1) to demonstrate the validation approach of using thermal annealing experiments with non-destructive characterization, (2) to test the reconstruction capability and computation efficiency in MOOSE, and (3) to validate the grain growth model and the associated parameters that are implemented in MARMOT for UO2. To assure a rigorous comparison, the 2D and 3D initial experimental microstructures of UO2 samples were characterized using non-destructive Synchrotron x-ray. The same samples were then annealed at 2273K for grain growth, and their initial microstructures were used as initial conditions for simulated annealing at the same temperature using MARMOT. After annealing, the final experimental microstructures were characterized again to compare with the results from simulations. So far, comparison between modeling and experiments has been done for 2D microstructures, and 3D comparison is underway. The preliminary results demonstrated the usefulness of the non-destructive characterization method for MARMOT grain growth model validation. A detailed analysis of the 3D microstructures is in progress to fully validate the current model in MARMOT.

  17. Accelerated growth of calcium silicate hydrates: Experiments and simulations

    SciTech Connect

    Nicoleau, Luc

    2011-12-15

    Despite the usefulness of isothermal calorimetry in cement analytics, without any further computations this brings only little information on the nucleation and growth of hydrates. A model originally developed by Garrault et al. is used in this study in order to simulate hydration curves of cement obtained by calorimetry with different known hardening accelerators. The limited basis set of parameters used in this model, having a physical or chemical significance, is valuable for a better understanding of mechanisms underlying in the acceleration of C-S-H precipitation. Alite hydration in presence of four different types of hardening accelerators was investigated. It is evidenced that each accelerator type plays a specific role on one or several growth parameters and that the model may support the development of new accelerators. Those simulations supported by experimental observations enable us to follow the formation of the C-S-H layer around grains and to extract interesting information on its apparent permeability.

  18. Phenomenology of Abnormal Grain Growth in Systems with Nonuniform Grain Boundary Mobility

    NASA Astrophysics Data System (ADS)

    DeCost, Brian L.; Holm, Elizabeth A.

    2016-07-01

    We have investigated the potential for nonuniform grain boundary mobility to act as a persistence mechanism for abnormal grain growth (AGG) using Monte Carlo Potts model simulations. The model system consists of a single initially large candidate grain embedded in a matrix of equiaxed grains, corresponding to the abnormal growth regime before impingement occurs. We assign a mobility advantage to grain boundaries between the candidate grain and a randomly selected subset of the matrix grains. We observe AGG in systems with physically reasonable fractions of fast boundaries; the probability of abnormal growth increases as the density of fast boundaries increases. This abnormal growth occurs by a series of fast, localized growth events that counteract the tendency of abnormally large grains to grow more slowly than the surrounding matrix grains. Resulting abnormal grains are morphologically similar to experimentally observed abnormal grains.

  19. Dynamic Abnormal Grain Growth in Refractory Metals

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2015-11-01

    High-temperature plastic deformation of the body-centered cubic (BCC) refractory metals Mo and Ta can initiate and propagate abnormal grains at significantly lower temperatures and faster rates than is possible by static annealing alone. This discovery reveals a new and potentially important aspect of abnormal grain growth (AGG) phenomena. The process of AGG during plastic deformation at elevated temperatures, termed dynamic abnormal grain growth (DAGG), was observed at homologous temperatures between 0.52 and 0.72 in both Mo and Ta sheet materials; these temperatures are much lower than those for previous observations of AGG in these materials during static annealing. DAGG was used to repeatedly grow single crystals several centimeters in length. Investigations to date have produced a basic understanding of the conditions that lead to DAGG and how DAGG is affected by microstructure in BCC refractory metals. The current state of understanding for DAGG is reviewed in this paper. Attention is given to the roles of temperature, plastic strain, boundary mobility and preexisting microstructure. DAGG is considered for its potential useful applications in solid-state crystal growth and its possibly detrimental role in creating undesired abnormal grains during thermomechanical processing.

  20. The mechanism of grain growth in ceramics

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1972-01-01

    The theory of grain boundary migration as a thermally activated process is reviewed, the basic mechanisms in ceramics being the same as in metals. However, porosity and non-stochiometry in ceramic materials give an added dimension to the theory and make quantitative treatment of real systems rather complex. Grain growth is a result of several simultaneous (and sometimes interacting) processes; these are most easily discussed separately, but the overall rate depends on their interaction. Sufficient insight into the nature of rate controlling diffusion mechanisms is necessary before a qualitative understanding of boundary mobility can be developed.

  1. Abnormal grain growth in AISI 304L stainless steel

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2014-11-15

    The microstructural evolution during abnormal grain growth (secondary recrystallization) in 304L stainless steel was studied in a wide range of annealing temperatures and times. At relatively low temperatures, the grain growth mode was identified as normal. However, at homologous temperatures between 0.65 (850 °C) and 0.7 (900 °C), the observed transition in grain growth mode from normal to abnormal, which was also evident from the bimodality in grain size distribution histograms, was detected to be caused by the dissolution/coarsening of carbides. The microstructural features such as dispersed carbides were characterized by optical metallography, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and microhardness. Continued annealing to a long time led to the completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another instance of abnormal grain growth was observed at homologous temperatures higher than 0.8, which may be attributed to the grain boundary faceting/defaceting phenomenon. It was also found that when the size of abnormal grains reached a critical value, their size will not change too much and the grain growth behavior becomes practically stagnant. - Highlights: • Abnormal grain growth (secondary recrystallization) in AISI 304L stainless steel • Exaggerated grain growth due to dissolution/coarsening of carbides • The enrichment of carbide particles by titanium • Abnormal grain growth due to grain boundary faceting at very high temperatures • The stagnancy of abnormal grain growth by annealing beyond a critical time.

  2. Grain Growth and Silicates in Dense Clouds

    NASA Technical Reports Server (NTRS)

    Pendeleton, Yvonne J.; Chiar, J. E.; Ennico, K.; Boogert, A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; Whittet, D.

    2006-01-01

    Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well 'mixed. In the di&se ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233,321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5 146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).

  3. O(minus 2) grain boundary diffusion and grain growth in pure dense MgO

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Grain growth behavior in fully dense compacts of MgO of very high purity was studied, and the results compared with other similar behaving materials. The activation energy for the intrinsic self-diffusion of Mg(2minus) is discussed along with the grain boundary diffusion of O(2minus). Grain boundary diffusion of O(2minus) is proposed as the controlling mechanism for grain growth.

  4. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.

    PubMed

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; Valdez, James A; Holesinger, Terry G; Uberuaga, Blas P; Ditto, Jeff J; Drazin, John W; Castro, Ricardo H R

    2016-06-22

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.

  5. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries

    DOE PAGES

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; ...

    2016-05-27

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here, in this study, we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observedmore » to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.« less

  6. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries

    SciTech Connect

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; Valdez, James Anthony; Holesinger, Terry George; Uberuaga, Blas P.; Ditto, Jeff J.; Drazin, John W.; Castro, Ricardo H. R.

    2016-05-27

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here, in this study, we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.

  7. Prevention of toxigenic fungal growth in stored grains by carbon dioxide detection.

    PubMed

    Zhai, Huan-Chen; Zhang, Shuai-Bing; Huang, Shu-Xia; Cai, Jing-Ping

    2015-01-01

    The growth of toxigenic fungi can adversely affect grain quality and even produce mycotoxins of food safety concern, which should be sensitively monitored and controlled during grain storage. To establish the relationship between the growth of toxigenic fungi and their carbon dioxide (CO2) production, the pattern of CO2 concentration changes was studied during the fungal growth in grain. The results showed the CO2 concentrations increased exponentially (r ≥ 0.96) during the growth of toxigenic fungi Aspergillus flavus, Penicillium sp. and Aspergillus ochraceus, which was different from the linear increase of CO2 concentration produced by the non-toxigenic xerophilic fungi Aspergillus glaucus and Aspergillus restrictus. The acceleration of CO2 concentration was found much earlier than the growth of toxigenic fungi, which would be useful for the prevention of grain spoilage. In addition, the CO2 concentration changes were also determined in storage containers loaded with grain of different moisture content and significant correlation (p < 0.05) was found between changes of CO2 concentration and fungal growth as well as mycotoxin production. The nonlinear increase of CO2 concentration in stored grains could be considered as an indication of the rapid growth of toxigenic fungi and greater risk of microbial spoilage of grains. The results can provide a valid foundation for the prevention of toxigenic fungi and mycotoxin production in stored grains through monitoring the CO2 concentration changes.

  8. The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2016-10-01

    This is the first report of abnormal grain morphologies specific to a Mo sheet material produced from a commercial-purity arc-melted ingot. Abnormal grains initiated and grew during plastic deformation of this material at temperatures of 1793 K and 1813 K (1520 °C and 1540 °C). This abnormal grain growth during high-temperature plastic deformation is termed dynamic abnormal grain growth, DAGG. DAGG in this material readily consumes nearly all grains near the sheet center while leaving many grains near the sheet surface unconsumed. Crystallographic texture, grain size, and other microstructural features are characterized. After recrystallization, a significant through-thickness variation in crystallographic texture exists in this material but does not appear to directly influence DAGG propagation. Instead, dynamic normal grain growth, which may be influenced by texture, preferentially occurs near the sheet surface prior to DAGG. The large grains thus produced near the sheet surface inhibit the subsequent growth of the abnormal grains produced by DAGG, which preferentially consume the finer grains near the sheet center. This produces abnormal grains that span the sheet center but leave unconsumed polycrystalline microstructure near the sheet surface. Abnormal grains are preferentially oriented with the < 110rangle approximately along the tensile axis. These results provide additional new evidence that boundary curvature is the primary driving force for DAGG in Mo.

  9. (110) grain growth and magnetic properties of thin grain-oriented 3% silicon steel sheets

    SciTech Connect

    Nakano, Masaki; Fukunaga, Hirotoshi; Ishiyama, Kazushi; Arai, Ken Ichi

    1999-09-01

    (110) grain growth and magnetic properties in thin grain-oriented silicon sheets with ultimately low loss were investigated. A final-annealing at 1150 C for 20 min enables us to obtain the thin sheets covered with only (110) grains and consequently the magnetic induction at 800 A/m, B{sub 8} reached 1.9 T.

  10. Abnormal Grain Growth in M-252 and S-816 Alloys

    NASA Technical Reports Server (NTRS)

    Decker, R F; Rush, A I; Dano, A G; Freeman, J W

    1957-01-01

    An experimental investigation was carried out on air- and vacuum-melted M-252 and S-816 alloys to find conditions of heating and hot-working which resulted in abnormal grain growth. The experiments were mainly limited to normal conditions of heating for hot-working and heat treatment and normal temperatures of solution treatment were used to allow grain growth after susceptibility to abnormal grain growth was developed by various experimental conditions. Results indicated that small reductions of essentially strain-free metal were the basic cause of such grain growth.

  11. Grain growth and structural relaxation of nanocrystalline Bi₂Te₃

    SciTech Connect

    Humphry-Baker, Samuel A.; Schuh, Christopher A.

    2014-10-21

    Recovery and grain growth behavior is investigated systematically for the nanocrystalline thermoelectric compound bismuth telluride, synthesized by mechanical alloying. During annealing treatments at elevated temperatures, structural evolution is tracked using x-ray diffraction, electron microscopy and calorimetry. Below a homologous temperature of about 0.6T{sub m}, grain growth occurs slowly with an activation energy of 89 kJ/mol. However above this temperature grain growth becomes more rampant with an activation energy of 242 kJ/mol. The transition is attributed to a shift from a relaxation or recovery process that includes some reordering of the grain boundary structure, to a more conventional diffusionally-limited grain growth process. By extrapolating the measured grain growth and microstrain evolution kinetics, a thermal budget map is constructed, permitting recommendations for improving the thermoelectric properties of nanocrystalline materials processed via a powder route.

  12. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  13. Relationship between grain boundary complexion and grain growth kinetics in alumina

    NASA Astrophysics Data System (ADS)

    Dillon, Shen J.

    2007-12-01

    This work investigated the effect of different grain boundary phases (complexions) on the grain growth kinetics of doped and undoped aluminas. This was achieved by relating quantitative grain growth kinetics to high-resolution electron microscopy of the grain boundaries. It was found that there are 6 different regimes into which the grain growth kinetics may be categorized. These regimes corresponded to the existence of six different grain boundary complexions. Grain boundaries in alumina were observed to show sub-monolayer adsorption, 'clean' intrinsic behavior, bilayer adsorption, multilayer adsorption, equilibrium thickness intergranular films, and wetting intergranular films. These different grain boundary types are listed in order of increasing grain boundary mobility. In general there is an increase in grain boundary mobility with an increase in the disorder within the core of the grain boundary. This broad range of grain boundaries produces a multiplicity of different microstructural effects that until now have been difficult to understand experimentally or theoretically. For example, abnormal grain growth in alumina simply results from the coexistence of two or more different complexions within the same microstructure. Therefore, there may be multiple distinct types of normal and abnormal grain growth behavior. Transitions from one type of boundary to another are chemically and thermally activated, and depend on the crystallography of the adjacent grains. It is found that the number of transitions that occur increases linearly with increasing grain size, and exponentially with temperature. In this regard, different dopants produce very different effects, which appear to be the major role of most dopants in affecting the grain boundary transport kinetics. Low energy planes and grain boundaries are the least likely to undergo such transitions. This experimental data compliments some theoretical derivations within the literature and has provided new insight

  14. Steady-state grain growth in UO{sub 2}

    SciTech Connect

    Galinari, C.M.; Lameiras, F.S.

    1998-06-05

    The authors have observed steady-state grain growth in sintered UO{sub 2} pellets of nuclear purity at 2,003 K under H{sub 2}. The behavior of the grain size distribution at different instants is consistent with the grain growth model proposed by one of the authors. The total number of grains was estimated using the Saltykov`s method, and the evolution is in accordance with the model proposed by Rhines and Craig. The parabolic growth law was observed for the mean intercept length with n = 0.4.

  15. The scaling state in two-dimensional grain growth

    SciTech Connect

    Mulheran, P.A. . Dept. of Physics)

    1994-11-01

    A new model of normal grain growth in two-dimensional systems is derived from considerations of Potts model simulations. This Randomly Connected Bubble model is based on Hillert's theory and combines the essential topological features of the grain boundary network with the action of capillarity. It successfully predicts what the scaling state of the network should be and explains why the system evolves into this state. The implications for grain growth in real materials are also discussed.

  16. Grain growth and experimental deformation of fine-grained ice aggregates

    NASA Astrophysics Data System (ADS)

    Diebold, Sabrina; de Bresser, Hans; Spiers, Chris; Durham, William B.; Stern, Laura

    2010-05-01

    Ice is one of the most abundant materials in our solar system. It is the principal constituent of most of the moons of the outer solar system. Thus, the flow behavior of ice is of great interest when studying geodynamic processes on icy moons. Grain growth is an elementary process that is assumed to be important in the ice sheet layering of planetary moons, where temperatures 100-273 K exist. We concentrate on the questions to what extent grain growth may influence the evolution of strength of deforming ice and if the grain growth process is independent or dependent of deformation. The answers to these questions will help us to quantitatively test the hypothesis that the progressive evolution of the grain (crystal) size distribution of deforming and recrystallizing ice directly affects its rheological behaviour in terms of composite grain-size-sensitive (GSS) and grain-size-insensitive (GSI) creep, and that this might, after time, result in a steady state balance between mechanisms of GSS and GSI creep. We performed static grain growth experiments at different temperatures and a pressure (P) of 1 atm, and deformation experiments at P = 30-100 MPa starting in the GSS-creep field. The starting material ice Ih has a grain size < 2 μm and was generated by a special pressure-release technique described by Stern et al. (1997) resulting in dense ice aggregates. The ice grains of the polycrystalline starting samples were randomly oriented and the material has a porosity of < 0.5%. For the grain growth tests a Hart Scientific temperature bath was filled with d-Limonene as cooling medium. The ice specimens were put into sealed alumina cylinders. For the grain growth tests, temperatures (T) between 213 K and 268 K were chosen. The durations of these tests varied between one day and two weeks. For the deformation experiments, temperatures of > 170 K and strain rates between 10-8 s-1 and 10-4 s-1 were chosen. Grain sizes, grain size distributions and grain topologies were

  17. [Effects of early growth stage shading on rice flag leaf physiological characters and grain growth at grain-filling stage].

    PubMed

    Liu, Qi-hua; Zhou, Xue-biao; Yang, Lian-qun; Li, Tian; Zhang, Jian-jun

    2009-09-01

    In a pot experiment, rice plants were shaded during the period from transplanting to booting, aimed to study the effects of early growth stage shading on the rice growth at grain-filling stage. Comparing with the control, early growth stage shading decreased the tiller number by 26.72%, but increased the flag leaf area and soluble sugar content by 33.86% and 30.23%, respectively. The filled-grain number per panicle, 1000-grain mass, ultimate brown rice mass, and maximum and average grain-filling rates decreased by 8.65%, 4.81%, 9.74%, 20.22%, and 19.13%, and the effective panicle number and grain yield declined by 25.26% and 39.56%, respectively. The peak time of grain-filling rate (Tm) advanced 1.66 days, while the grain-filling time (T99) prolonged 6.80 days. For shading-tolerance variety, its flag leaf Chl a, Chl b, and Chl (a + b) contents at early and mid grain-filling stages, and the protein N and soluble sugar contents and Chl a/b in its flag leaves at grain-filling stage all increased under early growth stage shading, and the ultimate brown rice mass and 1000-grain mass maintained at the similar levels as the control. Consequently, its grain yield reduction rate was lower than that of shading-sensitive variety.

  18. Static Grain Growth in Contact Metamorphic Calcite: A Cathodoluminescence Study.

    NASA Astrophysics Data System (ADS)

    Vogt, B.; Heilbronner, R.; Herwegh, M.; Ramseyer, K.

    2009-04-01

    In the Adamello contact aureole, monomineralic mesozoic limestones were investigated in terms of grain size evolution and compared to results on numerical modeling performed by Elle. The sampled area shows no deformation and therefore represents an appropriate natural laboratory for the study of static grain growth (Herwegh & Berger, 2003). For this purpose, samples were collected at different distances to the contact to the pluton, covering a temperature range between 270 to 630°C. In these marbles, the grain sizes increase with temperature from 5 µm to about 1 cm as one approaches the contact (Herwegh & Berger, 2003). In some samples, photomicrographs show domains of variable cathodoluminescence (CL) intensities, which are interpreted to represent growth zonations. Microstructures show grains that contain cores and in some samples even several growth stages. The cores are usually not centered and the zones not concentric. They may be in touch with grain boundaries. These zonation patterns are consistent within a given aggregate but differ among the samples even if they come from the same location. Relative CL intensities depend on the Mn/Fe ratio. We assume that changes in trace amounts of Mn/Fe must have occurred during the grain size evolution, preserving local geochemical trends and their variations with time. Changes in Mn/Fe ratios can either be explained by (a) locally derived fluids (e.g. hydration reactions of sheet silicate rich marbles in the vicinity) or (b) by the infiltration of the calcite aggregates by externally derived (magmatic?) fluids. At the present stage, we prefer a regional change in fluid composition (b) because the growth zonations only occur at distances of 750-1250 m from the pluton contact (350-450°C). Closer to the contact, neither zonations nor cores were found. At larger distances, CL intensities differ from grain to grain, revealing diagenetic CL patterns that were incompletely recrystallized by grain growth. The role of

  19. Phase field modeling of grain growth in porous polycrystalline solids

    NASA Astrophysics Data System (ADS)

    Ahmed, Karim E.

    The concurrent evolution of grain size and porosity in porous polycrystalline solids is a technically important problem. All the physical properties of such materials depend strongly on pore fraction and pore and grain sizes and distributions. Theoretical models for the pore-grain boundary interactions during grain growth usually employ restrictive, unrealistic assumptions on the pore and grain shapes and motions to render the problem tractable. However, these assumptions limit the models to be only of qualitative nature and hence cannot be used for predictions. This has motivated us to develop a novel phase field model to investigate the process of grain growth in porous polycrystalline solids. Based on a dynamical system of coupled Cahn-Hilliard and All en-Cahn equations, the model couples the curvature-driven grain boundary motion and the migration of pores via surface diffusion. As such, the model accounts for all possible interactions between the pore and grain boundary, which highly influence the grain growth kinetics. Through a formal asymptotic analysis, the current work demonstrates that the phase field model recovers the corresponding sharp-interface dynamics of the co-evolution of grain boundaries and pores; this analysis also fixes the model kinetic parameters in terms of real materials properties. The model was used to investigate the effect of porosity on the kinetics of grain growth in UO2 and CeO2 in 2D and 3D. It is shown that the model captures the phenomenon of pore breakaway often observed in experiments. Pores on three- and four- grain junctions were found to transform to edge pores (pores on two-grain junction) before complete separation. The simulations demonstrated that inhomogeneous distribution of pores and pore breakaway lead to abnormal grain growth. The simulations also showed that grain growth kinetics in these materials changes from boundary-controlled to pore-controlled as the amount of porosity increases. The kinetic growth

  20. Grain growth in synthetic marbles with added mica and water

    NASA Astrophysics Data System (ADS)

    Olgaard, D. L.; Evans, B.

    1988-10-01

    Evolution of grain size in synthetic marbles was traced from compaction of unconsolidated powder, through primary recrystallization and normal grain growth, to a size stabilized by second phases. To form the marbles, reagent grade CaCO3 was mixed with 0, 1 and 5 volume% mica and heat-treated under pressure with added water. Densification with negligible recrystallization occurred within one hour at 500° C and 500 MPa confining pressure. Primary recrystallization occurred at 500 550° C, causing increases of grain size of factors of 2 5. Resulting samples had uniform grain size, gently curved grain boundaries, and near-equilibrium triple junctions; they were used subsequently for normal grain growth studies. Normal grain growth occurred above 550° C; at 800° C, grain size ( D) increased from 7 μm ( D 0) to 65 μm in 24 hours. Growth rates fit the equation, D n - D {0/ n }= Kt, where K is a constant and n≃2.6. Minor amounts of pores or mica particles inhibit normal grain growth and lead to a stabilized grain size, D max, which depends on the size of the second phases and the inverse of their volume fraction raised to a power between 0.3 and 1. Once D max is reached, normal growth continues only if second phases are mobile or coarsen, or if new driving forces are introduced that cause unpinning of boundaries. Normal grain growth in Solnhofen limestone was significantly slower than in pure synthetic marble, suggesting that migration is also inhibited by second phases in the limestone.

  1. Evolution of Austenite Recrystallization and Grain Growth Using Laser Ultrasonics

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Moreau, A.; Militzer, M.; Poole, W. J.

    2008-04-01

    Laser ultrasonics is a noncontacting technique with which the attenuation of ultrasonic signals can be measured and related to the grain size of the investigated material. In the present article, a laser-ultrasonic grain-size measurement technique previously developed for various C-Mn and microalloyed steels has been extended to examine austenite recrystallization and subsequent grain growth following hot deformation. The ultrasonic measurements were conducted on a low-carbon (0.05 wt pct) steel that contains Mn, Mo, and Nb as the three main alloying/microalloying elements. The grain-size data measured by ultrasonic experiments were analyzed to quantify the effect of deformation conditions on the evolution of recrystallized grain size and subsequent grain growth. A significant effect of deformation temperature, applied strain, and initial grain size on the grain-size evolution was observed, while strain rate had a negligible effect. Phenomenological modeling approaches were employed to describe the recrystallized grain-size and grain-growth behavior of the present steel.

  2. Modelling grain growth in the framework of Rational Extended Thermodynamics

    NASA Astrophysics Data System (ADS)

    Kertsch, Lukas; Helm, Dirk

    2016-05-01

    Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena.

  3. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, P.M.

    1984-08-01

    It is an object of the present invention to provide a procedure for desensitizing zirconium-based alloys to large grain growth (LGG) during thermal treatment above the recrystallization temperature of the alloy. It is a further object of the present invention to provide a method for treating zirconium-based alloys which have been cold-worked in the range of 2 to 8% strain to reduce large grain growth. It is another object of the present invention to provide a method for fabricating a zirconium alloy clad nuclear fuel element wherein the zirconium clad is resistant to large grain growth.

  4. Limestone weathering rates accelerated by micron-scale grain detachment

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Levenson, Y.

    2014-12-01

    The weathering rates of carbonate rocks is often thought to be controlled by chemical dissolution, although some studies have suggested that mechanical erosion could also play an important role. Quantifying the rates of the different processes has proved challenging due to the high degree of variability encountered in both field and lab settings. To determine the rates and mechanisms controlling long-term limestone weathering, we analyse a lidar scan of the Western Wall, a Roman period edifice located in Jerusalem. Weathering rates in fine-grained micritic limestone blocks are up to 2 orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. In addition, in experiments that use atomic force microscopy to image dissolving micritic limestone, we show that these higher reaction rates could be due to rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that micron-scale grain detachment, rather than pure chemical dissolution, could be the dominant erosional mode for fine-grained rocks in many carbonate terrains.

  5. Continuous Measurements of Recrystallization and Grain Growth in Cobalt Super Alloys

    NASA Astrophysics Data System (ADS)

    Keyvani, Mahsa; Garcin, Thomas; Fabrègue, Damien; Militzer, Matthias; Yamanaka, Kenta; Chiba, Akihiko

    2017-02-01

    L605 (20Cr-15W-10Ni wt pct) and CCM (28Cr-6Mo wt pct) cobalt-based superalloys are candidates for a wide range of applications, from gas turbine components to biomedical implants. Attention is currently focused on the optimization of grain structure as an appropriate approach to increase yield stress without affecting significantly the ductility. In this study, the Laser Ultrasonics for Metallurgy (LUMet) technology is used to examine in situ the evolution of the mean grain size associated with recrystallization and grain growth during heat treatments from the cold-rolled state. The recrystallization process is completed at 1373 K (1100 °C) for L605 and 1273 K (1000 °C) for CCM. The subsequent grain growth rate in L605 is larger compared to CCM. Continuous measurements of the grain size evolution are found to be consistent with grain growth affected by solute drag. Through in situ measurements, the laser ultrasonic technology significantly accelerates the determination of metallurgical parameters allowing for fast optimization of process parameters required to meet specific applications.

  6. Impaired lymphatic function accelerates cancer growth

    PubMed Central

    Steinskog, Eli Sihn Samdal; Sagstad, Solfrid Johanne; Wagner, Marek; Karlsen, Tine Veronica; Yang, Ning; Markhus, Carl Erik; Yndestad, Synnøve; Wiig, Helge; Eikesdal, Hans Petter

    2016-01-01

    Increased lymphangiogenesis is a common feature of cancer development and progression, yet the influence of impaired lymphangiogenesis on tumor growth is elusive. C3HBA breast cancer and KHT-1 sarcoma cell lines were implanted orthotopically in Chy mice, harboring a heterozygous inactivating mutation of vascular endothelial growth factor receptor-3, resulting in impaired dermal lymphangiogenesis. Accelerated tumor growth was observed in both cancer models in Chy mice, coinciding with reduced peritumoral lymphangiogenesis. An impaired lymphatic washout was observed from the peritumoral area in Chy mice with C3HBA tumors, and the number of macrophages was significantly reduced. While fewer macrophages were detected, the fraction of CD163+ M2 macrophages remained constant, causing a shift towards a higher M2/M1 ratio in Chy mice. No difference in adaptive immune cells was observed between wt and Chy mice. Interestingly, levels of pro- and anti-inflammatory macrophage-associated cytokines were reduced in C3HBA tumors, pointing to an impaired innate immune response. However, IL-6 was profoundly elevated in the C3HBA tumor interstitial fluid, and treatment with the anti-IL-6 receptor antibody tocilizumab inhibited breast cancer growth. Collectively, our data indicate that impaired lymphangiogenesis weakens anti-tumor immunity and favors tumor growth at an early stage of cancer development. PMID:27329584

  7. The accelerating growth of online tagging systems

    NASA Astrophysics Data System (ADS)

    Wu, L. F.

    2011-09-01

    Research on the growth of online tagging systems not only is interesting in its own right, but also yields insights for website management and semantic web analysis. Traditional models that describing the growth of online systems can be divided between linear and nonlinear versions. Linear models, including the BA model [A.L. Barabasi, R. Albert, Science 286, 509 (1999)], assume that the average activity of users is a constant independent of population. Hence the total activity is a linear function of population. On the contrary, nonlinear models suggest that the average activity is affected by the size of the population and the total activity is a nonlinear function of population. In the current study, supporting evidences for the nonlinear growth assumption are obtained from data on Internet users' tagging behavior. A power law relationship between the number of new tags (F) and the population (P), which can be expressed as F~Pγ (γ > 1), is found. I call this pattern accelerating growth and find it relates the to time-invariant heterogeneity in individual activities. I also show how a greater heterogeneity leads to a faster growth.

  8. Diffusion processes in Al2O3 scales - Void growth, grain growth, and scale growth

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Gibala, R.

    1983-01-01

    The internal microstructure and growth kinetics of Al2O3 scales on Ni-15Cr-13Al (wt percent) are investigated by TEM and analyzed in relation to models of diffusivity. Polished arc-melted specimens were oxidized in 1-atm air at 1100 C for 0.1, 1.0, and 20 hours and ion-thinned for TEM at 100 kV. The frequency distribution of void size and grain size is determined for different oxidation times and scale depths. The kinetics of microvoid growth and of grain and scale growth are plotted and related via simplified models to lattice and grain-boundary oxygen diffusivity, respectively. Good agreement is found between model predictions and data obtained by Oishi and Kingery (1960) on oxygen diffusion in bulk Al2O3. The further implications and limitations of these findings are discssed.

  9. Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni-Fe alloy

    SciTech Connect

    Li, Hongqi; Wang, Y B; Ho, J C; Liao, X Z; Zhu, Y T; Ringer, S P

    2009-01-01

    Deformation induced grain growth has been widely reported in nanocrystalline materials. However, the grain growth mechanism remains an open question. This study applies high-pressure torsion to severely deform bulk nanocrystalline Ni-20 wt % Fe disks and uses transmission electron microscopy to characterize the grain growth process. Our results provide solid evidence suggesting that high pressure torsion induced grain growth is achieved primarily via grain rotation for grains much smaller than 100 nm. Dislocations are mainly seen at small-angle subgrain boundaries during the grain growth process but are seen everywhere in grains after the grains have grown large.

  10. Supplying materials needed for grain growth characterizations of nano-grained UO2

    SciTech Connect

    Mo, Kun; Miao, Yinbin; Yun, Di; Jamison, Laura M.; Lian, Jie; Yao, Tiankei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.

  11. Does Grain Growth Stop Convection in the Icy Galilean Satellites?

    NASA Astrophysics Data System (ADS)

    Barr, A. C.; McKinnon, W. B.

    2005-08-01

    The composite Newtonian/non-Newtonian rheology of ice I implies that the conditions required to trigger convection in an initially conductive ice I shell depend on the ice grain size (d) [Barr and Pappalardo, JGR in press, 2005]. For the icy Galilean satellites, volume diffusion accommodates initial plume growth if d<0.5 mm. Non-Newtonian GBS dominates for d>0.5 mm for sufficient thermal perturbations. The critical ice shell thickness for convection exceeds the depth to the ice I - III phase transition if d>2 cm. Vigorous convection can only occur if the grain size is small and deformation is accommodated by volume diffusion [McKinnon, Icarus in press, 2005]. If the ice grain size is sufficient for convection by GBS, convection is sluggish at best. If the grains in the shells grow to values greater than 2 cm, convection will cease. What is the likelihood that the grain size in the ice shells remains small enough to permit convection over geological time scales? We estimate ice grain sizes in a convecting shell using the empirical observation from polar ice sheets that d ˜ A σ -1, where A is a thermal activation term, and σ is shear stress [De La Chappelle et al., JGR 103, 1998], due to a balance between dynamic recrystallization and dislocation generation during flow by GBS. We use a composite volume diffusion/GBS rheology for ice I in the convection model Citcom [Barr et al., JGR, 109, 2004] to determine convective strain rates and grain sizes expected in the shells. When GBS accommodates convective strain, we find good agreement between input and predicted steady state grain sizes. Therefore, a balance between grain growth and recrystallization during flow by GBS may allow sluggish convection to persist in ice I shells with a relatively large grain size.

  12. Microwave sintering of nanophase ceramics without concomitant grain growth

    DOEpatents

    Eastman, Jeffrey A.; Sickafus, Kurt E.; Katz, Joel D.

    1993-01-01

    A method of sintering nanocrystalline material is disclosed wherein the nanocrystalline material is microwaved to heat the material to a temperature less than about 70% of the melting point of the nanocrystalline material expressed in degrees K. This method produces sintered nanocrystalline material having a density greater than about 95% of theoretical and an average grain size not more than about 3 times the average grain size of the nanocrystalline material before sintering. Rutile TiO.sub.2 as well as various other ceramics have been prepared. Grain growth of as little as 1.67 times has resulted with densities of about 90% of theoretical.

  13. Kinetic model of particle-inhibited grain growth

    NASA Astrophysics Data System (ADS)

    Thompson, Gary Scott

    The effects of second phase particles on matrix grain growth kinetics were investigated using Al2O3-SiC as a model system. In particular, the validity of the conclusion drawn from a previous kinetic analysis that the kinetics of particle-inhibited grain growth in Al2 O3-SiC samples with an intermediate volume fraction of second phase could be well quantified by a modified-Zener model was investigated. A critical analysis of assumptions made during the previous kinetic analysis revealed oversimplifications which affect the validity of the conclusion. Specifically, the degree of interaction between particles and grain boundaries was assumed to be independent of the mean second phase particle size and size distribution. In contrast, current measurements indicate that the degree of interaction in Al2O3-SiC is dependent on these parameters. An improved kinetic model for particle-inhibited grain growth in Al 2O3-SiC was developed using a modified-Zener approach. The comparison of model predictions with experimental grain growth data indicated that significant discrepancies (as much as 4--5 orders of magnitude) existed. Based on this, it was concluded that particles had a much more significant effect on grain growth kinetics than that caused by a simple reduction of the boundary driving force due to the removal of boundary area. Consequently, it was also concluded that the conclusion drawn from the earlier kinetic analysis regarding the validity of a modified-Zener model was incorrect. Discrepancies between model and experiment were found to be the result of a significant decrease in experimental growth rate constant not predicted by the model. Possible physical mechanisms for such a decrease were investigated. The investigation of a small amount of SiO2 on grain growth in Al2O3 indicated that the decrease was not the result of a decrease in grain boundary mobility due to impurity contamination by particles. By process of elimination and based on previous observations

  14. Effect of Water on Grain Growth in Perovskite + Ferropericlase Assemblage

    NASA Astrophysics Data System (ADS)

    Bolfan-Casanova, N.

    2005-12-01

    The absence of seismic anisotropy in the Earth's lower mantle suggests that deformation in that region is governed by diffusion [1]. In such a case, the rate of creep, and thus viscosity, should be proportional to the grain size. Previous experiments performed on MgSiO3 perovskite + periclase assemblage have shown that the grain growth kinetics follows a power law with an extremely large exponent around 11 [2]. Such results suggest that the grain size in the lower mantle is almost constant [3]. However, there are traces of water inside the Earth which are likely to act as a flux and this effect has never been investigated. Perovskite grain sizes of up to 50 microns have been reported when synthesized from San Carlos olivine, which contains naturally some water [4]. These large grain sizes can be explained by the presence of iron or OH, however both species are likely to increase the number of point defects, and thus speed up the kinetics of diffusion and growth. This study thus focuses on the Ostwald ripening of the perovskite + ferropericlase assemblage under hydrous conditions. Experiments were carried out in a multi-anvil press using an 8/3 assembly at pressures of 25 GPa and temperatures of 1600°C as a function of time. The starting material was San Carlos olivine + traces of water. The textures were studied using a scanning electron microscope. Preliminary results show that within 30 minutes, perovskite grain size attains 4 μm which is about 5 times larger than the average size reported for perovskite in the dry and iron-free composition. These results indicate that grain growth in the presence of iron and water is enhanced. References [1] Karato S., S. Zhang, H.R. Wenk, 1995, Superplasticity in Earth's lower mantle: evidence from seismic anisotropy and rock physics, Science 270: 458-461. [2] Yamazaki D., T. Kato, E. Ohtani, M.Toriumi, 1996, Grain Growth rates of MgSiO3 Perovskite and Periclase Under Mantle Condition, Science 274: 2052-2054. [3] Solomatov V

  15. Rotary plant growth accelerating apparatus. [weightlessness

    NASA Technical Reports Server (NTRS)

    Dedolph, R. D. (Inventor)

    1975-01-01

    Rotary plant growth accelerating apparatus for increasing plant yields by effectively removing the growing plants from the constraints of gravity and increasing the plant yield per unit of space is described. The apparatus is comprised of cylindrical plant beds supported radially removed from a primary axis of rotation, with each plant bed being driven about its own secondary axis of rotation and simultaneously moved in a planetary path about the primary axis of rotation. Each plant bed is formed by an apertured outer cylinder, a perforated inner cylinder positioned coaxially, and rooting media disposed in the space between. A rotatable manifold distributes liquid nutrients and water to the rooting media through the perforations in the inner cylinders as the plant beds are continuously rotated by suitable drive means.

  16. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  17. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  18. Ultrafast analysis of individual grain behavior during grain growth by parallel computing

    NASA Astrophysics Data System (ADS)

    Kühbach, M.; Barrales-Mora, L. A.; Mießen, C.; Gottstein, G.

    2015-08-01

    The possibility to characterize in an automatized way the spatial-temporal evolution of individual grains and their properties is essential to the understanding of annealing phenomena. The development of advanced experimental techniques, computational models and tools helps the acquisition of real time and real space-resolved datasets. Whereas the reconstruction of 3D grain representatives from serial-sectioning or tomography datasets becomes more common and microstructure simulations on parallel computers become ever larger and longer lasting, few efforts have materialized in the development of tools that allow the continuous tracking of properties at the grain scale. In fact, such analyses are often left neglected in practice due to the large size of the datasets that exceed the available physical memory of a computer or the shared-memory cluster. We identified the key tasks that have to be solved in order to define suitable and lean data structures and computational methods to evaluate spatio-temporal grain property datasets by working with parallel computer architectures. This is exemplified with data from grain growth simulations.

  19. Recrystallization and grain growth in NiAl

    NASA Technical Reports Server (NTRS)

    Haff, G. R.; Schulson, E. M.

    1982-01-01

    Aluminide intermetallics, because of their strength, microstructural stability, and oxidation resistance at elevated temperatures, represent potential structural materials for use in advanced energy conversion systems. This inherent potential of the intermetallics can currently not be realized in connection with the general brittleness of the materials under ambient conditions. It is pointed out, however, that brittleness is not an inherent characteristic. Single crystals are ductile and polycrystals may be, too, if their grains are fine enough. The present investigation is concerned with an approach for reducing material brittleness, taking into account thermal-mechanically induced grain refinement in NiAl, a B2 aluminide which melts at 1638 C and which retains complete order to its melting point. Attention is given to the kinetics of recrystallization and grain growth of warm-worked, nickel-rich material.

  20. The grain size distribution and the detection of abnormal grain growth of austenite in an eutectoid steel containing niobium

    SciTech Connect

    Bruno, J.C. . Dept. de Engenharia Mecanica e de Materiais); Rios, P.R. . Dept. de Ciencia dos Materiais e Metalurgia)

    1995-02-15

    The abnormal grain growth of austenite was studied in a commercial steel of composition (wt%): 0.70 C, 1.36 Mn, 0.72 Si, 0.015 P, 0.027 S and 0.03 Nb. Specimens were thermocycled at various conditions and then grain size distribution determined. The grain size distribution shape did not change during normal grain growth but this distribution widened and flattened during the abnormal grain growth. The initial smaller mean size of carbonitrides and/or the highest homogeneity of niobium carbonitride size distribution of the samples submitted to thermal cycles, in comparison with the normalized samples, increased the abnormal grain growth temperature from 1,373 K to 1,473 K.

  1. 2D models of gas flow and ice grain acceleration in Enceladus' vents using DSMC methods

    NASA Astrophysics Data System (ADS)

    Tucker, Orenthal J.; Combi, Michael R.; Tenishev, Valeriy M.

    2015-09-01

    The gas distribution of the Enceladus water vapor plume and the terminal speeds of ejected ice grains are physically linked to its subsurface fissures and vents. It is estimated that the gas exits the fissures with speeds of ∼300-1000 m/s, while the micron-sized grains are ejected with speeds comparable to the escape speed (Schmidt, J. et al. [2008]. Nature 451, 685-688). We investigated the effects of isolated axisymmetric vent geometries on subsurface gas distributions, and in turn, the effects of gas drag on grain acceleration. Subsurface gas flows were modeled using a collision-limiter Direct Simulation Monte Carlo (DSMC) technique in order to consider a broad range of flow regimes (Bird, G. [1994]. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford; Titov, E.V. et al. [2008]. J. Propul. Power 24(2), 311-321). The resulting DSMC gas distributions were used to determine the drag force for the integration of ice grain trajectories in a test particle model. Simulations were performed for diffuse flows in wide channels (Reynolds number ∼10-250) and dense flows in narrow tubular channels (Reynolds number ∼106). We compared gas properties like bulk speed and temperature, and the terminal grain speeds obtained at the vent exit with inferred values for the plume from Cassini data. In the simulations of wide fissures with dimensions similar to that of the Tiger Stripes the resulting subsurface gas densities of ∼1014-1020 m-3 were not sufficient to accelerate even micron-sized ice grains to the Enceladus escape speed. In the simulations of narrow tubular vents with radii of ∼10 m, the much denser flows with number densities of 1021-1023 m-3 accelerated micron-sized grains to bulk gas speed of ∼600 m/s. Further investigations are required to understand the complex relationship between the vent geometry, gas source rate and the sizes and speeds of ejected grains.

  2. Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment

    NASA Astrophysics Data System (ADS)

    Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul

    2016-10-01

    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.

  3. Consideration of Zener drag effect by introducing a limiting radius for neighbourhood in grain growth simulation

    NASA Astrophysics Data System (ADS)

    Maazi, N.; Rouag, N.

    2002-08-01

    A model for grain growth simulation, in the presence of preferential particle distribution, is presented. The model predicts two grain size limits due to second-phase particles. Less than the maximal critical radius the grains will shrink. Greater than the minimal critical radius the grains will grow. Between the two limiting radii no grain growth takes place. These critical radii permit us to introduce the effect of the precipitates directly in the simulation procedure, without their assigning sites in the base matrix. In this case, all sites of the matrix are only occupied by grains. The conditions necessary for the development of secondary recrystallization in textured materials such as Fe-3%Si are, first, the stagnation of normal grain growth, second, the presence of special boundaries around the secondary grains. The grain growth simulation is performed until the grain structure was pinned, i.e. when boundaries become pinned.

  4. Austenite Grain Growth and Precipitate Evolution in a Carburizing Steel with Combined Niobium and Molybdenum Additions

    NASA Astrophysics Data System (ADS)

    Enloe, Charles M.; Findley, Kip O.; Speer, John G.

    2015-11-01

    Austenite grain growth and microalloy precipitate size and composition evolution during thermal processing were investigated in a carburizing steel containing various additions of niobium and molybdenum. Molybdenum delayed the onset of abnormal austenite grain growth and reduced the coarsening of niobium-rich precipitates during isothermal soaking at 1323 K, 1373 K, and 1423 K (1050 °C, 1100 °C, and 1150 °C). Possible mechanisms for the retardation of niobium-rich precipitate coarsening in austenite due to molybdenum are considered. The amount of Nb in solution and in precipitates at 1373 K (1100 °C) did not vary over the holding times evaluated. In contrast, the amount of molybdenum in (Nb,Mo)C precipitates decreased with time, due to rejection of Mo into austenite and/or dissolution of fine Mo-rich precipitates. In hot-rolled alloys, soaking in the austenite regime resulted in coarsening of the niobium-rich precipitates at a rate that exceeded that predicted by the Lifshitz-Slyozov-Wagner relation for volume-diffusion-controlled coarsening. This behavior is attributed to an initial bimodal precipitate size distribution in hot-rolled alloys that results in accelerated coarsening rates during soaking. Modification of the initial precipitate size distribution by thermal processing significantly lowered precipitate coarsening rates during soaking and delayed the associated onset of abnormal austenite grain growth.

  5. Modeling Reliability Growth in Accelerated Stress Testing

    DTIC Science & Technology

    2013-12-01

    HASS and HASA Explained, Milwaukee, WI: Quality Press, 2009. [13] A. J. Porter, "Failure Mode Verification: Applying Highly Accelerated Life Testing...and Production Conference - Proceedings of the Technical Program, Des Plaines, IL, 1998. [16] M. Silverman, "Summary of HALT and HASS results at

  6. Grain growth and the Zener pinning phenomenon: A computational and experimental investigation

    NASA Astrophysics Data System (ADS)

    Roberts, Christopher

    A nickel alloy, Waspaloy, with an equiaxed microstructure and random texture was studied to examine its grain growth behavior and, in particular, stagnation of growth via precipitate pinning. The grain growth kinetics matched the model developed by Anderson and Grong [1] during the early stages of grain growth. At later times, the grain growth kinetics did not closely match any existing model or theory, but the deviation from existing models could be partially explained by a transition in the growth mechanism. Grain growth was found to slow down significantly after an increase in grain size by a factor of two, yet, did continue at a substantially reduced rate. Based on complementary observations of the microstructures, the growth mechanism is classified as normal grain growth for short anneals whereas abnormal grain growth (AGG) occurred during longer anneals. A mean carbide size of approximately 1.2mum (r) and 0.002 volume fraction (VV) was measured on large area mosaics. Applying Zener's equation in the form of D L ≈ 1.33 r¯VV yielded a predicted limiting grain size, DL, of 800mum while a mean intercept length of 430mum was measured experimentally on a sample annealed for 2 weeks at 1100°C. A massively parallel implementation of the Potts-based Monte Carlo model provided a controlled environment in which specific aspects of grain growth and pinning were tested. The simulation analyses revealed early stage grain growth trends similar to experiment. Anisotropie simulations with uniform (random) texture gave similar results to isotropic grain boundary property simulations further lessening the likelihood that anisotropie grain boundary properties play any role in abnormal grain growth. Isotropic simulations conducted with low volume fractions of inert particles experienced normal grain growth and Zener pinning. The measured limiting grain size DL was less than the Zener prediction. On the other hand, a transition from normal to abnormal grain growth was observed

  7. Subsurface Gas Flow and Ice Grain Acceleration within Enceladus and Europa Fissures: 2D DSMC Models

    NASA Astrophysics Data System (ADS)

    Tucker, O. J.; Combi, M. R.; Tenishev, V.

    2014-12-01

    The ejection of material from geysers is a ubiquitous occurrence on outer solar system bodies. Water vapor plumes have been observed emanating from the southern hemispheres of Enceladus and Europa (Hansen et al. 2011, Roth et al. 2014), and N2plumes carrying ice and ark particles on Triton (Soderblom et al. 2009). The gas and ice grain distributions in the Enceladus plume depend on the subsurface gas properties and the geometry of the fissures e.g., (Schmidt et al. 2008, Ingersoll et al. 2010). Of course the fissures can have complex geometries due to tidal stresses, melting, freezing etc., but directly sampled and inferred gas and grain properties for the plume (source rate, bulk velocity, terminal grain velocity) can be used to provide a basis to constrain characteristic dimensions of vent width and depth. We used a 2-dimensional Direct Simulation Monte Carlo (DSMC) technique to model venting from both axi-symmetric canyons with widths ~2 km and narrow jets with widths ~15-40 m. For all of our vent geometries, considered the water vapor source rates (1027­ - 1028 s-1) and bulk gas velocities (~330 - 670 m/s) obtained at the surface were consistent with inferred values obtained by fits of the data for the plume densities (1026 - 1028 s-1, 250 - 1000 m/s) respectively. However, when using the resulting DSMC gas distribution for the canyon geometries to integrate the trajectories of ice grains we found it insufficient to accelerate submicron ice grains to Enceladus' escape speed. On the other hand, the gas distributions in the jet like vents accelerated grains > 10 μm significantly above Enceladus' escape speed. It has been suggested that micron-sized grains are ejected from the vents with speeds comparable to the Enceladus escape speed. Here we report on these results including comparisons to results obtained from 1D models as well as discuss the implications of our plume model results. We also show preliminary results for similar considerations applied to Europa

  8. Grain growth of ε-iron: Implications to grain size and its evolution in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Yamazaki, Daisuke; Tsujino, Noriyoshi; Yoneda, Akira; Ito, Eiji; Yoshino, Takashi; Tange, Yoshinori; Higo, Yuji

    2017-02-01

    Knowledge of grain growth rate of ε-iron can put constraint on estimation of the grain size in the inner core. We determined grain growth rate of ε-iron at ∼55 GPa and 1200-1500 K by means of in-situ X-ray diffraction observation to be Gn - G0n = kt, where G (m) is the grain size at time t (s), G0 (m) is the initial grain size, n is growth exponent (fixed to 2) and k is the growth constant expressed as k =k0 exp ⁡ (-H* / RT) with log k0 (mn /s) = - 5.8 (± 2.4) and activation enthalpy H* = 221 (± 61) kJ /mol, and R is the gas constant and T is the absolute temperature. Extrapolation of the grain growth law of ε-iron to the inner core conditions suggests that the grain size in the inner core is in a range from several hundred meters to several kilometers, which is intermediate among the previous estimations, and hence the dominant deformation mechanism is considered to be Harper-Dorn creep rather than diffusion creep as pointed out by the previous work. This indicates the relatively uniform viscosity in the entire inner core.

  9. Accelerated Solvent Extraction of Insecticides from Rice Hulls, Rice Bran, and Polished Rice Grains.

    PubMed

    Teló, Gustavo Mack; Senseman, Scott Allen; Marchesan, Enio; Camargo, Edinalvo Rabaioli; Carson, Katherine

    2017-03-01

    Analysis of pesticide residues in irrigated rice grains is important for food security. In this study, we analyzed accelerated solvent extraction (ASE) conditions for the extraction of thiamethoxam and chlorantraniliprole insecticides from rice hulls, rice bran, and polished rice grains. Several variables, including extraction solvent, extraction temperature, extraction pressure, cell size, static extraction time, and sample concentration, were investigated. The average recoveries of the three matrixes were between 89.7 and 109.7% at the fortification level of 0.75 mg/kg. The optimum ASE operating conditions were acetonitrile (100%) as extraction solvent, extraction temperature of 75°C for rice hulls and 100°C for rice bran and polished rice grains, extraction cell pressure of 10.3 MPa, 22 mL cell size, and two extraction cycles. The total extraction time was approximately 25 min. The extracted volume was evaporated to dryness and the residues were redissolved in 2 mL acetonitrile after 1 min of vortex-shaking. Thiamethoxam and chlorantraniliprole were analyzed by ultra-HPLC with tandem MS. In conclusion, ASE in rice hulls, rice bran, and polished rice grains offers the possibility of a fast and simple method for obtaining a quantitative extraction of the studied pesticides.

  10. Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2016-08-01

    Microstructural evolutions during annealing of a plastically deformed AISI 304 stainless steel were investigated. Three distinct stages were identified for the reversion of strain-induced martensite to austenite, which were followed by the recrystallization of the retained austenite phase and overall grain growth. It was shown that the primary recrystallization of the retained austenite postpones the formation of an equiaxed microstructure, which coincides with the coarsening of the very fine reversed grains. The latter can effectively impair the usefulness of this thermomechanical treatment for grain refinement at both high and low annealing temperatures. The final grain growth stage, however, was found to be significant at high annealing temperatures, which makes it difficult to control the reversion annealing process for enhancement of mechanical properties. Conclusively, this work unravels the important microstructural evolution stages during reversion annealing and can shed light on the requirements and limitations of this efficient grain refining approach.

  11. Oriented grain growth in ZnO thin films by Iodine doping

    NASA Astrophysics Data System (ADS)

    Thomas, Deepu; Vattappalam, Sunil C.; Mathew, Sunny; Augustine, Simon

    2015-02-01

    ZnO thin films were prepared by Successive Ionic Layer Adsorption Reaction (SILAR) method. Oriented grain growth in Iodine doped ZnO thin films were studied. The oriented grain growth in samples was studied by comparing the peak intensities from X-ray diffraction data and surface morphology by scanning electron microscopy. It is found that oriented grain growth significantly enhanced by Iodine doping. When the oriented grain growth increases, crystallinity of the thin film improves, resistance and band gap decrease. ZnO thin films having good crystallinity with preferential (002) orientation is a prerequisite for the fabrication of devices like UV diode lasers, acoustic- optic devices etc. A possible mechanism for the oriented grain growth is also investigated. It is inferred that creation of point defects is responsible for the enhanced oriented grain growth in ZnO thin films when doped with iodine.

  12. The effect of electronic energy loss on irradiation-induced grain growth in nanocrystalline oxides.

    PubMed

    Zhang, Yanwen; Aidhy, Dilpuneet S; Varga, Tamas; Moll, Sandra; Edmondson, Philip D; Namavar, Fereydoon; Jin, Ke; Ostrouchov, Christopher N; Weber, William J

    2014-05-07

    Grain growth of nanocrystalline materials is generally thermally activated, but can also be driven by irradiation at much lower temperature. In nanocrystalline ceria and zirconia, energetic ions deposit their energy to both atomic nuclei and electrons. Our experimental results have shown that irradiation-induced grain growth is dependent on the total energy deposited, where electronic energy loss and elastic collisions between atomic nuclei both contribute to the production of disorder and grain growth. Our atomistic simulations reveal that a high density of disorder near grain boundaries leads to locally rapid grain movement. The additive effect from both electronic excitation and atomic collision cascades on grain growth demonstrated in this work opens up new possibilities for controlling grain sizes to improve functionality of nanocrystalline materials.

  13. Fine-grained parallelism accelerating for RNA secondary structure prediction with pseudoknots based on FPGA.

    PubMed

    Xia, Fei; Jin, Guoqing

    2014-06-01

    PKNOTS is a most famous benchmark program and has been widely used to predict RNA secondary structure including pseudoknots. It adopts the standard four-dimensional (4D) dynamic programming (DP) method and is the basis of many variants and improved algorithms. Unfortunately, the O(N(6)) computing requirements and complicated data dependency greatly limits the usefulness of PKNOTS package with the explosion in gene database size. In this paper, we present a fine-grained parallel PKNOTS package and prototype system for accelerating RNA folding application based on FPGA chip. We adopted a series of storage optimization strategies to resolve the "Memory Wall" problem. We aggressively exploit parallel computing strategies to improve computational efficiency. We also propose several methods that collectively reduce the storage requirements for FPGA on-chip memory. To the best of our knowledge, our design is the first FPGA implementation for accelerating 4D DP problem for RNA folding application including pseudoknots. The experimental results show a factor of more than 50x average speedup over the PKNOTS-1.08 software running on a PC platform with Intel Core2 Q9400 Quad CPU for input RNA sequences. However, the power consumption of our FPGA accelerator is only about 50% of the general-purpose micro-processors.

  14. Quantification of void pinning effects during grain growth of nanocrystalline iron

    NASA Astrophysics Data System (ADS)

    Vetterick, G. A.; El-Atwani, O.; Baldwin, J. Kevin; Tonks, M. R.; Taheri, M. L.

    2016-12-01

    In-situ transmission electron microscopy (TEM) annealing experiments, coupled with an analytical model, compared void pinning effects in nanocrystalline Fe films during grain growth. Voided grain boundaries were shown to have nearly four orders of magnitude less grain boundary mobility than void-free grain boundaries. However the coverage of the grain boundaries by pores was over three times that which would be required for static particles to completely halt grain boundary migration. Grain boundary migration continued because the pores were dragged by the grain boundaries and continued to evolve and coalesce. Thus, pores can slow grain boundary migration but are not an effective means of fully stabilizing nanocrystalline grain size at high temperatures.

  15. A fast grain-growth mechanism revealed in nanocrystalline ceramic-oxides

    SciTech Connect

    Aidhy, Dilpuneet S; Zhang, Yanwen; Weber, William J

    2014-01-01

    Grain growth problem in nanocrystalline ceramic-oxides renders their highly attractive properties practically unusable due to limited understanding on the underlying grain growth mechanisms. Two conventional 'slow' grain-growth mechanisms, i.e., curvature-driven and grainrotation driven, are shown to be thermally active, and the discovery of a 'fast' disorder-driven mechanism is revealed using molecular dynamics simulation on nanocrystalline ceria, in conjunction with experimental observations. We elucidate that this disorder mechanism drives the unexpected fast grain growth observed experimentally during synthesis and irradiation conditions.

  16. Temperature dependent grain growth of forsterite-nickel mixtures: Implications for grain growth in two-phase systems and applications to the H-chondrite parent body

    NASA Astrophysics Data System (ADS)

    Guignard, J.; Toplis, M. J.; Bystricky, M.; Monnereau, M.

    2016-06-01

    Grain growth experiments in the system forsterite (Fo) + nickel (Ni) have been performed on two analogue mixtures of ordinary chondrites, with volume % of Fo:Ni (95:5) and (80:20). These two mixtures have been studied at temperatures of 1390 °C and 1340 °C, at an oxygen fugacity (fO2) three orders of magnitude below the Ni-NiO buffer, for durations between 2 h and 10 days. Microstructures and grain size distributions show that grain growth is normal and that for durations >10 h the Zener relation is verified (i.e., the ratio of Fo and Ni grain size is independent of time). Comparison with results previously obtained at 1440 °C shows a similar grain growth exponent (n ∼ 5) for both phases, consistent with growth of forsterite by grain boundary migration, limited by the growth-rate of nickel. The details of size distribution frequencies and the value of grain-growth exponent indicate that the nickel grains, which pin forsterite grain boundaries, grow by diffusion along one-dimensional paths (i.e., along forsterite triple junctions). The derived activation energies for nickel and forsterite are 235 ± 33 kJ /mol and 400 ± 48 kJ /mol respectively. Within the framework of the Zener relation, this unexpected difference of activation energy is shown to be related to temperature-dependent variations in the ratio of Ni and Fo grain-size that are consistent with observed variations in Fo-Ni-Fo dihedral angle. These data thus indicate that the presence of all phases should be taken into account when considering the activation energy of growth rate of individual phases. As an application, the experimentally derived growth law for metal has been used in conjunction with temperature-time paths taken from models of the thermal history of the H-chondrite parent body to estimate the grain size evolution of metal in H-chondrites. A remarkably self-consistent picture emerges from experimentally derived grain-growth laws, textural data of metal grains in well characterised H

  17. Effect of TiO2 on Sintering and Grain Growth Kinetics of MgO from MgCl2·6H2O

    NASA Astrophysics Data System (ADS)

    Huang, Qiong-Zhu; Lu, Gui-Min; Sun, Ze; Song, Xing-Fu; Yu, Jian-Guo

    2013-04-01

    The effect of TiO2 on the grain growth kinetics of MgO prepared from MgCl2·6H2O was studied by the tradition phenomenological rate equation. The results showed that the addition of TiO2 decreased the activation energy of MgO grain growth, accelerated the growth rate of MgO grain, and markedly promoted the sintering of MgO. Without TiO2 addition, the MgO grain growth exponent n was 3, the grain growth activation energy Q was 556.9 kJ·mol-1, and the process was considered as volume diffusion controlled. With 0.2 wt pct TiO2 addition, the MgO grain growth exponent n was 2, the grain growth activation energy Q was 272.8 kJ·mol-1, and the process was considered as interface diffusion controlled. The apparent and closed porosities of MgO-0.2 wt pct TiO2 sample were decreased significantly, and the bulk density increased to 3.49 g·cm-3 (relative density is 97.5 pct). The main mechanism of TiO2 promoting the sintering of MgO was that TiO2 solubilized in MgO to form unequivalence substitutional solid solutions and cation vacancies that were favorable to cation diffusion.

  18. TEM annealing study of normal grain growth in silver thin films

    SciTech Connect

    Dannenberg, Rand; Stach, Eric; Groza, Joanna R.; Dresser, Brian J.

    2000-07-15

    Normal grain growth in 80-nm-thick sputter-deposited Ag films was studied via in situ heating stage transmission electron microscopy. The as-deposited films with an initial grain size of 40-50 nm were held at a series of temperatures (one per specimen) below 250 C. A grain growth exponent n=3 from the law Dn-Don=k(T)t was calculated by minimizing the deviation in the fitting function to the experimental data. An activation energy for grain growth of 0.53 eV (53 kJ/mol) is found, which is close to surface diffusion. These findings are consistent with our previous work on abnormal grain growth in Ag: that grain growth in thin film nanocrystalline silver is dominated by surface diffusion mass transport.

  19. Influence of free forging conditions on austenitic grain growth in constructional steel

    NASA Astrophysics Data System (ADS)

    Zagulyaeva, S. V.; Potanina, V. S.; Vinograd, M. I.

    1984-02-01

    The initial period of austenitic grain growth in heating of a hot forged billet of 50G-SSh steel and of forgings after free forging is characterized by the formation of a mixed grain structure of No. 8 fine grains and No. 3-0 coarse.

  20. Effects of Grain Growth on Molecular Abundances in Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Harada, Nanase; Hasegawa, Yasuhiro; Aikawa, Yuri; Hirashita, Hiroyuki; Liu, Haoyu Baobab; Hirano, Naomi

    2017-03-01

    Recent observations suggested that the growth of dust grains may have already occurred in class 0/I young stellar objects (YSOs). Since chemical reactions on dust grain surfaces are important in determining molecular abundances, the dust size growth may affect chemical compositions in YSOs significantly. In this work, we aim to determine how grain growth affects chemical abundances. We use a time-dependent gas-grain chemical model for a star-forming core to calculate the gas-phase and grain-surface chemical abundances with variation of surface areas of grains to imitate grain growth. We also perform parameter studies in which the initial molecular abundances vary. Our results show that a smaller extent of the surface areas caused by grain growth changes the dominant form of sulfur-bearing molecules by decreasing H2S abundances and increasing SO and/or SO2 abundances. We also find that complex organic molecules such as CH3CN decrease in abundances with larger grain sizes, while the abundance of other species such as CH3OCH3 is dependent on other parameters such as the initial conditions. Comparisons with observations of a class 0 protostar, IRAS 16293-2422, indicate that the observed abundance ratios between sulfur-bearing molecules H2S, SO, and SO2 can be reproduced very well when dust grains grow to a maximum grain size of a max = 10–100 μm.

  1. Crystal growth of energetic materials during high acceleration

    SciTech Connect

    Lanzerotti, M.Y.D.; Autera, J.; Borne, L.; Sharma, J.

    1996-07-01

    Studies of the growth of crystals of energetic materials under conditions of high acceleration in an ultracentrifuge are reported. When a saturated solution is accelerated in an ultracentrifuge, the solute molecules move individually through the solvent molecules to form a crystal at the outer edge of the tube if the solute is more dense than the solvent. Since there is no evaporation or temperature variation, convection currents caused by simultaneous movement of solvent and solute are minimized and crystal defects are potentially minimized. Crystal growth is controlled by the g-level of the acceleration. In addition, solution inclusions and bubbles migrate out of the saturated solution as a result of the pressure gradient induced by the g-force. The authors present results of TNT, RDX, and TNAZ grown at high g from various solutions.

  2. Grain growth in U-7Mo alloy: A combined first-principles and phase field study

    NASA Astrophysics Data System (ADS)

    Mei, Zhi-Gang; Liang, Linyun; Kim, Yeon Soo; Wiencek, Tom; O'Hare, Edward; Yacout, Abdellatif M.; Hofman, Gerard; Anitescu, Mihai

    2016-05-01

    Grain size is an important factor in controlling the swelling behavior in irradiated U-Mo dispersion fuels. Increasing the grain size in U-Mo fuel particles by heat treatment is believed to delay the fuel swelling at high fission density. In this work, a multiscale simulation approach combining first-principles calculation and phase field modeling is used to investigate the grain growth behavior in U-7Mo alloy. The density functional theory based first-principles calculations were used to predict the material properties of U-7Mo alloy. The obtained grain boundary energies were then adopted as an input parameter for mesoscale phase field simulations. The effects of annealing temperature, annealing time and initial grain structures of fuel particles on the grain growth in U-7Mo alloy were examined. The predicted grain growth rate compares well with the empirical correlation derived from experiments.

  3. Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization

    SciTech Connect

    Paggi, A.; Angella, G.; Donnini, R.

    2015-09-15

    Static and metadynamic recrystallization of an AISI 304L austenitic stainless steel was investigated at 1100 °C and 10{sup −} {sup 2} s{sup −} {sup 1} strain rate. The kinetics of recrystallization was determined through double hit compression tests. Two strain levels were selected for the first compression hit: ε{sub f} = 0.15 for static recrystallization (SRX) and 0.25 for metadynamic recrystallization (MDRX). Both the as-deformed and the recrystallized microstructures were investigated through optical microscopy and electron back-scattered diffraction (EBSD) technique. During deformation, strain induced grain boundary migration appeared to be significant, producing a square-like grain boundary structure aligned along the directions of the maximum shear stresses in compression. EBSD analysis revealed to be as a fundamental technique that the dislocation density was distributed heterogeneously in the deformed grains. Grain growth driven by surface energy reduction was also investigated, finding that it was too slow to explain the experimental data. Based on microstructural results, it was concluded that saturation of the nucleation sites occurred in the first stages of recrystallization, while grain growth driven by strain induced grain boundary migration (SIGBM) dominated the subsequent stages. - Highlights: • Recrystallization behavior of a stainless steel was investigated at 1100 °C. • EBSD revealed that the dislocation density distribution was heterogeneous during deformation. • Saturation of nucleation sites occurred in the first stages of recrystallization. • Strain induced grain boundary migration (SIGBM) effects were significant. • Grain growth driven by SIGBM dominated the subsequent stages.

  4. Grain growth kinetics in liquid-phase-sintered zinc oxide-barium oxide ceramics

    NASA Technical Reports Server (NTRS)

    Yang, Sung-Chul; German, Randall M.

    1991-01-01

    Grain growth of ZnO in the presence of a liquid phase of the ZnO-BaO system has been studied for temperatures from 1300 to 1400 C. The specimens were treated in boiling water and the grains were separated by dissolving the matrix phase in an ultrasonic bath. As a consequence 3D grain size measurements were possible. Microstructural examination shows some grain coalescence with a wide range of neck size ratios and corresponding dihedral angles, however, most grains are isolated. Lognormal grain size distributions show similar shapes, indicating that the growth mechanism is invariant over this time and temperature. All regressions between G exp n and time for n = 2 and 3 proved statistically significant. The rate constants calculated with the growth exponent set to n = 3 are on the same order of magnitude as in metallic systems. The apparent activation energy for growth is estimated between 355 and 458 kJ/mol.

  5. Modelling grain growth in the presence of Zener drag: application for Fe-3% Si

    NASA Astrophysics Data System (ADS)

    Maazi, N.; Rouag, N.

    2001-09-01

    The presence of AlN and MnS inhibitors in Fe-3%Si sheets, grade Hi-B, permits the development of Goss texture by the sudden and rapid growth of small grains possessing a {110}<001> orientation. This behaviour is not in good agreement with the classical laws of secondary recrystallization. In the present study, first the minimum critical radius of the grain which is susceptible to growth is determined in relation to orientation and grain size neighbourhood. Moreover, the necessity to define a maximum critical radius for the neighbourhood is established. Consideration of these two radii permits the exploration of possible growth sequences for small grains.

  6. Generalizations on the use of leaf element concentrations to accelerate improvement of rice grain nutritional quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional breeding approaches to develop rice genotypes with improved grain element composition require analyzing grain element concentrations of large numbers of genotypes. This study evaluated if the vegetative phenotype could be used to predict grain concentrations. Results indicate that vegeta...

  7. Fall Growth Potential of Cereal-Grain Forages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Arkansas, producers utilizing cereal grains as fall forage for weaned calves usually do not produce a grain crop the following summer. Our objectives were to evaluate eight diverse varieties of wheat (Triticum aestivum L.), oat (Avena sativa L.), rye (Secale cereale L.), and triticale (X Triticos...

  8. Fall Growth Potential of Cereal Grain Forages in Northern Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Arkansas, producers utilizing cereal grains as fall forage for weaned calves usually do not harvest a grain crop the following summer. This contrasts sharply from practices observed commonly in neighboring Oklahoma, and allows for much wider latitude with respect to management strategies, especia...

  9. Impact of accelerated plant growth on seed variety development

    NASA Astrophysics Data System (ADS)

    Christophersen, Eric

    1998-01-01

    The commercial lives of agricultural seed products have steadily declined in recent years. The introduction of genetically engineered crop seeds in 1966 has accentuated that trend. Widespread grower demand for genetically engineered seed requires competitive response by industry followers in order to avert market share losses to the industry leaders. Limitations on plant transformation technology, regulatory requirements and patent impediments require companies to rapidly convert transformed lines into elite commercial products. Massive multigenerational backcrossing efforts are required to distribute genetically engineered traits into a broad product mix. Significant incidents of expression failures, or ``gene silencing,'' have occurred unexpectedly, requiring product substitution strategies. First-to-market strategies, competitive response, broad germplasm conversion and rescue of product failures all share the element of urgency. Technologies which reliably accelerate product development rates can expect favorable reception by commercial seed developers. A growth chamber which dramatically accelerates the rate of plant growth is described.

  10. Emittance growth mechanisms for laser-accelerated proton beams.

    PubMed

    Kemp, Andreas J; Fuchs, J; Sentoku, Y; Sotnikov, V; Bakeman, M; Antici, P; Cowan, T E

    2007-05-01

    In recent experiments the transverse normalized rms emittance of laser-accelerated MeV ion beams was found to be < 0.002 mm mrad, which is at least 100 times smaller than the emittance of thermal ion sources used in accelerators [T. E. Cowan, Phys. Rev. Lett. 92, 204801 (2004)]. We investigate the origin for the low emittance of laser-accelerated proton beams by studying several candidates for emittance-growth mechanisms. As our main tools, we use analytical models and one- and two-dimensional particle-in-cell simulations that have been modified to include binary collisions between particles. We find that the dominant source of emittance is filamentation of the laser-generated hot electron jets that drive the ion acceleration. Cold electron-ion collisions that occur before ions are accelerated contribute less than ten percent of the final emittance. Our results are in qualitative agreement with the experiment, for which we present a refined analysis relating emittance to temperature, a better representative of the fundamental beam physics.

  11. Modeling of Austenite Grain Growth During Austenitization in a Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Dong, Dingqian; Chen, Fei; Cui, Zhenshan

    2016-01-01

    The main purpose of this work is to develop a pragmatic model to predict austenite grain growth in a nuclear reactor pressure vessel steel. Austenite grain growth kinetics has been investigated under different heating conditions, involving heating temperature, holding time, as well as heating rate. Based on the experimental results, the mathematical model was established by regression analysis. The model predictions present a good agreement with the experimental data. Meanwhile, grain boundary precipitates and pinning effects on grain growth were studied by transmission electron microscopy. It is found that with the increasing of the temperature, the second-phase particles tend to be dissolved and the pinning effects become smaller, which results in a rapid growth of certain large grains with favorable orientation. The results from this study provide the basis for the establishment of large-sized ingot heating specification for SA508-III steel.

  12. Accelerated, microwave-assisted, and conventional solvent extraction methods affect anthocyanin composition from colored grains.

    PubMed

    Abdel-Aal, El-Sayed M; Akhtar, Humayoun; Rabalski, Iwona; Bryan, Michael

    2014-02-01

    Anthocyanins are important dietary components with diverse positive functions in human health. This study investigates effects of accelerated solvent extraction (ASE) and microwave-assisted extraction (MAE) on anthocyanin composition and extraction efficiency from blue wheat, purple corn, and black rice in comparison with the commonly used solvent extraction (CSE). Factorial experimental design was employed to study effects of ASE and MAE variables, and anthocyanin extracts were analyzed by spectrophotometry, high-performance liquid chromatography-diode array detector (DAD), and liquid chromatography-mass spectrometry chromatography. The extraction efficiency of ASE and MAE was comparable with CSE at the optimal conditions. The greatest extraction by ASE was achieved at 50 °C, 2500 psi, 10 min using 5 cycles, and 100% flush. For MAE, a combination of 70 °C, 300 W, and 10 min in MAE was the most effective in extracting anthocyanins from blue wheat and purple corn compared with 50 °C, 1200 W, and 20 min for black rice. The anthocyanin composition of grain extracts was influenced by the extraction method. The ASE extraction method seems to be more appropriate in extracting anthocyanins from the colored grains as being comparable with the CSE method based on changes in anthocyanin composition. The method caused lower structural changes in anthocaynins compared with the MAE method. Changes in blue wheat anthocyanins were lower in comparison with purple corn or black rice perhaps due to the absence of acylated anthocyanin compounds in blue wheat. The results show significant differences in anthocyanins among the 3 extraction methods, which indicate a need to standardize a method for valid comparisons among studies and for quality assurance purposes.

  13. Effects of Alloying on Nanoscale Grain Growth in Substitutional Binary Alloy System: Thermodynamics and Kinetics

    NASA Astrophysics Data System (ADS)

    Peng, Haoran; Chen, Yuzeng; Liu, Feng

    2015-11-01

    Applying the regular solution model, the Gibbs free energy of mixing for substitutional binary alloy system was constructed. Then, thermodynamic and kinetic parameters, e.g., driving force and solute drag force, controlling nanoscale grain growth of substitutional binary alloy systems were derived and compared to their generally accepted definitions and interpretations. It is suggested that for an actual grain growth process, the classical driving force P = γ/D ( γ the grain boundary (GB) energy, D the grain size) should be replaced by a new expression, i.e., P^' = γ /D - Δ P . Δ P represents the energy required to adjust nonequilibrium solute distribution to equilibrium solute distribution, which is equivalent to the generally accepted solute drag force impeding GB migration. By incorporating the derived new driving force for grain growth into the classical grain growth model, the reported grain growth behaviors of nanocrystalline Fe-4at. pct Zr and Pd-19at. pct Zr alloys were analyzed. On this basis, the effect of thermodynamic and kinetic parameters ( i.e., P, Δ P and the GB mobility ( M GB)) on nanoscale grain growth, were investigated. Upon grain growth, the decrease of P is caused by the reduction of γ as a result of solute segregation in GBs; the decrease of Δ P is, however, due to the decrease of grain growth velocity; whereas the decrease of M GB is attributed to the enhanced difference of solute molar fractions between the bulk and the GBs as well as the increased activation energy for GB diffusion.

  14. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&ice Dusty Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.

    2017-03-01

    The grain growth process in the Caltech water–ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (i) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (ii) the major axis length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (i.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ∼0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  15. Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

    ERIC Educational Resources Information Center

    Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele

    2013-01-01

    We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth…

  16. Effect of different growth conditions on biomass increase in kefir grains.

    PubMed

    Guzel-Seydim, Z; Kok-Tas, T; Ertekin-Filiz, B; Seydim, A C

    2011-03-01

    Kefir is a functional dairy product and the effects of kefir consumption on health have been well documented. Kefir grains have naturally high numbers of lactic acid bacteria and yeasts and are used in manufacturing kefir. The biomass of kefir grains slowly increases after successive fermentations. The effects of adding whey protein isolate, modified whey protein (MWP, fat replacer; Carbery Inc., Cork, Ireland), or inulin to milk and different atmospheric conditions (ambient or 6% CO(2)) during fermentation on the increase in biomass of kefir grains were investigated. Reconstituted milks (10% milk powder) enriched with whey protein isolate (2%), MWP (2%), and inulin (2%) were inoculated with kefir grains and fermented in ambient and 6% CO(2) incubators at 25°C until a final pH of 4.6 was reached. Biomass increments of kefir grains were determined weekly over 30 d. Lactic acid bacteria and yeast contents of kefir grains were also determined. The highest biomass increase (392%) was found in kefir grains grown in milk supplemented with whey protein isolate under ambient atmospheric conditions. Application of CO(2) did not provide a significant supporting effect on the biomass of kefir grains. Addition of MWP significantly accelerated the formation of kefir grain biomass (223%). The use of whey protein isolate, MWP, or inulin in milk did not cause any adverse effects on the microbial flora of kefir grains.

  17. Texture enhancement during grain growth of magnesium alloy AZ31B

    DOE PAGES

    Bhattacharyya, Jishnu J.; Agnew, S. R.; Muralidharan, G.

    2015-01-03

    In this paper, the microstructure and texture evolution during annealing of rolled Mg alloy AZ31B, at temperatures ranging from 260 to 450°C, is characterized, and a grain growth exponent of n=5, indicating inhibition of grain growth, is observed. Broadening of the normalized grain size distributions, which indicates abnormal grain growth, was observed at all temperatures investigated. It is shown, using a Zener-type analysis for pinning of grain boundaries by particles, that impurity-based particles are responsible for grain growth inhibition and abnormal grain growth. The strong basal texture which develops during rolling of the Mg alloy, resulting in an initial peakmore » intensity in the (0002) pole figure of nine multiples of a random distribution (MRD), increases to ~15 MRD during annealing at 400 and 450°C. Furthermore, a specific texture component {0001}(1120) is observed in the orientation distribution, which increases from 10 to 23 MRD at 400°C. It is hypothesized that the anisotropic grain boundary properties (i.e. low angle boundaries have low energy and mobility) are responsible for the texture strengthening. Additionally, electron backscattered diffraction reveals the recrystallized microstructure to contain a significant number of boundaries with ~30° misorientation about the <0001> direction, and this boundary type persists throughout most annealing treatments explored.« less

  18. Texture enhancement during grain growth of magnesium alloy AZ31B

    SciTech Connect

    Bhattacharyya, Jishnu J.; Agnew, S. R.; Muralidharan, G.

    2015-01-03

    In this paper, the microstructure and texture evolution during annealing of rolled Mg alloy AZ31B, at temperatures ranging from 260 to 450°C, is characterized, and a grain growth exponent of n=5, indicating inhibition of grain growth, is observed. Broadening of the normalized grain size distributions, which indicates abnormal grain growth, was observed at all temperatures investigated. It is shown, using a Zener-type analysis for pinning of grain boundaries by particles, that impurity-based particles are responsible for grain growth inhibition and abnormal grain growth. The strong basal texture which develops during rolling of the Mg alloy, resulting in an initial peak intensity in the (0002) pole figure of nine multiples of a random distribution (MRD), increases to ~15 MRD during annealing at 400 and 450°C. Furthermore, a specific texture component {0001}(1120) is observed in the orientation distribution, which increases from 10 to 23 MRD at 400°C. It is hypothesized that the anisotropic grain boundary properties (i.e. low angle boundaries have low energy and mobility) are responsible for the texture strengthening. Additionally, electron backscattered diffraction reveals the recrystallized microstructure to contain a significant number of boundaries with ~30° misorientation about the <0001> direction, and this boundary type persists throughout most annealing treatments explored.

  19. The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe

    DOE PAGES

    Furnish, T. A.; Mehta, A.; Van Campen, D.; ...

    2016-10-11

    Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In thismore » study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.« less

  20. The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe

    SciTech Connect

    Furnish, T. A.; Mehta, A.; Van Campen, D.; Bufford, D. C.; Hattar, K.; Boyce, B. L.

    2016-10-11

    Conventional structural metals suffer from fatigue-crack initiation through dislocation activity which forms persistent slip bands leading to notch-like extrusions and intrusions. Ultrafine-grained and nanocrystalline metals can potentially exhibit superior fatigue-crack initiation resistance by suppressing these cumulative dislocation activities. Prior studies on these metals have confirmed improved high-cycle fatigue performance. In the case of nano-grained metals, analyses of subsurface crack initiation sites have indicated that the crack nucleation is associated with abnormally large grains. But, these post-mortem analyses have led to only speculation about when abnormal grain growth occurs (e.g., during fatigue, after crack initiation, or during crack growth). In this study, a recently developed synchrotron X-ray diffraction technique was used to detect the onset and progression of abnormal grain growth during stress-controlled fatigue loading. Our study provides the first direct evidence that the grain coarsening is cyclically induced and occurs well before final fatigue failure—our results indicate that the first half of the fatigue life was spent prior to the detectable onset of abnormal grain growth, while the second half was spent coarsening the nanocrystalline structure and cyclically deforming the abnormally large grains until crack initiation. Post-mortem fractography, coupled with cycle-dependent diffraction data, provides the first details regarding the kinetics of this abnormal grain growth process during high-cycle fatigue testing. Finally, precession electron diffraction images collected in a transmission electron microscope after the in situ fatigue experiment also confirm the X-ray evidence that the abnormally large grains contain substantial misorientation gradients and sub-grain boundaries.

  1. Rice grain element concentration predictions based on leaf concentrations: accelerating improvement of nutritional quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic improvement of rice grain element composition traditionally requires taking numerous plants to maturity before analyzing their grain element concentrations for making selections. This study evaluated if vegetative-leaf concentrations of elements could be used to predict grain concentrati...

  2. Analysis of grain growth in a two-phase gamma titanium aluminide alloy

    SciTech Connect

    Seetharaman, V.; Semiatin, S.L.

    1997-04-01

    Microstructure evolution during annealing of a wrought near-gamma titanium aluminide alloy, Ti-45.5Al-2Nb-2Cr (at. pct), in the temperature range 1,200 C to 1,320 C was investigated. The mean grain size of the alpha phase as well as the volume fraction and size of the gamma particles were evaluated as a function of annealing temperature and time. Isothermal annealing at temperatures above the alpha transus, T{sub {alpha}} = 1,300 C, led to rapid grain growth of the alpha phase, the kinetics of which could be described by a simple power-law type expression with a grain growth exponent p = 2.3. Alpha grain growth was significantly retarded during annealing at subtransus temperatures (1,200 C {le} T {le} 1,300 C) by the pinning influence of gamma-phase particles. Limiting grain size values predicted by computer simulation models applicable for high-volume fractions of precipitates/particles were in good agreement with experimental findings. The kinetics of alpha grain growth in the presence of gamma particles were analyzed, and the results showed that a grain growth exponent of p {approx} 2.6 could satisfactorily account for the experimental results.

  3. Inner core dynamics inferred from grain growth of ɛ-iron

    NASA Astrophysics Data System (ADS)

    Yamazaki, D.; Tsujino, N.; Yoshino, T.; Ito, E.; Higo, Y.; Tange, Y.

    2015-12-01

    The inner core is thought to be composed of Fe-Ni alloy with hcp structure based on the high pressure experiments (Tateno et al., 2012) and hence the physical properties of hcp iron (ɛ-iron) are keys for understanding the dynamics of the inner core. Recent seismic observations suggest the variation in grain size in the inner core (Monnereau et al., 2010). It is important to understand the variation in grain size for constraints of the dynamics of the inner core because grain size is controlled by the growth rate and growth rate gives us information on time scale of the inner core growth and/or translation (Alboussiere et al., 2010). In this study, we experimentally determine the grain growth rate of ɛ-iron to understand the dynamics of inner core. ɛ-iron is only stable at high pressure and it is unquenchable to an ambient condition. Therefore, in this study, we conduct in situ high pressure experiments to determine the grain growth rate of ɛ-iron. In the high pressure experiment, the starting materials was compressed in a Kawai-type high pressure apparatus equipped with sintered diamond anvils with 1.0 truncated edge length at BL04B1, SPring-8. At the pressure of ~55 GPa, sample was heated for several hours to determine the grain growth rates. Grain growth can be detected by the reduction of number of diffraction spots on the two-dimensional detector with monochromatic X-ray (Offerman et al., 2002) with annealing time. In the experiments, we observed the reduction of the number of diffracted spots, meaning that grain growth occurs during annealing experiments. From the reduction rates of spots at temperatures ranged from 1200 to 1500 K, we determined the growth constant for grain growth at each temperature and then temperature dependency at ~55 GPa was obtained. By using the homologous temperature scaling to extrapolate the experimental to the inner core condition, we estimated the grain growth rate of ɛ-iron at the inner core condition. Our results suggests

  4. Manufacturing process to reduce large grain growth in zirconium alloys

    DOEpatents

    Rosecrans, Peter M.

    1987-01-01

    A method of treating cold-worked zirconium alloys to reduce large grain gth during thermal treatment at temperatures above the recrystallization temperature of the alloy comprising heating the cold-worked alloy between about 1300.degree.-1350.degree. F. for 1 to 3 hours prior to treatment above its recrystallization temperature.

  5. About Abnormal Grain Growth in Joints Obtained by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu.

    2015-05-01

    Some special features of abnormal grain growth in welded joints of aluminum alloys formed by fiction stir welding (FSW) are studied. The microstructure and the texture of the alloys are determined after welding and annealing at 400, 450 and 500°C for different times. The abnormal grain growth is shown to depend much on the macroscopic inhomogeneity of the structure inside the weld.

  6. The Effect of Current Density on CNx Crystal Grain Growth in Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Yu, Wei-Feng; Cao, Rong-Gen; Tian, Yu; Wang, Jian-Zhong; Ning, Xi-Jing

    2011-02-01

    The effect of charge current density on the growth of CNx films by electrolysis of a methanol-urea solution is investigated experimentally. It is seen that the C-C3N4 phase grains in the films are about 200-300 nm for a density of 55 mA/cm2 and dendrite growth takes place with grains as large as 7 μm formed when density is about 70 mA/cm2.

  7. An improved coarse-grained parallel algorithm for computational acceleration of ordinary Kriging interpolation

    NASA Astrophysics Data System (ADS)

    Hu, Hongda; Shu, Hong

    2015-05-01

    Heavy computation limits the use of Kriging interpolation methods in many real-time applications, especially with the ever-increasing problem size. Many researchers have realized that parallel processing techniques are critical to fully exploit computational resources and feasibly solve computation-intensive problems like Kriging. Much research has addressed the parallelization of traditional approach to Kriging, but this computation-intensive procedure may not be suitable for high-resolution interpolation of spatial data. On the basis of a more effective serial approach, we propose an improved coarse-grained parallel algorithm to accelerate ordinary Kriging interpolation. In particular, the interpolation task of each unobserved point is considered as a basic parallel unit. To reduce time complexity and memory consumption, the large right hand side matrix in the Kriging linear system is transformed and fixed at only two columns and therefore no longer directly relevant to the number of unobserved points. The MPI (Message Passing Interface) model is employed to implement our parallel programs in a homogeneous distributed memory system. Experimentally, the improved parallel algorithm performs better than the traditional one in spatial interpolation of annual average precipitation in Victoria, Australia. For example, when the number of processors is 24, the improved algorithm keeps speed-up at 20.8 while the speed-up of the traditional algorithm only reaches 9.3. Likewise, the weak scaling efficiency of the improved algorithm is nearly 90% while that of the traditional algorithm almost drops to 40% with 16 processors. Experimental results also demonstrate that the performance of the improved algorithm is enhanced by increasing the problem size.

  8. The Initiation and Propagation of Dynamic Abnormal Grain Growth in Molybdenum

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Worthington, Daniel L.; Taleff, Eric M.

    2015-12-01

    Plastic straining can initiate and propagate abnormal grains at temperatures significantly lower than is possible by static annealing. This phenomenon is termed dynamic abnormal grain growth (DAGG). Experiments that produce DAGG in commercial-purity molybdenum sheet materials are used to study the initiation and propagation of abnormal grains by plastic straining at temperatures from 1673 K to 2073 K (1400° C to 1800° C). The minimum strain necessary to initiate DAGG, termed the critical strain, decreases approximately linearly with increasing temperature. The variation in critical strain values observed at a single temperature and strain rate is well described by a normal distribution. An increased fraction of grains aligned with the < 110rangle along the tensile axis, a preferred orientation for DAGG grains, appears to decrease the critical strain for DAGG initiation. DAGG grains preferentially grow into the finest-grained polycrystalline regions, which suggests that the driving force for DAGG propagation is primarily from grain-boundary curvature. No effects of local crystallographic texture variation on growth are evident in microstructures containing DAGG grains. Together, these observations support the hypothesis that plastic straining during DAGG acts primarily to increase boundary mobility, rather than to increase the driving force for boundary migration.

  9. Topological events in two-dimensional grain growth: Experiments and simulations

    SciTech Connect

    Fradkov, V.E.; Glicksman, M.E.; Palmer, M.; Rajan, K. . Materials Engineering Dept.)

    1994-08-01

    Grain growth in polycrystals is a process that occurs as a result of the vanishing of small grains. The mean topological class of vanishing two-dimensional (2-D) grains was found experimentally to be about 4.5. This result suggests that most vanishing grains are either 4- or 5-sided. A recent theory of 2-D grain growth is explicitly based on this fact, treating the switching as random events. The process of shrinking of 4- and 5-sided two-dimensional grains was observed experimentally on polycrystalline films of transparent, pure succinonitrile (SCN). Grain shrinking was studied theoretically and simulated by computer (both dynamic and Monte Carlo). It was found that most shrinking grains are topologically stable and remain within their topological class until they are much smaller than their neighbors. They discuss differences which were found with respect to the behavior of 2-D polycrystals, a 2-D ideal soap froth, and a 2-D section of a 3-D grain structure.

  10. Reverse Austenite Transformation and Grain Growth in a Low-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Garcin, Thomas; Ueda, Keiji; Militzer, Matthias

    2017-02-01

    The mechanisms controlling the reverse austenite transformation and the subsequent grain growth are examined in a low-carbon steel during slow continuous heating. The ex-situ metallographic analysis of quenched samples is complemented by in-situ dilatometry of the phase transformation and real-time laser ultrasonic measurements of the austenite grain size. Although the initial state of the microstructure (bainite or martensite) has only limited impact on the austenite transformation temperature, it has significant influence on the mean austenite grain size and the rate of grain growth. The coarsening of austenite islands during reverse transformation occurring from the martensitic microstructure is responsible for a large austenite grain structure at the completion of the austenite formation. On the other hand, a much finer austenite grain size is obtained when the austenite transforms from the bainite microstructure. Upon further heating, the rate of austenite grain growth is limited by the presence of nanometric precipitates present in the bainite microstructure leading to a significantly finer austenite grain size. These results give important guidance for the design of thermomechanical-controlled processing of heavy-gage steel plates.

  11. Suppression of Grain Growth by Additive in Nanostructured P-type Bismuth Antimony Tellurides

    SciTech Connect

    Zhang, Qian; Zhang, Qinyong; Chen, S.; Liu, W S; Lukas, K; Yan, X; Wang, H; Wang, D.; Opeil, C; Chen, Gang; Ren, Z. F.

    2011-01-01

    Grain growth is a major issue in the preparation of nanostructured bismuth-antimony-tellurides during hot pressing the nanopowders into dense bulk samples. To prevent grain agglomeration during ball milling and growth during hot pressing, organic agent (Oleic Acid, OA) as additive was added into the materials at the beginning of the ball milling process. With different concentrations of OA (0.5, 1.0, 1.5, 2.0, and 2.5 wt%), grains with different sizes are obtained. Structural analysis clearly shows that it is the particle size of the nanopowders that determines the final grain size in the densely compacted bulk samples. A combination of small grains ~200–500 nm and nanopores leads to effective phonon scattering, which results in the decrease of lattice thermal conductivity, and ZT of ~1.3 at 373 K for the sample with 2.0 wt% OA.

  12. Grain growth, densification and mechanical properties of nanocrystalline tungsten carbide-cobalt

    NASA Astrophysics Data System (ADS)

    Wang, Xu

    Over two decades, attempts to produce cemented tungsten carbide with nanocrystalline grain structure have been made to obtain dramatically improved mechanical properties to extend the lifetime and robustness of tungsten carbide tools. The attempts have shown that the conventional methods by liquid phase sintering cannot retain nanoscale grain sizes while achieving full densification because significant grain growth of WC occurs during sintering. There have been many works that focused on developing alternative techniques to liquid phase sintering, such as Microwave Sintering (MS), Spark Plasma Sintering (SPS), High Frequency Induction Heated Sintering (HFIHS), and so on. In all of these investigations, densification is accompanied by significant grain growth. The finest average grain size that is achievable until now is still approximately 100-300 nm. In this research, the challenges of sintering nanocrystalline WC-Co powders were further examined. The key challenge to the production of bulk nanocrystalline cemented tungsten carbide materials is to control the rapid grain growth during the early stage of sintering, especially during heat up stage. In order to understand the mechanisms of grain growth and densification during the early stage of sintering of nanocrystalline WC-Co powders, the sintering behaviors of nanosized WC during the early stages of sintering were studied as a function of temperature and time. The effects of other influencing factors, such as initial grain size, cobalt content, and grain growth inhibitor, were investigated. As a way to make nanocrystalline WC-Co materials, an ultrahigh pressure rapid hot consolidation process (UPRC) was developed. The effects of the UPRC process variables (including heating rate, temperature, holding time, and pressure) on grain growth and densification of the nano powders were studied. Based on the analysis of kinetics of the grain growth and densification and the microstructure evolution during sintering, the

  13. Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation

    SciTech Connect

    Zhang, Yanwen; Jiang, Weilin; Wang, Chong M.; Namavar, Fereydoon; Edmondson, Philip D.; Zhu, Zihua; Gao, Fei; Lian, Jie; Weber, William J.

    2010-11-10

    Grain growth, oxygen stoichiometry and phase stability of nanostructurally-stabilized zirconia (NSZ) in pure cubic phase are investigated under 2 MeV Au ion bombardment at 160 and 400 K to doses up to 35 displacements per atom (dpa). The NSZ films are produced by ion-beam-assisted deposition technique at room temperature with an average grain size of 7.7 nm. The grain size increases with dose, and follows a power law (n=6) to a saturation value of ~30 nm that decreases with temperature. Slower grain growth is observed under 400 K irradiations, as compared to 160 K irradiations, indicating that thermal grain growth is not activated and defect-stimulated grain growth is the dominating mechanism. While cubic phase is perfectly retained and no new phases are identified after the high-dose irradiations, reduction of oxygen in the irradiated NSZ films is detected. The ratio of O to Zr decreases from ~2.0 for the as-deposited films to ~1.65 after irradiation to ~35 dpa. Significant increase of oxygen vacancies in nanocrystalline zirconia suggests substantially enhanced oxygen diffusion under ion irradiation, a materials behavior far from equilibrium. The oxygen deficiency may be essential in stabilizing cubic phase to larger grain sizes.

  14. Abnormal grain growth in Eurofer-97 steel in the ferrite phase field

    NASA Astrophysics Data System (ADS)

    Oliveira, V. B.; Sandim, H. R. Z.; Raabe, D.

    2017-03-01

    Reduced-activation ferritic-martensitic (RAFM) Eurofer-97 steel is a candidate material for structural applications in future fusion reactors. Depending on the amount of prior cold rolling strain and annealing temperature, important solid-state softening reactions such as recovery, recrystallization, and grain growth occur. Eurofer-97 steel was cold rolled up to 70, 80 and 90% reductions in thickness and annealed in the ferrite phase field (below ≈ 800 °C). Changes in microstructure, micro-, and mesotexture were followed by orientation mappings provided by electron backscatter diffraction (EBSD). Eurofer-97 steel undergoes abnormal grain growth above 650 °C and this solid-state reaction seems to be closely related to the high mobility of a few special grain boundaries that overcome pinning effects caused by fine particles. This solid-state reaction promotes important changes in the microstructure and microtexture of this steel. Abnormal grain growth kinetics for each condition was determined by means of quantitative metallography.

  15. Simulation of Grain Growth in a Near-Eutectic Solder Alloy

    SciTech Connect

    TIKARE,VEENA; VIANCO,PAUL T.

    1999-12-16

    Microstructural evolution due to aging of solder alloys determines their long-term reliability as electrical, mechanical and thermal interconnects in electronics packages. The ability to accurately determine the reliability of existing electronic components as well as to predict the performance of proposed designs depends upon the development of reliable material models. A kinetic Monte Carlo simulation was used to simulate microstructural evolution in solder-class materials. The grain growth model simulated many of the microstructural features observed experimentally in 63Sn-37Pb, a popular near-eutectic solder alloy. The model was validated by comparing simulation results to new experimental data on coarsening of Sn-Pb solder. The computational and experimental grain growth exponent for two-phase solder was found to be much lower than that for normal, single phase grain growth. The grain size distributions of solders obtained from simulations were narrower than that of normal grain growth. It was found that the phase composition of solder is important in determining grain growth behavior.

  16. Safety Evaluation of Transgenic Tilapia with Accelerated Growth.

    PubMed

    Guillén; Berlanga; Valenzuela; Morales; Toledo; Estrada; Puentes; Hayes; de la Fuente J

    1999-01-01

    Recent advances in modern marine biotechnology have permitted the generation of new strains of economically important fish species through the transfer of growth hormone genes. These transgenic fish strains show improved growth performance and therefore constitute a better alternative for aquaculture programs. Recently, we have obtained a transgenic tilapia line with accelerated growth. However, before introducing this line into Cuban aquaculture, environmental and food safety assessment was required by national authorities. Experiments were performed to evaluate the behavior of transgenic tilapia in comparison to wild tilapia as a way to assess the environmental impact of introducing transgenic tilapia into Cuban aquaculture. Studies were also conducted to evaluate, according to the principle of substantial equivalence, the safety of consuming transgenic tilapia as food. Behavior studies showed that transgenic tilapia had a lower feeding motivation and dominance status than controls. Food safety assessment indicated that tilapia growth hormone has no biological activity when administered to nonhuman primates. Furthermore, no effects were detected in human healthy volunteers after the consumption of transgenic tilapia. These results showed, at least under the conditions found in Cuba, no environmental implications for the introduction of this transgenic tilapia line and the safety in the consumption of tiGH-transgenic tilapia as an alternative feeding source for humans. These results support the culture and consumption of these transgenic tilapia.

  17. Antisomatostatin-induced growth acceleration in chinook salmon (Oncorhynchus tshawytscha).

    PubMed

    Mayer, I; McLean, E; Kieffer, T J; Souza, L M; Donaldson, E M

    1994-10-01

    Since somatostatin (SRIF) inhibits the release of growth hormone (GH), its immunoneutralization may provide an alternative to GH therapy as a means of enhancing somatic growth in fish. The present study examined the feasibility of accelerating growth in juvenile chinook salmon by means of antiSRIF administration. Yearling salmon of Nicola River stock (BC, Canada) were injected intraperitoneally every 5 days, for a total of 40 days, with either SRIF (1 μg g-1 body wt.), antiSRIF (SOMA-10, 1 μg g(-1)), recombinant bovine GH (rbGH, 2.5 μg g(-1)), recombinant porcine GH (rpGH, 2.5 μg g(-1)) or saline (controls). No significant differences were observed in length, weight or final condition factor (k) between the SRIF-treated and control fish over the experimental period. However, the fish treated with the antiSRIF were significantly (p ≤ 0.05) longer and heavier than the control salmon after 25 and 30 days respectively. Furthermore, antiSRIF treatment caused a lowering in k when compared to the control salmon. Fish injected with rbGH or rpGH were significantly longer and heavier than all other groups (p ≤ 0.05), after only 5 days. GH treated groups also returned higher k when compared against all other treatments (p ≤ 0.05). No differences were observed in growth between the two rGH treatments over the experimental period.

  18. Effects of grain size and porosity on strength of Li2TiO3 tritium breeding pebbles and its grain growth behavior

    NASA Astrophysics Data System (ADS)

    Xiang, Maoqiao; Zhang, Yingchun; Zhang, Yun; Wang, Chaofu; Liu, Wei; Yu, Yonghong

    2016-12-01

    Tons of Li2TiO3 tritium breeding pebbles will be filled in the blanket for obtaining tritium fuel. In this work, isothermal sintering was carried out to study the grain growth behavior of the Li2TiO3 pebbles fabricated by agarose method. The grain growth exponent (n) and the activation energy (Q) calculated by the phenomenological kinetic equation were 2 and 435.65 kJ/mol, respectively. The grain growth was controlled by vapor transport (p = 2S/r). In addition, effects of porosity and grain-size on the strength of Li2TiO3 pebbles were investigated. The strength was affected by the grain size and the porosity of Li2TiO3 pebbles, and high strength (about 72 MPa) depended partly on achieving the optimum balance between the porosity (about 10%) and grain size (about 2 μm).

  19. Austenite grain growth simulation considering the solute-drag effect and pinning effect

    PubMed Central

    Fujiyama, Naoto; Nishibata, Toshinobu; Seki, Akira; Hirata, Hiroyuki; Kojima, Kazuhiro; Ogawa, Kazuhiro

    2017-01-01

    Abstract The pinning effect is useful for restraining austenite grain growth in low alloy steel and improving heat affected zone toughness in welded joints. We propose a new calculation model for predicting austenite grain growth behavior. The model is mainly comprised of two theories: the solute-drag effect and the pinning effect of TiN precipitates. The calculation of the solute-drag effect is based on the hypothesis that the width of each austenite grain boundary is constant and that the element content maintains equilibrium segregation at the austenite grain boundaries. We used Hillert’s law under the assumption that the austenite grain boundary phase is a liquid so that we could estimate the equilibrium solute concentration at the austenite grain boundaries. The equilibrium solute concentration was calculated using the Thermo-Calc software. Pinning effect was estimated by Nishizawa’s equation. The calculated austenite grain growth at 1473–1673 K showed excellent correspondence with the experimental results. PMID:28179962

  20. [Proteomics of rice leaf and grain at late growth stage under different nitrogen fertilization levels].

    PubMed

    Ning, Shu-ju; Zhao, Min; Xiang, Xiao-liang; Wei, Dao-zhi

    2010-10-01

    Taking super-rice Liangyoupeijiu as test material, and by the method of two-dimensional gel electrophoresis (2-DE), this paper studied the changes in the leaf and grain proteomics of the variety at its late growth stage under different levels of nitrogen fertilization (1/2 times of normal nitrogen level, 20 mg x L(-1); normal nitrogen level, 40 mg x L(-1); 2 times of normal nitrogen level, 80 mg x L(-1)), with the biological functions of 16 leaf proteins, 9 inferior grain proteins, and 4 superior grain proteins identified and analyzed. Nitrogen fertilization could affect and regulate the plant photosynthesis via affecting the activation of photosynthesis-related enzymes and of CO2, the light system unit, and the constitution of electron transfer chain at the late growth stage of the variety. It could also promote the expression of the enzymes related to the energy synthesis and growth in inferior grains. High nitrogen fertilization level was not beneficial to the synthesis of starch in superior grain, but sufficient nitrogen supply was still important for the substance accumulation and metabolism. Therefore, rational nitrogen fertilization could increase the photosynthesis rate of flag leaves, enhance the source function, delay the functional early ageing, and promote the grain-filling at late growth stage.

  1. Impact of Surface Chemistry on Grain Boundary Induced Intrinsic Stress Evolution during Polycrystalline Thin Film Growth

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Sheldon, B. W.; Guo, H.; Xiao, X.; Kothari, A. K.

    2009-02-01

    First principles calculations were integrated with cohesive zone and growth chemistry models to demonstrate that adsorbed species can significantly alter stresses associated with grain boundary formation during polycrystalline film growth. Using diamond growth as an example, the results show that lower substrate temperatures increase the hydrogen content at the surface, which reduces tensile stress, widens the grain boundary separations, and permits additional atom insertions that can induce compressive stress. More generally, this work demonstrates that surface heteroatoms can lead to behavior which is not readily described by existing models of intrinsic stress evolution.

  2. Oxidation of metal nanoparticles with the grain growth in the oxide

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2017-04-01

    Oxidation of metals can be influenced by the presence of electric field, lattice strain, rearrangement of the oxide structure, and formation of cracks in an oxide. The understanding of the interplay of these factors is still incomplete. We focus on the scenario including the oxide-grain growth. The model used implies that the whole process is limited by diffusion of metal or oxygen atoms along the grain boundaries as it was originally proposed by Fehlner and Mott for macroscopic samples. For nanoparticles, the model predicts a transition from the power-law oxide growth at low conversion to slower growth at high conversion.

  3. Kinetics of grain-growth in wadsleyite: implications for point defect chemistry

    NASA Astrophysics Data System (ADS)

    Nishihara, Y.; Shinmei, T.; Karato, S.

    2003-12-01

    We investigate the kinetics of grain-growth in wadsleyite for two reasons. First, grain-growth kinetics controls the grain-size of wadsleyite in the mantle transition zone which in turn controls the rheology in that region. Second, the detailed knowledge of grain-growth kinetics will provide us with important constraints on the defect-related properties of this mineral which may control other properties such as diffusion, electrical conductivity and creep. We carried out the grain-growth experiments by using KIWI 1000-ton Kawai-type multi-anvil apparatus installed at Yale University. Starting material was synthesized from powdered San Carlos olivine. The grain-growth experiments were conducted at 15 GPa and 1100-1500° C for 1-24 hours. We used Mo, Ni and Re foil capsules, in order to control the oxygen fugacity by metal-oxide buffer. For ''wet'' experiments (water-saturated), a mixture of talc and brucite was packed into a capsule together with a wadsleyite sample separated by metal foils. We used a Au-Pd outer capsule which is known to be a good barrier for hydrogen diffusion. Water content in each sample was determined after an experiment by FTIR analysis of a doubly polished thin section. Grain-size was measured on a polished section using an intercept method. One of the difficulties in these experiments is to reduce the amount of water in wadsleyite. Even in nominally ''dry'' experiments in which no water is added, a significant amount of water (upto ˜25,000 H/106 Si) was detected, which comes presumably from some components in the sample assembly such as the cement. This water-uptake by wadsleyite can be minimized by surrounding it with a Au-Pd capsule. In this truly ''dry'' sample assembly, the water content of wadsleyite (after an experiment) is reduced to less than ˜100 H/106 Si, a water content similar to typical ''dry'' experiments on olivine. Compared at similar water content, the kinetics of grain-growth in wadsleyite is significantly slower than

  4. Preloading To Accelerate Slow-Crack-Growth Testing

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.; Choi, Sung R.; Pawlik, Ralph J.

    2004-01-01

    An accelerated-testing methodology has been developed for measuring the slow-crack-growth (SCG) behavior of brittle materials. Like the prior methodology, the accelerated-testing methodology involves dynamic fatigue ( constant stress-rate) testing, in which a load or a displacement is applied to a specimen at a constant rate. SCG parameters or life prediction parameters needed for designing components made of the same material as that of the specimen are calculated from the relationship between (1) the strength of the material as measured in the test and (2) the applied stress rate used in the test. Despite its simplicity and convenience, dynamic fatigue testing as practiced heretofore has one major drawback: it is extremely time-consuming, especially at low stress rates. The present accelerated methodology reduces the time needed to test a specimen at a given rate of applied load, stress, or displacement. Instead of starting the test from zero applied load or displacement as in the prior methodology, one preloads the specimen and increases the applied load at the specified rate (see Figure 1). One might expect the preload to alter the results of the test and indeed it does, but fortunately, it is possible to account for the effect of the preload in interpreting the results. The accounting is done by calculating the normalized strength (defined as the strength in the presence of preload the strength in the absence of preload) as a function of (1) the preloading factor (defined as the preload stress the strength in the absence of preload) and (2) a SCG parameter, denoted n, that is used in a power-law crack-speed formulation. Figure 2 presents numerical results from this theoretical calculation.

  5. Phase field modelling of stressed grain growth: Analytical study and the effect of microstructural length scale

    SciTech Connect

    Jamshidian, M.; Rabczuk, T.

    2014-03-15

    We establish the correlation between the diffuse interface and sharp interface descriptions for stressed grain boundary migration by presenting analytical solutions for stressed migration of a circular grain boundary in a bicrystalline phase field domain. The validity and accuracy of the phase field model is investigated by comparing the phase field simulation results against analytical solutions. The phase field model can reproduce precise boundary kinetics and stress evolution provided that a thermodynamically consistent theory and proper expressions for model parameters in terms of physical material properties are employed. Quantitative phase field simulations are then employed to investigate the effect of microstructural length scale on microstructure and texture evolution by stressed grain growth in an elastically deformed polycrystalline aggregate. The simulation results reveal a transitional behaviour from normal to abnormal grain growth by increasing the microstructural length scale.

  6. Suppression of glucan, water dikinase in the endosperm alters wheat grain properties, germination and coleoptile growth.

    PubMed

    Bowerman, Andrew F; Newberry, Marcus; Dielen, Anne-Sophie; Whan, Alex; Larroque, Oscar; Pritchard, Jenifer; Gubler, Frank; Howitt, Crispin A; Pogson, Barry J; Morell, Matthew K; Ral, Jean-Philippe

    2016-01-01

    Starch phosphate ester content is known to alter the physicochemical properties of starch, including its susceptibility to degradation. Previous work producing wheat (Triticum aestivum) with down-regulated glucan, water dikinase, the primary gene responsible for addition of phosphate groups to starch, in a grain-specific manner found unexpected phenotypic alteration in grain and growth. Here, we report on further characterization of these lines focussing on mature grain and early growth. We find that coleoptile length has been increased in these transgenic lines independently of grain size increases. No changes in starch degradation rates during germination could be identified, or any major alteration in soluble sugar levels that may explain the coleoptile growth modification. We identify some alteration in hormones in the tissues in question. Mature grain size is examined, as is Hardness Index and starch conformation. We find no evidence that the increased growth of coleoptiles in these lines is connected to starch conformation or degradation or soluble sugar content and suggest these findings provide a novel means of increasing coleoptile growth and early seedling establishment in cereal crop species.

  7. Effects of grain growth on the interstellar polarization curve

    NASA Astrophysics Data System (ADS)

    Voshchinnikov, Nikolai V.; Hirashita, Hiroyuki

    2014-11-01

    We apply the time evolution of grain size distributions through accretion and coagulation found in our previous work to the modelling of the wavelength dependence of interstellar linear polarization. We focus in particular on the parameters of the Serkowski curve K and λmax , characterizing the width and maximum wavelength of this curve, respectively. We use aligned silicate and non-aligned carbonaceous spheroidal particles with different aspect ratios a/b. The imperfect alignment of grains with sizes larger than a cut-off size rV, cut is considered. We find that the evolutionary effects on the polarization curve are negligible in the original model with commonly used material parameters (hydrogen number density nH = 103 cm-3, gas temperature Tgas = 10 K and sticking probability for accretion Sacc = 0.3). Therefore, we apply the tuned model, where the coagulation threshold of silicate is removed. In this model, λmax displaces to longer wavelengths and the polarization curve becomes wider (K reduces) on time-scales ˜(30-50)(nH/103cm-3)-1 Myr. The tuned models at T ≲ 30 (n_H/10^3 cm^{-3})^{-1} Myr and different values of the parameters rV, cut can also explain the observed trend between K and λmax . It is significant that the evolutionary effect appears in the perpendicular direction to the effect of rV, cut on the K - λmax diagram. Very narrow polarization curves can be reproduced if we change the type of particles (prolate/oblate) and/or vary a/b.

  8. Multiple seeding for the growth of bulk GdBCO-Ag superconductors with single grain behaviour

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Durrell, J. H.; Dennis, A. R.; Huang, K.; Namburi, D. K.; Zhou, D.; Cardwell, D. A.

    2017-01-01

    Rare earth-barium-copper oxide bulk superconductors fabricated in large or complicated geometries are required for a variety of engineering applications. Initiating crystal growth from multiple seeds reduces the time taken to melt-process individual samples and can reduce the problem of poor crystal texture away from the seed. Grain boundaries between regions of independent crystal growth can reduce significantly the flow of current due to crystallographic misalignment and the agglomeration of impurity phases. Enhanced supercurrent flow at such boundaries has been achieved by minimising the depth of the boundary between A growth sectors generated during the melt growth process by reducing second phase agglomerations and by a new technique for initiating crystal growth that minimises the misalignment between different growth regions. The trapped magnetic fields measured for the resulting samples exhibit a single trapped field peak indicating they are equivalent to conventional single grains.

  9. Nonisothermal Austenite Grain Growth Kinetics in a Microalloyed X80 Linepipe Steel

    NASA Astrophysics Data System (ADS)

    Banerjee, Kumkum; Militzer, Matthias; Perez, Michel; Wang, Xiang

    2010-12-01

    Nonisothermal austenite grain growth kinetics under the influence of several combinations of Nb, Ti, and Mo containing complex precipitates has been studied in a microalloyed linepipe steel. The goal of this study is the development of a grain growth model to predict the austenite grain size in the weld heat affected zone (HAZ). Electron microscopy investigations of the as-received steel proved the presence of Ti-rich, Nb-rich, and Mo-rich precipitates. The steel has then been subjected to austenitizing heat treatments to selected peak temperatures at various heating rates that are typical for thermal cycles in the HAZ. Thermal cycles have a strong effect on the final austenite grain size. Using a mean field approach, a model is proposed for the dissolution of Nb-rich precipitates. This model has been coupled to a Zener-type austenite grain growth model in the presence of pinning particles. This coupling leads to accurate prediction of the austenite grain size along the nonisothermal heating path simulating selected thermal profiles of the HAZ.

  10. High temperature effects on rice growth, yield, and grain quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa L.) is a globally important cereal plant, and as a primary source of food it accounts for 35-75% of the calorie intake of more than 3 billion humans. With the likely growth of world’s population towards 10 billion by 2050, the demand for rice will grow faster than for other crops....

  11. The Effect of Growth Kinetics on the Development of Element- and Isotope Profiles in Single Mineral Grains

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Mueller, T.

    2008-12-01

    significant effect on the amount of fractionation along a similar growth path due to the radial 'volume effect' in a spherical grain. A growth history that involves accelerating R (as in a rapidly cooling small intrusion) produces a radial isotope profile that differs significantly from that produced by a constant R, even for crystals grown to the same final size. In combination with microanalytical methods and experimentally determined rate data, this modeling approach may provide new insights into the mechanisms of mineral growth, as well as timescales and textural evolution in a variety of geological settings.

  12. The accelerated growth of the worldwide air transportation network

    NASA Astrophysics Data System (ADS)

    Azzam, Mark; Klingauf, Uwe; Zock, Alexander

    2013-01-01

    Mobility by means of air transportation has a critical impact on the global economy. Especially against the backdrop of further growth and an aggravation of the energy crisis, it is crucial to design a sustainable air transportation system. Current approaches focus on air traffic management. Nevertheless, also the historically evolved network offers great potential for an optimized redesign. But the understanding of its complex structure and development is limited, although modern network science supplies a great set of new methods and tools. So far studies analyzing air transportation as a complex network are based on divers and poor data, which are either merely regional or strongly bounded time-wise. As a result, the current state of research is rather inconsistent regarding topological coefficients and incomplete regarding network evolution. Therefore, we use the historical, worldwide OAG flight schedules data between 1979 and 2007 for our study. Through analyzing by far the most comprehensive data base so far, a better understanding of the network, its evolution and further implications is being provided. To our knowledge we present the first study to determine that the degree distribution of the worldwide air transportation network is non-stationary and is subject to densification and accelerated growth, respectively.

  13. Bioelectrochemical system accelerates microbial growth and degradation of filter paper.

    PubMed

    Sasaki, Kengo; Hirano, Shin-Ichi; Morita, Masahiko; Sasaki, Daisuke; Matsumoto, Norio; Ohmura, Naoya; Igarashi, Yasuo

    2011-01-01

    Bioelectrochemical reactors (BERs) with a cathodic working potential of -0.6 or -0.8 V more efficiently degraded cellulosic material, i.e., filter paper (57.4-74.1% in 3 days and 95.9-96.3% in 7 days) than did control reactors without giving exogenous potential (15.4% in 3 days and 64.2% in 7 days). At the same time, resultant conversions to methane and carbon dioxide in cathodic working chamber of BERs by application of electrochemical reduction in 3 days of operation were larger than control reactors. However, cumulative methane production in cathodic BERs was similar to those in control reactors after 7 days of operation. Microscopic observation and 16S rRNA gene analysis showed that microbial growth in the entire consortium was higher after 2 days of operation of cathodic BERs as compared with the control reactors. In addition, the number of methanogenic 16S rRNA gene copies in cathodic BERs was higher than in control reactors. Moreover, archaeal community structures constructed in cathodic BERs consisted of hydrogenotrophic methanogen-related organisms and differed from those in control reactors after 2 days of operation. Specifically, the amount of Methanothermobacter species in cathodic BERs was higher within archaeal communities than in those control reactors after 2 days of operation. Electrochemical reduction may be effective for accelerating microbial growth in the start-up period and thereby increasing microbial treatment of cellulosic waste and methane production.

  14. Time-evolution of grain size distributions in random nucleation and growth crystallization processes

    NASA Astrophysics Data System (ADS)

    Teran, Anthony V.; Bill, Andreas; Bergmann, Ralf B.

    2010-02-01

    We study the time dependence of the grain size distribution N(r,t) during crystallization of a d -dimensional solid. A partial differential equation, including a source term for nuclei and a growth law for grains, is solved analytically for any dimension d . We discuss solutions obtained for processes described by the Kolmogorov-Avrami-Mehl-Johnson model for random nucleation and growth (RNG). Nucleation and growth are set on the same footing, which leads to a time-dependent decay of both effective rates. We analyze in detail how model parameters, the dimensionality of the crystallization process, and time influence the shape of the distribution. The calculations show that the dynamics of the effective nucleation and effective growth rates play an essential role in determining the final form of the distribution obtained at full crystallization. We demonstrate that for one class of nucleation and growth rates, the distribution evolves in time into the logarithmic-normal (lognormal) form discussed earlier by Bergmann and Bill [J. Cryst. Growth 310, 3135 (2008)]. We also obtain an analytical expression for the finite maximal grain size at all times. The theory allows for the description of a variety of RNG crystallization processes in thin films and bulk materials. Expressions useful for experimental data analysis are presented for the grain size distribution and the moments in terms of fundamental and measurable parameters of the model.

  15. Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage.

    PubMed

    Lavinsky, Alyne O; Detmann, Kelly C; Reis, Josimar V; Ávila, Rodrigo T; Sanglard, Matheus L; Pereira, Lucas F; Sanglard, Lílian M V P; Rodrigues, Fabrício A; Araújo, Wagner L; DaMatta, Fábio M

    2016-11-01

    Silicon (Si) has been recognized as a beneficial element to improve rice (Oryza sativa L.) grain yield. Despite some evidence suggesting that this positive effect is observed when Si is supplied along the reproductive growth stage (from panicle initiation to heading), it remains unclear whether its supplementation during distinct growth phases can differentially impact physiological aspects of rice and its yield and the underlying mechanisms. Here, we investigated the effects of additions/removals of Si at different growth stages and their impacts on rice yield components, photosynthetic performance, and expression of genes (Lsi1, Lsi2 and Lsi6) involved in Si distribution within rice shoots. Positive effects of Si on rice production and photosynthesis were manifested when it was specifically supplied during the reproductive growth stage, as demonstrated by: (1) a high crop yield associated with higher grain number and higher 1000-grain weight, whereas the leaf area and whole-plant biomass remained unchanged; (2) an increased sink strength which, in turn, exerted a feed-forward effect on photosynthesis that was coupled with increases in both stomatal conductance and biochemical capacity to fix CO2; (3) higher Si amounts in the developing panicles (and grain husks) in good agreement with a remarkable up-regulation of Lsi6 (and to a lesser extent Lsi1). We suggest that proper levels of Si in these reproductive structures seem to play an as yet unidentified role culminating with higher grain number and size.

  16. Grain Growth and Bubble Evolution in U-Mo Alloy by Multiscale Simulations

    SciTech Connect

    Mei, Zhi-Gang; Liang, Linyun; Kim, Yeon Soo; Wiencek, Tom; Hofman, Gerard; Anitescu, Mihai; Yacout, Abdellatif M.

    2015-01-01

    Increased grain size in U-Mo dispersion fuel is believed to affect the fuel swelling at high fission density. In this work, a multiscale simulation approach combining first-principles calculation and phase-field modeling is used to investigate the grain growth behavior in U-Mo alloys. The material properties of U-Mo alloys predicted by first-principles calculations are incorporated into the mesoscale phase-field models to study the effect of annealing temperature, annealing time and the initial grain structures of fuel particles on the grain growth. The grain growth rate is evaluated and compared with experiment. Meanwhile, the gas bubble evolution kinetics in irradiated U-Mo alloy fuels is investigated to understand its effect on fuel swelling. We systematically examine the effect of Xe, vacancy, and SIA concentration, fission defect generation, and elastic interaction on the growth kinetics of gas bubble. The bubble size distribution and swelling of U-Mo are simulated and compared to experimental measurements.

  17. An experimental study of grain growth in mixed oxide samples with various microstructures and plutonium concentrations

    NASA Astrophysics Data System (ADS)

    Van Uffelen, P.; Botazzoli, P.; Luzzi, L.; Bremier, S.; Schubert, A.; Raison, P.; Eloirdi, R.; Barker, M. A.

    2013-03-01

    Samples of (U, Pu)O2 Mixed Oxide (MOX) with various microstructure and plutonium contents ranging between 4% and 25% have been submitted to a series of heat treatments in order to assess grain growth between 1350 and 1750 °C. XRD measurements on the samples indicated that they were not affected by modifications in the oxygen-to-metal ratio during annealing. The grain size distributions inferred by means of image analysis of metallographic pictures reveal that, when taking into account the experimental uncertainties, the grain growth kinetics are similar to those observed in conventional UO2 fuel that was also tested under the same conditions. An analysis of experimental data available in the open literature for both UO2 and MOX fuel leads to the same conclusion. It is therefore suggested that grain growth models for UO2 fuel can be applied to MOX fuel for fuel performance simulations, when taking into consideration the uncertainties pertaining to grain growth measurements.

  18. Synchrotron characterization of nanograined UO2 grain growth

    SciTech Connect

    Mo, Kun; Miao, Yinbin; Yun, Di; Jamison, Laura M.; Lian, Jie; Yao, Tiankei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.

  19. [Impact of temperature increment before the over-wintering period on growth and development and grain yield of winter wheat].

    PubMed

    Li, Xiang-dong; Zhang, De-qi; Wang, Han-fang; Shao, Yun-hui; Fang, Bao-ting; Lyu, Feng-rong; Yue, Jun-qin; Ma, Fu-ju

    2015-03-01

    The effect of temperature increment before the over-wintering period on winter wheat development and grain yield was evaluated in an artificial climate chamber (TPG 1260, Australia) from 2010 to 2011. Winter wheat cultivar 'Zhengmai 7698' was used in this study. Three temperature increment treatments were involved in this study, i.e., temperature increment last 40, 50 and 60 days, respectively, before the over-wintering period. Control was not treated by temperature increment. The results showed that temperature increment before the over-wintering period had no significant effect on earlier phase spike differentiation. But an apparent effect on later phase spike differentiation was observed. High temperature effect on spike differentiation disappeared when the difference of effective accumulated temperature between the temperature increment treatment and the control was lower than 25 °C. However, the foliar age at the jointing stage was enhanced more than 0.8, heading and physiological ripening were advanced 1 day each, when the effective accumulated temperature before the over-wintering period increased 60 °C. Higher effective accumulated temperature before the over-wintering period accelerated winter wheat growth and development, which resulted in a short spike differentiation period. Winter wheat was easy to suffer freeze damage, which lead to floret abortion and spikelet death in spring under this situation. Meanwhile, higher effective accumulated temperature before the over-wintering period also reduced, photosynthetic capacity of flag leaf, shortened the grain filling period, and led to wheat grain yield reduction.

  20. Nanoparticle-induced grain growth of carbon-free solution-processed CuIn(S,Se)2 solar cell with 6% efficiency.

    PubMed

    Cai, Yongan; Ho, John C W; Batabyal, Sudip K; Liu, Wei; Sun, Yun; Mhaisalkar, Subodh G; Wong, Lydia H

    2013-03-13

    Chalcopyrite-based solar cell deposited by solution processes is of great research interest because of the ease of fabrication and cost effectiveness. Despite the initial promising results, most of the reported methods encounter challenges such as limited grain growth, carbon-rich interlayer, high thermal budget, and the presence of secondary Cu-rich phases, which limit the power conversion efficiency (PCE). In this paper, we develop a new technique to deposit large grain, carbon-free CISSe absorber layers from aqueous nanoparticle/precursor mixture which resulted in a solar cell with PCE of 6.2%. CuCl2, InCl3, and thiourea were mixed with CuS and In2S3 nanoparticles in water to form the unique nanoparticle/precursor solution. The Carbon layer formation was prevented because organic solvents were not used in the precursor. The copper-rich (CuS) nanoparticles were intentionally introduced as nucleation sites which accelerate grain growth. In the presence of nanoparticles, the grain size of CISSe film increased by a factor of 7 and the power conversion efficiency of the solar cell is 85% higher than the device without nanoparticle. This idea of using nanoparticles as a means to promote grain growth can be further exploited for other types of chalcopyrite thin film deposited by solution methods.

  1. Zebra pattern in rocks as a function of grain growth affected by second-phase particles

    NASA Astrophysics Data System (ADS)

    Kelka, Ulrich; Koehn, Daniel; Beaudoin, Nicolas

    2015-09-01

    In this communication we present a simple microdynamic model which can explain the beginning of the zebra pattern formation in rocks. The two dimensional model consists of two main processes, mineral replacement along a reaction front, and grain boundary migration affected by impurities. In the numerical model we assume that an initial distribution of second-phase particles is present due to sedimentary layering. The reaction front percolates the model and redistributes second-phase particles by shifting them until the front is saturated and drops the particles again. This produces and enhances initial layering. Grain growth is hindered in layers with high second-phase particle concentrations whereas layers with low concentrations coarsen. Due to the grain growth activity in layers with low second-phase particle concentrations these impurities are collected at grain boundaries and the crystals become very clean. Therefore the white layers in the pattern contain large grains with low concentration of second-phase particles, whereas the dark layers contain small grains with a large second-phase particle concentration.

  2. Acceleration of the rate of ethanol fermentation by addition of nitrogen in high tannin grain sorghum

    SciTech Connect

    Mullins, J.T.; NeSmith, C.C.

    1987-01-01

    In this communication, the authors show that accelerated rates of ethanol production, comparable to sorghum varieties containing low levels of tannins and to corn, can occur without the removal of the tannins. The basis of the inhibition appears to be a lack of sufficient nitrogen in the mash for protein synthesis required to support an accelerated fermentative metabolism in Saccharomyces. No inhibition of the enzymes used for starch hydrolysis was found.

  3. Coupled Finite Element ? Potts Model Simulations of Grain Growth in Copper Interconnects

    SciTech Connect

    Radhakrishnan, Balasubramaniam; Gorti, Sarma B

    2009-01-01

    The paper addresses grain growth in copper interconnects in the presence of thermal expansion mismatch stresses. The evolution of grain structure and texture in copper in the simultaneous presence of two driving forces, curvature and elastic stored energy difference, is modeled by using a hybrid Potts model simulation approach. The elastic stored energy is calculated by using the commercial finite element code ABAQUS, where the effect of elastic anisotropy on the thermal mismatch stress and strain distribution within a polycrystalline grain structure is modeled through a user material (UMAT) interface. Parametric studies on the effect of trench width and the height of the overburden were carried out. The results show that the grain structure and texture evolution are significantly altered by the presence of elastic strain energy.

  4. Nucleation and Growth of Crystalline Grains in RF-Sputtered TiO 2 Films

    DOE PAGES

    Johnson, J. C.; Ahrenkiel, S. P.; Dutta, P.; ...

    2009-01-01

    Amore » morphous TiO 2 thin films were radio frequency sputtered onto siliconmonoxide and carbon support films on molybdenum transmission electron microscope (TEM) grids and observed during in situ annealing in a TEM heating stage at 250 ∘ C. The evolution of crystallization is consistent with a classical model of homogeneous nucleation and isotropic grain growth. The two-dimensional grain morphology of the TEM foil allowed straightforward recognition of amorphous and crystallized regions of the films, for measurement of crystalline volume fraction and grain number density. By assuming that the kinetic parameters remain constant beyond the onset of crystallization, the final average grain size was computed, using an analytical extrapolation to the fully crystallized state. Electron diffraction reveals a predominance of the anatase crystallographic phase.« less

  5. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples.

    PubMed

    Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A

    2014-11-04

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  6. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    PubMed Central

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-01-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885

  7. An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield.

    PubMed

    Byeon, Yeong; Back, Kyoungwhan

    2014-05-01

    No previous reports have described the effects of an increase in endogenous melatonin levels on plant yield and reproduction. Here, the phenotypes of melatonin-rich transgenic rice plants overexpressing sheep serotonin N-acetyltransferase were investigated under field conditions. Early seedling growth of melatonin-rich transgenic rice was greatly accelerated, with enhanced biomass relative to the wild type (WT). However, flowering was delayed by 1 wk in the transgenic lines compared with the WT. Grain yields of the melatonin-rich transgenic lines were reduced by 33% on average. Other phenotypes also varied among the transgenic lines. For example, the transgenic line S1 exhibited greater height and biomass than the WT, while the S10 transgenic line showed diminished height and an increase in panicle numbers per plant. The expression levels of Oryza sativa homeobox1 (OSH1) and TEOSINTE BRANCHED1 (TB1) genes, two key regulators of meristem initiation and maintenance, were not altered in the transgenic lines. These data demonstrate that an alteration of endogenous melatonin levels leads to pleiotropic effects such as height, biomass, panicle number, flowering time, and grain yield, indicating that melatonin behaves as a signaling molecule in plant growth and reproduction.

  8. Effect of β volume fraction on the dynamic grain growth during superplastic deformation of Ti3Al-based alloys

    NASA Astrophysics Data System (ADS)

    Kim, Ji Sik; Nam, Won Jong; Lee, Chong Soo

    1998-10-01

    The superplastic deformation behavior of Ti3Al based (α 2+β alloy was studied with respect to the volume fraction of α2/β. Three alloys containing 21, 50 and 77% in volume fractions of β exhibited large tensile elongations of over 500% at 970°C with a strain rate of 2.5x10-4 sec-1. The largest elongation was observed in the alloy with 21% of β. As the volume fraction of β phase increased, the flow stress and correspondingly, the strain-rate sensitivity values decreased. Due to the higher diffusivity of Ti in,β phase than in α2 phase, the increase in β volume fraction from 21 % to 77% accelerated the dynamic grain growth, and degraded the superplasticity of the Ti3Al-based alloys. The strain-based grain growth behavior was quantitatively analyzed and incorporated into a constitutive equation. The calculated flow curves are in agreement with the experimental ones in the stable deformation region.

  9. MODELING NANOCRYSTALLINE GRAIN GROWTH DURING THE PULSED ELECTRODEPOSITION OF GOLD-COPPER

    SciTech Connect

    Jankowski, A F

    2005-10-27

    The process parameters of current density, pulse duration, and cell potential affect both the structure and composition of electrodeposits. The mechanism for nucleation and growth as determined from current transients yield relationships for nucleus density and nucleation rate. To develop an understanding of the role of the process parameters on grain size, as a design structural parameter to control strength for example, a formulation is presented to model the affects of the deposition energy on grain size and morphology. An activation energy for the deposition process is modeled that reveals different growth mechanisms, wherein nucleation and diffusion effects are each dominant as dependent upon pulse duration. A diffusion coefficient common for each of the pulsed growth modes demarcates an observed transition in growth from smooth to rough surfaces.

  10. Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Piascik, Robert S.

    2003-01-01

    Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature.

  11. Impact of opening hermetic storage bags on grain quality, fungal growth and aflatoxin accumulation.

    PubMed

    Tubbs, Timothy; Baributsa, Dieudonne; Woloshuk, Charles

    2016-10-01

    Purdue Improved Crop Storage (PICS) bags are used by farmers in Sub-Saharan Africa for pest management of stored grains and products, including maize. These bags hermetically seal the products, preventing exchange with external moisture and gases. Biological respiration within the bags create an environment that is unsuitable for insect development and fungal growth. This study was conducted to determine the impact of routine opening of the storage bags for maize consumption on fungal growth and aflatoxin contamination. Maize with moisture contents (MC) high enough to support fungal growth (15%, 16%, 18% and 20%) was stored in PICS bags, which were opened weekly and exposed to humid conditions (85% RH) for 30 min over a period of 8 weeks and 24 weeks. Monitors indicated that oxygen defused into the open bags but did not reach equilibrium with the bottom layers of grain during the 30-min exposure period. Fungal colony forming units obtained from the grain surface increased 3-fold (at 15% MC) to 10,000-fold (at 20% MC) after 8 weeks. At both 8 weeks and 24 weeks, aflatoxin was detected in at least one bag at each grain moisture, suggesting that aflatoxin contamination spread from a planted source of A. flavus-colonized grain to non-inoculated grain. The results indicate that repeatedly breaking the hermetic seal of the PICS bags will increase fungal growth and the risk of aflatoxin contamination, especially in maize stored at high moisture content. This work also further demonstrates that maize should be properly dried prior to storage in PICS bags.

  12. Densification and grain growth of stainless steel microsize structures fabricated by μMIM

    NASA Astrophysics Data System (ADS)

    Liu, L.; Loh, N. H.; Tay, B. Y.; Tor, S. B.; Murakoshi, Y.; Maeda, R.

    2006-04-01

    Micro metal injection molding (μMIM) is being developed by some researchers for possible mass production of metallic microcomponents. Knowledge of densification and grain growth of structures in the micrometer regime is important for the design of microcomponents due to their impacts on dimensional tolerance and mechanical properties. In this paper, the effects of sintering temperature and time on densification and grain growth of stainless steel microsize structures fabricated by μMIM were investigated. In particular, the density of the microsize structures was compared with that of the components, dimensions in the millimeter range, on which the microsize structures reside. Models proposed by Kang, Brook, and Zhao and Harmer were used to study the densification and grain growth kinetics of microsize structures of ∅100μmat the final stage of sintering. Dense layers were formed on the microsize structures. Thus, the density of the microsize structures is higher than that of the microstructured components. The thickness of the dense layers increased with either increasing temperature or time. Zhao and Harmer’s model for lattice diffusion controlled densification and Brook’s grain growth model for lattice diffusion controlled pore drag exhibited good fits for the experimental results of microsize structures.

  13. Experimental studies of nucleation and growth processes related to the formation of presolar grains

    NASA Technical Reports Server (NTRS)

    Berg, Otto E.

    1992-01-01

    An understanding was sought for the mechanisms of nucleation of refractory materials, and the relative importance of factors controlling the rate of cluster formation and growth for astrophysically important species. The structure and composition of the condensates is being studied, with the goal of characterizing the grains present in the primitive solar nebula.

  14. Monte Carlo study on abnormal growth of Goss grains in Fe-3%Si steel induced by second-phase particles

    NASA Astrophysics Data System (ADS)

    Xin, Dong-qun; He, Cheng-xu; Gong, Xue-hai; Wang, Hao; Meng, Li; Ma, Guang; Hou, Peng-fei; Zhang, Wen-kang

    2016-12-01

    The selective abnormal growth of Goss grains in magnetic sheets of Fe-3%Si (grade Hi-B) induced by second-phase particles (AlN and MnS) was studied using a modified Monte Carlo Potts model. The starting microstructures for the simulations were generated from electron backscatter diffraction (EBSD) orientation imaging maps of recrystallized samples. In the simulation, second-phase particles were assumed to be randomly distributed in the initial microstructures and the Zener drag effect of particles on Goss grain boundaries was assumed to be selectively invalid because of the unique properties of Goss grain boundaries. The simulation results suggest that normal growth of the matrix grains stagnates because of the pinning effect of particles on their boundaries. During the onset of abnormal grain growth, some Goss grains with concave boundaries in the initial microstructure grow fast abnormally and other Goss grains with convex boundaries shrink and eventually disappear.

  15. Grain growth signatures in the protoplanetary discs of Chamaeleon and Lupus

    NASA Astrophysics Data System (ADS)

    Ubach, C.; Maddison, S. T.; Wright, C. M.; Wilner, D. J.; Lommen, D. J. P.; Koribalski, B.

    2012-10-01

    We present Australia Telescope Compact Array results of a 3 and 7 mm continuum survey of 20 T Tauri stars in the Chamaeleon and Lupus star-forming regions. This survey aims to identify protoplanetary discs with signs of grain growth. We detected 90 per cent of the sources at 3 and 7 mm, and determined the spectral slopes, dust opacity indices and dust disc masses. We also present temporal monitoring results of a small subset of sources at 7, 15 mm and 3+6 cm to investigate grain growth to centimetre (cm) sizes and constrain emission mechanisms in these sources. Additionally, we investigated the potential correlation between grain growth signatures in the infrared (10 μm silicate feature) and millimetre (1-3 mm spectral slope, α). Eleven sources at 3 and 7 mm have dominant thermal dust emission up to 7 mm, with seven of these having a 1-3 mm dust opacity index less than unity, suggesting grain growth up to at least mm sizes. The Chamaeleon sources observed at 15 mm and beyond show the presence of excess emission from an ionized wind and/or chromospheric emission. Long-time-scale monitoring at 7 mm indicated that cm-sized pebbles are present in at least four sources. Short-time-scale monitoring at 15 mm suggests that the excess emission is from thermal free-free emission. Finally, a weak correlation was found between the strength of the 10 μm feature and α, suggesting simultaneous dust evolution of the inner and outer parts of the disc. This survey shows that grain growth up to cm-sized pebbles and the presence of excess emission at 15 mm and beyond are common in these systems, and that temporal monitoring is required to disentangle these emission mechanisms.

  16. Anomalous Fatigue Behavior and Fatigue-Induced Grain Growth in Nanocrystalline Nickel Alloys

    NASA Astrophysics Data System (ADS)

    Boyce, Brad L.; Padilla, Henry A.

    2011-07-01

    Fatigue failure due to repetitive loading of metallic devices is a pervasive engineering concern. The present work reveals extraordinary fatigue resistance in nanocrystalline (NC) alloys, which appears to be associated with the small (<100 nm) grain size inhibiting traditional cyclic damage processes. In this study, we examine the fatigue performance of three electrodeposited NC Ni-based metals: Ni, Ni-0.5Mn, and Ni-22Fe (PERMALLOY). When subjected to fatigue stresses at and above the tensile yield strength where conventional coarse-grained (CG) counterparts undergo low-cycle fatigue failure (<104 cycles to failure), these alloys exhibit exceptional fatigue lives (in some cases, >107 cycles to failure). Postmortem examinations show that failed samples contain an aggregate of coarsened grains at the crack initiation site. The experimental data and accompanying microscopy suggest that the NC matrix undergoes abnormal grain growth during cyclic loading, allowing dislocation activity to persist over length scales necessary to initiate a fatigue crack by traditional fatigue mechanisms. Thus, the present observations demonstrate anomalous fatigue behavior in two regards: (1) quantitatively anomalous when considering the extremely high stress levels needed to drive fatigue failure and (2) mechanistically anomalous in light of the grain growth process that appears to be a necessary precursor to crack initiation.

  17. Suppression of grain growth in nanocrystalline Bi2Te3 through oxide particle dispersions

    NASA Astrophysics Data System (ADS)

    Humphry-Baker, Samuel A.; Schuh, Christopher A.

    2014-11-01

    The strategy of suppressing grain growth by dispersing nanoscale particles that pin the grain boundaries is demonstrated in a nanocrystalline thermoelectric compound. Yttria nanoparticles that were incorporated by mechanical alloying enabled nanocrystalline (i.e., d < 100 nm) Bi2Te3 to be retained up to a homologous temperature of 0.94 Tm for durations over which the grain size of the unreinforced compound grew to several microns. The nanostructure appeared to saturate at a grain size that depended on volume fraction (f) according to an f -1/3 relationship, in accordance with theoretical models in the limit of high volume fractions of particles. Interestingly, at low temperatures, the particles stimulate enhanced grain growth over the unreinforced compound, due to particle-stimulated nucleation of recrystallization. To help prevent this effect, in-situ composites formed by internal oxidation of yttrium are compared with those made ex-situ by incorporation of yttria nanoparticles, with the result that the in-situ dispersion eliminates recrystallization at low temperatures and therefore improves nanostructure stabilization. These developments offer a pathway to thermally stabilized bulk nanocrystalline thermoelectrics processed via a powder route.

  18. Grain growth of nanocrystalline 3C-SiC under Au ion irradiation at elevated temperatures

    SciTech Connect

    Zhang, Limin; Jiang, Weilin; Dissanayake, Amila C.; Varga, Tamas; Zhang, Jiandong; Zhu, Zihua; Hu, Dehong; Wang, Haiyan; Henager, Charles H.; Wang, Tieshan

    2016-01-09

    Nanocrystalline silicon carbide (SiC) represents an excellent model system for a fundamental study of interfacial (grain boundary) processes under nuclear radiation, which are critical to the understanding of the response of nanostructured materials to high-dose irradiation. This study reports on a comparison of irradiation effects in cubic phase SiC (3C-SiC) grains of a few nanometers in size and single-crystal 3C-SiC films under identical Au ion irradiation to a range of doses at 700 K. In contrast to the latter, in which lattice disorder is accumulated to a saturation level without full amorphization, the average grain size of the former increases with dose following a power-law trend. In addition to coalescence, the grain grows through atomic jumps and mass transport, where irradiation induced vacancies at grain boundaries assist the processes. It is found that a higher irradiation temperature leads to slower grain growth and a faster approach to a saturation size of SiC nanograins. The results could potentially have a positive impact on structural components of advanced nuclear energy systems.

  19. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    NASA Astrophysics Data System (ADS)

    Bittner, F.; Woodcock, T. G.; Schultz, L.; Schwöbel, C.; Gutfleisch, O.; Zickler, G. A.; Fidler, J.; Üstüner, K.; Katter, M.

    2017-03-01

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 μm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 μm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve.

  20. High temperature grain growth and oxidation of Fe-29Ni-17Co (Kovar (tm)) alloy leads

    NASA Astrophysics Data System (ADS)

    Stephens, J. J.; Greulich, F. A.; Beavis, L. C.

    One important application for the Fe-29Ni-17Co (Kovar(trademark)) alloy in wire form is in brazed feed through assemblies which are integral parts of vacuum electronic devices. Since Cu metal brazes are performed at process temperatures of about 1100 C, there is opportunity for significant grain growth to occur during the brazing operation. Additional high temperature exposure includes decarburization of the Fe-29Ni-17Co alloy wire in wet hydrogen for 30 min. at 1000 C prior to the Cu brazing operation. Two approaches were used to characterize grain growth in two lots of Fe-29Ni-17Co alloy: (1) a once-through processing study to study the effect of one-time-only device thermal processing on the resulting grain size, and (2) an isothermal grain growth study involving various times at 800-1100 C. The results of the once-through processing study indicate that acceptable grain sizes are obtained from both cold worked and mill-annealed wire lots following Cu brazing. The isothermal grain growth study indicates that the linear intercept distance for Fe-29Ni-17Co can be described with a power law function of time, and that thermal exposure must be controlled at temperatures in excess of 900 C in order to avoid excessive grain growth. A second study characterized the oxidation kinetics of Fe-29Ni-17Co alloy wire in air at temperatures ranging from 550-700 C. This study indicates the parabolic growth law applies for this material, and between 550 and 700 C, oxidation in this alloy occurs at an activation energy of 27.9 kcal/mole. Other oxidation studies at higher temperatures (greater than 750 C) indicate an activation energy of 52.2 kcal/mole for oxidation of Fe-29Ni-17Co alloy at temperatures greater than 790 C. Quantitative point analyses of the oxide scale formed at 600 C suggest that a significant fraction of the scale is close to the stoichiometry of the Fe2O3-type oxide.

  1. Geometric and topological properties of the canonical grain-growth microstructure

    NASA Astrophysics Data System (ADS)

    Mason, Jeremy K.; Lazar, Emanuel A.; MacPherson, Robert D.; Srolovitz, David J.

    2015-12-01

    Many physical systems can be modeled as large sets of domains "glued" together along boundaries—biological cells meet along cell membranes, soap bubbles meet along thin films, countries meet along geopolitical boundaries, and metallic crystals meet along grain interfaces. Each class of microstructures results from a complex interplay of initial conditions and particular evolutionary dynamics. The statistical steady-state microstructure resulting from isotropic grain growth of a polycrystalline material is canonical in that it is the simplest example of a cellular microstructure resulting from a gradient flow of an energy that is directly proportional to the total length or area of all cell boundaries. As many properties of polycrystalline materials depend on their underlying microstructure, a more complete understanding of the grain growth steady state can provide insight into the physics of a broad range of everyday materials. In this paper we report geometric and topological features of these canonical two- and three-dimensional steady-state microstructures obtained through extensive simulations of isotropic grain growth.

  2. Irradiation-induced grain growth in nanocrystalline reduced activation ferrite/martensite steel

    SciTech Connect

    Liu, W. B.; Chen, L. Q.; Zhang, C. Yang, Z. G.; Ji, Y. Z.; Zang, H.; Shen, T. L.

    2014-09-22

    In this work, we investigate the microstructure evolution of surface-nanocrystallized reduced activation ferrite/martensite steels upon high-dose helium ion irradiation (24.3 dpa). We report a significant irradiation-induced grain growth in the irradiated buried layer at a depth of 300–500 nm, rather than at the peak damage region (at a depth of ∼840 nm). This phenomenon can be explained by the thermal spike model: minimization of the grain boundary (GB) curvature resulting from atomic diffusion in the cascade center near GBs.

  3. Computational study of textured ferroelectric polycrystals: Texture development during templated grain growth

    NASA Astrophysics Data System (ADS)

    Zhou, Jie E.; Yan, Yongke; Priya, Shashank; Wang, Yu U.

    2017-02-01

    Quantitative relationships between processing, microstructure, and properties in textured ferroelectric polycrystals and the underlying responsible mechanisms are investigated by phase field modeling and computer simulation. This study focuses on three important aspects of textured ferroelectric ceramics: (i) grain microstructure evolution during templated grain growth processing, (ii) crystallographic texture development as a function of volume fraction and seed size of the templates, and (iii) dielectric and piezoelectric properties of the obtained template-matrix composites of textured polycrystals. Findings on the first two aspects are presented here, while an accompanying paper of this work reports findings on the third aspect. In this paper, grain microstructure evolution in the polycrystalline matrix with different template volume fractions and seed sizes is simulated. To quantitatively characterize the crystallographic texture development during templated grain growth processing, a numerical algorithm is developed to compute the diffraction peak intensities and Lotgering factor of the simulated polycrystals during grain microstructure evolution. This novel approach provides a direct link between phase field simulation and diffraction experiment. This computational study clarifies the effects of the template volume fraction and template seed size on the final grain microstructure and texture. It is found that, while the degree of crystallographic texture generally increases with increasing template volume fraction, it is the average distance between template seeds that plays an important role. This finding suggests that reducing the template seed size and shortening the seed distance is an effective way to achieve higher texture at a lower template volume fraction, which is highly desired for enhancing the piezoelectric properties of ferroelectric polycrystals. The computational results are compared with complementary experiments, where good agreement is

  4. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    DOE PAGES

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; ...

    2015-09-04

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueationmore » of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.« less

  5. Application of the Bons-Azuma method and determination of grain growth mechanism in rolled Ti-Zr alloys

    NASA Astrophysics Data System (ADS)

    Homma, Tomoyuki; Matayoshi, Yusuke; Voskoboinikov, Roman

    2015-12-01

    Zr-containing Ti alloys have widely been developed owing to the infinite solid solubility of Zr in Ti and its avirulence, leading respectively to high strength and good biocompatibility. It is known that the Zr addition gives rise to grain refinement when rolled Ti-Zr alloys are annealed; nevertheless, the governing mechanism by which Zr addition in Ti can reduce grain size is not fully understood. In this study, the grain growth behaviour of rolled Zr-free and Zr-containing (Ti-10Zr, wt.%) alloys is analysed using analytical transmission electron microscopy and the classical and Bons-Azuma methods by evaluating the grain growth exponent. Irrespective of the evaluation technique and Zr content, the grain growth exponent is found to be close to ~0.3, indicating the occurrence of normal grain growth in the Zr-free alloy and solute drag mechanism in the Zr-containing alloy. It is found that the grain size and grain growth rate are significantly reduced by Zr segregation near grain boundaries, resulting from the solute drag mechanism.

  6. Intrinsic normalized emittance growth in laser-driven electron accelerators

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Rossi, A. R.; Serafini, L.; Antici, P.

    2013-01-01

    Laser-based electron sources are attracting strong interest from the conventional accelerator community due to their unique characteristics in terms of high initial energy, low emittance, and significant beam current. Extremely strong electric fields (up to hundreds of GV/m) generated in the plasma allow accelerating gradients much higher than in conventional accelerators and set the basis for achieving very high final energies in a compact space. Generating laser-driven high-energy electron beam lines therefore represents an attractive challenge for novel particle accelerators. In this paper we show that laser-driven electrons generated by the nowadays consolidated TW laser systems, when leaving the interaction region, are subject to a very strong, normalized emittance worsening which makes them quickly unusable for any beam transport. Furthermore, due to their intrinsic beam characteristics, controlling and capturing the full beam current can only be achieved improving the source parameters.

  7. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers.

    PubMed

    Najmaei, Sina; Liu, Zheng; Zhou, Wu; Zou, Xiaolong; Shi, Gang; Lei, Sidong; Yakobson, Boris I; Idrobo, Juan-Carlos; Ajayan, Pulickel M; Lou, Jun

    2013-08-01

    Single-layered molybdenum disulphide with a direct bandgap is a promising two-dimensional material that goes beyond graphene for the next generation of nanoelectronics. Here, we report the controlled vapour phase synthesis of molybdenum disulphide atomic layers and elucidate a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers. Furthermore, a nucleation-controlled strategy is established to systematically promote the formation of large-area, single- and few-layered films. Using high-resolution electron microscopy imaging, the atomic structure and morphology of the grains and their boundaries in the polycrystalline molybdenum disulphide atomic layers are examined, and the primary mechanisms for grain boundary formation are evaluated. Grain boundaries consisting of 5- and 7- member rings are directly observed with atomic resolution, and their energy landscape is investigated via first-principles calculations. The uniformity in thickness, large grain sizes, and excellent electrical performance signify the high quality and scalable synthesis of the molybdenum disulphide atomic layers.

  8. Orientation-field models for polycrystalline solidification: Grain coarsening and complex growth forms

    NASA Astrophysics Data System (ADS)

    Korbuly, Bálint; Pusztai, Tamás; Tóth, Gyula I.; Henry, Hervé; Plapp, Mathis; Gránásy, László

    2017-01-01

    We compare two versions of the phase-field theory for polycrystalline solidification, both relying on the concept of orientation fields: one by Kobayashi et al. [Physica D 140 (2000) 141] [15] and the other by Henry et al. [Phys. Rev. B 86 (2012) 054117] [22]. Setting the model parameters so that the grain boundary energies and the time scale of grain growth are comparable in the two models, we first study the grain coarsening process including the limiting grain size distribution, and compare the results to those from experiments on thin films, to the models of Hillert, and Mullins, and to predictions by multiphase-field theories. Next, following earlier work by Gránásy et al. [Phys. Rev. Lett. 88 (2002) 206105; Phys. Rev. E 72 (2005) 011605] [17,21], we extend the orientation field to the liquid state, where the orientation field is made to fluctuate in time and space, and employ the model for describing of multi-dendritic solidification, and polycrystalline growth, including the formation of "dizzy" dendrites disordered via the interaction with foreign particles.

  9. National health expenditure projections: modest annual growth until coverage expands and economic growth accelerates.

    PubMed

    Keehan, Sean P; Cuckler, Gigi A; Sisko, Andrea M; Madison, Andrew J; Smith, Sheila D; Lizonitz, Joseph M; Poisal, John A; Wolfe, Christian J

    2012-07-01

    For 2011-13, US health spending is projected to grow at 4.0 percent, on average--slightly above the historically low growth rate of 3.8 percent in 2009. Preliminary data suggest that growth in consumers' use of health services remained slow in 2011, and this pattern is expected to continue this year and next. In 2014, health spending growth is expected to accelerate to 7.4 percent as the major coverage expansions from the Affordable Care Act begin. For 2011 through 2021, national health spending is projected to grow at an average rate of 5.7 percent annually, which would be 0.9 percentage point faster than the expected annual increase in the gross domestic product during this period. By 2021, federal, state, and local government health care spending is projected to be nearly 50 percent of national health expenditures, up from 46 percent in 2011, with federal spending accounting for about two-thirds of the total government share. Rising government spending on health care is expected to be driven by faster growth in Medicare enrollment, expanded Medicaid coverage, and the introduction of premium and cost-sharing subsidies for health insurance exchange plans.

  10. Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis.

    PubMed

    Sanati Nezhad, Amir; Ghanbari, Mahmood; Agudelo, Carlos G; Naghavi, Mahsa; Packirisamy, Muthukumaran; Bhat, Rama B; Geitmann, Anja

    2014-02-01

    A biocompatible polydimethylsiloxane (PDMS) biomicrofluidic platform is designed, fabricated and tested to study protuberance growth of single plant cells in a micro-vitro environment. The design consists of an inlet to introduce the cell suspension into the chip, three outlets to conduct the medium or cells out of the chip, a main distribution chamber and eight microchannels connected to the main chamber to guide the growth of tip growing plant cells. The test cells used here were pollen grains which produce cylindrical protrusions called pollen tubes. The goal was to adjust the design of the microfluidic network with the aim to enhance the uniformly distributed positioning of pollen grains at the entrances of the microchannels and to provide identical fluid flow conditions for growing pollen tubes along each microchannel. Computational fluid analysis and experimental testing were carried out to estimate the trapping efficiencies of the different designs.

  11. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism

    PubMed Central

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-01-01

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675–1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m0.5. Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications. PMID:26503706

  12. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism.

    PubMed

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-10-27

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675-1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m(0.5). Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications.

  13. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-10-01

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675-1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m0.5. Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications.

  14. Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging.

    PubMed

    Siripatrawan, U; Makino, Y

    2015-04-16

    This research aimed to develop a rapid, non-destructive, and accurate method based on hyperspectral imaging (HSI) for monitoring spoilage fungal growth on stored brown rice. Brown rice was inoculated with a non-pathogenic strain of Aspergillus oryzae and stored at 30 °C and 85% RH. Growth of A. oryzae on rice was monitored using viable colony counts, expressed as colony forming units per gram (CFU/g). The fungal development was observed using scanning electron microscopy. The HSI system was used to acquire reflectance images of the samples covering the visible and near-infrared (NIR) wavelength range of 400-1000 nm. Unsupervised self-organizing map (SOM) was used to visualize data classification of different levels of fungal infection. Partial least squares (PLS) regression was used to predict fungal growth on rice grains from the HSI reflectance spectra. The HSI spectral signals decreased with increasing colony counts, while conserving similar spectral pattern during the fungal growth. When integrated with SOM, the proposed HSI method could be used to classify rice samples with different levels of fungal infection without sample manipulation. Moreover, HSI was able to rapidly identify infected rice although the samples showed no symptoms of fungal infection. Based on PLS regression, the coefficient of determination was 0.97 and root mean square error of prediction was 0.39 log (CFU/g), demonstrating that the HSI technique was effective for prediction of fungal infection in rice grains. The ability of HSI to detect fungal infection at early stage would help to prevent contaminated rice grains from entering the food chain. This research provides scientific information on the rapid, non-destructive, and effective fungal detection system for rice grains.

  15. CVD growth of large-grain graphene on Cu(111) thin films

    NASA Astrophysics Data System (ADS)

    Miller, David L.; Diederichsen, Kyle M.; Keller, Mark W.

    2013-03-01

    Chemical vapor deposition of graphene on polycrystalline Cu foils has produced high quality films with carrier mobility approaching that of exfoliated graphene. Growth on single-crystal films of Cu has received less attention, despite its potential advantages for graphene quality and its importance for eventual applications. This is likely due to the difficulty of obtaining large (>= 1 mm) grains in Cu thin films, as well as dewetting and roughening of Cu films at temperatures near the Cu melting point (1084 C). We found that 450 nm of Cu(111), epitaxially grown by sputtering onto Al2O3(0001), formed > 1 mm grains when annealed at 1065 C for 40 minutes in 40 Torr of Ar and 2.5 mTorr of H2. After this annealing, adding 3 mTorr of CH4 for 8 minutes produced a monolayer graphene film covering > 99 % of the Cu surface. Stopping growth after 4 minutes produced dendritic graphene islands with 6-fold symmetry and diameter of 20 μm to 100 μm . After growth, the Cu film remained smooth except for thermal grooving at grain boundaries and a few holes of diameter ~ 10 μm where Cu dewetted completely (~ 10 holes on each 5 mm x 6 mm chip).

  16. Direct observation of grain growth from molten silicon formed by micro-thermal-plasma-jet irradiation

    SciTech Connect

    Hayashi, Shohei; Fujita, Yuji; Kamikura, Takahiro; Sakaike, Kohei; Akazawa, Muneki; Ikeda, Mitsuhisa; Hanafusa, Hiroaki; Higashi, Seiichiro

    2012-10-22

    Phase transformation of amorphous-silicon during millisecond annealing using micro-thermal-plasma-jet irradiation was directly observed using a high-speed camera with microsecond time resolution. An oval-shaped molten-silicon region adjacent to the solid phase crystallization region was clearly observed, followed by lateral large grain growth perpendicular to a liquid-solid interface. Furthermore, leading wave crystallization (LWC), which showed intermittent explosive crystallization, was discovered in front of the moving molten region. The growth mechanism of LWC has been investigated on the basis of numerical simulation implementing explosive movement of a thin liquid layer driven by released latent heat diffusion in a lateral direction.

  17. A Longitudinal Assessment of Early Acceleration of Students in Mathematics on Growth in Mathematics Achievement

    ERIC Educational Resources Information Center

    Ma, X.

    2005-01-01

    Early acceleration of students in mathematics (in the form of early access to formal abstract algebra) has been a controversial educational issue. The current study examined the rate of growth in mathematics achievement of accelerated gifted, honors, and regular students across the entire secondary years (Grades 7-12), in comparison to their…

  18. Dust grain growth and the formation of the extremely primitive star SDSS J102915+172927

    NASA Astrophysics Data System (ADS)

    Chiaki, Gen; Schneider, Raffaella; Nozawa, Takaya; Omukai, Kazuyuki; Limongi, Marco; Yoshida, Naoki; Chieffi, Alessandro

    2014-04-01

    Dust grains in low-metallicity star-forming regions may be responsible for the formation of the first low-mass stars. The minimal conditions to activate dust-induced fragmentation require the gas to be pre-enriched above a critical dust-to-gas mass ratio D_cr = [2.6-6.3] × 10^{-9}. The recently discovered Galactic halo star SDSS J102915+172927 has a stellar mass of 0.8 M⊙ and a metallicity of Z ˜ 4.5 × 10-5 Z⊙ and represents an optimal candidate for the dust-induced low-mass star formation. Indeed, the critical dust-to-gas mass ratio can be overcome provided that at least 0.4 M⊙ of dust condenses in Pop III supernova ejecta, allowing for moderate destruction by the reverse shock. Here, we show that grain growth during the collapse of the parent gas cloud is sufficiently rapid to activate dust cooling and fragmentation into low-mass stars, even if dust formation in the first supernovae is less efficient or strong dust destruction does occur. We find that carbon grains do not experience grain growth because at densities below nH ˜ 106 cm-3 carbon atoms are locked into CO molecules. Silicates and magnetite grains accrete gas-phase species in the density range 109 < nH < 1012 cm-3, until their gas-phase abundance drops to zero, reaching condensation efficiencies ≈1. The corresponding increase in the dust-to-gas mass ratio allows dust-induced cooling and fragmentation to be activated at 1012 < nH < 1014 cm-3, before the collapsing cloud becomes optically thick to continuum radiation.

  19. Experimental studies of Micro- and Nano-grained UO2: Grain Growth Behavior, Sufrace Morphology, and Fracture Toughness

    SciTech Connect

    Miao, Yinbin; Mo, Kun; Jamison, Laura M.; Lian, Jie; Yao, Tiankai; Bhattacharya, Sumit

    2016-01-01

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure-based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize the experimental efforts in FY16 including the following important experiments: (1) in-situ grain growth measurement of nano-grained UO2; (2) investigation of surface morphology in micrograined UO2; (3) Nano-indentation experiments on nano- and micro-grained UO2. The highlight of this year is: we have successfully demonstrated our capability to in-situ measure grain size development while maintaining the stoichiometry of nano-grained UO2 materials; the experiment is, for the first time, using synchrotron X-ray diffraction to in-situ measure grain growth behavior of UO2.

  20. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum

    PubMed Central

    Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming

    2012-01-01

    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm2 V−1 s−1 under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications. PMID:22426220

  1. Modeling Nucleation and Grain Growth in the Solar Nebula: Initial Progress Report

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Paquette, J. A.; Ferguson, F. T.

    2010-01-01

    The primitive solar nebula was a violent and chaotic environment where high energy collisions, lightning, shocks and magnetic re-connection events rapidly vaporized some fraction of nebular dust, melted larger particles while leaving the largest grains virtually undisturbed. At the same time, some tiny grains containing very easily disturbed noble gas signatures (e.g., small, pre-solar graphite or SiC particles) never experienced this violence, yet can be found directly adjacent to much larger meteoritic components (chondrules or CAIs) that did. Additional components in the matrix of the most primitive carbonaceous chondrites and in some chondritic porous interplanetary dust particles include tiny nebular condensates, aggregates of condensates and partially annealed aggregates. Grains formed in violent transient events in the solar nebula did not come to equilibrium with their surroundings. To understand the formation and textures of these materials as well as their nebular abundances we must rely on Nucleation Theory and kinetic models of grain growth, coagulation and annealing. Such models have been very uncertain in the past: we will discuss the steps we are taking to increase their reliability.

  2. Annealing behavior of Cu and dilute Cu-alloy films: Precipitation, grain growth, and resistivity

    NASA Astrophysics Data System (ADS)

    Barmak, K.; Gungor, A.; Cabral, C.; Harper, J. M. E.

    2003-08-01

    The impact of 11 alloying elements, namely, Mg, Ti, In, Sn, Al, Ag, Co, Nb, and B, at two nominal concentrations of 1 and 3 at. %, and Ir and W, at only a nominal concentration of 3 at. %, on the resistivity and grain structure of copper was investigated. The films were electron beam evaporated onto thermally oxidized Si wafers and had thicknesses in the range of 420-560 nm. Pure evaporated Cu films were used as controls. Isothermal anneals were carried out at 400 °C for 5 h; constant-heating rate treatments, with no hold at the temperature, were done at 3 °C to 650 and 950 °C. In all cases, annealing resulted in the lowering of resistivity compared with the as-deposited state. Furthermore, annealing to a higher temperature resulted in lower, postannealing, room-temperature resistivity, unless the film agglomerated or showed evidence of solute redissolution. Annealing also resulted in significant growth of grains, except for the Nb- and W-containing films. In addition, the grain sizes for the nominally 3 at. %, 400 °C-annealed films were smaller than those for the nominally 1.0 at. % films. The interesting exceptions in this case were the Co-containing films, which had a larger grain size than the pure Cu film, and which, in addition, exhibited a larger grain size for the film with the higher concentration of Co. After the 400 °C anneal, Cu(0.4B) and Cu(1.0Ag) had the lowest resistivities at 2.0 and 2.1 μΩ cm, respectively, and Cu(2.8Co) showed the largest average grain size at 1080 nm. The resistivity and grain size for the pure Cu film after the same anneal were 2.0 μΩ cm and 790 nm, respectively. Precipitation of a second phase was observed in 8 of 20 alloy films annealed at 400 °C. No alloy film simultaneously showed the combination of a low resistivity and a larger grain size than pure Cu.

  3. Silage or limit-fed grain growing diets for steers: I. Growth and carcass quality.

    PubMed

    Coleman, S W; Gallavan, R H; Williams, C B; Phillips, W A; Volesky, J D; Rodriguez, S; Bennett, G L

    1995-09-01

    The influence of energy source (silage- [S] or grain- [G] based) on organ growth, carcass quality, and meat acceptability independent of rate of gain was examined. Sixty-four Angus steers were allotted to one of the two treatments and given ad libitum access to silage or limit-fed grain for 145 d. All steers were then given ad libitum access to a grain diet for 45, 75, or 105 d. Eight steers from each treatment were slaughtered at the end of the growing phase and at each of the termination dates. The silage-based growing diet consisted (DM basis) of 55% sorghum silage (averaged 23.6% dry matter), 22% alfalfa hay, 10.8% ground shelled corn, and 10.8% soybean meal and contained 12.8% CP. Dry matter in the grain-based diet, composed of 76.5% ground shelled corn, 5% soybean meal, 13.6% cottonseed hulls, 3.5% molasses, and .4% salt and 1% limestone, contained 12.1% CP. It was limit-fed to produce rates of gain similar to the silage diet eaten ad libitum, using net energy for gain of each diet calculated from organic matter digestibility determined in digestion trials. The finishing diet was similar to the grain growing diet except that alfalfa hay replaced the cottonseed hulls. No implants or ionophores were used. High silage moisture decreased ADG the first 45 d, so steers fed grain gained faster, but thereafter gains were similar. At the end of the growing phase, steers fed grain had heavier shrunk and empty body weights and larger livers. However, liver size was not different when adjusted for growing ADG. By 45 d with ad libitum access to the finishing diet, 75% of the carcasses from steers fed both diets graded Choice. Steers fed silage had tougher (P < .05) steaks with less flavor intensity (P < .05) at the end of the growing phase; these differences diminished after 75 d on feed. These results suggest that choice beef can be produced in only 45 d in the feedlot, but tenderness and flavor among Choice carcasses remained inferior for steers fed silage for at least

  4. Molecular dynamics simulations of solid state recrystallization I: Observation of grain growth in annealed iron nanoparticles

    SciTech Connect

    Huang Jinfan; Bartell, Lawrence S.

    2012-01-15

    Molecular dynamics simulations of solid state recrystallization and grain growth in iron nanoparticles containing 1436 atoms were carried out. During the period of relaxation of supercooled liquid drops and during thermal annealing of the solids they froze to, changes in disorder were followed by monitoring changes in energy and the migration of grain boundaries. All 27 polycrystalline nanoparticles, which were generated with different grain boundaries, were observed to recystallize into single crystals during annealing. Larger grains consumed the smaller ones. In particular, two sets of solid particles, designated as A and B, each with two grains, were treated to generate 18 members of each set with different thermal histories. This provided small ensembles (of 18 members each) from which rates at which the larger grain engulfed the smaller one, could be determined. The rate was higher, the smaller the degree of misorientation between the grains, a result contrary to the general rule based on published experiments, but the reason was clear. Crystal A, which happened to have a somewhat lower angle of misorientation, also had a higher population of defects, as confirmed by its higher energy. Accordingly, its driving force to recrystallize was greater. Although the mechanism of recrystallization is commonly called nucleation, our results, which probe the system on an atomic scale, were not able to identify nuclei unequivocally. By contrast, our technique can and does reveal nuclei in the freezing of liquids and in transformations from one solid phase to another. An alternative rationale for a nucleation-like process in our results is proposed. - Graphical Abstract: Time dependence of energy per atom in the quenching of liquid nanoparticles A-C of iron. Nanoparticle C freezes directly into a single crystal but A and B freeze to solids with two grains. A and B eventually recrystallize into single crystals. Highlights: Black-Right-Pointing-Pointer Solid state material

  5. Mitigating Abnormal Grain Growth for Friction Stir Welded Al-Li 2195 Spun Formed Domes

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Russell, Carolyn

    2012-01-01

    Formability and abnormal grain growth (AGG) are the two major issues that have been encountered for Al alloy spun formed dome development using friction stir welded blanks. Material properties that have significant influence on the formability include forming range and strain hardening exponent. In this study, tensile tests were performed for two 2195 friction stir weld parameter sets at 400 F to study the effects of post weld anneal on the forming range and strain hardening exponent. It was found that the formability can be enhanced by applying a newly developed post weld anneal to heat treat the friction stir welded panels. This new post weld anneal leads to a higher forming range and much improved strain hardening exponent. AGG in the weld nugget is known to cause a significant reduction of ductility and fracture toughness. This study also investigated how AGG may be influenced by the heating rate to the solution heat treatment temperature. After post-weld annealing, friction stir welds were strained to 15% and 39% by compression at 400 F before they were subjected to SHT at 950 F for 1 hour. Salt bath SHT is very effective in reducing the grain size as it helps arrest the onset of AGG and promote normal recrystallization and grain growth. However, heat treating a 18 ft dome using a salt bath is not practical. Efforts are continuing at Marshall Space Flight Center to identify the welding parameters and heat treating parameters that can help mitigate the AGG in the friction stir welds.

  6. An examination of abnormal grain growth in low strain nickel-200

    SciTech Connect

    Underwood, O.; Madison, J.; Martens, R. M.; Thompson, G. B.; Welsh, S.; Evans, J.

    2016-06-21

    Here, this study offers experimental observation of the effect of low strain conditions (ε < 10%) on abnormal grain growth (AGG) in Nickel-200. At such conditions, stored mechanical energy is low within the microstructure enabling one to observe the impact of increasing mechanical deformation on the early onset of AGG compared to a control, or nondeformed, equivalent sample. The onset of AGG was observed to occur at specific pairings of compressive strain and annealing temperature and an empirical relation describing the influence of thermal exposure and strain content was developed. The evolution of low-Σ coincident site lattice (CSL) boundaries and overall grain size distributions are quantified using electron backscatter diffraction preceding, at onset and during ensuing AGG, whereby possible mechanisms for AGG in the low strain regime are offered and discussed.

  7. An examination of abnormal grain growth in low strain nickel-200

    DOE PAGES

    Underwood, O.; Madison, J.; Martens, R. M.; ...

    2016-06-21

    Here, this study offers experimental observation of the effect of low strain conditions (ε < 10%) on abnormal grain growth (AGG) in Nickel-200. At such conditions, stored mechanical energy is low within the microstructure enabling one to observe the impact of increasing mechanical deformation on the early onset of AGG compared to a control, or nondeformed, equivalent sample. The onset of AGG was observed to occur at specific pairings of compressive strain and annealing temperature and an empirical relation describing the influence of thermal exposure and strain content was developed. The evolution of low-Σ coincident site lattice (CSL) boundaries andmore » overall grain size distributions are quantified using electron backscatter diffraction preceding, at onset and during ensuing AGG, whereby possible mechanisms for AGG in the low strain regime are offered and discussed.« less

  8. Correlation of shape changes of grain surfaces and reversible stress evolution during interruptions of polycrystalline film growth

    SciTech Connect

    Yu, Hang Z.; Thompson, Carl V.

    2014-04-07

    Short interruptions of the growth of polycrystalline films often lead to stress evolution that is reversed when growth is resumed. Correlated in situ stress measurements and ex situ transmission electron microscopy and atomic force microscopy characterizations of grain boundary surface grooves as a function of the interruption time are reported for films deposited at different temperatures and held for different times before quenching to room temperature. These studies suggest that during film deposition surface grooves at grain boundaries are kinetically constrained to be shallow, while during a growth interruption surface diffusion allows grain boundary grooves to deepen and approach their equilibrium depth. The latter relieves a component of the compressive stress associated with trapped atoms in the grain boundaries. When growth is resumed, the non-equilibrium surface morphology is reestablished and the compressive stress increases to its pre-interruption value.

  9. Formation of giant crystalline grain via delayed growth process driven by organic molecular anisotropy

    NASA Astrophysics Data System (ADS)

    Al-Mahboob, A.; Fujikawa, Y.; Sadowski, J. T.; Hashizume, T.; Sakurai, T.

    2010-12-01

    The growth of (001)-oriented pentacene ( C22H14 , Pn) thin films on silicon surfaces has been extensively studied to elucidate the role of molecular anisotropy in nucleation and island evolution in organic film growth. In situ real-time low-energy electron microscopy studies of growth of Pn revealed a delayed, low-density nucleation that could be related to the difference in the orientation of this anisotropic molecule in its diffusing state and in the crystalline film. In contrast to the growth of Pn on self-assembled monolayers or SiO2 , we observed a delayed nucleation and formation of extraordinarily large grains (in submillimeter scale) on semiconducting α3-Bi-Si(111) and on semimetallic Bi(0001)/Si(111) with a continuation in film growth after stopping Pn deposition. The delayed and very low-density nucleation and continuing growth after stopping deposition could be explained by a incorporation-limited growth processes resulted from a large energy barrier for Pn nucleation in standing-up orientation, as the molecule needs to reorient itself from a lying-down, diffusing state in order to build into the crystalline film.

  10. Variations in grain lipophilic phytochemicals, proteins and resistance to Fusarium spp. growth during grain storage as affected by biological plant protection with Aureobasidium pullulans (de Bary).

    PubMed

    Wachowska, Urszula; Tańska, Małgorzata; Konopka, Iwona

    2016-06-16

    Modern agriculture relies on an integrated approach, where chemical treatment is reduced to a minimum and replaced by biological control that involves the use of active microorganisms. The effect of the antagonistic yeast-like fungus Aureobasidium pullulans on proteins and bioactive compounds (alkylresorcinols, sterols, tocols and carotenoids) in winter wheat grain and on the colonization of wheat kernels by fungal microbiota, mainly Fusarium spp. pathogens, was investigated. Biological treatment contributed to a slight increase contents of tocols, alkylresorcinols and sterols in grain. At the same time, the variation of wheat grain proteins was low and not significant. Application of A. pullulans enhanced the natural yeast colonization after six months of grain storage and inhibited growth of F. culmorum pathogens penetrating wheat kernel. This study demonstrated that an integrated approach of wheat grain protection with the use of the yeast-like fungus A. pullulans reduced kernel colonization by Fusarium spp. pathogens and increased the content of nutritionally beneficial phytochemicals in wheat grain without a loss of gluten proteins responsible for baking value.

  11. Computer simulation of topological evolution in 2-d grain growth using a continuum diffuse-interface field model

    SciTech Connect

    Fan, D.; Geng, C.; Chen, L.Q.

    1997-03-01

    The local kinetics and topological phenomena during normal grain growth were studied in two dimensions by computer simulations employing a continuum diffuse-interface field model. The relationships between topological class and individual grain growth kinetics were examined, and compared with results obtained previously from analytical theories, experimental results and Monte Carlo simulations. It was shown that both the grain-size and grain-shape (side) distributions are time-invariant and the linear relationship between the mean radii of individual grains and topological class n was reproduced. The moments of the shape distribution were determined, and the differences among the data from soap froth. Potts model and the present simulation were discussed. In the limit when the grain size goes to zero, the average number of grain edges per grain is shown to be between 4 and 5, implying the direct vanishing of 4- and 5-sided grains, which seems to be consistent with recent experimental observations on thin films. Based on the simulation results, the conditions for the applicability of the familiar Mullins-Von Neumann law and the Hillert`s equation were discussed.

  12. Correlation of grain growth phenomena with magnetic properties in non - oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Mangiorou, E.

    2016-03-01

    This paper presents a combination of two types of method targeted to investigate the stages of the microstructure evolution in annealed non-oriented electrical steels by means of magnetic measurements and metallographic analysis. The indirect magnetic testing, carried out by Barkhausen noise was associated with the direct structural investigation by Scanning Electron Microscopy measurements. The goal of this work was to study the influence of heat transport phenomena on grain growth processes in non-oriented electrical steels, which were subjected to different annealing conditions. The results determined from the magnetic measurements and predicted from micrograph observations show a relatively good concordance.

  13. Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia.

    PubMed

    Lian, Jie; Zhang, Jiaming; Namavar, Fereydoon; Zhang, Yanwen; Lu, Fengyuan; Haider, Hani; Garvin, Kevin; Weber, W J; Ewing, Rodney C

    2009-06-17

    Nanocrystalline zirconia has recently attracted extensive research interest due to its unique mechanical, thermal and electrical properties as compared with bulk zirconia counterparts, and it is of particular importance for controlling the phase stability of different polymorphs (amorphous, cubic, tetragonal and monoclinic phases) in different size regimes. In this work, we performed ion beam bombardments on bilayers (amorphous and cubic) of nano-zirconia using 1 MeV Kr2+ irradiation. Transmission electron microscopy (TEM) analysis reveals that amorphous zirconia transforms to a tetragonal structure under irradiation at room temperature, suggesting that the tetragonal phase is more energetically favorable under these conditions. The final grain size of the tetragonal zirconia can be controlled by irradiation conditions. A slower kinetics in the grain growth from cubic nanocrystalline zirconia was found as compared with that for the tetragonal grains recrystallized from the amorphous layer. The radiation-induced nanograins of tetragonal ZrO2 are stable at ambient conditions and maintain their physical integrity over a long period of time after irradiation. These results demonstrated that ion beam methods provide the means to control the phase stability and structure of zirconia polymorphs.

  14. CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK

    SciTech Connect

    Perez, Laura M.; Carpenter, John M.; Isella, Andrea; Ricci, Luca; Sargent, Anneila I.; Chandler, Claire J.; Andrews, Sean M.; Harris, Robert J.; Calvet, Nuria; Corder, Stuartt A.; Deller, Adam T.; Dullemond, Cornelis P.; Linz, Hendrik; Greaves, Jane S.; Henning, Thomas; Kwon, Woojin; Lazio, Joseph; Mundy, Lee G.; Storm, Shaye; Testi, Leonardo; and others

    2012-11-20

    We present dust continuum observations of the protoplanetary disk surrounding the pre-main-sequence star AS 209, spanning more than an order of magnitude in wavelength from 0.88 to 9.8 mm. The disk was observed with subarcsecond angular resolution (0.''2-0.''5) to investigate radial variations in its dust properties. At longer wavelengths, the disk emission structure is notably more compact, providing model-independent evidence for changes in the grain properties across the disk. We find that physical models which reproduce the disk emission require a radial dependence of the dust opacity {kappa}{sub {nu}}. Assuming that the observed wavelength-dependent structure can be attributed to radial variations in the dust opacity spectral index ({beta}), we find that {beta}(R) increases from {beta} < 0.5 at {approx}20 AU to {beta} > 1.5 for R {approx}> 80 AU, inconsistent with a constant value of {beta} across the disk (at the 10{sigma} level). Furthermore, if radial variations of {kappa}{sub {nu}} are caused by particle growth, we find that the maximum size of the particle-size distribution (a{sub max}) increases from submillimeter-sized grains in the outer disk (R {approx}> 70 AU) to millimeter- and centimeter-sized grains in the inner disk regions (R {approx}< 70 AU). We compare our observational constraint on a{sub max}(R) with predictions from physical models of dust evolution in protoplanetary disks. For the dust composition and particle-size distribution investigated here, our observational constraints on a{sub max}(R) are consistent with models where the maximum grain size is limited by radial drift.

  15. Low-temperature (180 °C) formation of large-grained Ge (111) thin film on insulator using accelerated metal-induced crystallization

    SciTech Connect

    Toko, K. Numata, R.; Oya, N.; Suemasu, T.; Fukata, N.; Usami, N.

    2014-01-13

    The Al-induced crystallization (AIC) yields a large-grained (111)-oriented Ge thin film on an insulator at temperatures as low as 180 °C. We accelerated the AIC of an amorphous Ge layer (50-nm thickness) by initially doping Ge in Al and by facilitating Ge diffusion into Al. The electron backscatter diffraction measurement demonstrated the simultaneous achievement of large grains over 10 μm and a high (111) orientation fraction of 90% in the polycrystalline Ge layer formed at 180 °C. This result opens up the possibility for developing Ge-based electronic and optical devices fabricated on inexpensive flexible substrates.

  16. Spectroscopic Infrared Extinction Mapping as a Probe of Grain Growth in IRDCs

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.

    2015-11-01

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim & Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3-8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14-38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR-FIR opacity laws that lack the ˜12 and ˜35 μm features associated with the thick water ice mantle models of Ossenkopf & Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  17. SPECTROSCOPIC INFRARED EXTINCTION MAPPING AS A PROBE OF GRAIN GROWTH IN IRDCs

    SciTech Connect

    Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.

    2015-11-20

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim and Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3–8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14–38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR–FIR opacity laws that lack the ∼12 and ∼35 μm features associated with the thick water ice mantle models of Ossenkopf and Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  18. Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration.

    PubMed

    Fisahn, Joachim; Yazdanbakhsh, Nima; Klingele, Emile; Barlow, Peter

    2012-07-01

    • All living organisms on Earth are continually exposed to diurnal variations in the gravitational tidal force due to the Sun and Moon. • Elongation of primary roots of Arabidopsis thaliana seedlings maintained at a constant temperature was monitored for periods of up to 14 d using high temporal- and spatial-resolution video imaging. The time-course of the half-hourly elongation rates exhibited an oscillation which was maintained when the roots were placed in the free-running condition of continuous illumination. • Correlation between the root growth kinetics collected from seedlings initially raised under several light protocols but whose roots were subsequently in the free-running condition and the lunisolar tidal profiles enabled us to identify that the latter is the probable exogenous determinant of the rhythmic variation in root elongation rate. Similar observations and correlations using roots of Arabidopsis starch mutants suggest a central function of starch metabolism in the response to the lunisolar tide. The periodicity of the lunisolar tidal signal and the concomitant adjustments in root growth rate indicate that an exogenous timer exists for the modulation of root growth and development. • We propose that, in addition to the sensitivity to Earthly 1G gravity, which is inherent to all animals and plants, there is another type of responsiveness which is attuned to the natural diurnal variations of the lunisolar tidal force.

  19. Bunch self-focusing regime of laser wakefield acceleration with reduced emittance growth.

    PubMed

    Reitsma, A J W; Goloviznin, V V; Kamp, L P J; Schep, T J

    2002-01-07

    A new regime of laser wakefield acceleration of an injected electron bunch is described. In this regime, the bunch charge is so high that the bunch wakefields play an important role in the bunch dynamics. In particular, the transverse bunch wakefield induces a strong self-focusing that suppresses the transverse emittance growth arising from misalignment errors. The decelerating longitudinal bunch wakefield, however, is not so strong that it completely cancels the accelerating laser wakefield. In fact, the induced energy spread can be compensated by exploiting phase slippage effects. These features make the new regime interesting for high beam quality laser wakefield acceleration.

  20. Coenzyme Q10 prevents accelerated cardiac aging in a rat model of poor maternal nutrition and accelerated postnatal growth.

    PubMed

    Tarry-Adkins, Jane L; Blackmore, Heather L; Martin-Gronert, Malgorzata S; Fernandez-Twinn, Denise S; McConnell, Josie M; Hargreaves, Iain P; Giussani, Dino A; Ozanne, Susan E

    2013-01-01

    Studies in human and animals have demonstrated that nutritionally induced low birth-weight followed by rapid postnatal growth increases the risk of metabolic syndrome and cardiovascular disease. Although the mechanisms underlying such nutritional programming are not clearly defined, increased oxidative-stress leading to accelerated cellular aging has been proposed to play an important role. Using an established rodent model of low birth-weight and catch-up growth, we show here that post-weaning dietary supplementation with coenzyme Q10, a key component of the electron transport chain and a potent antioxidant rescued many of the detrimental effects of nutritional programming on cardiac aging. This included a reduction in nitrosative and oxidative-stress, telomere shortening, DNA damage, cellular senescence and apoptosis. These findings demonstrate the potential for postnatal antioxidant intervention to reverse deleterious phenotypes of developmental programming and therefore provide insight into a potential translatable therapy to prevent cardiovascular disease in at risk humans.

  1. Shear-Coupled Grain Growth and Texture Development in a Nanocrystalline Ni-Fe Alloy during Cold Rolling

    NASA Astrophysics Data System (ADS)

    Li, Li; Ungár, Tamás; Toth, Laszlo S.; Skrotzki, Werner; Wang, Yan Dong; Ren, Yang; Choo, Hahn; Fogarassy, Zsolt; Zhou, X. T.; Liaw, Peter K.

    2016-12-01

    The evolution of texture, grain size, grain shape, dislocation, and twin density has been determined by synchrotron X-ray diffraction and line profile analysis in a nanocrystalline Ni-Fe alloy after cold rolling along different directions related to the initial fiber and the long axis of grains. The texture evolution has been simulated by the Taylor-type relaxed-constraints viscoplastic polycrystal model. The simulations were based on the activity of partial dislocations in correlation with the experimental results of dislocation density determination. The concept of stress-induced shear coupling is supported and strengthened by both the texture simulations and the experimentally determined evolution of the microstructure parameters. Grain growth and texture evolution are shown to proceed by the shear coupling mechanism supported by dislocation activity as long as the grain size is not smaller than about 20 nm.

  2. EBSD coupled to SEM in situ annealing for assessing recrystallization and grain growth mechanisms in pure tantalum.

    PubMed

    Kerisit, C; Logé, R E; Jacomet, S; Llorca, V; Bozzolo, N

    2013-06-01

    An in situ annealing stage has been developed in-house and integrated in the chamber of a Scanning Electron Microscope equipped with an Electron BackScattered Diffraction system. Based on the Joule effect, this device can reach the temperature of 1200°C at heating rates up to 100°C/s, avoiding microstructural evolutions during heating. A high-purity tantalum deformed sample has been annealed at variable temperature in the range 750°C-1030°C, and classical mechanisms of microstructural evolutions such as recrystallization and grain coarsening phenomena have been observed. Quantitative measurements of grain growth rates provide an estimate of the mean grain boundary mobility, which is consistent with the value estimated from physical parameters reported for that material. In situ annealing therefore appears to be suited for complementing bulk measurements at relatively high temperatures, in the context of recrystallization and grain growth in such a single-phase material.

  3. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Bi, Cheng; Wang, Qi; Shao, Yuchuan; Yuan, Yongbo; Xiao, Zhengguo; Huang, Jinsong

    2015-07-01

    Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3-7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level in OTP single crystals. Combining the high work function of several HTLs, a high stabilized device efficiency of 18.3% in low-temperature-processed planar-heterojunction OTP devices under 1 sun illumination is achieved. This simple method in enhancing OTP morphology paves the way for its application in other optoelectronic devices for enhanced performance.

  4. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells

    DOE PAGES

    Bi, Cheng; Wang, Qi; Shao, Yuchuan; ...

    2015-07-20

    Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level inmore » OTP single crystals. Combining the high work function of several HTLs, a high stabilized device efficiency of 18.3% in low-temperature-processed planar-heterojunction OTP devices under 1 sun illumination is achieved. As a result, this simple method in enhancing OTP morphology paves the way for its application in other optoelectronic devices for enhanced performance.« less

  5. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells

    SciTech Connect

    Bi, Cheng; Wang, Qi; Shao, Yuchuan; Yuan, Yongbo; Xiao, Zhengguo; Huang, Jinsong

    2015-07-20

    Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level in OTP single crystals. Combining the high work function of several HTLs, a high stabilized device efficiency of 18.3% in low-temperature-processed planar-heterojunction OTP devices under 1 sun illumination is achieved. As a result, this simple method in enhancing OTP morphology paves the way for its application in other optoelectronic devices for enhanced performance.

  6. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells

    PubMed Central

    Bi, Cheng; Wang, Qi; Shao, Yuchuan; Yuan, Yongbo; Xiao, Zhengguo; Huang, Jinsong

    2015-01-01

    Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level in OTP single crystals. Combining the high work function of several HTLs, a high stabilized device efficiency of 18.3% in low-temperature-processed planar-heterojunction OTP devices under 1 sun illumination is achieved. This simple method in enhancing OTP morphology paves the way for its application in other optoelectronic devices for enhanced performance. PMID:26190275

  7. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    PubMed

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains.

  8. Investigation of the instability and low water kefir grain growth during an industrial water kefir fermentation process.

    PubMed

    Laureys, David; Van Jean, Amandine; Dumont, Jean; De Vuyst, Luc

    2017-04-01

    A poorly performing industrial water kefir production process consisting of a first fermentation process, a rest period at low temperature, and a second fermentation process was characterized to elucidate the causes of its low water kefir grain growth and instability. The frozen-stored water kefir grain inoculum was thawed and reactivated during three consecutive prefermentations before the water kefir production process was started. Freezing and thawing damaged the water kefir grains irreversibly, as their structure did not restore during the prefermentations nor the production process. The viable counts of the lactic acid bacteria and yeasts on the water kefir grains and in the liquors were as expected, whereas those of the acetic acid bacteria were high, due to the aerobic fermentation conditions. Nevertheless, the fermentations progressed slowly, which was caused by excessive substrate concentrations resulting in a high osmotic stress. Lactobacillus nagelii, Lactobacillus paracasei, Lactobacillus hilgardii, Leuconostoc mesenteroides, Bifidobacterium aquikefiri, Gluconobacter roseus/oxydans, Gluconobacter cerinus, Saccharomyces cerevisiae, and Zygotorulaspora florentina were the most prevalent microorganisms. Lb. hilgardii, the microorganism thought to be responsible for water kefir grain growth, was not found culture-dependently, which could explain the low water kefir grain growth of this industrial process.

  9. [Impacts of drought stress on the growth and development and grain yield of spring maize in Northeast China].

    PubMed

    Ji, Rui-Peng; Che, Yu-Sheng; Zhu, Yong-Ning; Liang, Tao; Feng, Rui; Yu, Wen-Ying; Zhang, Yu-Shu

    2012-11-01

    Taking spring maize variety Danyu-39 as test object, an experiment was conducted in a large-scale agricultural water controlling experimental field to study the impacts of drought stress at three key growth stages, i. e. , 3-leaf-jointing, jointing-silking, and silking-milk ripe, on the growth and development and grain yield of spring maize in Northeast China. Two treatments were installed, including moderate drought stress (MS) and re-watering to suitable water (CK). Compared with CK, the MS at 3-leaf-jointing stage postponed the whole growth period of Danyu-39 by 13 d, and the plant height and leaf area at jointing stage were decreased by 29.8% and 41.2%, respectively. After re-watering, the plant height and grain yield recovered obviously, and the differences in ear characteristics and final yield were insignificant. The MS at jointing-silking stage shortened the whole growth period by 7 d, the plant height and leaf area at silking stage were decreased by 18.6% and 14.1%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 6.9%, 19.1%, 28.1%, and 29.4%, respectively, and the blank stem rate increased by 13.3%. When the maize suffered from moderate drought stress at silking-milk ripe stage, the whole growth period was shortened by 15 d, the plant height and leaf area at milk ripe stage were decreased by 2.3% and 37.3%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 9.2%, 24.1%, 30.8%, and 27.9%, respectively, and the blank stem rate increased by 24.5%. After re-watering at the latter two stages, the recovery of plant height was little, and the grain yield decreased significantly.

  10. Grain Diversity Effects on Banker Plant Growth and Parasitism by Aphidius colemani

    PubMed Central

    McClure, Travis; Frank, Steven D.

    2015-01-01

    Green peach aphid (Myzus persicae Sulzer) (Hemiptera: Aphididae) is a serious greenhouse pest with a short generation time, parthenogenetic reproduction and a broad host range. Banker plant systems are becoming a more common form of biological control for this pest. This system consists of grain “banker plants” infested with R. padi, an alternative hosts for the parasitoid Aphidius colemani. Thus A. colemani can reproduce on the banker plant when M. persicae populations are low. This system can increase pest suppression; however, like other biological control tools, efficacy is inconsistent. One reason is because several different grain species have been used. Our studies determined if there were benefits to planting interspecific mixture banker plants, similar to when open agricultural systems use mixed cropping. Our study found that although banker plants grow larger when planted as mixtures this added plant growth does not increase in the number of aphids, or mummies an individual banker plant can sustain. Rye banker plants grew larger, and sustained more mummies than the other species we tested, but barley banker plants resulted in a similar number of aphids in a more condensed area. Ultimately, we did not see any differences in pest suppression between monoculture banker plants, mixture banker plants, or our augmentative release treatment. However, using banker plants resulted in more female parasitoids than the augmentative release, a benefit to using banker plant systems. PMID:26463416

  11. Studying Grain Growth using Resolved Images of Protoplanetary Disks with CARMA

    NASA Astrophysics Data System (ADS)

    Perez, Laura M.; Isella, A.; Carpenter, J. M.

    2011-01-01

    Circumstellar disks around pre-main sequence stars are believed to be the birthplace of planets. High resolution imaging at millimeter wavelengths provides an important tool to identify the density and temperature distribution of material in the mid-plane of the disks where planets may form. The Combined Array for Research in Millimeter-wave Astronomy (CARMA) provides a unique opportunity to spatially resolve circumstellar disks in the nearby Taurus and Ophiuchus star-forming regions at spatial scales of 20 - 40 AU. Multi-wavelength millimeter observations can be used to measure radial variations in the spectral slope of the dust opacity. Any changes in the slope with radius will indicate variations in the dust properties (e.g. composition, grain size distribution) within the disk. To investigate grain growth in protoplanetary disks we have obtained multi-wavelength CARMA observations of circumstellar disks in Taurus and Ophiuchus, that constrain the slope of the millimeter dust opacity as a function of radius. We also present an overview of the Paired Antenna Calibration System, which has been employed to obtain observations at high angular resolution with CARMA.

  12. Minimization of three-dimensional beam emittance growth in rare-isotope accelerator

    NASA Astrophysics Data System (ADS)

    Oh, B. H.; Yoon, M.

    2016-12-01

    In this paper, we describe a research to minimize the three-dimensional (3D) emittance growth (EG) in the RAON accelerator, a heavy ion accelerator currently being developed in Korea to produce various rare isotopes. The emittance minimization is performed using the multi-objective genetic algorithm and the simplex method. We use them to analyze the driver linac for the in-flight fragmentation separator of the RAON facility and show that redesign of the 90-degree bending section of the RAON accelerator together with adjustment of optics in the upstream and downstream superconducting linacs can limit the 3D EG to 20 % in the entire region of the driver linac. Effects of various magnet and rf accelerating cavity errors on the beam-EG are also discussed.

  13. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth

    NASA Astrophysics Data System (ADS)

    Bayerlein, Bernd; Zaslansky, Paul; Dauphin, Yannicke; Rack, Alexander; Fratzl, Peter; Zlotnikov, Igor

    2014-12-01

    Significant progress has been made in understanding the interaction between mineral precursors and organic components leading to material formation and structuring in biomineralizing systems. The mesostructure of biological materials, such as the outer calcitic shell of molluscs, is characterized by many parameters and the question arises as to what extent they all are, or need to be, controlled biologically. Here, we analyse the three-dimensional structure of the calcite-based prismatic layer of Pinna nobilis, the giant Mediterranean fan mussel, using high-resolution synchrotron-based microtomography. We show that the evolution of the layer is statistically self-similar and, remarkably, its morphology and mesostructure can be fully predicted using classical materials science theories for normal grain growth. These findings are a fundamental step in understanding the constraints that dictate the shape of these biogenic minerals and shed light on how biological organisms make use of thermodynamics to generate complex morphologies.

  14. Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth.

    PubMed

    Bayerlein, Bernd; Zaslansky, Paul; Dauphin, Yannicke; Rack, Alexander; Fratzl, Peter; Zlotnikov, Igor

    2014-12-01

    Significant progress has been made in understanding the interaction between mineral precursors and organic components leading to material formation and structuring in biomineralizing systems. The mesostructure of biological materials, such as the outer calcitic shell of molluscs, is characterized by many parameters and the question arises as to what extent they all are, or need to be, controlled biologically. Here, we analyse the three-dimensional structure of the calcite-based prismatic layer of Pinna nobilis, the giant Mediterranean fan mussel, using high-resolution synchrotron-based microtomography. We show that the evolution of the layer is statistically self-similar and, remarkably, its morphology and mesostructure can be fully predicted using classical materials science theories for normal grain growth. These findings are a fundamental step in understanding the constraints that dictate the shape of these biogenic minerals and shed light on how biological organisms make use of thermodynamics to generate complex morphologies.

  15. Integrating Frameworks from Early Childhood Intervention and School Psychology to Accelerate Growth for All Young Children

    ERIC Educational Resources Information Center

    VanDerHeyden, Amanda M.; Snyder, Patricia

    2006-01-01

    Knowing what behaviors adults can engage in to accelerate child growth toward desired outcomes is fundamental to achieving the promise of early education and intervention. Once adequate progress-monitoring measures are developed, patterns of child performance over time and in response to certain interventions can be quantified. The ability to…

  16. The role of gallium sulfide in SrS:Ce grain growth

    SciTech Connect

    Evans, N.D.; Naman, A.; Jones, K.S.; Holloway, P.H.; Rice, P.M.

    1997-04-01

    Whereas efficient red (ZnS:Mn) and green (ZnS:Tb) phosphors are available for full-color flat-panel display technology, efficient blue phosphors are still under development. SrS:Ce is being investigated as a suitable material. As part of a larger study, annealed SrS:Ce films produced from sputter targets incorporating Ga{sub 2}S{sub 3} were found to be five times brighter than films produced from targets containing no Ga{sub 2}S{sub 3}. Consequently, the significance of added gallium sulfide to the morphology of SrS:Ce films during annealing is being investigated. Following deposition, plan view specimens of films were prepared for transmission electron microscopy by mechanical grinding, dimpling, and Ar{sup +} milling. Films were examined in a Philips CM12, and a JEOL 200CX. Additionally, EDS line scans were obtained in the scanning-transmission mode of a Philips CM200FEG, integrated with an EMiSPEC Vision acquisition system. The EDS line scans were defined as a series of 40 points along a line, spaced approximately 3.6 nm apart. The dwell time for EDS acquisition at each point was 10 sec. It was found that the addition of Ga{sub 2}S{sub 3} increases the brightness of SrS:Ce films by enhancing grain growth during annealing. Also being investigated is the possibility that Ga{sub 2}S{sub 3}, either as a sub-sulfide or as a source of Ga, is involved in a liquid-phase sintering mechanism, which would account for the increased grain growth observed after annealing.

  17. Anomalous grain growth in the surface region of a nanocrystalline CeO2 film under low-temperature heavy ion irradiation

    SciTech Connect

    Edmondson, Philip D.; Zhang, Yanwen; Moll, Sandra J.; Varga, Tamas; Namavar, Fereydoon; Weber, William J.

    2012-06-15

    Grain growth and phase stability of nanocrystalline ceria are investigated under ion irradiation at different temperatures. Irradiations at temperatures of 300 and 400 K result in uniform grain growth throughout the film. Anomalous grain growth is observed in thin films of nanocrystalline ceria under 3 MeV Au+ irradiation at 160 K. At this low temperature, significant grain growth is observed within 100 nm from the surface, no obvious growth is detected in the rest of the films. While the grain growth is attributed to a defect-stimulated mechanism at room temperature and above, a defect diffusion-limited mechanism is significant at low temperature with the primary defect responsible being the oxygen vacancy. The nanocrystalline grains remain in the cubic phase regardless of defect kinetics.

  18. Wheat distillers grains in feedlot cattle diets: feeding behavior, growth performance, carcass characteristics, and blood metabolites.

    PubMed

    Yang, W Z; Li, Y L; McAllister, T A; McKinnon, J J; Beauchemin, K A

    2012-04-01

    can be used effectively in feedlot diets, decreasing the need for barley grain or silage without negatively affecting growth performance and carcass characteristics. A reduction in the amount of roughage required to maintain growth performance is a potential advantage in feedlot operations because forage is costly and often of limited availability. Thus, DDGS can be a possible alternative as long as they are available and cost effective; however, increased incidence of liver abscess and increased N content of manure need to be considered when greater amounts of wheat DDGS are included in finishing diets.

  19. Effects of interstitial impurities on the high pressure martensitic α to ω structural transformation and grain growth in zirconium.

    PubMed

    Velisavljevic, Nenad; Chesnut, Gary N; Stevens, Lewis L; Dattelbaum, Dana M

    2011-03-30

    Static high pressure diamond anvil cell experiments were performed on three polycrystalline Zr samples having varying interstitial impurity concentrations. Systematic increase in transition pressure with the increase in the amount of interstitial impurities is observed for the martensitic α →ω structural phase transition in Zr. Significant room temperature crystal grain growth is also observed for the two highest purity samples at the α →ω transition. In the case of the lowest purity sample interstitial impurities obstruct the α →ω transition, while possibly helping impede grain growth-even as the sample is heated to 1279 K.

  20. Influence of grain growth on the structural properties of the nanocrystalline Gd2Ti2O7

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Yao, Tiankai; Scott, Spencer Michael; Nanda, Sonal; Lian, Jie

    2017-04-01

    The microstructural evolution and grain growth kinetics of the nanocrystalline Gd2Ti2O7 drastically affect its properties and functionalities as thermal barrier coatings and nuclear waste forms for actinide incorporation. Here, we report the synthesis of the dense nano-sized Gd2Ti2O7 by high energy ball milling (HEBM), and spark plasma sintering (SPS), and also investigated the isothermally annealing induced grain coarsening and structural properties variations. As-prepared nano powder (D∼60 nm) by HEBM exhibited an amorphous nature, which was consolidated to a dense single phase crystalline pyrochlore nano-ceramic (D∼120 ± 10 nm) by SPS sintering at 1200 °C. Isothermal annealing was performed at different temperatures (1300 °C - 1500 °C) with holding time varying from 0.5 to 8 h, and the pyrochlore phase is stable with no indication of a transformation into a defect fluorite structure. A rapid initial grain growth was observed which increased with temperature and annealing durations due to the large driving force of the curvature-driven grain coarsening of the nano-ceramics, and grain growth saturates at longer durations. The calculated value of the time constant and activation energy for the nanocrystalline Gd2Ti2O7 were 0.52 ± 0.02 and 240 ± 20 kJ/mol (∼2.48 eV), respectively. The enhanced grain growth kinetics with a lower value of activation energy can be explained by the effect of fast diffusion across the grain boundaries for dense nanoceramics.

  1. Increased diffuse radiation fraction does not significantly accelerate plant growth

    NASA Astrophysics Data System (ADS)

    Angert, Alon; Krakauer, Nir

    2010-05-01

    A recent modelling study (Mercado et al., 2009) claims that increased numbers of scattering aerosols are responsible for a substantial fraction of the terrestrial carbon sink in recent decades because higher diffuse light fraction enhances plant net primary production (NPP). Here we show that observations of atmospheric CO2 seasonal cycle and tree ring data indicate that the relation between diffuse light and NPP is actually quite weak on annual timescales. The inconsistency of these data with the modelling results may arise because the relationships used to quantify the enhancement of NPP were calibrated with eddy covariance measurements of hourly carbon uptake. The effect of diffuse-light fraction on carbon uptake could depend on timescale, since this effect varies rapidly as sun angle and cloudiness change, and since plants can respond dynamically over various timescales to change in incoming radiation. Volcanic eruptions, such as the eruption of Mount Pinatubo in 1991, provide the best available tests for the effect of an annual-scale increase in the diffuse light fraction. Following the Pinatubo Eruption, in 1992 and 1993, a sharp decrease in the atmospheric CO2 growth rate was observed. This could have resulted from enhanced plant carbon uptake. Mercado et al. (2009) argue that largely as a result of the (volcanic aerosol driven) increase in diffuse light fraction, NPP was elevated in 1992, particularly between 25° N-45° N where annual NPP was modelled to be ~0.8 PgC (~10%) above average. In a previous study (Angert et al., 2004) a biogeochemical model (CASA) linked to an atmospheric tracer model (MATCH), was used to show that a diffuse-radiation driven increase in NPP in the extratropics will enhance carbon uptake mostly in summer, leading to a lower CO2 seasonal minimum. Here we use a 'toy model' to show that this conclusion is general and model-independent. The model shows that an enhanced sink of 0.8 PgC, similar to that modelled by Mercado et al. (2009

  2. Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM

    SciTech Connect

    Permann, Cody J.; Tonks, Michael R.; Fromm, Bradley; Gaston, Derek R.

    2016-01-14

    Phase field modeling (PFM) is a well-known technique for simulating microstructural evolution. To model grain growth using PFM, typically each grain is assigned a unique non-conserved order parameter and each order parameter field is evolved in time. Traditional approaches using a one-to-one mapping of grains to order parameters present a challenge when modeling large numbers of grains due to the computational expense of using many order parameters. This problem is exacerbated when using an implicit finite element method (FEM), as the global matrix size is proportional to the number of order parameters. While previous work has developed methods to reduce the number of required variables and thus computational complexity and run time, none of the existing approaches can be applied for an implicit FEM implementation of PFM. Here, we present a modular, dynamic, scalable reassignment algorithm suitable for use in such a system. Polycrystal modeling with grain growth and stress require careful tracking of each grain’s position and orientation which is lost when using a reduced order parameter set. In conclusion, the method presented in this paper maintains a unique ID for each grain even after reassignment, to allow the PFM to be tightly coupled to calculations of the stress throughout the polycrystal. Implementation details and comparative results of our approach are presented.

  3. Order parameter re-mapping algorithm for 3D phase field model of grain growth using FEM

    DOE PAGES

    Permann, Cody J.; Tonks, Michael R.; Fromm, Bradley; ...

    2016-01-14

    Phase field modeling (PFM) is a well-known technique for simulating microstructural evolution. To model grain growth using PFM, typically each grain is assigned a unique non-conserved order parameter and each order parameter field is evolved in time. Traditional approaches using a one-to-one mapping of grains to order parameters present a challenge when modeling large numbers of grains due to the computational expense of using many order parameters. This problem is exacerbated when using an implicit finite element method (FEM), as the global matrix size is proportional to the number of order parameters. While previous work has developed methods to reducemore » the number of required variables and thus computational complexity and run time, none of the existing approaches can be applied for an implicit FEM implementation of PFM. Here, we present a modular, dynamic, scalable reassignment algorithm suitable for use in such a system. Polycrystal modeling with grain growth and stress require careful tracking of each grain’s position and orientation which is lost when using a reduced order parameter set. In conclusion, the method presented in this paper maintains a unique ID for each grain even after reassignment, to allow the PFM to be tightly coupled to calculations of the stress throughout the polycrystal. Implementation details and comparative results of our approach are presented.« less

  4. Nontoxic chemical process for in situ permeability enhancement and accelerated decontamination of fine-grain subsurface sediments

    DOEpatents

    Kansa, Edward J.; Wijesinghe, Ananda M.; Viani, Brian E.

    1997-01-01

    The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculents and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude.

  5. Nontoxic chemical process for in situ permeability enhancement and accelerated decontamination of fine-grain subsurface sediments

    DOEpatents

    Kansa, E.J.; Wijesinghe, A.M.; Viani, B.E.

    1997-01-14

    The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculants and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude. 8 figs.

  6. Aging Precursor Solution in High Humidity Remarkably Promoted Grain Growth in Cu₂ZnSnS₄ Films.

    PubMed

    Guan, Zhongjie; Luo, Wenjun; Xu, Yao; Tao, Qiuchen; Wen, Xin; Zou, Zhigang

    2016-03-02

    Earth-abundant Cu2ZnSnS4 (CZTS) is a promising material for thin film solar cells or solar water splitting cells. Generally, large grain size and vertical penetration are highly desirable microstructures to high-efficiency solar conversion devices. Up to date, some kinds of vacuum methods have been used to prepare large grain-sized CZTS, which are expensive and limit their applications on a large scale. It is still a key challenge to prepare large-grained and vertical-penetration CZTS by a low-cost solution method. In this study, we obtained vertical-penetration CZTS thin film with 1.3 μm grain sizes by a faclie solution method. Different from previous studies, precursor solution was aged in high-humidity air before it was used to prepare CZTS films. The grain size prepared with aging precursor solution was one of the largest among the samples prepared by a solution method after sulfurizing. Moreover, the large-grained CZTS films were used as photocathodes for solar water splitting, which exhibited a much higher photocurrent than those of the samples without aging. To the best of our knowledge, this is the first demonstration to promote grain growth in CZTS by aging precursor solution in high-humidity air. This aging method can offer a reference to prepare other high-performance films.

  7. The Role of Potassium in Improving Growth Indices and Increasing Amount of Grain Nutrient Elements of Wheat Cultivars

    NASA Astrophysics Data System (ADS)

    Bahmanyar, M. A.; Ranjbar, G. A.

    In order to consider potassium role in improvement of growth indices and increasing the amount of nutrient elements in wheat grain, a pot experiment has been undertaken in 2005. In this experiment cultivars Tajan and Nye 60 have been used in four levels of potassium (0, 100, 200 and 300 kg K2O ha-1 from source of K2SO4) in form of factorial experiment based on a completely randomized design. Results showed that application of potassium increased dry matter, 1000 grain weight, tiller number, seed and leaf potassium content, seed Zn content, plant height, seed Iron and protein content. Also, grain yield, 1000 grain weight, seed potassium and Zn content in cultivar Nye 60 were higher than in cultivar Tajan and tiller number and seed protein content in cultivar Tajan were higher than in cultivar Nye 60.

  8. Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: Biochemical aspects and preparation of mushroom inoculum.

    PubMed

    Sainos, E; Díaz-Godínez, G; Loera, O; Montiel-González, A M; Sánchez, C

    2006-10-01

    Mycelial growth, intracellular activity of proteases, laccases and beta-1,3-glucanases, and cytoplasmic protein were evaluated in the vegetative phase of Pleurotus ostreatus grown on wheat straw and in wheat-grain-based media in Petri dishes and in bottles. The productivity of the wheat straw and wheat-grain-based spawn in cylindrical polyethylene bags containing 5 kg of chopped straw was also determined. We observed high activity of proteases and high content of intracellular protein in cultures grown on wheat straw. This suggests that the proteases are not secreted into the medium and that the protein is an important cellular reserve. On the contrary, cultures grown on wheat straw secreted laccases into the medium, which could be induced by this substrate. P. ostreatus grown on media prepared with a combination of wheat straw and wheat grain showed a high radial growth rate in Petri dishes and a high level of mycelial growth in bottles. The productivities of wheat straw and wheat-grain-based spawn were similar. Our results show that cheaper and more productive mushroom spawn can be prepared by developing the mycelium on wheat straw and wheat-grain-based substrates.

  9. A review on the factors affecting mite growth in stored grain commodities.

    PubMed

    Collins, D A

    2012-03-01

    A thorough review of the literature has identified the key factors and interactions that affect the growth of mite pests on stored grain commodities. Although many factors influence mite growth, the change and combinations of the physical conditions (temperature, relative humidity and/or moisture content) during the storage period are likely to have the greatest impact, with biological factors (e.g. predators and commodity) playing an important role. There is limited information on the effects of climate change, light, species interactions, local density dependant factors, spread of mycotoxins and action thresholds for mites. A greater understanding of these factors may identify alternative control techniques. The ability to predict mite population dynamics over a range of environmental conditions, both physical and biological, is essential in providing an early warning of mite infestations, advising when appropriate control measures are required and for evaluating control measures. This information may provide a useful aid in predicting and preventing mite population development as part of a risk based decision support system.

  10. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise

    PubMed Central

    Ridge, Justin T.; Rodriguez, Antonio B.; Joel Fodrie, F.; Lindquist, Niels L.; Brodeur, Michelle C.; Coleman, Sara E.; Grabowski, Jonathan H.; Theuerkauf, Ethan J.

    2015-01-01

    Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species’ ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20–40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR. PMID:26442712

  11. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise.

    PubMed

    Ridge, Justin T; Rodriguez, Antonio B; Joel Fodrie, F; Lindquist, Niels L; Brodeur, Michelle C; Coleman, Sara E; Grabowski, Jonathan H; Theuerkauf, Ethan J

    2015-10-07

    Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species' ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20-40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR.

  12. Arresting bubble coarsening: A two-bubble experiment to investigate grain growth in the presence of surface elasticity

    NASA Astrophysics Data System (ADS)

    Salonen, A.; Gay, C.; Maestro, A.; Drenckhan, W.; Rio, E.

    2016-11-01

    Many two-phase materials suffer from grain growth due to the energy cost which is associated with the interface that separates both phases. While our understanding of the driving forces and the dynamics of grain growth in different materials is well advanced by now, current research efforts address the question of how this process may be slowed down, or, ideally, arrested. We use a model system of two bubbles to explore how the presence of a finite surface elasticity may interfere with the coarsening process and the final grain size distribution. Combining experiments and modelling in the analysis of the evolution of two bubbles, we show that clear relationships can be predicted between the surface tension, the surface elasticity and the initial/final size ratio of the bubbles. We rationalise these relationships by the introduction of a modified Gibbs criterion. Besides their general interest, the present results have direct implications for our understanding of foam stability.

  13. Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication.

    PubMed

    Shi, Tao; Dimitrov, Ivan; Zhang, Yinling; Tax, Frans E; Yi, Jing; Gou, Xiaoping; Li, Jia

    2015-10-01

    Traits related to grain and reproductive organs in grass crops have been under continuous directional selection during domestication. Barley is one of the oldest domesticated crops in human history. Thus genes associated with the grain and reproductive organs in barley may show evidence of dramatic evolutionary change. To understand how artificial selection contributes to protein evolution of biased genes in different barley organs, we used Digital Gene Expression analysis of six barley organs (grain, pistil, anther, leaf, stem and root) to identify genes with biased expression in specific organs. Pairwise comparisons of orthologs between barley and Brachypodium distachyon, as well as between highland and lowland barley cultivars mutually indicated that grain and pistil biased genes show relatively higher protein evolutionary rates compared with the median of all orthologs and other organ biased genes. Lineage-specific protein evolutionary rates estimation showed similar patterns with elevated protein evolution in barley grain and pistil biased genes, yet protein sequences generally evolve much faster in the lowland barley cultivar. Further functional annotations revealed that some of these grain and pistil biased genes with rapid protein evolution are related to nutrient biosynthesis and cell cycle/division. Our analyses provide insights into how domestication differentially shaped the evolution of genes specific to different organs of a crop species, and implications for future functional studies of domestication genes.

  14. The Herschel exploitation of local galaxy Andromeda (HELGA) - V. Strengthening the case for substantial interstellar grain growth

    NASA Astrophysics Data System (ADS)

    Mattsson, L.; Gomez, H. L.; Andersen, A. C.; Smith, M. W. L.; De Looze, I.; Baes, M.; Viaene, S.; Gentile, G.; Fritz, J.; Spinoglio, L.

    2014-10-01

    In this paper, we consider the implications of the distributions of dust and metals in the disc of M31. We derive mean radial dust distributions using a dust map created from Herschel images of M31 sampling the entire far-infrared peak. Modified blackbodies are fit to approximately 4000 pixels with a varying, as well as a fixed, dust emissivity index (β). An overall metal distribution is also derived using data collected from the literature. We use a simple analytical model of the evolution of the dust in a galaxy with dust contributed by stellar sources and interstellar grain growth, and fit this model to the radial dust-to-metals distribution across the galaxy. Our analysis shows that the dust-to-gas gradient in M31 is steeper than the metallicity gradient, suggesting interstellar dust growth is (or has been) important in M31. We argue that M31 helps build a case for cosmic dust in galaxies being the result of substantial interstellar grain growth, while the net dust production from stars may be limited. We note, however, that the efficiency of dust production in stars, e.g. in supernovae ejecta and/or stellar atmospheres, and grain destruction in the interstellar medium may be degenerate in our simple model. We can conclude that interstellar grain growth by accretion is likely at least as important as stellar dust production channels in building the cosmic dust component in M31.

  15. Growth Responses and Resistance to Streptococccus iniae of Nile Tilapia, Oreochromis niloticus Fed Diets Containing Distiller's Dried Grains with Solubles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the effect of dietary levels of distiller’s dried grains with solubles (DDGS) on growth performance, body composition, hematology, immune response and resistance of Nile tilapia to Streptococcus iniae challenge. Five isocaloric diets containing DDGS at levels of ...

  16. Enhancing the High Temperature Capability of Nanocrystalline Alloys: Utilizing Thermodynamic Stability Maps to Mitigate Grain Growth Through Solute Selection

    DTIC Science & Technology

    2013-12-01

    Army Research Laboratory Enhancing the High Temperature Capability of Nanocrystalline Alloys : Utilizing Thermodynamic Stability Maps to Mitigate...Laboratory Aberdeen Proving Ground, MD 21005 ARL-TR-6743 December 2013 Enhancing the High Temperature Capability of Nanocrystalline Alloys : Utilizing...Final Enhancing the High Temperature Capability of Nanocrystalline Alloys : Utilizing Thermodynamic Stability Maps to Mitigate Grain Growth Through

  17. Anomalous grain growth in the surface region of a nanocrystalline CeO2 film under low-temperature heavy ion irradiation

    SciTech Connect

    Edmondson, Dr. Philip; Zhang, Yanwen; Moll, Sandra; Varga, Tamas; Namavar, Fereydoon; Weber, William J

    2012-01-01

    Grain growth and phase stability of nanocrystalline ceria are investigated under ion irradiation at different temperatures. Irradiations at temperatures of 300 and 400 K result in uniform grain growth throughout the film. Anomalous grain growth is observed in thin films of nanocrystalline ceria under 3 MeV Au+ irradiation at 160 K. At this low temperature, significant grain growth is observed within 100 nm from the surface, no obvious growth is detected in the rest of the films. While the grain growth is attributed to a defect-stimulated mechanism at room temperature and above, a defect diffusion-limited mechanism is significant at low temperature with the primary defect responsible being the oxygen vacancy.

  18. MENTAL RETARDATION AND ACCELERATED GROWTH: INAPPROPRIATE SECRETION OF HUMAN GROWTH HORMONE,

    DTIC Science & Technology

    he had periodic elevations of the fasting plasma growth hormone levels and regularly had a paradoxical fall in the hormone level associated with...insulin-induced hypoglycemia. The human growth hormone response to arginine infusion was perfectly normal. It is suggested that the occasional elevations...in human growth hormone under fasting conditions and the paradoxical response to insulin are compatible with the hypothesis that this patient

  19. Early Acceleration of Mathematics Students and its Effect on Growth in Self-esteem: A Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Ma, Xin

    2002-11-01

    The Longitudinal Study of American Youth (LSAY) database was employed to examine the educational practice of early acceleration of students of mathematics on the development of their self-esteem across the entire secondary grade levels. Students were classified into three different academic categories (gifted, honors, and regular). Results indicated that, in terms of the development of their self-esteem, gifted students benefited from early acceleration, honors students neither benefited nor were harmed by early acceleration, and regular students were harmed by early acceleration. Early acceleration in mathematics promoted significant growth in self-esteem among gifted male students and among gifted, honors, and regular minority students. When students were accelerated, schools showed similar average growth in self-esteem among gifted students and regular students and a large effect of general support for mathematics on the average growth in self-esteem among honors students.

  20. Suppression of grain growth in nanocrystalline Bi{sub 2}Te{sub 3} through oxide particle dispersions

    SciTech Connect

    Humphry-Baker, Samuel A.; Schuh, Christopher A.

    2014-11-07

    The strategy of suppressing grain growth by dispersing nanoscale particles that pin the grain boundaries is demonstrated in a nanocrystalline thermoelectric compound. Yttria nanoparticles that were incorporated by mechanical alloying enabled nanocrystalline (i.e., d < 100 nm) Bi{sub 2}Te{sub 3} to be retained up to a homologous temperature of 0.94 T{sub m} for durations over which the grain size of the unreinforced compound grew to several microns. The nanostructure appeared to saturate at a grain size that depended on volume fraction (f) according to an f {sup −1/3} relationship, in accordance with theoretical models in the limit of high volume fractions of particles. Interestingly, at low temperatures, the particles stimulate enhanced grain growth over the unreinforced compound, due to particle-stimulated nucleation of recrystallization. To help prevent this effect, in-situ composites formed by internal oxidation of yttrium are compared with those made ex-situ by incorporation of yttria nanoparticles, with the result that the in-situ dispersion eliminates recrystallization at low temperatures and therefore improves nanostructure stabilization. These developments offer a pathway to thermally stabilized bulk nanocrystalline thermoelectrics processed via a powder route.

  1. High temperature grain growth and oxidation of Fe-29Ni-17Co (Kovar{trademark}) alloy leads

    SciTech Connect

    Stephens, J.J.; Greulich, F.A.; Beavis, L.C.

    1993-12-31

    One important application for the Fe-29Ni-17Co (Kovar{trademark}) alloy in wire form is in brazed feed through assemblies which are integral parts of vacuum electronic devices. Since Cu metal brazes are performed at process temperatures of about 1100{degrees}C, there is opportunity for significant grain growth to occur during the brazing operation. Additional high temperature exposure includes decarburization of the Fe-29Ni-17Co alloy wire in wet hydrogen for 30 min. at 1000{degrees}C prior to the Cu brazing operation. Two approaches have been used to characterize grain growth in two lots of Fe-29Ni-17Co alloy: (1) a once-through processing study to study the effect of one-time-only device thermal processing on the resulting grain size, and (2) an isothermal grain growth study involving various times at 800--1100{degrees}C. The results of the once-through processing study indicate that acceptable grain sizes are obtained from both cold worked and mill-annealed wire lots following Cu brazing. The isothermal grain growth study indicates that the linear intercept distance for Fe-29Ni-17Co can be described with a power law function of time, and that thermal exposure must be controlled at temperatures in excess of 900{degrees}C in order to avoid excessive grain growth. A second study has characterized the oxidation kinetics of Fe-29Ni-17Co alloy wire in air at temperatures ranging from 550--700{degrees}C. This study indicates the parabolic growth law applies for this material, and between 550 and 700{degrees}C, oxidation in this alloy occurs at an activation energy of 27.9 kcal/mole. Other oxidation studies at higher temperatures ({ge}750{degrees}C) indicate an activation energy of 52.2 kcal/mole for oxidation of Fe-29Ni-17Co alloy at temperatures greater than 790{degrees}C. Quantitative point analyses of the oxide scale formed at 600{degrees}C suggest that a significant fraction of the scale is close to the stoichiometry of the Fe{sub 2}O{sub 3}-type oxide.

  2. Numerical analysis of the sensitivity of crystal growth experiments to spacecraft residual acceleration

    NASA Technical Reports Server (NTRS)

    Alexander, J. I. D.; Amiroudine, Sakir; Ouazzani, Jalil; Rosenberger, Franz

    1992-01-01

    An analysis is conducted of the sensitivity of the Bridgman-Stockbarger crystal growth method, using an idealized model for a range of operating and boundary conditions over a variety of accelerations. Attention is given to the dopant nonuniformity at the melt-crystal interface. The largest compositional nonuniformities are found to occur for disturbances whose amplitudes are greater than 10 exp 6 g, and frequencies below 0.1 Hz.

  3. Modeling methane bubble growth in fine-grained muddy aquatic sediments: correlation with sediment properties

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-04-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  4. Decarburization and grain growth kinetics during the annealing of electrical steels

    SciTech Connect

    Oldani, C.R.

    1996-12-01

    Electrical steels are generally described as thin steel sheets of variable thickness (from 0.27 to 0.76 mm), whose function is to efficiently transport the magnetic flux in electrical equipments. The electromagnetic properties expected from these materials are low magnetic losses and a high permeability. It can be said that a cyclically magnetized-demagnetized material is not free of energy losses because a portion of the power, the loss, is irreversibly transformed into heat. These steels are usually produced in a partially processed condition and they reach their maximum magnetic potential during the final steps of manufacture at the user`s plant. Efficient control of the operations by which the sheets are submitted is essential to obtain the optimum steel yield in the magnetic circuit they are made for. In these operations a decarburization annealing heat treatment produces important effects such as removing punching residual tensions, decarburization to very low carbon content, ferritic grain growth and a favorable magnetic crystallographic texture.

  5. Modeling Growth and Dissolution Kinetics of Grain-Boundary Cementite in Cyclic Carburizing

    NASA Astrophysics Data System (ADS)

    Ikehata, Hideaki; Tanaka, Kouji; Takamiya, Hiroyuki; Mizuno, Hiroyuki; Shimada, Takeyuki

    2013-08-01

    In vacuum carburizing of steels, short-time carburizing is usually followed by a diffusion period to eliminate the filmlike cementite ( θ GB ) grown on the austenite ( γ) grain boundary surface. In order to obtain the θ GB amount during the process, the conventional model estimates the amount of cementite ( θ) with the equilibrium fractions for local C contents within a framework of the finite difference method (FDM), which overestimates the amount of θ GB observed after several minutes of carburizing. In our newly developed model, a parabolic law is assumed for the growth of θ GB and the rate controlling process is considered to be Si diffusion rejected from θ under the isoactivity condition. In contrast, the rate constant for the dissolution of θ GB is considered to be controlled by Cr diffusion of θ. Both rate coefficients ( α) were validated using multicomponent diffusion simulation for the moving velocity of the γ/ θ interface. A one-dimensional (1-D) FDM program calculates an increment of θ GB for all grid points by the updated diffusivities and local equilibrium using coupled CALPHAD software. Predictions of the carbon (C) profile and volume fraction of cementite represent the experimental analysis much better than the existing models, especially for both short-time carburization and the cyclic procedure of carburization and diffusion processes.

  6. Deformation-induced grain growth and twinning in nanocrystalline palladium thin films.

    PubMed

    Kobler, Aaron; Lohmiller, Jochen; Schäfer, Jonathan; Kerber, Michael; Castrup, Anna; Kashiwar, Ankush; Gruber, Patric A; Albe, Karsten; Hahn, Horst; Kübel, Christian

    2013-01-01

    The microstructure and mechanical properties of nanocrystalline Pd films prepared by magnetron sputtering have been investigated as a function of strain. The films were deposited onto polyimide substrates and tested in tensile mode. In order to follow the deformation processes in the material, several samples were strained to defined straining states, up to a maximum engineering strain of 10%, and prepared for post-mortem analysis. The nanocrystalline structure was investigated by quantitative automated crystal orientation mapping (ACOM) in a transmission electron microscope (TEM), identifying grain growth and twinning/detwinning resulting from dislocation activity as two of the mechanisms contributing to the macroscopic deformation. Depending on the initial twin density, the samples behaved differently. For low initial twin densities, an increasing twin density was found during straining. On the other hand, starting from a higher twin density, the twins were depleted with increasing strain. The findings from ACOM-TEM were confirmed by results from molecular dynamics (MD) simulations and from conventional and in-situ synchrotron X-ray diffraction (CXRD, SXRD) experiments.

  7. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    SciTech Connect

    Berg, J. S.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compaction in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.

  8. Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe

    DOE PAGES

    Ronevich, Joseph Allen; Somerday, Brian P.; Feng, Zhili

    2016-11-17

    Friction stir welded steel pipelines were tested in high pressure hydrogen gas to examine the effects of hydrogen accelerated fatigue crack growth. Fatigue crack growth rate (da/dN) vs. stress-intensity factor range (ΔK) relationships were measured for an X52 friction stir welded pipe tested in 21 MPa hydrogen gas at a frequency of 1 Hz and R = 0.5. Tests were performed on three regions: base metal (BM), center of friction stir weld (FSW), and 15 mm off-center of the weld. For all three material regions, tests in hydrogen exhibited accelerated fatigue crack growth rates that exceeded an order of magnitudemore » compared to companion tests in air. Among tests in hydrogen, fatigue crack growth rates were modestly higher in the FSW than the BM and 15 mm off-center tests. Select regions of the fracture surfaces associated with specified ΔK levels were examined which revealed intergranular fracture in the BM and 15 mm off-center specimens but an absence of intergranular features in the FSW specimens. In conclusion, the X52 friction stir weld and base metal tested in hydrogen exhibited fatigue crack growth rate relationships that are comparable to those for conventional arc welded steel pipeline of similar strength found in the literature.« less

  9. Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe

    SciTech Connect

    Ronevich, Joseph Allen; Somerday, Brian P.; Feng, Zhili

    2016-11-17

    Friction stir welded steel pipelines were tested in high pressure hydrogen gas to examine the effects of hydrogen accelerated fatigue crack growth. Fatigue crack growth rate (da/dN) vs. stress-intensity factor range (ΔK) relationships were measured for an X52 friction stir welded pipe tested in 21 MPa hydrogen gas at a frequency of 1 Hz and R = 0.5. Tests were performed on three regions: base metal (BM), center of friction stir weld (FSW), and 15 mm off-center of the weld. For all three material regions, tests in hydrogen exhibited accelerated fatigue crack growth rates that exceeded an order of magnitude compared to companion tests in air. Among tests in hydrogen, fatigue crack growth rates were modestly higher in the FSW than the BM and 15 mm off-center tests. Select regions of the fracture surfaces associated with specified ΔK levels were examined which revealed intergranular fracture in the BM and 15 mm off-center specimens but an absence of intergranular features in the FSW specimens. In conclusion, the X52 friction stir weld and base metal tested in hydrogen exhibited fatigue crack growth rate relationships that are comparable to those for conventional arc welded steel pipeline of similar strength found in the literature.

  10. The free growth criterion for grain initiation in TiB 2 inoculated γ-titanium aluminide based alloys

    NASA Astrophysics Data System (ADS)

    Gosslar, D.; Günther, R.

    2014-02-01

    γ-titanium aluminide (γ-TiAl) based alloys enable for the design of light-weight and high-temperature resistant engine components. This work centers on a numerical study of the condition for grain initiation during solidification of TiB2 inoculated γ-TiAl based alloys. Grain initiation is treated according to the so-called free growth criterion. This means that the free growth barrier for grain initiation is determined by the maximum interfacial mean curvature between a nucleus and the melt. The strategy presented in this paper relies on iteratively increasing the volume of a nucleus, which partially wets a hexagonal TiB2 crystal, minimizing the interfacial energy and calculating the corresponding interfacial curvature. The hereby obtained maximum curvature yields a scaling relation between the size of TiB2 crystals and the free growth barrier. Comparison to a prototypical TiB2 crystal in an as cast γ-TiAl based alloy allowed then to predict the free growth barrier prevailing under experimental conditions. The validity of the free growth criterion is discussed by an interfacial energy criterion.

  11. Towards the Truly Predictive 3D Modeling of Recrystallization and Grain Growth in Advanced Technical Alloys

    DTIC Science & Technology

    2010-06-11

    estimation are shown by deep blue color. PAGE 16 Fig.1.8. (a) Grain shape approximated with the Dodecahedron and (b) estimation of GB volume part...r w hi ch G B I c an b e es tim at ed , % Grain size, MU a) b) Fig.1.8. (a) Grain shape approximated with the Dodecahedron and (b...estimation of GB volume part for which GBI can be derived. Excluded part of GB estimated by taking the Dodecahedron as the grain shape approximation and

  12. DCC functions as an accelerator of thalamocortical axonal growth downstream of spontaneous thalamic activity

    PubMed Central

    Castillo-Paterna, Mar; Moreno-Juan, Verónica; Filipchuk, Anton; Rodríguez-Malmierca, Luis; Susín, Rafael; López-Bendito, Guillermina

    2015-01-01

    Controlling the axon growth rate is fundamental when establishing brain connections. Using the thalamocortical system as a model, we previously showed that spontaneous calcium activity influences the growth rate of thalamocortical axons by regulating the transcription of Robo1 through an NF-κB-binding site in its promoter. Robo1 acts as a brake on the growth of thalamocortical axons in vivo. Here, we have identified the Netrin-1 receptor DCC as an accelerator for thalamic axon growth. Dcc transcription is regulated by spontaneous calcium activity in thalamocortical neurons and activating DCC signaling restores normal axon growth in electrically silenced neurons. Moreover, we identified an AP-1-binding site in the Dcc promoter that is crucial for the activity-dependent regulation of this gene. In summary, we have identified the Dcc gene as a novel downstream target of spontaneous calcium activity involved in axon growth. Together with our previous data, we demonstrate a mechanism to control axon growth that relies on the activity-dependent regulation of two functionally opposed receptors, Robo1 and DCC. These two proteins establish a tight and efficient means to regulate activity-guided axon growth in order to correctly establish neuronal connections during development. PMID:25947198

  13. Early rapid growth, early birth: Accelerated fetal growth and spontaneous late preterm birth

    PubMed Central

    Kusanovic, Juan Pedro; Erez, Offer; Espinoza, Jimmy; Gotsch, Francesca; Goncalves, Luis; Hassan, Sonia; Gomez, Ricardo; Nien, Jyh Kae; Frongillo, Edward A.; Romero, Roberto

    2011-01-01

    The past two decades in the United States have seen a 24 % rise in spontaneous late preterm delivery (34 to 36 weeks) of unknown etiology. This study tested the hypothesis that fetal growth was identical prior to spontaneous preterm (n=221, median gestational age at birth 35.6 weeks) and term (n=3706) birth among pregnancies followed longitudinally in Santiago, Chile. The hypothesis was not supported: Preterm-delivered fetuses were significantly larger than their term-delivered peers by mid-second trimester in estimated fetal weight, head, limb and abdominal dimensions, and they followed different growth trajectories. Piecewise regression assessed time-specific differences in growth rates at 4-week intervals from 16 weeks. Estimated fetal weight and abdominal circumference growth rates faltered at 20 weeks among the preterm-delivered, only to match and/or exceed their term-delivered peers at 24–28 weeks. After an abrupt decline at 28 weeks attenuating growth rates in all dimensions, fetuses delivered preterm did so at greater population-specific sex and age-adjusted weight than their peers from uncomplicated pregnancies (p<0.01). Growth rates predicted birth timing: one standard score of estimated fetal weight increased the odds ratio for preterm birth from 2.8 prior to 23 weeks, to 3.6 (95% confidence interval, 1.82–7.11, p<0.05) between 23 and 27 weeks. After 27 weeks, increasing size was protective (OR: 0.56, 95% confidence interval, 0.38–0.82, p=0.003). These data document, for the first time, a distinctive fetal growth pattern across gestation preceding spontaneous late preterm birth, identify the importance of mid-gestation for alterations in fetal growth, and add perspective on human fetal biological variability. PMID:18988282

  14. On the effect of accelerated winds on the wave growth through detailed laboratory measurements.

    NASA Astrophysics Data System (ADS)

    Ocampo-Torres, Francisco J.; Branger, Hubert; Osuna, Pedro; Hernández, Aldo

    2013-04-01

    The possible influence of accelerated winds on air-water momentum fluxes is being studied through detailed laboratory measurements in a large wind-wave flume. Wind stress over the water surface, waves and surface drift are measured in the 40m long wind-wave tank at IRPHE, Marseille. While momentum fluxes are estimated directly through the eddy correlation method in a station about the middle of the tank, they provide information corresponding to rather short non-dimensional fetch not previously reported. Wave evolution along the tank is determined through a series of wave gauges, and the wind-induced surface drift is obtained at one of the first measuring stations at the beginning of the tank. At each experimental run very low wind was on (about 1m/s) for a certain period and suddenly it was constantly accelerated to reach about 13 m/s (as well as 8 and 5 m/s during different runs) in about 15 sec to as long as 600 sec. The wind was kept constant at that high speed for 2 to 10 min, and then suddenly and constantly decelerate to 0. Data from the constant high winds provided us with reference equilibrium conditions for at least 3 different wind speed. We, nevertheless, focus in the recordings while wind was being constantly accelerated expecting some contribution to the understanding of gustiness, the implied wind wave growth and the onset of surface drift. Wind-wave growth is observed to lag behind the wind stress signal, and furthermore, a two regime wind stress is noticed, apparently well correlated with a) the incipient growth and appearance of the first waves and b) the arrival of waves from the up-wind section of the tank. Results of non-dimensional wave energy as a function of non-dimensional fetch represent an extension of at least 2 decades shorter non-dimensional fetch to the wave growth curves typically found in the literature. The linear tendency of wave growth compares very well only when wind is reaching its maximum, while during the accelerated wind

  15. Effects of triaxial stressing on creep cavitation of grain boundaries

    SciTech Connect

    Sham, T.L.; Needleman, A.

    1983-01-01

    The authors investigate the influence of triaxial stressing on the growth of cavities on grain boundaries by the combined processes of plastic creep flow and grain boundary diffusion. The coupling arises from local accommodation of matter on the grain boundary near the cavity tip due to plastic creep deformability of the grains. This has the effect of shortening the diffusion path length on the grain boundary and increasing the cavity volumetric growth rate. An increase in triaxiality is found to accelerate the matter flux flowing from the cavity surfaces onto the grain boundaries and thus increase the cavity volumetric growth rate. This occurs at attainable levels of triaxiality. However, the enhancement in the triaxial stress state does not affect the effective diffusion path length very significantly. A simple formula for the volumetric growth rate of the cavity is suggested and it is found to give a good approximation to the numerically computed results.

  16. Effects of triaxial stressing on creep cavitation of grain boundaries

    SciTech Connect

    Sham, T.L.; Needleman, A.

    1982-09-01

    We investigate the influence of triaxial stressing on the growth of cavities on grain boundaries by the combined processes of plastic creep flow and grain boundary diffusion. The coupling arises from local accommodation of matter on the grain boundary near the cavity tip due to plastic creep deformability of the grains. This has the effect of shortening the diffusion path length on the grain boundary and increasing the cavity volumetric growth rate. An increase in triaxiality is found to accelerate the matter flux flowing from the cavity surfaces onto the grain boundaries and thus increase the cavity volumetric growth rate. This occurs at realizable levels of triaxiality. However, the enhancement in the triaxial stress state does not affect the effective diffusion path length very significantly. A simple formula for the volumetric growth rate of the cavity is suggested and it is found to give a good approximation to the numerically computed results.

  17. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    SciTech Connect

    Chen, Chunlong; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald; De Yoreo, James J.

    2014-09-05

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic interactions (EI) and hydrophobic interactions (HI), with HI playing the dominant role. While either strong EI or HI inhibit growth and suppress (104) face expression, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate EI allow peptoids to weakly adsorb while moderate HI cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of (104) faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  18. Growth morphology of single-crystal grains obtained by directional crystallisation of an Al-Cu-Fe alloy

    NASA Astrophysics Data System (ADS)

    Surowiec, Marian; Bogdanowicz, Wlodzimierz; Krawczyk, Jacek; Formanek, Bolesław; Sozanska, Maria

    2011-07-01

    Quasicrystalline as well as crystalline faceted single grains of four phases were obtained during directional crystallisation of an Al-Cu-Fe alloy by the Bridgman technique. The monoclinic λ phase, Al13(Cu, Fe)4, dominating at high temperatures formed single-crystal lamellae 0.5 mm to 1 mm thick. A second type of attractive morphological form exhibiting flux dissolution terraces was observed on spherical single crystals of β phase Al(Fe, Cu). Rectangular, hexagonal and octagonal shaped dissolution terraces were revealed at the positions of two-, three- and four-fold symmetry axes, respectively. A single quasicrystalline ψ phase, Al6Cu2Fe, exhibited icosahedral symmetry with growth forms of a dodecahedron with pentagonal facets. The flux dissolution of the β phase apparently plays an essential role in a peritectic reaction leading to quasicrystalline ψ phase formation. Polygonal single grains of ω phase Al7Cu2Fe exhibiting tetragonal symmetry formed the fourth type of thermodynamically stable growth forms. Single grains of the ω phase crystallised in the form of pellets with an octagonal cross-section. The growth morphology of the stable phases was investigated by scanning electron microscopy. The chemical composition of the growth forms described was confirmed by X-ray microanalysis using a scanning electron microscope, whereas the phase composition was determined using electron selected area diffraction and X-ray powder diffraction.

  19. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

    SciTech Connect

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; Collins, G. W.; Sandberg, R.; Yang, W.; Mao, W. L.

    2015-09-04

    Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.

  20. Replacement of mineral fertilizers with anaerobically digested pig slurry in paddy fields: assessment of plant growth and grain quality.

    PubMed

    Zhang, Jin; Wang, Minyan; Cao, Yucheng; Liang, Peng; Wu, Shengchun; Leung, Anna Oi Wah; Christie, Peter

    2015-08-07

    Rice cultivation requires large quantities of irrigation water and mineral fertilizers. This provides an opportunity for the recycling of the plant nutrients in anaerobically digested pig slurry, large amounts of which are generated in Chinese pig farms. Hence, to promote the sustainable development of livestock and poultry breeding and rice production, a micro-plot field experiment was carried out to assess whether or not slurry can replace mineral fertilizers in rice paddy production in terms of plant tillering, grain quality, and yields. The results indicate that the total N content of the slurry can serve as an alternative source of N when compared to the control (450 kg ha(-1) commercial compound fertilizer (N/P2O5/K2O = 15:15:15) as basal fertilizer, 300 kg ha(-1) urea (N% = 46), and 150 kg ha(-1) commercial compound fertilizer as top-dressed fertilizer). No negative effects on plant growth or grain yield were observed, although there may be a potential risk due to an increase in grain Cu concentration. The amylose content and gel consistency of the rice grains were enhanced significantly by the use of slurry as a basal fertilizer, but the grain protein and total amino acid contents decreased. The results suggest that anaerobically digested pig slurry can replace mineral fertilizers in rice production when applied as a basal dressing together with urea and commercial compound fertilizer as top-dressed fertilizers.

  1. Electrical Transport and Grain Growth in Solution-Cast, Chloride-Terminated Cadmium Selenide Nanocrystal Thin Films

    PubMed Central

    2015-01-01

    We report the evolution of electrical transport and grain size during the sintering of thin films spin-cast from soluble phosphine and amine-bound, chloride-terminated cadmium selenide nanocrystals. Sintering of the nanocrystals occurs in three distinct stages as the annealing temperature is increased: (1) reversible desorption of the organic ligands (≤150 °C), (2) irreversible particle fusion (200–300 °C), and (3) ripening of the grains to >5 nm domains (>200 °C). Grain growth occurs at 200 °C in films with 8 atom % Cl–, while films with 3 atom % Cl– resist growth until 300 °C. Fused nanocrystalline thin films (grain size = 4.5–5.5 nm) on thermally grown silicon dioxide gate dielectrics produce field-effect transistors with electron mobilities as high as 25 cm2/(Vs) and on/off ratios of 105 with less than 0.5 V hysteresis in threshold voltage without the addition of indium. PMID:24960255

  2. Electrical transport and grain growth in solution-cast, chloride-terminated cadmium selenide nanocrystal thin films.

    PubMed

    Norman, Zachariah M; Anderson, Nicholas C; Owen, Jonathan S

    2014-07-22

    We report the evolution of electrical transport and grain size during the sintering of thin films spin-cast from soluble phosphine and amine-bound, chloride-terminated cadmium selenide nanocrystals. Sintering of the nanocrystals occurs in three distinct stages as the annealing temperature is increased: (1) reversible desorption of the organic ligands (≤150 °C), (2) irreversible particle fusion (200-300 °C), and (3) ripening of the grains to >5 nm domains (>200 °C). Grain growth occurs at 200 °C in films with 8 atom % Cl(-), while films with 3 atom % Cl(-) resist growth until 300 °C. Fused nanocrystalline thin films (grain size = 4.5-5.5 nm) on thermally grown silicon dioxide gate dielectrics produce field-effect transistors with electron mobilities as high as 25 cm(2)/(Vs) and on/off ratios of 10(5) with less than 0.5 V hysteresis in threshold voltage without the addition of indium.

  3. Education and Skills for Development in South Africa: Reflections on the Accelerated and Shared Growth Initiative for South Africa

    ERIC Educational Resources Information Center

    McGrath, S.; Akoojee, Salim

    2007-01-01

    In July 2005, President Mbeki announced the launch of the Accelerated and Shared Growth Initiative for South Africa (AsgiSA), a new development strategy designed to help the South African state meet the ANC's 2004 election pledges, namely: (1) halve unemployment; (2) halve poverty; (3) accelerate employment equity; and (4) improve broad-based…

  4. Manufacture of an Ultrafine-Grained TiN-Cu Composition Using an Erosion-Type Coaxial Hybrid Magnetoplasma Accelerator

    NASA Astrophysics Data System (ADS)

    Sivkov, A. A.; Gerasimov, D. Yu.; Evdokimov, A. A.

    2015-12-01

    It is shown that a TiN+Cu powder mixture could be manufactured using a combined barel of a coaxial magnetoplasma accelerator. The method is proved to ensure a wide-range regulation over the copper-to-titanium nitride ratio in the final product yield.

  5. In vivo acceleration of skin growth using a servo-controlled stretching device.

    PubMed

    Chin, Michael S; Ogawa, Rei; Lancerotto, Luca; Pietramaggiori, Giorgio; Schomacker, Kevin T; Mathews, Jasmine C; Scherer, Saja S; Van Duyn, Paul; Prsa, Michael J; Ottensmeyer, Mark P; Veves, Aristidis; Orgill, Dennis P

    2010-06-01

    Tension is a principal force experienced by skin and serves a critical role in growth and development. Optimal tension application regimens may be an important component for skin tissue engineering and dermatogenesis. In this study, we designed and tested a novel servo-controlled skin-stretching device to apply predetermined tension and waveforms in mice. The effects of static and cyclical stretching forces were compared in 48 mice by measuring epidermal proliferation, angiogenesis, cutaneous perfusion, and principal growth factors using immunohistochemistry, real-time reverse transcriptase-polymerase chain reaction, and hyperspectral imaging. All stretched samples had upregulated epidermal proliferation and angiogenesis. Real-time reverse transcriptase-polymerase chain reaction of epidermal growth factor, transforming growth factor beta1, and nerve growth factor demonstrated greater expression in cyclically stretched skin when compared to static stretch. Hypoxia-induced factor 1alpha was significantly upregulated in cyclically stretched skin, but poststretch analysis demonstrated well-oxygenated tissue, collectively suggesting the presence of transient hypoxia. Waveform-specific mechanical loads may accelerate tissue growth by mechanotransduction and as a result of repeated cycles of temporary hypoxia. Further analysis of mechanotransduction signaling pathways may provide additional insight to improve skin tissue engineering methods and optimize our device.

  6. First-order Description of the Mechanical Fracture Behavior of Fine-Grained Surficial Marine Sediments During Gas Bubble Growth

    DTIC Science & Technology

    2010-01-01

    10 F04O29 BARRY ET AL.: BUBBLE GROWTH BY FRACTURE P04029 Figure 3. Map of field site. Canard, Nova Scotia, Canada. appears to approximate the...Bottinger. and T. Dahm (2005), Buoyancy-driven fracture ascent: Experiments in layered gelatine. J. Volcano!. Geotherm . Res., 144. 273-285. doi...Journal Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE First-order description of the mechanical fracture behavior of fine-grained

  7. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.

    PubMed

    Ma, Y; Prasad, M N V; Rajkumar, M; Freitas, H

    2011-01-01

    Technogenic activities (industrial-plastic, textiles, microelectronics, wood preservatives; mining-mine refuse, tailings, smelting; agrochemicals-chemical fertilizers, farm yard manure, pesticides; aerosols-pyrometallurgical and automobile exhausts; biosolids-sewage sludge, domestic waste; fly ash-coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches.

  8. Acceleration and localization of subcritical crack growth in a natural composite material

    NASA Astrophysics Data System (ADS)

    Lennartz-Sassinek, S.; Main, I. G.; Zaiser, M.; Graham, C. C.

    2014-11-01

    Catastrophic failure of natural and engineered materials is often preceded by an acceleration and localization of damage that can be observed indirectly from acoustic emissions (AE) generated by the nucleation and growth of microcracks. In this paper we present a detailed investigation of the statistical properties and spatiotemporal characteristics of AE signals generated during triaxial compression of a sandstone sample. We demonstrate that the AE event amplitudes and interevent times are characterized by scaling distributions with shapes that remain invariant during most of the loading sequence. Localization of the AE activity on an incipient fault plane is associated with growth in AE rate in the form of a time-reversed Omori law with an exponent near 1. The experimental findings are interpreted using a model that assumes scale-invariant growth of the dominating crack or fault zone, consistent with the Dugdale-Barenblatt "process zone" model. We determine formal relationships between fault size, fault growth rate, and AE event rate, which are found to be consistent with the experimental observations. From these relations, we conclude that relatively slow growth of a subcritical fault may be associated with a significantly more rapid increase of the AE rate and that monitoring AE rate may therefore provide more reliable predictors of incipient failure than direct monitoring of the growing fault.

  9. [Influence of drought on leaf photosynthetic capacity and root growth of soybeans at grain filling stage].

    PubMed

    Guo, Shu-jin; Yang, Kai-min; Huo, Jin; Zhou, Yong-hang; Wang, Yan-ping; Li, Gui-quan

    2015-05-01

    A drought-resistant soybean cultivar Jinda 70 and a drought-sensitive soybean cultivar Jindou 26 were taken as test materials. At the grain filling stage, the cultivars were subject to three water treatments including sufficient water supply, light drought stress, and severe drought stress by using pot experiments for research on influence of drought on leaf photosynthetic capacity and root growth of soybeans. The results showed that as the degree of drought stress was aggravated, all of the indices including leaf area, chlorophyll content, net photosynthetic rates (Pn), stomatal conductance (g(s)), transpiration rate (Tr), intercellular CO2 concentration (Ci), plant mass, plant height, seed yield, and harvest index in the two cultivars declined. The root length and root mass increased under light drought stress, and decreased under severe drought stress. Root-shoot ratio ascended as the degree of drought stress was aggravated. Under severe drought stress, the increase of root-shoot ratio of the drought-resistant soybean cultivar Jinda 70 was up to 135.7%, which was higher than the that (116.7%) of the drought-sensitive soybean cultivar Jindou 26. Simultaneously, leaf area and chlorophyll content in Jinda 70 were respectively 69.3% and 85.5% of those in the control, which were better than those of Jindou 26. g(s) and Pn of Jinda 70 respectively declined 67.9% and 77.9%, but still lower than those of Jindou 26. Therefore, the decline range of harvest index of Jinda 70 was 43.8%, which was lower than the range of 78.8% of Jindou 26. The Biplot revealed that under different dry treatments, there were significant positive correlations among the six indexes including leaf area, chlorophyll content, Pn, g(s), Tr, and Ci of the two cultivars. There were also significant positive correlations among the six indices including plant mass, plant height, root length, root mass, seed yield, and harvest index. Root-shoot ratio only had significant positive correlation with root

  10. Two-tank suspended growth process for accelerating the detoxification kinetics of hydrocarbons requiring initial monooxygenation reactions.

    PubMed

    Dahlen, Elizabeth P; Rittmann, Bruce E

    2002-01-01

    An experimental evaluation demonstrated that suspended growth systems operated in a two-tank accelerator/aerator configuration significantly increased the overall removal rates for phenol and 2,4-dichlorophenol (2,4-DCP), aromatic hydrocarbons that require initial monooxygenations. The accelerator tank is a small volume that receives the influent and recycled biomass. It has a high ratio of electron donor (BOD) to electron acceptor (O2). Biomass in the accelerator should be enriched in reduced nicotinamide adenine dinucleotide (NADH + H+) and have a very high specific growth rate, conditions that should accelerate the kinetics of monooxygenation reactions. For the more slowly degraded 2,4-DCP, the average percentage removal increased from 74% to 93%, even though the volume of the two-tank system was smaller than that of the one-tank system in most experiments. The average volumetric and biomass-specific removal rates increased by 50% and 100%, respectively, in the two-tank system, compared to a one-tank system. The greatest enhancement in 2,4-DCP removal occurred when the accelerator tank comprised approximately 20% of the system volume. Biomass in the accelerator tank was significantly enriched in NADH + H+ when its dissolved oxygen (DO) concentration was below 0.25 mg/L, a situation having a high ratio of donor to acceptor. The accelerator biomass had its highest NADH + H+ content for the experiments that had the highest rate of 2,4-DCP removal. Biomass in the accelerator also had a much higher specific growth rate than in the aerator or the system overall, and the specific growth rate in the accelerator was inversely correlated to the accelerator volume.

  11. Using pollen grains as novel hydrophilic solid-phase extraction sorbents for the simultaneous determination of 16 plant growth regulators.

    PubMed

    Lu, Qian; Wu, Jian-Hong; Yu, Qiong-Wei; Feng, Yu-Qi

    2014-11-07

    In this article, pollen grains were for the first time used as a hydrophilic solid-phase extraction (HILIC-SPE) sorbent for the determination of 16 plant growth regulators (PGRs) in fruits and vegetables. Fourier transform infrared spectroscopy (FT-IR), scanning electronic microscopy (SEM) and nitrogen sorption porosimetry (NSP) were used to investigate the chemical structure and the surface properties of the pollen grains. Pollen grains exhibited an excellent adsorption capacity for some polar compounds due to their particular functional groups. Several parameters influencing extraction performance were investigated. A green and simple HILIC-SPE-method using pollen grain cartridge for purification of fruit and vegetable extractions, followed by ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) was established. Good linear relationships were obtained for 16 PGRs with correlation coefficients (R) above 0.9980. The limits of detection (LODs) of 16 PGRs in cucumber were in the range of 0.01-1.10 μg · kg(-1). Reproducibility of the method was evaluated by intra-day and inter-day precisions with relative standard deviations (RSDs), which were less than 14.4%. We successfully applied this methodology to analyze 16 PGRs in 8 different kinds of fruits and vegetables. The recoveries from samples spiked with 16 PGRs were from 80.5% to 119.2%, with relative standard deviations less than 15.0%.

  12. TP508 accelerates fracture repair by promoting cell growth over cell death

    SciTech Connect

    Li Xinmin; Wang Hali; Touma, Edward; Qi Yuchen; Rousseau, Emma; Quigg, Richard J.; Ryaby, James T.

    2007-12-07

    TP508 is a synthetic 23-amino acid peptide representing a receptor-binding domain of human thrombin. We have previously shown that a single injection of TP508 accelerates fracture healing in a rat femoral fracture model. To understand how TP508 acts at the protein level during fracture healing, we compared the translational profiles between saline-control and fractured femur at six time points after TP508 treatment using the second generation of BD Clontech{sup TM} Antibody Microarray. Here, we demonstrate that TP508 accelerates fracture healing by modulating expression levels of proteins primarily involved in the functional categories of cell cycle, cellular growth and proliferation, and cell death. The majority of those proteins are physically interrelated and functionally overlapped. The action of those proteins is highlighted by a central theme of promoting cell growth via balance of cell survival over cell death signals. This appears to occur through the stimulation of several bone healing pathways including cell cycle-G1/S checkpoint regulation, apoptosis, JAK/STAT, NF-{kappa}B, PDGF, PI3K/AKT, PTEN, and ERK/MAPK.

  13. The trade-off between maturation and growth during accelerated development in frogs.

    PubMed

    Mueller, Casey A; Augustine, Starrlight; Kooijman, Sebastiaan A L M; Kearney, Michael R; Seymour, Roger S

    2012-09-01

    Developmental energetics are crucial to a species' life history and ecology but are poorly understood from a mechanistic perspective. Traditional energy and mass budgeting does not distinguish between costs of growth and maturation, making it difficult to account for accelerated development. We apply a metabolic theory that uniquely considers maturation costs (Dynamic Energy Budget theory, DEB) to interpret empirical data on the energetics of accelerated development in amphibians. We measured energy use until metamorphosis in two related frogs, Crinia georgiana and Pseudophryne bibronii. Mass and energy content of fresh ova were comparable between the species. However, development to metamorphosis was 1.7 times faster in C. georgiana while P. bibronii produced nine times the dry biomass at metamorphosis and had lower mass-specific oxygen requirements. DEB theory explained these patterns through differences in ontogenetic energy allocation to maturation. P. bibronii partitioned energy in the same (constant) way throughout development whereas C. georgiana increased the fraction of energy allocated to maturation over growth between hatching and the onset of feeding. DEB parameter estimation for additional, direct-developing taxa suggests that a change in energy allocation during development may result from a selective pressure to increase development rate, and not as a result of development mode.

  14. Acceleration of puberty during growth hormone therapy in a child with septo-optic dysplasia.

    PubMed

    Catlı, Gönül; Altıncık, Ayça; Anık, Ahmet; Demir, Korcan; Güleryüz, Handan; Abacı, Ayhan; Böber, Ece

    2014-01-01

    Septo-optic dysplasia (SOD) is a heterogeneous disorder of the central nervous system characterized by various endocrinological and neurological findings. It is a complex disease caused by a combination of genetic and environmental factors. Herein, we report the case of a 5.5-year-old girl who presented with short stature and strabismus. Ophthalmological examination revealed bilateral optic nerve hypoplasia. Ectopic posterior pituitary and bilateral optic hypoplasia were detected on brain magnetic resonance imaging. The presence of bilateral optic nerve hypoplasia and hypopituitarism led to the diagnosis of SOD. An abated growth hormone (GH) response was found in the GH stimulation test and GH replacement therapy was initiated. At the end of the first year of clinical follow-up, secondary hypothyroidism was detected and L-thyroxine was added to the treatment. At the age of 8.25 years, thelarche was noted and 6 months later, the patient presented with menarche. At this time, the bone age was 12 years and the basal luteinizing hormone level was 7 mIU/mL. These findings indicated acceleration in the process of pubertal development. We report this case (i) to emphasize the need to investigate hypopituitarism in cases with bilateral optic nerve hypoplasia and (ii) to draw attention to the fact that during the follow-up of SOD cases receiving GH therapy, inappropriate acceleration of growth velocity and rapid improvement in bone age may be predictive of central precocious puberty development.

  15. Volatile metabolites produced by six fungal species compared with other indicators of fungal growth on cereal grains.

    PubMed Central

    Börjesson, T; Stöllman, U; Schnürer, J

    1992-01-01

    Six fungal species, Penicillium brevicompactum, P. glabrum, P. roqueforti, Aspergillus flavus, A. versicolor, and A. candidus, were inoculated on moistened and autoclaved wheat and oat grains. They were cultivated in glass vessels provided with an inlet and outlet for air. Air was passed through the vessels to collect volatile fungal metabolites on porous polymer adsorbents attached to the outlet. Samples were collected at two fungal growth stages. Adsorbed compounds were thermally desorbed, separated by gas chromatography, and identified by mass spectrometry. Differences in the production of volatile metabolites depended more on the fungal species than on the grain type. The fungal growth stage was not an important factor determining the composition of volatiles produced. 3-Methylfuran was produced in similar amounts regardless of the fungal species and substrate (oat versus wheat). The production of volatile metabolites was compared with the production of ergosterol and CO2 and the number of CFU. The production of volatile metabolites was more strongly correlated with accumulated CO2 production than with actual CO2 production and more strongly correlated with ergosterol contents of the grain than with numbers of CFU. PMID:1514807

  16. Room-Temperature Curing and Grain Growth at High Humidity in Conductive Adhesives with Ultra-Low Silver Content

    NASA Astrophysics Data System (ADS)

    Pettersen, Sigurd R.; Redford, Keith; Njagi, John; Kristiansen, Helge; Helland, Susanne; Kalland, Erik; Goia, Dan V.; Zhang, Zhiliang; He, Jianying

    2017-02-01

    Isotropic conductive adhesives (ICAs) are alternatives to metallic solders as interconnects in solar modules and electronic devices, but normally require silver contents >25 vol.% and elevated curing temperatures to achieve reasonable conductivity. In this work, ICAs are prepared with a silver content of 1.0 vol.% by using polymer spheres coated with nanograined silver thin films as filler particles. In contrast to conventional ICAs, there are no organic lubricants on the silver surfaces to obstruct the formation of metallic contacts, and conductivity is achieved even when the adhesive is cured at room temperature. When exposed to long-term storage at 85°C and 85% relative humidity, the silver films undergo significant grain growth, evidenced by field-emission scanning electron microscopy observation of ion-milled cross-sections and x-ray diffraction. This has a positive effect on the electrical conductivity of the ICA through the widening of metallic contacts and decreased scattering of electrons at grain boundaries, and is explained by an electrochemical Ostwald ripening process. The effects of decoupling heat and humidity is investigated by storage at either 85°C or immersion in water. It is shown that the level of grain growth during the various post-curing treatments is dependent on the initial curing temperature.

  17. Effects of Genotype and Growth Temperature on the Contents of Tannin, Phytate and In Vitro Iron Availability of Sorghum Grains

    PubMed Central

    Wu, Gangcheng; Johnson, Stuart K.; Bornman, Janet F.; Bennett, Sarita J.; Singh, Vijaya; Simic, Azra; Fang, Zhongxiang

    2016-01-01

    Background It has been predicted that the global temperature will rise in the future, which means crops including sorghum will likely be grown under higher temperatures, and consequently may affect the nutritional properties. Methods The effects of two growth temperatures (OT, day/night 32/21°C; HT 38/21°C) on tannin, phytate, mineral, and in vitro iron availability of raw and cooked grains (as porridge) of six sorghum genotypes were investigated. Results Tannin content significantly decreased across all sorghum genotypes under high growth temperature (P ≤0.05), while the phytate and mineral contents maintained the same level, increased or decreased significantly, depending on the genotype. The in vitro iron availability in most sorghum genotypes was also significantly reduced under high temperature, except for Ai4, which showed a pronounced increase (P ≤0.05). The cooking process significantly reduced tannin content in all sorghum genotypes (P ≤0.05), while the phytate content and in vitro iron availability were not significantly affected. Conclusions This research provides some new information on sorghum grain nutritional properties when grown under predicted future higher temperatures, which could be important for humans where sorghum grains are consumed as staple food. PMID:26859483

  18. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change

    PubMed Central

    Silva, Lucas C. R.; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R.

    2016-01-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems. PMID:27652334

  19. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change.

    PubMed

    Silva, Lucas C R; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R

    2016-08-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems.

  20. Crack growth in Ti-8Al-1Mo-1V with real-time and accelerated flight by flight loading

    NASA Technical Reports Server (NTRS)

    Imig, L. A.

    1975-01-01

    Crack growth in Ti-8Al-lMo-lV was measured and calculated for real time and accelerated simulations of supersonic airplane loading and heating. Crack-growth rates calculated on the assumption that an entire flight could be represented by a single cycle predicted the experimental rates poorly. Calculated crack growth rates were slower than the experimental rates for all tests with flight-by-flight loading. For room temperature accelerated tests, the calculated rates agreed well with the experimental rates; but the calculations became progressively less accurate for progressively more complex test conditions (tests that included elevated temperature).

  1. Applying Massively Parallel Kinetic Monte Carlo Methods to Simulate Grain Growth and Sintering in Powdered Metals

    DTIC Science & Technology

    2011-09-01

    into the Earth’s atmosphere, linings for friction brakes, turbine disks, and metallic glasses for high-strength films and ribbons to name a few...vacancies for describing the phenomenon of pore elimination. Vacancies and atoms can move by surface diffusion, evaporation -condensation, grain...particles, which does not occur during surface transport mechanisms [19]. Category Mechanisms Involved Surface Transport Evaporation -Condensation

  2. Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Li, Shibin; Zhang, Peng; Chen, Hao; Wang, Yafei; Liu, Detao; Wu, Jiang; Sarvari, Hojjatollah; Chen, Zhi David

    2017-02-01

    Perovskite solar cells (PSCs) have attracted great attention due to their low cost and high power conversion efficiency (PCE). However, the defects and grain boundaries in perovskite films dramatically degrade their performance. Here, we show a two-step annealing method to produce mesoporous PbI2 films for growth of continuous, pinhole-free perovskite films with large grains, followed by additional ethanol vapor annealing of perovskite films to reduce the defects and grain boundaries. The large perovskite grains dramatically suppress the carrier recombination, and consequently we obtain ZnO-nanorod-based PSCs that exhibit the best efficiency of 17.3%, with high reproducibility.

  3. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    SciTech Connect

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; D'Alessio, P.; Espaillat, C.; Sargent, B.; Watson, D. M.; Hernández, J. E-mail: ncalvet@umich.edu E-mail: lingleby@umich.edu E-mail: cespaillat@cfa.harvard.edu E-mail: dmw@pas.rochester.edu

    2013-10-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10{sup –8} to 10{sup –10} M{sub ☉} yr{sup –1}, the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10{sup –4} of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.

  4. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential.

    PubMed

    Chen, Wenduo; Zhu, Youliang; Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures.

  5. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential

    PubMed Central

    Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851

  6. Limited grain growth and chemical ordering during high-temperature sintering of PtNiCo nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Mukundan, V.; Wanjala, B. N.; Loukrakpam, R.; Luo, J.; Yin, J.; Zhong, C. J.; Malis, O.

    2012-08-01

    High-temperature sintering of ternary PtxNi100-x-yCoy (x = 28-44%, y = 40-54%) nanoparticles of interest in catalysis was studied in situ and in real-time with synchrotron-based x-ray diffraction. For the first time we were able to experimentally capture the early stage of the thermal treatment, and found the nanoparticles to undergo an unusual two-step coalescence process that involves transient growth and restructuring of the nanoparticles. The coalescence process is accompanied by lattice contraction, likely due to composition evolution towards a random alloy. In the late stage of sintering, evidence was found for self-limited grain growth and L10 chemical ordering. The order-disorder transition temperature was found to be around 800 °C in all four ternary alloy compositions studied. Fitting of the experimental data with the model for grain growth with size-dependent impediment leads to an activation energy for mass transport of about 100 kJ mol-1, and may be used as a predictive tool to estimate particle size as a function of heat treatment temperature and duration.

  7. Effect of Process Parameters on Abnormal Grain Growth during Friction Stir Processing of a Cast Al Alloy

    SciTech Connect

    Jana, Saumyadeep; Mishra, Rajiv S.; Baumann, John A.; Grant, Glenn J.

    2010-11-25

    The effects of process parameters and friction stir processing (FSP) run configurations on the stability of nugget microstructure at elevated temperatures were evaluated. Cast plates of an Al-7Si- 0.6Mg alloy were friction stir processed using a combination of tool rotation rates and tool traverse speeds. All single pass runs showed some extent of abnormal grain growth (AGG), whereas multi-pass runs were more resistant to AGG. Additionally, higher tool rpm was found to be beneficial for controlling AGG. These effects were analyzed by comparing the result of this work with other published results and AGG models.

  8. Body centered cubic buffer layers for enhanced lateral grain growth of Co/Cu multilayers

    NASA Astrophysics Data System (ADS)

    Tsunoda, Masakiyo; Takahashi, Daisuke; Takahashi, Migaku

    2003-05-01

    The effect of buffer layers (BLs) on metallurgical microstructure and giant magnetoresistance of Co/Cu multilayers fabricated on them is discussed. The lateral grain size and the magnetoresistance (MR) ratio of multilayers are generally enlarged with changing the chemical composition of BLs toward a limiting concentration, within the range where the solid solution of body-centered-cubic (bcc) structure is formed. A guiding principle for material research for the BLs, which realize flat interfaces with large lateral grain size in the multilayers, is deduced from the correlation between the MR ratio of the multilayers and the surface energy of bcc BLs: the difference between the surface energy of BL (γS) and the interfacial energy (γSL) in Young-Dupré's equation (cos θ=(γS-γSL)/γL) should agree with the surface energy of Co layer (γL), which is deposited first on the BL.

  9. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia

    PubMed Central

    Smout, Michael J.; Sotillo, Javier; Laha, Thewarach; Papatpremsiri, Atiroch; Rinaldi, Gabriel; Pimenta, Rafael N.; Chan, Lai Yue; Johnson, Michael S.; Turnbull, Lynne; Whitchurch, Cynthia B.; Giacomin, Paul R.; Moran, Corey S.; Golledge, Jonathan; Daly, Norelle; Sripa, Banchob; Mulvenna, Jason P.

    2015-01-01

    Abstract Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world. PMID:26485648

  10. Recombinant Human Epidermal Growth Factor Accelerates Recovery of Mouse Small Intestinal Mucosa After Radiation Damage

    SciTech Connect

    Lee, Kang Kyoo; Jo, Hyang Jeong; Hong, Joon Pio; Lee, Sang-wook Sohn, Jung Sook; Moon, Soo Young; Yang, Sei Hoon; Shim, Hyeok; Lee, Sang Ho; Ryu, Seung-Hee; Moon, Sun Rock

    2008-07-15

    Purpose: To determine whether systemically administered recombinant human epidermal growth factor (rhEGF) accelerates the recovery of mouse small intestinal mucosa after irradiation. Methods and Materials: A mouse mucosal damage model was established by administering radiation to male BALB/c mice with a single dose of 15 Gy applied to the abdomen. After irradiation, rhEGF was administered subcutaneously at various doses (0.04, 0.2, 1.0, and 5.0 mg/kg/day) eight times at 2- to 3-day intervals. The evaluation methods included histologic changes of small intestinal mucosa, change in body weight, frequency of diarrhea, and survival rate. Results: The recovery of small intestinal mucosa after irradiation was significantly improved in the mice treated with a high dose of rhEGF. In the mice that underwent irradiation without rhEGF treatment, intestinal mucosal ulceration, mucosal layer damage, and severe inflammation occurred. The regeneration of villi was noticeable in mice treated with more than 0.2 mg/kg rhEGF, and the villi recovered fully in mice given more than 1 mg/kg rhEGF. The frequency of diarrhea persisting for more than 3 days was significantly greater in the radiation control group than in the rhEGF-treated groups. Conclusions: Systemic administration of rhEGF accelerates recovery from mucosal damage induced by irradiation. We suggest that rhEGF treatment shows promise for the reduction of small intestinal damage after irradiation.

  11. TUSC3 Loss Alters the ER Stress Response and Accelerates Prostate Cancer Growth in vivo

    NASA Astrophysics Data System (ADS)

    Horak, Peter; Tomasich, Erwin; Vaňhara, Petr; Kratochvílová, Kateřina; Anees, Mariam; Marhold, Maximilian; Lemberger, Christof E.; Gerschpacher, Marion; Horvat, Reinhard; Sibilia, Maria; Pils, Dietmar; Krainer, Michael

    2014-01-01

    Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular.

  12. TUSC3 Loss Alters the ER Stress Response and Accelerates Prostate Cancer Growth in vivo

    PubMed Central

    Horak, Peter; Tomasich, Erwin; Vaňhara, Petr; Kratochvílová, Kateřina; Anees, Mariam; Marhold, Maximilian; Lemberger, Christof E.; Gerschpacher, Marion; Horvat, Reinhard; Sibilia, Maria; Pils, Dietmar; Krainer, Michael

    2014-01-01

    Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular. PMID:24435307

  13. Acceleration of wound healing by growth hormone-releasing hormone and its agonists.

    PubMed

    Dioufa, Nikolina; Schally, Andrew V; Chatzistamou, Ioulia; Moustou, Evi; Block, Norman L; Owens, Gary K; Papavassiliou, Athanasios G; Kiaris, Hippokratis

    2010-10-26

    Despite the well-documented action of growth hormone-releasing hormone (GHRH) on the stimulation of production and release of growth hormone (GH), the effects of GHRH in peripheral tissues are incompletely explored. In this study, we show that GHRH plays a role in wound healing and tissue repair by acting primarily on wound-associated fibroblasts. Mouse embryonic fibroblasts (MEFs) in culture and wound-associated fibroblasts in mice expressed a splice variant of the receptors for GHRH (SV1). Exposure of MEFs to 100 nM and 500 nM GHRH or the GHRH agonist JI-38 stimulated the expression of α-smooth muscle actin (αSMA) based on immunoblot analyses as well as the expression of an αSMA-β-galactosidase reporter transgene in primary cultures of fibroblasts isolated from transgenic mice. Consistent with this induction of αSMA expression, results of transwell-based migration assays and in vitro wound healing (scratch) assays showed that both GHRH and GHRH agonist JI-38 stimulated the migration of MEFs in vitro. In vivo, local application of GHRH or JI-38 accelerated healing in skin wounds of mice. Histological evaluation of skin biopsies showed that wounds treated with GHRH and JI-38 were both characterized by increased abundance of fibroblasts during the early stages of wound healing and accelerated reformation of the covering epithelium at later stages. These results identify another function of GHRH in promoting skin tissue wound healing and repair. Our findings suggest that GHRH may have clinical utility for augmenting healing of skin wounds resulting from trauma, surgery, or disease.

  14. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality.

    PubMed

    Koren, Netta; Simsa-Maziel, Stav; Shahar, Ron; Schwartz, Betty; Monsonego-Ornan, Efrat

    2014-06-01

    Omega-3 fatty acids (FAs) are essential nutritional components that must be obtained from foods. Increasing evidence validate that omega-3 FAs are beneficial for bone health, and several mechanisms have been suggested to mediate their effects on bone, including alterations in calcium absorption and urinary calcium loss, prostaglandin synthesis, lipid oxidation, osteoblast formation and inhibition of osteoclastogenesis. However, to date, there is scant information regarding the effect of omega-3 FAs on the developing skeleton during the rapid growth phase. In this study we aim to evaluate the effect of exposure to high levels of omega-3 FAs on bone development and quality during prenatal and early postnatal period. For this purpose, we used the fat-1 transgenic mice that have the ability to convert omega-6 to omega-3 fatty acids and the ATDC5 chondrogenic cell line as models. We show that exposure to high concentrations of omega-3 FAs at a young age accelerates bone growth through alterations of the growth plate, associated with increased chondrocyte proliferation and differentiation. We further propose that those effects are mediated by the receptors G-protein coupled receptor 120 (GPR120) and hepatic nuclear factor 4α, which are expressed by chondrocytes in culture. Additionally, using a combined study on the structural and mechanical bone parameters, we show that high omega-3 levels contribute to superior trabecular and cortical structure, as well as to stiffer bones and improved bone quality. Most interestingly, the fat-1 model allowed us to demonstrate the role of maternal high omega-3 concentration on bone growth during the gestation and postnatal period.

  15. Selective Growth of Low Stored Energy Grains During δ Sub-solvus Annealing in the Inconel 718 Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Agnoli, Andrea; Bernacki, Marc; Logé, Roland; Franchet, Jean-Michel; Laigo, Johanne; Bozzolo, Nathalie

    2015-09-01

    The microstructure stability during δ sub-solvus annealing in Inconel 718 was investigated, focusing on the conditions that may lead to the development of very large grains (about 100 μm) in a recrystallized fine grained matrix (4 to 5 μm) despite the presence of second-phase particles. Microstructure evolution was analyzed by EBSD (grain size, intragranular misorientation) and SEM ( δ phase particles). Results confirm that, in the absence of stored energy, the grain structure is controlled by the δ phase particles, as predicted by the Smith-Zener equation. If the initial microstructure is strained ( ɛ < 0.1) before annealing, then low stored energy grains grow to a large extent, despite the Zener pinning forces exerted by the second-phase particles on the grain boundaries. Those selectively growing grains could be those of the initial microstructure that were the least deformed, or they could result from a nucleation process. The balance of three forces acting on boundary migration controls the growth process: if the sum of capillarity and stored energy driving forces exceeds the Zener pinning force, then selective grain growth occurs. Such phenomenon could be simulated, using a level set approach in a finite element context, by taking into account the three forces acting on boundary migration and by considering a realistic strain energy distribution (estimated from EBSD measurements).

  16. Bulk tungsten in the JET divertor: Potential influence of the exhaustion of ductility and grain growth on the lifetime

    NASA Astrophysics Data System (ADS)

    Mertens, Ph.; Thompson, V.; Matthews, G. F.; Nicolai, D.; Pintsuk, G.; Riccardo, V.; Devaux, S.; Sieglin, B.; JET-EFDA contributors

    2013-07-01

    The divertor of the ITER-like Wall in JET currently includes a solid tungsten row for the outer strike point. The use of plasma-facing tungsten in fusion devices is limited by its brittleness in the low temperature domain (arbitrarily ˜TW < 300 °C) and by the occurrence of grain growth at high temperatures (roughly ˜TW > 1200 °C). In the absence of active cooling, an extreme case of thermal cycling is represented by the situation in JET: the plasma-facing surface of the bulk tungsten tile experiences cyclic excursions from 200 °C to about 2000 °C. Thermal fatigue for impact factors of 11-24 MW m-2 s0.5 is investigated with a Manson-Coffin model; tungsten properties come from production samples. Recrystallization is studied in metallographic cuts of tungsten lamellae identical to those installed in the torus which were exposed in the MARION facility to JET relevant heat fluxes for >300 pulses (Pdep ⩽ 9 MW/m2, angle of attack 6°). The calculations suggest that the number of high temperature cycles should be limited with appropriate budgeting, especially if the grain growth degrades material properties. Values for JET range from 150 to thousands of pulses depending on the temperatures reached.

  17. Application of essential oils in maize grain: impact on Aspergillus section Flavi growth parameters and aflatoxin accumulation.

    PubMed

    Bluma, Romina V; Etcheverry, Miriam G

    2008-04-01

    The antifungal activity of Pimpinella anisum L. (anise), Pëumus boldus Mol (boldus), Hedeoma multiflora Benth (mountain thyme), Syzygium aromaticum L. (clove), and Lippia turbinate var. integrifolia (griseb) (poleo) essential oils (EOs) against Aspergillus section Flavi was evaluated in sterile maize grain under different water activity (a(w)) condition (0.982, 0.955, and 0.90). The effect of EOs added to maize grains on growth rate, lag phase, and aflatoxin B(1) (AFB(1)) accumulation of Aspergillus section Flavi were evaluated at different water activity conditions. The five EOs analyzed have been shown to influence lag phase and growth rate. Their efficacy depended mainly on the essential oil concentrations and substrate water activity conditions. All EOs showed significant impact on AFB(1) accumulation. This effect was closely dependent on the water activity, concentration, and incubation periods. Important reduction of AFB(1) accumulation was observed in the majority of EO treatments at 11 days of incubation. Boldus, poleo, and mountain thyme EO completely inhibited AFB(1) at 2000 and 3000 microg g(-1). Inhibition of AFB(1) accumulation was also observed when aflatoxigenic isolates grew with different concentration of EOs during 35 days.

  18. Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties

    SciTech Connect

    Wei, Xialu; Back, Christina; Izhvanov, Oleg; Haines, Christopher; Olevsky, Eugene

    2016-07-14

    Spark plasma sintering (SPS) has been employed to consolidate a micron-sized zirconium carbide (ZrC) powder. ZrC pellets with a variety of relative densities are obtained under different processing parameters. The densification kinetics of ZrC powders subjected to conventional hot pressing and SPS are comparatively studied by applying similar heating and loading profiles. Due to the lack of electric current assistance, the conventional hot pressing appears to impose lower strain rate sensitivity and higher activation energy values than those which correspond to the SPS processing. A finite element simulation is used to analyze the temperature evolution within the volume of ZrC specimens subjected to SPS. The control mechanism for grain growth during the final SPS stage is studied via a recently modified model, in which the grain growth rate dependence on porosity is incorporated. Finally, the constant pressure specific heat and thermal conductivity of the SPS-processed ZrC are determined to be higher than those reported for the hot-pressed ZrC and the benefits of applying SPS are indicated accordingly.

  19. Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties

    DOE PAGES

    Wei, Xialu; Back, Christina; Izhvanov, Oleg; ...

    2016-07-14

    Spark plasma sintering (SPS) has been employed to consolidate a micron-sized zirconium carbide (ZrC) powder. ZrC pellets with a variety of relative densities are obtained under different processing parameters. The densification kinetics of ZrC powders subjected to conventional hot pressing and SPS are comparatively studied by applying similar heating and loading profiles. Due to the lack of electric current assistance, the conventional hot pressing appears to impose lower strain rate sensitivity and higher activation energy values than those which correspond to the SPS processing. A finite element simulation is used to analyze the temperature evolution within the volume of ZrCmore » specimens subjected to SPS. The control mechanism for grain growth during the final SPS stage is studied via a recently modified model, in which the grain growth rate dependence on porosity is incorporated. Finally, the constant pressure specific heat and thermal conductivity of the SPS-processed ZrC are determined to be higher than those reported for the hot-pressed ZrC and the benefits of applying SPS are indicated accordingly.« less

  20. Polarizing efficiency as a guide of grain growth and interstellar magnetic field properties

    NASA Astrophysics Data System (ADS)

    Voshchinnikov, N. V.; Il'in, V. B.; Das, H. K.

    2016-11-01

    We interpret the relation between the polarizing efficiency Pmax/E(B - V) and the wavelength of the maximum polarization λmax observed for 17 objects (including 243 stars) separated into two groups: `dark clouds' and `open clusters'. The objects are assigned to one of the groups according to the distribution of the parameter λmax. We use the model of homogeneous silicate and carbonaceous spheroidal particles with the imperfect alignment and a time-evolving size distribution. The polarization is assumed to be mainly produced by large silicate particles with the sizes rV ≳ rV, cut. The models with the initial size distribution reproducing the average curve of the interstellar extinction fail to explain the values of λmax ≳ 0.65 μm observed for several dark clouds. We assume that the grain size distribution is modified due to accretion and coagulation, according to the model of Hirashita & Voshchinnikov. After including the evolutionary effects, λmax shifts to longer wavelengths on time-scales ˜20(nH/103 cm-3)-1 Myr where nH is the hydrogen density in molecular clouds where dust processing occurs. The ratio Pmax/E(B - V) goes down dramatically when the size of polarizing grains grows. The variations of the degree and direction of particle orientation influence this ratio only moderately. We have also found that the aspect ratio of prolate grains does not affect significantly the polarizing efficiency. For oblate particles, the shape effect is stronger but in most cases the polarization curves produced are too narrow in comparison with the observed ones.

  1. A critical point of male gonad development: neuroendocrine correlates of accelerated testicular growth in rats during early life.

    PubMed

    Dygalo, Nikolay N; Shemenkova, Tatjana V; Kalinina, Tatjana S; Shishkina, Galina T

    2014-01-01

    Testis growth during early life is important for future male fertility and shows acceleration during the first months of life in humans. This acceleration coincides with the peak in gonadotropic hormones in the blood, while the role of hypothalamic factors remains vague. Using neonatal rats to assess this issue, we found that day 9 of life is likely critical for testis development in rats. Before this day, testicular growth was proportional to body weight gain, but after that the testes showed accelerated growth. Hypothalamic kisspeptin and its receptor mRNA levels begin to elevate 2 days later, at day 11. A significant increase in the mRNA levels for gonadotropin-releasing hormone (GnRH) receptors in the hypothalamus between days 5 and 7 was followed by a 3-fold decrease in GnRH mRNA levels in this brain region during the next 2 days. Starting from day 9, hypothalamic GnRH mRNA levels increased significantly and positively correlated with accelerated testicular growth. Triptorelin, an agonist of GnRH, at a dose that had no effect on testicular growth during "proportional" period, increased testis weights during the period of accelerated growth. The insensitivity of testicular growth to GnRH during "proportional" period was supported by inability of a 2.5-fold siRNA knockdown of GnRH expression in the hypothalamus of the 7-day-old animals to produce any effect on their testis weights. GnRH receptor blockade with cetrorelix was also without effect on testis weights during "proportional" period but the same doses of this GnRH antagonist significantly inhibited "accelerated" testicular growth. GnRH receptor mRNA levels in the pituitary as well as plasma LH concentrations were higher during "accelerated" period of testicular growth than during "proportional" period. In general, our data defined two distinct periods in rat testicular development that are primarily characterized by different responses to GnRH signaling.

  2. The structural alteration of gut microbiota in low-birth-weight mice undergoing accelerated postnatal growth

    PubMed Central

    Wang, Jingjing; Tang, Huang; Wang, Xiaoxin; Zhang, Xu; Zhang, Chenhong; Zhang, Menghui; Zhao, Yufeng; Zhao, Liping; Shen, Jian

    2016-01-01

    The transient disruption of gut microbiota in infancy by antibiotics causes adult adiposity in mice. Accelerated postnatal growth (A) leads to a higher risk of adult metabolic syndrome in low birth-weight (LB) humans than in normal birth-weight (NB) individuals, but the underlying mechanism remains unclear. Here, we set up an experiment using LB + A mice, NB + A mice, and control mice with NB and normal postnatal growth. At 24 weeks of age (adulthood), while NB + A animals had a normal body fat content and glucose tolerance compared with controls, LB + A mice exhibited excessive adiposity and glucose intolerance. In infancy, more fecal bacteria implicated in obesity were increased in LB + A pups than in NB + A pups, including Desulfovibrionaceae, Enterorhabdus, and Barnesiella. One bacterium from the Lactobacillus genus, which has been implicated in prevention of adult adiposity, was enhanced only in NB + A pups. Besides, LB + A pups, but not NB + A pups, showed disrupted gut microbiota fermentation activity. After weaning, the fecal microbiota composition of LB + A mice, but not that of NB + A animals, became similar to that of controls by 24 weeks. In infancy, LB + A mice have a more dysbiotic gut microbiome compared to NB + A mice, which might increase their risk of adult metabolic syndrome. PMID:27277748

  3. National health spending in 2011: overall growth remains low, but some payers and services show signs of acceleration.

    PubMed

    Hartman, Micah; Martin, Anne B; Benson, Joseph; Catlin, Aaron

    2013-01-01

    In 2011 US health care spending grew 3.9 percent to reach $2.7 trillion, marking the third consecutive year of relatively slow growth. Growth in national health spending closely tracked growth in nominal gross domestic product (GDP) in 2010 and 2011, and health spending as a share of GDP remained stable from 2009 through 2011, at 17.9 percent. Even as growth in spending at the national level has remained stable, personal health care spending growth accelerated in 2011 (from 3.7 percent to 4.1 percent), in part because of faster growth in spending for prescription drugs and physician and clinical services. There were also divergent trends in spending growth in 2011 depending on the payment source: Medicaid spending growth slowed, while growth in Medicare, private health insurance, and out-of-pocket spending accelerated. Overall, there was relatively slow growth in incomes, jobs, and GDP in 2011, which raises questions about whether US health care spending will rebound over the next few years as it typically has after past economic downturns.

  4. Growth temperature and genotype both play important roles in sorghum grain phenolic composition.

    PubMed

    Wu, Gangcheng; Johnson, Stuart K; Bornman, Janet F; Bennett, Sarita J; Clarke, Michael W; Singh, Vijaya; Fang, Zhongxiang

    2016-02-24

    Polyphenols in sorghum grains are a source of dietary antioxidants. Polyphenols in six diverse sorghum genotypes grown under two day/night temperature regimes of optimal temperature (OT, 32/21 °C and high temperature (HT, 38/21 °C) were investigated. A total of 23 phenolic compounds were positively or tentatively identified by HPLC-DAD-ESIMS. Compared with other pigmented types, the phenolic profile of white sorghum PI563516 was simpler, since fewer polyphenols were detected. Brown sorghum IS 8525 had the highest levels of caffeic and ferulic acid, but apigenin and luteolin were not detected. Free luteolinidin and apigeninidin levels were lower under HT than OT across all genotypes (p ≤ 0.05), suggesting HT could have inhibited 3-deoxyanthocyanidins formation. These results provide new information on the effects of HT on specific polyphenols in various Australian sorghum genotypes, which might be used as a guide to grow high antioxidant sorghum grains under projected high temperature in the future.

  5. Growth temperature and genotype both play important roles in sorghum grain phenolic composition

    PubMed Central

    Wu, Gangcheng; Johnson, Stuart K.; Bornman, Janet F.; Bennett, Sarita J.; Clarke, Michael W.; Singh, Vijaya; Fang, Zhongxiang

    2016-01-01

    Polyphenols in sorghum grains are a source of dietary antioxidants. Polyphenols in six diverse sorghum genotypes grown under two day/night temperature regimes of optimal temperature (OT, 32/21 °C and high temperature (HT, 38/21 °C) were investigated. A total of 23 phenolic compounds were positively or tentatively identified by HPLC-DAD-ESIMS. Compared with other pigmented types, the phenolic profile of white sorghum PI563516 was simpler, since fewer polyphenols were detected. Brown sorghum IS 8525 had the highest levels of caffeic and ferulic acid, but apigenin and luteolin were not detected. Free luteolinidin and apigeninidin levels were lower under HT than OT across all genotypes (p ≤ 0.05), suggesting HT could have inhibited 3-deoxyanthocyanidins formation. These results provide new information on the effects of HT on specific polyphenols in various Australian sorghum genotypes, which might be used as a guide to grow high antioxidant sorghum grains under projected high temperature in the future. PMID:26907726

  6. Austenite Grain Growth in a 2.25Cr-1Mo Vanadium-Free Steel Accounting for Zener Pinning and Solute Drag: Experimental Study and Modeling

    NASA Astrophysics Data System (ADS)

    Dépinoy, S.; Marini, B.; Toffolon-Masclet, C.; Roch, F.; Gourgues-Lorenzon, A.-F.

    2017-02-01

    Austenite grain size has been experimentally determined for various austenitization temperatures and times in a 2.25Cr-1Mo vanadium-free steel. Three grain growth regimes were highlighted: limited growth occurs at lower temperatures [1193 K (920 °C) and 1243 K (970 °C)]; parabolic growth prevails at higher temperatures [1343 K (1070 °C) and 1393 K (1120 °C)]. At the intermediate temperature of 1293 K (1020 °C), slowed down growth was observed. Classical grain growth equations were applied to the experimental results, accounting for Zener pinning and solute drag as possible causes for temperature-dependent limited growth. It was shown that Zener pinning due to AlN particles could not be responsible for limited growth, although it has some effect at lower temperatures. Instead, limited and slow growths are very likely to be the result of segregation of molybdenum atoms at austenite grain boundaries. The temperature-dependence of this phenomenon may be linked to the co-segregation of molybdenum and carbon atoms.

  7. Interstellar grains within interstellar grains

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; Lewis, Roy S.

    1991-01-01

    Five interstellar graphite spherules extracted from the Murchison carbonaceous meteorite are studied. The isotopic and elemental compositions of individual particles are investigated with the help of an ion microprobe, and this analysis is augmented with structural studies of ultrathin sections of the grain interiors by transmission electron microscopy. As a result, the following procedure for the formation of the interstellar graphite spherule bearing TiC crystals is inferred: (1) high-temperature nucleation and rapid growth of the graphitic carbon spherule in the atmosphere of a carbon-rich star, (2) nucleation and growth of TiC crystals during continued growth of the graphitic spherule and the accretion of TiC onto the spherule, (3) quenching of the graphite growth process by depletion of C or by isolation of the spherule before other grain types could condense.

  8. INFRARED SPECTROSCOPIC SURVEY OF THE QUIESCENT MEDIUM OF NEARBY CLOUDS. I. ICE FORMATION AND GRAIN GROWTH IN LUPUS

    SciTech Connect

    Boogert, A. C. A.; Chiar, J. E.; Knez, C.; Mundy, L. G.; Öberg, K. I.; Pendleton, Y. J.; Tielens, A. G. G. M.; Van Dishoeck, E. F.

    2013-11-01

    Infrared photometry and spectroscopy (1-25 μm) of background stars reddened by the Lupus molecular cloud complex are used to determine the properties of grains and the composition of ices before they are incorporated into circumstellar envelopes and disks. H{sub 2}O ices form at extinctions of A{sub K} = 0.25 ± 0.07 mag (A{sub V} = 2.1 ± 0.6). Such a low ice formation threshold is consistent with the absence of nearby hot stars. Overall, the Lupus clouds are in an early chemical phase. The abundance of H{sub 2}O ice (2.3 ± 0.1 × 10{sup –5} relative to N{sub H}) is typical for quiescent regions, but lower by a factor of three to four compared to dense envelopes of young stellar objects. The low solid CH{sub 3}OH abundance (<3%-8% relative to H{sub 2}O) indicates a low gas phase H/CO ratio, which is consistent with the observed incomplete CO freeze out. Furthermore it is found that the grains in Lupus experienced growth by coagulation. The mid-infrared (>5 μm) continuum extinction relative to A{sub K} increases as a function of A{sub K}. Most Lupus lines of sight are well fitted with empirically derived extinction curves corresponding to R{sub V} ∼ 3.5 (A{sub K} = 0.71) and R{sub V} ∼ 5.0 (A{sub K} = 1.47). For lines of sight with A{sub K} > 1.0 mag, the τ{sub 9.7}/A{sub K} ratio is a factor of two lower compared to the diffuse medium. Below 1.0 mag, values scatter between the dense and diffuse medium ratios. The absence of a gradual transition between diffuse and dense medium-type dust indicates that local conditions matter in the process that sets the τ{sub 9.7}/A{sub K} ratio. This process is likely related to grain growth by coagulation, as traced by the A{sub 7.4}/A{sub K} continuum extinction ratio, but not to ice mantle formation. Conversely, grains acquire ice mantles before the process of coagulation starts.

  9. Efficiency of gamma irradiation to inactivate growth and fumonisin production of Fusarium moniliforme on corn grains.

    PubMed

    Mansur, Ahmad Rois; Yu, Chun-Cheol; Oh, Deog-Hwan

    2014-02-28

    The efficiency of gamma irradiation (0, 1, 5, 10, 15, 20, and 30 kGy) as a sterilization method of corn samples (30 g) artificially contaminated with Fusarium moniliforme stored at normal condition (25ºC with approximate relative humidity (RH) of 55%) and optimal condition (25ºC with a controlled RH of 97%) was studied. The results showed that the fungal growth and the amount of fumonisin were decreased as the dose of gamma irradiation increased. Gamma irradiation at 1-5 kGy treatment significantly inhibited the growth of F. moniliforme by 1-2 log reduction on corn samples (P < 0.05). Sublethal effect of gamma irradiation was observed at 10-20 kGy doses after storage, and a complete inactivation required 30 kGy. Fungal growth and fumonisin production increased with higher humidity and longer storage time in all corn samples. This study also demonstrated that there was no strict correlation between fungal growth and fumonisin production. Storage at normal condition significantly resulted in lower growth and fumonisin production of F. moniliforme as compared with those stored at optimal condition (P < 0.05). Gamma irradiation with the dose of ≥ 5 kGy followed by storage at normal condition successfully prolonged the shelf life of irradiated corns, intended for human and animal consumptions, up to 7 weeks.

  10. [Effects of watering and nitrogen fertilization on the growth, grain yield, and water- and nitrogen use efficiency of winter wheat].

    PubMed

    Li, Li; Hong, Jian-Ping; Wang, Hong-Ting; Xiu, Ying-He; Zhang, Lu

    2013-05-01

    A field experiment with split-plot design was conducted to study the effects of watering, nitrogen fertilization, and their interactions on the growth, grain yield, and water- and nitrogen use efficiency of winter wheat. Four watering levels (0, 900, 1200, and 1500 m3 x hm(-2)) in main plots and five nitrogen fertilization levels (0, 90, 150, 210, and 270 kg N x hm(-2)) in sub-plots were designed. The results showed that the grain yield, nitrogen absorption, nitrogen use efficiency, and nitrogen productive efficiency of winter wheat increased with increasing level of watering, but the nitrogen use efficiency and nitrogen productive efficiency decreased with increasing nitrogen fertilization level. The grain yield, nitrogen absorption, and nitrogen harvest index were increased with increasing nitrogen fertilization level when the nitrogen application rate was 0-150 kg N x hm(-2), but not further increased significantly when the nitrogen application rate exceeded 150 kg x hm(-2). With the increasing level of watering, the water consumption amount (WCA) and the total water use efficiency increased, while the proportion of precipitation and soil water supply to WCA as well as the irrigation water use efficiency decreased. With the increasing level of nitrogen fertilization, the proportion of precipitation and watering amount to WCA increased, that of soil water supply to WCA decreased, and the total water use efficiency and irrigation water use efficiency decreased after an initial increase, with no significant differences among the treatments of 150, 210, and 270 kg N x hm(-2). It was considered that under our experimental condition, 1500 m3 x hm(-2) of watering amount plus 150 kg x hm(-2) of nitrogen fertilization could be the optimal combination for the high yielding and high efficiency.

  11. The Effect of TiO2 and B2O3 Additions on the Grain Growth of ZnO

    NASA Astrophysics Data System (ADS)

    Hardal, Gökhan; Yüksel Price, Berat

    2017-02-01

    The microstructure properties and grain growth kinetics of ZnO-B2O3-TiO2 ceramics with 0.5 and 1 mol pct doping of TiO2 were investigated. The samples were sintered at 1373 K, 1473 K, and 1573 K (1100 °C, 1200 °C, and 1300 °C) for 1, 2, and 3 hours. The bulk density and grain size of ZnO samples increased with the addition of B2O3 and TiO2. The grain size of 0.5 mol pct TiO2-doped ZnO ceramics was larger than the grain size of the 1 mol pct TiO2-doped ZnO ceramics. This is due to the increase in the ZnTi2O4 phase for the 1 mol pct TiO2-doped ZnO ceramics. The value of grain growth kinetic parameters (n and Q) increased when the TiO2 content in ZnO ceramics increased from 0.5 to 1 mol pct. The lowest n and Q values were obtained for the 0.5 mol pct B2O3-doped ZnO samples which showed that the addition of B2O3 has a significant role on the grain growth of ZnO ceramics.

  12. Effect of Heating Rate on Densification and Grain Growth During Spark Plasma Sintering of 93W-5.6Ni-1.4Fe Heavy Alloys

    NASA Astrophysics Data System (ADS)

    Hu, Ke; Li, Xiaoqiang; Qu, Shengguan; Li, Yuanyuan

    2013-09-01

    Blended 93W-5.6Ni-1.4Fe powders were sintered via the spark plasma sintering (SPS) technique using heating rates from 10 K min-1 to 380 K min-1 (10 °C min-1 to 380 °C min-1). The kinetics of densification and grain growth were analyzed to identify heating rate effects during the SPS of 93W-5.6Ni-1.4Fe powders. The activation energies for densification were calculated and compared with the experimental values for diffusion and other mass transport phenomena. The results show that for the slowly heated specimens [heating rate <100 K min-1 (100 °C min-1)], densification occurs mainly through dissolution-precipitation of W through the matrix phase and W grain boundary diffusion. The concurrent grain growth is dominated by surface diffusion at a low sintering temperature and by solution-reprecipitation and Ni-enhanced W grain boundary diffusion at a higher temperature. For the specimens sintered with heating rates higher than 100 K min-1 (100 °C min-1), the apparent activation energy value for the mechanism controlling densification is a strong function of the relative density, and fast densification controlled by multiple diffusion mechanisms and intensive viscous flow dominates over the grain growth. High SPS heating rate is favorable to obtain high density and fine-grained tungsten heavy alloys.

  13. The Effect of TiO2 and B2O3 Additions on the Grain Growth of ZnO

    NASA Astrophysics Data System (ADS)

    Hardal, Gökhan; Yüksel Price, Berat

    2017-04-01

    The microstructure properties and grain growth kinetics of ZnO-B2O3-TiO2 ceramics with 0.5 and 1 mol pct doping of TiO2 were investigated. The samples were sintered at 1373 K, 1473 K, and 1573 K (1100 °C, 1200 °C, and 1300 °C) for 1, 2, and 3 hours. The bulk density and grain size of ZnO samples increased with the addition of B2O3 and TiO2. The grain size of 0.5 mol pct TiO2-doped ZnO ceramics was larger than the grain size of the 1 mol pct TiO2-doped ZnO ceramics. This is due to the increase in the ZnTi2O4 phase for the 1 mol pct TiO2-doped ZnO ceramics. The value of grain growth kinetic parameters ( n and Q) increased when the TiO2 content in ZnO ceramics increased from 0.5 to 1 mol pct. The lowest n and Q values were obtained for the 0.5 mol pct B2O3-doped ZnO samples which showed that the addition of B2O3 has a significant role on the grain growth of ZnO ceramics.

  14. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures

    PubMed Central

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Chauhan, Bhagirath Singh; Khan, Fahad; Ihsan, Muhammad Zahid; Ullah, Abid; Wu, Chao; Bajwa, Ali Ahsan; Alharby, Hesham; Amanullah; Nasim, Wajid; Shahzad, Babar; Tanveer, Mohsin; Huang, Jianliang

    2016-01-01

    High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs) might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT) and high night temperatures (HNT) under controlled conditions. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan) prior to the high-temperature treatment. A Nothing applied Control (NAC) was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT). Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress. PMID:27472200

  15. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Rong, Yaoguang; Tang, Zhongjia; Zhao, Yufeng; Zhong, Xin; Venkatesan, Swaminathan; Graham, Harrison; Patton, Matthew; Jing, Yan; Guloy, Arnold M.; Yao, Yan

    2015-06-01

    We report an effective solvent engineering process to enable controlled perovskite crystal growth and a wider window for processing uniform and dense methyl ammonium lead iodide (MAPbI3) perovskite films. Planar heterojunction solar cells fabricated with this method demonstrate hysteresis-free performance with a power conversion efficiency around 10%. The crystal structure of an organic-based Pb iodide intermediate phase is identified for the first time, which is critical in controlling the crystal growth and optimizing thin film morphology.We report an effective solvent engineering process to enable controlled perovskite crystal growth and a wider window for processing uniform and dense methyl ammonium lead iodide (MAPbI3) perovskite films. Planar heterojunction solar cells fabricated with this method demonstrate hysteresis-free performance with a power conversion efficiency around 10%. The crystal structure of an organic-based Pb iodide intermediate phase is identified for the first time, which is critical in controlling the crystal growth and optimizing thin film morphology. Electronic supplementary information (ESI) available: Detailed Experimental methods; photovoltaic performance of the devices; An X-ray crystallographic file (CIF). See DOI: 10.1039/c5nr02866c

  16. Increased temperatures have dramatic effects on growth and grain yield of three maize hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising temperatures under climate change are projected to have negative impacts on crop growth and production. These conclusions have been reached based on the analysis of historical data with no direct observations of projected temperatures for the end of the 21st century. A study conducted compari...

  17. Dysfunctional Transforming Growth Factor-β Receptor II Accelerates Prostate Tumorigenesis in the TRAMP Mouse Model

    PubMed Central

    Pu, Hong; Collazo, Joanne; Jones, Elisabeth; Gayheart, Dustin; Sakamoto, Shinichi; Vogt, Adam; Mitchell, Bonnie; Kyprianou, Natasha

    2009-01-01

    The contribution of a dysfunctional TGF-β type II receptor (TGFβRII) to prostate cancer initiation and progression was investigated in an in vivo mouse model. Transgenic mice harboring the dominant-negative mutant TGF-β type II receptor (DNTGFβRII) in mouse epithelial cell were crossed with the TRAMP prostate cancer transgenic mouse to characterize the in vivo consequences of inactivated TGF-β signaling on prostate tumor initiation and progression. Histopathological diagnosis of prostate specimens from the TRAMP+/DNTGFβRII double transgenic mice, revealed the appearance of early malignant changes and subsequently highly aggressive prostate tumors at a younger age, compared to littermates TRAMP+/Wt TGFβRII mice. Immunohistochemical and western blotting analysis revealed significantly increased proliferative and apoptotic activities, as well as vascularity and macrophage infiltration that correlated with an elevated VEGF and MCP-1 protein levels in prostates from TRAMP+/DNTGFβRII+ mice. An epithelial-mesenchymal transition (EMT)-effect was also detected in prostates of TRAMP+/DNTGFβRII mice, as documented by the loss of epithelial markers (E-cadherin and β-catenin) and upregulation of mesenchymal markers (N-cadherin) and EMT-transcription factor Snail. A significant increase in the androgen receptor (AR) mRNA and protein levels was associated with the early onset of prostate tumorigenesis in TRAMP+/DNTGFβRII mice. Our results indicate that in vivo disruption of TGF-β signaling accelerates the pathological malignant changes in the prostate by altering the kinetics of prostate growth and inducing EMT. The study also suggests that a dysfunctional TGFβRII augments AR expression and promotes inflammation in early stage tumor growth thus conferring a significant contribution by TGF-β to prostate cancer progression. PMID:19738062

  18. Overexpression of insulin-like growth factor-II induces accelerated myoblast differentiation.

    PubMed

    Stewart, C E; James, P L; Fant, M E; Rotwein, P

    1996-10-01

    Previous studies have shown that exogenous insulin-like growth factors (IGFs) can stimulate the terminal differentiation of skeletal myoblasts in culture and have established a correlation between the rate and the extent of IGF-II secretion by muscle cell lines and the rate of biochemical and morphological differentiation. To investigate the hypothesis that autocrine secretion of IGF-II plays a critical role in stimulating spontaneous myogenic differentiation in vitro, we have established C2 muscle cell lines that stably express a mouse IGF-II cDNA under control of the strong, constitutively active Moloney sarcoma virus promoter, enabling us to study directly the effects of IGF-II overproduction. Similar to observations with other muscle cell lines, IGF-II overexpressing myoblasts proliferated normally in growth medium containing 20% fetal serum, but they underwent enhanced differentiation compared with controls when incubated in low-serum differentiation medium. Accelerated differentiation of IGF-II overexpressing C2 cells was preceded by the rapid induction of myogenin mRNA and protein expression (within 1 h, compared with 24-48 h in controls) and was accompanied by an enhanced proportion of the retinoblastoma protein in an underphosphrylated and potentially active form, by a marked increase in activity of the muscle-specific enzyme, creatine phosphokinase, by extensive myotube formation by 48 h, and by elevated secretion of IGF binding protein-5 when compared with controls. These results confirm a role for IGF-II as an autocrine/paracrine differentiation factor for skeletal myoblasts, and they define a model cell system that will be useful in determining the biochemical mechanisms of IGF action in cellular differentiation.

  19. Hypercholesterolemia induces angiogenesis and accelerates growth of breast tumors in vivo.

    PubMed

    Pelton, Kristine; Coticchia, Christine M; Curatolo, Adam S; Schaffner, Carl P; Zurakowski, David; Solomon, Keith R; Moses, Marsha A

    2014-07-01

    Obesity and metabolic syndrome are linked to an increased prevalence of breast cancer among postmenopausal women. A common feature of obesity, metabolic syndrome, and a Western diet rich in saturated fat is a high level of circulating cholesterol. Epidemiological reports investigating the relationship between high circulating cholesterol levels, cholesterol-lowering drugs, and breast cancer are conflicting. Here, we modeled this complex condition in a well-controlled, preclinical animal model using innovative isocaloric diets. Female severe combined immunodeficient mice were fed a low-fat/no-cholesterol diet and then randomized to four isocaloric diet groups: low-fat/no-cholesterol diet, with or without ezetimibe (cholesterol-lowering drug), and high-fat/high-cholesterol diet, with or without ezetimibe. Mice were implanted orthotopically with MDA-MB-231 cells. Breast tumors from animals fed the high-fat/high-cholesterol diet exhibited the fastest progression. Significant differences in serum cholesterol level between groups were achieved and maintained throughout the study; however, no differences were observed in intratumoral cholesterol levels. To determine the mechanism of cholesterol-induced tumor progression, we analyzed tumor proliferation, apoptosis, and angiogenesis and found a significantly greater percentage of proliferating cells from mice fed the high-fat/high-cholesterol diet. Tumors from hypercholesterolemic animals displayed significantly less apoptosis compared with the other groups. Tumors from high-fat/high-cholesterol mice had significantly higher microvessel density compared with tumors from the other groups. These results demonstrate that hypercholesterolemia induces angiogenesis and accelerates breast tumor growth in vivo.

  20. High expression of connective tissue growth factor accelerates dissemination of leukaemia.

    PubMed

    Wells, J E; Howlett, M; Halse, H M; Heng, J; Ford, J; Cheung, L C; Samuels, A L; Crook, M; Charles, A K; Cole, C H; Kees, U R

    2016-09-01

    To improve treatment of acute lymphoblastic leukaemia (ALL), a better understanding of disease development is needed to tailor new therapies. Connective tissue growth factor (CTGF/CCN2) is highly expressed in leukaemia cells from the majority of paediatric patients with B-lineage ALL (pre-B ALL). CTGF is a matricellular protein and plays a role in aggressive cancers. Here we have genetically engineered leukaemia cells to modulate CTGF expression levels. Elevated CTGF levels accelerated disease dissemination and reduced survival in NOD/SCID mice. In vitro studies showed that CTGF protein induces stromal cell proliferation, promotes adhesion of leukaemia cells to stromal cells and leads to overexpression of genes associated with cell cycle and synthesis of extracellular matrix (ECM). Corresponding data from our leukaemia xenograft models demonstrated that CTGF leads to increased proliferation of non-leukaemia cells and deposition of ECM in the bone marrow. We document for the first time a functional role of CTGF in altering disease progression in a lymphoid malignancy. The findings provide support for targeting the bone marrow microenvironment in aggressive forms of leukaemia.

  1. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai Frank; Larrosa, Cecilia C.; Janapati, Vishnuvardhan; Roy, Surajit; Chang, Fu-Kuo

    2011-01-01

    Composite structures are gaining importance for use in the aerospace industry. Compared to metallic structures their behavior is less well understood. This lack of understanding may pose constraints on their use. One possible way to deal with some of the risks associated with potential failure is to perform in-situ monitoring to detect precursors of failures. Prognostic algorithms can be used to predict impending failures. They require large amounts of training data to build and tune damage model for making useful predictions. One of the key aspects is to get confirmatory feedback from data as damage progresses. These kinds of data are rarely available from actual systems. The next possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to stress carbon-carbon composite coupons with various layups. Piezoelectric disc sensors were used to periodically interrogate the system. Analysis showed distinct differences in the signatures of growing failures between data collected at conditions. Periodic X-radiographs were taken to assess the damage ground truth. Results after signal processing showed clear trends of damage growth that were correlated to damage assessed from the X-ray images.

  2. Transgenic tobacco plants overexpressing the Nicta; CycD3; 4 gene demonstrate accelerated growth rates.

    PubMed

    Guo, Jia; Wang, Myeong Hyeon

    2008-07-31

    D-type cyclins control the onset of cell division and the response to extracellular signals during the G1 phase. In this study, we transformed a D-type cyclin gene, Nicta;CycD3;4, from Nicotiana tabacum using an Agrobacterium-mediated method. A predicted 1.1 kb cyclin gene was present in all of the transgenic plants, but not in wild-type. Northern analyses showed that the expression level of the Nicta;CycD3;4 gene in all of the transgenic plants was strong when compared to the wild-type plants, suggesting that Nicta;CycD3;4 gene driven by the CaMV 35S promoter was being overexpressed. Our results revealed that transgenic plants overexpressing Nicta;CycD3;4 had an accelerated growth rate when compared to wild-type plants, and that the transgenic plants exhibited a smaller cell size and a decreased cell population in young leaves when compared to wild-type plants.

  3. Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia

    SciTech Connect

    Lian, Jie; Zhang, Jiaming; Namavar, Fereydoon; Zhang, Yanwen; Lu, Fengyuan; Haider, Hani; Garvin, Kevin; Weber, William J.; Ewing, Rodney C.

    2009-05-26

    Nanocrystalline zirconia has recently attracted extensive research interest due to its unique mechanical, thermal and electrical properties as compared to bulk zirconia counterparts, and it is of particular importance to control the phase stability of different polymorphs (amorphous, cubic, tetragonal and monoclinic phases) at different size regimes. In this paper, we performed ion beam bombardments on bilayers (amorphous and cubic) of pure nano-zirconia using 1 MeV Kr2+ irradiation. Transmission electron microscopy (TEM) analysis reveals that amorphous zirconia transforms to a tetragonal structure under irradiation at room temperature, suggesting that the tetragonal phase is more energetically favorable under these conditions. The final grain size of the tetragonal zirconia can be controlled by irradiation conditions. The irradiation-induced nanograins of tetragonal ZrO2 are stable at ambient conditions and maintain their physical integrity over a long period of time after irradiation. These results demonstrated that ion-beam modification methods provide the means to control the phase stability and structure of zirconia polymorphs.

  4. Orientation dependence of void growth at triple junction of grain boundaries in nanoscale tricrystal nickel film subjected to uniaxial tensile loading

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Sun, Dong

    2016-11-01

    Molecular dynamics simulation was performed in order to investigate the dependence of void growth on crystallographic orientation at the triple junction of grain boundaries in nanoscale tricrystal nickel film subjected to uniaxial tensile loading. The nucleation, the emission and the transmission of Shockley partial dislocations play a predominant role in the growth of void at the triple junction of grain boundaries. The orientation factors of various slip systems are calculated according to Schmid law. The slip systems activated in a grain of tricrystal nickel film basically conform to Schmid law which is completely suitable for a single crystal. The activated slip systems play an important role in plastic deformation of nanoscale tricrystal nickel film subjected to uniaxial tensile loading. The slip directions exhibit great difference among the activated slip systems such that the void is caused to be subjected to various stress conditions, which further leads to the difference in void growth among the tricrystal nickel films with different orientation distributions. It can be concluded that the grain orientation distribution has a significant influence on void growth at the triple junction of grain boundaries.

  5. Influence of second-phase particles on grain growth in AZ31 magnesium alloy during equal channel angular pressing by phase field simulation

    NASA Astrophysics Data System (ADS)

    He, Ri; Wang, Mingtao; Zhang, Xiangang; Yaping Zong, Bernie

    2016-06-01

    A phase-field model was established to simulate the refinement effect of different morphological factors of second-phase particles such as Al2O3 on the grain growth of AZ31 magnesium alloy during equal channel angular pressing (ECAP) in realistic spatiotemporal evolution. The simulation results agreed well with limited existing experimental data for the ECAP-processed AZ31 magnesium alloy and were consistent with the law of Zener. Simulations were performed to evaluate the influences of the fraction, size, distribution, and shape of incoherent second-phase particles. The simulation results showed that during high-temperature ECAP processes, the addition of 2 wt.% Al2O3 particles resulted in a strong refinement effect, reducing the grain size by 28.7% compared to that of the alloy without the particles. Nevertheless, when the fraction of particles was greater than 4 wt.%, adding more particles had little effect. In AZ31 Mg alloy, it was found that second-phase particles should have a critical size of 0.5-0.8 μm for the grain refinement effect to occur. If the size is smaller than the critical size, large particles will strongly hinder grain growth; in contrast, if the size is larger than the critical size, large particles will exhibit a weaker hindering effect than small particles. Moreover, the results showed that the refinement effect increased with increasing particle fraction located at grain boundaries with respect to the total particle content. However, the refinement effect was less pronounced when the fraction of particles located at boundaries was greater than 70%. Further simulations indicated that spherical second-phase particles hindered grain growth more than ellipsoid particles and much more than rod-shaped particles when the volume fraction of reinforcing particles was 2%. However, when the volume fraction was greater than 8%, rod-shaped particles best hindered grain growth, and spherical particles exhibited the weakest effect.

  6. Anabolic therapy with growth hormone accelerates protein gain in surgical patients requiring nutritional rehabilitation.

    PubMed Central

    Byrne, T A; Morrissey, T B; Gatzen, C; Benfell, K; Nattakom, T V; Scheltinga, M R; LeBoff, M S; Ziegler, T R; Wilmore, D W

    1993-01-01

    OBJECTIVE: The authors investigated the effects of exogenous growth hormone (GH) on protein accretion and the composition of weight gain in a group of stable, nutritionally compromised postoperative patients receiving standard hypercaloric nutritional therapy. SUMMARY BACKGROUND DATA: A significant loss of body protein impairs normal physiologic functions and is associated with increased postoperative complications and prolonged hospitalization. Previous studies have demonstrated that standard methods of nutritional support enhance the deposition of fat and extracellular water but are ineffective in repleting body protein. METHODS: Fourteen patients requiring long-term nutritional support for severe gastrointestinal dysfunction received standard nutritional therapy (STD) providing approximately 50 kcal/kg/day and 2 g of protein/kg/day during an initial 7-day equilibrium period. The patients then continued on STD (n = 4) or, in addition, received GH 0.14 mg/kg/day (n = 10). On day 7 of the equilibrium period and again after 3 weeks of treatment, the components of body weight were determined; these included body fat, mineral content, lean (nonfat and nonmineral-containing tissue) mass, total body water, extracellular water (ECW), and body protein. Daily and cumulative nutrient balance and substrate oxidation studies determined the distribution, efficiency, and utilization of calories for protein, fat, and carbohydrate deposition. RESULTS: The GH-treated patients gained minimal body fat but had significantly more lean mass (4.311 +/- 0.6 kg vs. 1.988 +/- 0.2 kg, p < or = 0.03) and more protein (1.417 +/- 0.3 kg vs. 0.086 +/- 0.1 kg, p < or = 0.03) than did the STD-treated patients. The increase in lean mass was not associated with an inappropriate expansion of ECW. In contrast, patients receiving STD therapy tended to deposit a greater proportion of body weight as ECW and significantly more fat than did GH-treated patients (1.004 +/- 0.3 kg vs. 0.129 +/- 0.2 kg, p < 0

  7. Deciphering the roles of specific wheat grain proteins in flour functionality, allergenic potential and the response of the grain to the growth environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the wheat gluten proteins, the omega-5 gliadins show some of the most notable changes in response to post-anthesis fertilizer or high temperatures during grain development. These proteins are also associated with the serious food allergy wheat-dependent exercise-induced anaphylaxis (WDEIA). RN...

  8. Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake.

    PubMed

    Parra-Cota, Fannie I; Peña-Cabriales, Juan J; de Los Santos-Villalobos, Sergio; Martínez-Gallardo, Norma A; Délano-Frier, John P

    2014-01-01

    Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism

  9. Burkholderia ambifaria and B. caribensis Promote Growth and Increase Yield in Grain Amaranth (Amaranthus cruentus and A. hypochondriacus) by Improving Plant Nitrogen Uptake

    PubMed Central

    Parra-Cota, Fannie I.; Peña-Cabriales, Juan J.; de los Santos-Villalobos, Sergio; Martínez-Gallardo, Norma A.; Délano-Frier, John P.

    2014-01-01

    Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism

  10. Effect of Residual Accelerations on the Crystal Growth of II-VI Semiconductors in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Gillies, D. C.; Su, C.-H.; Szofran, F. R.; Scripa, R. N.; Cobb, S. D.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The paper compares and summarizes the effects of residual acceleration during crystal growth on the compositional variation of two II-VI solid solution binary alloys (Hg(0.8)Cd(0.2)Te and Hg(0.84)Zn(0.16)Te). The crystals were grown by directional solidification on the second United States Microgravity Payload (USMP-2) and the first United States Microgravity Laboratory (USML-1) missions, respectively. For both alloys, changes in the direction and magnitude of the quasisteady acceleration vector (approximately 0.4- 1 mu g) caused large changes in the radial compositional distribution that demonstrates the importance of residual accelerations, even in the submicrogravity range, for large density gradients in the melt and slow solidification rates. The observed compositional variations will be correlated to changes in the radial flow velocities ahead of the solidification interface.

  11. Disk Sizes and Grain Growth across the Brown Dwarf Boundary from the Taurus Boundary of Stellar/Substellar (TBOSS) Survey

    NASA Astrophysics Data System (ADS)

    Patience, Jenny; Ward-Duong, Kimberly; Bulger, Joanna; van der Plas, Gerrit; Menard, Francois; Pinte, Christophe; Bryden, Geoffrey; Turner, Neal J.; Jackson, Alan Patrick; Harvey, Paul M.; Hales, Antonio

    2017-01-01

    With a combination of submm/mm observations from ALMA, CSO, and PdBI, we are investigating the properties of disks around low mass stars and brown dwarfs in the Taurus star-forming region. Disk sizes and spectral slopes are important properties to assess the formation scenarios for brown dwarfs and the viability of planet formation in the disks. The ALMA maps have a beam size of approximately 0.3arcseconds and a number of the sources are spatially resolved in the continuum and CO(3-2) line measurements. For most of the resolved systems, the gas disks are more extended than the dust disks, similar to previous results from observations of more massive stars. From the multi-wavelength data, we are measuring the spectral slope of the emission to search for the signature of initial grain growth that is encoded in the slope of the spectral energy distribution in order to test the hypothesis of enhanced radial drift in disks around substellarobjects. Theoretical studies have suggested that fast radial drift could prevent the growth of dust particles up to large bodies in brown dwarf disks, and our program is designed to obtain a set of measurements for objects across the stellar/substellar transition.

  12. Growth under elevated atmospheric CO(2) concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants.

    PubMed

    de la Mata, Lourdes; Cabello, Purificación; de la Haba, Purificación; Agüera, Eloísa

    2012-09-15

    Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16 days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves.

  13. Hypercholesterolemia Induces Angiogenesis and Accelerates Growth of Breast Tumors in Vivo

    PubMed Central

    Pelton, Kristine; Coticchia, Christine M.; Curatolo, Adam S.; Schaffner, Carl P.; Zurakowski, David; Solomon, Keith R.; Moses, Marsha A.

    2015-01-01

    Obesity and metabolic syndrome are linked to an increased prevalence of breast cancer among postmenopausal women. A common feature of obesity, metabolic syndrome, and a Western diet rich in saturated fat is a high level of circulating cholesterol. Epidemiological reports investigating the relationship between high circulating cholesterol levels, cholesterol-lowering drugs, and breast cancer are conflicting. Here, we modeled this complex condition in a well-controlled, preclinical animal model using innovative isocaloric diets. Female severe combined immunodeficient mice were fed a low-fat/no-cholesterol diet and then randomized to four isocaloric diet groups: low-fat/no-cholesterol diet, with or without ezetimibe (cholesterol-lowering drug), and high-fat/high-cholesterol diet, with or without ezetimibe. Mice were implanted orthotopically with MDA-MB-231 cells. Breast tumors from animals fed the high-fat/high-cholesterol diet exhibited the fastest progression. Significant differences in serum cholesterol level between groups were achieved and maintained throughout the study; however, no differences were observed in intratumoral cholesterol levels. To determine the mechanism of cholesterol-induced tumor progression, we analyzed tumor proliferation, apoptosis, and angiogenesis and found a significantly greater percentage of proliferating cells from mice fed the high-fat/high-cholesterol diet. Tumors from hypercholesterolemic animals displayed significantly less apoptosis compared with the other groups. Tumors from high-fat/high-cholesterol mice had significantly higher microvessel density compared with tumors from the other groups. These results demonstrate that hypercholesterolemia induces angiogenesis and accelerates breast tumor growth in vivo. PMID:24952430

  14. Estimating Reading Growth Attributable to Accelerated Reader at One American School in the Caribbean

    ERIC Educational Resources Information Center

    Foster, David K.; Foster, Dean P.

    2014-01-01

    This article provides a statistical analysis of the reading gains observed at one American school in the Caribbean that was using Accelerated Reader. It provides an estimate of the number of hours students needed to read to advance their reading performance an additional year. The authors estimate how much Accelerated Reader contributed to the…

  15. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    PubMed

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  16. Antagonistic activity of Ocimum sanctum L. essential oil on growth and zearalenone production by Fusarium graminearum in maize grains

    PubMed Central

    Kalagatur, Naveen K.; Mudili, Venkataramana; Siddaiah, Chandranayaka; Gupta, Vijai K.; Natarajan, Gopalan; Sreepathi, Murali H.; Vardhan, Batra H.; Putcha, Venkata L. R.

    2015-01-01

    The present study was aimed to establish the antagonistic effects of Ocimum sanctum L. essential oil (OSEO) on growth and zearalenone (ZEA) production of Fusarium graminearum. GC–MS chemical profiling of OSEO revealed the existence of 43 compounds and the major compound was found to be eugenol (34.7%). DPPH free radical scavenging activity (IC50) of OSEO was determined to be 8.5 μg/mL. Minimum inhibitory concentration and minimum fungicidal concentration of OSEO on F. graminearum were recorded as 1250 and 1800 μg/mL, respectively. Scanning electron microscope observations showed significant micro morphological damage in OSEO exposed mycelia and spores compared to untreated control culture. Quantitative UHPLC studies revealed that OSEO negatively effected the production of ZEA; the concentration of toxin production was observed to be insignificant at 1500 μg/mL concentration of OSEO. On other hand ZEA concentration was quantified as 3.23 μg/mL in OSEO untreated control culture. Reverse transcriptase qPCR analysis of ZEA metabolic pathway genes (PKS4 and PKS13) revealed that increase in OSEO concentration (250–1500 μg/mL) significantly downregulated the expression of PKS4 and PKS13. These results were in agreement with the artificially contaminated maize grains as well. In conlusion, the antifungal and antimycotoxic effects of OSEO on F. graminearum in the present study reiterated that, the essential oil of O. sanctum could be a promising herbal fungicide in food processing industries as well as grain storage centers. PMID:26388846

  17. Enhancement effects of dietary wheat distiller's dried grains with solubles on growth, immunology, and resistance to Edwardsiella ictaluri challenge of channel catfish, Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effects of the inclusion of wheat distiller’s dried grains with solubles (WDDGS) at levels of 0 (control), 10, 20, 30 and 40% without (diets 2-5) and with (diets 6-9) lysine supplementation, as substitutes of soybean meal and corn meal mixture on growth, body composition, he...

  18. Effects of adding saturated fat to diets with sorghum-based distiller's dried grains with solubles on growth performance and carcass characteristics in finishing pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 112 barrows (avg BW of 72 kg) was used in a 65-day growth assay to determine the effects of adding a source of saturated fat (beef tallow) into diets with sorghum-based distiller’s dried grains with solubles (DDGS). The pigs were sorted by ancestry and blocked by BW with seven pigs/pen an...

  19. Growth Performance and Resistance to Edwardsiella ictaluri of Channel Catfish (Ictalurus punctatus)Fed Diets Containing Distiller's Dried Grains with Solubles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to examine the effect of dietary levels of distiller’s dried grains with solubles (DDGS) on growth, body composition, hematology, immune response and resistance of channel catfish, Ictalurus punctatus, to Edwardsiella ictaluri challenge. Five diets containing 0, 10, 20, 30 and ...

  20. Growth performance and total tract nutrient digestion for Holstein heifers limit-fed diets high in distillers grains with different forage particle size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated dairy heifer growth performance and total tract nutrient digestion when fed diets high in dried distillers grains with solubles (DDGS) with different forage particle size. An 8-wk randomized complete block design study was conducted utilizing twenty-two Holstein heifers (123 ±...

  1. Smoke in the Pipe Nebula: dust emission and grain growth in the starless core FeSt 1-457

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Lada, Charles J.; Lombardi, Marco; Román-Zúñiga, Carlos; Alves, João

    2015-08-01

    Context. The availability of submillimeter dust emission data in an unprecedented number of bands provides us with new opportunities to investigate the properties of interstellar dust in nearby clouds. Aims: The nearby Pipe Nebula is an ideal laboratory to study starless cores. We here aim to characterize the dust properties of the FeSt 1-457 core, as well as the relation between the dust and the dense gas, using Herschel, Planck, 2MASS, ESO Very Large Telescope, APEX-Laboca, and IRAM 30 m data. Methods: We derive maps of submillimeter dust optical depth and effective dust temperature from Herschel data that were calibrated against Planck. After calibration, we then fit a modified blackbody to the long-wavelength Herschel data, using the Planck-derived dust opacity spectral index β, derived on scales of 30' (or ~1 pc). We use this model to make predictions of the submillimeter flux density at 850 μm, and we compare these in turn with APEX-Laboca observations. Our method takes into account any additive zeropoint offsets between the Herschel/Planck and Laboca datasets. Additionally, we compare the dust emission with near-infrared extinction data, and we study the correlation of high-density-tracing N2H+ emission with the coldest and densest dust in FeSt 1-457. Results: A comparison of the submillimeter dust optical depth and near-infrared extinction data reveals evidence for an increased submillimeter dust opacity at high column densities, interpreted as an indication of grain growth in the inner parts of the core. Additionally, a comparison of the Herschel dust model and the Laboca data reveals that the frequency dependence of the submillimeter opacity, described by the spectral index β, does not change. A single β that is only slightly different from the Planck-derived value is sufficient to describe the data, β = 1.53 ± 0.07. We apply a similar analysis to Barnard 68, a core with significantly lower column densities than FeSt 1-457, and we do not find

  2. Accelerating 21st Century Economic Growth by Implementation of the Lunar Solar Power System

    NASA Astrophysics Data System (ADS)

    Criswell, D. R.

    2002-01-01

    The World Energy Council (1) makes this declaration. "Given this dramatically uneven distribution and the limited evidence of improvement in economic growth in many developing countries, WEC at the 17th World Congress in Houston in September 1998 concluded that the number one priority in sustainable energy development today for all decision-makers in all countries is to extend access to commercial energy services to the people who do not now have it and to those who will come into the world in the next two decades, largely in developing countries, without such access." By ~2050 the global systems should supply 10 billion people approximately 6.7 kilowatts of thermal power per person or 61,360 kWt-h/y-person of energy. The economic equivalent is ~2 - 3 kWe of electric power per person. The energy must be environmentally clean. The energy must be sufficiently low in cost that the 2 billion poorest people, who now make 1,000 /y-person, can be provided with the new power. A survey of twenty-five options for providing adequate commercial electric power, including solar power satellites in orbit about Earth, concludes that only the Lunar Solar Power System can meet the WEC challenge (2, 3, 4, 5). Maurice Strong is the former CEO of Ontario Hydro and organizer of the 1992 Rio Environmental Summit. Quoting Strong - "I have checked it (LSP System) out with a number of experts, all of whom confirmed that the idea, which has been mooted for some time, may now be ripe to carry forward. --- The project would deliver net new energy to the Earth that is independent of the biosphere, would produce no CO2 or other polluting emissions and have minimal environmental impact compared with other energy sources." (6). Electric energy provided by the LSP System can accelerate terrestrial economic growth in several ways. A cost of less than 1 cent per kilowatt electric hour seems achievable. This allows poor nations to buy adequate energy. Increasing per capita use of electric power is

  3. Tumor growth accelerated by chemotherapy-induced senescent cells is suppressed by treatment with IL-12 producing cellular vaccines

    PubMed Central

    Simova, Jana; Sapega, Olena; Imrichova, Terezie; Stepanek, Ivan; Kyjacova, Lenka; Mikyskova, Romana; Indrova, Marie; Bieblova, Jana; Bubenik, Jan; Bartek, Jiri; Hodny, Zdenek; Reinis, Milan

    2016-01-01

    Standard-of-care chemo- or radio-therapy can induce, besides tumor cell death, also tumor cell senescence. While senescence is considered to be a principal barrier against tumorigenesis, senescent cells can survive in the organism for protracted periods of time and they can promote tumor development. Based on this emerging concept, we hypothesized that elimination of such potentially cancer-promoting senescent cells could offer a therapeutic benefit. To assess this possibility, here we first show that tumor growth of proliferating mouse TC-1 HPV-16-associated cancer cells in syngeneic mice becomes accelerated by co-administration of TC-1 or TRAMP-C2 prostate cancer cells made senescent by pre-treatment with the anti-cancer drug docetaxel, or lethally irradiated. Phenotypic analyses of tumor-explanted cells indicated that the observed acceleration of tumor growth was attributable to a protumorigenic environment created by the co-injected senescent and proliferating cancer cells rather than to escape of the docetaxel-treated cells from senescence. Notably, accelerated tumor growth was effectively inhibited by cell immunotherapy using irradiated TC-1 cells engineered to produce interleukin IL-12. Collectively, our data document that immunotherapy, such as the IL-12 treatment, can provide an effective strategy for elimination of the detrimental effects caused by bystander senescent tumor cells in vivo. PMID:27448982

  4. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition.

    PubMed

    Han, Wei; He, Ming

    2010-05-01

    The effects of exogenous cellulase application on straw decomposition, soil fertility, and plant growth were investigated with nylon bag and pot experiments. Cellulase application promoted straw decomposition, and the decomposition rates of rice and wheat straw increased by 6.3-26.0% and 6.8-28.0%, respectively, in the nylon bag experiments. In pot experiments soil-available N and P contents, soil cellulase activity, and growth of rice seedlings increased. Soil respiration rate and microbial population were unaffected. Seventy Ug(-1) was the optimal cellulase concentration for plant growth. The exogenous cellulase persisted in soil for more than 100days. Although the data show that exogenous cellulase application can enhance soil fertility and plant growth in the short-term due to the acceleration of straw decomposition and has the potential to be an environment-friendly approach to manage straw, cellulase application to soil seems currently not economical.

  5. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    PubMed

    Koland, John G

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  6. Coarse-Grained Molecular Simulation of Epidermal Growth Factor Receptor Protein Tyrosine Kinase Multi-Site Self-Phosphorylation

    PubMed Central

    Koland, John G.

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  7. Hormonal growth-promotant effects on grain-fed cattle maintained under different environments

    NASA Astrophysics Data System (ADS)

    Gaughan, J. B.; Kreikemeier, W. M.; Mader, T. L.

    2005-07-01

    Six steers (3/4 Charolais×1/4 Brahman) (mean body weight 314±27 kg) and six spayed heifers (3/5 Shorthorn×2/5 Red Angus) (mean body weight 478±30 kg) were used to determine the effects of climatic conditions and hormone growth promotants (HGP) on respiration rate (RR; breaths/min), pulse rate (beats/min), rectal temperature (RT; °C), and heat production (HP; kJ). Cattle were exposed to the following climatic conditions prior to implantation with a HGP and then again 12 days after implantation: 2 days of thermoneutral conditions (TNL) [21.9±0.9°C ambient temperature (TA) and 61.7±22.1% relative humidity (RH)] then 2 days of hot conditions [HOT; 29.2±4°C (TA) and 78.3±13.2% (RH)], then TNL for 3 days and then 2 days of cold conditions [COLD; 17.6±0.9°C (TA) and 63.4±1.8% (RH); cattle were wet during this treatment]. The HGP implants used were: estrogenic implant (E), trenbolone acetate implant (TBA), or both (ET). Both prior to and following administration of HGP, RRs were lower (P<0.05) on cold days and greater (P<0.05) on hot days compared to TNL. On hot days, RTs, were 0.62°C higher after compared to before implanting. Across all conditions, RTs were >0.5°C greater (P<0.05) for E cattle than for TBA or ET cattle. On cold days, RTs of steers were >0.8°C higher than for the heifers, while under TNL and HOT, RTs of steers were 0.2 0.35°C higher than those of heifers. Prior to implantation, HP per hour and per unit of metabolic body weight was higher (P<0.05) for cattle exposed to hot conditions, when compared to HP on cold days. After implantation, HP was greater (P<0.05) on hot days than on cold days. Under TNL, ET cattle had the lowest HP and greatest feed intake. On hot days, E cattle had the lowest HP, and the highest RT; therefore, if the potential exists for cattle death from heat episodes, the use of either TBA or ET may be preferred. Under cold conditions HP was similar among implant groups.

  8. Whole-Plant Dynamic System of Nitrogen Use for Vegetative Growth and Grain Filling in Rice Plants (Oryza sativa L.) as Revealed through the Production of 350 Grains from a Germinated Seed Over 150 Days: A Review and Synthesis.

    PubMed

    Yoneyama, Tadakatsu; Tanno, Fumio; Tatsumi, Jiro; Mae, Tadahiko

    2016-01-01

    A single germinated rice (Oryza sativa L) seed can produce 350 grains with the sequential development of 15 leaves on the main stem and 7-10 leaves on four productive tillers (forming five panicles in total), using nitrogen (N) taken up from the environment over a 150-day growing season. Nitrogen travels from uptake sites to the grain through growing organ-directed cycling among sequentially developed organs. Over the past 40 years, the dynamic system for N allocation during vegetative growth and grain filling has been elucidated through studies on N and (15)N transport as well as enzymes and transporters involved. In this review, we synthesize the information obtained in these studies along the following main points: (1) During vegetative growth before grain-filling, about half of the total N in the growing organs, including young leaves, tillers, root tips and differentiating panicles is supplied via phloem from mature source organs such as leaves and roots, after turnover and remobilization of proteins, whereas the other half is newly taken up and supplied via xylem, with an efficient xylem-to-phloem transfer at stem nodes. Thus, the growth of new organs depends equally on both N sources. (2) A large fraction (as much as 80%) of the grain N is derived largely from mature organs such as leaves and stems by degradation, including the autophagy pathway of chloroplast proteins (e.g., Rubisco). (3) Mobilized proteinogenic amino acids (AA), including arginine, lysine, proline and valine, are derived mainly from protein degradation, with AA transporters playing a role in transferring these AAs across cell membranes of source and sink organs, and enabling their efficient reutilization in the latter. On the other hand, AAs such as glutamine, glutamic acid, γ-amino butyric acid, aspartic acid, and alanine are produced by assimilation of newly taken up N by roots and and transported via xylem and phloem. The formation of 350 filled grains over 50 days during the

  9. Whole-Plant Dynamic System of Nitrogen Use for Vegetative Growth and Grain Filling in Rice Plants (Oryza sativa L.) as Revealed through the Production of 350 Grains from a Germinated Seed Over 150 Days: A Review and Synthesis

    PubMed Central

    Yoneyama, Tadakatsu; Tanno, Fumio; Tatsumi, Jiro; Mae, Tadahiko

    2016-01-01

    A single germinated rice (Oryza sativa L) seed can produce 350 grains with the sequential development of 15 leaves on the main stem and 7–10 leaves on four productive tillers (forming five panicles in total), using nitrogen (N) taken up from the environment over a 150-day growing season. Nitrogen travels from uptake sites to the grain through growing organ-directed cycling among sequentially developed organs. Over the past 40 years, the dynamic system for N allocation during vegetative growth and grain filling has been elucidated through studies on N and 15N transport as well as enzymes and transporters involved. In this review, we synthesize the information obtained in these studies along the following main points: (1) During vegetative growth before grain-filling, about half of the total N in the growing organs, including young leaves, tillers, root tips and differentiating panicles is supplied via phloem from mature source organs such as leaves and roots, after turnover and remobilization of proteins, whereas the other half is newly taken up and supplied via xylem, with an efficient xylem-to-phloem transfer at stem nodes. Thus, the growth of new organs depends equally on both N sources. (2) A large fraction (as much as 80%) of the grain N is derived largely from mature organs such as leaves and stems by degradation, including the autophagy pathway of chloroplast proteins (e.g., Rubisco). (3) Mobilized proteinogenic amino acids (AA), including arginine, lysine, proline and valine, are derived mainly from protein degradation, with AA transporters playing a role in transferring these AAs across cell membranes of source and sink organs, and enabling their efficient reutilization in the latter. On the other hand, AAs such as glutamine, glutamic acid, γ-amino butyric acid, aspartic acid, and alanine are produced by assimilation of newly taken up N by roots and and transported via xylem and phloem. The formation of 350 filled grains over 50 days during the

  10. A novel, two-step top seeded infiltration and growth process for the fabrication of single grain, bulk (RE)BCO superconductors

    NASA Astrophysics Data System (ADS)

    Namburi, Devendra K.; Shi, Yunhua; Palmer, Kysen G.; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2016-09-01

    A fundamental requirement of the fabrication of high performing, (RE)-Ba-Cu-O bulk superconductors is achieving a single grain microstructure that exhibits good flux pinning properties. The top seeded melt growth (TSMG) process is a well-established technique for the fabrication of single grain (RE)BCO bulk samples and is now applied routinely by a number of research groups around the world. The introduction of a buffer layer to the TSMG process has been demonstrated recently to improve significantly the general reliability of the process. However, a number of growth-related defects, such as porosity and the formation of micro-cracks, remain inherent to the TSMG process, and are proving difficult to eliminate by varying the melt process parameters. The seeded infiltration and growth (SIG) process has been shown to yield single grain samples that exhibit significantly improved microstructures compared to the TSMG technique. Unfortunately, however, SIG leads to other processing challenges, such as the reliability of fabrication, optimisation of RE2BaCuO5 (RE-211) inclusions (size and content) in the sample microstructure, practical oxygenation of as processed samples and, hence, optimisation of the superconducting properties of the bulk single grain. In the present paper, we report the development of a near-net shaping technique based on a novel two-step, buffer-aided top seeded infiltration and growth (BA-TSIG) process, which has been demonstrated to improve greatly the reliability of the single grain growth process and has been used to fabricate successfully bulk, single grain (RE)BCO superconductors with improved microstructures and superconducting properties. A trapped field of ˜0.84 T and a zero field current density of 60 kA cm-2 have been measured at 77 K in a bulk, YBCO single grain sample of diameter 25 mm processed by this two-step BA-TSIG technique. To the best of our knowledge, this value of trapped field is the highest value ever reported for a sample

  11. Effect of feeding fermented liquid feed and fermented grain on gastrointestinal ecology and growth performance in piglets.

    PubMed

    Canibe, N; Højberg, O; Badsberg, J H; Jensen, B B

    2007-11-01

    To investigate the microbial and nutritional characteristics of dry feed, liquid feed containing fermented liquid cereal grains, and fermented liquid feed, and their effect on gastrointestinal ecology and growth performance, 120 piglets from 40 litters were used and housed in pens with 5 animals in each. The 3 dietary treatments (all nonheated and nonpelleted diets) were: a dry meal diet (DRY); a fermented, liquid cereal grain feed (FLG); and a fermented liquid feed (FLF). The FLG diet was prepared by storing the dietary cereals (barley and wheat) and water (1:2.5, wt/wt) in a closed tank at 20 degrees C and adding the remaining dietary ingredients immediately before feeding. The FLF diet was prepared by storing compound feed and water (1:2.5, wt/wt) in a closed tank at 20 degrees C. Three times daily, 50% of the fermented cereals or compound feed and water stored in the tanks was removed and replaced with an equal amount of fresh cereals or feed and water. On d 14, 1 piglet from each pen was killed and samples from the gastrointestinal tract were obtained. The pH of the fermented cereals was 3.85 (SD = 0.10), that of the FLG diet was 5.00 (SD = 0.18), and the pH of the FLF diet was 4.45 (SD = 0.11). The dietary concentration of lysine (g/16 g of N) pointed to a decreased concentration in the FLF (5.46, SD = 0.08) compared with the DRY (6.01) and FLG (6.21, SD = 0.27) diets, and the concentration of cadaverine was greater in the FLF diet (890 mg/kg, SD = 151.3) than in the DRY (32 mg/kg) or FLG (153 mg/kg, SD = 18.7) diets. Fermenting only the cereal component of the diet (FLG) promoted the growth of yeasts to a greater extent than fermenting the whole diet (FLF). Terminal RFLP profiles of diets and digesta from the stomach and midcolon showed differences among dietary groups. The number of yeasts able to grow at 37 degrees C in the stomach and caudal small intestine was greatest in the FLG group compared with the other 2 dietary groups (P < 0.01). In the cecum and

  12. Large Perovskite Grain Growth in Low-Temperature Solution-Processed Planar p-i-n Solar Cells by Sodium Addition.

    PubMed

    Bag, Santanu; Durstock, Michael F

    2016-03-02

    Thin-film p-i-n type planar heterojunction perovskite solar cells have the advantage of full low temperature solution processability and can, therefore, be adopted in roll-to-roll production and flexible devices. One of the main challenges with these devices, however, is the ability to finely control the film morphology during the deposition and crystallization of the perovskite layer. Processes suitable for optimization of the perovskite layer film morphology with large grains are highly desirable for reduced recombination of charge carriers. Here, we show how uniform thin films with micron size perovskite grains can be made through the use of a controlled amount of sodium ions in the precursor solution. Large micrometer-size CH3NH3PbI3 perovskite grains are formed during low-temperature thin-film growth by adding sodium ions to the PbI2 precursor solution in a two-step interdiffusion process. By adjusting additive concentration, film morphologies were optimized and the fabricated p-i-n planar perovskite-PCBM solar cells showed improved power conversion efficiences (an average of 3-4% absolute efficiency enhancement) compared to the nonsodium based devices. Overall, the additive enhanced grain growth process helped to reach a high 14.2% solar cell device efficiency with low hysteresis. This method of grain growth is quite general and provides a facile way to fabricate large-grained CH3NH3PbI3 on any arbitrary surface by an all solution-processed route.

  13. [Effects of nitrogen fertilization and root separation on the plant growth and grain yield of maize and its rhizosphere microorganisms].

    PubMed

    Zhang, Xiang-Qian; Huang, Guo-Qin; Bian, Xin-Min; Zhao, Qi-Guo

    2012-12-01

    A field experiment with root separation was conducted to study the effects of root interaction in maize-soybean intercropping system on the plant growth and grain yield of maize and its rhizosphere microorganisms under different nitrogen fertilization levels (0.1, 0.3, 0.5, and 0.7 g x kg(-1)). Root interaction and nitrogen fertilization had positive effects on the plant height, leaf length and width, and leaf chlorophyll content of maize. Less difference was observed in the root dry mass of maize at maturing stage between the treatments root separation and no root separation. However, as compared with root separation, no root separation under the nitrogen fertilization levels 0.1, 0.3, 0.5, and 0.7 g x kg(-1) increased the biomass per maize plant by 8.8%, 6.3%, 3.6%, and 0.7%, and the economic yield per maize plant by 17.7%, 10.0%, 8.2%, and 0.9%, respectively. No root separation increased the quantity of rhizosphere fungi and azotobacteria significantly, as compared with root separation. With increasing nitrogen fertilization level, the quantity of rhizosphere bacteria, fungi, and actinomycetes presented an increasing trend, while that of rhizosphere azotobacteria decreased after an initial increase. The root-shoot ratio of maize at maturing stage was significantly negatively correlated with the quantity of rhizosphere bacteria, fungi, and actinomycetes, but less correlated with the quantity of rhizosphere azotobacteria. It was suggested that the root interaction in maize-soybean intercropping system could improve the plant growth of maize and increase the maize yield and rhizosphere microbial quantity, but the effect would be decreased with increasing nitrogen fertilization level.

  14. On the kinetics of oriented growth of two-phase colonies of platelet grains in the presence of second-phase particles phase

    NASA Astrophysics Data System (ADS)

    Ol'shanetskii, V. E.; Kononenko, Yu. I.

    2014-07-01

    Specific features of the formation of lamellar (columnar) two-phase structures have been considered in the process of the decomposition of the matrix in the presence of (1) immobile disperse second-phase particles and (2) mobile disperse second-phase inclusions. It has been shown that the approaches to the derivation of initial differential equations of growth should be based on the change in the behavior of particles of the second phase upon the potential propagation of the growth front. To retain the invariance of the driving force along the entire composite growth front of the colony-wise structure, equations of balance of interphase surface tensions in ternary junctions of the normal sections of matrix grains with lamellar grains of the two-phase colony-wise mixture have been taken into account.

  15. Sorafenib suppresses growth and survival of hepatoma cells by accelerating degradation of enhancer of zeste homolog 2.

    PubMed

    Wang, Shanshan; Zhu, Yu; He, Hongyong; Liu, Jing; Xu, Le; Zhang, Heng; Liu, Haiou; Liu, Weisi; Liu, Yidong; Pan, Deng; Chen, Lin; Wu, Qian; Xu, Jiejie; Gu, Jianxin

    2013-06-01

    Enhancer of zeste homolog 2 (EZH2) is a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes that regulate cancer cell growth and survival. It is overexpressed in hepatocellular carcinoma (HCC) with a clinical significance that remains obscure. Sorafenib, a multikinase inhibitor, has been used as a first-line therapeutic drug and shown clinical efficiency for advanced-stage HCC patients. In the present study, we found that sorafenib lowered the protein level of EZH2 through accelerating proteasome-mediated EZH2 degradation in hepatoma cells. Overexpression of EZH2 reversed sorafenib-induced cell growth arrest, cell cycle arrest, and cell apoptosis dependent on histone methyltransferase activity in hepatoma cells. More importantly, shRNA-mediated EZH2 knockdown or EZH2 inhibition with 3-deazaneplanocin A treatment promoted sorafenib-induced hepatoma cell growth arrest and apoptosis. Sorafenib altered the hepatoma epigenome by reducing EZH2 and H3K27 trimethylation. These results revealed a novel therapeutic mechanism underlying sorafenib treatment in suppressing hepatoma growth and survival by accelerating EZH2 degradation. Genetic deletion or pharmacological ablation of EZH2 made hepatoma cells more sensitive to sorafenib, which helps provide a strong framework for exploring innovative combined therapies for advanced-stage HCC patients.

  16. Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water.

    PubMed

    Furukawa, Yoshinori; Nagashima, Ken; Nakatsubo, Shun-Ichi; Yoshizaki, Izumi; Tamaru, Haruka; Shimaoka, Taro; Sone, Takehiko; Yokoyama, Etsuro; Zepeda, Salvador; Terasawa, Takanori; Asakawa, Harutoshi; Murata, Ken-Ichiro; Sazaki, Gen

    2017-03-06

    The free growth of ice crystals in supercooled bulk water containing an impurity of glycoprotein, a bio-macromolecule that functions as 'antifreeze' in living organisms in a subzero environment, was observed under microgravity conditions on the International Space Station. We observed the acceleration and oscillation of the normal growth rates as a result of the interfacial adsorption of these protein molecules, which is a newly discovered impurity effect for crystal growth. As the convection caused by gravity may mitigate or modify this effect, secure observations of this effect were first made possible by continuous measurements of normal growth rates under long-term microgravity condition realized only in the spacecraft. Our findings will lead to a better understanding of a novel kinetic process for growth oscillation in relation to growth promotion due to the adsorption of protein molecules and will shed light on the role that crystal growth kinetics has in the onset of the mysterious antifreeze effect in living organisms, namely, how this protein may prevent fish freezing.

  17. Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoshinori; Nagashima, Ken; Nakatsubo, Shun-Ichi; Yoshizaki, Izumi; Tamaru, Haruka; Shimaoka, Taro; Sone, Takehiko; Yokoyama, Etsuro; Zepeda, Salvador; Terasawa, Takanori; Asakawa, Harutoshi; Murata, Ken-Ichiro; Sazaki, Gen

    2017-03-01

    The free growth of ice crystals in supercooled bulk water containing an impurity of glycoprotein, a bio-macromolecule that functions as ‘antifreeze’ in living organisms in a subzero environment, was observed under microgravity conditions on the International Space Station. We observed the acceleration and oscillation of the normal growth rates as a result of the interfacial adsorption of these protein molecules, which is a newly discovered impurity effect for crystal growth. As the convection caused by gravity may mitigate or modify this effect, secure observations of this effect were first made possible by continuous measurements of normal growth rates under long-term microgravity condition realized only in the spacecraft. Our findings will lead to a better understanding of a novel kinetic process for growth oscillation in relation to growth promotion due to the adsorption of protein molecules and will shed light on the role that crystal growth kinetics has in the onset of the mysterious antifreeze effect in living organisms, namely, how this protein may prevent fish freezing.

  18. Oscillations and accelerations of ice crystal growth rates in microgravity in presence of antifreeze glycoprotein impurity in supercooled water

    PubMed Central

    Furukawa, Yoshinori; Nagashima, Ken; Nakatsubo, Shun-ichi; Yoshizaki, Izumi; Tamaru, Haruka; Shimaoka, Taro; Sone, Takehiko; Yokoyama, Etsuro; Zepeda, Salvador; Terasawa, Takanori; Asakawa, Harutoshi; Murata, Ken-ichiro; Sazaki, Gen

    2017-01-01

    The free growth of ice crystals in supercooled bulk water containing an impurity of glycoprotein, a bio-macromolecule that functions as ‘antifreeze’ in living organisms in a subzero environment, was observed under microgravity conditions on the International Space Station. We observed the acceleration and oscillation of the normal growth rates as a result of the interfacial adsorption of these protein molecules, which is a newly discovered impurity effect for crystal growth. As the convection caused by gravity may mitigate or modify this effect, secure observations of this effect were first made possible by continuous measurements of normal growth rates under long-term microgravity condition realized only in the spacecraft. Our findings will lead to a better understanding of a novel kinetic process for growth oscillation in relation to growth promotion due to the adsorption of protein molecules and will shed light on the role that crystal growth kinetics has in the onset of the mysterious antifreeze effect in living organisms, namely, how this protein may prevent fish freezing. PMID:28262787

  19. A new seeding technique for the reliable fabrication of large, SmBCO single grains containing silver using top seeded melt growth

    NASA Astrophysics Data System (ADS)

    Shi, Y.-H.; Dennis, A. R.; Cardwell, D. A.

    2015-03-01

    Silver (Ag) is an established additive for improving the mechanical properties of single grain, (RE)Ba2Cu3O7-δ [(RE)BCO, RE = Sm, Gd and Y] bulk superconductors. The presence of Ag in the (RE)BCO bulk composition, however, typically reduces the melting temperature of the single crystal seed in the top seeded melt growth (TSMG) process, which complicates significantly the controlled nucleation and subsequent epitaxial growth of a single grain, which is essential for high field engineering applications. The reduced reliability of the seeding process in the presence of Ag is particularly acute for the SmBCO system, since the melting temperature of SmBCO is very close to that of the generic NdBCO(MgO) seed. SmBCO has a high superconducting transition temperature, Tc, and exhibits the most pronounced ‘peak’ effect at higher magnetic field of all materials in the family of (RE)BCO bulk superconductors and, therefore, has the greatest potential for use in practical applications (compared to GdBCO and YBCO, in particular). Development of an effective seeding process, therefore, is one of the major challenges of the TSMG process for the growth of large, high quantity single grain superconductors. In this paper, we report a novel technique that involves introducing a buffer layer between the seed crystal and the precursor pellet, primarily to inhibit the diffusion of Ag from the green body to the seed during melt processing in order to prevent the melting of the seed. The success rate of the seeding process using this technique is 100% for relatively small batches of samples. The superconducting properties, critical temperature, Tc, critical current density, Jc and trapped fields, of the single grains fabricated using the buffers are reported and the microstructures in the vicinity of the buffer of single grains fabricated by the modified technique are analysed to understand further the effects of buffers on the growth process of these technologically important

  20. Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs.

    PubMed

    Myung, Jaewook; Kim, Minkyu; Pan, Ming; Criddle, Craig S; Tang, Sindy K Y

    2016-05-01

    Methane is a low-cost feedstock for the production of polyhydroxyalkanoate biopolymers, but methanotroph fermentations are limited by the low solubility of methane in water. To enhance mass transfer of methane to water, vigorous mixing or agitation is typically used, which inevitably increases power demand and operational costs. This work presents a method for accelerating methane mass transfer without agitation by growing methanotrophs in water-in-oil emulsions, where the oil has a higher solubility for methane than water does. In systems without agitation, the growth rate of methanotrophs in emulsions is five to six times that of methanotrophs in the medium-alone incubations. Within seven days, cells within the emulsions accumulate up to 67 times more P3HB than cells in the medium-alone incubations. This is achieved due to the increased interfacial area of the aqueous phase, and accelerated methane diffusion through the oil phase.

  1. Efficacy of insect growth regulators as grain protectants against two stored-product pests in wheat and maize.

    PubMed

    Kavallieratos, Nickolas G; Athanassiou, Christos G; Vayias, Basileios J; Tomanović, Zeljko

    2012-05-01

    Insect growth regulators (IGRs) (two juvenile hormone analogues [fenoxycarb and pyriproxifen], four chitin synthesis inhibitors [diflubenzuron, flufenoxuron, lufenuron, and triflumuron], one ecdysteroid agonist [methoxyfenozide], and one combination of chitin synthesis inhibitors and juvenile hormone analogues [lufenuron plus fenoxycarb]) were tested in the laboratory against adults of Prostephanus truncatus in maize and against adults of Rhyzopertha dominica in wheat. The tested IGRs were applied in maize at three doses (1, 5, and 10 ppm) and assessed at three temperature levels (20, 25, and 30°C) in the case of P. truncatus, while in the case of R. dominica the above doses were assessed only at 25°C in wheat. In addition to progeny production, mortality of the treated adults after 14 days of exposure in the IGR-treated commodities was assessed. All IGRs were very effective (>88.5% suppression of progeny) against the tested species at doses of $ 5 ppm, while diflubenzuron at 25°C in the case of P. truncatus or lufenuron and pyriproxyfen in the case of R. dominica completely suppressed (100%) progeny production when they were applied at 1 ppm. At all tested doses, the highest values of R. dominica parental mortality were observed in wheat treated with lufenuron plus fenoxycarb. Temperature at the levels examined in the present study did not appear to affect the overall performance in a great extent of the tested IGRs in terms of adult mortality or suppression of progeny production against P. truncatus in treated maize. The tested IGRs may be considered viable grain protectants and therefore as potential components in stored-product integrated pest management.

  2. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  3. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    PubMed

    Gagné-Bourque, François; Mayer, Boris F; Charron, Jean-Benoit; Vali, Hojatollah; Bertrand, Annick; Jabaji, Suha

    2015-01-01

    Plant growth-promoting bacteria (PGB) induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to grasses and cereal

  4. Research on the growth orientation of pyrite grains in the colloform textures in Baiyunpu Pb-Zn polymetallic deposit, Hunan, China

    NASA Astrophysics Data System (ADS)

    Gao, Shang; Huang, Fei; Gu, Xiangping; Chen, Zhenyu; Xing, Miaomiao; Li, Yongli

    2017-02-01

    A large number of colloform-textured pyrites were found in Baiyunpu Pb-Zn ore bodies in Xinshao County, Hunan, China. This study investigates the growth orientation of the pyrite grains in these structures by field emission scanning electron microscopy (FE-SEM), in situ micro X-ray diffraction (μXRD) and electron backscatter diffraction (EBSD). The growth proceeded from micro-crystalline cores in the colloform textures. Moreover, the pyrite layers were discrete and separated by locally significant quantities of galena and calcite. The μXRD results suggested clear crystalline characteristics and weakly preferred orientations of the colloform textures. EBSD confirmed that the pyrite grains exist preferred orientations <100 > or <111 > in the layered zones. According to the crystal growth theory, the formation and variation of crystal preferred orientations (CPOs) in pyrite are mainly restricted by the internal crystal structure of the pyrite and depends on the external environment conditions, such as trace element concentrations and the supersaturation degree. We inferred the evolutionary regularity of lattice planes with different indices in the pyrite crystal structure from morphological, compositional and growth orientation information, which reflect the crystal growth history of the colloform pyrite. This study will advance our understanding of the growth processes of colloform pyrite and environmental evolution in the Baiyunpu Pb-Zn polymetallic deposits.

  5. Stringent restriction from the growth of large-scale structure on apparent acceleration in inhomogeneous cosmological models.

    PubMed

    Ishak, Mustapha; Peel, Austin; Troxel, M A

    2013-12-20

    Probes of cosmic expansion constitute the main basis for arguments to support or refute a possible apparent acceleration due to different expansion rates in the Universe as described by inhomogeneous cosmological models. We present in this Letter a separate argument based on results from an analysis of the growth rate of large-scale structure in the Universe as modeled by the inhomogeneous cosmological models of Szekeres. We use the models with no assumptions of spherical or axial symmetries. We find that while the Szekeres models can fit very well the observed expansion history without a Λ, they fail to produce the observed late-time suppression in the growth unless Λ is added to the dynamics. A simultaneous fit to the supernova and growth factor data shows that the cold dark matter model with a cosmological constant (ΛCDM) provides consistency with the data at a confidence level of 99.65%, while the Szekeres model without Λ achieves only a 60.46% level. When the data sets are considered separately, the Szekeres with no Λ fits the supernova data as well as the ΛCDM does, but provides a very poor fit to the growth data with only 31.31% consistency level compared to 99.99% for the ΛCDM. This absence of late-time growth suppression in inhomogeneous models without a Λ is consolidated by a physical explanation.

  6. Grain boundary segregation and hydrogen-induced fracture in 7050 aluminium alloy

    SciTech Connect

    Song, R.G.; Tseng, M.K.; Zhang, B.J.; Liu, J.; Jin, Z.H.; Shin, K.S.

    1996-08-01

    The relationships between grain boundary segregation and crack growth of stress corrosion and corrosion fatigue in 7050 aluminium alloy have been investigated under various aging conditions; the effects of grain boundary segregation on intergranular fracture work have been calculated using a quasichemical approach. The results show that the hydrogen content at the crack tip and the crack growth rate increase with the concentration of solid solution Mg on increasing grain boundary; both Mg and H segregation induce the intergranular fracture work to decrease. Mg segregation accelerates H enriching and crack propagation. It is indicated that a Mg-H interaction occurs in the processes of corrosion fatigue as well as stress corrosion.

  7. Improving 6061-Al Grain Growth and Penetration across HIP-Bonded Clad Interfaces in Monolithic Fuel Plates: Initial Studies

    SciTech Connect

    Hackenberg, Robert E.; McCabe, Rodney J.; Montalvo, Joel D.; Clarke, Kester D.; Dvornak, Matthew J.; Edwards, Randall L.; Crapps, Justin M.; Trujillo, R. Ralph; Aikin, Beverly; Vargas, Victor D.; Hollis, Kendall J.; Lienert, Thomas J.; Forsyth, Robert T.; Harada, Kiichi L.

    2013-05-06

    Grain penetration across aluminum-aluminum cladding interfaces in research reactor fuel plates is desirable and was obtained by a legacy roll-bonding process, which attained 20-80% grain penetration. Significant grain penetration in monolithic fuel plates produced by Hot Isostatic Press (HIP) fabrication processing is equally desirable but has yet to be attained. The goal of this study was to modify the 6061-Al in such a way as to promote a much greater extent of crossinterface grain penetration in monolithic fuel plates fabricated by the HIP process. This study documents the outcomes of several strategies attempted to attain this goal. The grain response was characterized using light optical microscopy (LOM) electron backscatter diffraction (EBSD) as a function of these prospective process modifications done to the aluminum prior to the HIP cycle. The strategies included (1) adding macroscopic gaps in the sandwiches to enhance Al flow, (2) adding engineering asperities to enhance Al flow, (3) adding stored energy (cold work), and (4) alternative cleaning and coating. Additionally, two aqueous cleaning methods were compared as baseline control conditions. The results of the preliminary scoping studies in all the categories are presented. In general, none of these approaches were able to obtain >10% grain penetration. Recommended future work includes further development of macroscopic grooving, transferred-arc cleaning, and combinations of these with one another and with other processes.

  8. Evidence of accelerated beak growth associated with avian keratin disorder in black-capped chickadees (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline R.; Handel, Colleen M.; O'Hara, Todd M.

    2012-01-01

    We recently documented an epizootic of beak deformities in more than 2,000 Blackcapped Chickadees (Poecile atricapillus) and other wild bird species in North America. This emerging avian disease, which has been termed avian keratin disorder, results in gross overgrowth of the rhamphotheca, the outer, keratinized layer of the beak. To test the hypothesis that the beak deformities characteristic of this disorder are associated with accelerated keratin production, we measured rates of beak growth and wear in affected Black-capped Chickadees (n=16) and a control sample of unaffected chickadees (n=14) collected from south-central (61°09'-61°38'N, 149°11' -149°48'W) and interior Alaska (64°51' -64°53'N, 147°49' -147°59'W). Rates of absolute growth were 50-100% higher in affected birds than they were in control birds and exceeded records from other passerine species. These results suggest that abnormally rapid epidermal growth is the primary physical mechanism by which beak deformities develop and are maintained in affected chickadees. Although beak overgrowth typically worsened over time, differential patterns of wear influenced the severity and morphology of deformities. In some cases, the effects of accelerated keratin growth were partially mitigated by frequent breakage of rhamphothecal tips. However, mortalities occurred in 9 of 16 birds (56%) with beak deformities during the study, suggesting that avian keratin disorder results in severe health consequences for affected birds. Additional study of factors that control beak keratin production is needed to understand the pathogenesis of this debilitating disease in wild birds.

  9. Evidence of accelerated beak growth associated with avian keratin disorder in Black-capped Chickadees (Poecile atricapillus)

    USGS Publications Warehouse

    Van Hemert, Caroline; Handel, Colleen M.; O'Hara, Todd M.

    2012-01-01

    We recently documented an epizootic of beak deformities in more than 2,000 Blackcapped Chickadees (Poecile atricapillus) and other wild bird species in North America. This emerging avian disease, which has been termed avian keratin disorder, results in gross overgrowth of the rhamphotheca, the outer, keratinized layer of the beak. To test the hypothesis that the beak deformities characteristic of this disorder are associated with accelerated keratin production, we measured rates of beak growth and wear in affected Black-capped Chickadees (n=16) and a control sample of unaffected chickadees (n=14) collected from south-central (61°09′−61°38′N, 149°11′ −149°48′W) and interior Alaska (64°51′ −64°53′N, 147°49′ −147°59′W). Rates of absolute growth were 50–100% higher in affected birds than they were in control birds and exceeded records from other passerine species. These results suggest that abnormally rapid epidermal growth is the primary physical mechanism by which beak deformities develop and are maintained in affected chickadees. Although beak overgrowth typically worsened over time, differential patterns of wear influenced the severity and morphology of deformities. In some cases, the effects of accelerated keratin growth were partially mitigated by frequent breakage of rhamphothecal tips. However, mortalities occurred in 9 of 16 birds (56%) with beak deformities during the study, suggesting that avian keratin disorder results in severe health consequences for affected birds. Additional study of factors that control beak keratin production is needed to understand the pathogenesis of this debilitating disease in wild birds.

  10. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion.

    PubMed

    Lee, Ko-Eun; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Joo, Gil-Jae; Lee, In-Jung; Ko, Jae-Hwan; Kim, Jin-Ho

    2015-09-01

    The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

  11. Addition of SiC Particles to Ag Die-Attach Paste to Improve High-Temperature Stability; Grain Growth Kinetics of Sintered Porous Ag

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Nagao, Shijo; Suganuma, Katsuaki

    2015-10-01

    To improve the high-temperature reliability of sintered Ag joints, three types of silicon carbide particle (SiCp) of different size and morphology were added to Ag micron-flake paste. Quality sintered joints between Cu dummy chips and Cu substrate were obtained at a relatively low temperature (250°C), in air, under low load (0.4 MPa), and 35 MPa die-shear strength was achieved. High-temperature stability was investigated by means of aging tests at 150, 200, and 250°C for 500 h, and by thermal cycling between -50°C and 250°C for up to 170 cycles. The best distribution and compatibility with porous sintered Ag structures was observed for sub-micron SiC particles with an average diameter of 600 nm. After high-temperature storage for 500 h at 250°C, mean Ag grain size of the SiC-containing joints was unchanged whereas that for pure sintered Ag increased from 1.1 to 2.5 μm. Ag joints containing the optimum amount (2 wt.%) of SiCp retained their original strength (20 MPa) after storage at 250°C for 500 h. The shear strength of Ag joints without added SiCp decreased from 27 to 7 MPa after 500 h because of grain growth, which obeyed the classical parabolic law. Grain growth in pure Ag joints is discussed in terms of a temperature-dependent exponent n and activation energy Q. Our SiCp-containing joints resisted the grain growth that induces interfacial cracks during thermal cycling.

  12. Effect of viscous grain bridging on cyclic fatigue-crack growth in monolithic ceramics at elevated temperatures

    SciTech Connect

    McNaney, J.M.; Gilbert, C.J.; Ritchie, R.O. . Dept. of Materials Science and Mineral Engineering)

    1999-07-09

    The bridging tractions developed behind a crack tip are considered for a stationary crack under cyclic loading conditions at elevated temperatures in high-toughness, monolithic ceramics. Assuming a temperature range where the grain-boundary phases are sufficiently soft such that bridging can occur due to a viscous layer in the boundary, a viscoelastic model is developed in which bridging forces associated with the shear resistance of the grain-boundary phase are transmitted across the surfaces of a crack. Throughout the work, cyclic and static damage mechanisms which may be operating ahead of the crack tip (e.g. creep cavitation) are ignored in order to focus exclusively on the role of viscous grain bridging. A primary goal is to incorporate microstructural details like grain shape, grain-boundary thickness, and glass viscosity, as well as the effects of external variables such as loading rate and temperature. A fully self-consistent numerical approach is adopted, which does not require any prescribed assumptions as to the shape of the crack-opening profile. The self-consistent solution is compared to an analytical solution for a simplified parabolic approximation of the crack-flank opening displacements. The model is applicable to a wide range of ceramic materials at elevated temperatures, and rationalizes the frequency and temperature sensitivity not generally observed in ceramics at room temperature. Solutions identify a non-dimensional group associated with microstructure and external loading conditions, and solutions are presented over a range of this parameter.

  13. Fibrin biomatrix-conjugated platelet-derived growth factor AB accelerates wound healing in severe thermal injury.

    PubMed

    Mittermayr, Rainer; Branski, Ludwik; Moritz, Martina; Jeschke, Marc G; Herndon, David N; Traber, Daniel; Schense, Jason; Gampfer, Jörg; Goppelt, Andreas; Redl, Heinz

    2016-05-01

    Controlled delivery of growth factors from biodegradable biomatrices could accelerate and improve impaired wound healing. The study aim was to determine whether platelet-derived growth factor AB (PDGF.AB) with a transglutaminase (TG) crosslinking substrate site released from a fibrin biomatrix improves wound healing in severe thermal injury. The binding and release kinetics of TG-PDGF.AB were determined in vitro. Third-degree contact burns (dorsum of Yorkshire pigs) underwent epifascial necrosectomy 24 h post-burn. Wound sites were covered with autologous meshed (3:1) split-thickness skin autografts and either secured with staples or attached with sprayed fibrin sealant (FS; n = 8/group). TG-PDGF.AB binds to the fibrin biomatrix using the TG activity of factor XIIIa, and is subsequently released through enzymatic cleavage. Three doses of TG-PDGF.AB in FS (100 ng, 1 µg and 11 µg/ml FS) were tested. TG-PDGF.AB was bound to the fibrin biomatrix as evidenced by western blot analysis and subsequently released by enzymatic cleavage. A significantly accelerated and improved wound healing was achieved using sprayed FS containing TG-PDGF.AB compared to staples alone. Low concentrations (100 ng-1 µg TG-PDGF.AB/ml final FS clot) demonstrated to be sufficient to attain a nearly complete closure of mesh interstices 14 days after grafting. TG-PDGF.AB incorporated in FS via a specific binding technology was shown to be effective in grafted third-degree burn wounds. The adhesive properties of the fibrin matrix in conjunction with the prolonged growth factor stimulus enabled by this binding technology could be favourable in many pathological situations associated with wound-healing disturbances. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Investigation of Abnormal Grain Growth in a Friction Stir Welded and Spin-Formed Al-Li Alloy 2195 Crew Module

    NASA Technical Reports Server (NTRS)

    Tayon, Wesley A.; Domack, Marcia S.; Hoffman, Eric K.; Hales, Stephen J.

    2013-01-01

    In order to improve manufacturing efficiency and reduce structural mass and costs in the production of launch vehicle structures, NASA is pursuing a wide-range of innovative, near-net shape manufacturing technologies. A technology that combines friction stir welding (FSW) and spin-forming has been applied to manufacture a single-piece crew module using Aluminum-Lithium (AL-Li) Alloy 2195. Plate size limitations for Al-Li alloy 2195 require that two plates be FSW together to produce a spin-forming blank of sufficient size to form the crew module. Subsequent forming of the FSW results in abnormal grain growth (AGG) within the weld region upon solution heat treatment (SHT), which detrimentally impacts strength, ductility, and fracture toughness. The current study seeks to identify microstructural factors that contribute to the development of AGG. Electron backscatter diffraction (EBSD) was used to correlate driving forces for AGG, such as stored energy, texture, and grain size distributions, with the propensity for AGG. Additionally, developmental annealing treatments prior to SHT are examined to reduce or eliminate the occurrence of AGG by promoting continuous, or uniform, grain growth

  15. Two-stage sintering inhibits abnormal grain growth during beta to alpha transformation in SiC

    SciTech Connect

    Kueck, Aaron M.; De Jonghe, Lutgard C.

    2007-09-17

    Free sintering of SiC with Al, B, and C additions in two successive stages, first under nitrogen and then under argon, produced a near full-density ceramic with equiaxed grain structure. The beta to alpha transformation proceeded to completion; however, the grain shape remained equiaxed due to the action of nitrogen present during the first stage of sintering. It is found that the beta to alpha transformation is necessary but not sufficient for producing the microstructure of interlocking plates found in high-toughness SiC.

  16. Crystallographic aspects of nucleation and grain growth during recrystallization of high stacking fault energy metals as characterized on model Al-1%wt.Mn alloy crystals

    NASA Astrophysics Data System (ADS)

    Miszczyk, M.; Paul, H.; Driver, J. H.; Maurice, C.

    2015-04-01

    The objective of this paper is to identify the predominant crystallographic relations between deformed state and recrystallized grains during the early stages of recrystallization of the Goss{110}<001> and brass{110}<112> oriented single crystals of Al-1%Mn. The analysis was based on high resolution local orientation measurements in scanning electron microscopy. After annealing the disorientation across the recrystallization front 'defines' the final rotation by angles in the ranges of 35o-50o around axes located near the normals of all four {111} slip planes. Although the rotation axes approach the normal vector of the active slip planes during deformation, they only rarely coincide with the exact location of the <111> direction. For both initial orientations, preferred grain growth occurred along the {111} planes, the most active during strain.

  17. Accelerating the dynamics of infrequent events: Combining hyperdynamics and parallel replica dynamics to treat epitaxial layer growth

    SciTech Connect

    Voter, A.F.; Germann, T.C.

    1998-12-31

    During the growth of a surface, morphology-controlling diffusion events occur over time scales that far exceed those accessible to molecular dynamics (MD) simulation. Kinetic Monte Carlo offers a way to reach much longer times, but suffers from the fact that the dynamics are correct only if all possible diffusion events are specified in advance. This is difficult due to the concerted nature of many of the recently discovered surface diffusion mechanisms and the complex configurations that arise during real growth. Here the authors describe two new approaches for this type of problem. The first, hyperdynamics, is an accelerated MD method, in which the trajectory is run on a modified potential energy surface and time is accumulated as a statistical property. Relative to regular MD, hyperdynamics can give computational gains of more than 10{sup 2}. The second method offers a way to parallelize the dynamics efficiently for systems too small for conventional parallel MD algorithms. Both methods exploit the infrequent-event nature of the diffusion process. After an introductory description of these methods, the authors present preliminary results from simulations combining the two approaches to reach near-millisecond time scales on systems relevant to epitaxial metal growth.

  18. Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H.

    PubMed

    Wang, Yuyan; Yang, Xiaoe; Zhang, Xincheng; Dong, Lanxue; Zhang, Jie; Wei, Yanyan; Feng, Ying; Lu, Lingli

    2014-02-26

    This study is to investigate the possibility of zinc (Zn) biofortification in the grains of rice (Oryza sativa L.) by inoculation of endophytic strains isolated from a Zn hyperaccumulator, Sedum alfredii Hance. Five endophytic strains, Burkholderia sp. SaZR4, Burkholderia sp. SaMR10, Sphingomonas sp. SaMR12, Variovorax sp. SaNR1, and Enterobacter sp. SaCS20, isolated from S. alfredii, were inoculated in the roots of Japonica rice Nipponbare under hydroponic condition. Fluorescence images showed that endophytic strains successfully colonized rice roots after 72 h. Improved root morphology and plant growth of rice was observed after inoculation with endophytic strains especially SaMR12 and SaCS20. Under hydroponic conditions, endophytic inoculation with SaMR12 and SaCS20 increased Zn concentration by 44.4% and 51.1% in shoots, and by 73.6% and 83.4% in roots, respectively. Under soil conditions, endophytic inoculation with SaMR12 and SaCS20 resulted in an increase of grain yields and elevated Zn concentrations by 20.3% and 21.9% in brown rice and by 13.7% and 11.2% in polished rice, respectively. After inoculation of SaMR12 and SaCS20, rhizosphere soils of rice plants contained higher concentration of DTPA-Zn by 10.4% and 20.6%, respectively. In situ micro-X-ray fluorescence mapping of Zn confirmed the elevated Zn content in the rhizosphere zone of rice treated with SaMR12 as compared with the control. The above results suggested that endophytic microbes isolated from S. alfredii could successfully colonize rice roots, resulting in improved root morphology and plant growth, increased Zn bioavailability in rhizosphere soils, and elevated grain yields and Zn densities in grains.

  19. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae

    PubMed Central

    Young, Craig S.; Gobler, Christopher J.

    2016-01-01

    While there is growing interest in understanding how marine life will respond to future ocean acidification, many coastal ecosystems currently experience intense acidification in response to upwelling, eutrophication, or riverine discharge. Such acidification can be inhibitory to calcifying animals, but less is known regarding how non-calcifying macroalgae may respond to elevated CO2. Here, we report on experiments performed during summer through fall with North Atlantic populations of Gracilaria and Ulva that were grown in situ within a mesotrophic estuary (Shinnecock Bay, NY, USA) or exposed to normal and elevated, but environmentally realistic, levels of pCO2 and/or nutrients (nitrogen and phosphorus). In nearly all experiments, the growth rates of Gracilaria were significantly increased by an average of 70% beyond in situ and control conditions when exposed to elevated levels of pCO2 (p<0.05), but were unaffected by nutrient enrichment. In contrast, the growth response of Ulva was more complex as this alga experienced significantly (p<0.05) increased growth rates in response to both elevated pCO2 and elevated nutrients and, in two cases, pCO2 and nutrients interacted to provide a synergistically enhanced growth rate for Ulva. Across all experiments, elevated pCO2 significantly increased Ulva growth rates by 30% (p<0.05), while the response to nutrients was smaller (p>0.05). The δ13C content of both Gracilaria and Ulva decreased two-to-three fold when grown under elevated pCO2 (p<0.001) and mixing models demonstrated these macroalgae experienced a physiological shift from near exclusive use of HCO3- to primarily CO2 use when exposed to elevated pCO2. This shift in carbon use coupled with significantly increased growth in response to elevated pCO2 suggests that photosynthesis of these algae was limited by their inorganic carbon supply. Given that eutrophication can yield elevated levels of pCO2, this study suggests that the overgrowth of macroalgae in eutrophic

  20. Growth performance, feeding behavior, and selected blood metabolites of Holstein dairy calves fed restricted amounts of milk: No interactions between sources of finely ground grain and forage provision.

    PubMed

    Mirzaei, M; Khorvash, M; Ghorbani, G R; Kazemi-Bonchenari, M; Ghaffari, M H

    2017-02-01

    The objective of this study was to investigate the effects of grain sources and forage provision on growth performance, blood metabolites, and feeding behaviors of dairy calves. Sixty 3-d-old Holstein dairy calves (42.2 ± 2.5 kg of body weight) were used in a 2 × 3 factorial arrangement with the factors being grain sources (barley and corn) and forage provision (no forage, alfalfa hay, and corn silage). Individually housed calves were randomly assigned (n = 10 calves per treatment: 5 males and 5 females) to 6 treatments: (1) barley grain (BG) without forage supplement, (2) BG with alfalfa hay (AH) supplementation, (3) BG with corn silage (CS) supplementation, (4) corn grain (CG) without forage supplement, (5) CG with AH supplementation, and (6) CG with CS supplementation. All calves had ad libitum access to water and starter feed throughout the experiment. All calves were weaned on d 49 and remained in the study until d 63. Starter feed intake and average daily gain (ADG) was greater for calves fed barley than those fed corn during the preweaning and overall periods. Calves supplemented with CS had greater final body weight and postweaning as well as overall starter feed intake than AH and non-forage-supplemented calves. During the preweaning and overall periods, feeding of CS was found to increase ADG compared with feeding AH and nonforage diets. However, feed efficiency was not affected by dietary treatments. Calves supplemented with CS spent more time ruminating compared with AH and control groups; nonnutritive oral behaviors were the greatest in non-forage-supplemented calves. Regardless of the grain sources, the rumen pH value was greater for AH calves compared with CS and non-forage-supplemented calves. Blood concentration of BHB was greater for CS-supplemented calves compared with AH and non-forage-supplemented calves. Furthermore, body length and heart girth were greater for calves fed barley compared with those fed corn, and also in forage

  1. Accelerated adhesion of grafted skins by laser-induced stress wave-based gene transfer of hepatocyte growth factor

    NASA Astrophysics Data System (ADS)

    Aizawa, Kazuya; Sato, Shunichi; Saitoh, Daizoh; Tsuda, Hitoshi; Ashida, Hiroshi; Obara, Minoru

    2009-02-01

    In our previous study, we delivered plasmid DNA coding for human hepatocyto growth factor (hHGF) to rat skin grafts based on laser-induced stress wave (LISW), by which production of CD31-positive cells in the grafted skins was found to be enhanced, suggesting improved angiogenesis. In this study, we validated the efficacy of this method to accelerate adhesion of grafted skins; reperfusion and reepithelialization in the grafted skins were examined. As a graft, dorsal skin of a rat was exsected and its subcutaneous fat was removed. Plasmid DNA expression vector for hHGF was injected into the graft; on its back surface a laser target with a transparent sheet for plasma confinement was placed, and irradiated with three nanosecond laser pulses at a laser fluence of 1.2 J/cm2 (532 nm; spot diameter, 3 mm) to generate LISWs. After the application of LISWs, the graft was transplanted onto its donor site. We evaluated blood flow by laser Doppler imaging and analyzed reepithelialization based on immunohistochemistry as a function of postgrafting time. It was found that both reperfusion and reepithelialization were significantly enhanced for the grafts with gene transfection than for normal grafts; reepithelialization was completed within 7 days after transplantation with the transfected grafts. These findings demonstrate that adhesion of grafted skins can be accelerated by delivering HGF gene to the grafts based on LISWs.

  2. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.

    PubMed

    Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M

    2015-12-01

    Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo.

  3. Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice.

    PubMed

    Seto, Jong; Busse, Björn; Gupta, Himadri S; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W C; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix--a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

  4. Accelerated crack growth, residual stress, and a cracked zinc coated pressure shell

    NASA Technical Reports Server (NTRS)

    Dittman, Daniel L.; Hampton, Roy W.; Nelson, Howard G.

    1987-01-01

    During a partial inspection of a 42 year old, operating, pressurized wind tunnel at NASA-Ames Research Center, a surface connected defect 114 in. long having an indicated depth of a 0.7 in. was detected. The pressure shell, constructed of a medium carbon steel, contains approximately 10 miles of welds and is cooled by flowing water over its zinc coated external surface. Metallurgical and fractographic analysis showed that the actual detect was 1.7 in. deep, and originated from an area of lack of weld penetration. Crack growth studies were performed on the shell material in the laboratory under various loading rates, hold times, and R-ratios with a simulated shell environment. The combination of zinc, water with electrolyte, and steel formed an electrolytic cell which resulted in an increase in cyclic crack growth rate by as much as 500 times over that observed in air. It was concluded that slow crack growth occurred in the pressure shell by a combination of stress corrosion cracking due to the welding residual stress and corrosion fatigue due to the cyclic operating stress.

  5. Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice

    PubMed Central

    Gupta, Himadri S.; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W. C.; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth. PMID:23091616

  6. Minimization of transverse beam-emittance growth in the 90-degree bending section of the RAON rare-isotope accelerator

    NASA Astrophysics Data System (ADS)

    Oh, B. H.; Yoon, M.

    2016-11-01

    The major contribution of the transverse beam emittance growth (EG) in a RAON heavy-ion accelerator comes from the bending section, which consists of a charge-stripping section, a matching section, and a charge-selection section in sequence. In this paper, we describe our research to minimize the two-dimensional EG in the 90-degree bending section of the RAON currently being developed in Korea. The EG minimization was achieved with the help of multi-objective genetic algorithms and the simplex method. We utilized those algorithms to analyze the 90-degree bending section in a driver linac for the in-flight fragmentation system. Horizontal and vertical EGs were limited to below 10 % in the bending section by adjustment of the transverse beam optics upstream from the charge-stripping section, redesign of the charge-selection section, and optimization of the vertical beam optics at the entrance of a charge-selection section.

  7. Grain boundary oxidation and its effects on high temperature fatigue life

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Yoshiki

    1986-01-01

    Fatigue lives at elevated temperatures are often shortened by creep and/or oxidation. Creep causes grain boundary void nucleation and grain boundary cavitation. Grain boundary voids and cavities will accelerate fatigue crack nucleation and propagation, and thereby shorten fatigue life. The functional relationships between the damage rate of fatigue crack nucleation and propagation and the kinetic process of oxygen diffusion depend on the detailed physical processes. The kinetics of grain boundary oxidation penetration was investigated. The statistical distribution of grain boundary penetration depth was analyzed. Its effect on high temperature fatigue life are discussed. A model of intermittent micro-ruptures of grain boundary oxide was proposed for high temperature fatigue crack growth. The details of these studies are reported.

  8. Arabidopsis thaliana root elongation growth is sensitive to lunisolar tidal acceleration and may also be weakly correlated with geomagnetic variations

    PubMed Central

    Barlow, Peter W.; Fisahn, Joachim; Yazdanbakhsh, Nima; Moraes, Thiago A.; Khabarova, Olga V.; Gallep, Cristiano M.

    2013-01-01

    Background Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. Methods Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a ‘free-running’ state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. Key Results and Conclusions The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate. PMID:23532042

  9. Truncated serine/arginine-rich splicing factor 3 accelerates cell growth through up-regulating c-Jun expression.

    PubMed

    Kano, Shizuka; Nishida, Kensei; Nishiyama, Chihiro; Akaike, Yoko; Kajita, Keisuke; Kurokawa, Ken; Masuda, Kiyoshi; Kuwano, Yuki; Tanahashi, Toshihito; Rokutan, Kazuhito

    2013-01-01

    Serine/arginine-rich splicing factor 3 (SRSF3), a member of the SRSF family, plays a wide-ranging role in gene expression. The human SRSF3 gene generates a major mRNA isoform encoding a functional, full-length protein and a PTC-containing isoform (SRSF3-PTC). The latter is expected to be degraded through the nonsense-mediated mRNA decay system. However, it was reported that SRSF3-PTC mRNA was produced under stressful conditions and translated into a truncated SRSF3 protein (SRSF3-TR). To disclose unknown functions of SRSF3-TR, we established Flp-In-293 cells stably expressing SRSF3-TR. The SRSF3-TR-expressing cells increased mRNA and protein levels of positive regulators for G1 to S phase transition (cyclin D1, cyclin D3, CDC25A, and E2F1) and accelerated their growth. c-Jun is required for progression through the G1 phase, the mechanism by which involves transcriptional control of the cyclin D1 gene. We also found that the JUN promoter activity was significantly increased in the Flp-In-293 cells stably expressing SRSF3-TR, compared with mock-transfected control cells. The SRSF3-TR-expressing cells increased c-Jun and Sp-1 levels, which are important for the positive autoregulation and basal transcription of JUN, respectively. Our results suggest that stress-inducible SRSF3-TR may participate in the acceleration of cell growth through facilitating c-Jun-mediated G1 progression under stressful conditions.

  10. Coupling effect of the electric and temperature fields on the growth of nanocrystalline copper films

    SciTech Connect

    Cao Zhenhua; Wang Feng; Wang Lei; Meng Xiangkang

    2010-03-15

    The effect of an external static electric field on the grain growth in nanocrystalline Cu films was studied at different annealing temperatures. Transmission electron microscopy and x-ray diffraction indicate that the grain growth in Cu films is accelerated with various rates by an external electric field at different annealing temperatures. It is found that there is a coupling effect from the external electric and temperature fields on grain growth in Cu films during annealing. The growth rate is accelerated proportional to a factor f(E)centre dotmu{sup T/100} deg. C, which is determined from the theoretical derivation. The analysis indicates that the enhanced grain growth is achieved by the effect of the electric field on the vacancies migration and dislocation climb along grain boundaries.

  11. Direct measurement of grain acceleration in the near-surface coma of comet 67P/Churyumov-Gerasimenko with Rosetta/OSIRIS

    NASA Astrophysics Data System (ADS)

    Agarwal, Jessica; A'Hearn, Michael F.; Guettler, Carsten; Hoefner, Sebastian; Sierks, Holger; Tubiana, Cecilia; Vincent, Jean-Baptiste; OSIRIS-Team

    2016-10-01

    We for the first time directly measure the acceleration of individual fragments in the inner coma (<2 km) of a comet, and discover the ejection of the material that is thought to subsequently cover large parts of the northern hemisphere as airfall (Thomas et al., 2015).In early 2016, the OSIRIS Narrow Angle Camera on board the Rosetta spacecraft observed fountains of decimeter-sized fragments emerging from confined regions on the surface of comet 67P/Churyumov-Gerasimenko. We trace the motion of individual fragments through images obtained at high cadence over an interval of 2 hours, and measure their projected velocities as a function of time. The fragments are accelerated at a constant rate either away from the nucleus or towards it, and to both directions in the horizontal dimension. The magnitude of the acceleration is compatible with both gas drag and rocket force induced by the sublimation of ice contained in the material, but approximately one order of magnitude larger than the local gravity. Some of these fragments are likely to escape from the gravitational field of the nucleus and feed the comet's debris trail, while others will fall back to the surface or senter orbit. A significant fraction of the comet's northern hemisphere is thought to be covered by such airfall material (Thomas et al., 2015). This paper describes our images and trajectory analysis, discusses the implications for fragment ejection and acceleration mechanisms, and the expected fate of the fragments.References: N. Thomas et al. (2015), A&A 583, A17.

  12. A Novel Aldehyde Dehydrogenase-3 Activator (Alda-89) Protects Submandibular Gland Function from Irradiation without Accelerating Tumor Growth

    PubMed Central

    Xiao, Nan; Cao, Hongbin; Chen, Che-Hong; Kong, Christina S.; Ali, Rehan; Chan, Cato; Sirjani, Davud; Graves, Edward; Koong, Albert; Giaccia, Amato; Mochly-Rosen, Daria; Le, Quynh-Thu

    2013-01-01

    Purpose To determine the effect of Alda-89 (an ALDH3 activitor) on (1) the function of irradiated (RT) submandibular gland (SMG) in mice, (2) its toxicity profile and (3) its effect on the growth of head and neck cancer (HNC) in vitro and in vivo. Experimental Design Adult mice were infused with Alda-89 or vehicle before, during and after RT. Saliva secretion was monitored weekly. Hematology, metabolic profile and post-mortem evaluation for toxicity were examined at the time of sacrifice. Alda-89 or vehicle was applied to HNC cell lines in vitro, and SCID mice transplanted with HNC in vivo with or without radiation; HNC growth was monitored. The ALDH3A1 and ALDH3A2 protein expression was evaluated in 89 HNC patients and correlated to freedom from relapse (FFR) and overall survival (OS). Results Alda-89 infusion significantly resulted in more whole saliva production and a higher percentage of preserved acini after RT compared to vehicle control. There was no difference in the complete blood count, metabolic profile, and major organ morphology between the Alda-89 and vehicle groups. Compared to vehicle control, Alda-89 treatment did not accelerate HNC cell proliferation in vitro, nor did it affect tumor growth in vivo with or without RT. Higher expression of ALDH3A1 or ALDH3A2 was not significantly associated with worse FFR or OS in either HPV-positive or HPV-negative group. Conclusion Alda-89 preserves salivary function after RT without affecting HNC growth or causing measurable toxicity in mice. It is a promising candidate to mitigate RT-related xerostomia. PMID:23812668

  13. Potential use of antioxidants for control of growth and fumonisin production by Fusarium verticillioides and Fusarium proliferatum on whole maize grain.

    PubMed

    Torres, A M; Ramirez, M L; Arroyo, M; Chulze, S N; Magan, N

    2003-06-25

    The effect of interactions between two food grade antioxidants butylated hydroxyanisole (BHA) and propyl paraben (PP, 100, 200, 500 microg g(-1)) and water activity (a(w), 0.995, 0.98, 0.95) of irradiated maize on lag phase prior to growth, growth rate and fumonisin production by Fusarium verticillioides and Fusarium proliferatum was evaluated at 25 degrees C. Both antioxidants had an effect on growth characteristics, and fumonisin production. However, this was dependent on the dose used and the a(w) treatment. At 500 microg g(-1) BHA and PP increased the lag phase prior to growth, and reduced the growth rate of both Fusarium species significantly, especially at 0.95 a(w). Both antioxidants significantly reduced the production of fumonisin by both Fusarium species, especially at 0.98 and 0.95 a(w). These results suggest that these antioxidants have potential for treatment of maize grain for controlling growth of these mycotoxigenic species and prevent fumonisin accumulation.

  14. A Critical Analysis of Grain-Size and Yield-Strength Dependence of Near-Threshold Fatigue-Crack Growth in Steels.

    DTIC Science & Technology

    1981-07-15

    strength (ays) or grain size ( ) -- as is the case, for example, with a low-carbon ferritic steel -- it is unmistakably clear that for the gamut of...steels examined (15 cases), the transition points do not order on the basis of £ either cy, or k alone. Rather, values of AKT for the gamut of steels...the search for a systematic ordering of near-threshold fatigue crack growth rates that pertains to the whole gamut of steels. SURVEY AND ANALYSIS A

  15. The Probiotic Mixture VSL#3 Accelerates Gastric Ulcer Healing by Stimulating Vascular Endothelial Growth Factor

    PubMed Central

    Dharmani, Poonam; De Simone, Claudio; Chadee, Kris

    2013-01-01

    Studies assessing the effect and mechanism of probiotics on diseases of the upper gastrointestinal tract (GI) including gastric ulcers are limited despite extensive work and promising results of this therapeutic option for other GI diseases. In this study, we investigated the mechanisms by which the probiotic mixture VSL#3 (a mixture of eight probiotic bacteria including Lactobacilli, Bifidobacteria and Streptococcus species) heals acetic acid induced gastric ulcer in rats. VSL#3 was administered orally at low (6×109 bacteria) or high (1.2×1010 bacteria) dosages from day 3 after ulcer induction for 14 consecutive days. VSL#3 treatments significantly enhanced gastric ulcer healing in a dose-dependent manner. To assess the mechanism(s) whereby VSL#3 exerted its protective effects, we quantified the gene expression of several pro-inflammatory cytokines, protein and expression of stomach mucin-Muc5ac, regulatory cytokine-IL-10, COX-2 and various growth factors. Of all the components examined, only expression and protein production of VEGF was increased 332-fold on day 7 in the ulcerated tissues of animals treated with VSL#3. Predictably, animals treated with VEGF neutralizing antibody significantly delayed gastric ulcer healing in VSL#3 treated animals. This is the first report to demonstrate high efficacy of the probiotic mixture VSL#3 in enhancing gastric ulcer healing. Probiotic efficacy was effective at higher concentrations of VSL#3 by specifically increasing the expression and production of angiogenesis promoting growth factors, primarily VEGF. PMID:23484048

  16. Section 1: Interfacial reactions and grain growth in ferroelectric SrBi{sub 2}Ta{sub 2}O (SBT) thin films on Si substrates

    SciTech Connect

    Dickerson, B.D.; Zhang, X.; Desu, S.B.

    1997-04-01

    Much of the cost of traditional infrared cameras based on narrow-bandgap photoelectric semiconductors comes from the cryogenic cooling systems required to achieve high detectivity. Detectivity is inversely proportional to noise. Generation-recombination noise in photoelectric detectors increases roughly exponentially with temperature, but thermal noise in photoelectric detectors increases only linearly with temperature. Therefore `thermal detectors perform far better at room temperature than 8-14 {mu}m photon detectors.` Although potentially more affordable, uncooled pyroelectric cameras are less sensitive than cryogenic photoelectric cameras. One way to improve the sensitivity to cost ratio is to deposit ferroelectric pixels with good electrical properties directly on mass-produced, image-processing chips. `Good` properties include a strong temperature dependence of the remanent polarization, P{sub r}, or the relative dielectric constant, {epsilon}{sub r}, for sensitive operation in pyroelectric or dielectric mode, respectively, below or above the Curie temperature, which is 320 C for SBT. When incident infrared radiation is chopped, small oscillations in pixel temperature produce pyroelectric or dielectric alternating currents. The sensitivity of ferroelectric thermal detectors depends strongly on pixel microstructure, since P{sub r} and {epsilon}{sub r} increase with grain size during annealing. To manufacture SBT pixels on Si chips, acceptable SBT grain growth must be achieved at the lowest possible oxygen annealing temperature, to avoid damaging the Si chip below. Therefore current technical progress describes how grain size, reaction layer thickness, and electrical properties develop during the annealing of SBT pixels deposited on Si.

  17. Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe.

    PubMed

    Morgan, Jack A; Milchunas, Daniel G; LeCain, Daniel R; West, Mark; Mosier, Arvin R

    2007-09-11

    A hypothesis has been advanced that the incursion of woody plants into world grasslands over the past two centuries has been driven in part by increasing carbon dioxide concentration, [CO(2)], in Earth's atmosphere. Unlike the warm season forage grasses they are displacing, woody plants have a photosynthetic metabolism and carbon allocation patterns that are responsive to CO(2), and many have tap roots that are more effective than grasses for reaching deep soil water stores that can be enhanced under elevated CO(2). However, this commonly cited hypothesis has little direct support from manipulative experimentation and competes with more traditional theories of shrub encroachment involving climate change, management, and fire. Here, we show that, although doubling [CO(2)] over the Colorado shortgrass steppe had little impact on plant species diversity, it resulted in an increasingly dissimilar plant community over the 5-year experiment compared with plots maintained at present-day [CO(2)]. Growth at the doubled [CO(2)] resulted in an approximately 40-fold increase in aboveground biomass and a 20-fold increase in plant cover of Artemisia frigida Willd, a common subshrub of some North American and Asian grasslands. This CO(2)-induced enhancement of plant growth, among the highest yet reported, provides evidence from a native grassland suggesting that rising atmospheric [CO(2)] may be contributing to the shrubland expansions of the past 200 years. Encroachment of shrubs into grasslands is an important problem facing rangeland managers and ranchers; this process replaces grasses, the preferred forage of domestic livestock, with species that are unsuitable for domestic livestock grazing.

  18. Adding Biotin to Parenteral Nutrition Solutions Without Lipid Accelerates the Growth of Candida albicans

    PubMed Central

    Kuwahara, Takashi; Kaneda, Shinya; Shimono, Kazuyuki

    2016-01-01

    Background: We have previously demonstrated that Candida albicans requires multivitamins (MVs) or lipid to increase rapidly in parenteral nutrition (PN) solutions. In this study, in detail, the effects of vitamins on the growth of C. albicans in PN solutions without lipid were investigated. Methods: In the 1st experiment, a commercial PN solution without lipid was supplemented with water-soluble vitamins (SVs: vitamins B1, B2, B6, B12 and C, folic acid, nicotinamide, biotin and panthenol), water-insoluble vitamins (IVs: vitamins A, D, E and K) or both (MVs). In the 2nd experiment, the test solutions were prepared by supplementing the PN solution with one of each or all of the SVs. In the 3rd experiment, another commercial peripheral PN (PPN) solution without lipid was supplemented with SVs, nicotinic acid, biotin or both nicotinic acid and biotin. In each of the experiments, a specified number of C. albicans organisms was added to each test solution, and all of the test solutions were allowed to stand at room temperature (23-26ºC). The number of C. albicans was counted at 0, 24, 48 and 72 hours after the addition of the organism. Results: In the 1st experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs, but increased slowly without the SVs, regardless of the addition of the IVs. In the 2nd experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs or biotin, but increased slowly with each of the other water-soluble vitamins. In the 3rd experiment, the C. albicans increased rapidly in the PPN solution supplemented with the SVs or biotin, but increased slowly with the addition of nicotinic acid. Conclusions: These results suggested that adding MVs or SVs to PN solutions without lipid promotes the growth of C. albicans, and that this effect is mostly attributable to biotin. PMID:27648003

  19. Toward intelligent synthetic neural circuits: directing and accelerating neuron cell growth by self-rolled-up silicon nitride microtube array.

    PubMed

    Froeter, Paul; Huang, Yu; Cangellaris, Olivia V; Huang, Wen; Dent, Erik W; Gillette, Martha U; Williams, Justin C; Li, Xiuling

    2014-11-25

    In neural interface platforms, cultures are often carried out on a flat, open, rigid, and opaque substrate, posing challenges to reflecting the native microenvironment of the brain and precise engagement with neurons. Here we present a neuron cell culturing platform that consists of arrays of ordered microtubes (2.7-4.4 μm in diameter), formed by strain-induced self-rolled-up nanomembrane (s-RUM) technology using ultrathin (<40 nm) silicon nitride (SiNx) film on transparent substrates. These microtubes demonstrated robust physical confinement and unprecedented guidance effect toward outgrowth of primary cortical neurons, with a coaxially confined configuration resembling that of myelin sheaths. The dynamic neural growth inside the microtube, evaluated with continuous live-cell imaging, showed a marked increase (20×) of the growth rate inside the microtube compared to regions outside the microtubes. We attribute the dramatic accelerating effect and precise guiding of the microtube array to three-dimensional (3D) adhesion and electrostatic interaction with the SiNx microtubes, respectively. This work has clear implications toward building intelligent synthetic neural circuits by arranging the size, site, and patterns of the microtube array, for potential treatment of neurological disorders.

  20. Toward Intelligent Synthetic Neural Circuits: Directing and Accelerating Neuron Cell Growth by Self-Rolled-Up Silicon Nitride Microtube Array

    PubMed Central

    2015-01-01

    In neural interface platforms, cultures are often carried out on a flat, open, rigid, and opaque substrate, posing challenges to reflecting the native microenvironment of the brain and precise engagement with neurons. Here we present a neuron cell culturing platform that consists of arrays of ordered microtubes (2.7–4.4 μm in diameter), formed by strain-induced self-rolled-up nanomembrane (s-RUM) technology using ultrathin (<40 nm) silicon nitride (SiNx) film on transparent substrates. These microtubes demonstrated robust physical confinement and unprecedented guidance effect toward outgrowth of primary cortical neurons, with a coaxially confined configuration resembling that of myelin sheaths. The dynamic neural growth inside the microtube, evaluated with continuous live-cell imaging, showed a marked increase (20×) of the growth rate inside the microtube compared to regions outside the microtubes. We attribute the dramatic accelerating effect and precise guiding of the microtube array to three-dimensional (3D) adhesion and electrostatic interaction with the SiNx microtubes, respectively. This work has clear implications toward building intelligent synthetic neural circuits by arranging the size, site, and patterns of the microtube array, for potential treatment of neurological disorders. PMID:25329686

  1. Accelerated adhesion of grafted skin by laser-induced stress wave-based gene transfer of hepatocyte growth factor

    NASA Astrophysics Data System (ADS)

    Aizawa, Kazuya; Sato, Shunichi; Terakawa, Mitsuhiro; Saitoh, Daizoh; Tsuda, Hitoshi; Ashida, Hiroshi; Obara, Minoru

    2009-11-01

    Gene therapy using wound healing-associated growth factor gene has received much attention as a new strategy for improving the outcome of tissue transplantation. We delivered plasmid DNA coding for human hepatocyte growth factor (hHGF) to rat free skin grafts by the use of laser-induced stress waves (LISWs); autografting was performed with the grafts. Systematic analysis was conducted to evaluate the adhesion properties of the grafted tissue; angiogenesis, cell proliferation, and reepithelialization were assessed by immunohistochemistry, and reperfusion was measured by laser Doppler imaging as a function of time after grafting. Both the level of angiogenesis on day 3 after grafting and the increased ratio of blood flow on day 4 to that on day 3 were significantly higher than those in five control groups: grafting with hHGF gene injection alone, grafting with control plasmid vector injection alone, grafting with LISW application alone, grafting with LISW application after control plasmid vector injection, and normal grafting. Reepithelialization was almost completed on day 7 even at the center of the graft with LISW application after hHGF gene injection, while it was not for the grafts of the five control groups. These findings demonstrate the validity of our LISW-based HGF gene transfection to accelerate the adhesion of grafted skins.

  2. Large grain growth of Ge-rich Ge1-xSnx (x ≈ 0.02) on insulating surfaces using pulsed laser annealing in flowing water

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masashi; Taoka, Noriyuki; Ikenoue, Hiroshi; Nakatsuka, Osamu; Zaima, Shigeaki

    2014-02-01

    We investigate Sn incorporation effects on the growth characteristics of Ge-rich Ge1-xSnx (x < 0.02) on SiO2 crystallized by pulsed laser annealing (PLA) in air and water. Despite the very low Sn content of 2%, Sn atoms within the GeSn layers play a role in preventing ablation and aggregation of the layers during these PLA. Raman and electron backscatter diffraction measurements demonstrate achievement of large-grain (˜800 nmϕ) growth of Ge0.98Sn0.02 polycrystals by using PLA in water. These polycrystals also show a tensile-strain of ˜0.68%. This result opens up the possibility for developing GeSn-based devices fabricated on flexible substrates as well as Si platforms.

  3. Contrasting Responses of Arctic Tussock Tundra to Early Season Snow Melt: Growth Acceleration Versus Frost Damage

    NASA Astrophysics Data System (ADS)

    Oberbauer, S. F.; Starr, G.; Pop, E. W.; Ahlquist, L. E.; Parker, I. C.

    2003-12-01

    Climate warming scenarios for the Arctic include early snow melt marking the beginning of the growing season. From the perspective of the vegetation, early snow melt may have advantageous or disadvantageous effects. With warm weather following snow melt, bud break and flowering will occur early providing a longer period for growth and photosynthesis. However, if very cold weather follows snowmelt, plants will be exposed directly to freezing conditions that plants under the snow would not. Such exposed plants may suffer freeze damage and delayed bud break. We have been experimentally manipulating snow cover at Toolik Lake, Alaska, since 1995. In 9 years of early snow removal treatments, in only two years has the second scenario occurred, in 2001 and 2002. Here we document the effects of very cold conditions following snow removal on green biomass as assessed by NDVI of treatment plots relative to controls. In 2001 evergreens shrubs were killed, bud break was delayed, and NDVI was lower on treatment plots relative to controls. In contrast, in a year with warm spring temperatures following snow melt, 1999, NDVI on treatment plots was significantly greater than that of controls. Cold conditions following snow melt may lead to death of shrubs and delayed budbreak, effects that will carry over throughout the growing season and ultimately, affect community composition and ecosystem function.

  4. Lack of fibroblast growth factor 21 accelerates metabolic liver injury characterized by steatohepatities in mice

    PubMed Central

    Liu, Xingkai; Zhang, Ping; Martin, Robert C; Cui, Guozhen; Wang, Guangyi; Tan, Yi; Cai, Lu; Lv, Guoyue; Li, Yan

    2016-01-01

    Fibroblast growth factor 21 (FGF21) concentrations are increased in human subjects who either have type 2 diabetes or nonalcoholic fatty liver disease (NAFLD). While excessive fat in the liver promotes the release of pro-inflammatory cytokines, NAFLD progresses from steatosis to non alcoholic steatohepatitis (NASH), a more aggressive form of hepatic damage, and lastly toward cirrhosis and HCC. In our previous study, loss of FGF21 is associated with hyper-proliferation, aberrant p53, and HCC development in diabetes mice. In this study, we proposed to investigate the liver metabolic disorders by diabetes and the potential roles of FGF21 played in NASH and potential carcinogenetic transformation of HCC. NASH was induced in FGF21 knockout (FGF21KO) mice by streptozotocin administration or fed with high fat diet (HFD). The pathological transformation of steatohepatities as well as parameters of inflammation, lipid metabolism, cellular events, mesenchymal-epithelial transition (MET) and Wnt/β-catenin signaling was determined in the FGF21 KO diabetic mice and HFD fed mice. We found that mice lacking the FGF21 gene are more prone to develop NASH. A compromised microenvironment of NASH, which could facilitate the HCC carcinogenetic transformation, was found in FGF21 KO mice under metabolic disorders by diabetes and HFD feeding. This study provided further evidence that lack of FGF21 worsened the metabolic disorders in NASH and could render a tumor microenvironment for HCC initiation and progression in the liver of diabetes mice. PMID:27293995

  5. Hepatocyte Growth Factor Prevents Acute Renal Failure of Accelerates Renal Regeneration in mice

    NASA Astrophysics Data System (ADS)

    Kawaida, Kouichi; Matsumoto, Kunio; Shimazu, Hisaaki; Nakamura, Toshikazu

    1994-05-01

    Although acute renal failure is encountered with administration of nephrotoxic drugs, ischemia, or unilateral nephrectomy, there has been no effective drug which can be used in case of acute renal failure. Hepatocyte growth factor (HGF) is a potent hepatotropic factor for liver regeneration and is known to have mitogenic, motogenic, and morphogenic activities for various epithelial cells, including renal tubular cells. Intravenous injection of recombinant human HGF into mice remarkably suppressed increases in blood urea nitrogen and serum creatinine caused by administration of cisplatin, a widely used antitumor drug, or HgCl_2, thereby indicating that HGF strongly prevented the onset of acute renal dysfunction. Moreover, exogenous HGF stimulated DNA synthesis of renal tubular cells after renal injuries caused by HgCl_2 administration and unilateral nephrectomy and induced reconstruction of the normal renal tissue structure in vivo. Taken together with our previous finding that expression of HGF was rapidly induced after renal injuries, these results allow us to conclude that HGF may be the long-sought renotropic factor for renal regeneration and may prove to be effective treatment for patients with renal dysfunction, especially that caused by cisplatin.

  6. Nucleation and Grain Growth During Dehydration of Polycrystalline Gypsum Observed in Time-series Synchrotron X-ray Micro-tomography Experiments

    NASA Astrophysics Data System (ADS)

    Leclere, H.; Bedford, J. D.; Fusseis, F.; Wheeler, J.; Faulkner, D.

    2015-12-01

    Nucleation and growth of new minerals in response to disequilibrium is the most fundamental metamorphic process. However, our current understanding of metamorphic reactions is largely based on inference from mineral assemblages brought to the surface by uplift and erosion, rather than from direct observation. The experimental investigation of metamorphism has also been limited, typically to concealed vessels thus restricting the possibility of direct microstructural monitoring. Recent advances in synchrotron-based X-ray micro-tomography allow for new experiments that utilise X-ray transparent setups in order to image these processes on the micron-scale in 4D. We conducted in-situ constant temperature experiments at the Advanced Photon Source (Argonne National Laboratory, USA) to dehydrate confined cylinders of Volterra Gypsum (5mm length x 2mm diameter). The relatively modest temperature of reaction and the apparently simple mineralogy make gypsum an ideal material for investigating processes associated with metamorphic devolatilization. Using a purpose-built X-ray transparent experimental cell (Fusseis et al., 2014, J. Synchrotron Rad. 21, 251-253) to apply an effective pressure of 5MPa, the samples were heated to 388K for approximately 10 hours to acquire three-dimensional time-series tomography datasets comprising forty time steps. Images show grains of the product material (bassanite) growing throughout the sample accompanied by an evolving porous network. These datasets provide new visual insights into the spatiotemporal association between porosity development and the formation of product minerals during devolatilization. The direct observation of reaction also has important implications for general metamorphic theory as we can track the complete history of grain growth from nucleation through to interaction with surrounding grains.

  7. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation.

    PubMed

    Brányik, Tomás; Vicente, António A; Kuncová, Gabriela; Podrazký, Ondrej; Dostálek, Pavel; Teixeira, José A

    2004-01-01

    In the continuous systems, such as continuous beer fermentation, immobilized cells are kept inside the bioreactor for long periods of time. Thus an important factor in the design and performance of the immobilized yeast reactor is immobilized cell viability and physiology. Both the decreasing specific glucose consumption rate (q(im)) and intracellular redox potential of the cells immobilized to spent grains during continuous cultivation in bubble-column reactor implied alterations in cell physiology. It was hypothesized that the changes of the physiological state of the immobilized brewing yeast were due to the aging process to which the immobilized yeast are exposed in the continuous reactor. The amount of an actively growing fraction (X(im)act) of the total immobilized biomass (X(im)) was subsequently estimated at approximately X(im)act = 0.12 g(IB) g(C)(-1) (IB = dry immobilized biomass, C = dry carrier). A mathematical model of the immobilized yeast biofilm growth on the surface of spent grain particles based on cell deposition (cell-to-carrier adhesion and cell-to-cell attachment), immobilized cell growth, and immobilized biomass detachment (cell outgrowth, biofilm abrasion) was formulated. The concept of the active fraction of immobilized biomass (X(im)act) and the maximum attainable biomass load (X(im)max) was included into the model. Since the average biofilm thickness was estimated at ca. 10 microm, the limitation of the diffusion of substrates inside the yeast biofilm could be neglected. The model successfully predicted the dynamics of the immobilized cell growth, maximum biomass load, free cell growth, and glucose consumption under constant hydrodynamic conditions in a bubble-column reactor. Good agreement between model simulations and experimental data was achieved.

  8. Environmental factors and interactions with mycobiota of grain and grapes: effects on growth, deoxynivalenol and ochratoxin production by Fusarium culmorum and Aspergillus carbonarius.

    PubMed

    Magan, Naresh; Aldred, David; Hope, Russell; Mitchell, David

    2010-03-01

    Mycotoxigenic fungi colonizing food matrices are inevitably competing with a wide range of other resident fungi. The outcomes of these interactions are influenced by the prevailing environmental conditions and the competing species. We have evaluated the competitiveness of F. culmorum and A. carbonarius in the grain and grape food chain for their in vitro and in situ dominance in the presence of other fungi, and the effect that such interactions have on colony interactions, growth and deoxynivalenol (DON) and ochratoxin A (OTA) production. The Index of Dominance shows that changes in water activity (a(w)) and temperature affect the competitiveness of F. culmorum and A. carbonarius against up to nine different fungi. Growth of both mycotoxigenic species was sometimes inhibited by the presence of other competing fungi. For example, A. niger uniseriate and biseriate species decreased growth of A. carbonarius, while Aureobasidium pullulans and Cladosporium species stimulated growth. Similar changes were observed when F. graminearum was interacting with other grain fungi such as Alternaria alternata, Cladopsorium herbarum and Epicoccum nigrum. The impact on DON and OTA production was very different. For F. culmorum, the presence of other species often inhibited DON production over a range of environmental conditions. For A. carbonarius, on a grape-based medium, the presence of certain species resulted in a significant stimulation of OTA production. However, this was influenced by both temperature and a(w) level. This suggests that the final mycotoxin concentrations observed in food matrices may be due to complex interactions between species and the environmental history of the samples analyzed.

  9. Chile confronts its environmental health future after 25 years of accelerated growth

    PubMed Central

    Pino, Paulina; Iglesias, Verónica; Garreaud, René; Cortés, Sandra; Canals, Mauricio; Folch, Walter; Burgos, Soledad; Levy, Karen; Naeher, Luke P.; Steenland, Kyle

    2015-01-01

    Background Chile has recently been reclassified by the World Bank from an upper middle income country to a higher income country. There has been great progress in the last 20–30 years in relation to air and water pollution in Chile. Yet after 25 years of unrestrained growth there remain clear challenges posed by air and water, as well as climate change. Methods: In late 2013 a three-day workshop on environmental health was held in Santiago, bringing together researchers and government policy makers. As a follow-up to that workshop, here we review the progress made in environmental health in the past 20–30 years, and discuss the challenges of the future. We focus on air and water pollution, and climate change, which we believe are among the most important areas of environmental health in Chile. Results Air pollution in some cities remains among the highest in the continent. Potable water is generally available, but weak state supervision has led to serious outbreaks of infectious disease and ongoing issues with arsenic exposure in some regions. Climate change modeling in Chile is quite sophisticated, and a number of the impacts of climate change can be reasonably predicted in terms of which areas of the country are most likely to be affected by increased temperature and decreased availability of water, as well as expansion of vector territory. Some health effects, including change vector-borne diseases and excess heat mortality, can be predicted. However, there has yet to be an integration of such research with government planning. Conclusion While great progress has been made, currently there are a number of problems. We suspect that the Chilean experience in environmental health may be of some use for other Latin American countries with rapid economic development. PMID:26615070

  10. Boundary layer infusion of basic fibroblast growth factor accelerates intimal hyperplasia in endarterectomized canine artery.

    PubMed

    Chen, C; Li, J; Mattar, S G; Pierce, G F; Aukerman, L; Hanson, S R; Lumsden, A B

    1997-05-01

    We examined the effects of human recombinant basic fibroblast growth factor (bFGF) on the proliferation and migration of cultured dog smooth muscle cells (SMCs) and endothelial cells (ECs) and the effect of continuous local boundary layer infusion of bFGF on intimal hyperplasia in endarterectomized dog artery. In vitro proliferation and migration of dog SMCs or ECs were performed using direct counting and Boyden's chamber, respectively. At a dose of 10 ng/mL, bFGF significantly promoted both SMC and EC proliferation (7- and 4-fold, respectively) and migration (2.3- and 1.9-fold, respectively). Six dogs underwent bilateral carotid endarterectomies. A newly designed local infusion device with an osmotic pump continuously delivered bFGF to one artery or vehicle solution to the contralateral artery for 14 days. The intimal thickness and area in the bFGF-treated vessels were increased by 72 and 81%, respectively, compared with control arteries (P < 0.05). As assessed by the bromodeoxyuridine index, the proliferative activity was increased by 73% in bFGF-treated arteries (P = 0.03). Furthermore, cell proliferation at the distal anastomoses of local infusion device was significantly increased in the bFGF-infused grafts compared with distal anastomoses in the control grafts (13.24 +/- 1.24% versus 5.24 +/- 1.01%, P < 0.01). These data demonstrate that human recombinant bFGF has a potent effect on dog SMC and EC proliferation and migration, and that local infusion of exogenous bFGF significantly enhances the intimal hyperplasia formation and cell proliferation to vascular injury. We conclude that the bFGF pathway may contribute to the development of intimal hyperplastic lesions.

  11. Recombinant growth factor mixtures induce cell cycle progression and the upregulation of type I collagen in human skin fibroblasts, resulting in the acceleration of wound healing processes.

    PubMed

    Lee, Do Hyun; Choi, Kyung-Ha; Cho, Jae-We; Kim, So Young; Kwon, Tae Rin; Choi, Sun Young; Choi, Yoo Mi; Lee, Jay; Yoon, Ho Sang; Kim, Beom Joon

    2014-05-01

    Application of growth factor mixtures has been used for wound healing and anti-wrinkles agents. The aim of this study was to evaluate the effect of recombinant growth factor mixtures (RGFM) on the expression of cell cycle regulatory proteins, type I collagen, and wound healing processes of acute animal wound models. The results showed that RGFM induced increased rates of cell proliferation and cell migration of human skin fibroblasts (HSF). In addition, expression of cyclin D1, cyclin E, cyclin-dependent kinase (Cdk)4, and Cdk2 proteins was markedly increased with a growth factor mixtures treatment in fibroblasts. Expression of type I collagen was also increased in growth factor mixtures-treated HSF. Moreover, growth factor mixtures-induced the upregulation of type I collagen was associated with the activation of Smad2/3. In the animal model, RGFM-treated mice showed accelerated wound closure, with the closure rate increasing as early as on day 7, as well as re-epithelization and reduced inflammatory cell infiltration than phosphate-buffered saline (PBS)-treated mice. In conclusion, the results indicated that RGFM has the potential to accelerate wound healing through the upregulation of type I collagen, which is partly mediated by activation of Smad2/3-dependent signaling pathway as well as cell cycle progression in HSF. The topical application of growth factor mixtures to acute and chronic skin wound may accelerate the epithelization process through these molecular mechanisms.

  12. ALMA OBSERVATIONS OF {rho}-Oph 102: GRAIN GROWTH AND MOLECULAR GAS IN THE DISK AROUND A YOUNG BROWN DWARF

    SciTech Connect

    Ricci, L.; Testi, L.; Natta, A.; Scholz, A.; De Gregorio-Monsalvo, I.

    2012-12-20

    We present ALMA continuum and spectral line observations of the young brown dwarf {rho}-Oph 102 at about 0.89 mm and 3.2 mm. We detect dust emission from the disk at these wavelengths and derive an upper limit on the radius of the dusty disk of {approx}40 AU. The derived variation of the dust opacity with frequency in the millimeter (mm) provides evidence for the presence of mm-sized grains in the disk's outer regions. This result demonstrates that mm-sized grains are found even in the low-density environments of brown dwarf disks and challenges our current understanding of dust evolution in disks. The CO map at 345 GHz clearly reveals molecular gas emission at the location of the brown dwarf, indicating a gas-rich disk as typically found for disks surrounding young pre-main-sequence stars. We derive a disk mass of {approx}0.3%-1% of the mass of the central brown dwarf, similar to the typical values found for disks around more massive young stars.

  13. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.

    PubMed

    Crisp, Ryan W; Panthani, Matthew G; Rance, William L; Duenow, Joel N; Parilla, Philip A; Callahan, Rebecca; Dabney, Matthew S; Berry, Joseph J; Talapin, Dmitri V; Luther, Joseph M

    2014-09-23

    We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.

  14. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain.

    PubMed

    Velluti, A; Sanchis, V; Ramos, A J; Egido, J; Marín, S

    2003-12-31

    The effect of cinnamon, clove, oregano, palmarose and lemongrass oils on growth and FB1 production by three different isolates of F. proliferatum in irradiated maize grain at 0.995 and 0.950 aw and at 20 and 30 degrees C was evaluated. The five essential oils inhibited growth of F. proliferatum isolates at 0.995 aw at both temperatures, while at 0.950 aw only cinnamon, clove and oregano oils were effective in inhibiting growth of F. proliferatum at 20 degrees C and none of them at 30 degrees C. Cinnamon, oregano and palmarose oils had significant inhibitory effect on FB1 production by the three strains of F. proliferatum at 0.995 aw and both temperatures, while clove and lemongrass oils had only significant inhibitory effect at 30 degrees C. No differences were found using 500 or 1000 microg essential oil g(-1). At 0.950 aw, none of the essential oils had any significant effect on FB1 production. The results suggest that mainly cinnamon and oregano oils could be effective in controlling growth and FB1 production by F. proliferatum in maize under preharvest conditions.

  15. A combined powder melt and infiltration growth technique for fabricating nano-composited Y-Ba-Cu-O single-grain superconductor

    NASA Astrophysics Data System (ADS)

    Li, Guo-Zheng; Li, Jia-Wei; Yang, Wan-Min

    2015-10-01

    The top-seeded melt growth (MG) and infiltration growth (IG) techniques are the two most popular methods of fabricating single-grain Y-Ba-Cu-O (YBCO) bulk superconductors, which are also considered as two distinctly different processes. In this study, we report a combined powder melt and infiltration growth (PM-IG) technique for fabricating nano-composited YBCO single-grain superconductors using raw metallic oxides. In this new technique, a solid source pellet (SSP) of composition nano-Y2O3 + BaO + CuO + 1 wt.%CeO2 and a liquid source pellet (LSP) of composition nano-Y2O3 + 10BaO + 16CuO are employed, thus during heat treatment process the powder melt in SSP (corresponding to the final YBCO bulk) and liquid infiltration from LSP to SSP coexist. Because the process of precursor powder synthesis is avoided, the fabrication flow is much simplified and the experimental efficiency is increased significantly. Microstructural observation indicates that a large number of Y2BaCuO5 nano-inclusions (around 100 nm) are trapped in the YBa2Cu3O7-δ superconducting matrix. Measurements of levitation force and trapped field prove the superior performance of the nano-composited YBCO sample. The calculated zero-field J c at 77 K reaches 6.98 × 104 A cm-2, nearly 23% higher than the sample fabricated by the conventional IG technique. Thus, this study supplies a practical method for fabricating nano-composited YBCO bulk superconductors with high performance.

  16. Prenatal growth acceleration in maxillary deciduous canines of children with Down syndrome: histological and chemical composition study.

    PubMed

    Keinan, David; Smith, Patricia; Zilberman, Uri

    2007-10-01

    Previous studies have reported that the abnormal development of the second deciduous molar in Down syndrome and cerebral palsy begins before birth. In view of these results we have turned our attention to the earlier stages of dental development in utero, represented by the primary canine, in order to see if we can identify more precisely the origin and timing of developmental insults in these conditions. The study was carried out on exfoliated or extracted maxillary primary canines of children with Down syndrome (DS) and cerebral palsy (CP) and they were compared to a control group of children with no adverse medical history. Thin sections were made through the mid-sagittal bucco-palatinal axis. Using a light microscope, the width of prenatal enamel and postnatal enamel, defined by the neonatal line was measured on each section at a standardized location. The chemical composition of the enamel was then measured at three different locations using an energy dispersive spectrophotometer (ESR) in a high vacuum mode. The total enamel width in DS and controls was similar and greater than that of CP canines. Significantly more enamel was laid down prenatally in DS teeth than in controls or CP and it was more highly mineralized. These results for DS canines differ from those previously published for the later developing second primary molars. They support the hypothesis of accelerated growth in the early stages of intra-uterine development, prior to the establishment of reduced growth trajectories in the later stages. The results for CP teeth showed that more prenatal enamel was laid down prenatally than in controls. Mineralization in CP was poor during the first two trimesters and improved significantly during the last trimester. While this approach is retrospective, we propose that it may aid in identifying the onset of developmental anomalies of unknown etiology that are expressed in later life.

  17. Mechanism of Nucleation and Growth of Aβ40 Fibrils from All-Atom and Coarse-Grained Simulations.

    PubMed

    Sasmal, Sukanya; Schwierz, Nadine; Head-Gordon, Teresa

    2016-12-01

    In this work, we characterize the nucleation and elongation mechanisms of the "diseased" polymorph of the amyloid-β 40 (Aβ40) fibril using an off-lattice coarse-grained (CG) protein model. After determining the nucleation size and subsequent stable protofibrillar structure from the CG model, validated with all-atom simulations, we consider the "lock and dock" and "activated monomer" fibril elongation mechanisms for the protofibril by statistical additions of a monomer drawn from four different ensembles of the free Aβ40 peptide to grow the fibril. Our CG model shows that the dominant mechanism for fibril elongation is the lock and dock mechanism across all monomer ensembles, even when the monomer is in the activated form. Although our CG model finds no thermodynamic difference between the two fibril elongation mechanisms, the activated monomer is found to be kinetically faster by a factor of 2 for the "locking" step compared with all other structured or unstructured monomer ensembles.

  18. Loss of Mig6 accelerates initiation and progression of mutant epidermal growth factor receptor-driven lung adenocarcinoma

    PubMed Central

    Maity, Tapan K.; Venugopalan, Abhilash; Linnoila, Ilona; Cultraro, Constance M.; Giannakou, Andreas; Nemati, Roxanne; Zhang, Xu; Webster, Joshua D.; Ritt, Daniel; Ghosal, Sarani; Hoschuetzky, Heinz; Simpson, R. Mark; Biswas, Romi; Politi, Katerina; Morrison, Deborah K.; Varmus, Harold E.; Guha, Udayan

    2015-01-01

    Somatic mutations in the epidermal growth factor receptor (EGFR) kinase domain drive lung adenocarcinoma. We have previously identified MIG6, an inhibitor of ERBB signaling and a potential tumor suppressor, as a target for phosphorylation by mutant EGFRs. Here we demonstrate that Mig6 is a tumor suppressor for the initiation and progression of mutant EGFR-driven lung adenocarcinoma in mouse models. Mutant EGFR-induced lung tumor formation was accelerated in Mig6-deficient mice, even with Mig6 haploinsufficiency. We demonstrate that constitutive phosphorylation of MIG6 at Y394/395 in EGFR-mutant human lung adenocarcinoma cell lines is associated with an increased interaction of MIG6 with mutant EGFR, which may stabilize EGFR protein. MIG6 also fails to promote mutant EGFR degradation. We propose a model whereby increased tyrosine phosphorylation of MIG6 decreases its capacity to inhibit mutant EGFR. Nonetheless, the residual inhibition is sufficient for Mig6 to delay mutant EGFR-driven tumor initiation and progression in mouse models. PMID:25735773

  19. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation

    NASA Astrophysics Data System (ADS)

    Hirata, Eri; Ménard-Moyon, Cécilia; Venturelli, Enrica; Takita, Hiroko; Watari, Fumio; Bianco, Alberto; Yokoyama, Atsuro

    2013-11-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF-CNT) showed the same effect as FGF alone. In addition, FGF-CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF-CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF-CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications.

  20. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition

    PubMed Central

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-01-01

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1–3% and foliar Zn at the rate of 0.1–0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha−1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates. PMID:27694964

  1. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition.

    PubMed

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-10-03

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1-3% and foliar Zn at the rate of 0.1-0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha(-1) in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates.

  2. The effects of whole grains on nutrient digestibilities, growth performance, and cecal short-chain fatty acid concentrations in young chicks fed ground corn-soybean meal diets.

    PubMed

    Biggs, P; Parsons, C M

    2009-09-01

    Five experiments were conducted to evaluate the effects of whole wheat, whole sorghum, or whole barley on nutrient digestibility, growth performance, and cecal short-chain fatty acid concentrations when supplemented primarily at the expense of corn in ground corn-soybean meal control diets. The first 4 experiments utilized New Hampshire x Columbian male chicks. In the first 2 experiments, feeding 5, 10, 15, or 20% whole wheat had no effect on growth performance at 21 d when compared with chicks fed the control diet. The third experiment tested 20, 35, and 50% whole wheat fed from 0 to 21 d of age and showed that a 50% whole wheat diet decreased (P<0.05) 21-d growth and feed efficiency when compared with chicks fed the control diet. In experiment 4, 10 and 20% whole sorghum reduced (P<0.05) growth at 21 d, whereas chicks fed 10 and 20% whole barley had similar weight gains to chicks fed a ground corn-soybean meal diet. The fifth experiment with commercial Ross x Ross male broiler chicks evaluated 10 and 20% whole sorghum or whole barley and 20 and 35% whole wheat. Growth at 21 d was unaffected by any dietary treatment. Feed efficiency was decreased (P<0.05) at 21 d with 20% whole wheat and improved (P<0.05) with 10% whole barley. Feeding whole grains to chicks resulted in an increase in gizzard weight, even as early as 7 d, in all experiments. Chicks fed diets containing 10 to 20% whole wheat generally had increased MEn values at 3 to 4, 7, 14, and 21 d and also had increased amino acid digestibility at 21 d in one experiment. At 21 d, cecal pH and short-chain fatty acid concentrations in all experiments were unaffected by feeding whole grains to chicks. The results of this study indicated that feeding whole wheat, sorghum, or barley increased gizzard weight, and feeding 10 to 20% whole wheat may increase ME and amino acid digestibility.

  3. Acceleration of wound healing in gastric ulcers by local injection of neutralising antibody to transforming growth factor beta 1.

    PubMed Central

    Ernst, H; Konturek, P; Hahn, E G; Brzozowski, T; Konturek, S J

    1996-01-01

    BACKGROUND: Application of neutralising antibodies (NAs) to transforming growth factor beta 1 (TGF beta 1) improves wound healing in experimental glomerulonephritis and dermal incision wounds. TGF beta 1 has been detected in the stomach, but despite the fact that this cytokine plays a central part in wound healing no information is available to determine if modulation of the TGF beta 1 profile influences the healing of gastric ulcers. This study examines gastric ulcer healing in the rat after local injection of NAs to TGF beta 1. METHOD: Chronic gastric ulcers were induced in Wistar rats by the application of 100% acetic acid to the serosal surface of the stomach. Immediately after ulcer induction and on day 2, NAs to TGF beta 1 (50 micrograms), TGF beta 1 (50 ng), saline or control antibodies (IgG; 50 micrograms) were locally injected into the subserosa. Controls received no subserosal injections. Animals were killed on day 5 or 11, the ulcer area was measured planimetrically, sections were embedded in paraffin wax, and stained with trichrome or haematoxylin and eosin. Depth of residual ulcer was assessed on day 11 by a scale of 0-3, the percentage of connective tissue was determined by a semiquantitative matrix score and granulocytes and macrophages in the ulcer bed were also assessed. RESULTS: The application of NAs to TGF beta 1 led to a significant acceleration of gastric ulcer healing on day 11 (0.6 (SD 0.8) v 3.7 (SD 2.6) mm2), a reduction in macrophages (23.7 (SD 22.6) v 38 (26) per 40 x power field) and granulocytes (8.5 (SD 5.6) v 20 (10) per 40 x power field), fewer histological residual ulcers (mean 1 (SD 0.9) v 2 (1.1)), a reduced matrix score, and a regenerative healing pattern. Excessive scarring was seen in the TGF beta 1 treated group. CONCLUSION: Further treatment of gastric ulcers may induce a new treatment modality by local injection of NA to TGF beta 1 in an attempt to accelerate and improve ulcer healing. Images Figure 2 Figure 3 PMID:8991853

  4. Enhancement of trapped field in single grain Y-Ba-Cu-O bulk superconductors by a modified top-seeded melt-textured growth

    NASA Astrophysics Data System (ADS)

    Tang, Tian-wei; Wu, Dong-jie; Xu, Ke-Xi

    2016-08-01

    The modified top-seeded melt-textured growth technique for fabricating single grain Y-Ba-Cu-O (YBCO) bulk superconductors with high field-trapping ability by using modified precursor pellets was reported. The modified precursor pellets are composed of different precursor powders YBa2Cu3O{}7-δ (Y123) + x mol% Y2BaCuO5 (Y211) + 1 wt% CeO2 without any further chemical doping. The modified YBCO bulks up to 25 and 34 mm in diameter were successfully fabricated from the modified precursor pellets. Microstructural observation results showed that the modified YBCO bulk exhibited a homogeneous distribution of Y211 phase particles, which was qualitatively explained by the solute diffusion growth model in combination with the trapping/pushing theory. As a result, it is notable that the peak trapped field values of 0.91 T (maximum 0.96 T) and 1.2 T (maximum 1.28 T) at 77 K were achieved for 25 and 34 mm modified YBCO bulks, respectively. In a word, the results from present work are very helpful to understand the melt growth mechanism and to further improve the properties of YBCO bulk superconductors for practical applications.

  5. Occurrence of mycotoxins (ochratoxin A, deoxynivalenol) and toxigenic fungi in Moroccan wheat grains: impact of ecological factors on the growth and ochratoxin A production.

    PubMed

    Hajjaji, Abdelouahed; El Otmani, Mostafa; Bouya, Driss; Bouseta, Amina; Mathieu, Florence; Collin, Sonia; Lebrihi, Ahmed

    2006-05-01

    The aim of the present work was to evaluate the contamination of some samples, taken from Moroccan wheat grains, by ochratoxin A (OTA), deoxynivalenol (DON) and the associated toxigenic fungi. Moreover, we focused on the influence of environmental factors on both the growth and OTA production by three strains of Aspergillus. The results showed that only few samples were contaminated by the two mycotoxins (2 samples for OTA and 7 for DON). The main isolated fungi belong to the Aspergillus, Penicillium and Fusarium genus; 74 Aspergillus and 28 Penicillium isolates were tested for their ability to produce OTA. Only 2 A. alliaceus and 14 A. niger were able to synthesize OTA. However, none of Penicillium isolates can produce this toxin under the conditions mentioned. In respect of the effects of the temperature and water activity (aw), the optimal conditions for the growth and OTA production were different. While the optimal conditions of growth for A. alliaceus and A. terreus are 30 degrees C and 0.98 aw, A. niger preferred 0.93-0.95 aw at 25 degrees C, whereas the optimal production of OTA was observed at 30 degrees C for both A. alliaceus and A. niger at 0.93 and 0.99 aw, respectively.

  6. Discarded oranges and brewer's spent grains as promoting ingredients for microbial growth by submerged and solid state fermentation of agro-industrial waste mixtures.

    PubMed

    Aggelopoulos, Theodoros; Bekatorou, Argyro; Pandey, Ashok; Kanellaki, Maria; Koutinas, Athanasios A

    2013-08-01

    The exploitation of various agro-industrial wastes for microbial cell mass production of Kluyveromyces marxianus, kefir, and Saccharomyces cerevisiae is reported in the present investigation. Specifically, the promotional effect of whole orange pulp on cell growth in mixtures consisting of cheese whey, molasses, and potato pulp in submerged fermentation processes was examined. A 2- to 3-fold increase of cell mass was observed in the presence of orange pulp. Likewise, the promotional effect of brewer's spent grains on cell growth in solid state fermentation of mixtures of whey, molasses, potato pulp, malt spent rootlets, and orange pulp was examined. The cell mass was increased by 3-fold for K. marxianus and 2-fold for S. cerevisiae in the presence of these substrates, proving their suitability for single-cell protein production without the need for extra nutrients. Cell growth kinetics were also studied by measurements of cell counts at various time intervals at different concentrations of added orange pulp. The protein content of the fermented substrates was increased substantially, indicating potential use of mixed agro-industrial wastes of negligible cost, as protein-enriched livestock feed, achieving at the same time creation of added value and waste minimization.

  7. CBr4 vapor growth morphologies near the polymorphic transition point. I - Single crystals. II - Crystals with large-angle grain boundaries

    NASA Technical Reports Server (NTRS)

    Xiao, Rong-Fu; Rosenberger, Franz

    1991-01-01

    High-resolution microscopy and image processing were used to investigate morphological changes in CBr4 single crystals during growth from the vapor at various levels of supersaturation and at temperatures below the compound's polymorphic phase transition. It was found that, as the temperature increased at fixed supersaturations, the corners of the crystals became rounded as a result of thermal roughening; the rounding temperatures were different for crystallographically different corners. A study of CBr4 crystals with large-angle grain boundaries or twin boundaries (extended macrodefects), conducted at the temperature of polymorphic phase transition showed that the phase transition temperature, T(tr) and crystal surface morphology of these crystals depended on the presence or absence of extended macrodefects. Unlike the case of a perfect single crystal, where the T(tr) was about 46.75 C, the phase transition in crystals with extended macrodefects occurred significantly below 46.75.

  8. Epigenetic marks in the Hyacinthus orientalis L. mature pollen grain and during in vitro pollen tube growth.

    PubMed

    Kozłowska, Marlena; Niedojadło, Katarzyna; Brzostek, Marta; Bednarska-Kozakiewicz, Elżbieta

    2016-09-01

    During the sexual reproduction of flowering plants, epigenetic control of gene expression and genome integrity by DNA methylation and histone modifications plays an important role in male gametogenesis. In this study, we compared the chromatin modification patterns of the generative, sperm cells and vegetative nuclei during Hyacinthus orientalis male gametophyte development. Changes in the spatial and temporal distribution of 5-methylcytosine, acetylated histone H4 and histone deacetylase indicated potential differences in the specific epigenetic state of all analysed cells, in both the mature cellular pollen grains and the in vitro growing pollen tubes. Interestingly, we observed unique localization of chromatin modifications in the area of the generative and the vegetative nuclei located near each other in the male germ unit, indicating the precise mechanisms of gene expression regulation in this region. We discuss the differences in the patterns of the epigenetic marks along with our previous reports of nuclear metabolism and changes in chromatin organization and activity in hyacinth male gametophyte cells. We also propose that this epigenetic status of the analysed nuclei is related to the different acquired fates and biological functions of these cells.

  9. Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer MoS2 Film with Spatial Homogeneity and the Visualization of Grain Boundaries.

    PubMed

    Tao, Li; Chen, Kun; Chen, Zefeng; Chen, Wenjun; Gui, Xuchun; Chen, Huanjun; Li, Xinming; Xu, Jian-Bin

    2017-04-05

    MoS2 monolayer attracts considerable attention due to its semiconducting nature with a direct bandgap which can be tuned by various approaches. Yet a controllable and low-cost method to produce large-scale, high-quality, and uniform MoS2 monolayer continuous film, which is of crucial importance for practical applications and optical measurements, remains a great challenge. Most previously reported MoS2 monolayer films had limited crystalline sizes, and the high density of grain boundaries inside the films greatly affected the electrical properties. Herein, we demonstrate that highly crystalline MoS2 monolayer film with spatial size up to centimeters can be obtained via a facile chemical vapor deposition method with solid-phase precursors. This growth strategy contains selected precursor and controlled diffusion rate, giving rise to the high quality of the film. The well-defined grain boundaries inside the continuous film, which are invisible under an optical microscope, can be clearly detected in photoluminescence mapping and atomic force microscope phase images, with a low density of ∼0.04 μm(-1). Transmission electron microscopy combined with selected area electron diffraction measurements further confirm the high structural homogeneity of the MoS2 monolayer film with large crystalline sizes. Electrical measurements show uniform and promising performance of the transistors made from the MoS2 monolayer film. The carrier mobility remains high at large channel lengths. This work opens a new pathway toward electronic and optical applications, and fundamental growth mechanism as well, of the MoS2 monolayer.

  10. Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench).

    PubMed

    Jain, Mukesh; Prasad, P V Vara; Boote, Kenneth J; Hartwell, Allen L; Chourey, Prem S

    2007-12-01

    High temperature stress-induced male sterility is a critical problem in grain sorghum (Sorghum bicolor L. Moench) that significantly compromises crop yields. Grain sorghum plants were grown season-long under ambient (30/20 degrees C, day-time maximum/night-time minimum) and high temperature (36/26 degrees C) conditions in sunlit Soil-Plant-Atmospheric-Research (SPAR) growth chambers. We report data on the effects of high temperature on sugar levels and expression profiles of genes related to sugar-to-starch metabolism in microspore populations represented by pre- and post-meiotic "early" stages through post-mitotic "late" stages that show detectable levels of starch deposition. Microspores from high temperature stress conditions showed starch-deficiency and considerably reduced germination, translating into 27% loss in seed-set. Sugar profiles showed significant differences in hexose levels at both "early" and "late" stages at the two temperature regimes; and most notably, undetectable sucrose and approximately 50% lower starch content in "late" microspores from heat-stressed plants. Northern blot, quantitative PCR, and immunolocalization data revealed a significant reduction in the steady-state transcript abundance of SbIncw1 gene and CWI proteins in both sporophytic as well as microgametophytic tissues under high temperature conditions. Northern blot analyses also indicated greatly altered temporal expression profiles of various genes involved in sugar cleavage and utilization (SbIncw1, SbIvr2, Sh1, and Sus1), transport (Mha1 and MST1) and starch biosynthesis (Bt2, SU1, GBSS1, and UGPase) in heat-stressed plants. Collectively, these data suggest that impairment of CWI-mediated sucrose hydrolysis and subsequent lack of sucrose biosynthesis may be the most upstream molecular dysfunctions leading to altered carbohydrate metabolism and starch deficiency under elevated growth temperature conditions.

  11. Effects of feeding corn modified wet distillers grain plus solubles co-ensiled with chopped whole plant corn on heifer growth performance and diet digestibility in beef cattle.

    PubMed

    Arias, R P; Unruh-Snyder, L J; Scholljegerdes, E J; Baird, A N; Johnson, K D; Buckmaster, D; Lemenager, R P; Lake, S L

    2013-09-01

    Two experiments were conducted to evaluate the effect of feeding corn modified wet distillers grain plus solubles (MWDGS; 48% DM) co-ensiled with chopped whole plant corn (WC) on growth performance, dietary intake, and nutrient digestibility of beef cattle. In Exp. 1, 96 Angus-crossed heifers (2 yr old; 522 ± 49.1 kg BW; 5.3 ± 0.1 BCS) were stratified and blocked according to BW and stratified by BCS in each block in a randomized complete block design (24 pens; 4 heifers/pen; 6 treatment replications). Groups were assigned to 1 of 4 dietary treatments for a 62 d trial. Treatments were 1) corn silage (CS) and soybean meal (CON), 2) MWDGS co-ensiled with chopped whole plant corn (WC; CO-EN), 3) CS mixed with MWDGS at feeding (CS+WDG), and 4) CS mixed with dry distillers grain plus solubles (DDGS) at feeding (CS+DDG). In Exp. 2, 4 crossbred beef steers (initial BW = 278 ± 18 kg) fitted with permanent ruminal cannulas were used in a balanced 4 × 4 Latin square to test the effects of feeding MWDGS co-ensiled with WC on DM intake, ruminal fermentation characteristics, and total tract digestibility. There were four 14-d periods, with 10 d for diet adaptation and 4 d for samples collection. Orthogonal contrasts were used and compared CON vs. diets containing distillers grains (DGD), CO-EN vs. diets where distillers grains were mixed at feeding (MIX), and CS+WDG vs. CS+DDG. In Exp. 1, the CON fed heifers resulted in greater G:F (P = 0.04) compared with those fed DGD. However, ADG (P = 0.03), final BW (P = 0.04), and BW gain (P = 0.03) were greatest for DGD diets compared with CON and greatest (P = 0.04) for CO-EN when compared with MIX. Apart from a slightly greater acetate concentration (P = 0.05), which resulted in a greater acetate to propionate ratio (P = 0.03) for the CON diet compared with DGD, no important differences were observed on intake, diet digestibility, or fermentation characteristics when comparing the CON treatment with DGD or when comparing CS

  12. Microbial growth in dry grain food (Sunsik) beverages prepared with water, milk, soymilk, or honey-water.

    PubMed

    Jung, Jin-Ho; Lee, Sun-Young

    2010-05-01

    This study was conducted to investigate the growth of microorganisms, including pathogenic bacteria such as Cronobacter sakazakii and Bacillus cereus, in Sunsik beverages made of water, milk, soymilk, or honey-water during storage at room temperature. Prepared Sunsik beverages were stored at room temperature and the growth of total aerobic counts, Escherichia coli/coliforms, and yeast and mold were measured. Also, samples inoculated with a cocktail of C. sakazakii or B. cereus spores were stored at room temperature and their growths were determined during storage. Populations of total aerobic counts and coliforms significantly increased with increasing storage time at room temperature, which resulted in higher than 8 log and 7 log after 24 h in all samples except for the honey-water sample, respectively. Levels of total aerobic counts and coliforms were significantly lower in the honey-water sample than in the other samples after 6 and 9 h of storage, respectively. Initial populations of C. sakazakii and B. cereus ranged from 0 to 1 log CFU/mL, respectively, and these populations significantly increased with increasing storage time at room temperature. Therefore, populations of C. sakazakii and B. cereus were approximately 7 to 8 log CFU/mL after 24 h of storage. However, after 12 and 9 h of storage, there were significant differences in levels of C. sakazakii and B. cereus between the honey-water sample and the other samples, respectively. Based on these results, the addition of honey can inhibit microbial growth in Sunsik beverages; however, the best way to avoid pathogen infection would be to consume Sunsik beverages as soon as possible after preparation.

  13. Results With Accelerated Partial Breast Irradiation in Terms of Estrogen Receptor, Progesterone Receptor, and Human Growth Factor Receptor 2 Status

    SciTech Connect

    Wilder, Richard B.; Curcio, Lisa D.; Khanijou, Rajesh K.; Eisner, Martin E.; Kakkis, Jane L.; Chittenden, Lucy; Agustin, Jeffrey; Lizarde, Jessica; Mesa, Albert V.; Macedo, Jorge C.; Ravera, John; Tokita, Kenneth M.

    2010-11-01

    Purpose: To report our results with accelerated partial breast irradiation (APBI) in terms of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2/neu) status. Methods and Materials: Between February 2003 and June 2009, 209 women with early-stage breast carcinomas were treated with APBI using multicatheter, MammoSite, or Contura brachytherapy to 34 Gy in 10 fractions twice daily over 5-7 days. Three patient groups were defined by receptor status: Group 1: ER or PR (+) and HER-2/neu (-) (n = 180), Group 2: ER and PR (-) and HER-2/neu (+) (n = 10), and Group 3: ER, PR, and HER-2/neu (-) (triple negative breast cancer, n = 19). Median follow-up was 22 months. Results: Group 3 patients had significantly higher Scarff-Bloom-Richardson scores (p < 0.001). The 3-year ipsilateral breast tumor control rates for Groups 1, 2, and 3 were 99%, 100%, and 100%, respectively (p = 0.15). Group 3 patients tended to experience relapse in distant sites earlier than did non-Group 3 patients. The 3-year relapse-free survival rates for Groups 1, 2, and 3 were 100%, 100%, and 81%, respectively (p = 0.046). The 3-year cause-specific and overall survival rates for Groups 1, 2, and 3 were 100%, 100%, and 89%, respectively (p = 0.002). Conclusions: Triple negative breast cancer patients typically have high-grade tumors with significantly worse relapse-free, cause-specific, and overall survival. Longer follow-up will help to determine whether these patients also have a higher risk of ipsilateral breast tumor relapse.

  14. Grain Growth in the Circumstellar Disks of the Young Stars CY Tau and DoAr 25

    NASA Astrophysics Data System (ADS)

    Pérez, Laura M.; Chandler, Claire J.; Isella, Andrea; Carpenter, John M.; Andrews, Sean M.; Calvet, Nuria; Corder, Stuartt A.; Deller, Adam T.; Dullemond, Cornelis P.; Greaves, Jane S.; Harris, Robert J.; Henning, Thomas; Kwon, Woojin; Lazio, Joseph; Linz, Hendrik; Mundy, Lee G.; Ricci, Luca; Sargent, Anneila I.; Storm, Shaye; Tazzari, Marco; Testi, Leonardo; Wilner, David J.

    2015-11-01

    We present new results from the Disks@EVLA program for two young stars: CY Tau and DoAr 25. We trace continuum emission arising from their circusmtellar disks from spatially resolved observations, down to tens of AU scales, at λ = 0.9, 2.8, 8.0, 9.8 mm for DoAr 25 and at λ = 1.3, 2.8, 7.1 mm for CY Tau. Additionally, we constrain the amount of emission whose origin is different from thermal dust emission from 5 cm observations. Directly from interferometric data, we find that observations at 7 mm and 1 cm trace emission from a compact disk while millimeter-wave observations trace an extended disk structure. From a physical disk model, where we characterize the disk structure of CY Tau and DoAr 25 at wavelengths shorter than 5 cm, we find that (1) dust continuum emission is optically thin at the observed wavelengths and over the spatial scales studied, (2) a constant value of the dust opacity is not warranted by our observations, and (3) a high-significance radial gradient of the dust opacity spectral index, β, is consistent with the observed dust emission in both disks, with low-β in the inner disk and high-β in the outer disk. Assuming that changes in dust properties arise solely due to changes in the maximum particle size (amax), we constrain radial variations of amax in both disks, from cm-sized particles in the inner disk (R < 40 AU) to millimeter sizes in the outer disk (R > 80 AU). These observational constraints agree with theoretical predictions of the radial-drift barrier, however, fragmentation of dust grains could explain our amax(R) constraints if these disks have lower turbulence and/or if dust can survive high-velocity collisions.

  15. GRAIN GROWTH IN THE CIRCUMSTELLAR DISKS OF THE YOUNG STARS CY Tau AND DoAr 25

    SciTech Connect

    Pérez, Laura M.; Chandler, Claire J.; Isella, Andrea; Carpenter, John M.; Sargent, Anneila I.; Andrews, Sean M.; Ricci, Luca; Calvet, Nuria; Corder, Stuartt A.; Deller, Adam T.; Dullemond, Cornelis P.; Greaves, Jane S.; Harris, Robert J.; Henning, Thomas; Linz, Hendrik; Kwon, Woojin; Lazio, Joseph; Mundy, Lee G.; Storm, Shaye; Tazzari, Marco; and others

    2015-11-01

    We present new results from the Disks@EVLA program for two young stars: CY Tau and DoAr 25. We trace continuum emission arising from their circusmtellar disks from spatially resolved observations, down to tens of AU scales, at λ = 0.9, 2.8, 8.0, 9.8 mm for DoAr 25 and at λ = 1.3, 2.8, 7.1 mm for CY Tau. Additionally, we constrain the amount of emission whose origin is different from thermal dust emission from 5 cm observations. Directly from interferometric data, we find that observations at 7 mm and 1 cm trace emission from a compact disk while millimeter-wave observations trace an extended disk structure. From a physical disk model, where we characterize the disk structure of CY Tau and DoAr 25 at wavelengths shorter than 5 cm, we find that (1) dust continuum emission is optically thin at the observed wavelengths and over the spatial scales studied, (2) a constant value of the dust opacity is not warranted by our observations, and (3) a high-significance radial gradient of the dust opacity spectral index, β, is consistent with the observed dust emission in both disks, with low-β in the inner disk and high-β in the outer disk. Assuming that changes in dust properties arise solely due to changes in the maximum particle size (a{sub max}), we constrain radial variations of a{sub max} in both disks, from cm-sized particles in the inner disk (R < 40 AU) to millimeter sizes in the outer disk (R > 80 AU). These observational constraints agree with theoretical predictions of the radial-drift barrier, however, fragmentation of dust grains could explain our a{sub max}(R) constraints if these disks have lower turbulence and/or if dust can survive high-velocity collisions.

  16. Accelerator on a Chip: How It Works

    SciTech Connect

    2014-06-30

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

  17. [Salinity effect on germination, growth, and grain production of some autochthonous pear millet ecotypes (Pennisetum glaucum (L.) R. Br.)].

    PubMed

    Radhouane, Leila

    2008-04-01

    This study compared the behaviour of six autochthonous pear millet ecotypes collected through the Tunisian territory under salt stress from germination to maturity. It showed that salt has little effect on germination rate and coleoptile emergence. However, this effect is more significant for radicular growth and between ecotypes. Salinity did not influence plant height, which seems to be a varietal characteristic, but revealed a positive effect on the foliar expansion. On the productivity level, salinity did not exert a prejudicial effect over the length of the principal candle, but improved the yield component. This adaptation to salinity is mainly due to its root system. This effect varied according to stress intensity and ecotype. Vegetative growth and yield of high-straw ecotypes was decreased by severe salinity, while ecotypes with low or medium height appear very stable on the productivity level. Such ecotypes can play an important role in the conservation and development of fragile grounds, and also be useful as a source of desirable genes for genetic improvement in salinity conditions.

  18. The effect of lunisolar tidal acceleration on stem elongation growth, nutations and leaf movements in peppermint (Mentha × piperita L.).

    PubMed

    Zajączkowska, U; Barlow, P W

    2017-03-03

    Orbital movement of the Moon generates a system of gravitational fields that periodically alter the gravitational force on Earth. This lunar tidal acceleration (Etide) is known to act as an external environmental factor affecting many growth and developmental phenomena in plants. Our study focused on the lunar tidal influence on stem elongation growth, nutations and leaf movements of peppermint. Plants were continuously recorded with time-lapse photography under constant illumination as well in constant illumination following 5 days of alternating dark-light cycles. Time courses of shoot movements were correlated with contemporaneous time courses of the Etide estimates. Optical microscopy and SEM were used in anatomical studies. All plant shoot movements were synchronised with changes in the lunisolar acceleration. Using a periodogram, wavelet analysis and local correlation index, a convergence was found between the rhythms of lunisolar acceleration and the rhythms of shoot growth. Also observed were cyclical changes in the direction of rotation of stem apices when gravitational dynamics were at their greatest. After contrasting dark-light cycle experiments, nutational rhythms converged to an identical phase relationship with the Etide and almost immediately their renewed movements commenced. Amplitudes of leaf movements decreased during leaf growth up to the stage when the leaf was fully developed; the periodicity of leaf movements correlated with the Etide rhythms. For the fist time, it was documented that lunisolar acceleration is an independent rhythmic environmental signal capable of influencing the dynamics of plant stem elongation. This phenomenon is synchronised with the known effects of Etide on nutations and leaf movements.

  19. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification.

    PubMed

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-08-13

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2'-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation.

  20. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification

    PubMed Central

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-01-01

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2′-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation. PMID:26287170

  1. The effect of resolidification on preform optimized infiltration growth processed (Y, Nd, Sm, Gd)BCO, multi-grain bulk superconductor

    NASA Astrophysics Data System (ADS)

    Pavan Kumar Naik, S.; Seshu Bai, V.

    2017-01-01

    Controlling the microstructure of superconductors by incorporating the flux pinning centers and reducing the macro-defects to improve high field performance is the topic of recent research. In continuation, the preform optimized infiltration growth (POIG) processed YBa2Cu3O7-δ (YBCO) system, Y-site substituted with three mixed RE (Nd, Sm, Gd) elements is investigated. 20 wt.% of (Nd, Sm, Gd)2BaCuO5 were mixed with Y2BaCuO5 and POIG processed in reduced oxygen atmosphere to obtain YNSG superconductor. No seed is employed for crystal growth; hence the processed samples are multi-grained. Microstructural and compositional investigations on YNSG revealed the presence of different phases in the matrix as well as in precipitates which are of the order of submicron to 4 μm. A large fraction of macro-defects (∼6% of porosity) was observed in the YNSG sample. For reducing the unwanted macro-defects and refine the non-superconducting precipitates, processed YNSG sample is pressed and resolidified (by infiltrating the liquid phases once again) in an argon atmosphere and the structural, microstructural, elemental and superconducting properties are compared with YNSG and undoped samples. Due to spatial scatter in superconducting critical temperatures, caused by the distribution of different REBCO unit cells in YBCO, superconducting transition curve is sharp in YNSG, whereas the resolidified sample showed the broad transition due to solidified liquid phases.

  2. The influence of slow cooling on Y211 size and content in single-grain YBCO bulk superconductor through the infiltration-growth process

    NASA Astrophysics Data System (ADS)

    Ouerghi, A.; Moutalbi, N.; Noudem, J. G.; M'chirgui, A.

    2017-03-01

    Highly textured YBa2Cu3O7-δ (Y123) superconductors were produced using modified Textured Top Seeded Infiltration Growth (TSIG) process. The liquid source is made of only Y123 powder whereas the solid source is composed of Y2BaCuO5 (Y211) powder. We aim to control the amount of liquid that infiltrates the solid pellet, which in turn controls the final amount of Y2BaCuO5 particles in Y123 matrix. The effect of the slow cooling kinetics on sample morphology, on grain growth and on final microstructure was too investigated. It is shown that appropriate slow cooling time may also contribute to the control of the amount of Y211 inclusions in the final structure of Y123 bulk. We report herein the Y211 particle size and density distribution in the whole Y123 matrix. The present work proves that finest Y211 particles locate under the seed and that their size and density increase with distance from the seed.

  3. A three-dimensional phase field model coupled with lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie

    2014-11-01

    In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.

  4. Oxide Particle Growth During Friction Stir Welding of Fine Grain MA956 Oxide Dispersion-Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Baker, Brad W.; Knipling, Keith E.; Brewer, Luke N.

    2017-01-01

    Friction stir welding of an aluminum-containing oxide dispersion-strengthened steel causes significant oxide particle growth visible at both the nano- and microscales. Quantitative stereology of scanning electron images, small-angle X-ray scattering, energy-dispersive X-ray spectroscopy, and atom-probe tomography is used to quantify the degree of particle coarsening as a function of welding parameters. Results show the dispersed oxides are significantly coarsened in the stir zone due to a proposed combination of agglomeration, Ostwald ripening, and phase transformation within the Al2O3-Y2O3 system. This oxide particle coarsening effectively removes all strengthening contribution of the original oxide particles, as confirmed by uniaxial tensile tests and microhardness measurements.

  5. Oxide Particle Growth During Friction Stir Welding of Fine Grain MA956 Oxide Dispersion-Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Baker, Brad W.; Knipling, Keith E.; Brewer, Luke N.

    2017-03-01

    Friction stir welding of an aluminum-containing oxide dispersion-strengthened steel causes significant oxide particle growth visible at both the nano- and microscales. Quantitative stereology of scanning electron images, small-angle X-ray scattering, energy-dispersive X-ray spectroscopy, and atom-probe tomography is used to quantify the degree of particle coarsening as a function of welding parameters. Results show the dispersed oxides are significantly coarsened in the stir zone due to a proposed combination of agglomeration, Ostwald ripening, and phase transformation within the Al2O3-Y2O3 system. This oxide particle coarsening effectively removes all strengthening contribution of the original oxide particles, as confirmed by uniaxial tensile tests and microhardness measurements.

  6. Effects of feeding combinations of steam-flaked grain sorghum and steam-flaked, high-moisture, or dry-rolled corn on growth performance and carcass characteristics in feedlot cattle.

    PubMed

    Huck, G L; Kreikemeier, K K; Kuhl, G L; Eck, T P; Bolsen, K K

    1998-12-01

    The objective of these two feeding trials was to determine the associative effects of feeding steam-flaked grain sorghum (SFGS) in combination with steam-flaked (SFC), dry-rolled (DRC), or high-moisture (HMC) corn on growth performance and carcass characteristics in feedlot cattle. In Trial 1, 200 yearling heifers were blocked by weight, allotted to 25 pens, and fed one of five finishing diets (77% grain, 15% corn silage, and 8% supplement on a DM basis) for an average of 137 d. The grain combinations were 100:0, 75:25, 50:50, 25:75, and 0:100 SFC:SFGS, respectively. Treatment had no effect on DMI (P > .05), but ADG, gain efficiency, and final live and hot carcass weights decreased linearly (P < .05) as the proportion of SFGS increased in the diet. Carcass backfat, quality grade, and liver abscess score were not affected (P > .05) by treatment. In Trial 2, 306 yearling steers were blocked by weight, allotted to 30 pens, and fed diets that contained 74.5% grain, 10% corn silage, 7.5% soybean meal, 4% tallow, and 4% supplement (DM basis) for an average of 139 d. The grain and grain combinations were 100% DRC, HMC, SFC, or SFGS and a 67%:33% combination of SFGS: DRC or SFGS:HMC. For steers fed diets containing a single source of grain, those fed SFC gained 7% more live weight and had a 7% higher gain efficiency (P < .05) than those fed DRC or HMC. Growth performance of steers fed SFGS was intermediate. Feeding grain combinations (67% SFGS:33% HMC or DRC) resulted in a 5 to 6% positive associative effect (P < .05) for ADG and gain efficiency. Carcass characteristics were not affected (P > .05) by treatment. We concluded that there were significant benefits (positive associative effects) when SFGS was fed in combination with DRC or HMC, but the effects were smaller when SFGS was fed in combination with SFC.

  7. Texture design for microwave dielectric (Ca0.7Nd0.3)0.87TiO3 ceramics through reactive-templated grain growth.

    PubMed

    Tani, Toshihiko; Takeuchi, Tsuguto

    2015-06-01

    Plate-like Ca3Ti2O7 (CT) and Nd2Ti2O7 (NT) particles were synthesized in molten salts and used as reactive templates for the preparation of highly textured (Ca0.7Nd0.3)0.87TiO3 bulk ceramics (CNT) with preferred pseudocubic 〈100〉 and 〈110〉 orientations, respectively. During flux growth CT and NT particles developed facets parallel to the pseudocubic {100} and {110} planes, respectively, in a perovskite unit cell, since those planes correspond to the interlayers of the layered perovskite-type crystal structures. Complementary reactants for the CNT stoichiometry were wet-mixed with the reactive templates and the slurries were tape-cast. Then stacked tapes were heat-treated for dense single-phase CNT ceramics with a distorted and A-site deficient regular perovskite-type structure. The CNT ceramics prepared with CT and NT reactive templates exhibited strong pseudocubic 100- and 110-family x-ray diffraction peaks, respectively, with other peaks drastically suppressed when non-perovskite sources were used as complementary reactants. The textured ceramics possess unique microstructures; as either parallel or obliquely stacked block structures with a pseudocubic {100} plane faceted. The pseudocubic {100}-and {110}-textured CNT ceramics exhibited ∼10 and ∼20% higher products of the dielectric quality factor and frequency, Q · f, respectively, than conventional ceramic sintered at the same temperature. When Q · f is compared based on the same grain size, the {100}-textured CNT exhibited 27% higher values than non-textured while relative permittivity and temperature coefficient of resonant frequency were of similar values. Simple geometrical relationships between electric field and penetrated pseudocubic {hk0}-type grain boundaries must lead to the reduced scattering and dielectric loss.

  8. Texture design for microwave dielectric (Ca0.7Nd0.3)0.87TiO3 ceramics through reactive-templated grain growth

    NASA Astrophysics Data System (ADS)

    Tani, Toshihiko; Takeuchi, Tsuguto

    2015-06-01

    Plate-like Ca3Ti2O7 (CT) and Nd2Ti2O7 (NT) particles were synthesized in molten salts and used as reactive templates for the preparation of highly textured (Ca0.7Nd0.3)0.87TiO3 bulk ceramics (CNT) with preferred pseudocubic <100> and <110> orientations, respectively. During flux growth CT and NT particles developed facets parallel to the pseudocubic {100} and {110} planes, respectively, in a perovskite unit cell, since those planes correspond to the interlayers of the layered perovskite-type crystal structures. Complementary reactants for the CNT stoichiometry were wet-mixed with the reactive templates and the slurries were tape-cast. Then stacked tapes were heat-treated for dense single-phase CNT ceramics with a distorted and A-site deficient regular perovskite-type structure. The CNT ceramics prepared with CT and NT reactive templates exhibited strong pseudocubic 100- and 110-family x-ray diffraction peaks, respectively, with other peaks drastically suppressed when non-perovskite sources were used as complementary reactants. The textured ceramics possess unique microstructures; as either parallel or obliquely stacked block structures with a pseudocubic {100} plane faceted. The pseudocubic {100}-and {110}-textured CNT ceramics exhibited ∼10 and ∼20% higher products of the dielectric quality factor and frequency, Q · f, respectively, than conventional ceramic sintered at the same temperature. When Q · f is compared based on the same grain size, the {100}-textured CNT exhibited 27% higher values than non-textured while relative permittivity and temperature coefficient of resonant frequency were of similar values. Simple geometrical relationships between electric field and penetrated pseudocubic {hk0}-type grain boundaries must lead to the reduced scattering and dielectric loss.

  9. Texture design for microwave dielectric (Ca0.7Nd0.3)0.87TiO3 ceramics through reactive-templated grain growth

    PubMed Central

    Tani, Toshihiko; Takeuchi, Tsuguto

    2015-01-01

    Plate-like Ca3Ti2O7 (CT) and Nd2Ti2O7 (NT) particles were synthesized in molten salts and used as reactive templates for the preparation of highly textured (Ca0.7Nd0.3)0.87TiO3 bulk ceramics (CNT) with preferred pseudocubic 〈100〉 and 〈110〉 orientations, respectively. During flux growth CT and NT particles developed facets parallel to the pseudocubic {100} and {110} planes, respectively, in a perovskite unit cell, since those planes correspond to the interlayers of the layered perovskite-type crystal structures. Complementary reactants for the CNT stoichiometry were wet-mixed with the reactive templates and the slurries were tape-cast. Then stacked tapes were heat-treated for dense single-phase CNT ceramics with a distorted and A-site deficient regular perovskite-type structure. The CNT ceramics prepared with CT and NT reactive templates exhibited strong pseudocubic 100- and 110-family x-ray diffraction peaks, respectively, with other peaks drastically suppressed when non-perovskite sources were used as complementary reactants. The textured ceramics possess unique microstructures; as either parallel or obliquely stacked block structures with a pseudocubic {100} plane faceted. The pseudocubic {100}-and {110}-textured CNT ceramics exhibited ∼10 and ∼20% higher products of the dielectric quality factor and frequency, Q · f, respectively, than conventional ceramic sintered at the same temperature. When Q · f is compared based on the same grain size, the {100}-textured CNT exhibited 27% higher values than non-textured while relative permittivity and temperature coefficient of resonant frequency were of similar values. Simple geometrical relationships between electric field and penetrated pseudocubic {hk0}-type grain boundaries must lead to the reduced scattering and dielectric loss. PMID:27877809

  10. Effects of calcium oxide treatment of dry and modified wet corn distillers grains plus solubles on growth performance, carcass characteristics, and apparent digestibility of feedlot steers.

    PubMed

    Schroeder, A R; Duckworth, M J; Shike, D W; Schoonmaker, J P; Felix, T L

    2014-10-01

    The objectives of this study were to determine the effects of feeding dried corn distillers grains (DDGS) or modified wet corn distillers grains (MDGS) with or without CaO treatment to feedlot steers on 1) growth performance and carcass characteristics and 2) diet digestibility, pattern of intake, and meal distribution. In Exp. 1, steers (n = 139; average initial BW = 336 ± 75 kg) were used in a randomized complete block design. Treatments were arranged in a 2 × 2 factorial design, and pens were randomly allotted to 1 of the 4 dietary treatments (DM basis): 1) 50% DDGS untreated, 2) 48.8% DDGS treated with 1.2% CaO, 3) 50% MDGS untreated, or 4) 48.8% MDGS treated with 1.2% CaO. The remainder of the diet was corn husklage, dry rolled corn, and vitamin and mineral supplement. In Exp. 2, fistulated steers (n = 8; average initial BW = 540 ± 250 kg) were used in a replicated 4 × 4 Latin square design with the same dietary treatments as in Exp. 1. There was no interaction (P ≥ 0.14) between distillers grains plus solubles (DGS) and CaO inclusion for DMI, ADG, final BW, or USDA yield and quality grades. However, steers fed CaO-treated DGS had decreased (P < 0.01) DMI, regardless of DGS type. Because CaO treatment decreased DMI without affecting (P = 0.66) ADG, steers fed CaO-treated DGS had increased (P < 0.01) G:F compared to steers not fed CaO. The variation in DMI found in this experiment could be explained by differences in meal size and distribution. Steers fed CaO-treated DGS ate a similar (P = 0.36) number of meals but ate smaller (P < 0.01) meals. No effects (P ≥ 0.55) of CaO treatment or its interaction with DGS type were found for apparent total tract DM or NDF digestibility. However, steers fed MDGS had increased (P < 0.01) NDF digestibility compared to steers fed DDGS. In conclusion, CaO treatment of DGS improved feed efficiency when DGS-based diets were fed but did not improve digestibility.

  11. Using a fibrolytic enzyme in barley-based diets containing wheat dried distillers grains with solubles: ruminal fermentation, digestibility, and growth performance of feedlot steers.

    PubMed

    He, Z X; He, M L; Walker, N D; McAllister, T A; Yang, W Z

    2014-09-01

    Two experiments were conducted to evaluate the effects of adding an exogenous fibrolytic enzyme (FE) on ruminal pH and fermentation, digestibility, and growth performance of feedlot beef cattle fed a finishing diet containing wheat dried distillers grains with solubles (DDGS). In Exp. 1, 4 ruminally cannulated Angus heifers (average BW of 807 ± 93.9 kg) were used in a replicated 4 × 4 Latin square design. Treatments were 1) control (CON; 10% barley silage and 90% barley grain-based concentrate), 2) CON diet substituting 30% wheat DDGS for barley grain (WDG), 3) WDG diet supplemented with low FE (WDGL), and 4) WDG diet supplemented with high FE (WDGH). Heifers fed WDG had less (P = 0.01) total tract DM digestibility than heifers fed CON. Increasing FE linearly (P < 0.05) increased starch digestibility without affecting digestibility of other nutrients. Addition of FE also reduced (P = 0.03) ruminal ammonia-N (NH3-N) concentration but did not affect VFA concentration. Moreover, application of FE to wheat DDGS linearly increased in situ ruminal DM (P < 0.01) and NDF (P = 0.02) disappearance after 48 h of incubation. In Exp. 2, 160 yearling steers (initial BW = 495 ± 37.9 kg) were fed the same diets as in Exp. 1. No differences in DMI, final BW, ADG, dietary NEg, or carcass characteristics were observed among diets. However, the steers fed WDG had less (P < 0.05) G:F and greater number of (P < 0.01) abscessed livers than steers fed CON. Increasing FE application in wheat DDGS diets did not affect DMI, final BW, or ADG but tended (P < 0.09) to linearly improve feed efficiency and decreased (P = 0.03) the incidence of abscessed livers. These results demonstrated adverse effects of including wheat DDGS in finishing diets on feed digestion, feed efficiency, and animal health. Application of FE in wheat DDGS-based diets potentially improved starch digestion, protein metabolism in the rumen, feed efficiency, and animal health.

  12. Fall growth, nutritive value, and estimation of total digestible nutrients for cereal-grain forages in the north-central United States.

    PubMed

    Coblentz, W K; Walgenbach, R P

    2010-01-01

    Throughout the Southern Great Plains, wheat is managed frequently as a dual-purpose crop, but this production paradigm is not necessarily applicable throughout other regions of the United States, and a wider array of management options can be considered for forage-only uses of cereal grains. Our objectives were to assess the fall-growth potential of wheat (Triticum aestivum L.), triticale (X Triticosecale Wittmack), and oat (Avena sativa L.) cultivars in Wisconsin, and then to further evaluate and compare the fiber composition and TDN of these fall-grown forages. For 2006, yields of DM for all cultivars increased quadratically (P < or = 0.048) over fall harvest dates, reaching a maximum of 3,967 kg/ha for Ogle oat. All oat cultivars exhibited stem elongation and also displayed a collective 2 to 1 yield advantage over vegetative wheat cultivars on the final (October 30) harvest date. Growing conditions were more favorable during 2007, and yields were improved for all cultivars. Yields of DM for all cultivars increased quadratically (P < or = 0.021) across harvest dates, and oat cultivars maintained the identical 2 to 1 yield advantage over wheat cultivars (6,275 vs. 3,203 kg/ha) that was observed for 2006. Triticale exhibited yields intermediate between oat and wheat during both years. Concentrations of NDF increased quadratically (P < or = 0.012) across harvest dates for all cultivars during both years of the experiment; however, these increases occurred primarily between mid September and early October with limited responses thereafter. Oat and triticale cultivars had greater (P < 0.001) concentrations of NDF than wheat cultivars on 5 of 6 harvest dates throughout the experiment. Estimates of TDN exhibited various polynomial responses to harvest date during 2006, but the magnitude of these changes was relatively small. During 2007, TDN declined linearly (P < or = 0.038) for grain-type oat, but no relationship with harvest date was observed for other cultivars (P

  13. Grain growth behavior of Ba1.5Sr1.5Co2Fe24O41 flakes in molten salt synthesis and the magnetic properties of flake/polymer composites

    NASA Astrophysics Data System (ADS)

    Moon, Kyoung-Seok; Kang, Young-Min; Han, InTaek; Lee, Sang-Eui

    2016-11-01

    Single-phase Ba1.5Sr1.5Co2Fe24O41 (Ba1.5Sr1.5Z) hexaferrite flakes were synthesized using a two-step grain growth process, involving a calcination process and molten salt synthesis. Geometric parameters such as aspect ratio and the degree of agglomeration can be controlled by tuning this calcination-molten salt method. The morphological evolution of the flakes was explained using the concept of mixed-control grain growth, i.e., a combination of diffusion for growth and interface reactions, which is a growth mechanism for a faceted interface. The single-phase Ba1.5Sr1.5Z flake particle with high aspect ratio turned out to be a good candidate of soft magnetic inclusion, through an investigation of the correlation between material composition, magnetic behavior, and particle morphology.

  14. Relaxation of crack tip stresses by diffusive growth of grain boundary cavities at a steadily growing creep crack

    SciTech Connect

    Jeon, J.Y. . Dept. of Electronic Materials Engineering)

    1994-02-15

    In this study, the analytic solution of the stress field for the steadily growing crack with Gb cavitation is to be found. The effect of Gb cavitation is simultaneously incorporated in the stress analysis. The macroscopic material behavior is assumed to be elastic, thus, the original stress distribution is determined by the K field of linear elastic fracture mechanics (LEFM). Also, the non-elastic deformation by Gb cavitation relaxes the stress singularity at the crack tip. The stress relaxation by local cavitation is calculated using the dislocation model. For modeling of the cavitation as distributed dislocations, several assumptions can be made: (1) the Gb cavities are nucleated instantaneously at uniformly distributed precipitates when the applied stress reaches the nucleation stress; (2) the quasi-equilibrium type cavity shape is maintained throughout cavity growth because of a sufficiently large surface diffusivity compared to that of Gb diffusivity; (3) the matter flux by diffusion is deposited uniformly at Gb and thus causes rigid body motion which relaxes the elastic stress field.

  15. Growth response and resistance to Streptococcus iniae of Nile tilapia, Oreochromis niloticus, fed diets containing different levels of wheat distiller dried grains with solubles with or without lysine supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to evaluate the effect of dietary levels of wheat distiller’s dried grains with solubles (DDGS) with or without lysine supplementation on growth, body composition, hematology, immune response, and resistance of Nile tilapia, Oreochromis niloticus, to Streptococcus iniae challen...

  16. Evaluation of commercially available enzymes, probiotics, or yeast on apparent total-tract nutrient digestion and growth in nursery and finishing pigs fed diets containing corn dried distillers grains with solubles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of enzymes, direct fed microbials, or yeast to enhance nutrient utilization or growth performance in nursery or finishing pigs fed diets containing increased levels of corn fiber from dried distillers grains with solubles (DDGS) is largely unknown. Ten commercially available feed additiv...

  17. Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation?

    PubMed

    Jhung, Sung Hwa; Jin, Taihuan; Hwang, Young Kyu; Chang, Jong-San

    2007-01-01

    Microporous materials, such as silicalite-1 and VSB-5 molecular sieves, have been synthesized by both microwave irradiation (MW) and conventional electric heating (CE). The accelerated syntheses by microwave irradiation can be quantitatively investigated by various heating modes conducted in two steps such as MW-MW, MW-CE, CE-MW, and CE-CE (in the order of nucleation-crystal growth). In the case of synthesis by MW-CE or CE-MW, the heating modes were changed for the second step just after the appearance of X-ray diffraction peaks in the first step. We have quantitatively demonstrated that the microwave irradiation accelerates not only the nucleation but also crystal growth. However, the contribution to decrease the synthesis time by microwave irradiation is larger in the nucleation stage than in the step of crystal growth. The crystal size increases in the order of MW-MWgrowth and small crystal size observed in the synthesis from microwave-nucleated precursor can be explained in terms of the fact that the microwave-nucleated samples have higher population of nuclei with smaller size than the samples nucleated by conventional heating.

  18. Corn distillers grains with solubles derived from a traditional or partial fractionation process: Growth performance and carcass characteristics of finishing feedlot heifers.

    PubMed

    Depenbusch, B E; Loe, E R; Quinn, M J; Corrigan, M E; Gibson, M L; Karges, K K; Drouillard, J S

    2008-09-01

    Six hundred ten crossbred-yearling heifers (347 +/- 5 kg of initial BW) were obtained and used in a randomized complete-block design finishing study. Finishing diets were based on steam-flaked corn and ground alfalfa hay. The control (CONT) treatment contained no distillers grains with solubles (DGS), the second diet was formulated to contained 13% (DM basis) dried corn DGS derived from a traditional dry-grind ethanol process (TRAD), and the third diet was formulated to contained 13% (DM basis) dried corn DGS derived from a partial fractionation dry-grind process (FRAC). Dry matter intake, ADG, and gain efficiency were not different (P >/= 0.48) for yearling heifers fed CONT when compared with heifers fed DGS. Heifers fed TRAD consumed more (P = 0.01) feed than heifers fed FRAC. However, ADG and feed efficiency were not different (P >/= 0.07) for heifers fed DGS. Moderate inclusion levels of DGS in finishing flaked corn diets yielded satisfactory performance. Growth performance was not different for heifers fed DGS originating from either ethanol processing method.

  19. In operando spatiotemporal study of Li(2)O(2) grain growth and its distribution inside operating Li-O(2) batteries.

    PubMed

    Shui, Jiang-Lan; Okasinski, John S; Chen, Chen; Almer, Jonathan D; Liu, Di-Jia

    2014-02-01

    Nanocrystalline lithium peroxide (Li2 O2 ) is considered to play a critical role in the redox chemistry during the discharge-charge cycling of the Li-O2 batteries. In this report, a spatially resolved, real-time synchrotron X-ray diffraction technique was applied to study the cyclic formation/decomposition of Li2 O2 crystallites in an operating Li-O2 cell. The evaluation of Li2 O2 grain size, concentration, and spatial distribution inside the cathode is demonstrated under the actual cycling conditions. The study not only unambiguously proved the reversibility of the Li2 O2 redox reaction during reduction and evolution of O2 , but also allowed for the concentration and dimension growths of the peroxide nanocrystallites to be accurately measured at different regions within the cathode. The results provide important insights for future investigation on mass and charge transport properties in Li2 O2 and improvement in cathode structure and material design.

  20. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations

    PubMed Central

    2016-01-01

    The epidermal growth factor receptor (EGFR) is a dimeric membrane protein that regulates key aspects of cellular function. Activation of the EGFR is linked to changes in the conformation of the transmembrane (TM) domain, brought about by changes in interactions of the TM helices of the membrane lipid bilayer. Using an advanced computational approach that combines Coarse-Grained molecular dynamics and well-tempered MetaDynamics (CG-MetaD), we characterize the large-scale motions of the TM helices, simulating multiple association and dissociation events between the helices in membrane, thus leading to a free energy landscape of the dimerization process. The lowest energy state of the TM domain is a right-handed dimer structure in which the TM helices interact through the N-terminal small-X3-small sequence motif. In addition to this state, which is thought to correspond to the active form of the receptor, we have identified further low-energy states that allow us to integrate with a high level of detail a range of previous experimental observations. These conformations may lead to the active state via two possible activation pathways, which involve pivoting and rotational motions of the helices, respectively. Molecular dynamics also reveals correlation between the conformational changes of the TM domains and of the intracellular juxtamembrane domains, paving the way for a comprehensive understanding of EGFR signaling at the cell membrane. PMID:27459426

  1. Grain charging in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Ilgner, M.

    2012-02-01

    Context. Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as magnetohydrodynamic (MHD) turbulence and grain growth, which are coupled in a two-way process. Aims: We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains and aggregates with fractal dimension Df = 2. Methods: Applying a simple chemical network that accounts for collisional charging of grains, we provide a semi-analytical solution. This allowed us to calculate the equilibrium population of grain charges and the ionisation fraction efficiently. The grain charging was evaluated for different dynamical environments ranging from static to non-stationary disc configurations. Results: The results show that the adsorption/desorption of neutral gas-phase heavy metals, such as magnesium, effects the charging state of grains. The greater the difference between the thermal velocities of the metal and the dominant molecular ion, the greater the change in the mean grain charge. Agglomerates have more negative excess charge on average than compact spherical particles of the same mass. The rise in the mean grain charge is proportional to N1/6 in the ion-dust limit. We find that grain charging in a non-stationary disc environment is expected to lead to similar results. Conclusions: The results indicate that the dust growth and settling in regions where the dust growth is limited by the so-called "electro-static barrier" do not prevent the dust material from remaining the dominant charge carrier.

  2. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  3. Low-concentration polymers inhibit and accelerate crystal growth in organic glasses in correlation with segmental mobility.

    PubMed

    Powell, C Travis; Cai, Ting; Hasebe, Mariko; Gunn, Erica M; Gao, Ping; Zhang, Geoff; Gong, Yuchuan; Yu, Lian

    2013-09-05

    Crystal growth in organic glasses has been studied in the presence of low-concentration polymers. Doping the organic glass nifedipine (NIF) with 1 wt % polymer has no measurable effect on the glass transition temperature Tg of host molecules, but substantially alters the rate of crystal growth, from a 10-fold reduction to a 30% increase at 12 °C below the host Tg. Among the polymers tested, all but polyethylene oxide (PEO) inhibit growth. The inhibitory effects greatly diminish in the liquid state (at Tg + 38 °C), but PEO persists to speed crystal growth. The crystal growth rate varies exponentially with polymer concentration, in analogy with the polymer effect on solvent mobility, though the effect on crystal growth can be much stronger. The ability to inhibit crystal growth is not well ordered by the strength of host-polymer hydrogen bonds, but correlates remarkably well with the neat polymer's Tg, suggesting that the mobility of polymer chains is an important factor in inhibiting crystal growth in organic glasses. The polymer dopants also affect crystal growth at the free surface of NIF glasses, but the effect is attenuated according to the power law us ∝ ub(0.35), where us and ub are the surface and bulk growth rates.

  4. Effects of using ground redberry juniper and dried distillers grains with solubles in lamb feedlot diets: growth, blood serum, fecal, and wool characteristics.

    PubMed

    Whitney, T R; Lupton, C J; Muir, J P; Adams, R P; Stewart, W C

    2014-03-01

    Effects of using ground redberry juniper and dried distillers grains with solubles (DDGS) in Rambouillet lamb (n = 45) feedlot diets on growth, blood serum, fecal, and wool characteristics were evaluated. In a randomized design study with 2 feeding periods (Period 1 = 64% concentrate diet, 35 d; Period 2 = 85% concentrate diet, 56 d), lambs were individually fed 5 isonitrogenous diets: a control diet (CNTL) that contained oat hay but not DDGS or juniper or DDGS-based diets in which 0 (0JUN), 33 (33JUN), 66 (66JUN), or 100% (100JUN) of the oat hay was replaced by juniper. During Period 1, lambs fed CNTL had greater (P < 0.05) DMI and ADG and tended to have greater (P < 0.10) G:F than lambs fed 0JUN or lambs fed DDGS-based diets. Lamb DMI, ADG, and G:F quadratically increased (P < 0.008) as juniper increased in the DDGS-based diets. During Period 2, lambs fed CNTL had greater (P < 0.05) DMI than lambs fed 0JUN or lambs fed DDGS-based diets, but ADG was similar (P > 0.41). Compared to 0JUN, lambs fed CNTL had similar (P = 0.12) G:F and tended to have less G:F (P = 0.07) than lambs fed DDGS-based diets. Among lambs fed DDGS-based diets, DMI was similar (P > 0.19), ADG increased linearly (P = 0.03), and G:F tended to decrease quadratically (P = 0.06) as juniper increased in the diet. Serum IGF-1, serum urea N (SUN), and fecal N were greater (P < 0.05) and serum Ca and P and fecal P were similar (P > 0.13) for lambs fed CNTL vs. lambs fed DDGS-based diets (CNTL). Within lambs fed DDGS-based diets, SUN increased quadratically (P = 0.01) and fecal N increased linearly (P = 0.004), which can partially be attributed to increased dietary urea and condensed tannin intake. Most wool characteristics were not affected, but wool growth per kilogram of BW decreased quadratically (P = 0.04) as percentage of juniper increased in the DDGS-based diets. When evaluating the entire 91-d feeding trial, results indicated that replacing all of the ground oat hay with ground juniper leaves

  5. The effects of conjugated linoleic acid on growth performance, carcass traits, meat quality, antioxidant capacity, and fatty acid composition of broilers fed corn dried distillers grains with solubles.

    PubMed

    Jiang, Wen; Nie, Shaoping; Qu, Zhe; Bi, Chongpeng; Shan, Anshan

    2014-05-01

    This study investigated the effects of dietary supplementation with conjugated linoleic acid (CLA) on the growth performance, carcass traits, meat quality, antioxidant capacity, and fatty acid composition of broilers fed corn dried distillers grains with solubles (DDGS). Four hundred eighty 1-d-old broilers were randomly assigned to 4 groups, consisting of 6 replicates with 20 broilers each. Broilers were allocated 1 of 4 diets and fed for 49 d in a 2 × 2 factorial design. The dietary treatments consisted of 2 levels of DDGS (0 or 15%) and 2 levels of CLA (0 or 1%). The results of growth performance analyses showed that dietary supplementation with 1% CLA, 15% DDGS, or both in broilers had no significant effects on ADG, ADFI, and feed/gain (P > 0.05). Dietary supplementation with 15% DDGS did not significantly affect meat color values, drip loss percentage, pH value at 15 min, crude fat content, or shear force value (P > 0.05). Diets supplemented with 15% DDGS decreased the proportions of saturated fatty acids (P < 0.05) and monounsaturated fatty acids but increased the proportion of polyunsaturated fatty acids of the thigh meat (P < 0.05). Diets supplemented with 1% CLA significantly decreased the abdominal fat percentage (P < 0.05). Supplementation with 1% CLA increased the crude fat content and decreased the color (b*) value and shear force value of the breast meat (P < 0.05). Diets supplemented with 1% CLA increased the total superoxide dismutase activity of the serum, breast meat, and liver, and decreased the malondialdehyde content of the serum and breast meat (P < 0.05). Supplementation with 1% CLA decreased the proportion of monounsaturated fatty acids and increased the proportion of saturated fatty acids (P < 0.05). Accumulation of CLA in the thigh meat was significantly increased (P < 0.05) with increasing CLA level in the diet. In conclusion, dietary supplementation with 1% CLA had positive effects on meat quality, antioxidant capacity, and fatty acid

  6. Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth1

    PubMed Central

    Tarry-Adkins, Jane L; Fernandez-Twinn, Denise S; Hargreaves, Iain P; Neergheen, Viruna; Aiken, Catherine E; Martin-Gronert, Malgorzata S; McConnell, Josie M; Ozanne, Susan E

    2016-01-01

    Background: It is well established that low birth weight and accelerated postnatal growth increase the risk of liver dysfunction in later life. However, molecular mechanisms underlying such developmental programming are not well characterized, and potential intervention strategies are poorly defined. Objectives: We tested the hypotheses that poor maternal nutrition and accelerated postnatal growth would lead to increased hepatic fibrosis (a pathological marker of liver dysfunction) and that postnatal supplementation with the antioxidant coenzyme Q10 (CoQ10) would prevent this programmed phenotype. Design: A rat model of maternal protein restriction was used to generate low-birth-weight offspring that underwent accelerated postnatal growth (termed “recuperated”). These were compared with control rats. Offspring were weaned onto standard feed pellets with or without dietary CoQ10 (1 mg/kg body weight per day) supplementation. At 12 mo, hepatic fibrosis, indexes of inflammation, oxidative stress, and insulin signaling were measured by histology, Western blot, ELISA, and reverse transcriptase–polymerase chain reaction. Results: Hepatic collagen deposition (diameter of deposit) was greater in recuperated offspring (mean ± SEM: 12 ± 2 μm) than in controls (5 ± 0.5 μm) (P < 0.001). This was associated with greater inflammation (interleukin 6: 38% ± 24% increase; P < 0.05; tumor necrosis factor α: 64% ± 24% increase; P < 0.05), lipid peroxidation (4-hydroxynonenal, measured by ELISA: 0.30 ± 0.02 compared with 0.19 ± 0.05 μg/mL per μg protein; P < 0.05), and hyperinsulinemia (P < 0.05). CoQ10 supplementation increased (P < 0.01) hepatic CoQ10 concentrations and ameliorated liver fibrosis (P < 0.001), inflammation (P < 0.001), some measures of oxidative stress (P < 0.001), and hyperinsulinemia (P < 0.01). Conclusions: Suboptimal in utero nutrition combined with accelerated postnatal catch-up growth caused more hepatic fibrosis in adulthood, which was

  7. Evolution of grain boundary structure in submicrometer-grained Al-Mg alloy

    SciTech Connect

    Horita, Zenji; Nemoto, Minoru; Smith, D.J.; Furukawa, Minoru; Valiev, R.Z.; Langdon, T.G.

    1996-11-01

    This paper presents high-resolution electron microscopy studies of grain boundary structures in a submicrometer-grained Al-3%Mg solid solution alloy produced by an intense plastic straining technique. The studies include the effect of static annealing on the grain boundary structure. Many grain boundaries are in a high-energy nonequilibrium state in the as-strained sample. The nonequilibrium character is retained on some grain boundaries in samples annealed at temperatures below the onset of significant grain growth. The effect of electron irradiation on the grain boundary structure also is examined.

  8. Accelerated development in johnsongrass seedlings (Sorghum halepense) suppresses the growth of native grasses through size-asymmetric competition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Superior competitive ability is an expected characteristic of grassland invaders, but not all invaders exhibit traits that convey a persistent growth advantage. Here we examine priority, expressed as a brief seedling growth burst, as the driving mechanism through which the exotic weed Johnsongrass ...

  9. Presolar Grains

    NASA Astrophysics Data System (ADS)

    Zinner, E. K.

    2003-12-01

    Traditionally, astronomers have studied the stars by using, with rare exception, electromagnetic radiation received by telescopes on and above the Earth. Since the mid-1980s, an additional observational window has been opened in the form of microscopic presolar grains found in primitive meteorites. These grains had apparently formed in stellar outflows of late-type stars and in the ejecta of stellar explosions and had survived the formation of the solar system. They can be located in and extracted from their parent meteorites and studied in detail in the laboratory. Their stellar origin is recognized by their isotopic compositions, which are completely different from those of the solar system and, for some elements, cover extremely wide ranges, leaving little doubt that the grains are ancient stardust.By the 1950s it had been conclusively established that the elements from carbon on up are produced by nuclear reactions in stars and the classic papers by Burbidge et al. (1957) and Cameron (1957) provided a theoretical framework for stellar nucleosynthesis. According to these authors, nuclear processes produce elements with very different isotopic compositions, depending on the specific stellar source. The newly produced elements are injected into the interstellar medium (ISM) by stellar winds or as supernova (SN) ejecta, enriching the galaxy in "metals" (all elements heavier than helium) and after a long galactic history the solar system is believed to have formed from a mix of this material. In fact, the original work by Burbidge et al. and Cameron was stimulated by the observation of regularities in the abundance of the nuclides in the solar system as obtained by the study of meteorites (Suess and Urey, 1956). Although providing only a grand average of many stellar sources, the solar system abundances of the elements and isotopes ( Anders and Grevesse, 1989; Grevesse et al., 1996; see Chapter 1.03; Lodders, 2003) remained an important test for nucleosynthesis

  10. Grain Spectroscopy

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  11. Evaluating percentage of roughage in lamb finishing diets containing 40% dried distillers grains: growth, serum urea nitrogen, nonesterified fatty acids, and insulin growth factor-1 concentrations and wool, carcass, and fatty acid characteristics.

    PubMed

    Whitney, T R; Lupton, C J

    2010-09-01

    Effects of percentage of roughage on growth, serum urea N, NEFA, and IGF-1 concentrations and wool, carcass, and fatty acid (FA) characteristics were investigated in Rambouillet wether lambs (n = 33). Lambs were individually fed ad libitum pelleted diets for 98 d containing 40% dried distillers grains and other ingredients, with 10% (CSH10), 20% (CSH20), or 30% (CSH30) cottonseed hulls replacing an increasing amount of ground sorghum grain. Results indicated no interaction between diet and day for lamb BW, ADG, or G:F. Percentage of roughage did not affect lamb BW, even though ADG linearly increased (P = 0.005)